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Abstract
In this thesis, a house price evolution equation of Denmark’s municipalities is proposed
and solved using both an iterative optimization algorithm, and a closed form solution
using Vector Autoregression. The quality of the solutions is investigated, analyzed and
compared. Focus is put on the accuracy of the generated price predictions and to what
degree the model parameters follow expected features from a well describing model,
such as distance and population correlation with parameter values. Over�tting is a
central problem using the closed form solution method due to the large number of
parameters. It is found that the closed form solution performs badly in describing the
system and that the iterative method generated much better models. Depending on the
initial conditions, the iterative method more accurately captures the expected features
and gives price predictions on four years within 5%. It is also found that the distance
between the municipalities has a relatively large importance on the price correlations.
The population size is not found to have any noticeable corresponding impact. It is
clear that price in�ation is a major factor which needs to be more accurately imple-
mented in future work. For example, by exponential in�ation adjustment or working
with the logarithm of the prices.
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Introduction
This thesis proposes a model of house prices in Denmark’s municipalities using tools
and theories related to physics such as the return maps from Chaos Theory [1]. Each
municipality has its own average house price, population density and location. Some
di�erent versions of the model are compared in relation to the physical properties of
the system and in their ability to predict house prices.

The utilized set of data consists of quarterly house prices of all Denmark’s munici-
palities (except �ve islands due to insu�cient data) obtained from Finans Danmark [2].
It covers the time period from and including �rst quarter of 1991 until and including
the last quarter of 2018. The prices are in danish kroner (dkk) per square meter and
represent a total of 93 municipalities. For further details about the data, such as which
the missing islands are, see Appendix. The municipalities will also be referred to as
regions.

The price development for any goods over time is dependent on a lot of di�erent
factors, but an important one is price in�ation, which is a general increase of prices
with time. As the house prices used in this model span over 25 years, in�ation has a
huge e�ect on the price levels, see section 2.2. This is taken into account by adding
parameters which represent in�ation.

Let’s brie�y introduce the equation of price evolution. Let xi,t denote the average
price in Danish kroner per square meter in region i at time t. The equation of price
evolution, suggested by my supervisor, is

xj,t+1 = αi + βi · t+
93∑
j=1

γi,j · xj,t (1.1)

for all regions i ∈ [1, 93] and quarterly times t ∈ [1, 108] where αi is a price which
represents the region, βi is the in�ation parameter and γi,j represents the strength of
price interaction between the regions. αi, βi and γi,j are the model parameters to be
found. The parameters are approximated as time-independent, which corresponds to
the assumption that the structural and social conditions of the regions and the demand
for them does not change too much during the time period. For further discussion of
the equations, see section 2.4.

The purpose of this thesis is to extract as much information about the system as
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possible from the model parameters. The model describes the system well if the model
�ts well to the data and also has predictive accuracy. In such a case, the parameters
should be able to give information about how a country’s spatial and population prop-
erties, a�ect the future price evolution in all regions. As we have data on the region’s
populations, population densities, and distances between the regions, it is possible to
get estimates on how the in�uence on price levels changes with those quantities.

The set of equations is solved by minimizing the cost function, which is de�ned as
the sum of the squared errors of the model’s �tting to all region’s data for a given time
period. This is achieved using two di�erent methods:

1. Gradient descent method, which is a �rst-order iterative optimization algo-
rithm. The partial derivatives of the cost function with respect to all parameters
are calculated. Starting values of the parameters are set. The value of every par-
tial derivative is then be used to change the corresponding parameter an amount
proportional to the partial derivative of the cost function with regards to that pa-
rameter to minimize the cost function. The proportionality constant is kept �xed
during the process and chosen for optimal minimization behaviour of the cost
function and around half its size for converging behaviour of the parameters
with number of iterations. The process is iterated repeatedly to reduce the cost
function by every iteration until a local minimum is reached closely enough.

2. Vector Autoregressive method. The VAR method gives an estimation in Or-
dinary Least Square sense to the matrix equation Y = PZ + U , containing all
equations (1.1). Y and Z are matrices containing house prices, P is a matrix
that contains all parameters in (1.1) and U are the forecast errors. For matrix
de�nitions, see the Appendix. The ordinary least square estimation of Y ≈ PZ
is given as P = Y ZT (ZZT )−1.

We know from Chaos Theory that chaotic behaviour only appears in non-linear
non-invertible maps [3]. Since the equations can be written as the matrix equation
Y = PZ , the functional map is linear if P is invertible. Since the γ parameters are the
only terms of non-linearity in (1.1), the functional map is linear if the coupling matrix
(with γi,j on row i and column j) is invertible.

Having the possibility to accurately predict the house price next year, could be ex-
tremely advantageous economically for the holders of the predictions. Having a better
understanding of the underlying physics behind a country’s price evolution (how ev-
ery region’s size, population, and location contributes to the other region’s prices or
what the e�ect the population densities has on the price development) contributes
to the knowledge for possible interventions for a country to protect itself against fu-
ture house crashes. Most people are aware of the housing crash in 2008, whereby
house prices were at that time in�ated due to the high loan approval rate by the banks.

2



When the market understood that the prices were too high, the prices fell drastically,
and house owners experienced what happens when their house in reality is worth
much less than they previously thought. Had the countries been better prepared for
the crisis before it happened, there would have been a large chance that many of the
problems could have been mitigated or avoided. Thus, this kind of research could be
highly advantageous for governments and the society as a whole.

Method
2.1 First return maps and Chaos

Observing a dynamical system at discrete times generates a sequence of states of the
system. In physics, a useful group of tools to study this data are known as iterated
maps or just maps. They are used for example to analyze di�erential equations, to
model natural phenomena and in the study of chaos [1]. One sort of those are the �rst
return map, which is shown in one-dimensional form in equation (2.1).

xt+1 = f(xt) (2.1)

where xt represents the state of a system at time t ∈ N and f is called the logistic
function [3]. Knowing the state at a speci�c time, the �rst return map thus describes
the state of the system one unit of time later.

For simplicity, the state in equation 2.1 is represented by a single variable xmaking
into a one-dimensional map. Some systems may be described with one-dimensional
�rst return maps. For example, the time interval between two drops of a dripping
faucet may approximately be described by the previous time interval. Another com-
mon example is the population of an animal species on an isolated island, where x
represents the population fraction of a maximum population capacity of the island [3].
Assuming that environmental conditions remain constant, a simple suitable choice to
describe this system is the logistic function

f(x) = rx(1− x) (2.2)

where the parameter r > 1. The logistic function should decrease for large popu-
lations since the food supply is limited. The logistic function for r = 2 is shown in the
left diagram in �gure 1 together with the line with the same derivative as the logistic
function in the origo. Applying the logistic function on the �rst return map results in
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the logistic map

xt+1 = rxt(1− xt) (2.3)

We can study this behaviour of the system after a long time. For low r (r < 3) the
system will converge to a stable solution. For slightly higher r (up to around 3.4), this
long-term value splits up in two values between which the logistic map is consecutively
changing value with every time step. This is shown in the right diagram in �gure 1. The
splitting up of long-term value is called a bifurcation and at slightly larger r there occur
again a new bifurcation for each long-term value. This process continues all the time as
shown in the diagram, faster and faster with r, ensuing chaos, in which a deterministic
system with aperiodic behaviour depends sensitively on the initial conditions. [3]

Figure 1: Left: The logistic function 2.2 for r = 2 where its derivative in the origo is
represented by a blue line [3]. Right: Corresponding bifurcation diagram with r on the
x-axis and long term value of the logistic map 2.3 on the y-axis [4].

