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Abstract

An ensemble Green’s function theory for many-electron systems with degenerate ground
states, based on the von Neumann density matrix formalism, is proposed. The formalism
is constructed without an assumption of an adiabatic connection. An ensemble analogue
of Hedin’s equations and the GW Approximation (GWA) is constructed. The formalism
is applied to four model systems within GWA: a three-orbital Hubbard model, a two-
dimensional harmonic oscillator, an Ising model with a triangular lattice and a hydrogen-
like system, with comparison to the exact solutions. The response function and the
Green’s function are found to be in reasonable agreement with the exact result for the
majority of the models. However, peaks originating from the non-interacting degenerate
subspace are found to be routinely neglected in the response function by our employed one-
shot computational approach. Furthermore, the relation between the finite-temperature
Green’s function theory and the proposed theory is studied, and an extension of the finite-
temperature formalism to include electronic systems with degenerate states is proposed.
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Chapter 1

Introduction

The interaction between electrons is described by a pairwise interaction governed by one
of the fundamental forces of nature: electromagnetism. A system composed of many
such electrons, all interacting via the pairwise electron-electron interaction, is called a
many-electron system or electronic system. An electronic system can contain a degenerate
ground state, i.e. several states of the system having an identical energy equal to the lowest
energy of the system. In nature, many electronic systems containing degenerate ground
states exist, with examples ranging from open-shell atoms and molecules to vacancies
in solids and two-dimensional electronic systems. Degenerate ground states may appear
in frustrated systems, such as frustrated magnets. These systems are defined by that
each pairwise interaction cannot, from the symmetry of the system, be satisfied at the
same time. An example of a model of a frustrated magnet is the Ising model with
a triangular lattice. Various fascinating and intriguing phenomena can originate from
the ground state degeneracy. Prominent examples are the Landau degeneracy in two-
dimensional electronic systems causing the fractional and integer quantum Hall effect [1]
and the macroscopic degeneracy of the ground state in spin ice, a frustrated ferromagnet,
leading to the appearance of magnetic monopoles [2]. Spin ice is a material composed of
corner-sharing tetrahedra of magnetic ions, exhibiting a disorder of the magnetic moments
analogous to the disorder of protons in water ice at low temperatures [3]. To describe
such phenomena of electronic systems with degenerate ground states, one is required to
employ a theory which incorporates the aspect of degeneracy.

The simple pairwise electron-electron interaction between all electrons lead to the
emergance of complex and collective phenomena in electronic systems. A goal in the
fields of Condensed Matter Physics and Quantum Chemistry is to simulate such electronic
systems capturing the most important electronic properties. One approach is based on
models with input parameters chosen to reproduce experimental data. This approach
can be used to decipher the underlying physical mechanisms of phenomena in materials.
However, the predictive power of these models is limited. The other approach is the
ab initio, or first principle, approach, based on computing the electronic structure from
only the structure of a material or molecule, i.e. only with the knowledge of charge and
position of nuclei as well as the number of electrons, without adjustable parameters. While
this approach has greater predictive power, it is more computationally demanding. Our
considerations are of the first principle approach for electronic structure computations.

The non-relativistic quantum mechanics of interacting electrons in a many-electron
system are exactly described by the Schrödinger equation and the given many-electron
Hamiltonian. Thus, solving the Schrödinger equation in the case of many-electron systems
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2 CHAPTER 1. INTRODUCTION

would in theory give the exact wavefunctions and eigenenergies, containing all information
describing the system. However, it proves difficult to solve the Schrödinger equation ex-
actly. In general, the properties of an electronic system cannot be solved for analytically,
and in realistic systems the larger numbers of electrons makes solving it exactly unfeasi-
ble. The difficulty arises from the electron-electron interaction leading to every electron
being correlated to all other electrons. Appropriate approximations and algorithms which
capture the most important features of the electron correlation are thus required in the
ab initio approach.

Several ab initio electronic structure computational approaches have been developed
over the last half of the previous century until today. In small finite systems, such as
atoms and small molecules, rigorous wave-function based computational methods such
as Configurational Interaction (CI) and Coupled Cluster (CC) techniques are used for
benchmark results. For large systems, wave-function based methods become increasingly
computationally demanding and different approaches are required. In these systems, with
examples such as solids and large molecules, there are two main categories of approaches:
Density Functional Theory (DFT) and Many-Body Perturbation Theory (MBPT) based
approaches. In DFT one maps the many-electron problem to a simple one-electron prob-
lem with an effective potential, the Kohn-Sham potential, giving the ground state prop-
erties of the system. In the DFT approach, a common starting point is the Local Density
Approximation (LDA) [4, 5] which is based on the electron gas and expected to be suitable
for delocalized electrons. For systems with electrons of a localized nature, i.e. a short-
range correlation, LDA does not always work well. Examples of materials with short-
range correlation are those containing atoms with valence electrons in 3d and 4f orbitals.
Methods such as the LDA+U method [6, 7, 8] and the Self Interaction Correction (SIC)
method [9] modify the LDA method to include a treatment of the localized nature of elec-
trons. A current standard approach for treating systems with short-range correlation is
LDA+DMFT [10, 11] which combines LDA with Dynamical Mean-Field Theory (DMFT),
which is based on mapping a lattice model onto a quantum impurity model coupled to a
reservoir [12, 13]. The exact Kohn-Sham eigenvalues obtained in DFT have no relation to
the one-electron excitation energies of an electronic system, the quasiparticle energies, as
these are related to excited state properties of the system. However, even without theo-
retical justification, the Kohn-Sham eigenvalues are usually taken as corresponding to the
quasiparticle energies, since the agreement is good for a wide range of systems. A proper
way to compute the one-electron excitation spectra and quasiparticle energies is through
approaches based on Green’s function theory, used in MBPT. In the Green’s function
approach, a common starting point is the one-shot G0W0 approach, corresponding to the
first iteration of the self-consistent GW approach [14, 15]. The G0W 0 scheme describes
long-range correlation, and while quasiparticle energies are well-defined, the approach is
more computationally demanding than the simpler LDA-approach. Furthermore, another
example of a self-consistent approach is the Quasiparticle Self-consistent GW (QSGW)
[16]. For systems with short-range correlation, one possible approach is the GW+DMFT
approach, combining GW and DMFT [17]. Our work is focused on the Green’s function
theory and the G0W 0 and GW approaches.

The Green’s function theory approach is a well-established ab-initio approach for
the compution of electronic properties of electronic systems with non-degenerate ground
states. The approach is used for accurate calculations for systems of non-degenerate
ground states as well as for systems of degenerate ground states. For the degenerate case
at zero temperature, however, the standard approach is to either ignore the degeneracy
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[18, 19] or to consider the degeneracy in a non-generalizable approach [20, 21]. This is
required because, while DFT has been extended to degenerate ground states, a general
zero-temperature Green’s function formalism for degenerate ground states is not currently
available. The difficulty of constructing a Green’s function theory incorporating degen-
erate ground states originates from the common assumption of an adiabatic connection
between an interacting ground state and a non-interacting ground state. In the case of
degenerate non-interacting ground states, this connection is no longer obvious.

The history of attemps to extend the Green’s function theory to the degenerate case
begins at least as early as the 1960’s. An early attempt of constructing a Green’s function
theory incorporating degenerate ground states is by Layzer in 1962, with the introduction
of a statistical Green’s function [22]. Another early attempt at extending the Green’s
function theory to electronic systems of degenerate ground states is by Cederbaum et al
in the 1970’s, with considerations of open-shell atoms and molecules [23]. Recently, C.
Brouder et al have developed an alternative Green’s function approach for degenerate
ground states built upon nonperturbative adiabatic-approximation [24].

The main purpose of this thesis is to construct a general zero-temperature Green’s
function formalism incorporating the aspect of ground state degeneracy. We propose an
ensemble Green’s function theory based on the von Neumann density matrix formalism.
The formalism is developed without an assumption of an adiabatic connection between
interacting ground states and non-interacting ground states. Ensemble analogues of the
Hedin’s equations and the GW-Approximation (GWA) are developed. Based on the en-
semble Hedin’s equations, a one-shot and a self-consistent computational scheme for com-
putation of the ensemble Green’s function within ensemble GWA are constructed. To
illustrate the scheme, four simple models with degenerate ground states are studied us-
ing the proposed formalism: a three-orbital Hubbard model, a two-dimensional harmonic
oscillator model, an Ising model with a triangular lattice and a hydrogen-like system.
The results of the ensemble approach are compared to the exact solutions. The relation-
ship between the finite-temperature Green’s function theory and the proposed ensemble
formalism is studied. An extension of the temperature formalism to include electronic
system with degenerate ground and/or excited states is further proposed.

This thesis is organized as follows. Chapter 2 is a theoretical background for the
concepts treated in the thesis. The zero-temperature Green’s function formalism for a
non-degenerate ground state and the density matrix formalism are reviewed and a brief
description of the finite-temperature Green’s function formalism is given. Chapter 3 gives
a definition of the proposed ensemble Green’s function and a corresponding formalism is
derived. Thereafter, an ensemble analogue of the Hedin’s equations and GWA is devel-
oped. A one-shot and a self-consistent computational scheme within GWA is constructed.
A study of the relationship between the temperature formalism and ensemble formalism,
and a proposed extension of the temperature formalism for systems of degenerate states
ends the chapter. Chapter 4 compiles the application of the constructed one-shot compu-
tational scheme to four simple model systems, with a comparison to the exact case and the
case of neglecting the ground states degeneracy. In Chapter 5 the main conclusions of the
thesis are summarized. In Chapter 6 an outlook for future developments and applications
is given.



Chapter 2

Theoretical background

The main purpose of the current chapter is to establish the standard Green’s function the-
ory for the zero-temperature electron Green’s function and the density matrix formalism,
which our proposed ensemble Green’s function formalism is built upon. An introduc-
tion to many-electron systems and the density matrix formalism begins the chapter. The
equivalent Schrödinger, Heisenberg and interaction pictures, and the related adiabatic
connection are then reviewed. Thereafter, a description of the linear response theory and
the Kubo formula is given. The zero-temperature Green’s function formalism is then
reviewed by defining it and then developing it in detail by the use of the Schwinger func-
tional derivative technique. The chapter ends with a short review of the finite-temperature
Green’s function theory.

2.1 Many-electron systems

In the field of electronic structure computation, the system under consideration is the
many-electron system. The behavior of a many-electron system in the non-relativistic
case is described by the well-known time-independent Schrödinger equation, using atomic
units (h̄ = me = 1),

Ĥ|Ψn〉 = En|Ψn〉, (2.1)

with the many-electron Hamiltonian:

Ĥ =

∫
drψ̂†(r)h0(r)ψ̂(r) +

1

2

∫
drdr′ψ̂†(r)ψ̂†(r′)v(r − r′)ψ̂(r′)ψ̂(r)

+

∫
drψ̂†(r)ϕ(r)ψ̂(r), (2.2)

written in the field operator form and using the combined space and spin coordinate
r = (~r, σ). In the Hamiltonian, the first term, h0(r), is composed of contributions from
the kinetics and the local potential experienced by the electrons, e.g. from a surrounding
crystal lattice of nuclei; the second term, v(r − r′), is the electron-electron interaction;
the third term, ϕ(r), is the external potential. Relativistic effects are neglected and the
local potential is assumed to be time-independent, e.g. the nuclei are considered fixed,
thus neglecting electron-phonon interactions. The field operators are of the form:

ψ̂(r) ≡
∑
n

φn(r)ĉn, ψ̂†(r) ≡
∑
n

φ∗n(r)ĉ†n, (2.3)

4



2.2. DENSITY MATRIX 5

with the orbital φn, and electron creation and annihilation operator ĉ†n and ĉn, respectively,
for a one-electron state specified by n. Electrons obey Fermi-Dirac statistics and thus the
creation and annihilation operators satisfy the anti-commutation relations:

{ĉn, ĉ†m} = δnm, {ĉn, ĉm} = {ĉ†n, ĉ†m} = 0, (2.4)

with Kronecker delta δnm defined as 1 for n = m and 0 for n 6= m.
In general, Eq. (2.1) is not analytically solvable for an electronic system, and numer-

ical methods are thus required. Appropriate approximations and computational schemes
have therefore been developed. In the current thesis we specifically consider the Green’s
function theory within MBPT, with computational approaches within the GWA, an ap-
proximation first proposed by L. Hedin [14].

2.2 Density matrix

A physical system can be described as a statistical ensemble of a collection of systems
occupying different states. A collection of systems all characterized by the same state |α〉
defines a pure ensemble. In a mixed ensemble a fraction wi of the systems are characterized
by the state |αi〉, with i specifying different states. To describe such physical systems with
pure or mixed ensembles one can use the density matrix formalism, originally introduced
by von Neumann. For an in-depth review of the concept see for example [25].

All physically significant information related to the ensemble is stored in the density
matrix D̂, defined as

D̂ ≡
M∑
i=1

wi|Φi〉〈Φi|,
M∑
i=1

wi = 1, 0 ≤ wi ≤ 1, (2.5)

where {|Φi〉, i = 1, ...,M} is the set of M states spanning the Hilbert space of the system
and with the corresponding fraction wi specifying the ensemble uniquely. The states
{|Φi〉, i = 1, ...,M} are not necessarily orthogonal. The ensemble average of any operator
can within the density matrix formalism be written as

O ≡
M∑
i=1

wi〈Φi|Ô|Φi〉 = Tr(D̂Ô). (2.6)

For repeated measurements of a quantity, the average of the quantity corresponds to the
ensemble average, i.e. the density matrix stores all information of physical significance in
an ensemble. As an illustration, consider the ensemble average density given by:

ρ(r) =
M∑
i=1

wi〈Φi|ρ̂(r)|Φi〉 =
M∑
i=1

wiρi(r). (2.7)

The structure of the proposed ensemble Green’s function theory in section 3.1 will be
based on the structure of the ensemble density.

2.3 Pictures

The Schrödinger, Heisenberg and interaction (Dirac) pictures, are three equivalent formu-
lations of Quantum Mechanics. The pictures specify the time-dependence of the operators
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and states, with the requirement that the expectation value of any operator is indepen-
dent of the choice of picture. As observables are expectation values of operators, the
three pictures describe identical observations. In our development of the Green’s function
theory based on MBPT, a time-dependent perturbation theory, both the Heisenberg and
interaction pictures will be employed. For an in-depth review of the concepts see for
example [26].

In the Schrödinger picture, operators are by definition time-independent and the states
are time-dependent. In the Heisenberg picture, operators are instead time-dependent and
the states are time-independent. The two pictures are related by the time-evolution
operator

Û(t, t′) = e−iĤ(t−t′) , (2.8)

where the function of an operator is defined as the Taylor expansion of the function. The
two pictures coincide at t = 0, i.e.

ÔH(t) ≡ Û(t, 0)ÔSÛ(0, t) , |Ψ(t)〉S ≡ Û(t, 0)|Ψ〉H , (2.9)

where H and S labels the states and operators in the Heisenberg and Schrödinger picture,
respectively. Notice that the expectation value of any operator is independent of the two
pictures as required.

In the development of time-dependent perturbation theory, it is appropriate to use
the interaction picture. In perturbation theory one splits up the Hamiltonian of a system
into two parts,

Ĥ(t) = Ĥ0 + φ̂(t) , (2.10)

where the system described by the unperturbed Hamiltonian Ĥ0, assumed to be time-
independent in all our considerations, is exactly solvable and the perturbative potential
φ̂(t) represents the remaining part of the full Hamiltonian. The operators and states
in the interaction picture are both time-dependent, in contrast to the Schrödinger and
Heisenberg pictures, and are defined by

ÔD(t) ≡ eiĤ0tÔSe
−iĤ0t , |Ψ(t)〉D ≡ eiĤ0t|Ψ(t)〉S , (2.11)

where D labels the interaction (Dirac) picture. The unperturbed Hamiltonian and per-
turbative potential govern the time-dependence of the operators and states, respectively.
In the interaction picture, the time-evolution operator can be written in the form,

ÛD(t, t′) = T exp

[
−i
∫ t

t′
dτφ̂D(τ)

]
, (2.12)

for a derivation see [26]. The time-ordering operator T rearranges the operators from
left to right with decreasing time-coordinate and with an additional sign change for the
interchange of fermionic operators.

Adiabatic Connection

An assumption related to the interaction picture is the adiabatic connection. The adiabatic
connection of a non-interacting ground state to an interacting ground state was first
introduced by Gell-Mann and Low in [27]. It is one of the most important concepts in the
current thesis, motivating our choice of approach for constructing the proposed ensemble
Green’s function formalism for systems of degenerate ground states. In constrast to
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this thesis, the adiabatic connection is usually assumed in the development of the zero-
temperature Green’s function theory for non-degenerate ground states. For a brief review
of the concept, see for example [26].

