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Detecting bark beetle damage with Sentinel-2 multi-
temporal data in Sweden 

 

Abstract 

The European spruce bark beetle is considered as one of the most destructive forest 

insects to Norway spruce trees in Europe. Climate change may increase the frequency 

and intensity of bark beetle outbreaks. It is therefore of vital importance to detect the 

bark beetle outbreaks and take it under control to prevent further damages. Remote 

sensing techniques may provide a cost-efficient solution to the detection of bark 

beetle outbreaks. In the past years, the detection of bark beetle outbreaks in Northern 

America has achieved success with the aid of the long time series of LANDSAT 

satellite images. Sentinel-2 provides satellite images of high spatial and temporal 

resolution which may be suitable for bark beetle detection in Europe.  

The extreme drought and heat in the summer in 2018 favored the outbreaks of bark 

beetles in central and southern Sweden. In this project, detection of two stages (gray-

attack and green-attack stage) of bark beetle outbreaks in southern and central Sweden 

was carried out separately with Sentinel-2 level 2A satellite multi-temporal images. In 

bark beetle gray-attack stage detection, the two most commonly used methods: 

maximum likelihood and random forest classification, were performed and compared 

on different combinations of Sentinel-2 10m resolution raw bands sensed in March-

April and VIs derived from them. Maximum likelihood classification method with 

EVI and GNDVI gave the highest accuracy: total accuracy of 89% and Kappa of 0.74 

(substantial agreement). Random forest classification method with all variables 

achieved the second best result: total accuracy of 85% and Kappa of 0.62 (substantial 

agreement). The two best methods were thereafter applied to two test areas in 

southern (test area 1) and central Sweden (test area 2). Random forest classification 

method with all variables obtained higher accuracy: total accuracy of 76% and Kappa 

of 0.53 (moderate agreement) in test area 1 and total accuracy of 71% and Kappa of 

0.39 (fair agreement) in test area 2.  



 

 

 

Based on detection result from the first part, random forest classification method was 

employed for bark beetle green-attack stage detection. A series of VIs derived from 

Sentinel-2 20m resolution bands sensed in the summer in 2018 were calculated and 

the importance of the VIs and raw bands were ranked with random forest algorithm. 

The first 13 or 14 most important variables were used for classification. Results show 

that water content related raw bands and VIs, red-edge VIs and the NIR band are the 

most sensitive variables to bark beetle green-attack. Bark beetle green-attack stage 

detection obtained high accuracy in study area 1: total accuracy of 88% and Kappa of 

0.67 (substantial agreement) on July 26
th

 and total accuracy of 84% and Kappa of 

0.58 (moderate agreement) on October 12
th

. Relatively low accuracy were achieved in 

test area 1: total accuracy of 53% and Kappa of 0.03 (no or rarely any agreement). 

Moderate accuracy were achieved in test area 2: total accuracy of 64% and Kappa of 

0.27 (fair agreement) on July 8
th

, and total accuracy of 71% and Kappa of 0.42 

(moderate agreement) on July 31
st
.  

Keywords: Physical Geography and Ecosystem Analysis, Remote Sensing, Bark 

Beetle, Insect Detection, Sentinel-2, Forest Health, Maximum Likelihood, Random 

Forest, Spectral Signature, Vegetation Indices. 
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1. Introduction  

The European spruce bark beetle (Ips typographus) is considered as one of the most 

disastrous insects to Norway spruce (Picea abies) in Europe (Öhrn 2012; Christiansen 

and Bakke 1988). Outbreaks of bark beetles have severe impact on both ecosystem 

and social economy. Forests killed by bark beetles will become sources of carbon 

release (Lausch et al. 2013), and reduction in timber quality, unusable damaged 

timber and control managements lead to vast economic losses. Climate change has 

caused global warming (IPCC 2018). Increased temperature and drought will provoke 

the increase of the stress of the trees and thereby favor the outbreak of insects 

(Schlyter et al. 2001). It is impossible to control the happening of the drought, 

however, it is possible to detect the damages on the spruce trees when the bark beetle 

outbreaks occur and limit the impact so as to prevent further losses. Therefore, 

detecting the outbreaks of bark beetles in time is vitally important.  

The development of remote sensing techniques provides a cost-efficient way to solve 

the problem. In the past decades, remote sensing techniques have been proven useful 

to detect changes in vegetation health and been widely used to detect the infestation of 

insects (Senf et al. 2017). The method and difficulty of bark beetle outbreak detection 

is closely related to the stage of the outbreak. The outbreak of bark beetles is usually 

divided into three stages, green-attack, red-attack and grey-attack stage. In the green-

attack stage, bark beetles live and breed inside the infested trees and have not yet 

moved to other healthy trees. In order to effectively control the outbreaks, the infested 

trees need to be removed already in the green stage. Therefore, being able to detect 

bark beetle infestation early in the green-attack stage is critical. Previous studies have 

confirmed that in the red and grey-attack stages, the changes in biochemical-physical 

properties in the forest can be successfully detected using low-to-medium resolution 

remote sensing data (Skakun et al. 2003; Franklin et al. 2003; Wulder et al. 2006; 

Lausch et al. 2013). However, the detection of green-attack stage remains problematic. 

Several studies have focused on the green-attack stage detection of the bark beetle 

outbreaks but achieved limited success. Most of the studies were carried out in central 

Europe using very high spatial resolution remote sensing data, such as with 

commercial satellites WorlfView-2 (Immitzer and Atzberger 2014; Filchev 2012), and 
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RapidEye (Ortiz et al. 2013), as well as HyMAP airborne hyperspectral data(Lausch 

et al. 2013), or with active remote sensing systems like TerraSAR-X(Ortiz et al. 2013). 

Abdullah et al. (2018) explored and compared the freely available satellite data of 

Sentinel-2 and Landsat-8, highlighting the potential of using Sentinel-2 data to detect 

green-attack stage of bark beetle outbreaks. Sentinel-2 mission, launched in 2015, 

provides open-access data with high temporal resolution and spatial resolution, it is of 

interest to assess its potential of detecting bark beetle damages in Sweden. 

1.1 Aim 

According to the Swedish Meteorological and Hydrological Institute (SMHI), in 2018, 

southern Sweden experienced the hottest summer in 100 years, accompanied by 

severe drought. The extreme hot and dry weather increased the stress of the spruce 

trees and favored outbreaks of bark beetles in the spruce forests. The aim of this study 

is to explore the potential of Sentinel-2 multi-temporal data for detecting the bark 

beetle damage in Norway spruce forests in southern and central Sweden. The aim 

includes two objectives:  

1) Developing a method to detect and map the grey-attack stage bark beetle outbreaks 

in the study area.  

2) Exploring the possibility of the bark beetle green-attack stage detection with multi-

temporal data. 

1.2 Limitation 

The swarming of bark beetles usually starts when air temperature is around 16.5 °C 

(Öhrn 2012). In southern and central Sweden, the mass flying usually happens around 

mid-April to mid-August (Öhrn 2014). The suitable sampling time for bark beetle 

green-attack stage outbreaks is usually in late June to July (Abdullah et al. 2018). 

Carrying out bark beetle green-attack stage sampling is not realistic for the duration of 

the thesis, and therefore, the bark beetle green-attacked spruce samples are absent. 

The available field data, however, is not perfect for classification in terms of sample 

size and sampling time. It is unknown what GPS device was used to locate the bark 

beetle damaged samples and thus it is hard to control error from input. In addition, 
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carrying out field sampling on our own is barely possible as it is very time consuming 

and expensive in such large area. It is better to explore the performance and make full 

use of the available field data. In terms of satellite images, cloud has always been a 

problem. In Swedish weather, it is often cloudy throughout the year and hence there is 

limited amount of useful satellite data. 

2. Background 

2.1 Bark beetles  

There are more than 6000 species of bark beetles described but only a minority of 

them is able to attack and breed in living trees, and have the ability to kill healthy 

trees. The tree-killing bark beetles are considered as significant forest pests. They are 

capable of impacting ecosystem structure and are of significance to the economics. 

Tree-killing bark beetles are important forest pest, especially in North America and 

Europe. In North America, the Mountain pine beetle (Dendroctonus ponderosae) is 

the most important pest to the forestry whereas the European spruce bark beetle is the 

most aggressive and destructive in Europe (Öhrn 2012; Senf et al. 2015).  

2.1.1 Biology, population dynamics and seasonal flight 

pattern of European spruce bark beetle 

The adult European spruce bark beetles are small in size, around 4.2 to 5.5 mm long. 

