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1 Abstract

In this thesis, the GW approximation (GWA, Green’s function G times screened interac-
tion W ) and the Hubbard I approximation (HIA) are combined in a non-self-consistent
one-shot calculation to determine the electronic structure of a one-dimensional strongly-
correlated model. The scheme was chosen to incorporate both screening effects through
the GWA and strong on-site correlations through the atomic HIA. The resulting self-
energies of both methods are summed together and another term is subtracted to correct
double-counting. The examined double-counting terms were the local self-energy of the
GWA result, the GWA self-energy of the atomic model used in the HIA and lastly the
impurity self-energy within the GWA. The self-energy of the atomic model in the HIA
was solved analytically. It was found that all three approaches yield non-causal features,
which increase with the on-site Coulomb repulsion, in the resulting spectral function. The
local GWA self-energy was observed to perform best in terms of causality and compu-
tational effort. Changes in the resulting quasi-particle structure in the spectral function
showed that screening effects and local correlations were included successfully.
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2 Introduction

The electronic structure of solids is of high interest in physics, as it provides important
information about the properties of a material such as its optical characteristics, con-
ductivity, susceptibility, etc. This knowledge is utilized in many ways to understand the
mechanisms behind these properties and to design materials for many applications, e.g.,
lasers or solar panels.

Since a solid contains a large number of interacting particles, the exact determina-
tion of its electronic structure for large systems is impossible with our current means of
computation. The problem can be made clear by taking a look at the Hamiltonian of a
solid

H =
N∑
i

[
−1

2
∇2(ri) + V (ri)

]
+

1

2

N∑
i 6=j

1

|ri − rj|︸ ︷︷ ︸
Coulomb interaction

(1)

for which the Schrödinger equation has to be solved:

i
∂

∂t
|Ψ(t)〉 = H |Ψ(t)〉 . (2)

This Hamiltonian describes electron correlations in a solid, whereas interactions including
nuclei have already been reduced to an external potential V . Relativistic effects have
been dropped, too. This leaves three terms, where the first term represents the electrons’
kinetic energy and the second term the coupling to atoms. The sum goes over all N
electrons in the solid with ri being the position of electron i. The last term is the reason
why it is so hard to solve this problem exactly: It is a non-local term which couples each
electron to all other electrons. This makes it difficult to solve for systems with large
N like solids or already remotely large molecules. Nevertheless, many properties can
be reasonably approximated through the usage of mathematical and numerical methods
which simplify this non-local many-body problem, and it is still of current interest to
improve these methods and find new ones.

To circumvent this problem, approximations for the Coulomb term are needed. In the
history of solid state theory several models were established and improved upon. One
of the earliest is the Hartree Approximation (1928) in which the term is substituted by
an average local potential. The Hartree-Fock method (1930) expanded this through the
inclusion of the fermionic nature of electrons. Yet, this approximation did not include
screening and correlation effects of electrons in the system. Therefore, the band gaps of
insulators were often overestimated, as the neglected effects result in a reduction of the
Coulomb energy.

With the introduction of the Hohenberg-Kohn theorems [9] the Density Functional
Theory (DFT) was moved into the spotlight. The theorems prove that the electron
density uniquely determines the ground- and excited-state properties of a many-electron
system and define an energy functional which is minimized by the correct ground-state
electron density. Assuming a system of non-interacting particles resulting in the same
density as the system of interacting particles, the Kohn-Sham equations are defined as(

−1

2
∇2 + VH + Vxc + Vext

)
φi = εiφi . (3)
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VH here is the Hartree potential, Vxc the exchange-correlation potential and Vext the ex-
ternal potential. VKS = VH + Vxc + Vext is also referred to as the Kohn-Sham potential.
The eigenvalues of this equation εi are often interpreted as single-particle excitation ener-
gies although a theoretical justification for this has only been found for the energy of the
highest occupied state [14]. The Kohn-Sham potential is usually approximated through
the Local Density Approximation (LDA) where the density is replaced by a local density
(derived from the homogeneous electron gas model).

The LDA provides reasonable results for the ground-state properties of materials and
despite the missing theoretical justification, the eigenvalues of the Kohn-Sham equation
mostly describe the excitation energies correctly. Yet, there are a number of properties
where the LDA yields imprecise results, e.g., for the band gaps of semiconductors and the
spectral function of d- and f-systems.

Alternatively to DFT, a proper approach was the Green function theory which grants
a theoretically justified equation for the determination of the single-particle excitation
energies Ei according the quasi-particle equation(

−1

2
∇2(r) + VH(r)

)
Ψi(r) +

∫
d3r′Σ(r, r′;Ei)Ψi(r

′) = EiΨi(r) . (4)

Σ equals the self-energy which contains the exchange correlation effects. To determine this
self-energy term became the new difficulty. The self-energy can be approximated with the
GW approximation [8] where a perturbative expansion of Σ in terms of the single-particle
Green’s Function G and the screened Coulomb interaction W is truncated after the first
term. Schematically this can depicted be as:

Σ = iGW −GWGWG+ ... ⇒ Σ ≈ iGW . (5)

This approximation was found to be feasible for many materials, providing better results
for most of the band gaps which were underestimated by the LDA, as can be seen in Fig.
(2), as well as granting more precise single-particle excitation energy dispersions.

Figure 2: Comparison of the band gap estimations between the GWA and LDA for several
materials. The figure is taken from [24].
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Yet, strongly correlated materials like transition metal compounds or Mott insulators
yield discrepancies when this method is applied to them.

Strongly correlated materials are characterized by very localized orbitals with little
overlap like the 3d- or 4f-systems and have partially filled and very narrow bands. This
gives rise to strong Coulomb repulsion between electrons occupying these orbitals. To
explore electron correlations in narrow energy bands, the Hubbard model was constructed
[10], focusing on the interaction of electrons on the same atomic site. Solving this model
exactly was found to be difficult, yet approximations were formulated to overcome this
problem. One approximation for this is the Hubbard I approximation (HIA) [10] which
simplifies the many-body non-local problem to a local atomic model. An improvement
over this is the Dynamical Mean Field Theory (DMFT) which maps onto a self-consistent
local many-body problem, an ”impurity model”.

The aim of this project was to use the GW approximation, to account for long-range
interactions, and combine it with the Hubbard I approximation for short-range correla-
tions which effectively solves the multiplet problem. By including the GWA, screening
effects will also be taken into account which can have a decisive influence on strongly-
correlated materials [3]. The results should give insight into the band structure of these
materials while being less computationally expensive than full DMFT calculations. A
similar approach has already been implemented as LDA+HIA [16], yielding reasonable
results but it also has a problem with double-counting due to interaction terms both in
LDA and Hubbard I, which can be managed in GW+HIA. Another recent advance in
this field has been the implementation of GW + extended DMFT [19]. Many strongly
correlated materials have already been discovered and are being synthesized up to date for
applications like magnets, lasers and high-temperature superconductors whose theoretical
mechanisms are still being investigated to this day.

This report is split into four parts. The first part Sec. (3) gives information about the
theoretical background by summarizing physical phenomena and mathematical methods.
In the next section Sec. (4), the methods which have been used in this project and their
application are elucidated. Results and their interpretation are presented in Sec. (5).
Lastly, an outlook including potential improvements is given.
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3 Theoretical Background

3.1 Photoemission Spectroscopy and quasi-particles

A common method to study the electronic structure of strongly correlated materials is
photoemission spectroscopy (PES). The sample is probed by light of a tunable wavelength
to measure the response of the system. Photons with enough energy will excite electrons
through interaction out of the material. This phenomenon is called the photoelectric
effect. By measuring the kinetic energy of the emitted photoelectrons, conclusions about
the (former) occupied states can be made through the following equation:

Ekin = Eγ − EB − Φ0 . (6)

Due to conservation of energy, the kinetic energy Ekin of the emitted electron is equal
to the incoming photon’s energy Eγ, minus the electron’s prior binding energy EB and
work function Φ0, which is the energy needed to take the electron into the vacuum. Thus,
the binding energy can be determined. A scheme and typical measurement graph are
presented in Fig. (3) below.

Figure 3: A scheme of the PES process (left) and a spectrum measurement of Na (right).
The spectrum plot is taken from [2], in which the dots are experimental data, while the
solid line is a convolution of computational and experimental data. The dashed line ”BG”
is the estimated background contribution.

Related methods are inverse PES (IPES), where an electron beam is used to probe and
analyze unoccupied states, as well as angle-resolved photoemission spectroscopy (ARPES)
which refines PES by also measuring the electrons’ momenta.

One important notion about photoemission is the screening effect, following a removal
of an electron. As the electron is emitted from the material, the leftover site can be seen
as a positively charged hole in the lattice which attracts surrounding electrons, which
in turn screen this hole from interactions with other electrons. Thus, the hole and the
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surrounding screening electrons become a quasi-particle, which interacts based on the
screened Coulomb potential W instead of the bare Coulomb potential. The process is
depicted schematically in Fig (4).

Figure 4: A photoemission experiment in which the lattice is probed with a photon (left)
and emits an electron, followed by a screening effect of the surrounding electrons (right).