For systems with higher dimension n, the �rst return map generalizes to [3]

x1,t+1 = f1(x1,t, x2,t, ...xn,t)
x2,t+1 = f2(x1,t, x2,t, ...xn,t)
...
xn,t+1 = fn(x1,t, x2,t, ...xn,t)

(2.4)

The number of variables used to describe many related systems may very well be
higher. Two dimensional �rst return maps have been used to analyze the interaction
between two species, which gave agreeable results with laboratory experiments [3].
In this thesis, we will use �rst return maps in many dimensions, such as the model we
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introduced in equation (2.1), to study the price evolution of real estate. The number of
municipalities gives the system 93 dimensions.

We know historically that markets have periods with unstable development. The
earliest market models assumed that markets inherently contain aggregated �uctua-
tions that may cause the market to be inherently unstable. Later on, from late 1950s to
early 1990s market models instead mainly assumed that markets was inherently sta-
ble and that in the absence of an exogenous shock, the market would incline toward
a �rm growth path. Thus, the impact of exogenous events was investigated in those
models. Examples of such events are wars, demographic events, natural disasters, and
new technology. Some exogenous events relevant in time and space for this thesis are
the establishment of the Øresund Bridge, 9/11, migration and BREXIT. From around
1990 the interest of models with the endogenous hypothesis again rose. This was partly
due to the increased understanding that deterministic dynamical systems may generate
chaotic dynamics and have properties that exactly mimic those of certain stable linear
stochastic models. Among market models which show endogenous �uctuations, it has
been shown that a class of perfect-foresight equilibrium models and another class of
indeterminate equilibrium models both are compatible with optimizing behavior and
competitive equilibrium.[5]

This thesis does not include modelling of exogenous shocks but they are brie�y
discussed in the conclusions section.

2.2 In�ation and money creation

Today and in recent history, the money is represented by �at currency[6], which is not
backed by any commodity. Fiat currency can be either cash or electronic money that
one use while paying with payment cards or with bank transfers. In Denmark, less
than 5 percent of the money supply consists of cash [7]. In countries going more and
more cashless like Sweden for example, only around 2 percent of the money supply
currently consists of cash, and the rest is electronical currency [8].

As the data used for modelling the house price spans over a long period of time, it
is important to have an overview of the concept of in�ation and money creation. Fiat
currency or money, is created by either the central bank or by the private banks [8].
In the modern economy, the majority of the money is created by commercial banks
making loans [9].

When the loan gets paid back, the money created by lending is destroyed [9]. It
does never leave the banking system as a whole except if the underlying loan is paid
back [10]. However, connected to the loan comes interest, in�ating the money supply.
At last, the amount of money created depends on the monetary policy of the central
bank, usually by adjusting the interest rates [9]. The central bank may also a�ect the
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amount of money directly through asset purchases, known as quantitative easing [9].
To get a feeling of how fast it may increase, one can consider the fact that during
around 11 months, between March 2018 and February 2019, Denmark’s money supply
has increased more than the total amount of cash (bills and coins) in Denmark in Febru-
ary 2019 [7]. Most economists agree on the fact that if the money supply of a nation
increases faster than the economical growth, in�ation occurs, which results in higher
prices in general. Many of the loans are issued for the purchase of a house, making
the price increase on houses also directly depend on the size of the loans themselves.
The diagram below shows Denmark’s money supply M1 (solid orange line) together
with the average house price for all regions (dashhot line in blue) during the same time
period as the data in this thesis.

Figure 1: Dashdot in blue, left y-axis: The Average house price in Denmark for all 93
municipalities. Solid orange line, right y-axis: The Money Supply M1 of Denmark [11].
The x-axis represents time in years from �rst quarter 1992 to last quarter 2018. The
data shows that the money supply has quintupled during the around 27 years.

2.3 General features of Denmark

Denmark consists of three large islands and other small islands. Figure 2 shows graph-
ically the the prices last quarter of 2018 in Denmark by region on a map to the left,
and the price development with time during the period 1992-2018. The price di�erence
between di�erent regions is huge and in general the prices are much lower the further
away from the capitol the regions are located. From the right �gure, it is noticeable that
the price development for the di�erent regions does not behave smoothly increasing.
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It has a general increasing trend overall but otherwise it looks rather irregular, even
though many di�erent regions has similar up- and downtrends at similar times.

Figure 2: Left: Pricemap of the house price per square meter by region in Denmark
[12]. Right: The house price for every region during the whole data period (1992-
2018). Copenhagen has region index 1 and is in the diagram hidden behind the curve
of Frederiksberg with region index 2, which reaches the highest price overall.

2.4 Equations of price evolution

Let xi,t denote the average price in Danish kroner per square meter in region i at time
t. Then the task is to estimate the price in the same region the next quarter xi,t+1, for
all di�erent regions. The �rst term introduced to represent this estimation is αi that
represents a time-independent kind of base price of the region. The next term in the
estimation is βi · t, which de�nes a general temporal dependence on the price in region
i that represents the in�ation.

When the prices in Copenhagen increase, it is reasonable to expect that the house
price in Århus, second largest city in Denmark, is a�ected. It would probably increase
as well, as now more people would have an economical incentive to choose the second
largest city to move to, which might be the most similar city to the largest city. By
extending this reasoning, the estimation of xi,t+1 should also consist of a fraction γi,j
of the price in any other region j, xj,t. This will directly be taken into account to by
adding the terms

∑93
j=1 γi,j · xj,t, j 6= i. As long as the model is describing the system

well, the parameter γi,j may be seen as the "price in�uence on region i by region j"
and γi,j and γj,i both represent "price coupling" parameters between the regions. The
assumption that the parameters are time-independent represents the assumption that
the properties of the regions and the corresponding demand does not change very
much during the time period. Examples of such properties of the system are houses,
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roads, parks, shopping malls and pollution. This is an approximation done to limit the
number of parameters.