As insects are ectothermic organisms, the metabolism and development of bark 

beetles are dependent on air temperature (Öhrn 2012). In the adult stage, bark beetles 

usually go through hibernation under the bark, or in the soil. The surviving bark 

beetles during the hibernation experienced a temperature dependent maturation and 

reach the complete development. The surviving bark beetles emerge and start mass 

flying in spring, searching for suitable breeding materials when the required thermal 

sum is fulfilled (Økland et al. 2015). The swarming of adult bark beetles normally 

starts when the daytime temperature is around 16.5 °C. The flight activities cease 

when temperature exceed 30 °C (Lobinger, 1994).  

During the flight, the male bark beetles disperse in the forest, searching for suitable 
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spruce trees for breeding. The colonization of healthy spruce trees requires reduced 

tree vitality or large densities of attack at the same time. Under non-outbreak 

conditions, bark beetles breed at low population density. The substrate of colonization 

in this case is usually newly dead or dying spruce trees, fresh wind-felled, cut or 

unbarked timber. The male bark beetles excavate through the bark and start the 

construction of a nuptial chamber in the phloem. The communication between bark 

beetles includes the use of pheromones. For European spruce bark beetles, the male 

bark beetles are the major pheromone producer. After the initiation of gallery 

construction, the male bark beetles release aggregation pheromones to attract both 

sexes of conspecifics (Öhrn 2012; Eidmann 1992). The attracted male bark beetles 

may excavate new nuptial chambers. Each male will attract one to four females to the 

chamber. After mating, the female bark beetles excavate tunnels in the gallery and 

may lay up to 80 eggs in the tunnel, under low population densities (Öhrn 2012; 

Økland et al. 2015). The productivity of bark beetles is negatively correlated to the 

population density (Eidmann 1992). High population density may affect the behavior 

of bark beetles, cause shorter gallery and lower the productivity (Økland et al. 2015). 

When finished laying eggs, the parental bark beetles may leave the gallery and 

reemerge to initiate one or more broods, so called sister brood. The timing of 

reemergence is dependent on intraspecific competition and temperature. Higher 

attacking density of bark beetles leads to earlier reemergence than lower attacking 

density, on average. Bark beetles leave the gallery earlier under higher temperature 

and have better chance of finding a second breeding material (Anderbrant 1989; Öhrn 

2014). In Southern Europe and at lower elevations, bark beetles may complete two or 

three fully developed generations and numerous sister broods in a year. In Sweden, 

northern Europe and at high elevations areas in southern Europe, one fully developed 

generation and several sister broods is the most common (Öhrn 2012; Økland et al. 

2015).  

Öhrn (2014) described that in Southern Sweden, the flight activity of spruce bark 

beetles lasts a long period, starting from mid-April and lasting till as late as mid-

August. The flight activities were assumed to last a much shorter time from mid-May 

till the beginning of July in the previous time. He related the long period of flight 

activities to the warm spring and summer due to climate change. His research also 

confirmed that in southern Sweden, bark beetles initiate a second generation every 



 

5 

year even though a fully developed second generation is uncommon.  

2.1.2 Impact of outbreaks of European spruce bark beetle 

The outbreak of European spruce bark beetle is usually triggered by high attacking 

population resulting from the increased productivity in the non-resistant breeding 

materials. Living spruces have defense mechanism that is resistant to insect attack and 

other diseases. There are two basic types of defense systems for coniferous trees: the 

constitutive defense system and the induced defense system. The constitutive defense 

involves the physical barrier (the bark) and toxic chemicals stored in the phloem and 

Xylem to defense the potential attackers. The induced defense system, which is 

triggered by the wound reactions, including mass production of toxic chemicals, is 

very powerful to a large variety of potential invaders (Öhrn 2012). The defense 

system of healthy trees usually drives off the bark beetles or kills them. However, 

when a large number of bark beetles attack simultaneously, especially when the tree is 

stressed (such as due to drought), the resistance of the living trees can be overcome 

(Eidmann 1992). At the same time, bark beetles inoculate many types of fungi to the 

tree stem. Some of the fungi may help bark beetles overcome the defense of the tree 

(Persson et al. 2009). When the defense is overcome, bark beetles bore through the 

outer bark, feed and breed in the phloem of the bark, strangling the nutrient 

transportation from the leaves to the roots. In addition, the fungi vectored by bark 

beetles may help restraining the water transport in the xylem (Öhrn 2012). Restriction 

of nutrient and water leads to the death of the tree. 

The direct impact of outbreaks of bark beetles is tree loss. During the 1990s, bark 

beetles have destroyed more than over 30 million m
3 

of spruce forests in ten countries 

of Europe (Økland et al. 2015). Sweden has experienced numerous outbreaks of bark 

beetles in the history. According to the Swedish Forestry Agency (Skogsstyrelsen), 

approximately 12 million m
3
 in the spruce forests has been killed by outbreaks of bark 

beetles by 2017. Massive death of trees disrupts the structure of stands and landscapes 

and leads to loss of potential growth (Eidmann 1992). Forests are of critical 

significance to ecosystem, economy and human society. Forests do not only provide 

wood, but also offer ecosystem services that improve air quality, control surface water 

run-off and lower soil erosion. The loss of trees will therefore disturb the ecosystem 
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services that the forest provides. Forest also plays an important role in carbon cycle 

and energy balance (Morris et al. 2017). Healthy forests are known as carbon sinks. 

The disturbance in the forest caused by insects can reduce the uptake of carbon 

(Olsson et al. 2016). Mortality of forests can turn it into a source of carbon release 

(Lausch et al. 2013). In addition, bark beetles kill living trees and reduce timber 

quality, leading to immense economic loss, not to mention the cost of control 

management and construction of new roads for the control management (Eidmann 

1992). Large scale mortality of spruce forests can therefore bring about great disasters 

to ecosystem, economy and human society. 

2.1.3 Climate change and bark beetle outbreaks 

Forest insects are an important part of forest ecosystem. Forest insects consume dead 

trees and renew the weakened and susceptible forests, recycling nutrients and 

accelerating carbon and energy cycle. Researches using climate change models 

revealed that insect outbreaks are very likely to happen more frequently in the future, 

resulting in severe consequences for the forest ecosystem (Senf et al. 2015; Logan et 

al. 2003; Volney & Fleming 2000). Specifically, Jönsson et al. (2012) utilized 

LPG_GUESS, which is a DGVM model, indicating that bark beetle outbreaks are 

likely to occur more frequently in Sweden, especially in southern and central Sweden 

and more generations are likely to complete in one year due to the warming climate. 

The influence on bark beetles caused by climate change is generally divided into 

direct effects and indirect effects. Climate and weather directly influence the biology 

of bark beetles. Increased temperature may provide suitable conditions for maturation 

of bark beetles and shift the time of swarming to an earlier date. Increased 

temperature and sunshine cause increased bark temperature, which may speed up the 

development of bark beetle offspring. Increased temperature therefore may increase 

the risk of outbreaks resulting from increased population of adult bark beetles when 

more generations are completed (Økland et al. 2015). On the other hand, the increased 

frequency or intensity of extreme weather and climate events may indirectly influence 

bark beetle activities. Windstorm has been the key factor for the spruce bark beetle 

outbreaks in Sweden in the past century (Økland et al. 2015; Öhrn 2012). Wind-felled 

trees provide suitable breeding materials for bark beetles. Continuous heat and 
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drought conditions may favor the outbreaks of bark beetles as it causes water shortage 

of spruce trees which negatively affects the defense system (Öhrn 2012).  

2.2 Bark beetle outbreak detection 

The devastating effects of bark beetle outbreaks have drawn broad attentions of 

researchers to focus on the detection. Based on the knowledge of pheromone, 

pheromone baited traps have been widely used and proven useful as one of the 

traditional detection techniques, whereas walking stand transects by foresters is 

another method (Liu & Dai 2006; Lausch et al. 2013). These methods have achieved 

success in helping obtain important information about infestation situations as well as 

behavior of bark beetles (Schlyter 2001; Saeed et al. 2010; Lausch et al. 2013). 

Nevertheless, these detection methods are expensive in money, time and manpower, 

yet the investigations are limited in small spatial scales. Remote sensing techniques, 

on the other hand, may provide a time and cost-efficient alternative. Remote sensing 

techniques have been widely used in forest health and vitality and insect infestation 

detection (Senf et al. 2017; Ismail et al. 2007; Lausch et al. 2013; Lamber et al. 2015; 

Olsson et al. 2016). 