Another type of quasi-particles is the plasmon, which is the quantized description of
electron density oscillations. Scattering of plasmons with other particles is an important
factor for the properties of materials. For instance, if a perturbation has a frequency
higher than the plasmon frequency, then the electrons cannot respond quickly enough to
screen the perturbation. The excitations of plasmons are given by the poles of the inverse
dielectric function 1/ε(k, ω) which is proportional to the screened Coulomb potential
W (k, ω).

3.2 Green’s function theory

A mathematical way to describe the processes happening during PES is through Green’s
function theory. The mathematical Green’s function can be understood as the response
to an infinitesimal probe, by which the response to any other probe can be derived. In
many-body theory, the single-particle Green’s function for electrons is defined as follows:

G(1, 2) = −i
〈

Ψ
(N)
0

∣∣∣T (ψ̂(1)ψ̂†(2))
∣∣∣Ψ(N)

0

〉
(7)

=

−i
〈

Ψ
(N)
0

∣∣∣ ψ̂(1)ψ̂†(2)
∣∣∣Ψ(N)

0

〉
, for t1 > t2 (electron)

+i
〈

Ψ
(N)
0

∣∣∣ ψ̂(2)ψ̂†(1)
∣∣∣Ψ(N)

0

〉
, for t1 < t2 (hole)

.

Argument 1 (and 2) are to be understood as representing the variables position r1, spin σ1

and time t1. The bra and ket states
∣∣∣Ψ(N)

0

〉
express the N-particle ground-state. The time-

ordering operator T sorts the target operators timewise, with the latest time argument to
the left, taking commutation rules into consideration. ψ̂†(1) is a quantum-field operator
in the Heisenberg picture, which creates an electron at position r1 with spin σ1 and at
time t1. Correspondingly, ψ̂(1) destroys an electron at 1. The Green’s function can be
understood as the probability amplitude of an electron that is added at position 2 to
propagate to position 1 if t1 > t2, or analogously for t1 < t2 a hole that is created at
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position 1 to propagate to position 2. By knowing the Green’s function of a system, many
properties can be determined, e.g., the excitation spectrum, the ground state energy or
the expectation value of any one-particle operator in the ground state [1].

The structure of G can be made clearer by rewriting it in the Lehmann representation:

G(r1, r2;ω) =
∑
n

gn(r1)g
∗
n(r2)

ω − (EN+1
n − EN

0 ) + iδ
+
∑
n

fn(r1)f
∗
n(r2)

ω − (EN−1
n − EN

0 )− iδ
. (8)

EN
n is the eigenenergy of the state

∣∣ΨN
n

〉
. Here the quasi-particle amplitudes were intro-

duced:

gn(r) =
〈

Ψ
(N)
0

∣∣∣ ψ̂(r)
∣∣Ψ(N+1)

n

〉
and fn(r) =

〈
Ψ(N−1)
n

∣∣ ψ̂(r)
∣∣∣Ψ(N)

0

〉
. (9)

This shows that the Green’s function has poles at the energy differences between the
groundstate energy and the energy of the N ± 1 eigenstates, with amplitudes depending
on the quasi-particle amplitudes. The first sum treats quasi-particle excitations caused by
the addition of an electron (N + 1) while the second sum represents the addition of a hole
(N − 1). In a single-particle picture one can think of the addition of an electron as the
probing of unoccupied states and thus the IPES spectrum, while the removal of an electron
represents the PES spectrum and the probing of occupied states. The pole structure can
be made clearer by using the approximation E

(N+1)
0 −EN

0 ≈ dE0

dN

∣∣
N

= µ(N) ≈ µ(N−1) ≡ µ
for large N with the chemical potential µ and rewriting the denominators in the following
way:

ω − (E(N+1)
n − E(N)

0 ) + iδ = ω − (E(N+1)
n − E(N+1)

0 )− (E
(N+1)
0 − E(N)

0 ) + iδ

≈ ω − (E(N+1)
n − E(N+1)

0 )− µ+ iδ ,

ω + (E(N−1)
n − E(N)

0 )− iδ ≈ ω + (E(N−1)
n − E(N−1)

0 )− µ− iδ .

Thus, the poles are aligned around µ and can be schematized as in Fig. (5) below.

Figure 5: The pole structure of the Green’s function G(ω).

The trace of the spectral function A of the Green’s function

A(r, r′;ω) = − 1

π
sgn(ω − µ) ImG(r, r′;ω) (10)

can be interpreted as the density of states observed in experiments. The spectral function
has the same pole structure as G but is positive definite because of the sign function. If it
is negative for a certain frequency ω, causality is violated, i.e., the Green’s function would
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have a non-zero amplitude for the particle before it is created, or after it is destroyed.
The Green’s function can be written in terms of its spectral function as:

G(r, r′;ω) =

∫ µ

−∞
dω′

A(r, r′;ω′)

ω − ω′ − iδ
+

∫ ∞
µ

dω′
A(r, r′;ω′)

ω − ω′ + iδ
. (11)

The PES/IPES or occupied/unoccupied structure is again visible through the integrals to
and from µ. In the non-interacting case, where there is no broadening due to excitations
like plasmons, the spectral function is a series of delta functions:

A0(r, r
′;ω) =

∑
n

ψn(r)ψ∗n(r′)δ(ω − εn) . (12)

The non-interacting Green’s function can then be written as

G0(r, r′;ω) =
occ∑
n

ψn(r)ψ∗n(r′)

ω − εn − iδ
+

unocc∑
n

ψn(r)ψ∗n(r′)

ω − εn + iδ
, (13)

where iδ is an infinitesimal quantity and the two sums go over occupied and unoccupied
bands n respectively with the corresponding eigenenergies εn and eigenstates ψn(r).

3.3 The self-energy

The potential a particle experiences through the changes it causes itself in its environment
is called the self-energy Σ. An example of such an effect is the screening as described in
Sec. (3.1). The self-energy is generally non-local and energy-dependent, as interactions
with the surroundings are influenced by the energy or state the particle itself occupies. It
is described through the quasi-particle equation:[

−1

2
∇2 + VH(r)

]
Ψk(r) +

∫
d3r′Σ(r, r′;Ek)Ψk(r

′) = EkΨk(r) , (14)

where VH(r) is the Hartree potential and Ek and Ψk are the quasi-particle energies
and eigenstates, respectively. Possible quantities which can be deduced from the self-
energy, corresponding to the spectral function as depicted in Fig. (6), are the following:

Figure 6: Scheme of the spectral function.

– Quasi-particle band structure:

Enk = εnk + Re(Σ(k,Enk)) (15)

– Spectral weight:

Znk =

(
1− ∂ Re(Σ(k, ω))

∂ω

)−1∣∣∣∣∣
w=Enk

– Quasi-particle lifetime:

τ−1nk ∝ Γnk = Im(Σ(k,Enk)) (16)
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As the non-interacting spectral function is a series delta functions, a non-interacting
particle has exactly the energy εnk. By including many-body interactions, the spectral
weight is spread out, through the many-body self-energy. Assuming that the self-energy
is diagonal in the band index n, the interacting spectral function can be written in terms
of the self-energy as:

A(k, ω) =
∑
n

Im(Σn(k, ω))

(ω − εn(k)− Re(Σn(k, ω))2 + Im(Σn(k, ω))2)
. (17)

Through the equation of motion of the field operators one can derive the Dyson equation
which is schematically written as

G = G0 +G0ΣG . (18)

3.4 The Hedin equations and the GW-Approximation

In 1965 Lars Hedin [8] introduced a complete set of equations, which describe the self-
energy in terms of the screened Coulomb interaction W . These so-called Hedin equations,
shown in Eqs. (19 to 23), are self-consistent and exact:

self-energy Σ(1, 2) = i

∫
d(34)G(1, 3+)W (1, 4)Λ(3, 2, 4) , (19)

Green’s function G(1, 2) = G0(1, 2) +

∫
d(34)G0(1, 3)Σ(3, 4)G(4, 2) , (20)

vertex function Λ(1, 2, 3) = δ(1− 2)δ(2− 3) (21)

+

∫
d(4567)

Σ(1, 2)

G(4, 5)
G(4, 6)G(7, 5)Λ(6, 7, 3) ,

polarization P (1, 2) = −i
∫
d(34)G(1, 3)Λ(3, 4, 2)G(4, 1+) , (22)

screened interaction W (1, 2) = v(1, 2) +

∫
d(34)v(1, 3)P (3, 4)W (4, 2) . (23)

Here, v(1, 2) is the bare Coulomb interaction. To solve this set of equations exactly for
real systems is impossible. An approximation is usually used to determine an initial result
for Σ. Through iterative calculations higher order results can then be achieved. Hedin
proposed therefore to truncate higher orders of the vertex function, as displayed in the
following equation:

Λ(1, 2, 3) ≈ δ(1− 2)δ(2− 3) . (24)

This results in the so-called GW Approximation (GWA). Again, higher order results
can be determined through iterative calculations.

GW Approximation

Σ ≈ iGW

(25)

A scheme of the Hedin equations and the GWA is presented in Fig. (7) below.

8



Figure 7: Scheme of the Hedin equations or ”Hedin’s wheel” (recreated from [6]). The
left figure shows the exact equation set, whereas the GW approximation is depicted in
the right figure with the vertex function set to identity.