The house price next year in, let’s say Copenhagen, should depend to a large extent
on the price there this year, probably more than the price last year. Therefore, the thesis
should also take this into account. This is done by adding the missing term γi,i in the
expression above, i.e. to also allow that j = i. γi,i will then represent the price coupling
of region i’s former price to its current price. Thus, the complete set of equations is

xi,t+1 = αi + βi · t+
93∑
j=1

γi,j · xj,t (1.1)

for all regions i ∈ [1, 93] and quarterly times t ∈ [1, 108].

2.5 Methods for solving the equations

1. Vector Autoregressive method. The VAR method gives a closed form estima-
tion in Ordinary Least Square sense to the matrix equation Y = PZ+U , where
Y andZ are matricies containing house price data, P is a matrix that contains all
the model’s parameters in (1.1) and U is a matrix containing all the errors [13].
The ordinary least square estimation of Y ≈ PZ is given as P = Y ZT (ZZT )−1

[13]. For de�nitions, see the Appendix. VAR methods are commonly used for
forecasting variables within economics such as growth of Gross domestic prod-
uct (GDP), in�ation, other macroeconomic variables and oil prices [14]. This
method adapts the parameters equally in the best possible least square sense to
the training data. It will give a single model whose ability to describe and predict
the system is compared to those of the gradient descent method.

2. Gradient descent method, which is a �rst-order iterative optimization algo-
rithm. It minimizes the cost function, de�ned as

cost =
∑
∀i,t

(xi,t+1 − yi,t+1)2 (2.5)

where i ∈ [1, 93] and t ∈ [1, 108] and yi,t+1 is the data. xi,t+1 is in this case the
one time iterated price (from the data points) according to equation (1.1), so that

xi,t+1 = αi + βi · t+
93∑
j=1

γi,j · yj,t (2.6)

for all regions i ∈ [1, 93] and quarterly times t ∈ [1, 108].
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The partial derivatives of the cost function with respect to all parameters is cal-
culated separately. Starting values of the parameters is set. The value of ev-
ery partial derivative is used to change the corresponding parameter value p to
p− L∂cost

∂p
where ∂cost

∂p
is the partial derivative of the cost function with regards

to parameter p and L is the Learning rate. This step is called iteration or gra-
dient descent iteration. In the model’s parameter space, the parameter-vector
is changed in exactly the direction that minimizes the cost function the fastest.
The process will then be iterated repeatedly to reduce the cost function by every
iteration until a local minimum is reached closely enough. The process is called
the learning process. During this process, the learning rate, di�erent for each set
of parameters (see section 3.2.1): L = Lα, Lβ, Lγ , is kept �xed. The number of
parameters is large, 8 835 (93 + 93 + 932) and approximately as large as the data
set, 8556 (93 ·92) or 10044 (93 ·108) (without or with out-of-sample data). Thus,
many local minima is expected to exist. If not proper actions are taken, the model
might be too speci�c to the sample data and miss out on general trends of the
system or on important physical properties of the system. If the model is over�t-
ted, it should not be accurate in making real predictions. To deal with this, two
major actions are taken. The �rst one is out-of-sample validation, see section
2.5. The second one is to examine extra carefully the model’s learning process
by using parameter starting values that follow the expected general features in
section 2.6, at the same time as monitoring the parameter evolution during the
learning process.

2.6 Out-of-sample-validation and pro�t statistics

The data set, containing data for 108 quarters is divided into an estimation period (EP),
containing the �rst 92 quarters of data, and a validation period (VP) containing the last
16 quarters of data. There have been suggested general recommendations on the length
of VP in predictive models on 20% or more [15], however, it is desired to include data
that cover enough of the time period in the backwash of the �nancial crash 2007-2008,
which had huge e�ects on the housing market, see for example �gure 1. The model
parameters are estimated from the estimation data set and the model is then used to
give predictions for the whole 16 quarter validation data set (VP) and for only the �rst
quarter of the validation period (VP 1 step). The results of using bootstrapping[15] is
also investigated, meaning that one prediction is made at a time, after which the model
parameters are extracted again from the enlarged data set that now consists of the data
in the EP plus those predicted prices. Then the process is repeated until all 16 quarters
of prices are predicted and bootstrapping never use any data from the VP. The errors
of the predictions with and without bootstrapping are analyzed and compared to the
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errors of the model’s �t to the data in the estimation data set.
It is important to keep in mind the di�erence between the model’s �t to the estima-

tion data from which the model parameters are estimated, and the model’s prediction
of the validation data, from which the model parameters are never estimated and lie in
the "future" of the EP. When it comes to our own future, if new predictions of this kind
would motivate new investments according to the predictions, there could be a risk
of psychohistory, meaning that future price development would be altered due to the
prediction itself. It corresponds to the measurement problem in quantum mechanics
where the wave function is collapsed by measuring the system and the future develop-
ment thus is altered compared to in the case of not having performed the measurement.
This needs to be taken into account for investor if the use of these kind of models dras-
tically changes, in the same way that traders have to understand the market behaviour
and the group psychology of other investors. The values of the model predictions in
the EP are called �tted prediction values and their errors are called residuals. The pre-
dictions in the VP are the prediction values with corresponding prediction errors. The
accuracy of the model to predict the validation data is a measure of the model’s ability
of describing the system correctly.

The predictions made from the di�erent models is also analyzed with regards to
the hypothetically gained pro�t using two investment strategies.

1. Strategy 1. Corresponds to invest equally much in all regions that are predicted
to increase in price. The investment is done at the beginning of the given time
period. Thus, the predicted relative price change for all regions are calculated,
and the average among those is calculated and compared to the actual average
relative price change for the same regions during the same time.

2. Strategy 2. Corresponds to investing equally much in the �ve regions with the
largest predicted relative price increase. The investment is done at the beginning
of the given time period. Thus, the predicted relative price change for all regions
are calculated, and the average among the predicted �ve largest positive relative
price changes is calculated and compared to the actual average relative price
change for those regions.

The pro�ts for the strategies are correspondingly called "Pro�t 1" and "Pro�t 2" and
are also compared to the average relative price increase of all regions ("Av pro�t") and
of only Copenhagen ("Cop pro�t") during the time period.