Remote sensing methods detect the changes of reflectance in the electromagnetic 

spectrum in different wavelengths (differences in the spectral signature). The spectral 

signature of leaves and canopy is determined by the functional and structural 

properties of plants (figure 2.1.): leaf pigments at visible bands, cell structure at NIR 

region, water content at SWIR wavelengths (Abdullah et al. 2018). Stressed 

vegetation shows changes in the biochemical and biophysical properties, for example, 

stress of vegetation may cause a reduction of leaf pigments, changes in photosynthetic 

activities, decrease of plant and leaf water content and destruction of cell structure 

(Lausch et al. 2013). The changes can lead to an increase of reflectance in the visible 

wavelengths, a decrease in the NIR region and an increase in the SWIR region. It is 

therefore possible to distinguish healthy and stressed forest based on the differences in 

the leaf and canopy spectral signature. The visible wavelength has been widely used 

as a vegetation stress indicator, as the decline of chlorophyll and other leaf pigments 

will increase the reflectance in this region. More specifically, the red wavelength 

region is less sensitive whereas the green and red-edge wavelength region shows high 
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sensitivity to the loss of chlorophyll content (Abdullah et al. 2018). Additionally, the 

red-edge region shows high sensitivity to the stress in vegetation caused by disease 

and insect attack (Filchev 2012; Ortiz et al. 2013; Abdullah et al. 2018). The NIR and 

SWIR wavelength regions, especially the SWIR bands, are sensitive to the changes in 

the water content. Furthermore, VIs utilize the differences between two or more 

spectral bands and have been proven useful in previous researches on vegetation 

health and insect detection (Abdullah et al. 2018; Sonobe et al. 2018). 

 

Figure 2.1. An example leaf spectral signature of a healthy plant and the functional and 

structural properties of the plant that control the reflectance at the corresponding wavelengths, 

modified from Chuvieco (2016). 

The remote sensing detection of bark beetle outbreaks differs in different attack stages. 

In green-attack stage, bark beetle infested trees remain green and alive, but suffer 

from the restriction of water transport and decline of chlorophyll content. Detection of 

this stage is much more difficult than the detection of bark beetle gray-attack stage. 

Wavelengths related to leaf and canopy chlorophyll content and water content (Green, 

red-edge and SWIR) and the derived VIs are considered useful in the previous studies 

(Lausch et al. 2013; Abdullah et al. 2018). In red-attack stage, the leaf pigments 

severely decrease, which results in as a change of needle color to yellow or brown 

whereas in gray-attack stage, infested trees have all needles fallen off and eventually 

reach mortality. In gray-attack stage, bark beetles have left the breeding material. The 

detection of bark beetle red and gray-attack stage has achieved acceptable results with 

the utility of raw bands: visible, NIR and SWIR bands from LANDSAT TM, 
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achieving total accuracy of over 70% (Franklin et al. 2003), VIs derived from water 

content and greenness relevant bands, such as Normalized Difference Moisture Index 

(NDMI), Enhanced Wetness Difference Index (EWDI), Tasseled cap wetness 

component, other tasseled cap transformation indices, NIR and SWIR ratio, Moisture 

Stress Index (MSI) and Vegetation Chlorophyll Index (VCI), achieving 70% to up to 

90% total accuracy (Wulder et al. 2006; Meddens et al. 2013; Havašová et al. 2015). 

Based on remote sensing data, a large variety of classification methods to identify 

bark beetle infestation have been applied and compared in the past a few years (Senf 

et al. 2017). Those methods can be generally divided in multi-date classification 

methods (time series methods) and single-date classification methods. Multi-date 

classification methods are commonly used in detecting mountain pine beetles red and 

grey attack stages in North America based on LANDSAT long time series data. The 

most common method is to calculate one VI for several years of remote sensing data 

using threshold methods to estimate an optimal threshold for classification (Skakun et 

al. 2003; Meddens et al. 2013). Logistic regression techniques (Wulder et al. 2006) 

and image differentiation techniques are used to distinguish bark beetle damaged trees 

(Havašová et al. 2015; Jakus et al. 2003). The most commonly applied VIs are NDMI 

and EWDI. Single-date classification methods are usually based on spectral 

reflectance information from more than one band, using either raw bands, a single or 

combinations of variables (raw bands and VIs). The most commonly applied 

classification models for single-date classification are maximum likelihood classifier 

(Meddens et al. 2013; Franklin et al. 2003) and random forest classifier (Ortiz et al. 

2013; Immitzer and Atzberger 2014). Single-date classification methods are 

frequently applied to detect bark beetle infestations in both North America and 

Europe. Meddens et al. (2013) compared the multi-date classification method and the 

single-date classification method based on several bands and VIs to detect mountain 

pine beetle outbreaks in North America. The result indicated that multi-date method 

achieved higher accuracy at intermediate level of tree mortality while single-date 

method achieved higher accuracy at high tree mortality levels. 

Maximum likelihood is one of the most popular classification models that have been 

successfully applied in bark beetle outbreak detection (Meddens et al. 2013; Franklin 

et al. 2003). Maximum likelihood classification is a pixel-based supervised 
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classification method that assigns each pixel to the class that the pixel has the highest 

probability of belonging to, based on a Gaussian probability density function. 

Maximum likelihood considers distribution and covariance and usually achieves good 

separability between classes. The disadvantage is that maximum likelihood 

classification demands a large number of training samples. 

Random forest, proposed by Breiman (2001), is an algorithm developed for machine 

learning and is becoming more and more popular in remote sensing image processing. 

Unlike traditional statistical models, random forest creates a large number of binary 

decision tree models, learns the relationship between predictor variables (training data) 

and response variables (e.g. landcover classes) and gives the best prediction result. 

For each decision tree, two thirds of the training data are randomly selected to create 

the model whereas the remaining data are used for an accuracy test. At each node of 

the decision tree, a random subset is selected to determine the split rule. Classification 

trees create categorical datasets while regression trees create continuous datasets. 

There are many advantages of using random forest algorithm. It makes use of 

computer power and machine learning and usually generates high accuracy. With 

random forest algorithm, it is possible to visualize the variable importance which may 

be of great interest to researchers. However, the accuracy tends to be low if the 

training data does not represent the whole area or the random selection over-selected 

the bad quality training data (Horning 2010). 
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2.3 Sentinel-2 MSI data 

Sentinel-2 is a European wide-swath and multi-spectral imaging mission with high 

spatial and temporal resolution. The mission contains two twin satellites at the same 

sun-synchronous orbit and are phased at 180°. Each satellite carries one Multi-

Spectral Instrument (MSI) that samples 13 spectral bands with high spatial resolution 

(see table 2.1.). Sentinel-2 is also designed to revisit at high frequency: under cloud-

free conditions, at equator, 5 days with 2 satellites and 10 days with one satellite. 

Sentinel-2 satellites were first launched in June 2015 (ESA 2019).  

Sentinel-2 products are radiometrically and geometrically calibrated and available in 

two different levels: level-1C and level-2A. Level-1C products contains top-of-

atmosphere (TOA) reflectance whereas level-2A products are atmospherically 

corrected to bottom-of-atmosphere (BOA) reflectance, also known as top-of-canopy 

(TOC) reflectance. Both Level-1C and Level-2A products are in 100x100 km
2
 

granules, also called tiles, with reference coordinate system in UTM/WGS84 

projection.  

Table 2.1. Radiometric and spatial resolution of all 12 bands of Sentinel-2 twin 

satellites S2A and S2B, carrying the same type of multispectral instruments but with 

different resolution (ESA, 2019).  

    S2A   S2B     

Band 

number 
Description 

Central 

wavelength 

(nm) 

Bandwidth 

(nm) 

Central 

wavelength 

(nm) 

Bandwidth 

(nm) 

Spatial 

Resolution 

(m） 

1 Blue 442.7 27 442.2 45 60 

2 Blue 492.4 98 492.1 98 10 

3 Green 559.8 45 559 46 10 

4 Red 664.6 38 664.9 39 10 

5 Red-edge 704.1 19 703.8 20 20 

6 
Red-edge 

NIR 
740.5 18 739.1 18 20 

7 
Red-edge 

NIR 
782.8 28 779.7 28 20 

8 NIR 832.8 145 832.9 133 10 

8a NIR 864.7 33 864 32 20 

9 NIR 945.1 26 943.2 27 60 

10 SWIR 1373.5 75 1376.9 76 60 

11 SWIR 1613.7 143 1610.4 141 20 

12 SWIR 2202.4 242 2185.7 238 20 
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3. Methodology 

3.1 Study area 

The study area of this project is several forest areas in Sweden, which underwent bark 

beetle outbreaks in 2018 (figure 3.1.) The main study area (study area 1), which was 

used for development of the bark beetle detection methods, is a 20 * 20 km square 

area located between 56° 1' 23" N, 13° 16' 59" E and 56° 12' 25" N, 13° 35' 50" E 

(WGS84) in Scania, southern Sweden. In the bark beetle infested forest areas, the 

dominant species is Norway spruce, typically in stands with only spruce. Mixed 

forests with Norway spruce and European beech (Fagus sylvatica) are also present in 

some areas. An accuracy test area 1 (T1) (8 * 4 km) is located around 63 km northeast 

of study area 1 between 56° 15' 59" N, 14° 13' 30" E and 56° 19' 13" N, 14° 17' 23" E. 

