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Abstract

In this thesis we study the feasibility of applying extreme value theory to data

regarding road safety. In particular, we propose a model for assessing the risk

of collision and near collision using extreme value theory. The thesis is relevant

for road safety analysis in order to both understand whether extreme value

theory is useful for modelling the collected data and to check if there is a need

for collecting more data in future. Collecting this kind of information is very

time consuming and expensive so efficient use of data is essential in this type of

applications.

The data consists of Time to Collision (TTC) and Post-Encroachment Time

(PET) for right turning vehicles against bicycles in a four-way intersection in

Barcelona. The dataset is the result of a 24-hour film sequence. The modeling

is done with Generalized Extreme Value distribution and Generalized Pareto

distribution with block maxima and peaks over threshold method. In addition,

a homogeneous Poisson process model is suggested to make predictions on the

number of collisions/near collisions in a longer time frame than the observed

period.

Keywords: Time To Collision minimum, Post-Encroachment Time, Road

Safety, Extreme Value Theory, block maxima, peaks over threshold, Generalized

Extreme Value distribution, Generalized Pareto distribution, Poisson distribu-

tion
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Outline

In the first part, the background of the subject is presented. It includes a brief

introduction to road safety in general and the concept of the risk measurements

Time To Collision and Post-Encroachment Time.
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The second part concerns the univariate extreme value theory. There are two

distributions; Generalized Extreme Value distribution and Generalized Pareto

distribution that are presented, both in general and in an adopted fashion for

the intended data. Methods that are used for the two distributions are also pre-

sented, which are block maxima and peaks over threshold. The section finishes

with some statistical theory, which has been used in the analysis.

Further details of the data and the applications of extreme value theory are

presented in the third part. It is followed by conclusions in the fourth part and

finishes with proposals for further research.
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1. Introduction

Extreme Value Theory (EVT) applied to transportation engineering is a rel-

atively new approach. One of the first applications of EVT was by Hyde and

Wright, (1986) [12] where they estimated road traffic capacity from varied traffic

flow during normal conditions. Another early application was made by Sharma

et al. (1999) [2] where they predicted the violation of air quality standards at

an urban intersection. The branch ”Extreme Value Theory applied to Road

Safety” has above all developed over recent years. The methods vary depending

on the problem under study [8].

In studies by Tarko (2012) [11] and by Zheng (2013) [8] focus lies on the lane

change maneuvers. In work by Tarko (2012) the intention is to fit a distribution

to estimate crashes while in work by Zheng (2013) a comparison between the

block maxima approach and peaks over threshold approach is made. When

using block maxima and peaks over threshold, the predetermined sequence is

negated before applying the methods.

One of the advantages when using EVT applied to road safety is that it is

not necessary to use data of actual crashes which is quite rare. The ambition is

to use the information of near collisions which is more common and from this

information be able to estimate the risk of an actual collision.

1.1 Road Safety

Classifying traffic interaction by severity and frequency is done with a concept

first introduced by Hydén (1987) [6]. It is a pyramid of traffic events, see Figure

1.1. The pyramid is divided into different layers, each layer representing events

with similar severity and the volume of each layer representing the frequency

of each severity. For example, a collision is placed at the top of the pyramid

since it is both the most severe traffic event and has the lowest frequency. Two
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measurements that are used in road safety analysis are Time To Collision and

Post-Encroachment Time. The two measurements are independent of each other

and are used to model the risk of an accident.

Figure 1.1: Conceptual Safety Pyramid

Source: How to analyze accident causation? A handbook with a focus on

vulnerable road users [9].

The general idea with extreme value theory applied to road safety is to be

able to predict the risk of an accident by analyzing the near accidents situations.

It is based on the assumption that the conceptual safety pyramid is an accurate

description of reality (Figure 1.1).

Post-Encroachment Time (PET) is defined as:

Definition 1. ”PET is calculated as the time between the moment that the first

road user leaves the path of the second and the moment that the second reaches

the path of the first; in other words, PET indicates the extent to which they

have missed each other” [9].

This is illustrated in Figure 1.2.
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Figure 1.2: Illustration of PET

Time To Collision (TTC) is defined as:

Definition 2. ”TTC is the time until a collision would occur between road users

if each continued on their present course at their present rate” [9].

See Figure 1.3 for illustration of TTC. The lowest value of TTC for each

event is called TTC minimum, denoted by TTCmin.