2.7 Expected general features of the model

If the model describes the system accurately physically, the author expects the model
to have the following general features
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i. γj,i for all j, i ∈ [1, 93] has a general, but not strict or very strong trend
towards being positive. The prices are generally governed by supply
and demand, and if any house price increases in a region j, it is ex-
pected to push buyers or demand from this region into the rest of the
regions, for example region i. Then, due to supply and demand, the
price contribution on region i by region j is larger. From equation
(1.1), we see that this price contribution on xi,t+1 is γi,j · xj,t, mean-
ing γi,j > 0. If the price in region j, xj,t instead decreases, the price
contribution of region j, on region i must be smaller (than it would
otherwise have been). This means that γi,j · xj,t must still be positive
and hence γi,j > 0 also in this case. There are reasons to why this
inequality is not expected to be strong: 1) α, β alone by de�nition (but
not to a high accuracy) is expected to tend to cover the general trend of
the price evolution i.e. base price and in�ation. In such a case, negative
γ’s are expected to exist to compensate for the positive ones. 2) Over-
�tting reasons: There are many times more γ parameters than α and
β parameters that will give rise to the existence of many local minima
of the cost function.

ii. the price coupling of the regions with themselves should in general
be much higher than the price coupling with other regions i.e. γi,i >
γj,i, γi,j for j 6= i. Especially, the inequality γi,i > γj,i for j 6= i should
hold stronger because γj,i represents a measure on the price in�uence
in region j by region i, which should be lower even if region i has a
larger population.

iii. γi,j and γj,i, j 6= i, are in general not the same unless the corresponding
regions has similar population and other properties such as supply. If
region j has the largest population, it is expected that γi,j > γj,i.

iv. the price coupling between regions that are closer to each other i.e.
with a smaller Euclidean distance, are expected to be higher than if
they were further away from each other. This means that γj,i (that are
expected to be mainly positive) should correlate negatively with the
distance between regions j and i. This is under assumption that the
relative populations of the compared pairs of regions remain roughly
the same. This is expected because the attractive competing features
of and in the di�erent regions are located in or close to the region itself
and further away from regions located further away.

v. the price in any given region is coupled stronger with the price in re-
gions with larger populations i.e. γj,i, is larger the larger population
region i has. This is under assumption that the Euclidean distance be-
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tween the compared regions are roughly the same.
vi. the base price constants αi remain positive as the prices are positive

and the errors are reduced by �tting the graph closer to its average
value.

vii. the in�ation constants βi remain positive and are larger for regions
with overall higher prices as prices over time increase exponentially.
In other words, βi > 0 and ~β correlates positively with the average
prices in each region ~̄x.

It is important to observe the behaviour of these features during the supervised
learning process of the GD-method. Thus, the parameter values is monitored and if
needed limited carefully according to the expected general features. Focus is put on
starting values that follows the features (i), (ii) and (vi), which are the most distinct
features to align the model to. The behaviour and evolution of the model with the
gradient descent iterations and di�erent starting values is monitored.

Results and discussion
Equation (1.1) is solved using the di�erent methods and obtained parameters are

analyzed, discussed and presented method by method.

3.1 Vector Autoregressive method

3.1.1 Parameters α, β and γ
The price coupling matrix γ, extracted with data from the estimation period, is shown
in image format in �gure 3 together with the distributions of all price coupling param-
eters. The location of γi,j in the image is on row i and column j.

As we can see from the image and diagram of �gure 3, there are no observable
diagonal element-patterns. This is not what is expected for a good model of this system
according to (ii) in section 2.7. Table 3.1 shows the average value, average absolute
value, minimum and maximum value of the price coupling parameters.

On average, diagonal γ are slightly higher than the rest, which is agreeing with the
weakly expected feature (i) in section 2.7. There are some tendencies towards higher
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Figure 3: Left: The price coupling matrix γ in image presentation. The location of γi,j
in the image is on row i and column j. Horizontal and vertical patterns are visible, the
diagonal elements does not constitute any visible pattern. Right: The distribution of
the price coupling matrix parameters with a Gaussian distribution. The width if the
bars are 0.46 and the standard deviation 2.82.

< γ > < |γ| > σ(γ) Min Max
All γ 0.0108 1.10 1.76 -21.3 20.8

Diagonal γ 0.0136 0.8858 1.21 -2.80 3.29
Non-diagonal γ 0.0107 1.10 1.76 -21.3 20.8

Table 3.1: The average, average absolute, standard deviation, minimum and maximum
values of the elements of the price coupling matrix γ, of its diagonal elements and of
its non-diagonal elements.

diagonal parameter values. This tendency is too weak to draw any conclusions, but
might indicate a very weak tendency towards expected feature (ii).

All region’s centroid point is saved from Google Earth and a distance matrix con-
taining all distances between each pair of region’s centroids is created using the Haver-
sine formula[16]. The correlation between the coupling parameters and the distances
is found to be -0.0084, meaning a very weak negative correlation almost at the un-
correlated level, thus not signi�cantly satisfying expected feature (iv) in section 2.7.
The left scatter plot of Figure 4 shows the price coupling parameters as a function of
the distance between each parameter’s two corresponding regions. It is clear that the
random behaviour is not what is expected.

For every region j in the coupling matrix, the correlation between γj,i and the
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population of region i is calculated. The average correlation is -0.0213. This does not
agree with (vi) in section 2.7 which expects a positive correlation and this is another
indication on that this model does not describe the system correctly. An example of
the price coupling as a function of the array γ1,i is shown in the right scatterplot in
�gure 4. Note the di�erent vertical scales between the diagrams, which are speci�ed
in order to display all the data points in the diagrams.

Figure 4: Left: Price coupling parameters as a function of the distance between the re-
gions of the coupling parameter. A negative visible correlation is expected from a good
model from (iv) in section 2.7. Right: Price coupling parameter as a function of region
population. Both diagrams shows disagreement with expectations (iv) respectively (v).
Note the di�erent vertical scales.

The average value, average absolute value, standard deviation, minimum and max-
imum values of the elements of the α and β parameters are shown in table 3.2.

< α, β > < |α, β| > σ(α, β) Min Max
α -5.25·10−5 0.0084 0.0112 -0.0298 0.0474
β -0.0344 0.896 1.20 -5.28 3.23

Table 3.2: The average, average absolute, standard deviation, minimum and maximum
values of the elements of α and β.

The α and β parameters have a negative average value, which is contrary to (vi) re-
spectively (vii) in section 2.7. The house prices are all over 2 thousands of Danish
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kroner and α parameters are expected to be in this magnitude. The β parameters can
be compared to the average increase in price for all regions and times in the estimation
period which is close to 88 dkk/quarter. Some things are clearly wrong of this model
representing the system physically and economically.

3.1.2 Combined parameter discussion
All parameters of the VAR method do in general not follow the expected features of
a good model for the system. They seem to not pick up the behaviour of the system.
The γ parameters had only very weak tendencies towards the expectations and will
therefore most probably not be a good predictor for out-of-sample predictions.

Finally, we note that the coupling matrix in �gure 3 has vague block-structures
of several coupling parameters with the same value/color, meaning that it is common
that regions that are close in their index space have similar coupling parameters. It is
then interested to investigate the properties of the order of the regions. One way is
to investigate the Euclidean distance between each pair of regions that represent the
coupling parameters. It is de�ned as the distance between the centroids of the munic-
ipalities. Figure 6 shows this in a diagram with colour representation. The diagram is
symmetric along the diagonal in the region index plane as there is only one distance
for every two coupling parameters γi,j and γj,i. Close to the diagonal, the distances are
small, meaning that regions with similar indices are located closely. This might explain
the block-structure of the coupling matrix. Then, this also means that the solution of
the VAR method still picks up some physical behaviour of the system. The expected
features in section 2.7. are partly based on arguments on supply and demand and the
temporal description of the equation might not be the most accurate. It is most proba-
bly better to use an exponential time dependence as the price in�ation is exponential.
That has not been investigated in this thesis.
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Figure 6: Euclidean distance between regions as a function of the region indices. It is
visible that the indices are ordered such that close regions in index space is also close
in Euclidean space.