Test area 1 has similar forest vegetation types to study area 1. Accuracy test area 2 

(T2) is a 1.6 * 1.6 km square area located between 57° 59' 24" N, 15° 57' 51" E and 

57° 59' 15" N, 16° 14' 4" E in central Sweden, about 90 km south of Norrköping. Test 

area 2 is dominated by deciduous and mixed forest with small areas of pure spruce 

stands. 

3.2 Data 

3.2.1 Sentinel-2 and landcover data 

Sentinel-2 level-2A multi-temporal images with no or few cloud and snow covers 

were obtained from Copernicus Open Access Hub in UTM zone 33/WGS84 

projection. Sentinel-2 based landcover data from Swedish National ground cover data 

(NMD), with a minimum mapping unit of 10m in SWEREF99TM projection was 

obtained in order to isolate the spruce forests from other landcovers (table 3.1.).  
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Figure 3.1. Locations of the three study areas and available field data (shown in the zoomed 

in maps) used in this project, based on satellite images from ESA (2019), administrative 

boundary data from DIVA-GIS (2019).. The projected coordinate system is SWEREF99TM.  
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Table 3.1. Information of all data used in this project including the data type, spatial 

resolution, source of the data, spatial reference information and the time of the sensing date of 

the satellite images, the newest update time of landcover data and the sampling time of the 

field data. 

Data 
Data 

type 

Spatial 

resolution 
Data source 

Reference 

System  

Time of 

acquisition/upda

te 

Sentinel-2 level-

2A  
Raster 

10m, 

20m, 60m 
ESA 

UTM/WGS

84 
2019, 2018 

NMD 

Landcover data 
Raster 10m NMD 

SWEREF 

99TM 
2018 

Bark beetle 

damages field 

data 

Vector - 

forest 

managers and 

field inventory 

SWEREF 

99TM 
2019, 2018 

 

3.2.2 field data 

Field data is an important part in image classification both for creating training data 

and for accuracy test. Due to time limit, field data was not collected myself in this 

project. Instead, field data was obtained from the forest managers and field inventory, 

collected by the local foresters and forest inventory students. One way to identify bark 

beetle damages in the field is to identify the bark beetle holes on the trees. In study 

area 1, field data was collected in spring 2019 with two strategies: random sampling 

and sampling of individual trees (figure 3.1.). In the random sampling area, around 20 

to 30 spruce trees were examined in random locations in the spruce forests. 60 healthy 

spruce samples were collected. In the individual sampling area, examination of 

spruces was carried out on individual tree level. 431 spruce trees were found that were 

damaged by bark beetles. All available field data is in the form of a vector point layer 

with attribute information regarding number of damaged trees and collection time. 

The healthy spruce samples were absent in test area 1 and 2. In test area 1, 86 bark 

beetle damaged samples were collected whereas 123 damaged samples were collected 

in test area 2. Locations and number of damaged trees in each location were recorded 

in the two test areas. 
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3.3 Bark beetle detection methods 

This part is divided into two parts: (1) bark beetle gray-attack stage detection and (2) 

bark beetle green-attack detection. For bark beetle gray-attack stage detection, only 

10m resolution bands were used whereas 20m resolution bands were employed for 

bark beetle green-attack stage detection. The reason for such choices will be 

explained in later in this part. Methodology developed for study area 1 is emphasized 

whereas method applied in the two test areas was briefly described later in 3.3.3 

application in other areas part.  

3.3.1 Bark beetle gray-attack stage detection 

In the bark beetle gray-attack stage detection, cloud free Sentinel-2 level-2A data (tile 

33VVC and 33VUC) sensed on March 1
st
 2019 was obtained. It was assumed that at 

this time bark beetle flight activities haven’t begun in March-April in 2019, and the 

spruce trees attacked in 2018 have all needles fallen off or already dead. The 

workflow of the bark beetle gray-attack stage detection is shown in figure 3.2. 

3.3.1.1 Data pre-processing 

Data pre-processing is an essential part of image processing as data collected from 

different sources usually differs in spatial reference system, spatial resolution, spatial 

and temporal extent, level of generalization, data quality and data type. A series of 

steps of data pre-processing were required in order to harmonize different levels of 

field data, satellite images and landcover raster data into a clear and efficient system. 

In this project, data from different sources is harmonized into Swedish national 

projected system SWEREF99TM. 

Raster data pre-processing 

The acquired Sentinel-2 level-2A 10m resolution data has already been 

rediometrically calibrated from radiance to reflectance value, georectified into UTM 

zone 33/WGS84 reference system and atmospherically corrected into top-of-canopy 

reflectance. The first step was the transformation of spatial reference system from 

UTM zone 33/WGS84 to SWEREF99TM. Thereafter, satellite images as well as 
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landcover data were cropped into the same extent as the study areas. Binary spruce 

mask was then created from the NMD landcover map. 

 

Figure 3.2. Workflow of the bark beetle gray-attack stage detection in this project. The blue 

squares stand for raster files, the white parallelograms stand for processes and the purple 

circles stand for vector files. 

Spruce mask modification Beside the error produced by the landcover classification, 

many other factors might cause further error to the landcover map (e.g. clear-cutting 

activities, change of landcover…). In order to increase the accuracy, modification on 

the spruce mask derived from the landcover map was carried out. A threshold method 

was applied based on the difference of NDVI values in the clear-cutting areas and 

spruce forests. A total of 140 points (70 in the spruce forest areas, 70 in the clear-

cutting areas) were randomly taken according to the Sentinel-2 true color composite 

satellite image. A series of NDVI threshold values were applied for classification and 

evaluated with error matrix. Receiver operating characteristic (ROC) curves were 

created for threshold selection.  

 



 

17 

Field data pre-processing 

Field data is a critical part of image processing as it provides the information used for 

training data and validation which directly influences the final accuracy. It is therefore 

important to control the error of the field data. In order to reduce error, sample points 

with obvious positioning errors (points outside spruce forests) or in the clear-cutting 

areas were removed based on the modified spruce mask. The rest of the bark beetle 

damaged points on the individual stand level were then aggregated into polygons with 

a maximum distance of 10 m. Aggregation of points makes it possible to reduce 

insignificant bark beetle damage samples by only selecting areas with more than 3 

infested spruces within one to two pixels. In addition, samples of healthy spruce 

containing less than 20 trees in the random sampling areas were removed, assuming 

these samples were taken from mixed forests (spruce and beech). Healthy spruce 

samples were then randomly taken in the individual sampling areas where no damages 

were found. A total of 32 bark beetle infested polygons were created manually with 

the size of 100 to 200 m
2 

(1 to 2 pixels of the 10m resolution images). Similarly, 

polygons covering 1 to 2 pixels were also created centering at the 32 remaining 

healthy tree samples from the random sampling area and 30 manually taken healthy 

tree samples. Thereafter, a total of 62 healthy tree samples and 32 bark beetle 

damaged samples were randomly divided into training data and validation data. 18 

bark beetle infested samples and 29 healthy spruce samples were divided into training 

data and the rest of the data was used for accuracy assessment.  

3.3.1.2 Image processing 

Outbreaks of barks beetles in Sweden usually occur in small area, sometimes only a 

few trees are infested within one place. In order to detect the change with remote 

sensing data, a high spatial resolution is required. Sentinel-2 images provided four 

10m resolution bands: band 2 (blue), band 3 (green), band 4 (red) and band 8 (NIR). 

In the bark beetle gray-attack stage, spruce trees are usually left with no needles or 

even dead. As mentioned in the background part, visible bands are sensitive to the 

change of chlorophyll content and NIR is sensitive to change of cell structure. The 

change of spruce trees should be able to be detected with the four 10m resolution 

bands and greenness related VIs. With the four 10m resolution bands, four greenness 
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related VIs were calculated including Normalized Differential Vegetation Index 

(NDVI), Enhanced Vegetation Index (EVI), Green Normalized Differential 

Vegetation Index (GNDVI), Simple NIR/Red Ratio (SR) are calculated (Equations 

shown in table 3.2.). Two commonly used single-date classification methods 

maximum likelihood and random forest were applied to Sentinel-2 images (tile 

33VVC and 33VUC) sensed on 1st of March, 2019 and compared. A series of raw 

bands, single variable or a combination of variables were tested and compared for 

classification. Maximum likelihood classification enables the visualizations of 

variable scatter grams. The combinations EVI and GNDVI, GNDVI and NDVI were 

chosen based on the separability shown from the scatter grams. At the same time, 

random forest algorithm provides an easy and efficient way to reduce the total amount 

of variables used for classification through calculating the importance of the variables 

used for the classification. With the utility of random forest algorithm, it is possible to 

reduce the variables with low importance. No variables were removed in this part as 

no particular variables showed low importance. When carrying out random forest 

classification, it is always a question on how many trees to choose in order to achieve 

a relatively high accuracy and low computing time. Oshiro et al. (2012) suggested that 

between 64 to128 is the optimal number of trees to use to achieve a highly accurate 

result. Accordingly, 100 classification trees were chosen in this project.  