In the adiabatic connection, one assumes that at t = −∞ the interaction is turned
off and that the ground state is given by |φ0〉, the lowest energy eigenstate of Ĥ0. A
connection to the interacting ground state |Ψ(0)〉 at t = 0 is established by infinitely
slowly turning on the interaction, i.e. adiabatically switching on the interaction. The
relation is given by:

|Ψ(0)〉 = ÛD(0,−∞)|φ0〉. (2.13)

At t = +∞ the interaction is again assumed to be turned off and one assumes that the
state is equal to |φ0〉 with a possible additional phase factor eiL. A second connection to
the interacting ground state |Ψ(0)〉 at t = 0 is established by adiabatically switching off
the interaction, thus giving the relation:

eiL|φ0〉 = ÛD(+∞, 0)|Ψ(0)〉. (2.14)

The main conclusion of the adiabatic connection can now be derived from Eqs. (2.13)
and (2.14):

eiL = 〈φ0|Ŝ|φ0〉, (2.15)

where Ŝ is defined as
Ŝ ≡ ÛD(+∞,−∞). (2.16)

A consequence of the adiabatic approximation is the following relation,

〈φ0|ÛD(−∞, 0) =
〈φ0|ÛD(+∞, 0)

〈φ0|Ŝ|φ0〉
. (2.17)

For a derivation of Eq. (2.17) see for example Ref. [26]. The relation (2.17) is commonly
used in the development of the Green’s function from the Heisenberg picture to the inter-
action picture. Notice that the derivation was done for a non-degenerate non-interacting
ground state, and that an adiabatic connection between a non-interacting degenerate
ground state and an interacting ground state is not clear. The assumption that the state
at t = +∞ is equal to the ground state |φ0〉 at t = −∞ with an additional phase fac-
tor is not anymore a satisfactory assumption when the non-interacting ground state is
degenerate.

2.4 Linear response theory

Linear response theory is a general theory for treating the response of a system to a
weak external perturbation. Here, the external perturbation can have many origins, with
one possibility being an external electromagnetic field. The main purpose of the current
section is to derive the Kubo formula and introduce the linear density response function.
The latter will appear in the Green’s function theory approach. For literature on the
subject, see for example [28].

The response of a system to an external field is quantified by the change of the ground
state expectation value of an operator Ô(t) with the application of an external field φ̂(t).
In linear response theory, the change of the expectation value is computed only to linear
order in the external field, assuming the external perturbation to be weak. As an external
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field is applied, it is convenient to work in the interaction picture. The time-evolution
operator, given by Eq. (2.12), is to first order in the applied field given by:

ÛD(t, 0) ≈ 1− i
∫ t

0

dτφ̂D(τ) . (2.18)

The change in the ground state expectation value of an operator with the application of
an external field can now be written in the interaction picture as:

δO(t) = 〈ΨD(t)|ÔD(t)|ΨD(t)〉 − 〈ΨD(0)|ÔD(t)|ΨD(0)〉
= 〈ΨD(0)|ÛD(0, t)ÔD(t)ÛD(t, 0)|ΨD(0)〉 − 〈ΨD(0)|ÔD(t)|ΨD(0)〉

≈ i

∫ t

0

dt′〈ΨD(0)|[φ̂D(t′), ÔD(t)]|ΨD(0)〉. (2.19)

This relation is called the Kubo formula. It should be noticed that a non-degenerate
ground state has been assumed. Extensions to the Kubo formula to more general ensemble
expectation values will be used in later sections, for both the finite-temperature and
ensemble Green’s function formalisms.

We now specialize to the case of an external field coupling to the density,

φ̂(t) =

∫
d3rρ̂(r, t)ϕ(r, t), (2.20)

describing for example an external electric field. The change in the ground state density
can be written as

δρ(rt) = i

∫
d3r′

∫ t

0

dt′ϕ(r′t′)〈ΨD(0)|[ρ̂D(r′t′), ρ̂D(rt)]|ΨD(0)〉. (2.21)

The retarded linear density response function Rr is now defined by

δρ(rt) =

∫
d3r′

∫ ∞
0

dt′Rr(rt, r′t′)ϕ(r′t′). (2.22)

It describes the density change of the system with respect to the field to linear order in
the external field. Comparing Eqs. (2.21) and (2.22), the retarded linear density response
function can be identified to be of the form:

iRr(rt, r′t′) = 〈ΨH |[ρ̂H(rt), ρ̂H(r′t′)]|ΨH〉θ(t− t′), (2.23)

where θ(t− t′) is the Heaviside step function. A common rewritten form of the retarded
linear density response function is

iRr(rt, r′t′) = 〈ΨH |[∆ρ̂H(rt),∆ρ̂H(r′t′)]|ΨH〉θ(t− t′), (2.24)

where ∆ρ̂ has been introduced:

∆ρ̂(rt) = ρ̂(rt)− 〈ρ̂(rt)〉, (2.25)

with the ground state expection value of the density 〈ρ̂〉.
In the current thesis, the computational approach is based on the computation of

time-ordered functions. It is thus convenient to define a time-ordered density response
function R related to the retarded one. They are related by two simple relations in the
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spectral representation. For a time-independent Hamiltonian, the time-dependence of the
retarded and time-ordered response functions enters as τ = t− t′. The Fourier transform
and inverse Fourier transform are defined as

Rr(r, r′;ω) =

∫ ∞
−∞

dτeiωτRr(r, r′; τ) , (2.26)

Rr(r, r′; τ) =
1

2π

∫ ∞
−∞

dωe−iωτRr(r, r′;ω) . (2.27)

The spectral represention of the retarded and time-ordered response functions are related
by:

ReR(r, r′;ω) = ReRr(r, r′;ω), (2.28)

ImR(r, r′;ω)sgn(ω) = ImRr(r, r′;ω), (2.29)

where sgn is the sign-function [28]. The linear density response function which satisfies
the relations (2.28) and (2.29) is the following one:

iR(rt, r′t′) = 〈ΨH |T{∆ρ̂H(rt)∆ρ̂H(r′t′)}|ΨH〉. (2.30)

In the Green’s function theory to be developed, the linear response function will make
frequent appearence. By using relations (2.28) and (2.29), the retarded linear response
function of physical relevance can then be computed.

2.5 Zero-temperature Green’s function theory

The Green’s function theory approach is based on the Green’s function of a many-electron
system, which contains physically significant information about the described system. A
large library of literature and reviews have been written on the subject, see for example
[26, 29].

An intuitive illustration of the Green’s function is found in the PhotoEmission Spec-
troscopy (PES) (see figure 2.1) and Inverse PhotoEmission Spectroscopy (IPES) experi-
ments. In PES one probes a solid with photons of an energy ω high enough to knock out
electrons with momenta ~k. A simple view of the energetics is given by,

ω = K + EB(~k), (2.31)

where K is the kinetic energy of the photo-emitted electron and EB is the excitation
spectrum with the presence of a hole (occupied density of states). Measuring the kinetic
energy and momentum of the photo-emitted electrons, one can obtain the excitation
spectrum of the solid. Instead, in IPES one probes a solid with electrons, producing the
inverse process of PES. One can then measure the excitation spectrum with the presence
of an additional electron (unoccupied density of states). The excitation spectra in both
experiments are related to the electron Green’s function in the sudden approximation,
which corresponds to the limit of large kinetic energy. For an electronic system with
a normalized non-degenerate ground state |Ψ0〉, the zero-temperature electron Green’s
function is defined in the Heisenberg picture as

G(1, 2) ≡ −i〈Ψ0|T [ψ̂(1)ψ̂†(2)]|Ψ0〉, (2.32)
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where for notational simplicity (r1, t1) is written as 1, etc. For t1 < t2 and t1 > t2
the physical interpretation of the Green’s function is as the probability amplitude for
the creation of a hole at r1 at time t1 propagating to r2 at time t2 and the creation
of an electron at r2 at time t2 propagating to r1 at time t1, respectively. The physical
interpretation gives a natural connection to PES and IPES. For t1 < t2 the Green’s
function describes the PES experiment, and for t1 > t2 it describes the IPES experiment.

Figure 2.1: Illustration of an Angle-Resolved PhotoEmission Spectroscopy (ARPES) ex-
periment. A photon source of an energy hν probes a sample, leading to the emission of
electrons with kinetic energy measured by an energy analyser at varying angles. Figure
taken from [30].

Properties of the electron Green’s function will now be detailed. The expectation
value of any one-electron operator in the ground state is given by the Green’s function as

〈Ψ0|Ô(t)|Ψ0〉 =

∫
drO(r, t)〈Ψ0|ψ̂†(r, t)ψ̂(r, t)|Ψ0〉

= −i
∫
drO(r, t)G(rt, rt+) , (2.33)

where t+ = limε→0+ t + ε. As an example, consider Eq. (2.33) in the case of the density
operator ρ̂(r):

ρ(1) = 〈Ψ0|ρ̂(1)|Ψ0〉 = 〈Ψ0|ψ̂†(1)ψ̂(1)|Ψ0〉 = −iG(1, 1+), (2.34)

with 1+ corresponding to (r1, t
+
1 ). The relation in Eq. (2.34) will be of importance in later

derivations. The ground state energy E0 of a system can be computed from the Green’s
function by the Galitskii-Migdal formula, given by

E0 = − i
2

∫
dr lim

t′→t+
lim
r′→r

(
i
∂

∂t
+ h0(r)

)
G(rt, r′t′), (2.35)

for a derivation see for example [28]. The poles of the Fourier transformed Green’s function
are equal to the exact one-electron excitation energies, also called the exact quasiparti-
cle energies. Quasi-particle in our current considerations specify dressed electrons and
holes, affected by the screening of their environment which they interact with. A time-
independent Hamiltonian is considered and in this special case the time-dependence of
the Green’s function enters as τ = t − t′, as for the response functions in section 2.4.
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The described pole structure is observed in the following rewritten form of the Green’s
function, using the Fourier transform defined in Eq. (2.26):

G(r1, r2;ω) =
∑
n

〈ΨN
0 |ψ̂†(r2)|ΨN−1

n 〉〈ΨN−1
n |ψ̂(r1)|ΨN

0 〉
ω + EN−1

n − EN
0 − iδ

+
∑
n

〈ΨN
0 |ψ̂(r1)|ΨN+1

n 〉〈ΨN+1
n |ψ̂†(r2)|ΨN

0 〉
ω − EN+1

n + EN
0 + iδ

, (2.36)

where EN
n is the energy of the state |ψNn 〉 for the system with N electrons and δ is an

infinitesimal positive constant. For a derivation of Eq. (2.36) see Appendix A. Thus the
information contained within the Green’s function is the following:

• The expection value of any one-electron operator in the ground state.

• The ground state energy, given by the Galitskii-Migdal formula.

• The one-electron excitation spectrum corresponding to knocking out an electron or
adding an additional one.

One is often interested in the spectral function, which contains information of, for
instance, the chemical potential and the density of states. The definition of the spectral
function is the following:

A(r1, r2;ω) ≡ − i

2π

[
GR(r1, r2;ω)−GA(r1, r2;ω)

]
, (2.37)

where GR(1, 2) and GA(1, 2) is the retarded and advanced Green’s function, respectively,
defined by:

GR(1, 2) ≡ −iΘ(t1 − t2)
(
〈Ψ0|ψ̂(1)ψ̂†(2)|Ψ0〉+ 〈Ψ0|ψ̂(2)ψ̂†(1)|Ψ0〉

)
, (2.38)

GA(1, 2) ≡ iΘ(t2 − t1)
(
〈Ψ0|ψ̂(1)ψ̂†(2)|Ψ0〉+ 〈Ψ0|ψ̂(2)ψ̂†(1)|Ψ0〉

)
. (2.39)

The Green’s function G specifies in our considerations the time-ordered Green’s function.
The Green’s function in the case of a non-degenerate ground state can directly be related
to the spectral function by the following relations

A(1, 2;ω) = − 1

π
sgn(ω − µ)ImG(1, 2;ω), (2.40)

G(1, 2;ω) =

∫ µ

−∞
dω′

A(1, 2;ω′)

ω − ω′ − iδ
+

∫ ∞
µ

dω′
A(1, 2;ω′)

ω − ω′ + iδ
, (2.41)

with the chemical potential µ = EN+1
0 − EN

0 (called electron affinity for finite systems).
The trace of the spectral function, defined as

Tr[A(ω)] =

∫
d1A(1, 1;ω), (2.42)

satisfies a sum rule given by:

N =

∫ µ

−∞
dωTr[A(ω)], (2.43)

where N is the number of electrons in the system. In the beginning of the current section
the Green’s function was stated to be related to the PES and IPES experiments. A
more direct relation exists between the measured excitation spectra in the PES and IPES
experiments and the spectral function, with the function being equal to the occupied and
unoccupied density of states for ω < µ and ω > µ, respectively.
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2.5.1 Equation of motion

The exact Green’s function contains important properties and information describing a
many-electron system. However, computing the Green’s function in the exact case using
Eq. (2.36) becomes unfeasible for large and realistic systems. A suitable scheme to
compute the Green’s function in an approximate way is thus sought. The current and the
two following subsections will review the development of such a computational scheme,
starting with the development of an equation of motion for the Green’s function and an
introduction of the self-energy, following an approach given in [29].

An equation of motion for the Green’s function can be written incorporating the
self-energy, a non-local and energy-dependent potential experienced by an electron in a
many-electron system. This potential corresponds to the portion of the potential felt
by an electron from its surrounding medium originating from its own interaction with
that medium. An equation of motion for the Green’s function can be constructed from
Heisenberg’s equation of motion as follows,(

i
∂

∂t1
− h0(1)

)
G(1, 2) + i

∫
d3 v(1− 3)G(1, 2, 3, 3+) = δ(1− 2), (2.44)

with the two-particle Green’s function in the Heisenberg picture defined as

G(2)(1, 2, 3, 4) ≡ −〈Ψ0|T [ψ̂D(1)ψ̂†D(2)ψ̂D(3)ψ̂†D(4)]|Ψ0〉, (2.45)

and with the interaction v(1− 2) defined as:

v(1− 2) = v(r1 − r2)δ(t1 − t2). (2.46)

For a derivation of Eq. (2.44) from Heisenberg’s equation of motion see for example [31].
We will use the Schwinger functional derivative technique to further develop the equation
of motion and introduce the self-energy. The approach is based on the functional concept,
for a short review see Appendix B. In the technique, one introduces a probing field ϕ(r, t),
which is set to zero at the end, to express two-particle functions in terms of one-particle
functions and their functional derivatives. As a probing field is introduced, it is preferable
to work in the interaction picture. The perturbative potential is assumed to be of the
form (2.20).

In the interaction picture the one-particle and two-particle electron Green’s function
are defined as

iG(1, 2) ≡ 〈Ψ0|T [ŜΨ̂D(1)Ψ̂†D(2)]|Ψ0〉
〈Ψ0|Ŝ|Ψ0〉

, (2.47)

G(2)(1, 2, 3, 4) ≡ −〈Ψ0|T [ŜΨ̂D(1)Ψ̂†D(2)Ψ̂D(3)Ψ̂†D(4)]|Ψ0〉
〈Ψ0|Ŝ|Ψ0〉

, (2.48)

respectively, where Ŝ is defined by Eq. (2.16). The interaction picture form of the Green’s
function can be shown to be equivalent to the Heisenberg picture form by the assumption
of an adiabatic connection. No assumption of an adiabatic connection will however be
required in the current derivations based on the Schwinger functional derivative technique.
Notice that the one-particle and two-particle Green’s function in the interaction picture
return to the Heisenberg picture form in the limit of a vanishing perturbing field (Ŝ → 1),
as required. The dependence of the perturbing field is entirely contained within the Ŝ
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operator in the one- and two-electron Green’s function. Taking the functional derivative
of Ŝ one obtains:

δŜ

δϕ(3)
= −iT [Ŝρ̂(3)]. (2.49)

By the chain-rule for functional derivatives one can derive by using Eqs. (2.34) and (2.49):

δG(1, 2)

δϕ(3)
= iG(1, 2)ρ(3)−G(2)(1, 2, 3, 3+). (2.50)

Thus the two-particle electron Green’s function can be rewritten in terms of the one-
particle Green’s function and its functional derivative, illustrating the technique.