Figure 1.3: Illustration of TTC

The two measurements have a lower limit of zero seconds which is equivalent

that a collision has appeared. There is no specific upper limit though larger

values are of no interest. The data is generated from a film sequence from

the critical area. Hence, the upper limit depends on how the cameras in the

7
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intersection are set. Are they far from the scene, higher values of PET and

TTCmin are expected [7]. Values that are commonly used as critical values when

classifying severity are 1.5, 2 and 3 seconds for TTCmin and values between 1

and 5 seconds for PET. These values are not scientifically determined but it is

common to use them. PET and TTCmin was chosen to be the measurements

used in the thesis because they are the most common ones regarding road safety

[13].

1.2 Problem Formulation

At the Department of Road Safety at LTH (V-sektionen) research including the

risk of accidents and near accidents is done. One way to do this is to analyze

TTCmin and PET which is collected by analyzing film sequences of the critical

area. This technique is costly and time consuming. During the recent years,

data regarding PET and TTCmin have been gathered from an intersection in

Barcelona (as part of the European research project InDev, Horizon 2020).

Various parts of this data have been structured but yet been analyzed with

an extreme value approach. Due to previous applications with extreme value

theory on road safety, there is a desire to apply it to this dataset as model.

It is however not clear if the structured data is adequate for an extreme value

approach. The main question in this essay that is to be studied is:

• What is the risk of collision?

This leads to the following questions to be answered:

• Is there enough of the intended data for an application of extreme value

theory?

• If so, are the fitted models, done with Generalized Extreme Value distri-

bution, Generalized Pareto distribution and combined with Poisson dis-

tribution, a valid description of the data?

• If the models are valid for the data, do they provide a valid description of

reality?

1.3 Purpose

The purpose of this thesis is to model the risk of collision and near collision with

Generalized Extreme Value distribution and Generalized Pareto distribution.
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This is done with block maxima and peaks over threshold on the intended data.

It will also, in combination with the obtained result, model risk of accident and

near accident with the Poisson process. Finally, it will evaluate if the data is

sufficient for the application of the extreme value theory.

9



2. Theory

2.1 Extreme Value Theory

2.1.1 Generalized Extreme Value Distribution (GEV)

The model for GEV focuses on the statistical behavior of

Mn = max{X1, ..., Xn}

where X1, ..., Xn are independent identically distributed random variables. The

sequence usually consists of values from a process measured on regular time-

scale. The maximum of the process over n time units of observations is denoted

by Mn. Theorem 2.1 is called Extremal Types Theorem which leads to Gener-

alized Extreme Value distribution, Coles, (2004) [3].

Theorem 1. If there exists sequences of constants {an > 0} and {bn} such that

P{(Mn − bn)/an ≤ z} → G(z), as n→∞,

for a non-degenerate distribution function G, then G is a member of the GEV

family

G(z) = exp

{
−
[
1 + ξ

(
z − µ
σ

)]−1/ξ}
defined on {z : 1 + ξ(z − µ)/σ > 0}, where −∞ < µ < ∞, σ > 0 and −∞ <

ξ <∞.

10
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2.1.2 GEV fitted to negative data

Since the idea is to fit a distribution that describes the risk of collision, the

model should focus on the statistical behavior of

mn = min{X1, .., Xn}

where X1, ...Xn is a sequence of independent random variables having a common

distribution function F . There are two different approaches when fitting a GEV

distribution for minima. The first uses Theorem 2 below which is from Coles,

(2004) [3].

Theorem 2. If there exists sequences of constants {an > 0} and {bn} such that

P{(mn − bn)/an ≤ z} → G̃(z), as n→∞,

where G̃ is an non-degenerate distribution function, then G̃ belongs to the GEV

family of distributions for minima:

G̃(z) = 1− exp
{
−
[
1− ξ

(z − µ̃
σ

)]−1/ξ}
, (2.1)

defined on {z : 1−ξ(z−µ̃)/σ > 0}, where σ > 0, −∞ < ξ <∞ and∞ < µ̃ <∞.

The second approach uses the relation Yi = −Xi for i = 1, .., n. Small values

of Yi corresponds to large values of Xi. Let

mn = min{X1, .., Xn}

Mn = max{Y1, .., Yn}

then it holds that:

min{X1, .., Xn} = −max{Y1, .., Yn}. (2.2)

Fitting a GEV distribution to the negative sequence generates parameters (µ̂, σ, ξ).