Table 3.2. Formulas of the vegetation indices used in bark beetle gray-attack stage detection 

calculated with Sentinel-2 10m resolution bands. “b” is short for “bands” (for example: b2 = 

band 2).  

 

  

Vegetation 

indices 
Full name Formula Reference 

NDVI 
Normalized Difference 

Vegetation Index 
(b8-b4)/(b8+b4) Rouse Jr 1972 

EVI Enhanced Vegetation Index 

2.5*(b8-

b4)/(b8+6*b4-

7.5*b2+1) 

Huete et al.1999 

GNDVI 
Green Normalized Difference 

Vegetation Index 
(b8-b3)/(b8+b3) Gitelson et al. 1996 

SR 
Simple Ratio Vegetation 

Index 
b8/b4 

Birth and McVey 

1968 
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3.3.2 Bark beetle green-attack stage detection 

The detection of bark beetle green-attack stage is more complex than the gray-attack 

stage. As only bark beetle gray-attack stage field data is available, it is not known 

when and how many trees that were under green-attack stage in the past. According to 

data from the southern most bark beetle trap (Ljungby), we assumed that within one 

to tow months after the second peak (week 27, 2018), most of the spruce trees were 

still under green-attack stages (figure 3.3). Sentinel-2 satellite images (tile 33VVC 

and 33VUC) sensed on 26th of July (week 30) were hence obtained for detection. 

Satellite images from the same tiles sensed on 12
th

 of October (week 41) was also 

obtained to test the differences between an early image and a late image.  

 

 

Figure 3.3 Numbers of bark beetles caught by the bark beetle traps in Ljungby station in 2018. 

“w” is short for “week”(for example: w16 = week 16, the 16th week of the year). Produced 

based on data from the Swedish Forest Agency (2019). 

3.3.2.1 Data pre-processing 

Data preprocessing of bark beetle green-attack stage detection followed similar 

procedures to gray-attack detection with a few steps that are different. 

Raster data pre-processing 

Sentinel-2 level-2A 20m resolution bands were transformed from UTM 

zone33/WGS84 projection to SWEREF99TM projection system. Satellite data were 

thereafter cropped into the same extent as the study areas. Spruce mask created from 

NMD landcover map from the last part were directly used without modification, due 
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to that no clear-cutting activity were found in the images used for green-attack 

detection. 

Field data pre-processing 

Field data were first overlaid with spruce mask to remove points with positioning 

errors and then aggregated into polygons with a maximum distance of 20 m. Same as 

in gray-attack detection, samples of healthy spruce containing less than 20 trees in the 

random sampling areas were removed. New healthy spruce samples were taken 

randomly in the individual sampling areas, where no damages were found. Polygons 

with the size of 400 to 800 m
2
 (1 to 2 pixels) were created centered at the remaining 

healthy and bark beetle infested samples. A total of 26 bark beetle damaged samples 

and 80 healthy tree samples (34 from the random sampling area and 46 taken 

manually from the individually sampled area) were created, in which 15 bark beetle 

damaged samples and 42 healthy spruce samples were randomly divided as training 

data whereas the rest data were used for accuracy analysis. 

3.3.2.2 Image processing 

During the bark beetle green-attack stage, the spruce needles remain green in color, 

making it difficult to detect using the same method as for the gray-attack stage. 

Green-attack stage detection of bark beetle outbreaks requires involvement of more 

spectral bands. The Sentinel-2 20m resolution bands provide red-edge and SWIR 

bands that have been proven important to bark beetle outbreaks green-attack stage 

detection in previous studies (Abdullah et al. 2018). Based on the previous studies 

(Lausch et al. 2013; Abdullah et al. 2018) and result from gray-attack stage detection, 

all 20 m resolution raw bands and a series of VIs related to leaf and canopy 

chlorophyll content, leaf pigment (anthocyanin and carotinoid), greenness, red-edge 

bands and water content (all variables) were selected and compared, and ranked using 

random forest algorithm (table 3.3). The number of variables to achieve a high and 

robust accuracy and cost lower computing time was estimated using a threshold 

method. The 13 to 14 most important variables were proven most accurate and 

efficient for random forest classification.  
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Table 3.3. Formulas of the vegetation indices used in bark beetle green-attack stage detection 

calculated with Sentinel-2 20m resolution bands. “b” is short for “bands” (for example: b2 = 

band 2). CCCI, CIgreen, CIrededge and CVI are chlorophyll content related. ARI, CRI are 

other leaf pigments related vegetation indices. GNDVI and NDVI are greenness related 

vegetation indices. NDRE1, NDRE2, RENDVI1 and RENDVI2 are red-edge vegetation 

indices. DWSI, MSI, NDWI and VMI are water content related vegetation indices. 

3.3.3 Application in other study areas 

In order to test if the method can be generalized, the same methods were applied on 

study area 2 and study area 3. In these two areas, only field data containing number of 

bark beetle damaged trees and locations was available. Thus, we assumed that the 

Type 
Vegetatio

n indices 
Full name Formula Reference 

Chlorophyll 

CCCI 
Canopy Chlorophyll 

Content Index 

((b8a-

b5)/(b8a+b5))/((b8a-

b4)/(b8a+b4)) 

El-Shikha et al. 

2008 

CIgreen 
Chlorophyll Index 

Green 
b8a/b3-1 

Gitelson et al. 

2003 

CIrededge 
Chlorophyll Index 

RedEdge 
b8a/b5-1 

Gitelson et al. 

2003 

CVI 
Chlorophyll Vegetation 

Index 
b8a*b4/b3^2 

Vincini et al. 

2008 

Pigment 

ARI 
Anthocyanin 

Reflectance Index 
b8a*(1/b3-1/b5) 

Gitelson et al. 

2006 

CRI 
Carotinoid Reflectance 

Index 
1/b2-1/b3 

Gitelson et al. 

2001 

Greenness 

GNDVI 

Green Normalized 

Difference Vegetation 

Index 

(b8a-b3)/(b8a+b3) 
Gitelson et al. 

1996 

NDVI 
Normalized Difference 

Vegetation Index 
(b8a-b4)/(b8a+b4) Rouse Jr 1972 

Red-edge 

NDRE1 
Normalized Difference 

Red-Edge Index 
(b8a-b5)/(b8a+b5) 

Barnes et al. 

2000 
NDRE2 

Normalized Difference 

Red-Edge Index 
(b8a-b6)/(b8a+b6) 

RENDVI1 

Red-edge Normalized 

Difference Vegetation 

Index 

(b5-b4)/(b5+b4) 

Gitelson and 

Merzlyak 1994 

RENDVI2 

Red-edge Normalized 

Difference Vegetation 

Index 

(b6-b4)/(b6+b4) 

Water 

content 

DWSI 
Disease-Water Stress 

Index 
(b8a+b3)/(b11+b4) 

Galvao et al. 

2005 

MSI Moisture Stress Index b11/b8a 
Hunt and Rock 

1989 

NDWI 
Normalized Difference 

Water Index 
(b8a-b11)/(b8a+b11) Gao 1996 

VMI 
Vegetation Moisture 

Index  

((b8a+0.1)-

(b12+0.02))/((b8a+0.1

)+(b12+0.02)) 

Ceccato et al. 

2002 
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spruce areas with no bark beetle damages discovered were healthy spruces.  

Gray-attack stage detection  

Sentinel-2 tile 33VVC sensed on April 2
nd

 was acquired for test area 1 whereas tile 

33VWE from the same date was acquired for test area 2. The threshold between 

spruce forest and clear-cutting area from study area 1 was applied in test area 1. 

However, a new threshold was calculated for test area 2 according to the difference in 

the vegetation cover. Satellite 10m resolution bands and landcover data went through 

the same preprocessing procedure as in study area 1. Field data was thereafter reduced 

and polygons covering 1 to 2 pixels (100 to 200 m
2
) were then created centered at the 

damaged points manually. 38 bark beetle damaged spruces polygons were created for 

test area 1 whereas 41 polygons were created for test area 2. After that, 40 and 60 

healthy spruce polygons were randomly created in test area 1 and test area 2, 

respectively. Sample polygons were randomly divided into training and validation 

data. VIs (table 3.2) were calculated from 10m resolution bands for both study areas 

and methods with the best results from study area 1 are tested in the two areas. 