A problem with the equation of motion (Eq. (2.44)) is the dependence on the two-
particle Green’s function. An equation of motion of the two-particle Green’s function is
in turn dependent on the three-particle Green’s function etc., leading to a hierarchical
problem. To solve this, a common approach is the introduction of a mass operator. We
now introduce the mass operator M as

i

∫
d3 v(1− 3)G(1, 2, 3, 3+) ≡ −

∫
d3 M(1, 3)G(3, 2),

M(1, 4) = −i
∫
d3d2 v(1− 3)G(2)(1, 2, 3, 3+)G−1(2, 4). (2.51)

By using Eq. (2.50) one can rewrite the mass operator:

M(1, 4) = −i
∫
d2d3 v(1− 3)

[
iG(1, 2)ρ(3)− δG(1, 2)

δϕ(3)

]
G−1(2, 4)

= V H(1)δ(1− 4) + Σ(1, 4), (2.52)

where the Hartree potential V H and self-energy Σ are introduced as:

V H(1) ≡
∫
d3 v(1− 3)ρ(3), (2.53)

Σ(1, 2) ≡ −i
∫
d3d4 v(1− 3)G(1, 4)

δG−1(4, 2)

δϕ(3)
. (2.54)

In Eq. (2.54) the identity∫
d2

δG(1, 2)

δϕ(3)
G−1(2, 4) = −

∫
d2 G(1, 2)

δG−1(2, 4)

δϕ(3)
, (2.55)

derived from the chain-rule for functional derivatives, has been used. One can now con-
struct the sought form of the equation of motion for the Green’s function incorporating
the self-energy: (

i
∂

∂t1
− h(1)

)
G(1, 2)−

∫
d3 Σ(1, 3)G(3, 2) = δ(1− 2), (2.56)

with h(1) ≡ h0(1) + V H(1) + ϕ(1).
The inverse Green’s function can with Eq. (2.56) be written in the form

G−1(1, 2) =

(
i
∂

∂t1
− h(1)

)
δ(1− 2)− Σ(1, 2), (2.57)
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and its functional derivative with respect to the perturbing field is thus given by

δG−1(1, 2)

δϕ(3)
= −

(
δ(1− 3) +

δV H(1)

δϕ(3)

)
δ(1− 2)− δΣ(1, 2)

δϕ(3)
. (2.58)

An iterative equation for the self-energy can now be constructed by Eqs. (2.54) and (2.58)
as:

Σ(1, 4) = iv(1− 4)G(1, 4) + i

∫
d3 v(1− 3)G(1, 4)

δV H(4)

δϕ(3)

+ i

∫
d2d3 v(1− 3)G(1, 2)

δΣ(2, 4)

δϕ(3)
. (2.59)

An equation of motion for the Green’s function incorporating the self-energy (Eq. (2.56))
and an iterative equation for the self-energy (Eq. (2.59)) have thus been derived.

2.5.2 Hedin’s equations

A set of equations called Hedin’s equations, equivalent to the Green’s function equation
of motion (Eq. (2.56)) and the iterative equation for the self-energy (Eq. (2.59)), can be
constructed. It is a set of five self-consistent equations for the Green’s function, originally
developed by L. Hedin in 1965 [14], and will be the basis for the computational approach
considered in this thesis. For more in-depth reviews of Hedin’s equations see for example
[29, 32].

The first of Hedin’s equations is the Dyson equation. It relates the Green’s function
G to the self-energy Σ and the non-interacting Green’s function G0. The latter is defined
as the Green’s function satisfying Eq. (2.56) for Σ(1, 2) = 0. The Dyson equation can be
constructed from Eq. (2.56) as:

G(r1, r2;ω) = G0(r1, r2;ω) +

∫
d3d4 G0(r1, r3;ω)Σ(r3, r4;ω)G(r4, r2;ω). (2.60)

The second of Hedin’s equations relates the self-energy Σ to the screened interaction W
and vertex function Λ, defined by

W (1, 2) ≡
∫
d3 v(2− 3)

δV (1)

δϕ(3)
, Λ(1, 2, 3) ≡ −δG

−1(1, 2)

δV (3)
, (2.61)

with the total field V ≡ V H + ϕ introduced. The physical interpretation of W is as
the screened Coulomb interaction. By the introduction of W and Λ one can rewrite Eq.
(2.54) with the chain-rule for functional derivatives as:

Σ(1, 2) = i

∫
d4d5 G(1, 4)Λ(4, 2, 5)W (5, 1). (2.62)

The response of a system with respect to an external field is a property of interest
in many-electron systems, see section 2.4. A polarization P and response function R are
introduced, expressing the response of the electronic system with respect to the total field
V and the external field ϕ, respectively. The two functions can be defined as

P (1, 2) ≡ δρ(1)

δV (2)
, R(1, 2) ≡ δρ(1)

δϕ(2)
. (2.63)
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Both functions can be related via:

R(1, 2) = P (1, 2) +

∫
d3d4 P (1, 3)v(3− 4)R(4, 2). (2.64)

Often it is enough to consider only the the linear density response function of a many-
electron system. In frequency space the linear density response function can be written
as:

R(r1, r2;ω) =
∑
n6=0

[
〈Ψ0|ρ̂(r1)|Ψn〉〈Ψn|ρ̂(r2)|Ψ0〉

ω − En + E0 + iδ
− 〈Ψ0|ρ̂(r2)|Ψn〉〈Ψn|ρ̂(r1)|Ψ0〉

ω + En − E0 − iδ

]
. (2.65)

See Appendix C for a derivation of Eq. (2.65). The linear response function can be related
to the retarded linear response function as described in section 2.4. The spectral form of
the response function, defined as:

S(r1, r2;ω) = − 1

π
sgn(ω)ImR(r1, r2;ω), (2.66)

will be an additional form of the response function used in the current thesis. The third
of Hedin’s equations, relating the screened interaction W to the polarization P , can be
obtained from Eqs. (2.61) and (2.63) as

W (1, 2) = v(1− 2) +

∫
d3d4 v(1− 3)P (3, 4)W (4, 2), (2.67)

where the chain-rule for functional derivatives has been employed.
The fourth of Hedin’s equations relates the polarization P to the Green’s function G

and vertex function Λ. The equation can be obtained by rewriting Eq. (2.63), using the
chain-rule for functional derivatives and partial integration, as

P (1, 2) = −i
∫
d3d4 G(1, 3)Λ(3, 4, 2)G(4, 1+) . (2.68)

The final Hedin equation is obtained by rewriting Eq. (2.61) as

Λ(1, 2, 3) = δ(1− 2)δ(1− 3) +
δΣ(1, 2)

δV (3)

= δ(1− 2)δ(1− 3) +

∫
d4d5d6d7

δΣ(1, 2)

δG(4, 5)
G(4, 6)G(7, 5)Λ(6, 7, 3), (2.69)

by employing the chain-rule for functional derivatives and partial integration. The Hedin
equations are the set of self-consistent Eqs. (2.60), (2.62), (2.67), (2.68) and (2.69) for
the computation of the Green’s function. It corresponds to an exact set of equations, but
approximations and computational schemes are required for practical applications.

2.5.3 GW approximation

The GW-Approximation (GWA) is an approximation to Hedin’s equations, originally
proposed by L. Hedin in [14]. The approximation corresponds to the simplest non-trivial
approximation to the self-energy beyond the Hartree-Fock approximation. For in-depth
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reviews of GWA see for example [29, 32]. In the GWA one sets δΣ/δV = 0 in Eq. (2.69),
thus approximating the vertex function as

Λ(1, 2, 3) = δ(1− 2)δ(1− 3), (2.70)

further modifying Eqs. (2.62) and (2.68):

Σ(1, 2) = iG(1, 2)W (2, 1), (2.71)

P (1, 2) = −iG(1, 2)G(2, 1+). (2.72)

The form of the self-energy in Eq. (2.71) is the origin of the name for GWA. GWA
can be considered a generalization of the Hartree-Fock approximation, with the bare
Coulomb interaction v replaced by the screened Coulomb interaction W from electron-
hole screening.

Computations within GWA are usually done within the Random-Phase Approximation
(RPA): an approximation to the linear response function. The linear density response
function can using Eqs. (2.34),(2.55),(2.58) and (2.63) be written in the form:

R(1, 2) = −i
∫
d3d4 G(1, 3)

[
δ(3− 2)δ(4− 2) +

δV H(3)

δϕ(2)
δ(4− 2) +

δΣ(3, 4)

δϕ(2)

]
G(4, 1+).

(2.73)

The RPA corresponds to setting δΣ/δϕ = 0, leading to the RPA equation:

R(1, 2) = P 0(1, 2) +

∫
d3d4 P 0(1, 3)v(3− 4)R(4, 2). (2.74)

The introduced non-interacting polarization P 0 is of the same form as the linear response
function, given by Eq. (2.65), with the non-interacting states and energies used instead
of the interacting ones. RPA corresponds to assuming that the response of an interacting
system to an external field is given by the response of a non-interacting system to the
total field. Assuming RPA further modifies Eq. (2.67):

W (1, 2) = v(1− 2) +

∫
d3d4 v(1− 3)P 0(3, 4)W (4, 2). (2.75)

Two commonly used computational schemes based on the GWA are the one-shotG0W 0

approach and the iterative self-consistent GW approach. See Fig. 2.2 for a diagrammatic
view of the schemes and for more information on the schemes see [29, 32]. The initial step
in the G0W 0 approach is to construct the non-interacting states and energies from a self-
consistent mean-field approach. Thereafter, the spin-polarized non-interacting Green’s
function, corresponding to G0 separate into each spin channel, and non-interacting po-
larization, corresponding to the sum over the contributions for each spin channel, are
computed. In turn the screened interaction W is computed from P 0. The computation of
the spin-polarized self-energy Σ can be separated into an exchange and correlation part.
The exchange part is given by:

Σx(r1, r2;ω) = −v(r1 − r2)
occ∑
n

φn(r1)φ
∗
n(r2), (2.76)
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setting the Green’s function to the non-interacting one. The imaginary part of the corre-
lation self-energy is given by

ImΣc(r1, r2;ω ≤ µ) = −
occ∑
n

φn(r1)φ
∗
n(r2)ImW

c(r1, r2; εn − ω)θ(εn − ω), (2.77)

ImΣc(r1, r2;ω > µ) =
unocc∑
n

φn(r1)φ
∗
n(r2)ImW

c(r1, r2;ω − εn)θ(ω − εn), (2.78)

with non-interacting Green’s function used and with the introduction of W c ≡ W − v.
Furthermore, the orbital eigenenergies εn are defined as

εn =

{
EN+1
n − EN

0 , n occupied,

EN
0 − EN−1

n , n unoccupied.
(2.79)

Defining the spectral form Γ of the correlation self-energy as

Γ(r1, r2;ω) = − 1

π
sgn(ω − µ)ImΣc(r1, r2;ω), (2.80)

one can compute the real part of the correlation self-energy as the Hilbert transform of Γ
like the following:

ReΣc(r1, r2;ω) = P

∫ ∞
−∞

dω′
Γ(r1, r2;ω

′)

ω − ω′
, (2.81)

with P specifying a principle value integral. The Green’s function G is finally computed
by the Dyson equation.

The self-consistent GW approach is an iterative approach repeating the same com-
putational structure as the G0W 0 approach. The procedure is initialized by the G0W 0

approach and in each iteration the Green’s function is updated and used in the iteration
that follows.

Figure 2.2: Diagrammatic view of the computational scheme used in the G0W 0 and GW
approach. The initial step (left) corresponds to a self-consistent mean-field approach. The
first iteration corresponds to the G0W 0 approach (middle) and the iterative self-consistent
approach corresponds to the GW approach (right).

2.6 Finite-temperature Green’s function theory

The Green’s function theory for finite temperature will be reviewed here. The theory
will appear when later compared to our proposed ensemble Green’s function theory as
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well as when an extension of the finite-temperature formalism to systems with degenerate
states is proposed. The inclusion of temperature introduces both complications as well
as simplifications relative to the zero-temperature formalism. The computations in the
temperature case can be separated into two parts: the treatment of the Matsubara Green’s
function G and the treatment of the real-time Green’s function Ḡ. In the current section,
non-degenerate states will be assumed. For literature on the subject see for example [28].

For electronic systems at finite temperature it is convenient to work in the grand
canonical ensemble. The grand canonical ensemble is a statistical ensemble of states of a
system in both thermal and chemical thermodynamical equilibrium with a reservoir. The
grand partition function and statistical operator are defined by,

ZG ≡ Tr
[
e−βK̂

]
, ρ̂G ≡ Z−1G e−βK̂ , (2.82)

where β = (kBT )−1, kB is the Boltzmann constant, T is the temperature of the system
and K̂ is the modified Hamiltonian, defined by:

K̂ ≡ Ĥ − µN̂, (2.83)

where N̂ is the number operator. The trace is over all states of the system. It is convenient
to subsequently introduce the modified Heisenberg picture as

ÔK(τ) ≡ eK̂τ ÔSe
−K̂τ , |Ψ(τ)〉S ≡ e−K̂τ |Ψ〉K , (2.84)

with K labeling the modified Heisenberg picture. Observe that the field operators in the
modified Heisenberg picture are of the form:

ψ̂K(τ) = eK̂τ ψ̂Se
−K̂τ , ψ̂†K(τ) = eK̂τ ψ̂†Se

−K̂τ , (2.85)

and thus for real τ the two field operators are not adjoint. For the imaginary time τ = it
the two field operators are adjoint however, and this is the convention which will be used.
As long as τ is interpreted as a complex variable, it can be treated as purely imaginary
by an analytic continuation.

The one-electron Matsubara Green’s function G can now be defined as

G(1, 2) ≡ −Tr{ρ̂GTτ [ψ̂K(1)ψ̂†K(2)]}, (2.86)

where Tτ is the imaginary time-ordering operator, defined equivalentely to the time-
ordering operator, but for imaginary time τ . The Matsubara Green’s function contains
information required to compute equilibrium thermodynamic properties. The ensem-
ble average expectation value of any one-electron operator, the ensemble average of the
Hamiltonian and the thermodynamic potential can be computed directly from G.

As with the zero-temperature formalism, it is appropriate to work in the interaction
picture. Splitting up the modified Hamiltonian of a system into two parts,

K̂(t) = K̂0 + K̂1(t), (2.87)

with an unperturbed modified Hamiltonian K̂0 and the remaining part K̂1 of the modified
Hamiltonian. The modified interaction picture, denoted I, is now defined by:

ÔI(τ) ≡ eK̂0τ ÔSe
−K̂0τ , |Ψ(τ)〉S ≡ e−K̂0τ |Ψ(τ)〉I . (2.88)
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In the modified interaction picture, the imaginary time-evolution operator can be written,
similarly to the normal interaction picture, in the form:

Û(τ, τ ′) = Tτ exp

[
−
∫ τ

τ ′
dτ ′′K̂1(τ

′′)

]
. (2.89)

The partion function and the imaginary time-evolution operator are related by the fol-
lowing relation:

ZG = Tr
[
e−βK̂0Û(β, 0)

]
. (2.90)

An important feature of this relation is that all the integrals in the imaginary-time evo-
lution operator are over a finite range. The exact Matsubara Green’s function can now
be written in the modified interaction picture as

G(1, 2) = −
Tr
{
e−βK̂0Tτ

[
Û(β, 0)ψ̂I(1)ψ̂†I(2)

]}
Tr
{
e−βK̂0Û(β, 0)

} . (2.91)

Notice that no assumption of adiabatic connection is used in the temperature formalism
derivations. This aspect orginates from the finite range in the integration, instead of the
infinite range in the zero-temperature scenario, making an assumption of an adiabatic con-
nection irrelevant. The finite range of the integration is in turn related to a fundamental
periodicity of the Matsubara Green’s function with respect to τ − τ ′ with a period of 2β.
The Matsubara Green’s function formalism leads to the same set of equations as the zero-
temperature Green’s function formalism. Thus the Green’s function equation of motion
and iterative equation for the self-energy are of identical form to the zero-temperature
formalism, and the computational scheme for the Matsubara Green’s function can be
constructed identically to the one for the zero-temperature Green’s function.

A property of interest from the zero-temperature Green’s function is the quasiparticle
energy spectrum. The quasiparticle energies are however not directly related to the poles
of the frequency space Matsubara Green’s function. To compute the quasiparticle energy
spectrum for finite temperature one introduces the real-time Green’s function Ḡ, defining
it as

Ḡ(1, 2) ≡ −iTr{ρ̂GT [ψ̂K(1)ψ̂†K(2)]}, (2.92)

containing the quasiparticle energy spectrum in the same way as in the zero-temperature
case. The real-time Green’s function can be computed from the Matsubara Green’s func-
tion directly by an analytic continuation. The quasiparticle energies can thus be deter-
mined without the use of an adiabatic connection.