3.5 Strongly correlated materials

d- or f-shells in materials give raise to very narrow bands, which have great influence
on their properties, especially if they are partially filled. Electrons which occupy these
shells are very localized around the nucleus making it possible to refer to them being on
a specific atom [10]. Due to the small average distance between these electrons, strong
Coulomb repulsion dominates their interactions and thus reduces the likelihood for two
electrons to occupy the same orbital. This is why these materials are called strongly
correlated.

Mean-field theories like Hartree-Fock, which generally assume non-interacting elec-
trons, thus break down for strongly correlated materials, as the electron-electron correla-
tions play an important role.

An example of this type of materials are the so-called Mott insulators like NiO, which
has a partially filled 3d shell. Traditional band theory predicts this material to behave
conducting, but it is an insulator due to electron correlations [18]. Other interesting
properties are Mott metal-insulator transitions [12], high temperature superconductivity
[26] and colossal magnetoresistance [29]. To describe these materials, improvements and
new models have been designed. A simple model to describe strong ”on-site” correlations
is the Hubbard model, which will be introduced in Sec. (3.6) along with Dynamical Mean
Field Theory (DMFT).

3.6 The Hubbard model

The Hubbard model was constructed in the 1960s to qualitatively describe strongly
correlated materials, specifically 3d transition metals [10]. It is assumed that the strong
correlations dominate the properties of these materials, so that other bands are neglected.
A fixed lattice of sites is examined, where each site contains one s-like orbital, i.e. with
two occupying electrons at most. Furthermore, electrons may hop between the sites, and
only on-site interactions are considered for correlation effects. The Hamiltonian of the
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one-band, spin-1/2 Hubbard model is depicted below:

HHubbard =
∑
〈ij〉σ

tij ĉ
†
iσ ĉjσ + U

∑
i

n̂i↑n̂i↓ . (26)

The first term describes the kinetic aspect where electrons are enabled to hop from
lattice site j to i depending on a hopping parameter tij. The sum only ranges over spins

σ and nearest neighbors, denoted by 〈ij〉. ĉ†iσ is the fermionic creation operator at site
i and spin σ, ĉiσ the annihilation operator. This term is based upon the tight-binding
model. The hopping term arises from overlapping orbitals in solids. The second term
describes the Coulomb forces of electrons on the same site where the energy increases
for each such correlation by a parameter U . This parameter takes into account short-
range interactions. n̂iσ = ĉ†iσ ĉiσ is the number operator. Thus, this model is good for
systems with strong on-site correlations. The Hubbard model predicts the Mott metal-
insulator transition [7] [22] through the variation of the two parameters t and U . The two
terms in the Hamiltonian compete with each other in magnitude and describe a phase
transition from an insulator for large values of U/t, which suppresses the propagation of
electrons in the material, to a metal with a small U/t ratio, where electrons hop freely.
Interestingly, it was found that the one-dimensional half-filled Hubbard model has an
absence of this transition [15]. Thus, no such transition should appear for the model
treated in this project either. Analytic solutions for this model have only been found
for one dimension [15] or infinite dimensions [17] so far. Other dimensions have proven
to be more difficult to solve and thus are usually examined through approximations and
numerical methods [27] [11] [23]. Since the occupation of the lattice sites changes over time
in this model, approximations must be dynamical. High Coloumb repulsion U suppresses
double occupations, which means 〈n̂i↑n̂i↓〉 6= 〈n̂i↑〉〈n̂i↓〉. As a consequence, this makes
approximations in which the interaction term is factorized, like the Hartree-Fock method,
unsuitable for strongly correlated materials.

3.7 DMFT and the Hubbard I Approximation

Dynamical Mean Field Theory (DMFT) is an approximate description of the electronic
structure for strongly correlated many-body systems in a lattice (for further reading, see
e.g. [28] and [21]). The initial many-body lattice problem is essentially mapped onto a
many-body local problem, a so-called impurity model, as depicted in Fig. (8) below.

Figure 8: DMFT schematic. The lattice model is mapped to an impurity problem.
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Instead of considering the whole lattice, a bath of non-correlated electronic levels is
introduced and coupled to a single site. Thus, strong on-site interactions are preserved,
while interaction with other sites is approximated through an effective mean-field, the
bath. The self-consistently determined hybridization function ∆(t), which governs the
coupling between the bath and the site, i.e. the electrons hopping in and out of the bath,
is time dependent and thus makes the theory dynamical. It is defined as

∆(ω) =
∑
iσ

|Viσ|2

ω − εi
(27)

via the coupling parameter Viσ with which the impurity Green’s function is then deter-
mined:

Gimp(ω) =
1

ω + µ−∆(ω)− Σimp(ω)
. (28)

Now, it is assumed that lattice self-energy is equal to the local self-energy of the impurity
model

Σlat(k, ω) ≈ Σimp(ω) , (29)

i.e. spatial fluctuations of the self-energy are neglected. Therefore the following self-
consistency condition is imposed on the observable:

self-consistency condition Gimp !
= Gloc (30)

with

Gloc(ω) ≈
∑
k

1

ω + µ− ε(k)− Σimp(ω)
. (31)

The reasoning behind DMFT is that in the limit of infinite dimensions, meaning that
every site has an infinite number of neighbors, the approximation becomes exact [17]. A
scheme of the self-consistent DMFT computation routine is depicted in Fig. (9).
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Figure 9: Scheme of the DMFT loop.

3.7.1 Anderson impurity model

To solve the Hubbard model via DMFT, it is mapped to the Anderson impurity model
(AIM). The lattice is reduced to a bath of non-correlated electronic levels, coupled to a
single site. The Hamiltonian is as follows:

HAIM =
∑
iσ

εiâ
†
iσâiσ︸ ︷︷ ︸

bath

+
∑
iσ

(
Viσâ

†
iσ ĉσ + h.c.

)
︸ ︷︷ ︸

coupling

+Un̂↑n̂↓ − µ(n̂↑ + n̂↓)︸ ︷︷ ︸
impurity

. (32)

The first term describes the electronic levels εi of the bath, where â†i and âi represent
the creation and annihilation operators, respectively. The coupling between bath and
impurity is determined by the second term with hybridization parameters Viσ. The last
two terms describe the single site impurity through the on-site Coulomb interaction and
lastly the site’s potential µ.

3.7.2 Hubbard I Approximation

DMFT not only becomes exact for infinite dimensions, but also in the limit of zero hop-
ping. Zero hopping essentially decouples the bath from the single site, due to which only
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the single site by itself may be examined, resulting simply in an atomic problem. In
the Hubbard I Approximation, the initial lattice problem is mapped onto an atomic
problem [10]. This approximation is thus only reasonable for materials in which on-site
correlations dominate. The approximation is then the following:

Hubbard I Approximation

Σlat(k, ω) ≈ Σat(ω)

(33)

A scheme of the mapping is depicted in Fig. (10) below.

Figure 10: The Hubbard I Approximation maps a lattice problem to an atomic model.
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4 Methodology

The general procedure is schematized in Fig. 11 below.

Figure 11: Procedure scheme of GWA+HIA with corrections for double-counting.
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4.1 GW preparation

For testing the GWA+HIA scheme, a one-dimensional unit cell with periodic boundary
conditions is chosen as the crystal model. The unit cell contains two atoms of which each
atom provides one orbital. A visualization is given in Fig. 12.

Figure 12: The observed lattice model with hopping parameter t. The Coulomb repulsion
between two electrons which occupy the same orbital is governed by U , while U ′ represents
the interaction between two electrons on neighbouring orbitals.

Tunneling between the orbitals is governed by a hopping parameter t and the unit
cell length is 2a. In the numerical calculations a is set to 1 because the dependence on
this parameter is not of interest in this project. The model was examined at half-filling
and zero temperature, because at non-zero temperature the problem would become more
difficult due to an increase of the electrons’ kinetic energy. It was selected due to its
simplicity and it can easily be mapped on the Hubbard dimer for the atomic model. In
this project, the GWA is performed under the G0W 0 scheme, i.e. for the first iteration
of Hedin’s equations the Green’s function is considered in its non-interacting case G0

to calculate the screened potential W 0 and self-energy, as described in the next section.
Therefore, the following non-interacting Hamiltonian matrix was set up for the model
after moving to k-picture:

H(k) =

(
µ t(1 + e2ika)

t(1 + e−2ika) µ

)
. (34)

The Linear Algebra PACKage (LAPACK [13]) was used to diagonalize the Hamiltonian
matrix and obtain its eigenvectors and -values for a discrete k-mesh and band indices n.
Taking a look at the eigenvalues ε1,2 = µ± 2tcos(ak) shows two bands with cosine shape
as seen in Fig. (13).
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Figure 13: Bandstructure of the model shown in Fig. 12 in the non-interacting case.