Green-attack stage detection  

Sentinel-2 tile 33VVC sensed on 26
th

 of July (week 30) for test area 1 and 33VWE 

sensed on 8
th

 (week 27) and 31
st
 of July (week 31) for test area 2 were obtained and 

preprocessed. After the same data preprocessing procedure as described in 

3.3.2.1Data pre-processing, 30 and 39 bark beetle damaged polygons, covering 400 

to 1600 m2 area, were created for test area 1 and test area 2, respectively. Healthy 

spruce polygons covering 400 to 1600 m
2
 were created centered at the same areas 

created in gray-attack stage detection. VIs (table 3.3) were calculated with 20m 

resolution bands and variable importance were ranked using random forest algorithm. 

The 13 to 14 most important variables were selected for classification.  
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3.3.4 Accuracy analysis 

The accuracy of the classification results was evaluated using confusion matrix. 

Confusion matrix is a simple and effective evaluation method that has been 

commonly used for classification accuracy test. The matrix displays the number of 

pixels that were assigned to each class on the map in comparison to the reference data 

(the ground truth) and the total number. The total accuracy is calculated by the 

number of correctly assigned pixels (the numbers at the diagonal) dividing by the total 

number of all evaluated pixels. For example, in table 3.4. , the total accuracy is (10 + 

22 )/ 40 = 0.8. 

With confusion matrix, it is possible to calculate Cohen’s Kappa. Cohen’s Kappa was 

introduced by Cohen (1960) as a way of measuring the agreement of observing the 

same phenomenon by different observers (Ben-David 2008). The formula of Cohen’s 

Kappa is:  

K = (P0 - Pc)/(1 - Pc) 

in which P0 stands for the total agreement and Pc is the agreement happened by chance. 

For example, in table 3.4. P0 = 12/40 *16/40 + 28/40 * 24/40 = 0.54. In this case, K = 

(0.8 - 0.54) / (1 – 0.54) = 0.57. 

Table 3.4. An example confusion matrix. The class 1 and class 2 in the columns stand for the 

classes in the ground truth data (the real situation). The class 1 and class 2 in the rows stand 

for the classes classified in the map (the predicted situation).  

  
Reference 

Map 

No. Class 1 Class 2 Total 

Class 1 10 6 16 

Class 2 2 22 24 

Total 12 28 40 

4. Results 

4.1 Identification of clear-cut areas 
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Figure 4.1 shows the result of spruce mask modification on two different dates and 

study areas. According to the graph a., on March 1
st
, 2019, the best NDVI threshold is 

approximately 0.75 in study area 1, which is also applied to test area 1. On April 2
nd

 

2019, the best threshold is about 0.60 in test area 2, according to graph b. 

 

b. 

Figure 4.1. The thresholds applied to distinguish clear-cut areas from spruce forests in the 

masked area and the corresponding total accuracy and Kappa, fitted with 2
nd

 order polynomial 

for a. and 3
rd

 order polynomial for b. The x-axis represents the NDVI threshold, above which it 

is assigned to spruce forest and below which it is classified as clear-cutting area. The y-axis 

exhibits the corresponding total accuracy and Kappa value when applying a certain threshold. 

a. Result in study area 1 on March 1
st
 2019. b. Result in test area 2 on April 2

nd 
2019. 

4.2 Gray-attack stage detection 

The spectral signatures of pixels with bark beetle infested healthy spruce trees and 

pixels with only healthy spruce trees are illustrated in figure 4.2. On average, pixels 

with bark beetle damaged spruce trees has higher reflectance at the visible wavelength 

region (band 2, 3, 4) and lower reflectance on the NIR wavelength region (band 8) 

than the healthy spruce pixels.  
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   Figure 4.2. Spectral signature for healthy spruce pixels and pixels with damaged spruce 

trees during bark beetle gray-attack stage, in study area 1. Mean reflectance values of all 

pixels in the two classes were first plotted with the corresponding wavelengths and then fitted 

with 3
rd

 order polynomial. Image sensed on March 1
st
, 2019. 

Figure 4.3. depicts the standard deviation, maximum, minimum values, and the mean 

values of the reflectance of the two classes for different bands. The pixels with bark 

beetle damaged spruces shows higher standard deviation. 

 

  

 

 
 

Figure 4.3. Box plots of reflectance of pixels with bark beetle infested spruce trees (orange color) 

and pixels with only healthy trees (green color) for Sentienl-2 10m resolution bands (band 2, 

3, 4, 8) in study area 1, on March 1
st
. The middle line stands for the mean reflectance value 

and the box stands for 1* standard deviation above and below the mean value. The error bar 

stands for the maximum and minimum reflectance values. Band 2 is the blue band, band 3 is 

the green band, band 4 is the red band and band 8 is the NIR band. 
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Figure 4.4. Percentage variable importance for distinguishing healthy spruce class and spruce 

with bark beetle gray-attack damages class ranked by random forest algorithm in study area 1.  

The result of random forest classification indicates that NDVI (33.14%), SR (21.01%) 

and band 4 (NIR) (21.60%) are the most important variables (figure 4.4.). None of the 

remaining variables, however, shows particularly low importance. Hence, all 

variables were included in the classification. 

Scatter plots (figure 4.5.) with two-two combinations of the four VIs depict the 

separability between bark beetle infested and healthy spruce trees. As it can be seen 

from the graph, GNDVI-EVI and NDVI-GNDVI combinations can effectively 

distinguish the two classes. 
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Figure 4.5. Two-two scatter plots of vegetation indices values used in bark beetle gray-attack 

stage in this project, for pixels with bark beetle damaged spruce (red) and healthy spruces 

pixels (green). 
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Table 4.1. displays the accuracy of all methods tested in study area 1. From table 4.1. 

we can see, the best result is achieved using maximum likelihood classification based 

on EVI and GNDVI, resulting in 89% total accuracy and substantial agreement 

(Kappa = 74%). As for random forest classification, the highest accuracy is obtained 

when all variables were included, achieving 85% total accuracy and substantial 

agreement (Kappa =62%). Classification with combinations of raw bands or VIs 

shows higher accuracy and Kappa than with one VI. There is a slight trend that more 

variables used in the classification will result in higher accuracy.  

Table 4.1 Bark beetle gray-attack stage classification total accuracy and Kappa of the 

corresponding classification method and variables used for classification, in study area 1.The 

bold values are the highest values within the same classification method. 

  Maximum likelihood   
Random 

forest 
  

  
Total 

accuracy(%) 
Kappa 

Total 

accuracy(%) 
Kappa 

Raw bands 87 0.68 83 0.58 

NDVI 83 0.56 74 0.33 

GNDVI 83 0.59 70 0.34 

EVI 83 0.56 74 0.33 

SR 72 0.44 74 0.33 

EVI&GNDVI 89 0.74 83 0.56 

GNDVI&NDVI 83 0.56 79 0.45 

All variables 83 0.58 85 0.62 

 

When applying the best methods to test area 1 and test area 2, random forest using all 

variables achieved higher accuracy and better agreement than maximum likelihood 

method using EVI and GNDVI (table 4.2.). Detection in test area 1 was more accurate 

than in test area 2.  

Table 4.2. The total accuracy and Kappa resulted from using the best methods selected from 

table 4.1. (methods with the highest accuracy) in test area 1 and 2. ML: Maximum Likelihood. 

RF: Random Forest. 

  ML- EVI&GNDVI RF-All variables 

  Accuracy(%) Kappa Accuracy(%) Kappa 

T1 61 0.21 76 0.53 

T2 57 0.07 71 0.39 
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4.3 Green-attack stage detection 

The result of the threshold method for variable reduction (figure 4.6.) indicates that 

there is a non linear increase of accuracy with the increasing number of variables. 

When the number of variables reaches 13, the accumulated variable importance 

reaches 75%, or the lowest importance is over 2.5%, total accuracy and Kappa will be 

stabilized as the highest value. Additional information can be found in appendix, table 

S1.  

 

Figure 4.6. Scatter plot of the number of variables used for random forest classification and 

the corresponding total accuracy and Kappa value, fitted with 3
rd

 polynomial (trendline).  

Figure 4.7. illustrate the spectral signatures of pixels with likely bark beetle green-

attacked healthy spruce trees and healthy spruce trees in study area 1, test area 1 and 

test area 2 in last summer after the second swarming peak. In study area 1 on July 26
th

, 

on average healthy spruces has lower reflectance than bark beetle damaged spruces 

(a.). Similar result is also found in test area 2 on July 8
th 

(d.). In both the later image in 

study area 1 (b.), test area 1 (c.) and test area 2 (e.) on July 31
st
, the pixels with likely 

bark beetle green-attacked spruces shows lower reflectance in the NIR wavelength 

regions and higher reflectance on the SWIR wavelength reflectance regions than 

pixels with healthy spruce, on average.  
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d. 

 

e. 