As for zero-temperature, the retarded linear real-time response function is a property
of interest. By the Kubo formula, as in section 2.4, the retarded real-time linear response
function can be written as:

iRr(1, 2) = Tr {ρ̂G[∆ρ̂H(rt),∆ρ̂H(r′t′)]} θ(t− t′), (2.93)

where ∆ρ̂ now is defined

∆ρ̂(rt) = ρ̂(rt)− 〈ρ̂(rt)〉, (2.94)

with the ensemble averaged expection value of the density 〈ρ̂〉. A time-ordered real-time
linear response function is required to satisfy the relations (2.28) and (2.29), giving it the
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form:

R(r1, r2;ω) = ZG
−1
∑
n,m

〈Ψn|∆ρ̂(r1)|Ψm〉〈Ψm|∆ρ̂(r2)|Ψn〉

×
[

e−βKn

ω −Km +Kn + iδ
− e−βKm

ω −Km +Kn − iδ

]
, (2.95)

with eigenvalues Kn and eigenstates |Ψn〉 of K̂. See Appendix C for derivations of Eqs.
(2.93) and (2.95). The real-time linear density response function can be related by an ana-
lytic continuation to a Matsubara linear density response function R, defined analogously
to the Green’s function.



Chapter 3

Ensemble Green’s function theory

In the current chapter, the proposed ensemble Green’s function theory will be introduced,
and the formalism developed. Furthermore, a one-shot and a self-consistent computational
scheme for the computation of the ensemble Green’s function is constructed within the
ensemble analogue of GWA. The chapter ends with a comparison between the ensemble
and temperature formalisms in the limit of T → 0+, and an extension of the finite-
temperature formalism to systems including degenerate states is proposed.

3.1 Ensemble Green’s function

We propose an ensemble Green’s function formalism for systems of interacting electrons
with degenerate ground states based on the von Neumann density matrix formalism. An
ensemble Green’s function is defined similar to the ensemble density, see Eq. (2.7) in
section 2.2, as

G(1, 2) ≡
M∑
n=1

wnGn(1, 2),
M∑
i=1

wi = 1, 0 ≤ wi ≤ 1, (3.1)

with Gn(1, 2) defined in the interaction picture by

iGn(1, 2) =
〈Ψn|T [Ŝψ̂D(1)ψ̂†D(2)]|Ψn〉

〈Ψn|Ŝ|Ψn〉
, (3.2)

for a system prepared in the ensemble of states {|Ψn〉, n = 1, ...,M} with corresponding
fractions wn at an initial time. The perturbative potential is defined by Eq. (2.20).
The set {|Ψn〉, n = 1, ...,M} is a set of arbitrary many-electron states, and will later
be chosen as the degenerate interacting ground states with uniform weights. Different
definitions for the denominator of Eq. (3.2) can be imagined and a motivation for the
choice of denominator will therefore be expanded upon in subsections 3.1.2 and 3.1.4.
Notice that no assumption of an adiabatic connection is made in the definition of the
ensemble Green’s function. The ambiguous connection between a true interacting ground
state and a non-interacting degenerate ground state, as mentioned previously in section
2.3, is avoided.

As in the non-degenerate case, the ensemble Green’s function contains physically sig-
nificant information of the described many-electron system. The ensemble expectation

21
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value of any one-particle operator can be obtained from the ensemble Green’s function as

〈
Ô
〉
≡

m∑
n=1

wn

〈
Ψn|Ô|Ψn

〉
= −i

∫
dr lim

r′→r
O(r)G(rt, r′t+), (3.3)

which is of the same form as in the non-degenerate case (Eq. (2.33)) except that the
ensemble Green’s function is used instead. The set {|Ψn〉, n = 1, ...,M} will now momen-
tarily be chosen as the set of degenerate interacting ground states with uniform weights
wi = 1/M . The Galitskii-Migdal formula in the ensemble case is derived to be of an iden-
tical form to the non-degenerate case, except with the ensemble Green’s function used
instead,

E0 = − i
2

∫
dr lim

t′→t+
lim
r′→r

(
i
∂

∂t
+ h0(r)

)
G(rt, r′t′). (3.4)

Additionally, the ensemble Green’s function can be written in the form:

G(1, 2;ω) =
1

M

M∑
n=1

∑
m

〈ΨN
n |ψ̂†(2)|ΨN−1

m 〉〈ΨN−1
m |ψ̂(1)|ΨN

n 〉
ω + EN−1

m − EN
0 − iδ

+
1

M

M∑
n=1

∑
m

〈ΨN
n |ψ̂(1)|ΨN+1

m 〉〈ΨN+1
m |ψ̂†(2)|ΨN

n 〉
ω − EN+1

m + EN
0 + iδ

, (3.5)

with the poles, i.e. ω = ±(EN±1
m −EN

0 ), being as in the non-degenerate case equal to the
exact quasiparticle energies. Thus the information contained within the ensemble Green’s
function is the following:

• The ensemble expection value of any one-electron operator in the degenerate ground
state ensemble.

• The ensemble average of the ground state energy, by the ensemble version of the
Galitskii-Migdal formula.

• The one-electron excitation spectrum corresponding to knocking out an electron or
adding an additional one.

The set {|Ψn〉, n = 1, ...,M} will now for the remainder of the development of the formal-
ism correspond to an arbitrary set of many-electron states, unless otherwise specified.

3.1.1 Equation of motion

As in the non-degenerate case, an equation of motion for the Green’s function Gn and
a corresponding self-energy Σn can be introduced in the ensemble case. The Gn Green’s
functions are of the same form as a non-degenerate Green’s function, and thus satisfy the
set of equations of motion:(

i
∂

∂t1
− h0(1)

)
Gn(1, 2) + i

∫
d3 v(1− 3)G(2)

n (1, 2, 3, 3+) = δ(1− 2), (3.6)
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with the two-particle Green’s functions G
(2)
n defined in the interaction picture as:

G(2)
n (1, 2, 3, 4) = −

〈
Ψn|T [Ŝψ̂D(1)ψ̂†D(2)ψ̂D(3)ψ̂†D(4)]|Ψn

〉
〈

Ψn|Ŝ|Ψn

〉 . (3.7)

The Schwinger functional derivative technique will now be utilized. By the chain-rule
for functional derivatives one obtains

δGn(1, 2)

δϕ(3)
= iGn(1, 2)ρn(3)−G(2)

n (1, 2, 3, 3+) (3.8)

where the density ρn is given by:

ρn(1) = 〈Ψn|ρ̂(1)|Ψn〉 = −iGn(1, 1+). (3.9)

We now introduce the mass operators Mn(1, 2) as

i

∫
d3 v(1− 3)Gn(1, 2, 3, 3+) = −

∫
d3 Mn(1, 3)Gn(3, 2),

Mn(1, 4) = −i
∫
d2d3 v(1− 3)G(2)

n (1, 2, 3, 3+)G−1n (2, 4). (3.10)

By using Eq. (3.8) one can further rewrite the mass operator as

Mn(1, 4) = −i
∫
d2d3 v(1− 3)

[
iGn(1, 2)ρn(3)− δGn(1, 2)

δϕ(3)

]
G−1n (2, 4)

= V H(1)δ(1− 4) + Σn(1, 4), (3.11)

where we have introduced the ensemble Hartree potential V H and self-energies Σn as

V H(1) ≡
M∑
n=1

wnV
H
n (1) ≡

M∑
n=1

wn

∫
d3 v(1− 3)ρn(3), (3.12)

Σn(1, 2) ≡ −i
∫
d3d4 v(1− 3)Gn(1, 4)

δG−1n (4, 2)

δϕ(3)
+ δ(1− 2)

(
V H
n (1)− V H(1)

)
. (3.13)

The ensemble Hartree potential V H is treated instead of the separate Hartree potentials
V H
n , thus modifying the self-energy. The choice is motivated by the fact that in the

degenerate case, the self-consistent mean-field Hamiltonian approach is in general only
well-defined for an ensemble mean-field Hamiltonian. The concept of degeneracy becomes
ill-defined when using separate Hartree potentials V H

n as the degeneracy as perceived by
two different degenerate ground states may differ, and thus an issue arises in which states
to treat as degenerate ground states. The equation of motion for Gn can now be written,
using the introduced Σn, as:(

i
∂

∂t1
− h(1)

)
Gn(1, 2)−

∫
d3 Σn(1, 3)Gn(3, 2) = δ(1− 2), (3.14)

with h(1) ≡ h0(1) + V H(1) + ϕ(1).
The inverse Green’s function Gn is obtained from Eq. (3.14) as

G−1n (4, 2) =

(
i
∂

∂t4
− h(4)

)
δ(4− 2)− Σn(4, 2), (3.15)
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and its functional derivative with respect to the probing field thus becomes:

δG−1n (4, 2)

δϕ(3)
= −

(
δ(4− 3) +

δV H(4)

δϕ(3)

)
δ(4− 2)− δΣn(4, 2)

δϕ(3)
. (3.16)

An iterative equation for the self-energy is now obtained as

Σn(1, 2) = iGn(1, 2)v(1− 2) + i

∫
d3 v(1− 3)Gn(1, 2)

δV H(2)

δϕ(3)

+ i

∫
d3d4 v(1− 3)Gn(1, 4)

δΣn(4, 2)

δϕ(3)

+ δ(1− 2)
(
V H
n (1)− V H(1)

)
, (3.17)

which is of the same form as in the non-degenerate case (Eq. (2.59)) except for the
modification of the Hartree term.

An equation of motion for Gn (Eq. (3.14)) and an iterative equation for the self-energy
Σn (Eq. (3.17)) have thus been constructed. The proposed approach is based on auxiliary
functions Gn and Σn, instead of an ensemble Green’s function G and an ensemble self-
energy Σ. The motivation for this approach will now be discussed. An equation of motion
for G can be constructed by multiplying both sides of Eq. (3.14) with wn and summing
over n: (

i
∂

∂t1
− h(1)

)
G(1, 2)−

∫
d3 Σ(1, 3)G(3, 2) = δ(1− 2), (3.18)

where the ensemble self-energy is introduced:

Σ(1, 4) ≡
M∑
n=1

wn

∫
d2d3 Σn(1, 3)Gn(3, 2)G−1(2, 4). (3.19)

An iterative equation for the self-energy can be derived to be of the form:

Σ(1, 2) = iG(1, 2)v(1− 2) + i

∫
d3 v(1− 3)G(1, 2)

δV H(2)

δϕ(3)

+ i

∫
d3d4 v(1− 3)G(1, 4)

δΣ(4, 2)

δϕ(3)

+
M∑
n=1

∫
d3wnGn(1, 3)G−1(3, 2)

(
V H
n (1)− V H(1)

)
. (3.20)

The dependence on Gn in the iterative equation (3.20) poses a problem. As G does
not contain all the information required to compute the separate Gn, a self-consistent
approach is not possible by working only with G and Σ. By working with the auxiliary
functions Gn and Σn, this problem does not arise, thus motivating the choice of approach.
This is natural, as the information of the ensemble is required to be contained within the
self-consistent computation.

3.1.2 Ensemble Hedin’s equations

An ensemble analogue of the Hedin’s equations can now be derived as a set of five
self-consistent equations for the ensemble Green’s function. We now further specify the
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{|Ψn〉, n = 1, ...,M} as the set of degenerate interacting ground states with a degeneracy
M and with equal weights wn = 1/M .

The first ensemble Hedin equation is a set of Dyson equations. By the introduction of
the non-interacting Green’s functions G0

n, defined to satisfy Eq. (3.14) for Σn(1, 2) = 0,
the set of Dyson equations can be written as:

Gn(r1, r2;ω) = G0
n(r1, r2;ω) +

∫
d3d4 G0

n(r1, r3;ω)Σn(r3, r4;ω)Gn(r4, r2;ω). (3.21)

The second ensemble Hedin equation relates the self-energies Σn to the ensemble screened
interaction W and vertex functions Λn, defined by

W (1, 2) ≡
∫
d3 v(2− 3)

δV (1)

δϕ(3)
, Λn(1, 2, 3) ≡ −δG

−1
n (1, 2)

δV (3)
, (3.22)

with the introduction of the total field V = V H + ϕ. By introducing W and Λn, one can
rewrite Eq. (3.13) with the chain-rule for functional derivatives as the second ensemble
Hedin’s equation:

Σn(1, 2) = i

∫
d4d5 Gn(1, 4)Λn(4, 2, 5)W (5, 1) + δ(1− 2)

(
V H
n (1)− V H(1)

)
. (3.23)

An ensemble polarization P and ensemble response function R can be defined as

P (1, 2) ≡ δρ(1)

δV (2)
=

1

M

M∑
n=1

δρn(1)

δV (2)
≡ 1

M

M∑
n=1

Pn(1, 2), (3.24)

R(1, 2) ≡ δρ(1)

δϕ(2)
=

1

M

M∑
n=1

δρn(1)

δϕ(2)
≡ 1

M

M∑
n=1

Rn(1, 2), (3.25)

where the P and R are related to the separate polarizations Pn and response functions
Rn. As in the non-degenerate case, the relation between the two functions can be written
in the form:

R(1, 2) = P (1, 2) +

∫
d3d4 P (1, 3)v(3− 4)R(4, 2). (3.26)

A third ensemble Hedin equation, relating the ensemble screened interaction W to the
polarization P , can by Eq. (3.22) and the chain-rule for functional derivatives be derived
as:

W (1, 2) = v(1− 2) +

∫
d3d4 v(1− 3)P (3, 4)W (4, 2). (3.27)

A property of interest for many-electron systems, as stated in section 2.5, is the linear
response function. In frequency space the linear ensemble density response function can
be written as:

R(r1, r2;ω) ≡ 1

M

M∑
n=1

Rn(r1, r2;ω)

=
1

M

M∑
n=1

∑
m6=n

[
〈Ψn|ρ̂(r1)|Ψm〉〈Ψm|ρ̂(r2)|Ψn〉

ω − Em + E0 + iδ
− 〈Ψn|ρ̂(r2)|Ψm〉〈Ψm|ρ̂(r1)|Ψn〉

ω + Em − E0 − iδ

]
,

(3.28)
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with the derivation for each Rn being identical to the non-degenerate one and where the
summation over m is over all states except the degenerate ground state specified by n.
As degenerate ground states are considered, m in Eq. (3.28) can specify a degenerate
ground state separate from the one specified by n, and thus a divergence can be obtained
for ω → 0. As such a divergence is not physical, we propose a diagonalization procedure.

The linear ensemble density response in Eq. (3.28) can be rewritten in the form:

R(r1, r2;ω) =
∑
α,β

bα(r1)Rα,β(ω)bβ(r2), (3.29)

Rα,β(ω) =
1

M

M∑
n=1

∑
m 6=n

[
ραnmρ

β
mn

ω − Em + E0 + iδ
− ραmnρ

β
nm

ω + Em − E0 − iδ

]
, (3.30)

with a basis bα(1) = φi(1)φ∗j(1) and density matrix elements ραnm = 〈Ψn|cic†j|Ψm〉, and
where α, β are collective indices specifying (i, j). By diagonalizing ρα, with ραnn = 0 for
all n as the sum is over m 6= n, in the degenerate subspace for each α one can construct
new basis sets |Ψα〉 which are eigenstates of ρα. Using the new constructed basis sets
the terms which diverge for ω → 0 vanish. The diagonalization procedure is not in
practice necessary to be utilized as the remaining terms are independent on the choice of
degenerate ground state basis, leading to the following result:

R(r1, r2;ω) =
1

M

M∑
n=1

exci∑
m

[
〈Ψn|ρ̂(r1)|Ψm〉〈Ψm|ρ̂(r2)|Ψn〉

ω − Em + E0 + iδ
− 〈Ψn|ρ̂(r2)|Ψm〉〈Ψm|ρ̂(r1)|Ψn〉

ω + Em − E0 − iδ

]
.

(3.31)

In the case where the weights are not uniform, the diagonalization procedure can still be
utilized. In this case, the remaining terms are, however, not in general independent of
the choice of degenerate ground state basis as the weight becomes state-dependent and
the sum over n no longer leads to a simple basis-independent trace over the degenerate
ground states.

The choice of denominator in Eq. (3.2) is motivated by that this specific choice leads
to the resulting sum in Eq. (3.28) being for m 6= n, in turn allowing for the proposed
diagonalization procedure. This subtle point will be further discussed in section 3.1.4.
The diagonalization procedure cannot be employed for each separate Rn, indicating their
auxiliary nature. The linear ensemble density response functions is thus the only quantity
of physical relevance, motivating the choice of Hartree potential as the ensemble one.