4.2 GW procedure

With the eigenvalues and eigenstates of the non-interacting lattice Hamiltonian a one-shot
GWA, i.e. only one calculation iteration, was performed. This decreases the computa-
tional effort but also makes the results non-self-consistent. The approximation is done
numerically on a k-mesh containing Nk discrete k-values, spanning the Brillouin zone
from −π/2a to +π/2a. The computation scheme was performed according to [1] and will
be roughly delineated here. The first quantity to be calculated is the polarization. By
plugging in G0 from Eq. (13) into Eq. (22) the polarization can be written as:

P 0(r, r′;ω) =
occ∑
kn

unocc∑
k′n′

(
ψkn(r)ψ∗kn(r′)ψk′n′(r

′)ψ∗k′n′(r)

ω − εk′n′ + εkn + iδ
(35)

−ψk
′n′(r)ψ

∗
k′n′(r

′)ψkn(r′)ψ∗kn(r)

ω + εk′n′ − εkn − iδ

)
.

By introducing a minimal basis {Bki}, normalized and satisfying Bloch’s theorem, the
polarization can be expanded according to

P (r, r′;ω) =
∑
kij

Bki(r)Pij(k, ω)B∗kj(r
′) (36)

with the basis index i = {αβ} where the bare Coulomb interaction is

vij(k) = Uαβ,α′β′ =

∫
d3d4φα(3)φβ(3)︸ ︷︷ ︸

Bi(3)

U(3, 4)φα′(4)φβ′(4)︸ ︷︷ ︸
Bj(4)

. (37)
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The numerators may then be rewritten as

ψkn(r)ψ∗k′n′(r) =
∑
αβ

χkα(r)cαn(k)χk′β(r)c∗βn′(k
′)

=
∑
αβ

∑
T,T ′

ei
~k ~T e−i

~k′ ~T ′ϕα(~r − ~T )ϕ∗β(~r − ~T ′)cαn(k)c∗βn′(k
′)

=
∑
αβ

∑
T

ei(
~k−~k′)~Tϕα(~r − ~T )ϕ∗β(~r − ~T )︸ ︷︷ ︸

Bqi(r):=Bk′−k,αβ(r)

cαn(k)c∗βn′(k
′)

where the sums go over the product basis indices α and β, as well as lattice vector ~T .
The polarization can then be represented by the following matrix:

Pij(q, ω) =
1

Nk

∑
spin

∑
k

occ∑
n

unocc∑
n′

〈Bqiψkn|ψk+q,n〉 〈ψk+q,n′ |ψknBqj〉

×
(

1

ω − εk+q,n′ + εkn + iδ
− 1

ω + εk+q,n′ − εkn − iδ

)
.

Other quantities can be expanded analogously. The response function is then deduced
from the polarization via the schematic matrix equation

R = (1− Pv)−1P . (38)

The self-energy calculation is split into its frequency-independent exchange and frequency-
dependent correlation parts. The screened interaction is split accordingly into the bare
Coulomb potential v(q) and the correlation part of the screened potential W c(q, ω)

W = v + vRv = v +W c . (39)

The exchange part of the self-energy may be calculated according to

Σx
n(q) = −

∑
k

occ∑
n′

∑
ij

〈ψqnψk−q,n′|Bki〉 vij(k) 〈Bkj|ψk−q,n′ψqn〉 (40)

and the spectral function of the self-energy’s correlation part according to

Γn(q, ω) =



∑occ
kn′
∑

ij 〈ψqnψk−q,n′ |Bki〉Dij(k, εk−q,n′ − ω)

×〈Bkj|ψk−q,n′ψqn〉Θ(εk−q,n′ − ω) for ω ≤ µ

∑unocc
kn′

∑
ij 〈ψqnψk−q,n′|Bki〉Dij(k, ω − εk−q,n′)
×〈Bkj|ψk−q,n′ψqn〉Θ(ω − εk−q,n′) for ω ≥ µ

. (41)

Here the spectral function of the screened potential

Dij(q, ω) = − 1

π
Im(Wij(q, ω))sgn(ω) (42)

was introduced. Since the numerical calculations are based on a discrete frequency mesh,
a linear interpolation was performed for the varying energy arguments for D in Eq. (41).
From Γ, the correlation part of the self-energy was determined and lastly, the resulting
self-energy is simply the sum of the exchange and correlation parts

ΣGW
n (q, ω) = Σx

n(q) + Σc
n(q, ω) . (43)
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4.3 Hubbard I Approximation

To apply the Hubbard I approximation, the self-energy of the atomic model of interest
needs to be found. Due to the simpleness of the examined model in this project, this was
done analytically. The model is described as follows:

Consider a unit cell consisting of two atoms with one orbital each. The electrons which
occupy the orbitals may hop between sites and also interact with each other. The orbitals
may also have differing potentials. This model is usually referred to as the Hubbard dimer
and can be described through the following Hamiltonian, based upon the Hubbard model:

Ĥ =
2∑
i

n̂iεi + t

2∑
〈ij〉,σ

ĉ†iσ ĉjσ +
2∑
i

Uin̂i↑n̂i↓ + U ′n̂1n̂2 .

The first term describes the on-site potentials εi where it is n̂i = n̂i↑ + ni↓. Hopping
between the two sites is described by the second term, while the third one handles the
on-site Coulomb interaction between electrons. The last term describes the Coulomb
interaction of electrons on two different sites. Assuming that all orbitals have the same
on-site potential εi = 0 ∀ i and the same on-site Coulomb strength U = Ui ∀ i, the model
may be schematized as in Fig (14).

Figure 14: The Hubbard dimer with orbitals of the same potential and same on-site
Coulomb strength U . Hopping is governed by t while U ′ represents the Coulomb interac-
tion between the sites. The numbers 1 and 2 denote the two sites.

This model is used for the Hubbard I approximation as the atomic counterpart to the
crystal model from Fig. (12). A full analytic determination of the Green’s function can
be found in Appendix 8.1. The solution in the orbital basis (1,2) at half-filling is

Gij,σ(ω) =
( b+a

2
)2

ω + t− ε0 − iδ
+

(−1)i+j( b−a
2

)2

ω − t− ε0 − iδ

+
( b−a

2
)2

ω − (U + 2U ′ − t) + ε0 + iδ
+

(−1)i+j( b+a
2

)2

ω − (U + 2U ′ + t) + ε0 + iδ
(44)

with the ground state energy

ε0 =
1

2
(U ′ + U −

√
(U ′ − U)2 + 16t2) (45)

where a =
ε0 − U√

(ε0 − U)2 + 4t2
and b =

2t√
(ε0 − U)2 + 4t2

.
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Through this and the Dyson equation (Eq. 18) the atomic self-energy may be deter-
mined. Plots of the spectral function of the Green’s function and self-energy are shown
in Fig. (15).

Figure 15: Spectral functions of the atomic Green’s function for t = 0 (left) and t = 1
(right). The graph at the bottom shows the spectral function of the atomic self-energy
for t = 1.

The frequency ω is on the y-axis, while the Coulomb parameter U is on the x-axis. It
is set U ′ = U/10, t = 1 and δ = 0.1. The pole structure of the Green’s function as seen
in the left graph corresponds to combinations of the Hamiltonian’s eigenstates. For t = 0
two peaks scale linearly with U . For non-zero t two subbands, called Hubbard bands,
appear with a distance of ≈ U between them. Furthermore, it is noted that the atomic
self-energy does not change in frequency with U , but only increases its intensity.
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4.4 Double counting

Now that the self-energies of the crystal and atomic model were determined they can be
summed together. As the two models contain partially overlapping interaction terms the
problem of double-counting arises which can be compensated through the subtraction of
an additional term Σdc:

Σ(k) = ΣGW (k) + Σat − Σdc . (46)

There are several ways through which the double-counting term can be constructed.
In this project three approaches were inspected and compared. The first is applying the
GWA to the atomic problem as well. This was done analytically, as shown in Appx. (8.2).
The following solution for the self-energy was reached:

Σdc = Σat,GW
ij (ω) = −(−1)i+j

Uij
2

+
a

4b

(
1

ω − b− c
+

(−1)i+j

ω + b+ c

)
(47)

with

a = (U − U ′)2(−2t+ iδ) ,

b = −
√

4t2 + 4(U − U ′)t+ iδ ,

c = −t+ iδ .

Similar to the atomic self-energy, rather sharp peaks are to be expected from the
analytic solution. Since the term is subtracted, this might cause negative parts in the
resulting spectral function of G and thus causality issues. Another reasonable approach
to the double-counting is to subtract the local self-energy of the crystal model’s GWA
solution:

Σdc = ΣGW,loc
ij (ω) =

1

Nk

∑
k

ΣGW
ij (ω, k) . (48)

This might raise less causality issues, as the magnitude and broadness will be similar
to numerical GW solution of the crystal model. The last approach handled in this project
will be about subtracting basically the local GWA self-energy within DMFT. The Green’s
function of the crystal model’s one-shot result will be used to conduct one additional GWA
iteration but with the impurity’s screened potential W imp instead, i.e.,

ΣGW imp

(ω, k) = iGGW (ω, k)W imp(ω) ,

Σdc = ΣGW imp,loc
ij (ω) =

1

Nk

∑
k

ΣGW imp

ij (ω, k) . (49)

Similar to the second approach, the magnitude and broadness is expected to be akin
to the GWA term.
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5 Results

First, the results of the two methods GWA and HIA will be analyzed separately before the
combination, to compare where the different structures originate from. Then the three
different double-counting variants will be applied and evaluated.