3.1.3 Predictions
Table 3.3 presents statistics of the residuals of the �tted values in the estimation period
together with statistics of the prediction errors.

From table 3.3 we see that the errors in the estimation period are very small, which
means that the model has �tted the parameters very well to the data, so well that even
�tted predictions are accurate after 4 years. But, these are not real predictions because
the parameters are themselves extracted with data from these periods. The errors in
the Validation period are extremely large, which is not surprising due to the discussion
of the parameters and the conclusion that the model will not give accurate predictions.

What we further notice is that the bootstrapping method gives much larger errors
than without bootstrapping. In �gure 7 the prediction errors are shows both with and
without bootstrapping.
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EP 1 step EP VP 1 step VP VP BS
MAE (dkk/m2) 2.81·10−5 0.0199 3.70·103 4.50·105 4.75·1011

MAPE (%) 2.93·10−7 1.59·10−4 31.1 2.95·103 3.13·109

MPE (%) 2.30·10−7 9.49·10−5 -7.28 -2.01·103 -3.11·109

Pro�t 1 pre/real (%) 5.41/5.41 5.61/5.61 35.4/3.84 1.38·104/22.2 5.83·1010/20.8
Pro�t 2 pre/real (%) 11.6/11.6 12.0/12.0 89.3/6.08 3.05·104/24.3 1.03·109/21.7
Av/Cop pro�t (%) -1.21/-4.74 -7.33/14.76 4.39/1.67 20.8/37.2 20.8/37.2

Table 3.3: Statistics of �tted predictions in the Estimation periods and real predictions
in the validation periods. Columns from left: In-data one-time prediction of �rst quar-
ter in the estimation period (EP 1 step), of all 16 quarters of the estimation period (EP),
�rst quarter of validation period (VP 1 step), all quarters in the validation period (VP)
and bootstrapped prediction statistics of all quarters in the validation period (VP BS).
Rows from above: The mean absolute error, mean absolute percentage error, mean
percentage error, predicted pro�t and real pro�t for investment strategy 1 and 2 as
de�ned in section 2.6, lastly the average pro�t investing in all regions and in Copen-
hagen, as also de�ned in section 2.6. Notice that the �rst two columns correspond to
in-data-predictions and are extracted from the same data so they do not represent any
real prediction.

Figure 7: Errors of predictions in the validation period. Left: without bootstrapping.
Right: with bootstrapping. Notice the scales, in million Danish kroner to the left and
hundreds of billion Danish kroner to the right. The errors are very large in both cases
compared to the prices, which shows that this model does not give any reliable pre-
dictions.
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3.2 GradientDescentmethod: Parameter starting val-
ues 0

The VAR method gives a model with global minima for the cost function which did not
behave well. In this section, results from the GD method are presented. The starting
parameters for the learning process for the GD method are very decisive for what local
minima is reached, thus di�erent starting parameters is used. First, the obtained results
using modelling with using starting parameters values of 0 is presented and discussed
in section 3.2. The corresponding procedure is done with starting parameter values
according to the expected general features (in section 2.7) is presented and discussed
in section 3.3.

3.2.1 Parameters α, β and γ, their evolution and learning rates
The size of the cost function for the estimation period as a function of number of GD-
iterations is investigated. First, starting parameter values are set to 0 for all parameters.
Di�erent learning rates is investigated. Too high learning rates results in that the cost
function instead increases and reaches too high values very fast. For example, it starts
with values of the order 11 (dkk2/m4), and already after 13 iterations it reaches values
of the order 183. Lowering the learning rate gives the desired results of a cost function
that decreases with number of iterations.

It is found that grouping the learning rates into three di�erent learning ratesLα, Lβ, Lγ
for the di�erent parameters is better than using a single learning rate L. The expla-
nation of this is that the di�erent learning rates have di�erent units (see them in next
paragraph), and thus depend on the units of price, length and time. Lγ is the sensitive
part making the cost function behave in the undesired above described manner and
had to be kept much lower than the other.

There are also limitations of possible values of Lα and Lβ and these values are
7 respectively 6 magnitudes higher. Keeping all 3 learning rates the same kept the
α and β parameter very small, in the orders of -5 and -4, while the γ constants had
developed well more. The learning rate is desired to be quite high to not miss out on
the optimization of the cost function due to limitations of computer power, but not
too high to miss out on reaching the best local minima. The three learning rates are
thus chosen to around 40% of their maximum possible values; Lα = 1.7724 · 10−5,
Lβ = 8.2713 ·10−7 (1/quarter2) and Lγ = 5.9081 ·10−13 (m4/dkr2), which also gives as
expected better results. These learning rates keeps the algorithm stable using a quite
broad range of starting values in the sense of minimizing the cost function. In the
diagram below is shown several di�erent results regarding the parameter’s expected
general features in section 2.7: the fraction of negative parameters among its sort as
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well as the root-mean-square-mean-error as a fraction of the average price of all times
and all regions. The fraction of negative α and β parameters are expected to be close to
0 and the fraction of negative γ parameters are expected to be less than 0.5 for a well
describing model. The root-mean-square-error is supposed to always decrease during
the learning process, which it does.

Figure 8: As a function of number of iterations; the root-mean-square-error as a frac-
tion of the average price of all regions and times 9382 dkk/m2 (solid blue line that
approaches a value under 0.1), the fraction of negative α-parameters among the α-
parameters (dashed in green), the fraction of negative β-parameters among the β-
parameters (red line), the fraction of negative γ-parameters among the γ-parameters
(dashdot in black), the fraction of negative diagonal-γ-parameters among the γ-
parameters (cyan line at 0). Notice that RMSE per average price is proportional to
the squared cost function. It reaches a minimum of 5.83 %.

It is noticed that the cost function is decreasing with the number of iterations.
The parameter results are in general tending towards the expected general features
with more positive than negative parameters especially for the α-parameters. The
fraction of negative coupling parameters is around 30%, which is satisfying the non-
strict expected feature (i). Trying di�erent learning rates gives similar results and not
anything signi�cantly closer to the expected general features. We see that all diagonal
γ-parameters are positive, which is a good sign regarding the discussion in section 2.7.