The fourth ensemble Hedin equation relates the ensemble polarization P to the Green’s
functions Gn and vertex functions Λn. The equation can be obtained from Eq. (3.24) by
using the chain-rule for functional derivatives and partial integration, leading to

P (1, 2) = −i
∑
n

wn

∫
d3d4 Gn(1, 3)Λn(3, 4, 2)Gn(4, 1+) . (3.32)

The final ensemble Hedin equation is obtained by rewriting Eq. (3.22) as,

Λn(1, 2, 3) = δ(1− 2)δ(1− 3) +
δΣn(1, 2)

δV (3)
, (3.33)

using the chain-rule for functional derivatives and partial integration. As in the non-
degenerate case, the ensemble Hedin equations are an exact set of equations but not
feasible to use for numerical computations, and approximations are thus required.
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3.1.3 Ensemble GW approximation

To develop a computational scheme useful for electronic structure computations, we now
propose an ensemble analogue of the GWA. We define the ensemble GWA as setting
δΣn/δV = 0 in Eq. (3.33), corresponding to setting the vertex functions as

Λn(1, 2, 3) = δ(1− 2)δ(1− 3). (3.34)

Two of the Hedin equations are modified (Eqs. (3.23) and (3.32)) under the ensemble
GWA assumption:

Σn(1, 2) = iGn(1, 2)W (2, 1) + δ(1− 2)
(
V H
n (1)− V H(1)

)
, (3.35)

P (1, 2) = −i
∑
n

wnGn(1, 2)Gn(2, 1+). (3.36)

We further assume the RPA, leading to the ensemble analogue of the RPA equation,

R(1, 2) = P 0(1, 2) +

∫
d3d4 P 0(1, 3)v(3− 4)R(4, 2), (3.37)

which in turn modifies Eq. (3.27):

W (1, 2) = v(1− 2) +

∫
d3d4 v(1− 3)P 0(3, 4)W (4, 2). (3.38)

The non-interacting ensemble polarization is of the same form as the linear ensemble den-
sity response function, given by Eq. (3.31), with the non-interacting states and energies
used instead of the interacting ones.

We will construct two computational schemes based on the ensemble GWA: A one-
shot ensemble G0W 0 approach and a self-consistent ensemble GW approach, outlined in
Fig. 3.1, with a structure nearly identical to their non-ensemble counterparts, Fig. 2.2.
The initial step in the ensemble G0W 0 approach is the construction of the non-interacting
states and energies from a self-consistent ensemble mean-field Hamiltonian. Thereafter, as
in the non-degenerate case, the spin-polarized non-interacting Green’s functions G0

n and
the non-interacting ensemble polarization P 0 are computed, and in turn the ensemble
screened interaction W . The spin-polarized self-energy Σn computation can be separated
into an exchange and correlation part. The exchange part is given by:

Σx
n(1, 2) = −v(1− 2)

occ(n)∑
m

φm(1)φ∗m(2) + δ(1− 2)
(
V H
n (1)− V H(1)

)
, (3.39)

where the Green’s functions have been set to the non-interacting ones and where occ(n)
specifies the occupied orbitals of the non-interacting ground state |Ψn〉. The imaginary
part of the correlation self-energy is given by

ImΣc
n(r1, r2;ω ≤ µ) = −

occ(n)∑
m

φm(r1)φ
∗
m(r2)ImW

c(r1, r2; εm − ω)θ(εm − ω), (3.40)

ImΣc
n(r1, r2;ω > µ) =

unocc(n)∑
m

φm(r1)φ
∗
m(r2)ImW

c(r1, r2;ω − εm)θ(ω − εm), (3.41)
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using the non-interacting Green’s functions and W c ≡ W−v, and where unocc(n) specifies
the unoccupied orbitals of the non-interacting ground state |Ψn〉. Defining the spectral
functions Γn of the correlation self-energies as

Γn(r1, r2;ω) = − 1

π
sgn(ω − µ)ImΣc

n(r1, r2;ω), (3.42)

as in the non-degenerate case, one can compute the real part of Σn as the Hilbert transform
of Γn:

ReΣc
n(r1, r2;ω) = P

∫ ∞
−∞

dω′
Γn(r1, r2;ω

′)

ω − ω′
. (3.43)

The Green’s function G can finally be computed from the Gn Green’s functions, which
are computed with the Dyson equations Eq. (3.21).

The self-consistent ensemble GW approach is an iterative approach built upon the
ensemble G0W 0 approach just as in the non-degenerate case. A difference relative to the
non-degenerate case is the computation of the polarization P from the Green’s functions
Gn. In this step the diagonalization procedure is again required, which is equivalent to
discarding the terms which diverge at ω → 0 as in the non-interacting computation. In
each iteration there is a possible degeneracy breaking, which becomes a conceptual issue
in a self-consistent scheme. To solve this, we propose to employ the Galitskii-Migdal
formula on the auxiliary Green’s functions and keeping the auxiliary Green’s functions
which gives the lowest ground state energy for iteration that follows. A possibility is also
to introduce a minor mixing between the auxiliary Green’s functions and the ensemble
Green’s function for the computation of the following iteration.

Figure 3.1: Diagrammatic view of the computational scheme used in the ensemble G0W 0

and GW approach. The initial step (left) correspond to a self-consistent mean-field ap-
proach. The first iteration corresponds to the ensemble G0W 0 approach (middle) and the
iterative self-consistent approach corresponds to the ensemble GW approach (right).

For perturbation schemes other then the GW one, we anticipate additional complex-
icities appearing analogoues to the ones which appear in the standard Green’s function
theory. However, there are possibilities of introducing even further complexity as one
works with a set of auxiliary Green’s function Gn instead of a single one as in the stan-
dard case.

3.1.4 Ensemble linear response function

An essential ingredient in studying the physical properties of a many-electron system is
the retarded linear response function, described in section 2.4 for the zero-temperature
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case with a non-degenerate ground state. A retarded linear ensemble density response
function, describing the change of the ensemble average expectation value of the density
operator with respect to an external field, can be introduced. As in the non-degenerate
case, the Kubo formula can be used to identify the form of the retarded linear ensemble
density response function. Two equivalent forms of the retarded linear ensemble density
response function in the Heisenberg picture are of interest in the upcoming discussion:

iRr(1, 2) =
1

M

M∑
n=1

〈Ψn|[∆ρ̂(1),∆ρ̂(2)]|Ψn〉θ(t1 − t2), (3.44)

iRr(1, 2) =
1

M

M∑
n=1

〈Ψn|[∆ρ̂n(1),∆ρ̂n(2)]|Ψn〉θ(t1 − t2), (3.45)

where ∆ρ̂ and ∆ρ̂n are defined as:

∆ρ̂(1) = ρ̂(1)− ρ(1), ∆ρ̂n(1) = ρ̂(1)− ρn(1). (3.46)

The form (3.44) is the standard form in literature, with structure similar to the one in
the temperature formalism. Peaks at ω = 0 from the excitations within the degenerate
groundstate subspace do not appear in general in the retarded response function. A
time-ordered version of Eq. (3.44) does not satisfy relations (2.28) and (2.29), as the
diagonalization procedure cannot be employed. Instead, the proposed time-ordered linear
ensemble density response function, given by Eq. (3.28), is the time-ordered version of Eq.
(3.45). By the diagonalization procedure, the linear ensemble density response function
(3.31) satisfies relations (2.28) and (2.29).

A subtle point is that the choice of denominator of the Gn in Eq. (3.2) leads to the
diagonalization procedure to be applicable to linear ensemble density response function.
For example, consider another choice of the denominator:

iGn(1, 2) =
〈Ψn|T [Ŝψ̂D(1)ψ̂†D(2)]|Ψn〉

1
M

∑M
n=1〈Ψn|Ŝ|Ψn〉

. (3.47)

The structure of the linear ensemble density response function is then modified by this
alternative definition:

R(r1, r2;ω) =
1

M

M∑
n=1

∑
m

[
〈Ψn|∆ρ̂(r1)|Ψm〉〈Ψm|∆ρ̂(r2)|Ψn〉

ω − Em + E0 + iδ

−〈Ψn|∆ρ̂(r2)|Ψm〉〈Ψm|∆ρ̂(r1)|Ψn〉
ω + Em − E0 − iδ

]
. (3.48)

Here the diagonalization procedure is not employable, therefore leading to the function
in general not satisfying the relations required of a time-ordered response function. The
natural connection of the linear ensemble density response function to the retarded one,
is one of the main arguments for the choice of structure in the proposed formalism.

3.1.5 Ensemble spectral function

The treatment of the ensemble spectral function requires special care in the degenerate
case. As reviewed in section 2.5, in the non-degenerate case the spectral function and
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Green’s function are related by Eqs. (2.40) and (2.41). In general, both equations are not
necessarly satisfied. For example, in the non-interacting case the highest occupied and
lowest occupied peak are positioned at the chemical potential µ. The imaginary parts
of the occupied and unoccupied peaks will thus lead to cancellation in the imaginary
part of the ensemble Green’s function at µ. As an illustration of this fact, consider the
non-interacting Green’s functions G0

n, given by:

G0
n(r1, r2;ω) =

occ(n)∑
m

φ∗m(r1)φm(r2)

ω − εn − iδ
+

unocc(n)∑
m

φ∗m(r1)φm(r2)

ω − εn + iδ
. (3.49)

The difference between the ground states corresponds to electrons occupying different
orbitals at the chemical potential µ. Therefore, in the non-interacting ensemble Green’s
function G0, terms of the form

φ∗m(r1)φm(r2)

ω − µ− iδ
+
φ∗m(r1)φm(r2)

ω − µ+ iδ
= φ∗m(r1)φm(r2)

2(ω − µ)

(ω − µ)2 + δ2
, (3.50)

will arise, with cancellation of the imaginary part. Furthermore in the general case, the
sum rule (Eq. (2.43)) is not necessarily satisfied by the function defined by Eq. (2.40),
as the peak structure at µ is partially to fully absent, implying the function is not the
spectral function, defined by (2.37).

The main problem is that the occupied and unoccupied peaks are not introduced with
the correct sign. We propose an approach to introduce the occupied and unoccupied
peaks with the correct sign in the ensemble spectral function. Poles in the upper and
lower imaginary plane are naturally separated in the spin-polarized Gn, thus we propose
to instead compute the separate auxiliary spectral functions An from the Green’s functions
Gn. The sought ensemble spectral function A can then be computed as a weighted sum
over the An functions.

3.2 Finite-temperature: Relationship and extension

A major problem in the construction of a general zero-temperature Green’s function
formalism which incorporates degenerate ground states is that the adiabatic connection is
no longer obvious. This problem does not appear in the development of the temperature
Green’s function formalism. The adiabatic connection becomes irrelevant when working
in imaginary time by employing the Matsubara Green’s function, see section 2.6. In
the limit of T → 0+, the exploited periodicity is lost and no benefits are obtained by
working in the regime of imaginary time in the zero-temperature case. Treatment of the
temperature case was previously limited to systems of non-degenerate states. However,
the degeneracy of the ground state (and excited states) is naturally incorporated in the
grand canonical ensemble of the temperature formalism. The purpose of this section is
to relate the ensemble formalism with the finite-temperature formalism in the limit of
T → 0+, and to propose an extension of the finite-temperature Green’s function theory
to systems with degenerate states.

The natural comparison of the ensemble and finite-temperature Green’s function the-
ory is the real-time analogues. The Matsubara Green’s function in imaginary-time does
not have an analogous function in the ensemble formalism. Taking T → 0+ for the
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real-time Green’s function, given by Eq. (2.92), one obtains:

Ḡ(1, 2) = −i 1

M

M∑
n=1

〈Ψn|T [ψ̂K(1)ψ̂†K(2)]|Ψn〉 ≡
1

M

M∑
n=1

Ḡn(1, 2). (3.51)

This equation is of the same form as the definition of the ensemble Green’s function, Eqs.
(3.1) and (3.2), in the Heisenberg picture with equal weights wi = 1/M , except with the
modified Hamiltonian K̂ used instead.

The retarded linear response function constructed by the Kubo formula (Eq. (2.93))
does not contain divergences at ω = 0 for finite temperature. However, for many-electron
systems with degenerate states the linear density response function of the form (2.95)
in general diverges as ω → 0. As a diagonalization procedure cannot be employed, the
function (2.95) does not satisfy the relations (2.28) and (2.29). An equivalent rewritten
form of the retarded linear density response function is the following in the modified
Heisenberg picture:

iRr(1, 2) = Tr {ρ̂G[∆ρ̂n(rt),∆ρ̂n(r′t′)]} θ(t− t′), (3.52)

where ∆ρ̂n is defined as:

∆ρ̂n(1) = ρ̂(1)− 〈Ψn|ρ̂(1)|Ψn〉. (3.53)

A time-ordered linear density response function based on Eq. (3.52) can in the spectral
representation be written as:

R(r, r′;ω) = Z−1G
∑
n6=m

〈Ψn|ρ(r)|Ψm〉〈Ψm|ρ(r′)|Ψn〉

×
[

e−βKn

ω −Km +Kn + iδ
− e−βKm

ω −Km +Kn − iδ

]
, (3.54)

derived in the same fashion as for the time-ordered linear density response function for
systems of non-degenerate states treated in section 2.5. The function (3.54) is a more
natural definition of the linear density response function, as the diagonalization procedure
can be employed, and thus the relations (2.28) and (2.29) are satisfied, implying its
validity. In the limit of T → 0+ the linear density response (3.54), with the diagonalization
procedure employed, acquires an identical form to the ensemble linear density response
function (3.31), with K̂ used instead of Ĥ.

A modification of the standard form of the interaction picture Matsubara Green’s
function (Eq. (2.91)) is required for a natural connection to the linear density response
function of the form (3.54), which would not be obtained in the standard form. We
propose the following modified form of the Matsubara Green’s function in the interaction
picture:

G(1, 2) =
∑
n

wnGn(1, 2), wn =
e−βKn

ZG
(3.55)

with Gn Matsubara Green’s functions defined as

Gn(1, 2) = −
〈Ψn|e−βK̂0Tτ

[
Û(β, 0)ψ̂I(1)ψ̂†I(2)

]
|Ψn〉

〈Ψn|e−βK̂0Û(β, 0)|Ψn〉
, (3.56)
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compare with standard form (2.91) where one traces separately over the numerator and
denominator. A computational approach similar to the ensemble one for zero-temperature
can be constructed in the finite-temperature regime for a general electronic system with
degenerate states. An extended finite-temperature formalism which contains the ensemble
formalism has thus been proposed.



Chapter 4

Results

The current chapter details the application of the ensemble G0W 0 computational scheme
on four model systems: a three-orbital Hubbard model, a two-dimensional harmonic
oscillator system, an Ising model system and a hydrogen-like system. The chapter begins
with a description of the implementation of the computational scheme. The remaining
sections of the chapter focus on the application to the four model systems.

4.1 Implementation

The implementation of the ensemble G0W 0 computational scheme can be divided into
two parts. The first part involves a construction of the one-particle orbitals and the
states, with a computation of corresponding energies obtained using a mean-field ensemble
Hamiltonian approach. The second part involves the implementation of the ensemble
G0W 0 computational scheme, with the many-electron energies and states of the first part
as input. In the current section, the description of the implementation will be divided
similarly, and a description of the exact computation will be included as well. A modified
approach will be discussed in a later section for the Ising model.

In the exact case, the sought states and their corresponding energies correspond to
the eigenvectors and eigenvalues of the Hamiltonian matrix H, defined by,

Hnm = 〈Ψn|Ĥ|Ψm〉. (4.1)

To construct the Hamiltonian matrix, the interaction four-index matrix vijkl, defined by,

vijkl ≡
∫
d1d2 φ∗i (1)φ∗j(2)v(1− 2)φk(2)φl(1), (4.2)

needs to be constructed. In the current thesis the interaction vijkl is constructed either
from known orbitals of a model system with a defined interaction v, or by a comparison
between the Hamiltonian of a model system with an implicit dependence on the orbital
and the many-electron Hamiltonian (Eq. (2.2)). The diagonalization of the Hamiltonian
is required to be done for N , N + 1 and N − 1 electrons, to describe photoemission and
inverse photoemission, in order to compute the Green’s function.