The scale σ and shape parameter ξ are consistent for the two methods, while a

sign correction is done for location parameter due to the relation µ̃ = −µ̂, see

[3] for further details.
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2.1.3 Block maxima and Minima

Blocking the data into blocks of equal length is essential. The blocks should nei-

ther be too small or too large. If they are chosen too small the approximation by

Theorem 2.1 is likely to be poor and the estimation and extrapolation will then

be biased. If the blocks are chosen too large, there will be few blocks, leading

to large estimation variance. Data can be blocked yearly/monthly/daily/hourly

etc or by a chosen block size n resulting in a new sequence of size m=(length of

data series)/n. The sequence

M(n,1), ..,M(n,m),

is fitted to a GEV distribution when block maxima is used. For Block Minima

the sequence

m(n,1), ..,m(n,m)

is fitted to the GEV distribution. Based on Equation 2.2 it is equivalent to use

−M(n,1), ..,−M(n,m)

as a sequence to fit a GEV distribution. In that case it is also assumed that the

relation Yi = −Xi holds and small values of Yi corresponds to large values of X

[3].

2.1.4 Generalized Pareto Distribution (GPD)

The second distribution that is used in the thesis is the Generalized Pareto

distribution. Theorem 3 is the Generalized Pareto distribution Theorem from

Coles, (2004) that focus on the statistical behaviour of (X − u|X > u), [3].

Theorem 3. Let X1, X2, ... be a sequence of independent random variables with

common distribution function F , and let

Mn = max{X1, ...Xn}.

Denote an arbitrary term in the Xi sequence by X, and suppose that F satisfy

Theorem 2.1, so that for large n,

P{Mn ≤ z} ≈ G(z),

12
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where

G(z) = exp

{
−
[
1 + ξ

(
z − µ
σ

)]−1/ξ}
for some µ, σ > 0 and ξ. Then, for large enough u, the distribution function of

(X − u), conditional on X > u, is approximately

H(y) = 1−

(
1 +

ξy

σ̃

)−1/ξ

defined on {y : y > 0 and 1 + ξy/σ̃) > 0}, where

σ̃ = σ + ξ(u− µ).

2.1.5 Peaks over Threshold (POT)

The method that is used when fitting a GPD to data is called Peaks Over

Threshold (POT). Extreme events are identified by defining a high threshold

u for which the exceedances are {xi : xi > u}. With exceedances x(1), ..., x(k)

the threshold excesses are yj = x(j) − u for j = 1, ..., k. To choose a suitable

threshold is essential. A threshold that is too high leads to high variance due

to few excesses with which the model can be estimated. A threshold that is too

low is likely to violate the asymptotic bias of the model, leading to bias.

Below follow two methods regarding how to choose an appropriate threshold;

mean residual plot and plotting parameter estimates against different thresholds.

Mean residual plot

The mean residual plot is computed from the mean of GPD. Let ξ < 1 and

assume that GPD is a valid model for the exceedances over threshold u0 derived

from following stochastic sequence X1, ..Xn. The mean of GPD is

E(X − u0|X > u0) =
σu0

1− ξ
.

13
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Since GPD is assumed to be a valid model for the exceedances over u0, it should

be equally valid for thresholds u > u0. If σu = σu0 + ξu, it then follows that

E(X − u|X > u) =
σu

1− ξ
(2.3)

=
σu0

+ ξu

1− ξ
. (2.4)

Consequently, the conditional mean is linear for u > u0. Additionally, the result

from Equation 2.3 imply that the sample mean of the threshold excesses of u

provides an empirical estimate. Plotting a locus of points:{(
u,

1

nu

nu∑
i=1

(x(i) − u)
)

: u < xmax

}

should thereby be approximately linear in u for exceedances x(i), ..., x(nu). Num-

ber of exceeded observations is denoted by nu. Confidence interval is included

in the plot which is based on the approximate normality of sample means [3].

Parameter estimates against different thresholds

This approach involves fitting the GPD to a range of thresholds and looking for

some stability of the parameter estimates. The smallest threshold u should be

selected in which linearity is constant to higher values and within the confidence

interval. It is because if GPD is a proper model to describe the exceedances over

threshold u0 it should be as good for threshold u, u > u0. The shape parameter

is ξ independent of the threshold while the scale parameter σu is dependent on

u and denoted by:

σu = σu0
+ ξ(u− u0).

After reparameterization, the scale parameter is written as:

σ∗ = σu − ξu

and is constant with respect to u. Accordingly, the estimates ξ and σ∗ should

be constant above u0 if u0 is a suitable threshold.

The plots consist of the estimated parameters ξ̂ and σ̂∗ with respectively con-

fidence interval. The confidence interval is derived from the variance-covariance

matrix and the delta method [3].