The average parameter values as a function of number of iteration is shown in the
�gure below.
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Figure 9: The average values of the α-parameters (dashed in green), β-parameters
(solid line in red), γ-parameters (not visible because it is close to 0) and diagonal-
γ-parameters (cyan-line close to 0). The �nal values are 416.4 dkk/m2, 10.93
dkk/m2/quarter, 0.0090 and 0.2348, respectively. A zoomed in veri�cation shows that
the two curves close to 0 stays almost �at except in the beginning of the learning pro-
cess.

Figure 9 gives shows strong tendencies towards expected features; the average of
base price constants α are in hundreds of danish kroner, which is relatively low com-
pared to the average price of all regions and times; 9382 dkk/m2, but it agrees much
stronger with the expectations than the corresponding results for the VAR method
does. The average β remains positive. It is also low compared to the average price
increase of all times, 10.93 dkk/m2/quarter compared to 87.78 dkk/m2/quarter, but it
is also in this case much closer towards expected general features than for the VAR
method. Figure 8 & 9 shows thus much stronger tendencies towards expected general
features (i), (ii), (vi) and (vii).

Figure 10 below shows the price coupling matrix γ in image format together with
the distributions of all price coupling parameters, it is comparable to �gure 4 of the
VAR model.

We notice from �gure 10 that expected general feature (ii) is well satis�ed, and that
the majority of the parameters are positive. The gathering of the diagonal elements in
the distribution is visibly far to the right of the non-diagonal elements.

Table 3.4 shows the average value, average absolute value and minimum and max-
imum value of the price coupling parameters, and may be compared to table 3.1 of the
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Figure 10: Left: The price coupling matrix γ in image representation. Right: The cor-
responding histogram distribution with a Gaussian distribution. The location of γi,j in
the image is on row i and column j. Notice the clear diagonal pattern and the param-
eters inclination to be positive.

VAR method. It is clear that there is a distinction between diagonal and non-diagonal
coupling parameters, as is expected from general feature (ii). The average diagonal
element is here around 18 times higher than the non-diagonal element, compared to
in the VAR method the corresponding value is around 1.3.

< γ > < |γ| > σ(γ) Min Max
All γ 0.0090 0.0153 0.0291 -0.117 0.360

Diagonal γ 0.235 0.235 0.0279 0.208 0.360
Non-diagonal γ 0.0065 0.0129 2.86·10−4 -0.117 0.168

Table 3.4: The average, average absolute, standard deviation, minimum and maximum
values of the elements of the price coupling matrix γ, of its diagonal elements and of
its non-diagonal elements.

The correlation between the coupling parameters and the distances is found to
be -0.0897, which is more than ten times stronger negative correlation than with the
VAR method and thus better satisfying expected feature (iv), but it is still not strong.
The left diagram of Figure 11 shows the price coupling parameters as a function of
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the distance between each parameter’s two regions. Mainly at very short distances
is the price coupling visibly higher. Since Denmark consist of islands, see �gure 3,
the distance is not well representation the human connections with many of the other
regions, as one has to drive over certain bridges to come over to the other islands. This
might partly explain the weak correlation.

The average correlation of the population and coupling parameter is -0.0497, op-
posing expected feature (v) in section 2.7 which expects a positive correlation and it is
actually less than for the VAR method. An example of the price coupling as a function
of the array γ1,i is shown in the right diagram in �gure 11. Note the di�erent vertical
scales.

Figure 11: Left: Price coupling parameters as a function of the distance between the
regions of the coupling parameter. A negative visible correlation is expected from a
good model from (iv) in section 2.7. Right: Price coupling parameter as a function of
region population. The left diagrams shows some visible agreement with expectation
(iv) and the right does neither show agreement or not with expectation (v). Note the
di�erent vertical scales.

3.2.2 Combined parameter discussion
We notice that the coupling matrix has the expected diagonal feature. The fraction of
negative γ parameters is around 30% and their average is positive, satisfying the non-
strict expectation (i) in section 2.7. The base price parameters α has a large fraction
positive values and an average of slightly over 400 dkk/m2, which is as mentioned
comparably low to the prices, but still well over 0. For the in�ation parameters β, they
tend to be more positive than negative, but still a quite large fraction is negative, which
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is not well satisfying the expectations of a good model of this system, but at least they
tend towards the right direction. Still in the coupling matrix in �gure 10, we notice
some block structures, which is most probably explained by the closeness of regions
in index-space. This suggests that some closely located regions has a stronger positive
price coupling to their neighbour than to region further away, which is a good sign
with regards to (iv) in section 2.7.

3.2.3 Predictions
Table 3.5 presents statistics of the residuals of the �tted values in the estimation period
together with statistics of the prediction errors.

EP 1 step EP VP 1 step VP VP BS
MSE (dkk/m2)2 5.59·105 7.46e·105 5.14·105 1.31·106 1.35·106

MAE (dkk/m2) 536 604 556 762 773
MAPE (%) 4.21 5.23 4.93 5.58 5.64

ME (dkk/m2) 2.59 -392 -353 186 202
MPE (%) -0.569 -3.12 -3.02 0.806 0.866

Pro�t 1 pre/real (%) 2.71/3.28 6.31/1.10 3.10/6.42 28.4/21.1 28.6/21.1
Pro�t 2 pre/real (%) 6.87/7.33 13.6/10.34 9.71/13.17 50.1/34.3 50.6/34.3
Av/Cop pro�t (%) -1.21/-4.74 -7.33/14.8 4.39/1.67 20.8/37.2 20.8/37.2

Table 3.5: Statistics of �tted predictions in the estimation periods and real predictions
in the validation periods. Columns from left: In-data one-time prediction of �rst quar-
ter in the estimation period (EP 1 step), of all 16 quarters of the estimation period (EP),
�rst quarter of validation period (VP 1 step), all quarters in the validation period (VP)
and bootstrapped prediction statistics of all quarters in the validation period (VP BS).
Rows from above: The mean square error, mean absolute error, mean absolute per-
centage error, mean error, mean percentage error, predicted pro�t and real pro�t for
investment strategy 1 and 2 as de�ned in section 2.6, lastly the average pro�t investing
in all regions and in Copenhagen, as also de�ned in section 2.6. Notice that the �rst
two columns correspond to in-data-predictions and are extracted from the same data
so they do not represent any real prediction.

Comparing table 3.5 to the corresponding table of the VAR method, table 3.3 we
notice that the predictions in the VP are at least 2 orders of magnitude smaller. The
errors in the estimation period are almost the same as in the validation period, which
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is a good sign of the model. It is thus not too over�tted. The bootstrapped predictions
have larger errors, which is in general not what to expect from a good model and might
be explained by that the MPE is quite large, close to one % which indicates that the
model in general generates too high predictions instead of centered prediction errors.
Thus, the prediction errors accumulate with every bootstrapped prediction.

The errors of the predictions in the validation period are shown in �gure 12. They
looked the same as with bootstrapping, thus only one of them is shown with the cor-
responding histogram.