In the non-interacting case, the energies are computed by a mean-field ensemble
Hamiltonian approach. Initial many-electron energies are computed as the sum of the
one-electron energies, and used to compute the ensemble Hartree potential with the in-
teraction vijkl. The many-electron energies are then modified by the potential, and a new

33
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ensemble density can be computed for a new set of ground states. In the self-consistent
mean-field approach used in the thesis, the employed ensemble Hartree potential is a
mixture of the old and new ensemble Hartree potential. This iterative approach is then
continued until the degenerate ground states or non-degenerate ground state, satisfying
the symmetry of the ensemble Hartree potential, is obtained. In the non-interacting case,
it is enough to construct the states with corresponding many-electron energies of the N
electron system.

In the current thesis, the main quantities of interest are the ensemble Green’s function
and linear ensemble density response functions. For a basis {φi(r)}, Hedin’s equations
can be expressed as a set of matrix equations. Assuming repeated indices are summed
over, except n which labels degeneracy, the matrix form of the Hedin’s equations, within
GWA and RPA, can be written as:

Gn,ij(ω) = G0
n,ij(ω) +G0

n,ik(ω)Σn,kl(ω)Gn,lj(ω), (4.3)

Σx
n,ij(ω) = −

occ(n)∑
m

vimjm +

occ(n)∑
m

vimmj −
1

M

M∑
m=1

occ(m)∑
k

vikkj, (4.4)

ImΣc
n,ij(ω ≤ µ) = −

occ(n)∑
m

ImW c
imjm(εm − ω)θ(εm − ω), (4.5)

ImΣc
n,ij(ω > µ) =

unocc(n)∑
m

ImW c
imjm(ω − εm)θ(ω − εm), (4.6)

Wαβ(ω) = vαβ + vαγP
0
γδ(ω)Wδβ(ω), (4.7)

Rαβ(ω) = P 0
αβ + P 0

αγ(ω)vγδRδβ(ω), (4.8)

where α is the collective index (i, j) etc. and the matrices are defined by:

Gn(r1, r2;ω) ≡ φ∗i (r1)Gn,ij(ω)φj(r2), (4.9)

Σn,ij(ω) ≡
∫
d1d2 φ∗i (r1)Σn(r1, r2;ω)φj(r2), (4.10)

Wijkl(ω) ≡
∫
d1d2 φ∗i (r1)φ

∗
j(r2)W (r1, r2;ω)φk(r2)φl(r1), (4.11)

R(r1, r2;ω) ≡ φ∗i (r1)φj(r1)Rijkl(ω)φ∗k(r2)φl(r2). (4.12)

The form of the definition of W c
ijkl and P 0

ijkl is identical to that of Wijkl and Rijkl, respec-
tively. In the exact case the interacting states and energies are used to compute the G
and R matrices using Eqs. (3.5) and (3.31). In the G0W 0 approach, the spin-polarized
G0
n and P 0 are computed using Eqs. (3.5) and (3.31), with the scheme then following the

approach described in section 3.1 to compute the matrices G and R.
To compare the result of different approaches, the ensemble spectral function A (Eq.

(2.37)) and the spectral form S (Eq. (2.66)) of the linear ensemble density response
function R are computed. The matrix forms are computed for A and S, defined by:

A(r1, r2;ω) ≡ φ∗i (r1)Aij(ω)φj(r2), (4.13)

S(r1, r2;ω) ≡ φ∗i (r1)φj(r1)Sijkl(ω)φ∗k(r2)φl(r2). (4.14)
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The elements Aij and Sijkl are basis-dependent. To make a comparison between different
approaches the basis-independent trace of A and S are computed:

TrA(ω) =
∑
i

Aii(ω), TrS(ω) =
∑
ij

Sijji(ω). (4.15)

4.2 Hubbard model

We consider the Hubbard model, first introduced by Hubbard in [34], with three-orbitals.
The three-orbital model is an analytically solvable model in both the exact and G0W 0

approach. The mechanics of the Hubbard model is defined by the Hamiltonian of the
form:

Ĥ =
∑
ijσ

tij ĉ
†
iσ ĉjσ +

∑
i

Uin̂i↑n̂i↓, (4.16)

with an implicit orbital dependence from the hopping parameter tij and on-site interaction

Ui, and where n̂iσ = ĉ†iσ ĉiσ is the particle number operator for orbital i with spin σ. The
Hubbard model is a common model for describing conducting and insulating systems
together with the transition between the two regimes. We specialize to three orbitals
with a Hamiltonian of the form:

Ĥ =
∑
iσ

εiĉ
†
iσ ĉiσ + U

∑
i

n̂i↑n̂i↓, (4.17)

with the one-electron energies εi for the three orbitals and with an identical on-site in-
teraction U for all orbitals. The system is composed of two lower orbitals φ1, φ2 with an
energy ε1 = ε2 = 0 and one third orbital φ3 with a positive energy ε3 = ε.

A two-electron system is considered. The interacting ground states has a double de-
generacy for both an attractive and repulsive on-site interaction, corresponding to U < 0
and U > 0, respectively. In the special case of U = 0, corresponding to a non-interacting
ground state, the degeneracy is four-fold. The possible interacting ground states corre-
spond to both electrons occupying the two lower orbitals, see Fig. 4.1. For U < 0 the
double degeneracy consist of the double occupied orbitals, while for U > 0 the double
degeneracy consist of the states with electrons occupying different orbitals. The non-
interacting ground states have a four-fold degeneracy spanned by all states with two
electrons occupying the two lowest orbitals, for U < ε and independent of the sign of U ,
with the self-consistent ensemble Hartree mean-field approach not converging for ε ≤ U .
We will specialize to case of the repulsive on-site interaction in the current section.

Figure 4.1: The possible ground states in the repulsive and attractive U regime in the
considered three-orbital Hubbard model.

In the exact case, the non-vanishing elements of the ensemble linear-density response
function R can be constructed from the N = 2 electron states as

R12,12(ω) =
2

ω − U + iδ
− 2

ω + U − iδ
, (4.18)

R13,13(ω) = R23,23(ω) =
1

ω − ε+ iδ
− 1

ω + ε− iδ
. (4.19)
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Here the orbitals can be assumed to be real-valued, allowing for reordering of the indicies
to construct a diagonal matrix R. The ensemble Green’s function is computed from the
N = 2 electron states as well as the N − 1 and N + 1 electron states, obtaining the exact
form:

G11(ω) = G22(ω) =
1

ω − iδ
+

1

ω − U + iδ
, (4.20)

G33(ω) =
2

ω − ε+ iδ
. (4.21)

The electron affinity µ is observed to be located between 0 and U , for 0 < U < ε, and
between 0 and ε, for ε < U , by using the sum-rules for the spectral function.

The ensemble G0W 0 computation is now considered for U < ε. The non-vanishing
elements of the non-interacting ensemble polarization P 0 can be constructed as:

P 0
13,13(ω) = P 0

23,23(ω) =
1

ω − (ε− U) + iδ
− 1

ω + (ε− U)− iδ
. (4.22)

The R and W are obtained as identical to P 0 and v, respectively, in the current case,
and thus only the exchange part of the self-energy is non-zero. The G is obtained in the
G0W 0 scheme as:

GGW
11 (ω) = GGW

22 (ω) =
1

2

(
1

ω − U − iδ
+

1

ω − iδ

)
+

1

ω + iδ
, (4.23)

GGW
33 (ω) =

2

ω − ε+ iδ
. (4.24)

The electron affinity is observed to be located at µ = 0.
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Figure 4.2: The TrS (left) and TrA (right) plotted against the energy ω for the exact
approach and the ensemble G0W 0 approach, with on-site interactions U = 0.1 and U =
0.3, and with δ = 0.01. The spectral response function is anti-symmetric around ω = 0
and the electron affinity of the spectral functions are shifted to µ = 0.

The functions TrS and TrA are plotted in the considered cases in Fig. 4.2 for ε = 1
and with U = 0.1 and U = 0.3. The electron affinity is specified as µ = U/2 for the exact
case, to illustrate the difference between the exact and ensemble G0W 0 results. While the
peak in TrS from transitions between the lower orbitals to the higher orbital is captured
in the G0W 0 scheme, the peak from transitions between the two lowest orbitals in the
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degenerate subspace is neglected by the diagonalization procedure. The captured peak
of TrS is shifted towards lower energies in the ensemble G0W 0 scheme relative the exact
peak, with the shift increasing and agreement worsening as U increases towards ε relative
the exact peak, which has a peak position independent of U . There is partial agreement in
the main peak structure in TrA computed in the two approaches, with two peaks around
the electron affinity and a single higher energy peak. However, a clear problem with the
ensemble G0W 0 approach is the predicted electron affinity in the middle of a peak, thus
predicting a metallic system, which is not observed in the exact result.

The main results for the simple three-orbital Hubbard model is the illustration of the
application of the ensemble formalism. Peaks in the exact case originating from transitions
between states which are part of the degenerate subspace in the non-interacting mean-field
ensemble Hamiltonian are removed by the diagonalization procedure. Peaks originating
from the breaking of the symmetry going from non-interacting to interacting states can
thus not be captured in the ensemble one-shot G0W 0 scheme. The diagonalization scheme
is not the source of the problem, as it corresponds to simply rotating the degenerate
ground states in the degenerate subspace. We argue that the origin of the problem
instead arises from the mean-field approach. The ensemble Hartree does not capture the
repulsive/attractive nature of the interaction, leading to a four-fold degeneracy appearing
in the non-interacting case. To capture the low ω peak structure in the response function,
a mean-field approach which captures the repulsive/attractive nature would be required.
We want to stress that the discussion of the failure of the ensemble formalism to capture
the peak is specifically the ensemble one-shot G0W 0 scheme. We expect that the peak
structure originating from the symmetry breaking can be captured in a self-consistent
approach, as the symmetry which may be broken in the computation of the self-energies
Σn will be incorporated in the following iteration of the computation of the polarization.

4.3 Two-dimensional harmonic oscillator

We consider now a four-electron problem, with electrons moving in a two-dimensional
harmonic potential. The one-electron energies of the two-dimensional harmonic oscillator
are given by

εnx,ny = ω0(nx + ny + 1), (4.25)

with states specified by the quantum numbers {(nx, ny) = 0, 1, 2, ...} and where ω0 is the
quantum energy of the harmonic oscillator, which we set to ω0 = 1. The orbital φnx,ny in
the two-dimensional harmonic oscillator are known:

φnx,ny(r) = φnx(rx)φny(ry), (4.26)

φn(t) =
1√
2nn!

(
1

π

)1/4

e−
t2

2 Hn (t) , (4.27)

with the Hermite polynomials Hn defined by:

Hn(t) = (−1)net
2 dn

dtn

(
e−t

2
)
, n = 0, 1, 2, ... . (4.28)

The electron-electron interaction is modeled as a point interaction of the form v(r− r′) =
Uδ(r− r′), where U is an interaction parameter.

Two different restricted sets of orbitals are treated, with the cases being the following:
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• Three-orbital problem: Considering only the orbitals φ00, φ01 and φ10 with energies
ε00 = 1, ε01 = 2 and ε10 = 2, respectively.

• Six-orbital problem: Considering only the orbitals φ00, φ01, φ10, φ20, φ11 and φ02

with energies ε00 = 1, ε01 = ε10 = 2, ε20 = ε11 = ε02 = 3, respectively.

The interaction elements vijkl are separated into separate integrations over rx and ry of
polynomials multiplied by Gaussians, and are thus analytically solvable. As the orbitals
are real-valued, the matrix form of R can be constructed in a diagonal form.

For both the three- and six-orbital case, the interacting ground state is non-degenerate
and the non-interacting ground states has a four-fold degeneracy. The degenerate non-
interacting ground state subspace is spanned by states with double occupation in the
orbital φ00, and two electrons occupying one or both orbitals φ01, φ10, see Fig. 4.3.

Figure 4.3: The four non-interacting degenerate ground states, numbered from 1 to 4, in
the two-dimensional harmonic oscillator with only the orbitals corresponding to the two
lowest non-interacting one-electron energies drawn.

Apart from the treatment of the ensemble G0W 0 and the exact computations, a treat-
ment of two alternative non-ensemble G0W 0 computations will be considered. Choosing
a state out of a set of degenerate states is by nature ill-defined as the degeneracy can be
ignored in multiple different non-equivalent approaches. In approach A, one of the four
non-interacting degenerate states is treated as a non-degenerate state, with the remaining
ones ignored. The non-degenerate state is used to compute a new set of non-interacting
energies. The choice of ground state is still somewhat ill-defined in the approach, as
there is freedom in the ordering of the new basis. We specify the degenerate states by
numbering them from 1 to 4, see Fig. 4.3. Beyond double occupation in orbital φ00,
state 1 and 4 have double occupation in orbital φ10 and φ01, and state 2 has a spin-up
and spin-down electron occupying φ10 and φ01, respectively, and vice versa for state 3.
In approach B, which is more well-defined, new sets of non-interacting ground states are
computed for each of the four-degenerate states separately. We then chose the new set of
non-interacting energies as the one giving a non-degenerate ground state with lowest en-
ergy. The standard G0W 0 approach is then employed for both the A and B non-ensemble
approaches.

We compute the traces TrS and TrA in the three-orbital case in the exact approach,
and the ensemble and non-ensemble G0W 0 approaches. The traces TrS and TrA are
plotted as functions of energy for U = 1.0, shown in Figs. 4.4. An identical peak structure
in TrS is observed for the ensemble approach and the non-ensemble A approach for states
2 and 3, with the spectrum constituting a single peak a bit below ω = 1. The peak is in
very good agreement with the exact approach. The non-ensemble A approaches for states
1 and 4 predict a single peak as well, however the peak positions are in worse agreement,
while the non-ensemble B approach incorrectly predicts two peaks. For the trace TrA, the
main peak structure of the exact approach, composed of two peaks at lower energy ω and
a peak above and below the electron affinity, are captured by the ensemble approach and
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Figure 4.4: The TrS (left) and TrA (right) plotted against the energy ω in the three-orbital
problem in the exact approach, and ensemble and non-ensemble G0W 0 approaches, with
U = 1 and δ = 0.01. The finite size of delta function slightly shifts the electron affinity
of the exact TrA, and this incorrect shift has been corrected for manually. The spectral
response function is anti-symmetric around ω = 0 and the electron affinity of the spectral
functions are shifted to µ = 0.

non-ensemble A approach for states 2 and 3. The peaks close to the electron affinity are
captured, while the lower peaks are shifted towards ω = 0. The remaining non-ensemble
approaches capture a two peak structure close to the electron affinity, however they only
predict one peak at lower energies.

The six-orbital problem was treated in the same way, with the traces TrS and TrA
plotted as functions of energy for U = 1.0, shown in Figs. 4.5 and 4.5. While the peak
structure of the two traces varies with respect to their three-orbital counterparts, the re-
sulting discussion of the agreement between the different approach is similar. An identical
peak structure in TrS is observed for the ensemble approach and the non-ensemble A ap-
proach for states 2 and 3, with this being in best agreement with the exact results. Some
peak structures captures by the non-ensemble approaches are however not captures by the
ensemble approach. A two peak structure at ω = 1.9 is only captured by the non-ensemble
A approach for states 1 and 4 and non-ensemble B approach, while the other approximate
approaches only captures a single peak. The non-ensemble B approach incorrectly pre-
dicts a low energy peak. In the TrA spectrum, the agreement between the different G0W 0

approaches varies over the energy range. The ensemble G0W 0 is in reasonable agreement
with the exact results. A two peak structure at the electron affinity and a three peak
structure at ω = 1 are captured well. Smaller satellites are not captures as well by the
approach, however the ensemble approach is the only one predicting the single peak above
ω = 2. In contrast, a pair of peaks at ω = −1 in the exact spectrum are better captured
by the non-ensemble A approach for state 1 and non-ensemble B approach.

The main result in both the three- and six-orbital case is that the ensemble formal-
ism captures features of the exact result in a well-defined approach. The non-ensemble
formalism A gave in certain scenarios the same results as the ensemble one, however this
formalism is in contrast ill-defined, as it depends on a choice of state. A property of inter-
est in the two-dimensional harmonic oscillator is the transition from the degeneracy of the
non-interacting ground states to a non-degenerate interacting ground state. The compar-
ison in this section has thus also been a comparison between the ensemble and standard
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Figure 4.5: The TrS is plotted against the energy ω in the six-orbital problem in the exact
approach, and ensemble and non-ensemble G0W 0 approaches, with U = 1 and δ = 0.01.
The spectral response function is anti-symmetric around ω = 0.
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Figure 4.6: The TrA plotted against the energy ω in the six-orbital problem in the exact
approach, and ensemble and non-ensemble G0W 0 approaches, with U = 1 and δ = 0.01.
The finite size of delta function slightly shifts the electron affinity of the exact TrA. The
electron affinity in this case has been shifted to correct for this error. The electron affinity
of the spectral functions are shifted to µ = 0.