Figure 16: Non-interacting spectral function the lattice model. The color bar shows the
intensity I in arbitrary units with a linear scale.

As a reference to the quasi-particle band structure, the non-interacting spectral func-
tion of the lattice model is presented in Fig. (16). As can be seen, it agrees with the
analytic bandstructure from Fig. (13). The two bands represent quasi-particle energies.
At the border of the Brillouin zone (k = ±π/2) the bands merge which suggests the model
behaves like a metal for U = U ′ = 0.

5.1 Atomic self-energy combined with lattice G0

Next, the effects of the Hubbard I approximation were observed, by inserting the local
atomic self-energy Σat and the non-interacting Green’s function G0 of the lattice model
into the Dyson equation (Eq. 18):

G(k;ω) = [G0(k;ω)−1 + Σat(ω)]−1 . (50)

Plots of the resulting spectral function for various values of U can be seen below:
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Figure 17: Spectral functions of the atomic self-energy combined with the lattice G0 for
U = 1, U ′ = 0.1 (left) and U = 4, U ′ = 0.4 (right). The hopping parameter t was set to 1
for both graphs. The color bar shows the intensity I3 in arbitrary units.

Quasi-particle peaks comparable to the non-interacting graph in Fig. (16) are visible.
With increasing on-site interaction U the bands narrow down towards the Fermi energy
at µ = 0, since electrons become less likely to doubly occupy and thus less likely to hop.
The system becomes more atomic-like. With a distance of about U to the quasi-particle
bands, satellite structures from the multiplet states of the Hubbard dimer can be seen,
which show only weak dispersion for low U , becoming stronger with increasing on-site
repulsion. The weight of the satellites compared to the quasi-particle peaks also increases
slightly with higher U . A view of the cross-section at the Γ-point of the U = 4 plot is
presented in Fig. (18) below.

Figure 18: Spectral function for U = 4, U ′ = 0.4, t = 1 at the Γ-point.

The width of the peaks reflects the lifetime of the particles, as depicted in Eq. (16).
Though, in the numerical calculations a smearing at the poles enters through a non-zero
iδ-value, like in Eq. (35). A δ-value of 0.1 was chosen for this project. Thus, the width
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is only qualitatively correct. Nevertheless, it can be observed that the satellite peak is
much broader than the quasi-particle peak due to the atomic self-energy.

5.2 One-shot GWA

This section shows plots of the GWA by inserting the self-energy ΣGW of the calculation
into the Dyson equation (Eq. 18):

G(k;ω) = [G0(k;ω)−1 + ΣGW (k;ω)]−1 . (51)

In Fig. (19) below, the spectral function of the screened potential W and the self-energy
is presented.

Figure 19: Spectral function of the screened potential W11 (left) and spectral function of
the self-energy ΣGW (right) for U = 4, U ′ = 0.4, t = 1.

Figure 20: Spectral function of the local screened potential W loc
11 for U = 4, U ′ = 0.4, t = 1.
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The poles of the single-particle excitations have been shifted due to interactions and
can be interpreted as plasmons in the spectral function of the screened potential (left).
Another depiction of this is in the graph of the local screened potential (bottom). The
poles are then convoluted according to Eq. (41) in the plot of the self-energy’s spectral
function on the right. Since the calculations were done at half-filling, the plot is symmetric
about the Fermi-energy (= 0) as expected – electrons and holes behave equivalently in
this model. Below in Figs. (21 to 23) the imaginary part of the self-energy for U = 4 is
shown for three k-points.

Figure 21: Im(ΣGW ) for U = 4 at the border of the Brillouin zone. The bonding and
antibonding graphs overlap. Bonding and antibonding states arise through the overlap
between two orbitals due to which the states split in the lower energy bonding and higher
energy antibonding state

[4].

Figure 22: Im(ΣGW ) for U = 4 at k = −π/4, between the Brillouin zone border and the
Γ-point.
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Figure 23: Im(ΣGW ) for U = 4 at the Γ-point.

The resulting spectral function of the Green’s function within the GWA is presented
in Fig. (24) below:

Figure 24: Spectral function of GGW for U = 1, U ′ = 0.1 (left) and U = 4, U ′ = 0.4
(right). The hopping parameter t was set to 1 for both graphs. The color bar shows the
intensity I6 in arbitrary units.

The quasi-particle bands narrow slightly inwards with increasing U , but less so than
in the atomic graphs from Fig. (17), because the screening effect is incorporated. In the
regions above the upper and below the lower quasi-particle features, the plasmon structure
in form of satellites becomes visible. It should be noted that the GWA overestimates the
energy of plasmon features [5].
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5.3 GW + Hubbard I without double-counting correction

The resulting spectral function of the combination GWA+HIA without correcting for
double-counting according to

G(k;ω) = [G0(k;ω)−1 + ΣGW (k;ω) + Σat(ω)]−1 (52)

can be seen in Fig. (25) below.

Figure 25: Spectral function of GGW+HI for U = 1, U ′ = 0.1 (left) and U = 4, U ′ = 0.4
(right). The hopping parameter t was set to 1 for both graphs. The color bar shows the
intensity I6 in arbitrary units.

With increasing on-site Coulomb repulsion U , the quasi-particle peaks narrow more
quickly than in the atomic result (Fig. 17). Moreover, the plasmon structure from the
GW result can be seen here, as it mixes with the satellites from the atomic result.
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5.4 Double counting

Now the different double-counting terms will be observed. Below in Fig. (26) a plot of
the bonding elements of the self-energies’ imaginary part at the Γ-point of the Brillouin
zone is shown.

Figure 26: Different double-countings (dc) at Γ-point for Im(ΣBB) for U = 2

It becomes immediately clear, that the atomic GW double-counting will have problems
with causality violation, as the amplitude of the peak surpasses the ΣGW + Σat self-
energies, and thus will yield a negative spectral function. Both the local and impurity
double-counting have this issue too in the region ω = [−7,−4.5], but to a smaller extent.
Moreover, they have very similar intensities. It should be noted, that since the calculations
were not done self-consistently, a certain arbitrariness enters the data of the GW, local
GW and impurity GW plot.
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5.4.1 Local GW as double-counting

Spectral functions with the local GW self-energy subtracted for double-counting are pre-
sented in Fig. (27) below.

Figure 27: Spectral functions of GW+HI with subtracted local GW as double-counting
for U = 1, U ′ = 0.1 (left), U = 4, U ′ = 0.4 (right) and U = 6, U ′ = 0.6 (bottom). The
color bar shows the intensity I6 in arbitrary units.

The satellites of the atomic and of the GW results mix again, but the structure of
the GW calculation is weakened slightly. With self-consistent calculations, the plasmon
structures might combine towards the satellites of the atomic calculation. Causality issues
appear around the plasmon satellites for increased U = 4 and also around the quasi-
particle structure with even higher value of U = 6. Moreover, the graphs show no Mott-
Hubbard transition with increasing U , as it was expected in the half-filled one-dimensional
case [15]. This makes sense, since there is no coupling between the atomic (Hubbard
bands) and GW calculations (quasi-particle bands), as it would be within full DMFT
calculations. The quasi-particle structure is similar to GWA+HIA from Fig. (25) but the
bands do narrow less quickly with increasing U , as can be compared in Fig. (28) below.
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This shows that the screening effect is incorporated, which weakens the interaction, and
double-counting is accounted for.

Figure 28: Comparison of the spectral functions’ quasi-particle peaks for U = 4 at the
Γ-point.

To understand how the spectral function results from the self-energy, it is helpful to
take a look at Eq. (17). For small values of ω − εkn −Re(Σkn(ω) and Im(Σkn) peaks will
occur in the spectral function. Thus, one can look for intersections of the two functions
Re(Σ) and ω − εkn for which Im(Σ) is small to roughly predict the peak structure of the
spectral function. A descriptive example of the bonding element is presented in Fig. (29),
with the corresponding imaginary parts of the self-energy and Green’s function in Fig
(30).
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Figure 29: The real and imaginary parts of the self-energy’s bonding element at the Γ-
point for U = 4. The eigenenergy of the bonding state at the Γ-point is −2. By looking
for intersections with Re(Σ) one can predict the peak structure of the spectral function
A through Eq. (17).

Figure 30: Im(ΣBB) (blue) and Im(GBB) (orange) at the Γ-point for U = 4.
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5.4.2 Impurity GW as double-counting

Fig. (31) below shows spectral functions with the impurity GW self-energy subtracted to
account for double-counting.

Figure 31: Spectral functions of GW+HI with subtracted impurity GW to account for
double-counting for U = 1, U ′ = 0.1 (left) and U = 4, U ′ = 0.4 (right). The color bar
shows the intensity I6 in arbitrary units.

This double-counting approach grants similar results as the local GW double-counting
for lower values of U . For higher values, along the same causality issues as in Fig. (27),
additional causality violation occurs in the satellite regions of k < −π/4 and k > π/4 as
the double-counting term increases here with U until it exceeds the GWA+HIA self-energy
in absolute values.
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5.4.3 Atomic GW as double-counting

Below Fig. (32) shows spectral functions with the atomic GW self-energy subtracted due
to double-counting.