Figure 12: Left: Errors of predictions in the validation period. Right: Distribution of
the errors with a �tted Gaussian distribution.

3.3 GradientDescentmethod: Parameter starting val-
ues according to expected features

3.3.1 Parameters α, β and γ
We note that the development of the parameters with number of iterations, such as
in �gure 8, in some sense show the competition of the parameters staying positive
which may represent the relative importance of in�ation and price in�uence between
regions. The starting values of the base price parameters α are set to half the initial
price, the in�ation parameters β to half the average in�ation (see below) and the price
coupling parameters such that their sums for any region adds up to 0.5. The motivation
for this is normalization between the parameters. The learning rates are the same as
in subsection 3.2.1.
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1. Starting values of all base-prices parameters αi are set to the �rst price in every
region i.

2. Starting values of all in�ation parameters βi are set to d(i)1/91 where d(i) is the
price di�erence between region i’s �rst and last quarters and 91 is the number
of quarters until the last quarter in the estimation period.

3. Starting values of non-diagonal γ are set to 0.5 · 0.5/92 ≈ 0.027 and diagonal
γ to 0.5 · 0.5 = 0.25. This is motivated by 1) letting the α and β parameters be
half half of the starting value of what they would be assumed to be in a model
without γ and 2) letting the γ parameters that represent xj,t in equation (1.1) be
half of the starting value of a normalized (sum adds up to 1) value where each
diagonal γ in equation (1.1) is as big as the non-diagonal γ.

Figure 13 shows the counterpart �gure 8 and 9 i.e. the root-mean-square of the
�tted errors, fractions of positive parameters, as well as the average parameter values,
as a function of number of gradient descent-iterations.

We note from �gure 13 that the fraction of negative α stays at 0, when for the case
with starting values 0 it ended with over 20%. For β we end with around 7% negative
parameters, while for the other case we had around 25%. Thus, (vi) and �rst part of
(vii) is much better satis�ed in this case than for starting values close to 0. Just as in
the case with starting values at 0, all diagonal-γ is positive. Among the non-diagonal-
γ, the fraction negative ones, 47%, is less than the fraction of positive ones, satisfying
(i) in section 2.7. We also note that the α and β-parameters very fast tend positively
compared to γ, which in some sense indicates that in�ation is a stronger force than the
price coupling between regions. As section 2.2 shows, the price in�ation in the Danish
house market is very large. Would the prices have been in�ation adjusted, the system
would have been much easier described by price coupling.

The coupling matrix in image format compared to the one in �gure 10, looks very
similar and is thus not shown. It has slightly less box structures. From table 3.6, we
see that the average diagonal- and non-diagonal-γ have increased somewhat from the
start of the learning process. The average diagonal parameter is 88 times higher than
the average non-diagonal parameter, which is well satisfying (ii) in section 2.7, better
than starting values of 0.

Overall, this set of parameters seem to have much more physical interpretations
than the other sets, meaning that the predictions should also be better.

The correlation between the coupling parameters and the distances between the
corresponding regions is found to be -0.405, meaning a quite strong negative correla-
tion. It is well satisfying expected feature (iv) in section 2.7 and can be compared to
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Figure 13: Left: As a function of number of iterations; the root-mean-square-error as
a fraction of the average price of all regions and times 9382 dkk/m2 (solid blue line
that approaches a value under 0.1), the fraction of negative α-parameters among the α-
parameters (stays at 0), the fraction of negative β-parameters among the β-parameters
(red line), the fraction of negative γ-parameters among the γ-parameters (dashdot in
black), the fraction of negative diagonal-γ-parameters among the γ-parameters (cyan
line at 0). RMSE per average price reaches a minimum of 5.96 %. Right: The aver-
age values of the α-parameters (dashed in green), β-parameters (solid line in red), γ-
parameters (dashdot in black close to 0) and diagonal-γ-parameters (cyan-line close to
0). The �nal values are 2097 dkk/m2, 31.15 dkk/m2/quarter, 0.0065 and 0.2551, respec-
tively. A zoomed in veri�cation shows that the two curves close to 0 stays almost �at
except in the beginning of the learning process.

the same correlation for starting values at 0; 0.0897 (or the VAR method with -0.0084),
which both validates this method and shows that the starting values are important.
Moreover, as mentioned earlier, the island-structure of Denmark with a few bridges
between them is moreover reducing the correlation between distances, and a better
measure would have been an average time to travel between the bridges, preferably
taking into account the travel cost as well. Sweden would be a good case to study
because there are not too many relatively large populated islands.

The average correlation between the population arrays and the coupling param-
eters for each region is -0.0059 opposing expected feature (iii) in section 2.7 which
expects a positive correlation. It is peculiar. Bigger regions should a�ect other regions
price more than smaller regions. The same correlation for starting values at 0 had
somewhat stronger negative value; -0.0497. This indicates that the population of the
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< γ > < |γ| > σ(γ) Min Max
All γ 0.0062 0.0166 0.0343 -0.102 0.422

Diagonal γ 0.282 0.235 0.0305 0.247 0.422
Non-diagonal γ 0.0032 0.0129 3.41·10−4 -0.102 0.179

Table 3.6: The average, average absolute, standard deviation, minimum and maximum
values of the elements of the price coupling matrix γ, of its diagonal elements and of
its non-diagonal elements.

regions seems not to have importance of the price evolution in di�erent regions. This
is counter-intuitive. As mentioned before, since the in�ation is so large, it would have
been very interesting to investigate the system with in�ation-adjusted prices. Then
more physical pattern would have been easier to detect. Unfortunately, the author did
not have time to do this.

3.3.2 Predictions
Table 3.7 presents statistics of the residuals of the �tted values in the estimation period
together with statistics of the prediction errors. By comparing with the corresponding
table for parameter starting values 0, table 3.5, it is visible that the general trend is that
the �tting errors are slightly higher, but the prediction errors are smaller. Choosing
parameter starting values according to expected general features directs the learning
process to �nd solutions that better describes the system. Moreover, the bootstrapping
errors are consistently smaller than without bootstrapping, which is expected from a
good model, as bootstrapping uses more available data for prediction. This is also s
good sign.
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EP 1 step EP VP 1 step VP VP BS
MSE (dkk/m2)2 5.75·105 8.19·105 4.07·105 1.12·106 9.70·105

MAE (dkk/m2) 543 641 495 720 670
MAPE (%) 4.24 5.50 4.44 5.55 5.18

ME (dkk/m2) -55.7 428 -164 306 21.8
MPE (%) 0.127 3.37 -1.32 2.55 0.458

Pro�t 1 pre/real (%) 2.46/3.08 6.86/0.60 3.83/5.80 27.5/21.1 25.8/21.1
Pro�t 2 pre/real (%) 5.95/7.42 14.6/10.3 10.8/11.0 45.1/35.6 42.2/35.6
Av/Cop pro�t (%) -1.21/-4.74 -7.33/14.76 4.39/1.67 20.8/37.2 20.8/37.2