14
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2.1.6 Peaks Over Threshold For Negative Data

When POT is used for GPD adapted to mn (or −Mn) the fitting of the distribu-

tion is done on the excess loss. For clarity Figure 2.1 illustrates a very simplified

version of POT used on a sequence of positive random variables {Z1, Z2, Z3, Z4}.
The relation Z̃i = −Zi holds and threshold is chosen to u respectively −u. As

familiar, POT method is used to model the distribution of the values large

enough to exceed a chosen threshold. The same principle applies when the data

and threshold is negative. Due to the relation Z̃ = −Z, a large excess from Z̃

also represents a small value from the sequence Z. The exceedances that are

modeled from Z̃ are called excess loss or shortfalls.

Figure 2.1: Simplified version of POT for positive and negative data

2.1.7 Conditional Probability fitted to negative data

Let X̃i = −Xi for i = 1, ..., n be a sequence of independent stochastic variables

and choose threshold ũ = −u, ũ < 0. Fit GPD to X̃ − ũ so

P (X̃ > ũ+ x|X̃ > ũ) ∼ GPD(σ, ξ), x > ũ,

which also can be written as:

P (X̃ > ũ+ x|X̃ > ũ) =
1− F (ũ+ x)

1− F (ũ)

where F is the unknown distribution function. It follows that

P (X̃ > x) = ηũ

[
1 + ξ

(x− ũ
σ

)]−1/ξ
x > ũ

15
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where

ηũ = P (X̃ > ũ) = P (−X > −u) = P (X < u)

which is the same as number of exceedances from sequence X̃ over threshold ũ.

It follows from P (X̃ > x) that

P (−X > x) = ηũ

[
1 + ξ

(x− (−u)

σ

)]−1/ξ
0 < x < u (2.5)

P (X < −x) = ηũ

[
1 + ξ

(u− (−x)

σ

)]−1/ξ
− x < u (2.6)

P (X < y) = ηũ

[
1 + ξ

(u− y
σ

)]−1/ξ
y < u (2.7)

for 0 < y < u [3].

2.1.8 Lower endpoint

For GPD it holds that distribution of exceedances over the threshold u has

an upper bound, σ/|ξ|, if the shape parameter ξ < 0. This means that the

distribution of the original random variable has an upper endpoint of u + σ
|ξ| .

If ξ > 0, it has no upper endpoint [3]. The same principle applies for the

distribution of excess loss. A lower endpoint exists if ξ < 0 but not for ξ > 0.

From Equation 2.7 for ξ < 0 it holds that

P (X < u− y) = P (X < u)
(
1− |ξ| y

σ

)1/|ξ|
(2.8)

for 0 < y < σ/|ξ|. By reforming u− y = z to y = u− z Equation 2.8 is written

as

P (X < z) = P (X < u)
(
1− |ξ|u− z

σ

)1/|ξ|
for 0 < u− z < σ/|ξ|. The lower endpoint will then be

u− σ

|ξ|

since it holds that u− σ
|ξ| < z < u.

The same principle applies to GEV distributions. If ξ < 0 an upper endpoint

exists and is given by

µ̃+
σ

|ξ|
.

16
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Thus, the following equation:

−
(
µ̃+

σ

|ξ|

)
.

is the lower endpoint for an equal distribution that is a 180◦ rotation around

the y-axis [3].

2.1.9 Continuous distribution with point mass

If a distribution has a lower endpoint that is negative, the region below zero

represents ”the probability that negative time after a collision appears”. This is

irrational and a method to cope with this kind of problem is required. Bound-

aries are introduced so that the distribution function is valid between zero and

the chosen threshold u. When introducing restrictions two point masses are also

introduced. The Equation 2.7 imply that point masses m1 and m2 are:

m1 = ηũ

(
1 + ξ

u

σ

)−1/ξ
m2 = 1− ηũ

see Appendix A for further calculations. In Figure 2.2 a graphical description of

the two point masses and the density function f(x) are illustrated. The density

f(x) is derived from Equation 2.7 and results in:

f(x) =
ηũ
ξ

(
1 + ξ

u− x
σ

)−1/ξ−1

Figure 2.2: The left figure depicts a density function f(x) without restrictions.

The right figure depicts the same function f(x) but with restrictions and two

point masses m1 and m2

17
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Finally, the probability is denoted by:

P (X < x) =


ηũ

(
1 + ξ uσ

)−1/ξ
, x ≤ 0

ηũ

(
1 + ξ u−xσ

)−1/ξ
, 0 < x < u

1, x ≥ u

(2.9)

which is called censored GPD and can be thought as a mixture of discrete and

continuous distributions.