Figure 32: Spectral functions of GW+HI with subtracted atomic GW as double-counting
for U = 1, U ′ = 0.1 (left) and U = 4, U ′ = 0.4 (right). The color bar shows the intensity
I6 in arbitrary units.

As expected, this approach already suffers from strong causality violation for low U .
Interestingly, structures besides the quasi-particle bands are heavily suppressed for high
values of U , which is due to the high amplitude of the imaginary part of the double-
counting term, as seen in Fig. (26) before. The satellite and non-causal features are thus
still present in the plot, but very heavily suppressed and thus barely visible. Additionally,
the quasi-particle band narrows slightly less than in the other double-counting methods.
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6 Conclusions

In this project, the GW approximation was combined with the Hubbard I approxima-
tion and applied to a one-dimensional Hubbard model in a non-self-consistent way. The
spectral function of the resulting Green’s function was analyzed with an emphasis on the
performance of three different variants to circumvent the double-counting problem of the
combination. It was observed that out of the three approaches, subtracting the local self-
energy of the GWA result serves best to counteract this problem. In addition to this, it
is also the computationally cheapest variant, by just requiring a sum over the k-mesh. In
general, it was observed that subtracting self-energy terms to circumvent double-counting
for this method leads to non-causal features in the spectral function for Coulomb re-
pulsion values of ≈ 2 and higher. These start to appear outside of the quasi-particle
regime at first, until a value of ≈ 6 is reached, at which also the quasi-particle region
is affected. The non-causal features become more pronounced with increasing on-site re-
pulsion U . However, performing self-consistent calculations may mitigate this problem,
as it was found that in self-consistent GW+EDMFT calculations, physical observables
remain causal [20]. Furthermore, the quasi-particle band structure of real materials may
be approximated with this method without causality violation through Eq. (15), where
only the real part of the self-energy is involved. The quasi-particle structures show influ-
ence from both the strong correlation and screening effects, by narrowing with increasing
on-site Coulomb repulsion faster than in a pure GWA calculation, but more slowly than
in the atomic model. This means that screening effects are included along with local
on-site correlations in this method. Plasmon structures of the GWA, which are ener-
getically overestimated [5], are slightly weakened and mix up with the HIA structures.
Self-consistent calculations might combine the plasmon features further. Lastly, it can be
noted that the one-shot GWA+HIA method is computationally very cheap, e.g., with a
runtime of a few minutes for a k× ω-mesh of 200 × 800.

7 Outlook

The previous sections showed that subtracting a double-counting term from the self-energy
produces non-causal features in the spectral function of the GWA+HIA method. While
the quasi-particle regime was only affected for very high values of U , a safe approach
to use this method for the calculation of quasi-particle band structures of real materials
would be to use Eq. (15), where only the real part enters:

EQP
n (k) = εn(k) +Re(Σn(k)) .

An approach to construct a positive definite spectral function through diagrammatic
expansion as presented in [25] could be considered for further methods in the future.
Furthermore, it was noted, that the (energetically overestimated) plasmon structure of
the GWA slightly combines with the ones from the HIA. An approach to mitigate the
influence of the GWA in this regard could be to introduce a static self-energy in the GWA
calculations, effectively a mean-field approximation, to reduce the collective excitations
of the plasmon structure. An important step which could improve both of the problems
mentioned above, is to do a fully self-consistent calculation, by performing the GWA
loop with the self-energy result of the one-shot GWA+HIA method. A simple model was
treated in this project for which the atomic part could be solved analytically. To handle
more complex models, future improvements should thus involve a numerical solver for the
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atomic part of the method. Finally, the application of the method to real materials would
be another consequent next step.
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8 Appendices

8.1 The atomic problem - solved exactly

The considered Hamiltonian is:

Ĥ =
2∑
i

n̂iεi + t

2∑
〈ij〉,σ

ĉ†iσ ĉjσ +
2∑
i

Uin̂i↑n̂i↓ + U ′n̂1n̂2

This model will now be solved analytically to get the exact Green’s function G at
half-filling with disordered states in the orbital basis. At half-filling, the following six
states are possible for this model:

|1〉 = |↑ · ↓〉 = ĉ†1↑c
†
2↓ |0〉

|2〉 = |↓ · ↑〉 = ĉ†1↓c
†
2↑ |0〉

|3〉 = |↑↓ ·〉 = ĉ†1↑c
†
1↓ |0〉

|4〉 = |· ↑↓〉 = ĉ†2↑c
†
2↓ |0〉

|5〉 = |↑ · ↑〉 = ĉ†1↑c
†
2↑ |0〉

|6〉 = |↓ · ↓〉 = ĉ†1↓c
†
2↓ |0〉

Only the system is assumed to have a total spin of M = 0, thus the last two states
|5〉 and |6〉 are not considered in further calculations. Moreover, it is assumed that both
sites have the same potential ε1 = ε2 = 0.

To solve this model exactly, the Hamiltonian matrix is set-up:

H =


U ′ 0 t t
0 U ′ −t −t
t −t U 0
t −t 0 U

 (53)

Since the descriptive Hamiltonian contains no spin flip terms or double hoppings the
transitions states of 〈1|H |2〉 and 〈3|H |4〉 are all zero. To solve this eigenvalue problem,
Löwdin’s downfolding technique is applied. Firstly, the eigenvalue problem is written in
the following block form (

A11 A12

A21 A22

)(
v1
v2

)
= ε

(
v1
v2

)
(54)

Where the effective eigenvalue equation for the two subspaces v1 and v2 can be deter-
mined to be

A11v1 + A12v2 = εv1

A21v1 + A22v2 = εv2

⇒ (A11 + A12(ε− A22)
−1A21)v1 = εv1 (55)

⇒ (A22 + A21(ε− A11)
−1A12)v2 = εv2 (56)
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Applying this to the Hamiltonian matrix from (53), results in the following block
elements:

A11 = U ′
(

1 0
0 1

)
A12 = t

(
1 1
−1 −1

)
A21 = t

(
1 −1
1 −1

)
A22 = U

(
1 0
0 1

)
Eq. (55) thus yields:[

U ′
(

1 0
0 1

)
+

2t2

ε− U

(
1 −1
−1 1

)]
v1 = εv1(

a+ U ′ −a
−a a+ U ′

)
v1 = εv1 , a ≡ 2t2

ε− U
and thus ε = (a+ U ′)± a or:

ε1,2 =
1

2

(
U + U ′ ±

√
(U − U ′)2 + 16t2

)
ε3 = U ′ (57)

In an analogous matter for Eq(56):[
U

(
1 0
0 1

)
+

2t2

ε− U ′

(
1 1
1 1

)]
v2 = εv2(

b+ U b
b b+ U

)
v2 = εv2 , b ≡ 2t2

ε− U ′

and thus ε = (b+ U ′)± b or:

ε1,2 =
1

2

(
U ′ + U ±

√
(U ′ − U)2 + 16t2

)
ε4 = U (58)

The eigenenergy of the ground state is therefore

ε0 = ε2 =
1

2

(
U ′ + U −

√
(U ′ − U)2 + 16t2

)
(59)

Next, the ground state’s eigenvector is obtained by solving the following equation
system: 

U ′ 0 t t
0 U ′ −t −t
t −t U 0
t −t 0 U




a
b
c
d

 = ε0


a
b
c
d

 (60)

The equations yield a = −b, c = d and c = 2tb/(U − ε2). Along with normalization
this results in the following eigenvector for ε0:

∣∣∣ψ(2)
0

〉
=

1√
2

1√
(ε2 − U)2 + 4t2


ε2 − U
U − ε2

2t
2t

 (61)

where (2) indicates two involved particles. For N=1 particles there are the following
states:

|1〉 = |↑ ·〉 = ĉ†1↑ |0〉
|2〉 = |↓ ·〉 = ĉ†1↓ |0〉
|3〉 = |· ↑〉 = ĉ†2↑ |0〉
|4〉 = |· ↓〉 = ĉ†2↓ |0〉
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resulting in the following matrix:
0 0 t 0
0 0 0 t
t 0 0 0
0 t 0 0

 (62)

Solving this matrix grants two-fold degenerate eigenvalues and their eigenvectors:∣∣∣ψ(1)
1

〉
=

1√
2

(ĉ†1↑ + ĉ†2↑) |0〉 ε
(1)
1 = t∣∣∣ψ(1)

2

〉
=

1√
2

(ĉ†1↓ + ĉ†2↓) |0〉 ε
(1)
2 = t∣∣∣ψ(1)

3

〉
=

1√
2

(ĉ†1↑ − ĉ
†
2↑) |0〉 ε

(1)
3 = −t∣∣∣ψ(1)

4

〉
=

1√
2

(ĉ†1↓ − ĉ
†
2↓) |0〉 ε

(1)
4 = −t

For N = 3 the possible states are:

|1〉 = |↑ · ↑↓〉 = ĉ†1↑c
†
2↑c
†
2↓ |0〉

|2〉 = |↓ · ↑↓〉 = ĉ†1↓c
†
2↑c
†
2↓ |0〉

|3〉 = |↑↓ · ↑〉 = c†1↑c
†
1↓ĉ
†
2↑ |0〉

|4〉 = |↑↓ · ↓〉 = c†1↑c
†
1↓ĉ
†
2↓ |0〉

Resulting in the following matrix
U + 2U ′ 0 −t 0

0 U + 2U ′ 0 −t
−t 0 U + 2U ′ 0
0 −t 0 U + 2U ′

 (63)