Table 3.7: Statistics of �tted predictions in the Estimation periods (EP 1 step and EP)
and real predictions in the validation periods (VP 1 step and VP). Rows from above:
The mean square error, mean absolute error, mean absolute percentage error, mean
error, mean percentage error, predicted pro�t and real pro�t for investment strategy 1
and 2 de�ned in section 2.6, lastly the average pro�t investing equally much in every
region and the pro�t investing only in Copenhagen region. Columns from left: In-
data one-time prediction of �rst quarter in the estimation period (EP 1 step), of all 16
quarters of the estimation period (EP), �rst quarter of validation period (VP 1 step),
all quarters in the validation period (VP) and bootstrapped prediction statistics of all
quarters in the validaton period (VP BS).
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Conclusions and outlook
The author concludes that the parameters given from the VAR method do not follow
the expected general features or correlation with distance and population. The predic-
tion errors in the estimation period are extremely small and very large in the validation
period, meaning that the model is very much over�tted. Thus, the model does not pick
up on general physical behaviour of the system and is subjected to over�tting.

For the GD method with parameter starting values 0 the parameters overall picks
up quite some features from the system. This is also veri�ed by the fact that the errors
in the estimation are similar to the errors in the validation period. The prediction
errors are quite large but con�ned. The pro�ts are not bad. However, the errors with
the bootstrapped predictions are slightly larger, which it preferably should not be for
a good model of the system. The conclusions so far is that the VAR model is highly
over�tted and that the GD-model pick up on physical behaviour of the system. Since
the correlation between price coupling parameters with population and distance is
so weak, the features the model picks up is not strong enough to con�dently draw
conclusions. This is also veri�ed by that the bootstrapped prediction errors are larger
than without bootstrapping.

The GD method with parameter starting values according to expected general fea-
tures in section 2.7 shows better agreement with expected general features than both
other method. It better predicts future prices, and have much stronger correlation of
its price coupling parameters with distance. Moreover, it also has better results with
bootstrapping than without, validating the predictions and the model. We thus have
con�rmed that this method works in describing the system of house prices in Denmark
and could work in other countries as well.

One important conclusion is that regions located close to each other a�ect each
other’s price positively and much more than regions located far away. The number
of persons living in the region does however not seem to have an importance on the
in�uence on other regions price levels.

We note (From �gure 13) that the fraction of negative price coupling parameters is
much larger than among other parameters, indicating that in�ation is a strong force
compared to the price in�uence between regions. We have already seen (from �gure
1) that the correlation between the money supply and the average price (see �gure 1)
is noticeably very high and it is calculated to 0.90.
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One of the most important changes for future work is to work with adjusted prices
for in�ation and/or money supply, or with the logarithm of the prices where the fast
price increase gets reduced.

In this thesis, the impacts of exogenous shocks are not modelled. Equation (1.1)
is limited to municipalities in Denmark and their interplay with time-independent pa-
rameters. It is understood that events like 9/11, the construction of the Øresund Bridge
and BREXIT has a certain impact. We know that there exist endogenous equlibrium
models that may explain unstable behaviour with aggregated �uctuations [5]. It has
been suggested, that empirical validity of the exogenous and endogenous cycle hy-
potheses may be done by comparing predictions by the corresponding di�erent models
[5]. The time-dependence of parameters is thus very relevant to investigate in future
work to reach a better understanding of the system.

It would be interesting to work with a price evolution equation that involves earlier
prices than just one time step, for example such that xt+3 = f(xt+2, xt+1, xt).

It would also be interesting to work with a country without islands such as Ger-
many. In that case, the distance between the regions may much better represent the
travel time and thus the connections and price couplings between the regions. The dis-
tance correlations with the γ ’s would probably be stronger, and it would be interesting
to investigate the population correlations with the γ’s.

Other enhancements of the model would be to include how long time the houses
has been on the market before it gets sold or economical data and predictions such
as GDP growth, interest rates, bond yield curve and average private debt. Another
example is the property stock price index, consisting of shares of companies investing
in properties and managing a portfolio of real estates. It has been found that there
exist a long-term link between property stock price index, treasury bond interest and
real estate price index [17]. It would also be interesting to work with fewer and larger
price regions of the country while taking into account more factors.

Something else to study is possible chaotic behaviour for the predictions using
especially the VAR model or from solution of the GD models, where some local minima
solutions might have chaotic behavior and others might not.

The quality of the models also depends on how stable the real estate market is
regarding the structural relationships, as it develops with time, as related studies has
stated [18]. This is especially because the parameters are all time-independent, but in
reality the houses age, gets modi�ed, and new houses are built.

This kind of research will likely mainly be supported by either entities such as
asset management �rms and banks or by governments that want to protect the country
against housing crashes or housing bubbles.
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Appendix
1. House price data

The house prices were gained from http://rkr.statbank.dk/statbank5a/default.asp?w=1920
pressing on "BM010: Property prices in housing market by area, property cat-
egory and prices of completed transactions". All municipalities were selected
(meaning not selecting subregions and regions which contains groups of munic-
ipalities). The option "Detached/terraced house" and "Transaction price realised"
were selected. All available quarters at the time was marked: from 1991Q1 to
2018Q4. It was found that a lot of data were missing for Bornholm, Læsø, Ærø,
Fanø and Samsø and thus they were excluded. The house price in 2007Q4 for
Frederiksberg was missing and we performed the arithmetic mean between it’s
adjacent two quarterly prices. It should also be noted that the house price data
for 2018Q2-Q4 will be updated again, which was learned from contact with �-
nancedanmark.dk.

2. Programming code

The programming code is divided into one part for the VAR method and another
for the GD method and is available at https://github.com/swelov/MATLAB-code-
for-thesis.git.

3. Matrix de�nitions for the VAR method

The matrix de�nitions for the VAR matrix equation Y = PZ + U in the intro-
duction and in section 2.5 are as follows:

Y =


y1,2 y1,3 ... y1,t+1
y2,2 ... ... ...
... ... ... ...
y93,2 ... ... y93,t+1

 (1.1)

P =


α1 β1 γ1,1 γ1,2 ... γ1,93
α2 β2 γ2,1 ... ... ...
... ... ... ... ... ...
α93 β93 γ93,1 ... ... γ93,93

 (1.2)
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Z =



1 1 ... 1
1 2 ... t
y1,1 y1,2 ... y1,t
y2,1 ... ... ...
... ... ... ...
y93,1 ... ... y93,t


(1.3)

Here yi,t is the price in region i at time t and α, β and γ are the parameters
in (1.1). U is the matrix with the corresponding errors and 93 is the total number
of regions.
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