2.2 General Statistical Theory

2.2.1 Poisson Process

In Gut, (2009) [4] the homogeneous Poisson process is defined by:

Definition 3. A Poisson process is a stochastic process {X(t), t ≥ 0} with in-

dependent, stationary, Poisson distributed increments. Also, X(0) = 0. The

increment X(t + h) − X(t) is Poisson distributed with expected value λh for

every t and h ≥ 0. In other words,

• the increments {X(tk) − X(tk−1), 1 ≤ k ≤ n} are independent random

variables for all 0 ≤ t0 ≤ t1 ≤ t2 ≤ ... ≤ tn−1 ≤ tn and all n;

• X(0) = 0 and there exists λ > 0 such that

X(t)−X(s) ∈ Po(λ(t− s)), 0 ≤ s < t.

The constant λ is called the intensity of the process.

The intensity is calculated by∫ t

0

λ(u) du = λt

for t ≥ 0 and the probability mass function with respect to counting measure

is:

pX(t)(x) = P(X(t) = k) = e(−λt)
(λt)k

k!
, k = 0, 1...,

A nonhomogeneous Poisson process is a Poisson process with time-dependent

18
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intensity. For the increment X(t2)−X(t1) the intensity is:

X(t2)−X(t1) ∈ Po(

∫ t2

t1

λ(u) du).

The variance is calculated by

V ar(X) =
√
λ

for X [10].

2.2.2 Binomial distribution

The probability mass function for a binomial distributed stochastic variable X

is

pX(k) =

(
n

k

)
pk(1− p)n−k, k = 0, 1, ..., n.

Parameter n is number of independent experiments, k is number of successes in

the experiment and 0 ≤ p ≤ 1 is the probability for success. The variance is:

V ar(X) =
√
np(1− p)

for X [5].

2.2.3 Maximum Likelihood

The method of maximum likelihood is based on the likelihood function:

L(θ) =

n∏
i=1

f(xi; θ).

where f is the density function, xi the values from the stochastic independent

variables X1, ..., Xn and θ is the unknown parameter in parameter space Θ,

θ ∈ Θ. The idea is to use different values of θ ∈ Θ and select the θ that generates

the largest value of L(θ). This is because finding the highest likelihood is the

same as finding the model with the highest probability. The θ that results in the

highest value of L is chosen as the estimation and is called θ̃. When maximizing

the likelihood function the log-likelihood function:

l(θ) = lnL(θ) =

n∑
i=1

logf(xi; θ)

19
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is often used instead. This is because it is generally easier to maximize a sum

l(θ) compared to a product L(θ). The two functions takes it’s maximum at the

same point since the logarithm is a monotone transformation [5].

2.2.4 Akaike Information Criterion (AIC)

When working with models that are not nested the Akaike information criterion

(AIC) is useful when comparing models. It is defined as:

AIC = 2k − 2ln(L̂)

where k is the number of parameters and L̂ is the maximum value of the likeli-

hood function for the model. A small value of AIC is better than a large value

[1].

2.2.5 Delta Method

Computing the variance of variable σ∗(σu, ξ) is done in following manner:

V ar(σ∗) ≈ (∇σ∗T )V (∇σ∗),

where

∇σ∗T =
[∂σ∗
∂σu

,
∂σ∗

∂ξ

]
and V is the variance-covariance matrix for σu and ξ. In general it can be shown

that
√
n(σ∗ − σ)→ N(0, var(σ∗)) [3].

2.2.6 Confidence Interval

A 95% confidence interval is calculated by

CI = mean± 1.96 ·
√
V ar

where mean is the estimated parameter and V ar the variance for the intended

parameter [5].

2.2.7 Model Diagnostics

Two graphical techniques that are used to evaluate how well a model fits to

observed data are probability plot and quantile plot. The ordered sample

20
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of independent observations

x(1) ≤ x(2) ≤ ... ≤ x(n)

has unknown distribution function F and an estimated distribution function F̂ .

If F̂ is a reasonable estimation, the points should lie close to the unit diagonal.

For the probability plot the points consist of{(
F̂ (x(i)),

i

n+ 1

)
: i = 1, ..., n

}

and following points {(
F̂−1(

i

n+ 1
), x(i)

)
: i = 1, ..., n

}
,

forms the quantile plot [3].

21



3. Data Analysis

The first part of Data Analysis is an overview of how the data is collected.

An overview of the structures of PET and TTCmin is also presented in this

part. In the second part, several analyses on the negated data are performed.

The estimated parameters for the used distributions are presented in following

order: GEV distribution, GPD and Poisson process. Finally, the probability for

collision and near collision using the estimated parameters from the different

distributions are presented in the result.