Solving the matrix grants the following eigenvalues and -vectors:∣∣∣ψ(3)
1

〉
=

1√
2

(ĉ†1↑c
†
2↑c
†
2↓ + c†1↑c

†
1↓ĉ
†
2↑) |0〉 ε

(3)
1 = U + 2U ′ − t∣∣∣ψ(3)

2

〉
=

1√
2

(ĉ†1↓c
†
2↑c
†
2↓ + c†1↑c

†
1↓ĉ
†
2↓) |0〉 ε

(3)
2 = U + 2U ′ − t∣∣∣ψ(3)

3

〉
=

1√
2

(ĉ†1↑c
†
2↑c
†
2↓ − c

†
1↑c
†
1↓ĉ
†
2↑) |0〉 ε

(3)
3 = U + 2U ′ + t∣∣∣ψ(3)

4

〉
=

1√
2

(ĉ†1↓c
†
2↑c
†
2↓ − c

†
1↑c
†
1↓ĉ
†
2↓) |0〉 ε

(3)
4 = U + 2U ′ + t
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to sum up the results:∣∣∣ψ(2)
0

〉
=

a√
2

(|↑ · ↓〉 − |↓ · ↑〉) +
b√
2

(|↑↓ · 〉+ | · ↑↓〉) , ε
(2)
0 =

1

2
(U ′ + U −

√
(U ′ − U)2 + 16t2)

a =
ε
(2)
0 − U√

(ε
(2)
0 − U)2 + 4t2

, b =
2t√

(ε
(2)
0 − U)2 + 4t2

∣∣∣ψ(1)
1

〉
=

1√
2

(|↑ · 〉+ | · ↑〉) , ε
(1)
1 = t∣∣∣ψ(1)

2

〉
=

1√
2

(|↓ · 〉+ | · ↓〉) , ε
(1)
2 = t∣∣∣ψ(1)

3

〉
=

1√
2

(| · ↑〉 − |↑ · 〉) , ε
(1)
3 = −t∣∣∣ψ(1)

4

〉
=

1√
2

(| · ↓〉 − |↓ · 〉) , ε
(1)
4 = −t

∣∣∣ψ(3)
1

〉
=

1√
2

(|↑ · ↑↓〉+ |↑↓ · ↑〉) , ε
(3)
1 = U + 2U ′ − t∣∣∣ψ(3)

2

〉
=

1√
2

(|↓ · ↑↓〉+ |↑↓ · ↓〉) , ε
(3)
2 = U + 2U ′ − t∣∣∣ψ(3)

3

〉
=

1√
2

(|↑ · ↑↓〉 − |↑↓ · ↑〉) , ε
(3)
3 = U + 2U ′ + t∣∣∣ψ(3)

4

〉
=

1√
2

(|↓ · ↑↓〉 − |↑↓ · ↓〉) , ε
(3)
4 = U + 2U ′ + t

Now the Green’s function can be calculated by using the Lehmann representation from
Eq. (8) in matrix form:

Gij,σσ′(ω) =
∑
n


〈
ψ

(N)
0

∣∣∣ ciσ ∣∣∣ψ(N+1)
n

〉〈
ψ

(N+1)
n

∣∣∣ c†jσ′ ∣∣∣ψ(N)
0

〉
ω − ε(N+1)

n + ε
(N)
0 + iδ

+

〈
ψ

(N)
0

∣∣∣ c†jσ′ ∣∣∣ψ(N−1)
n

〉〈
ψ

(N−1)
n

∣∣∣ ciσ ∣∣∣ψ(N)
0

〉
ω + ε

(N−1)
n − ε(N)

0 − iδ


(64)

The products of the first term yield〈
ψ

(2)
0

∣∣∣ ciσ ∣∣∣ψ(3)
1

〉
=

1

2
(−aδi2δσ↑ + bδi1δσ↑ − aδi1δσ↑ + bδi2δσ↑) =

1

2
(b− a)δσ↑〈

ψ
(2)
0

∣∣∣ ciσ ∣∣∣ψ(3)
2

〉
=

1

2
(−aδi2δσ↓ + bδi1δσ↓ − aδi1δσ↓ + bδi2δσ↓) =

1

2
(b− a)δσ↓〈

ψ
(2)
0

∣∣∣ ciσ ∣∣∣ψ(3)
3

〉
=

1

2
(−aδi2δσ↑ + bδi1δσ↑ + aδi1δσ↑ − bδi2δσ↑) = −(−1)i

2
(b+ a)δσ↑〈

ψ
(2)
0

∣∣∣ ciσ ∣∣∣ψ(3)
4

〉
=

1

2
(−aδi2δσ↓ + bδi1δσ↓ + aδi1δσ↓ − bδi2δσ↓) = −(−1)i

2
(b+ a)δσ↓
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Thus the first term is

G
(3)
ij,σσ′(ω) =

( b−a
2

)2δσ↑δσ′↑

ω − (U + 2U ′ − t) + ε0 + iδ
+

( b−a
2

)2δσ↓δσ′↓

ω − (U + 2U ′ − t) + ε0 + iδ

+
(−1)i+j( b+a

2
)2δσ↑δσ′↑

ω − (U + 2U ′ + t) + ε0 + iδ
+

(−1)i+j( b+a
2

)2δσ↓δσ′↓

ω − (U + 2U ′ + t) + ε0 + iδ

=
( b−a

2
)2δσσ′

ω − (U + 2U ′ − t) + ε0 + iδ
+

(−1)i+j( b+a
2

)2δσσ′

ω − (U + 2U ′ + t) + ε0 + iδ

Analogous for the second term the products are〈
ψ

(2)
0

∣∣∣ c†iσ ∣∣∣ψ(1)
1

〉
=

1

2
(−aδi2δσ↓ − bδi1δσ↓ − aδi1δσ↓ − bδi2δσ↓) = −1

2
(b+ a)δσ↓〈

ψ
(2)
0

∣∣∣ c†iσ ∣∣∣ψ(1)
2

〉
=

1

2
(+aδi2δσ↑ + bδi1δσ↑ + aδi1δσ↑ + bδi2δσ↑) = +

1

2
(b+ a)δσ↑〈

ψ
(2)
0

∣∣∣ c†iσ ∣∣∣ψ(1)
3

〉
=

1

2
(+aδi2δσ↓ + bδi1δσ↓ − aδi1δσ↓ − bδi2δσ↓) = −(−1)i

2
(b− a)δσ↓〈

ψ
(2)
0

∣∣∣ c†iσ ∣∣∣ψ(1)
4

〉
=

1

2
(−aδi2δσ↑ − bδi1δσ↑ + aδi1δσ↑ + bδi2δσ↑) = +

(−1)i

2
(b− a)δσ↑

resulting in

G
(1)
ij,σσ′(ω) =

( b+a
2

)2δσ↓δσ′↓

ω + t− ε0 − iδ
+

( b+a
2

)2δσ↑δσ′↑

ω + t− ε0 − iδ

+
(−1)i+j( b−a

2
)2δσ↑δσ′↑

ω − t− ε0 − iδ
+

(−1)i+j( b−a
2

)2δσ↓δσ′↓

ω − t− ε0 − iδ

=
( b+a

2
)2δσσ′

ω + t− ε0 − iδ
+

(−1)i+j( b−a
2

)2δσσ′

ω − t− ε0 − iδ

Summed together, the exact Green function is gained:

G
(2)
ij,σ(ω) =

( b+a
2

)2

ω + t− ε0 − iδ
+

(−1)i+j( b−a
2

)2

ω − t− ε0 − iδ

+
( b−a

2
)2

ω − (U + 2U ′ − t) + ε0 + iδ
+

(−1)i+j( b+a
2

)2

ω − (U + 2U ′ + t) + ε0 + iδ

ε
(2)
0 =

1

2
(U ′ + U −

√
(U ′ − U)2 + 16t2)

a =
ε
(2)
0 − U√

(ε
(2)
0 − U)2 + 4t2

, b =
2t√

(ε
(2)
0 − U)2 + 4t2

For the non-interacting case U and U ′ are set to zero, resulting in ε0 = −2|t|, a =
−1/
√

2 and b = sgn(t)/
√

2 and thus for t > 0:

G0
ij,σ(ω) =

1

2

(
(−1)i+j

ω + t− iδ
+

1

ω − t+ iδ

)
(65)
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8.2 The atomic problem - solved with GW

This section treats the analytic calculation of the GWA on the atomic model. Analogous
to the GWA application to the crystal model, only one-shot will be conducted, starting
with the determination of the non-interacting polarization P 0. According to the Hedin
equations the polarization is

Pij(ω) = − i

2π

∑
σ

∫ +∞

−∞
dω′Gij,σ(ω′ + ω)Gji,σ(ω′) (66)

Inserting G0 from Appx. (8.1) results in

P 0
ij(ω) = − i

2π
2︸︷︷︸
spin

∫ +∞

−∞
dω′
(

(−1)i+j 1
2

ω′ + ω + t− iδ
+

1
2

ω′ + ω − t+ iδ

)(
(−1)i+j 1

2

ω′ + t− iδ
+

1
2

ω′ − t+ iδ

)