Green’s function theories. In contrast to the Hubbard model, a peak structure at low
ω, originating from the breaking of the degeneracy in the transition from non-interacting
states to interacting states, was not observed. Thus, the absence of a peak structure
originating from the employment of the diagonalization procedure is not observed.

4.4 Ising model

An Ising model on a triangular lattice, first studied by Wannier in [35], will now be consid-
ered as an illustration of the application of the proposed formalism to a frustrated system.
The Ising model is generally used for modeling of ferromagnetic and antiferromagnetic
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systems. The mechanics of the Ising model is defined by the Hamiltonian:

Ĥ = −
∑
〈i,j〉

JijŜziŜzj − h
∑
i

Ŝzi, (4.29)

with an implicit orbital-dependence from the interaction parameter Jij and external mag-
netic field h along the z-direction, and where the sum over 〈i, j〉 specifies a sum over
nearest neighbors, and where Ŝzi is the spin operator in the z-direction at site i. In con-
strast to previous systems, a site only allows for the occupation of a single electron. We
will limit our considerations to a triangular lattice, with J = Jij for all i, j. The Ising
model is described by a Hamiltonian with a spin-dependent two-electron interaction. The
general form of the two-electron part of the Hamiltonian will be considered as:

Ĥ2−electron =
1

2

∑
αβγδ

∫
d3rd3r′ψ̂†α(r)ψ̂†γ(r

′)vαβγδ(r, r
′)ψ̂δ(r

′)ψ̂β(r), (4.30)

where α, β, γ, δ are spin-up or down. For more information regarding the Green’s function
method for spin-dependent interaction see for example [33].

Our goal is to compute the linear charge and magnetic response with respect to a
perturbative external electromagnetic potential in both an exact approach and a RPA
approach. The external perturbative potential is defined as:

φ̂(t) =

∫
d3r~̂σ(r, t) · ~ϕ(r, t), (4.31)

with an electromagnetic four-field ~ϕ = (ϕ0, ϕ+, ϕ−, ϕz) and with ~̂σ defined as,

~̂σ(r, t) =
∑
αβ

ψ̂†α(r, t)~σαβψ̂β(r, t), (4.32)

where α, β are spin-up or down, and with four-vector ~σ = (σ0, σ+, σ−, σz) composed of
the Pauli spin matrices. The Pauli spin matrix convention used in the current thesis is
the following one:

σ0 =

(
1 0
0 1

)
, σ+ =

(
0 2
0 0

)
, σ− =

(
0 0
2 0

)
, σz =

(
1 0
0 −1

)
. (4.33)

The operator coupled to the electric field ϕ0 is the density operator, leading to a term of
the form (2.20). The operators coupled to the magnetic fields ϕ+ and ϕ− are connected to
spin-flip operation, thus allowing connections to different states of the Ising model. The
operator coupled to the magnetic field ϕz is the spin-density operator. It is convenient to
write the interaction as an expansion in a basis of Pauli spin matrices:

vαβγδ(1, 2) =
∑
ij

σiαβvij(1, 2)σjγδ. (4.34)

For the Ising model, the charge and magnetic response function and polarization will
be under consideration using the proposed ensemble formalism. The linear ensemble
charge and magnetic response function and ensemble polarization are defined as:

Rij(1, 2) ≡ δ〈σ̂i(1)〉
δϕj(2)

, Pij(1, 2) ≡ δ〈σ̂i(1)〉
δVj(2)

, (4.35)
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where the expectation value is the ensemble one and where Vi ≡ V H
i +ϕi, with V H

i being
a generalized Hartree potential, defined as:

V H
i (1) =

∑
j

∫
d2vij(1, 2)〈σ̂j(2)〉. (4.36)

By a Schwinger functional derivative approach, the linear charge and magnetic response
function can be written in the form:

Rij(1, 2;ω) =
1

M

M∑
n=1

exci∑
m

[
〈Ψn|σ̂i(1)|Ψm〉〈Ψm|σ̂j(2)|Ψn〉

ω − Em + E0 + iδ
− 〈Ψn|σ̂j(2)|Ψm〉〈Ψm|σ̂i(1)|Ψn〉

ω + Em − E0 − iδ

]
,

(4.37)

see Appendix C for a derivation. By assumption of the RPA, a RPA equation between
the response and non-interacting polarization can be constructed as,

Rij(1, 2) = P 0
ij(1, 2) +

∑
kl

∫
d3d4P 0

ik(1, 3)vkl(3, 4)Rlj(4, 2). (4.38)

The non-interacting polarization is of the form (4.37), with non-interacting states and
energies used instead. We will compute the non-interacting states and energies by applying
Mean-Field Theory (MFT). The mean-field Hamiltonian of the Ising model is given by,

ĤMF = −J
∑
〈i,j〉

(
2mŜzi −m2

)
− h

∑
i

Ŝzi, (4.39)

with m being the mean-value of mi = 〈Ŝzi〉.
We now consider a three-site triangular lattice Ising model with all three sites having

two neighbors. We specialize to J < 0, corresponding to antiparallel pairing between
neighbouring spins being prefered. Choosing −(2J/3) > h > 0, both the interacting
and non-interacting ground states are spanned by the states with total spin 1

2
, giving a

three-fold degeneracy. In the exact case, the non-vanishing linear response functions are
R−+ and R+−, with the non-vanishing matrix elements:

Rxx,xx
−+ (ω) = − [Rxx,xx

+− (ω)]∗ =
4

3

[
1

ω − (−J − h) + iδ
− 2

ω + h− iδ

]
, (4.40)

with x specifying any of the three existing sites. Only the linear response functions
related to spin-flip are non-vanishing. In the RPA case, the non-vanishing non-interacting
polarizations are P 0

−+ and P 0
+−, with the non-vanishing matrix elements:

P 0 xx,xx
−+ (ω) = −

[
P 0 xx,xx
+− (ω)

]∗
=

4

3

[
1

ω − (−2J
3
− h) + iδ

− 2

ω + h− iδ

]
. (4.41)

As v++ = v+− = v−+ = v−− = 0, the linear density response function, as computed by
the RPA approach, is equal to the non-interacting polarization.

We now consider an Ising model with a triangular lattice of four sites with two sites
having two neighbors (site 1,4) and two sites having three neighbors (site 2,3). Choosing
J < 0 and −3J

16
> h > 0, the interacting degenerate ground state is two-fold degenerate

while the non-interacting degenerate ground state is four-fold degenerate. In the exact
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case, the degenerate ground states are the two states where the 1,4 sites have antiparallel
spin relative to the 2,3 sites. In the non-interacting case, the degenerate ground states are
the four states with zero total spin. The non-vanishing linear density response functions
are R−+, R+−, with the non-vanishing matrix elements:

Rxx,xx
−+ (ω) = − [Rxx,xx

+− (ω)]∗ = 2

[
1

ω − (−J
2
− h) + iδ

− 1

ω + (−J
2

+ h)− iδ

]
, (4.42)

for sites x = 2, 3, and

Rxx,xx
−+ (ω) = − [Rxx,xx

+− (ω)]∗ = 2

[
1

ω − (−J − h) + iδ
− 1

ω + (−J + h)− iδ

]
, (4.43)

for sites x = 1, 4. In the RPA case, the non-vanishing non-interacting polarizations are
P 0
−+ and P 0

+−, with the non-vanishing matrix elements:

P 0 xx,xx
−+ (ω) = −

[
P 0 xx,xx
+− (ω)

]∗
=

1

ω − (−7J
16
− h) + iδ

+
1

ω − (−3J
16
− h) + iδ

− 1

ω − (−7J
16

+ h)− iδ
− 1

ω − (−3J
16

+ h)− iδ
, (4.44)

with x specifying any site of the four sites. As in three-site Ising model, the linear
density response function, as computed in the current RPA approach, is equal to the
non-interacting polarization.
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Figure 4.7: The trace TrS−+ plotted against the energy ω in both the exact case and the
ensemble G0W 0 case for the three-site case with J = −1 and h = 1/6 (left) and for the
four-site case with J = −1 and h = 1/20 (right), with δ = 0.01. Notice that the spectral
response function is not anti-symmetric around ω = 0.

The trace TrS−+ (identical form for TrS+−) is plotted as a function of the energy in
the three-site case for J = −1 and h = 1/6 and four-site case for J = −1 and h = 1/20
in Fig. 4.7. The magnetic field h is thus treated as weak relative the interaction between
the spin of neighboring sites. The main peak structure is captured by the RPA approach
using MFT for the non-interacting computation, however the peak position is in general
predicted to be positioned at too low energies. In the three-site case, the ω < 0 peak is
correctly positioned, while the ω > 0 peak is shifted towards ω = 0 with respect to the
exact case. In the four-site case, two pairs of peaks are observed, with both pairs being
shifted towards ω = 0 with respect to the exact case. MFT is observed to not capture
the peak position well for either of the two Ising models with a finite triangular lattice.
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4.5 Hydrogen-like atoms

We consider a hydrogen-like atom model occupied by four-electrons. The hydrogen-like
atom is composed of a single electron orbiting a nucleus of charge Z. The states are spec-
ified by electron configurations given by four quantum numbers: the principle quantum
number n, angular momentum quantum number l, magnetic quantum number ml and
spin quantum number ms. Orbitals of the hydrogen-like atom are known and given by,

φnlml(r) = Rnl(r)Ylml(θ, ϕ), (4.45)

where Rnl(r) is the radial part and Ylml(θ, ϕ) is the spherical harmonic, which gives the
angular part. The radial part is of the form:

Rnl(r) =

√(
2Z

naµ

)3
(n− l − 1)!

2n{(n+ 1)!}
e−Zr/naµ

(
2Zr

naµ

)l
L2l+1
n−l−1

(
2Zr

naµ

)
, (4.46)

with aµ = 4πε0h̄
2/µe2, reduced mass µ = mNme/(mN + me), nucleus mass mN and

with generalized Laguerre polynomials Lαn(x). The generalized Laguerre polynomials are
defined as the solutions of the differential equation:

x
d2Lαn(x)

dx2
+ (α + 1− x)

dLαn(x)

dx
+ nLαn(x) = 0. (4.47)

As the nucleus mass is much larger than the electron mass (mN >> me) the reduced
mass is approximately given by µ ≈ me = 1. We will further work in units such that
4πε0/e

2 = 1, and thus aµ simplifies as aµ ≈ 1.
We consider a four-electron problem, with a restricted space of the hydrogen-like atom

system being treated, with only the 1s,2s,2p,3s and 3p orbitals considered. The interaction
between the electrons is given by an effective attractive Coulombic interaction of the form
v(r − r′) = −1/|r − r′|, and thus the considered system is not a model system of an
open-shell atom. The interaction elements vijkl are computed analytically, with the radial
and angular part separated by the use of the Laplace expansion:

1

|r− r′|
=
∞∑
l=0

4π

2l + 1

l∑
m=−l

(−1)m
rl<
rl+1
>

Y −ml (θ, ϕ)Y m
l (θ′, ϕ′), (4.48)

with r< = min(r, r′) and r> = max(r, r′). The angular integration can be solved by the
use of the orthogonality of the spherical harmonics. The radial integration corresponds to
two integrations over a polynomial multiplied by an exponential, and can thus be solved
analytically by known formulae. An alternative approach, which is not used in the current
thesis, is to treat the vijkl elements as parameters instead.

In the considered four-electron problem, the interacting ground state is non-degenerate.
The non-interacting ground state is nine-fold degenerate, as computed with the self-
consistent ensemble Hartree potential, with the states corresponding to all states with
configuration 1s22p2. A non-ensemble G0W 0 computation, of the non-ensemble B ap-
proach form introduced in section 4.3, will be considered in addition to the ensemble
G0W 0 and the exact computations.

The TrS and TrA are computed and plotted as functions of the energy for Z = 1 and
Z = 4, both shown in Fig. 4.8, in the ensemble and non-ensemble G0W 0 approaches as
well as the exact approach. The observations are however quite similar for both values of
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Z. The peak structure of TrS in the ensemble G0W 0 approach is, with exception of the
neglected low ω peaks, in better agreement with the exact result. For Z = 1 and Z = 4
the exact peaks above ω = 0.3 and ω = 1, respectively, are shifted towards higher energies
in the approximate approaches, however the main structures are in good agreement. The
one exception is the peak a bit below ω = 6 in the case of Z = 4, where the peak position is
in better agreement. The trace TrA is well in agreement in both approximate approaches
with the exact one, capturing the five and six major peak structures and their positions
for Z = 1 and Z = 4, respectively. However, the finer detail of each peak structure varies
relative the exact case for certain peak structures. In Fig. 4.8, the single peak at the
electron affinity in the exact case is in reality two peaks very close to each other. Thus
the approximate approaches significantly overestimate the splitting of the peaks at the
electron affinity.
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Figure 4.8: The TrS (left row) and TrA (right row) plotted against the energy ω in the
exact approach, and the ensemble and non-ensemble G0W 0 approaches, with Z = 1 and
δ = 0.01 (upper row) and Z = 4 and δ = 0.1 (lower row). The spectral response function
is anti-symmetric around ω = 0.

The application of the ensemble formalism shows encouraging results for more com-
plex system, with the main structures of both the response and spectral function being
captured, with also the peak positions being well in agreement with exact results in the
latter. As observed in the Hubbard model, peaks originating from the breaking of the
degeneracy are observed to not be captured in the ensemble approach as expected from
earlier discussions. As the form of the Green’s function is captured well, however, we
expect a self-consistent computation to capture the response function well.



Chapter 5

Conclusion

We have proposed and developed an ensemble Green’s function theory for systems of
interacting electrons with degenerate ground states based on the density matrix formal-
ism. The theory is built upon an ensemble Green’s function G, containing the ensemble
analogues information found in the usual zero-temperature Green’s function for electronic
systems with non-degenerate ground states, and auxiliary Green’s functions Gn. An ex-
act set of self-consistent equations for the Gn Green’s functions, corresponding to the
ensemble analogue of the Hedin equations, were derived. By employing a diagonaliza-
tion procedure, we then showed that the relations between the time-ordered and retarded
linear response function are satisfied by an introduced ensemble response function. An
ensemble analogue of the GWA was proposed, and within the approximation a one-shot
ensemble G0W 0 approach and self-consistent ensemble GW approach were constructed.

A comparison between the ensemble and temperature formalisms were made in the
limit of T → 0+. In this limit, the real-time Green’s function acquires the form of
the ensemble Green’s function. An extension of the temperature formalism to electronic
systems with degenerate states was further proposed. A form of the time-ordered real-
time response function allowing for the diagonalization procedure and with a natural
connection to the retarded real-time response function was developed. A modification
of the Matsubara Green’s function G was proposed, allowing for the computation of this
time-ordered response function by the use of auxiliary Matsubara Green’s functions Gn. In
the limit of T → 0+, the real-time linear density response function was found to acquire
the form of the zero-temperature analogue in the proposed ensemble formalism. This
relation validates the extension, diplaying that it contains the proposed ensemble Green’s
function theory.

The ensemble formalism was applied to four model systems: a Hubbard model, a two-
dimensional harmonic oscillator, an Ising model and a hydrogen-like system. A problem
which arises in the ensemble G0W 0 approach, is that the peaks in the response func-
tion originating from the transitions between states in the degenerate subspace in the
mean-field ensemble Hamiltonian are absent with the employment of the diagonalization
scheme. This aspect was, for example, observed in the analytically solvable three-orbital
Hubbard model. The diagonalization procedure cannot account for the problem, as it
simply corresponds to rotating the degenerate ground states in the degenerate subspace.
We argue instead that the problem originates from the mean-field approach not capturing
the mechanics of the system, for example the repulsive/attractive nature of the interaction
in the Hubbard model. The removal of peaks originating from the breaking of degeneracy
going from the non-interacting to interacting states. The possibility of degeneracy break-
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ing is only first incorporated in the computation of the self-energies Σn, and we therefore
expect this issue to be solved in a self-consistent computational scheme.

Treatment of the Ising model with a triangular lattice gave an example of the applica-
tion of the formalism to simple frustrated systems. It further illustrated the ensemble form
of the linear charge and magnetic response function and polarization. It was observed
that the MFT did not capture the peak position well in the ensemble G0W 0 approach for
either of the considered Ising models with a finite triangular lattice.