3.1 Data

The analysis is based on data filmed in a four-way intersection in Barcelona

consisting of one-way streets, see Figure 3.1. The data is from the European

research project InDev which is within the framework Horizon 2020 by the

European Commission. The film sequence is from 2017− 06− 20.
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Figure 3.1: The four-way intersection in Barcelona that was filmed

The data has been generated in the following way. Two students have ana-

lyzed 24 hours of film by first marking every trajectory between right turning

motor vehicles and cyclists. This was done based on the following criteria:

• Both vehicles are in the intersections at the same time. However, if the

cyclist/motor vehicle has crossed the cyclist path when the other vehicle

enters, it is considered to be no risk of collision and is therefore not marked

as a trajectory

• The two vehicles need to be in motion at some point in the intersection

• If there are more cyclists/motor vehicles in the intersection, the trajectory

should be done on the most relevant (closest) vehicles

which resulted in 415 encounters. For every marked encounter, the students

fit ”boxes” over the vehicles in every fourth frame (the film sequences are run

in 15 frames per second) and the moving average is calculated for the other

frames. Lastly, PET and TTCmin are computed in the program according to

their definitions, see Figure 3.2 for a print screen from the program. Note the

boxes over the car and bike together with the future path of the vehicles.

Some of the values in PET gets the same value. It does not necessarily

mean that the actual situation was exactly alike it is just a consequent when

computing PET in the way it is. It can be observed in the plots in Figure 3.11.
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Figure 3.2: Print from the program where TTCmin and PET are computed

In Table 3.1 the amount and types of motor vehicles are presented.

Table 3.1: Table of encounters during 24 hours

Bus Car Minivan Truck

Bicycle 2 373 29 11

The two sequences are treated as independent random variables. In Figure

3.3 histogram and plots are presented for the sequences TTCmin and PET.

TTCmin was calculated for 168 of the encounters and PET 413 of the encoun-

ters.
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Figure 3.3: Plot and Histogram of PET and TTCmin

The lowest values the sequences takes are 0.01 seconds in TTCmin and 0.13

seconds in PET.
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3.2 Modelling of the road safety data

3.2.1 Generalized Extreme Value Distribution: GEV

Block-size selection

The blocking is done on -TTCmin and -PET. The first approach is to select

the largest values of every hour and generate a sequence of a maximum of every

hour. Yet, as one can see in Table 3.2 are the range of trajectories during the

day very wide. There should be enough data in every block when selecting a

maxima so hours with less than ∼ 10 observations are not included.

Table 3.2: Number of observations for every hours of -PET and -TTCmin

Hour -PET -TTCmin

00 11 2

01 2 1

02 1 0

03 0 0

04 0 0

05 0 0

06 1 1

07 17 4

08 25 7

09 16 5

10 21 9

11 16 8

12 16 6

13 25 6

14 22 13

15 22 12

16 20 11

17 25 10

18 59 25

19 52 24

20 39 17

21 15 5

22 4 0

23 0 0
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The second approach is to choose a block size n and generate a sequence with

the largest values from every block. Different values for n is used and for -PET

the block size is selected to n−PET = 12, based on the diagnostics plots, see

Figure 3.4. The quantiles in the probability and quantile plot follow the diagonal

indicating that the GEV distribution can be considered as an appropriate fit to

depict -PET.

Figure 3.4: GEV distribution fitted to -PET with block size n = 12

A GEV distribution is fitted to -TTCmin with various block sizes (not less

than 10). The distributions that are obtained are poor images of the underlying

data -TTCmin. A likely explanation is that there is not enough observations to

fit a GEV distribution.
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PET: Parameter estimation

The estimation of the parameters with 95% confidence interval for the fit for -

PET are presented in Table 3.3. Note: µ̃ is the estimated location parameter for

-PET while µ is for the original data PET. This is due to the relation µ̃ = −µ.

Table 3.3: Estimated parameters with confidence interval for -PET

Confidence interval: 95% Lower bound MLE 95% Upper bound

ˆ̃µ −0.628 -0.533 -0.439

σ̂ 0.178 0.258 0.339

ξ̂ −0.896 -0.604 -0.312

The lower endpoint for PET is:

−
(

ˆ̃µ+
σ̂

|ξ̂|

)
= 0.106,

so the generated distribution covers all observations in PET.

3.2.2 Generalized Pareto Distribution: GPD

Threshold selection

By studying mean residual plots for -TTCmin and -PET (Figures 3.5 and 3.6)

and threshold range plots (Figures 3.7 and 3.8) appropriate thresholds are se-

lected. It is also important to choose a threshold that generates a distribution

with a lower endpoint close to zero and not too far from the lowest value in

TTCmin/PET. The diagnostics plots: probability plot, quantile plot, histogram

and return level plot are also considered in the decision of threshold.
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Figure 3.5: Mean Residual Plot for -TTCmin. The left picture is original with

all the data and the right figure is zoomed in, note the axes

Figure 3.6: Mean Residual Plot for -PET. The left picture includes all the data

and the right figure is zoomed in, note the axes
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Figure 3.7: Threshold range plot for -TTCmin
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Figure 3.8: Threshold range plot for -PET

Due to linearity in the figures the threshold for -TTCmin is selected to −3

and a suitable threshold for -PET is chosen to −1.5.