Figure 4.7. Spectral signature for healthy spruce pixels and pixels with damaged spruce trees 

during bark beetle green-attack stage for different study areas and on different dates. Mean 

reflectance values of all pixels in the two classes were first plotted with the corresponding 

wavelengths and then connected with smooth line.  

a. Study area 1, July 26
th
, 2018. b. Study area 1, October 12

th
, 2018. c. Test area 1, July 26

th
, 

2018. d. Test area 2, July 8
th
, 2018. e. Test area 2, July 31

st
, 2018 

Figure 4.8. and figure 4.9. depicts the mean, minimum and maximum values of 

reflectance of the two classes for different bands. In general, pixels with bark beetle 

damaged spruce show larger in-class variation than the healthy spruce pixels for all 

bands (figure 4.8.). The rest of box plots are displayed in the appendix, figure S1., S2. 

and S3.  One exception was discovered in test area 1 (figure 4.9.), on July 26
th

, 2018, 

in which healthy spruce pixels show larger in-class variation than pixels with bark 

beetle damaged spruce trees in the red-edge and NIR bands (band 6, 7, and 8). 
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Figure 4.8. Box plots of reflectance of pixels with likely bark beetle green-attacked spruce 

trees and pixels with only healthy trees for Sentienl-2 20m resolution bands in study area 1, 

on July 26
th
, 2018. The middle line stands for the mean reflectance value and the box stands 

for 1* standard deviation above and below the mean value. The error bar stands for the 

maximum and minimum reflectance values. Band 2 to 4: visible bands. Band 5-7: red-edge 

bands. Band 8a: NIR band. Band 11, 12: SWIR bands.  
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Figure 4.9. Box plots of reflectance of pixels with likely bark beetle green-attacked spruce 

trees and pixels with only healthy trees for Sentienl-2 20m resolution bands in test area 1, on 

July 26
th
, 2018. The middle line stands for the mean reflectance value and the box stands for 

1* standard deviation above and below the mean value. The error bar stands for the maximum 

and minimum reflectance values. Band 2 to 4: visible bands. Band 5-7: red-edge bands. Band 

8a: NIR band. Band 11, 12: SWIR bands.  

 

Figure 4.10. depicts the importance of variables calculated with random forest 

algorithm. The combination of most important variables differs for different areas. On 

July 26
th

, 2018, in study area 1 (a.), all water content related VIs and bands, greenness 

related VIs, red-edge band 6 and 7, NIR band 8 and Clgreen are the 13 most important 

bands to distinguish the likely green-attacked spruces and healthy spruce. In the later 

image on October 12
th 

(b.), band 4, band 8a, band 11 and 12, CCCI, Clgreen, CVI, 

GNDVI, NDVI, NDRE2, RENDVI1 and 2 and NDWI are the most important. In test 

area 1 (c.), the first 14 most important variables are RENDVI2, Band 7, RENDVI1, 

band 6, NDWI, DWSI, MS, CVI, NDVI, band 8a, band 12, NDRE1, VMI and band 5. 

Water content related VIs and bands are less important than red-edge VIs and bands. 

In test area 2, water related VIs illustrates overwhelming importance on both July 8
th 

and 31
st
 (d. and e.) . 
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Figure 4.10. Percentage variable importance for distinguishing healthy spruce class and 

spruce with likely bark beetle green-attack damages class ranked by random forest algorithm. 

a. Study area 1, July 26
th
, 2018. b. Study area 1, October 12

th
, 2018. c. Test area 1, July 26

th
, 

2018. d. Test area 2, July 8
th
, 2018. e. Test area 2, July 31

st
, 2018 

Table 4.3. displays the accuracy for likely green-attack stage bark beetle detection in 

study area 1, test area 1 and test area 2. In study area 1 total accuracy is high (88%) 

and there’s substantial agreement (Kappa=0.67) on July 26
th

 and high total accuracy 

of 84% and moderate agreement is achieved on the later image. However, total 

accuracy is only 53% in test area 1 and there’s barely any agreement shown from 

Kappa. In test area 2, total accuracy is 71% and moderate agreement is reached on 

July 31
st
 whereas there is only 64% total accuracy and fair agreement on the earlier 

image. 

Table 4.3. Total accuracy and Kappa values of bark beetle green-attack stage detection in 

different study areas and on different dates using random forest method. NoV stands for the 

number of variables used in the classification. 

  
Total accuracy 

(%) 
Kappa  Sensed date NoV 

SA1 88 0.67 July 26
th
 13 

SA1 84 0.58 October 12
th
 13 

T1 53 0.03 July 26
th
 14 

T2 64 0.27 July 8
th
 13 

T2 71 0.42 July 31
st
 13 
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5. Discussion 

5.1 Gray-attack stage detection 

Sentinel-2 10m resolution raw bands and greenness related VIs shows high capability 

of distinguishing pixels with bark beetle gray-attacked (dead or with no needles) 

spruce trees from healthy spruce trees in study area 1. Classification with multi-

variables achieved higher accuracy than with a single variable. Maximum likelihood 

classification achieves higher accuracy in study area 1 than random forest method in 

general. Maximum likelihood classification seemed to achieve up to 13 % higher total 

accuracy and up to 25% higher Kappa than random forest classification when applied 

to each single or combinations of the variables, except to SR and all variables. 

However, when applying both best methods to test area 1 and test area 2, maximum 

likelihood method achieved up to 16% lower accuracy and 32% lower Kappa than 

random forest method. Maximum likelihood assumes normal distribution in 

multivariate space. As we can see from figure 4.5., when pixel values in the classes 

resemble normal distribution and are not overlaid with each other, maximum 

likelihood method can efficiently achieve very high accuracy. However, random 

forest classification achieves high accuracy and is stable when detecting bark beetle 

gray-attacked spruces in other study areas. Many previous researches have compared 

both maximum likelihood and random forest classifications and reached a consistent 

result that random forest tend to achieve higher accuracy and more robust results than 

maximum likelihood (Ok et al. 2012; Nitze et al. 2012; Dixon and Candade 2008). On 

the other hand, classification result of random forest is influenced by the parameters: 

number of trees and tree depth. Tree depth 30 has been tested to be deep enough to 

not influence the result whereas the choice of 100 decision trees was based on the 

research of Oshiro et al. (2012). In their research, numerous different classifications 

were carried out to calculate the optimal number of classification trees to use. 

However, a similar threshold method was carried out by Ok et al. (2012) in which 

they discovered 200 was the optimal amount of trees for the best classification result. 

This infers that there’s a chance for random forest method to achieve even higher 
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accuracy in this project if the number of the classification trees is increased.  

In study area 1, the variation of pixel value in bark beetle damaged spruces class is 

larger than healthy spruce class. On average, the blue and green wavelength region 

shows less sensitivity to bark beetle gray-attack than red and NIR wavelength region. 

Also, variable importance analysis illustrated that red and NIR related bands and VIs 

are more important than the rest. In previous studies, NDVI has proven to be less 

effective to identify bark beetle damage especially green-attack stage detection 

(Havašová et al. 2015; Abdullah et al. 2017). In contrast, results of this project 

suggest that with the 10m resolution Sentinel-2 bands, when combined raw bands and 

other greenness related VIs, NDVI is a useful index for bark beetle gray-attack 

detection.  

5.2 Green-attack stage detection 

Bark beetle green-attack stage detection has always been problematic. Abdullah et al 

(2017) has shed light on the potential of Sentinel-2 20m resolution bands in bark 

beetle green-attack stage detection in Germany, especially with the water related and 

red-edge VIs, which is confirmed in this project. In general, in study area 1, bark 

beetle detection achieved very high accuracy and substantial agreement. However, the 

accuracy is relatively low in test area 1 and the classification is almost random. In test 

area 2, the classification accuracy and Kappa are more reasonable. Interestingly, the 

spectral signatures of both classes seem unexpected in study area 1 on July 26
th

: the 

average reflectance value is higher for damaged spruces class than healthy spruce 

class. Similar results were shown in test area 1 on July 8
th

. According to the theory, 

reflectance of stressed vegetation will decrease in the visible region, as a result of the 

weakened absorption caused by the decrease of chlorophyll content. The reflectance 

increases in NIR region as the destruction of needle cell structure starts to occur 

through continuous stress (Ortiz et al. 2013). The absorption of SWIR region 

decreases with the decrease of canopy water content caused by stress, leading to an 

increase in reflectance (Abdullah et al. 2017). In contrast, spectral signatures in test 

area 1 and both of the later image in test area 2 and study area 1 are more consistent 

with the theory. The reason behind the unexpected spectral signature in the early 

images in both study area 1 and test area 2 may be associated with the drought that 
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occurred in the summer of 2018. It may also infer that it was too early for bark beetle 

damages to be detected when bark beetle damages haven’t been enough to alter the 

functional and structural properties of the spruce stands. Except for test area 1, bark 

beetle damaged spruces has larger spread than healthy spruces in all study areas. This 

can be explained that bark beetle damaged spruces at that time are in more different 

situations than healthy spruces: newly attacked, attacked but still green, turning brown 

etc. Larger variation in bark beetle damaged spruce class is also found in the research 

of Ortiz et al. (2013). The later image in test area 2 achieves higher total accuracy and 

better agreement than the earlier image. This is not in consistency with the total 

accuracy and Kappa in the two images in study area 1. Due to time limit, a second 

image in test area 1 was not tested. It is unknown if the later detection will lead to 

higher accuracy, yet it is likely the high accuracy in the early image in study area 1 is 

a coincidence due to the drought. As mentioned in the study of Ortiz et al. (2013), the 

spectral reflectance is influenced multiple stressors. Only relying on spectral signature, 

is it too universal to identify one particular stressor.  