= − i

4π

∫ +∞

−∞
dω′
(

1

ω′ + ω + t− iδ
1

ω′ + t− iδ
+

(−1)i+j

ω′ + ω + t− iδ
1

ω′ − t+ iδ
+

+
1

ω′ + ω − t+ iδ

(−1)i+j

ω′ + t− iδ
+

1

ω′ + ω − t+ iδ

1

ω′ − t+ iδ

)
Doing a contour integral in the upper domain yields zero for the first and last terms so

that only the second and third integral terms are left, which lets the polarization become

P 0
ij(ω) = − i

4π

(
−2πi

ω + 2t− iδ
+

2πi

ω − 2t+ iδ

)
(−1)i+j =

(−1)i+j

2

(
1

ω − 2t+ iδ
− 1

ω + 2t− iδ

)
Introducing the Coulomb interaction matrix,

Uij = Uδij + U ′(1− δij) =

(
U U ′

U ′ U

)
(67)

the screened Coulomb interaction is determined next:

W (1, 2) = v(1− 2) +

∫
d3d4v(1− 3)P 0(3, 4)W (4, 2)

Wij(ω) = Uij +
∑
kl

UikP
0
kl(ω)Wlj(ω)

Uij = Wij(ω)−
∑
kl

UikP
0
kl(ω)Wlj(ω)

Uij =
∑
kl

δliδklWlj(ω)−
∑
kl

UikP
0
kl(ω)Wlj(ω)

Uij =
∑
kl

(δliδkl − UikP 0
kl(ω))Wlj(ω)

Uij =
∑
l

εil(ω)Wlj(ω)

⇔ Wij =
∑
l

εil(ω)−1Ulj(ω)
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Where the dielectric function was introduced:

εil(ω) =
∑
k

(δliδkl − UikP 0
kl(ω)) = δli −

∑
k

UikP
0
kl(ω)

= δli −
∑
k

Uik
(−1)k+l

2

(
1

ω − 2t+ iδ
− 1

ω + 2t− iδ

)
= δli −

∑
k

Uik
(−1)k+l

2

(
4t− 2iδ

(ω − 2t+ iδ)(ω + 2t− iδ)

)
= δli + (−1)l(Ui1 − Ui2)

2t− iδ
(ω − 2t+ iδ)(ω + 2t− iδ)

≡ δli + (−1)l(Ui1 − Ui2)
2t− iδ
A(ω)

=

[
1− (U − U ′)2t− iδ

A(ω)

]
δil +

[
(U − U ′)2t− iδ

A(ω)

]
(1− δil)

≡
(

1 +
a

A(ω)

)
δil +

(
−a
A(ω)

)
(1− δil)

with a = (U − U ′)(−2t+ iδ)

By using Cramer’s rule, the inverse can be calculated:

(ε−1)ij =
(−1)i+j · eji
det(ε)

, where eij are minors of ε

det(ε(ω)) =

(
1 +

a

A(ω)

)2

−
(
−a
A(ω)

)2

= 1 +
2a

A(ω)

e11 = ε22 = ε11 = e22

e21 = ε12 = ε21 = e21

(ε−1)ij =

(
1 + a

A(ω)

)
δij −

(
−a
A(ω)

)
(1− δij)

1 + 2a
A(ω)

=
(A(ω) + a) δij + a(1− δij)

A(ω) + 2a

Thus the screened interaction becomes

Wij(ω) =
∑
l

εil(ω)−1Ulj(ω) =
∑
l

(
(A(ω) + a) δil + a(1− δil)

A(ω) + 2a

)
Ulj

=

(
(A(ω) + a) δi1 + a(1− δi1)

A(ω) + 2a

)
U1j +

(
(A(ω) + a) δi2 + a(1− δi2)

A(ω) + 2a

)
U2j

W11(ω) =

(
A(ω) + a

A(ω) + 2a

)
U +

(
a

A(ω) + 2a

)
U ′ = U − a(U − U ′)

A(ω) + 2a
= W22(ω)

W12(ω) =

(
A(ω) + a

A(ω) + 2a

)
U ′ +

(
a

A(ω) + 2a

)
U = U ′ +

a(U − U ′)
A(ω) + 2a

= W21(ω)
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Expanding A(ω):

A(ω) + 2a = (ω − 2t+ iδ)(ω + 2t− iδ) + (U − U ′)(−2t+ iδ)

= ω2 − 4(t2 + (U − U ′)t)︸ ︷︷ ︸
x

+ (4t+ 2(U − U ′))︸ ︷︷ ︸
y

·iδ

= ω2 − (
√
x− y · iδ)2 = (ω −

√
x− y · iδ)(ω +

√
x− y · iδ)

Taylor expand the square root around δ → 0:

≈ (ω −
√
x+

y√
x
· iδ)(ω +

√
x− y√

x
· iδ)

≡ (ω + b)(ω − b)

To sum up:

1

(ω + b)(ω − b)
=

1

2b

(ω + b)− (ω − b)
(ω + b)(ω − b)

=
1

2b

(
1

ω − b
− 1

ω + b

)

W 0
ij(ω) = Uij − (−1)i+j

a′

2b

(
1

ω − b
− 1

ω + b

)
with a′ = a(U − U ′) = (U − U ′)2(−2t+ iδ)

G0
ij(ω) =

1

2

(
(−1)i+j

ω + t− iδ
+

1

ω − t+ iδ

)
≡ 1

2

(
(−1)i+j

ω − c
+

1

ω + c

)
Now the self energy can be determined via the GW approximation:

ΣGW
ij,σ (ω) = i

∫
dω′

2π
Gij,σ(ω + ω′)Wji(ω

′) (68)

After plugging in G0 and W 0:

Σij(ω) =
i

2π

∫
dω′
(

1

2

(
(−1)i+j

ω + ω′ − c
+

1

ω + ω′ + c

))(
Uij − (−1)i+j

a′

2b

(
1

ω − b
− 1

ω + b

))
=

i

4π

∫
dω′
(

(−1)i+jUij
ω′ + ω − c

− a′

2b(ω′ + ω − c)(ω′ − b)
+

a′

2b(ω′ + ω − c)(ω′ + b)

+
Uij

ω′ + ω + c
− (−1)i+ja′

2b(ω′ + ω + c)(ω′ − b)
+

a′

2b(ω′ + ω + c)(ω′ + b)

)
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Calculating the 6 contour integrals by closing the contour in the upper domain:∫
dω′

1

ω′ + ω − c
= 2πi∫

dω′
1

(ω′ + ω − c)(ω′ − b)
=

2πi

(ω′ − b)

∣∣∣∣
ω′=c−ω

+
2πi

(ω′ + ω − c)

∣∣∣∣
ω′=b

= − 2πi

ω + b− c
+

2πi

ω + b− c
= 0∫

dω′
1

(ω′ + ω − c)(ω′ + b)
=

2πi

(ω′ + b)

∣∣∣∣
ω′=c−ω

= − 2πi

ω − b− c∫
dω′

1

ω′ + ω + c
= 0∫

dω′
1

(ω′ + ω + c)(ω′ − b)
=

2πi

(ω′ + ω + c)

∣∣∣∣
ω′=b

=
2πi

ω + b+ c∫
dω′

1

(ω′ + ω + c)(ω′ + b)
=

2πi

(ω′ + b)

∣∣∣∣
ω′=−ω−c

+
2πi

(ω′ + ω + c)

∣∣∣∣
ω′=−b

= − 2πi

ω − b+ c
+

2πi

ω − b+ c
= 0

Thus, the analytic self-energy in the one-shot GW approximation becomes

Σij(ω) =
i

4π

(
2πi(−1)i+jUij −

a′

2b

2πi

ω − b− c
− (−1)i+ja′

2b

2πi

ω + b+ c

)
= −(−1)i+j

Uij
2

+
a′

4b

(
1

ω − b− c
+

(−1)i+j

ω + b+ c

)
with

a′ = (U − U ′)2(−2t+ iδ)

b = −
√

4t2 + 4(U − U ′)t− (4t+ 2(U − U ′)) · iδ → −
√

4t2 + 4(U − U ′)t+ iδ

c = −t+ iδ
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8.3 Orbital and band basis

Switching an observable between the orbital basis (1,2) and the band basis (bonding,
anti-bonding)

φB =
1√
2

(φ1 + φ2) φA =
1√
2

(φ1 − φ2) (69)

〈φB|Σ |φB〉 =
1

2
〈φ1 + φ2|Σ |φ1 + φ2〉

=
1

2
(Σ11 + Σ12 + Σ21 + Σ22)

symmetry = Σ11 + Σ12

〈φA|Σ |φA〉 =
1

2
〈φ1 − φ2|Σ |φ1 − φ2〉

=
1

2
(Σ11 − Σ12 − Σ21 + Σ22)

symmetry = Σ11 − Σ12

〈φB|Σ |φA〉 =
1

2
〈φ1 + φ2|Σ |φ1 − φ2〉

=
1

2
(Σ11 − Σ12 + Σ21 − Σ22)

symmetry = 0
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