The remaining two model systems illustrated the application of the proposed formalism
to more complex systems. Both systems gave examples of a complete breaking of the
groundstate degeneracy in the transition from a non-interacting to interacting system.
In both systems the ensemble case was compared to the exact case and non-ensemble
case. In the two-dimensional harmonic oscillator, the exact structure was observed to be
captured in the ensemble case as well as in the non-ensemble case. In contrast to the well-
defined ensemble approach, the non-ensemble approaches are ill-defined, as ignoring the
degeneracy is ill-defined. The hydrogen-like system was treated, with the ensemble and
non-ensemble G0W 0 approaches in reasonable agreement with the peak structure of the
exact approach in both the spectral form of the linear response function and the spectral
function, with the ensemble G0W 0 approach being in better agreement.

All four models motivate the ensemble formalism as a well-defined and reasonable
approach for many-electron systems with degenerate ground states, capturing to a large
extent the exact results in our current considerations. Our considerations have been
mainly for an ensemble one-shot G0W 0 computational scheme. As in the standard G0W 0

approach, the agreement is perceived to be better for initial non-interacting energies and
states close to the interacting ones, leading to worse results in the Ising model relative
the other three models as well as worse result for the Hubbard model with U = 0.3 then
U = 0.1. A general problem in the one-shot approach, is the problem of the removal
of peaks arising from the breaking of the degeneracy going from the non-interacting to
interacting states. Beyond a better choice of mean-field approach, capturing the energy
structure of a system, a self-consistent approach is expected to solve this issue. Our pro-
posed ensemble Green’s function formalism for general treatment of electron system with
degenerate ground states allows for simulation of a large class of systems and materials,
giving a well-defined and unique solution.



Chapter 6

Outlook

The proposed ensemble Green’s function theory allows for treatment of realistic electronic
systems with degenerate ground states using a well-defined Green’s function method. We
plan to publish a paper based on the work done in this Master thesis. In the current thesis,
only model systems were considered, and thus realistic systems such as open-shell atoms
are planned to be studied in the future. Further plans exists for developing an ensemble
analogue of the self-consistent QSGW scheme and to apply it to model systems to, for
example, study if the peaks removed by the diagonalization procedure appears naturally
and in agreement with exact results. A general benchmarking of the ensemble one-shot
G0W 0 and self-consistent GW for a range of different systems would be of general interest
to study the limitations and strengths of the ensemble formalism.

A finite-temperature Green’s function theory was proposed, however no explicit com-
putations using the formalism has been considered. For future developments, employing
the proposed finite-temperature formalism to model and realistic systems with degenerate
states would enlighten the range of predictivity of the formalism. An apparent computa-
tional problem with the proposed finite-temperature formalism is the drastically increased
computational cost of computing the separate self-energies for each states. It would thus
be of interest to pursue a finite-temperature Green’s function formalism which separates
the treatment of the degenerate and non-degenerate subspaces.

Small finite systems with smaller degeneracy were considered, however in macroscopic
systems with potentially larger degeneracy, computational cost associated with the ap-
proach would increase. An important type of system which display large degeneracy is
frustrated systems. The macroscopic degeneracy in spin ice, related to the disorder of the
system, would lead, with naive application of the ensemble G0W 0 approach, to unfeasible
computational cost. The symmetry of the system is expected to lead to multiple Gn com-
putations of identical structure. It would therefore be of interest to pursue development
of a method which exploits the symmetry of a system, allowing for only a subsection of
the degenerate ground states to be considered. By computing the appropriate weights
for each Green’s function Gn, the ensemble Green’s function could thus be possible to be
computed with a decreased computational cost.
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Appendix A

Spectral representation of the
Green’s function

The spectral representation of the Green’s function (Eq.(2.36)) will be derived here. Work-
ing in the Heisenberg picture, the Green’s function, defined in Eq. (2.32), can be rewritten
as:

G(1, 2) =− iθ(t1 − t2)〈Ψ0|ψ̂(1)ψ̂†(2)|Ψ0〉+ iθ(t2 − t1)〈Ψ0|ψ̂(1)ψ̂†(2)|Ψ0〉

=− iθ(t1 − t2)
∑
m

〈Ψ0|ψ̂(r1)|Ψm〉〈Ψm|ψ̂†(r2)|Ψ0〉e−i(t1−t2)(Em−E0)

+ iθ(t2 − t1)
∑
m

〈Ψ0|ψ̂†(r2)|Ψm〉〈Ψm|ψ̂(r1)|Ψ0〉ei(t1−t2)(Em−E0), (A.1)

where θ(t1 − t2) is the Heaviside function and the sum m is over all states spanning the
Hamiltonian. Here we have used the time-independence of the Hamiltonian, observing
that it leads to the Green’s function only depending on the time-difference t1 − t2, as
mentioned in section 2.5. One can represent the Heaviside function as a contour integral
of the form:

θ(t1 − t2) = −
∫ ∞
−∞

dω

2πi

e−iω(t1−t2)

ω + iδ
, (A.2)

with δ being an infinitesimal positive constant. The frequency space Green’s function can
now be constructed, by using Eq. (2.26) and the residue theorem for simple poles, as:

G(1, 2;ω) = i

∫ ∞
0

dτ

[∑
m

〈Ψ0|ψ̂(r1)|Ψm〉〈Ψm|ψ̂†(r2)|Ψ0〉ei(ω−(Em−E0)+iδ)τ

]

− i
∫ 0

−∞
dτ

[∑
m

〈Ψ0|ψ̂†(r2)|Ψm〉〈Ψm|ψ̂(r1)|Ψ0〉ei(ω+(Em−E0)−iδ)τ

]

=
∑
m

〈ΨN
0 |ψ̂†(2)|ΨN−1

m 〉〈ΨN−1
m |ψ̂(1)|ΨN

0 〉
ω + EN−1

m − EN
0 − iδ

+
∑
m

〈ΨN
0 |ψ̂(1)|ΨN+1

m 〉〈ΨN+1
m |ψ̂†(2)|ΨN

0 〉
ω − EN+1

m + EN
0 + iδ

, (A.3)

where in the last step, one has used that the number of electrons in the ground state is N
and thus the connected excited states needs to have N − 1 and N + 1 number of electrons
respectively. The sought Eq. (2.36) has thus been derived.
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Appendix B

Functionals

The functional concept is of general importance in physics, and is used in the Schwinger
functional derivative technique in the development of the Green’s function formalism. The
class of functionals considered in this thesis can be considered as functions of functions.
Onwards our use of functional will only specify this class of functionals.

A functional is similar to a function. A many-variable function f(r1, r2, ..., rn) gives
a number for a set of numbers {ri, i = 1, ..., n}. Similarly, a functional F [φ1(r), ..., φn(r)]
gives a number for a set of functions {φi(r), i = 1, ..., n}. By the introduction of the
functional derivative δF [φ(r)]/δφ(r′), the functional can be written as,

F [φ(r)] ≡
∫
dr′

δF [φ(r)]

δφ(r′)
φ(r′). (B.1)

The mathematical rigourus definition of the functional derivative is

δF [φ(r)]

δφ(r′)
≡ lim

ε→0

F [φ(r′) + εδ(r − r′)]− F [φ(r′)]

ε
. (B.2)

As an example, consider the function, which itself is a functional satisfying the relation

φ(r) =

∫
dr′δ(r − r′)φ(r′). (B.3)

The functional derivative of the function is thus:

δφ(r)

δφ(r′)
= δ(r − r′). (B.4)

In pratice the functional derivative is analogous to the partial derivative. An analogus
chain-rule for functional derivatives, as for multi-variable functions, exists and is of the
form:

δF [ρ[φ(r)]]

δφ(r′)
=

∫
dr′′

δF [ρ(r)]

δρ(r′′)

δρ[φ(r′′)]

δφ(r′)
, (B.5)

where ρ is a functional of the function φ.
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Appendix C

Linear response theory derivations

The current appendix collects derivations related to the linear response theory used in
the thesis.

C.1 Zero-temperature: Linear density response func-

tion

A derivation of Eq. (2.65) in section 2.5 will now be given. An external perturbative
potential is assumed to be of the form (2.20). Employing a Schwinger functional deriva-
tive technique approach, the linear density response function can be derived. For more
information regarding the response function at zero temperature see for example [28].

Using Eqs. (2.34), (2.50) and (2.63) the linear density response function can be written
in the form:

R(1, 2) = −iδG(1, 1+)

δϕ(2)

∣∣∣∣
ϕ=0

= −i (−〈Ψ0|ρ̂H(1)|Ψ0〉〈Ψ0|ρ̂H(2)|Ψ0〉+ 〈Ψ0|T [ρ̂H(1)ρ̂H(2)]|Ψ0〉)
= −i〈Ψ0|T [∆ρ̂H(1)∆ρ̂H(2)]|Ψ0〉, (C.1)

where ∆ρ̂ is defined in Eq. (2.25). The spectral representation of Eq. (C.1) can be
obtained in a scheme similar to the ones used to derive the form of the frequency space
Green’s function in Appendix A. Assuming the Hamiltonian is time-independent, Eq.
(C.1) can be rewritten as:

R(1, 2) =− iθ(t1 − t2)〈Ψ0|∆ρ̂H(1)∆ρ̂H(2)|Ψ0〉 − iθ(t2 − t1)〈Ψ0|∆ρ̂H(2)∆ρ̂H(1)|Ψ0〉

=− iθ(t1 − t2)
∑
m

〈Ψ0|∆ρ̂H(1)|Ψm〉〈Ψm|∆ρ̂H(2)|Ψ0〉e−i(t1−t2)(Em−E0)

− iθ(t2 − t1)
∑
m

〈Ψ0|∆ρ̂H(2)|Ψm〉〈Ψm|∆ρ̂H(1)|Ψ0〉ei(t1−t2)(Em−E0), (C.2)

where θ(t1 − t2) is the Heaviside function and the sum m is over all states spanning the
Hamiltonian. The time-independence of the Hamitonian leads to time-dependence of the
linear density response function entering as t1 − t2. Representing the Heaviside function
as a contour integral of the form:

θ(t1 − t2) = −
∫ ∞
−∞

dω

2πi

e−iω(t1−t2)

ω + iδ
, (C.3)
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IV APPENDIX C. LINEAR RESPONSE THEORY DERIVATIONS

with δ being an infinitesimal positive constant, the spectral representation of the linear
density response function can be written as:

R(1, 2;ω) = i

∫ ∞
0

dτ

[∑
m

〈Ψ0|∆ρ̂(1)|Ψm〉〈Ψm|∆ρ̂(2)|Ψ0〉ei(ω−(Em−E0)+iδ)τ

]

+ i

∫ 0

−∞
dτ

[∑
m

〈Ψ0|∆ρ̂(2)|Ψm〉〈Ψm|∆ρ̂(1)|Ψ0〉ei(ω+(Em−E0)−iδ)τ

]

=
∑
m6=0

[
〈Ψ0|ρ̂(1)|Ψm〉〈Ψm|ρ̂(2)|Ψ0〉

ω − Em + E0 + iδ
− 〈Ψ0|ρ̂(2)|Ψm〉〈Ψm|ρ̂(1)|Ψ0〉

ω + Em − E0 − iδ

]
. (C.4)

The sought Eq. (2.65) has thus been derived.

C.2 Finite-temperature: Linear density response func-

tion

The Eqs. (2.93) and (2.95) in section 2.6 will be derived in the current section. As in the
previous section, the external perturbative potential is assumed to be of the form (2.20).
In the current section, instead of the Schwinger functional derivative approach, the Kubo
approach of deriving the linear response function will be used. For more information
regarding the response function finite temperature see for example [28].

The first-order change in the ensemble average of the density is given by:

δ〈ρ̂(r, t)〉 = i

∫ t

t0

dt′Tr
{
ρ̂G[φ̂K(t′), ρ̂K(r, t)]

}
. (C.5)

Using the structure of the perturbative potential, assumed to be of the form (2.20), one
obtaines the change in the ensemble average of the density as:

δρ(r, t) = i

∫
d3r′

∫ t

t0

dt′ϕ(r′t′)Tr {ρ̂G[ρ̂K(r′, t′), ρ̂K(r, t)]} . (C.6)

The retarded linear density response function RR is defined by

δ〈ρ̂(r, t)〉 =

∫ t

t0

dt′
∫
d3r′RR(rt, r′t′)ϕ(r′t′), (C.7)

with the special case of the change of the ground state expectation value at zero-temperature
previously treated in Eq. (2.22). The form of RR can thus be identified, by a comparison
between (C.6) and (C.7), as:

iRR(rt, r′t′) ≡ Tr {ρ̂G[ρ̂(r, t), ρ̂(r′, t′)]} θ(t− t′). (C.8)

The standard rewritten form of the retarded linear response function is the following one:

iRR(rt, r′t′) ≡ Tr {ρ̂G[∆ρ̂(r, t),∆ρ̂(r′, t′)]} θ(t− t′), (C.9)

with ∆ρ̂ defined by Eq. (2.94), which is the sought Eq. (2.93).



C.3. ISINGMODEL: LINEAR CHARGE ANDMAGNETIC RESPONSE FUNCTIONV

As in section 2.4, the time-ordered linear density response function is required to
satisfy the relations (2.28) and (2.29). The time-ordered linear density response function
satisfying these relations can be constructed as:

iR(1, 2) ≡ Tr {ρ̂GT [ρ̂(1)ρ̂(2)]} , (C.10)

with non-degenerate states assumed. The spectral representation of Eq. (C.10) can be
derived similar to the zero-temperature one, derived in the previous section. Assuming
the Hamiltonian is time-independent, Eq. (C.10) can be rewritten as:

iR(1, 2) = ZG
−1
∑
n

[
e−βKn〈Ψn|ρ̂(1)ρ̂(2)|Ψn〉θ(t1 − t2) + e−βKn〈Ψn|ρ̂(2)ρ̂(1)|Ψn〉θ(t2 − t1)

]
= ZG

−1
∑
n,m

[
e−βKnθ(t1 − t2) + e−βKmθ(t2 − t1)

]
× 〈Ψn|ρ̂(r1)|Ψm〉〈Ψm|ρ̂(r2)|Ψn〉e−i(t1−t2)(Km−Kn), (C.11)

where the sum over n,m is over all states. Notice the time-dependence enters as t1 − t2,
as stated in section 2.6. Representing the Heaviside function as a contour integral of
the form (C.3), the spectral representation of the linear density response function can be
written as:

R(1, 2;ω) = ZG
−1
∑
n,m

〈Ψn|∆ρ̂(1)|Ψm〉〈Ψm|∆ρ̂(2)|Ψn〉

×
[

e−βKn

ω −Km +Kn + iδ
− e−βKm

ω −Km +Kn − iδ

]
. (C.12)

This is of an identical form as the sought Eq. (2.95), and thus Eqs. (2.93) and (2.95)
have been derived.

C.3 Ising model: Linear charge and magnetic re-

sponse function

A derivation of Eq. (4.37) in section 4.4 will now be given. An external perturbative
potential is assumed to be of the form (4.31). The following derivation will be similar to
the one given for the linear ensemble density response function.

Using Eqs. (4.32) and (4.35), and the Schwinger functional derivative approach, the
linear charge and magnetic response function can be written in the form:

Rij(1, 2) =
δ〈σ̂i(1)〉
δϕj(2)

∣∣∣∣
ϕj=0

= −i 1

M

M∑
n=1

〈Ψn|T [∆σ̂inH(1)∆σ̂jnH(2)]|Ψn〉 (C.13)

with ∆σ̂in defined by:
∆σ̂in(1) = σ̂i − 〈Ψn|σ̂i|Ψn〉. (C.14)

Assuming the Hamiltonian is time-independent and using the representation of the Heav-
iside function as a contour integral of the form (C.3), the linear charge and magnetic
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response function can be written in the ensemble form as:

Rij(1, 2;ω) =
1

M

M∑
n=1

exci∑
m 6=n

[
〈Ψn|σ̂i(1)|Ψm〉〈Ψm|σ̂j(2)|Ψn〉

ω − Em + E0 + iδ
− 〈Ψn|σ̂j(2)|Ψm〉〈Ψm|σ̂i(1)|Ψn〉

ω + Em − E0 − iδ

]
.

(C.15)

Employing the diagonalization procedure proposed in section 3.1, the linear charge and
magnetic response function can be rewritten as:

Rij(1, 2;ω) =
1

M

M∑
n=1

exci∑
m

[
〈Ψn|σ̂i(1)|Ψm〉〈Ψm|σ̂j(2)|Ψn〉

ω − Em + E0 + iδ
− 〈Ψn|σ̂j(2)|Ψm〉〈Ψm|σ̂i(1)|Ψn〉

ω + Em − E0 − iδ

]
,

(C.16)

which is the sought Eq. (4.37).
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