Variable importance analysis result corresponds to the spectral signatures of both 

classes. Water content related VIs (DWSI, MSI, NDWI, VMI) show the highest 

importance. This result is in line with previous bark beetle detection studies (Lausch 

el al. 2013; Havašová et al. 2015; Abdullah et al. 2017). Red-edge related bands and 

VIs especially band 6, 7, RENDVIs are also proven sensitive to bark beetle green-

attack (Ortiz et al. 2013). The NIR and SWIR bands also show high sensitivity: bark 

beetle infestation leads to lower reflectance value in NIR region and higher 

reflectance in SWIR region (Immitzer et al. 2016; Abdullah et al. 2017). As for the 

chlorophyll content related VIs, CVI and Clgreen illustrate more sensitivity than the 

rest. However, the pigment related VIs: ARI and CRI are less effective in bark beetle 

green-attack stage detection. Similar results were also shown in research of Abdullah 

et al (2017), in which they found out pigment related VIs are not significant in 

distinguishing healthy and bark beetle infested spruces. Interestingly, in almost all 

analysis, NDVI is listed in the first 13 or 14 important variables, which disagrees with 

previous studies. This might be because the real situation of attacked spruces by that 

time actually varies from green brown to even dead. Without solid field data, it is hard 

to choose the best date for bark beetle green-attack detection. Besides, even in bark 

beetle green-attack stage, the change of water content and chlorophyll content is not 
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abrupt but rather slow and gradual: bark beetles attack the phloem of spruces, nutrient 

will be unable to transport to the roots, water content will be gradually reduced in the 

canopy and chlorophyll content decreases. The restrain of water happens rather early 

and was therefore proven useful for bark beetle green-attack stage detection. However, 

there might have taken a certain amount of time after bark beetle attacks to be 

significant enough for detection with satellite images. In addition, the amount of bark 

beetle damaged trees that is needed to be detected with sentinel-2 20m resolution 

bands is also of interest for further research.  

5.3 Threshold 

The threshold result shows that clear-cutting areas and spruce forests are highly 

separable with a NDVI threshold. For study area 1, the threshold is 0.75 which is 

relatively high. This may be related to the growth of grass and bushes on the areas 

after the clear-cutting activities. According to Nichol and Lee (2005), it is impossible 

to distinguish grassland from trees with satellite images only based on NDVI values. 

However, our study seems to have proven it is possible to distinguish clear-cut areas 

from dense spruce forests. Another threshold method regarding number of variables to 

use for random forest classification indicates that with the increased number of 

variables, total accuracy and Kappa has a tendency to go up. Accuracy and Kappa 

stays stable when the number of variables reaches a threshold, which also might refer 

to the accumulate variable importance or a lowest variable importance threshold value.  

5.4 Sources of error and suggestions for improvement 

The error in this project derives from both the input data and the classification method. 

The error of input data comes from noises in satellite data and error in field data. 

During the green-attack stage, it is difficult to choose which image to use due to 

frequent cloud cover. Bark beetle outbreaks in Sweden occurs in relatively small areas. 

Therefore, the positioning accuracy will be a vital factor to the final accuracy. 

Without knowing the GPS device and strategy used for field data collection, the 

positional uncertainty of the field data is hard to control. For test area 1 and test area 2, 

healthy spruce data is absent, and the assumption that the area without bark beetle 

damages detected is healthy spruce forest, might also cause error. In future studies, it 
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is recommended to carry out field survey in a smaller area in bark beetle green-attack 

stage and collect both bark beetle attacked data and healthy data. If possible, the 

sampling area should be larger than 20m * 20m and a large amount of pixels should 

be sampled. High accuracy GPS devices such as differential GPS are highly 

recommended for sampling. Sampling strategy can refer to research from Abdullah et 

al. (2017). On the other hand, as mentioned above, the change of spectral signature 

might be a result of many stress factors which leads to error in the detection result.  

6. Conclusions 

Sentinel-2 satellite 10m resolution data shows high ability to detect bark beetle attack 

in gray stage in the study areas in south Sweden, achieving up to 89% total accuracy 

and substantial agreement. Random forest method shows less limitation and achieves 

stable and robust result comparing to maximum likelihood method. Classification 

based on combinations of variables are more accurate than with only one variable.  

The bark beetle green-attack stage detection shows reasonable results, highlighting 

the potential of Sentinel-2 20m resolution bands for bark beetle green-attack stage 

detection in Sweden. Water content related VIs and bands, red-edge VIs and bands, 

NIR band are the highly sensitive variables for green-attack stage detection. In 

addition, detection accuracy of bark beetle green-attack might be related to timing. 

Due to the limitation of the field data, the potential of Sentinel-2 data may not have 

been fully uncovered. In practice, remote sensing method might offer a time and cost-

efficient alternative to the traditional detection methods. In order to be practically 

applied in forest management, further research is needed to more effectively and 

accurately identify bark beetle green-attack damages.  
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Appendices 
 

Table S1. displays the raw data of result of the threshold method for variable 

reduction in the section 3.3.2 Bark beetle green-attack stage detection, including the 

number of variables used for classification with random forest method and the 

corresponding achieved total accuracy, Kappa, cumulative importance and variable 

importance. 

Table S1. The number of variables used in random forest classification and the achieved 

classification total accuracy, Kappa and the corresponding variable importance and 

cumulative importance resulted from threshold method for variable reduction. The 

cumulative importance is the add-up value of the corresponding variable importance 

value and all values above. The row in red color is the row with the selected threshold 

value. 

Number of 

variables  
Total accuracy Kappa 

Cumulative 
importance  

Variable 

importance 

1 0.857143 0.602549 13.53% 13.53% 
2 0.836735 0.584746 24.48% 10.95% 
3 0.816327 0.545829 34.32% 9.84% 
4 0.836735 0.584746 40.22% 5.90% 
5 0.836735 0.584746 45.88% 5.66% 
6 0.836735 0.584746 51.29% 5.41% 
7 0.857143 0.625954 55.47% 4.18% 
8 0.877551 0.669663 59.29% 3.81% 
9 0.857143 0.625954 63.10% 3.81% 
10 0.877551 0.669663 66.54% 3.44% 
11 0.857143 0.625954 69.62% 3.08% 
12 0.857143 0.6259542 72.69% 3.08% 
13 0.877551 0.669663 75.28% 2.58% 

 

Figure S1, S2 and S3 are the box plots for pixels with likely bark beetle green-

attacked spruces and healthy spruce pixels in study area 1 on October 12
th

, in test area 

2 on July 8
th

, and in test area 2 on July 31
st
,  respectively.  
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Figure S1. Box plots of reflectance of pixels with likely bark beetle green-attacked spruce 

trees and pixels with only healthy trees for for Sentienl-2 20m resolution bands in study area 

1, on October 12
th
, 2018. The middle line stands for the mean reflectance value and the box 

stands for 1* standard deviation above and below the mean value. The error bar stands for the 

maximum and minimum reflectance values. Band 2 to 4: visible bands. Band 5-7: red-edge 

bands. Band 8a: NIR band. Band 11, 12: SWIR bands. 
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Figure S2. Box plots of reflectance of pixels with likely bark beetle green-attacked spruce 

trees and pixels with only healthy trees for Sentienl-2 20m resolution bands in test area 2, on 

July 8
th
, 2018. The middle line stands for the mean reflectance value and the box stands for 1* 

standard deviation above and below the mean value. The error bar stands for the maximum 

and minimum reflectance values. Band 2 to 4: visible bands. Band 5-7: red-edge bands. Band 

8a: NIR band. Band 11, 12: SWIR bands.  
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Figure S3. Box plots of reflectance of pixels with likely bark beetle green-attacked spruce 

trees and pixels with only healthy trees for Sentienl-2 20m resolution bands in test area 2, on 

July 31
st
, 2018. The middle line stands for the mean reflectance value and the box stands for 

1* standard deviation above and below the mean value. The error bar stands for the maximum 

and minimum reflectance values. Band 2 to 4: visible bands. Band 5-7: red-edge bands. Band 

8a: NIR band. Band 11, 12: SWIR bands.  
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