TTCmin

The analysis on TTCmin is done with two different approaches. The first ap-

proach leads to estimates of σ and ξ such that

u ≈ σ̂

|ξ̂|
.

The generated distribution will then be valid between zero and u which is de-

sired. The second approach is based on the threshold selection ũ = −3 from

previous section.
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Method I: TTCmin

The modelling is done on -TTCmin for the encounters between cars and cyclists,

denoted by -TTCmincars. It is due to a comparison between AIC of the fit of

GPD on -TTCmin (AIC = 31.75) and -TTCmincars (AIC = 29.65). Since AIC

is lower for -TTCmincar than for -TTCmin the model will be estimated for the

encounters between cars and cyclists. The threshold is selected to ũ = −1.7 and

the goodness of fit is presented in Figure 3.9.
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Figure 3.9: Method I: Probability-plot, Quantile-plot, Return Level Plot and

histogram for -TTCmincars

Method I : Parameter estimation

The generated parameters are presented in Table 3.4.
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Table 3.4: Estimated parameters for TTCmincars
Confidence interval: 95% Lower bound MLE 95% Upper bound

σ̂ 1.760 1.760 1.760

ξ̂ −1.045 -1.041 -1.038

Since the shape parameter is negative, a lower endpoint exists which is cal-

culated to

u− σ̂

|ξ̂|
= 0.009.

Since the lower endpoint is rounded up to 0.01 it is clear that the generated

distribution covers all values in TTCmin.

Method II : TTCmin

As in method I, the fitting of GPD is done on -TTCmincars. It is due to a lower

value of AIC only involving cars (AIC= 206.1621) compared to (AIC= 238.7365)

when all motor vehicles are included.

In Figure 3.10 diagnostics plots are presented for -TTCmincars.
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Figure 3.10: Method II: Probability-plot, Quantile-plot, Return level plot and

histogram for -TTCmincars

Method II: Parameter estimation

The parameters are presented in Table 3.5.

Table 3.5: Estimated parameters for TTCmincars
Confidence interval: 95% Lower bound MLE 95% Upper bound

σ̂ 1.057 1.421 1.786

ξ̂ −0.575 −0.389 −0.203

One can see in the diagnostics plot that the fit is accurate for lower values
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in the quantile and probability plot. Since the shape parameter is negative, a

lower endpoint exists which is calculated to

u− σ̂

|ξ̂|
= −0.655

PET

In the same manner as for -TTCmin. The first approach is done by fitting

GPD to -PET, meaning all right turning motor vehicles are included. The

second approach is to select data with exclusively right turning cars. The same

threshold ũ = −1.5 for the two approaches. The result is similar to each other,

yet the AIC for the second approach is lower (AIC= 113) than for the first

approach (AIC=123). The approach with only cars and bikes are therefore

selected. The parameters are found in Section 3.2.2 and the probability plot,

quantile plot, return level plot and histogram for -PETcars are illustrated in

Figure 3.11.
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Figure 3.11: Probability-plot, Quantile-plot, Return level plot and histogram

for -PETcars

PET: Parameter estimation

The estimated parameters, with confidence interval, are presented in Table 3.6.

Table 3.6: Estimated parameters for PET

Confidence interval: 95% Lower bound MLE 95% Upper bound

σ̂ 0.684 0.792 0.899

ξ̂ −0.658 −0.564 −0.471
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As ξ < 0 a lower endpoint exists. It is is calculated to:

u− σ̂

|ξ̂|
= 0.097

and the generated distribution covers all observations in PET.

3.2.3 Poisson Process

The process with all registered encounters is assumed to be described as two

independent Poisson processes Y (t) = X(t) +Z(t). Process {Y (t), t ≥ 0} is the

process for all encounters, process {X(t), t ≥ 0} is for encounters between cars

and cyclists and {Z(t), t ≥ 0} is the process for cyclists and the remaining motor

vehicles. In Figure 3.12 process X and Y are depicted. The intensity for process

Y is computed to λmotor = 415/day and for process X is it λcar = 373/day.

The time lap is 24 hours.

Figure 3.12: Poisson process Y(t) and X(t)

The idea with using Poisson process in combination with GPD/GEV dis-

tribution is to estimate the risk of collision/near collision per year (365 days).

Let p1 be the risk of collision/near collision for one encounter between car and

cyclist and t number of days that are of interest. The intensity for the Poisson

process is then:

t λcar p1 (3.1)

Specifically, the intensity for risk of collision during one year using GPD is:

365λcar ηũ

(
1 + ξ

u

σ

)−1/ξ
.

The same approach applies when determine the risk of near accidents. This

concept is called thinning of Poisson process.
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3.3 Results

There are no recorded accidents in the data that are comparable to the estimated

probability. The probability for a near accident can on the other hand both

be estimated and empirically calculated. For PET/TTCmin the probability is

computed to P (0 < X < a) = x/N , where x is number of encounters under a

seconds and N is the total number of encounters. The outcome is a binomial

random variable and the confidence interval is calculated by:

Ix/N =
x

N
± 1.96

√√√√ x
N

(
1− x

N

)
N

.

For encounters between cars and bikes N = 373 for both PET and TTCmin.

When all encounters are included is N = 415. For different values of a are Table

3.7 constructed.

Table 3.7: Empirical probability

95% Lower Bound Point Estimate 95% Upper Bound

PET: P (0 < X < 0.05) 0 0 0

P (0 < X < 0.2) 0 0.005 0.012

P (0 < X < 1) 0.259 0.303 0.348

PETcar: P (0 < X < 0.05) 0 0 0

P (0 < X < 0.2) 0 0.005 0.013

P (0 < X < 1) 0.261 0.308 0.355

TTCmincar: P (0 < X < 0.05) 0 0.008 0.017

P (0 < X < 0.2) 0.007 0.022 0.036

P (0 < X < 1) 0.012 0.030 0.047

The number of near accidents under a seconds in the data are presented in

Table 3.8.

Table 3.8: Numbers of near accidents in the data
0 < X < a TTCmincar PETcar PET

0 < X < 0.05 3 0 0

0 < X < 0.2 8 2 2

0 < X < 1 11 113 126
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Estimation of accident/near accident using GPD

The probability for accidents and near accidents is based on the estimated pa-

rameters using GPD. A more detailed explanation of how the probability is

computed in R is found in Appendix B. The calculations are straight forward,

however the thinking is ”reversed” due to the use of POT on negated data.

Table 3.9: Probability of accident/near accident using GPD

I: TTCmincar II: TTCmincar PETcar

P (X = 0) 0 0.003 0

P (0 < X < 0.05) 0.002 0.004 0

P (0 < X < 0.2) 0.009 0.007 0.007

P (0 < X < 1) 0.043 0.037 0.332

Estimation of accident/near accident using GEV

The estimated distribution G̃(z) using block maxima with n number of blocks

is:

G̃(z) = 1−
(
1− F (z)

)n
. (3.2)

The calculations are based on Equation 2.1 and 2.2 and is rewritten to:

F̂ (z) ≈ 1−
(
1− ˆ̃G(z)

)1/n
. (3.3)

where the block size is n = 12. The probability is computed by the use of

parameters in Table 3.10 and Equation 2.1 and 3.3. The result of the calculations

are presented in 3.10.

Table 3.10: Probability of accident/near accident using GEV distribution

PET

P (X = 0) 0

P (0 < X < 0.05) 0

P (0 < X < 0.2) 0.007

P (0 < X < 1) 0.246

Estimation of accident/near accident using Poisson process

Number of expected near accidents to occur during one day are presented in

Table 3.11. The calculations are done by p1 λcar days where p1 is the probability
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of near accident from Table 3.9. The probability that theses encounters occur

are done with Poisson process and presented in Table 3.12

Table 3.11: Expected number of near accidents

p1 days I: TTCmincar PETcar

P (0 < X < 0.05) 1 1 ∼
P (0 < X < 0.2) 1 4 3

P (0 < X < 1) 1 17 124

Table 3.12: Probability of near accidents using Poisson process, P (X = k)

k I: TTCmincar PETcar

0 < X < 0.05 1 0.353 ∼
0 < X < 0.2 3 0.221 0.219

4 0.183 0.144

Additionally, the expected numbers of accidents for a year using the result

for ”II: TTCmincar” is 119 accidents with probability 0.544. The expected value

of near accidents under 0.2 seconds using the result from 3.10 is approximately

3 (≈ 415 ∗ 0.007) with probability 0.223. The expected value of near accidents

under one second is approximately 103 (≈ 0.246 ∗ 415) with probability 0.039.

Remarks: Fitting of GPD using POT on -PETcars with one collision in the

data is done. The estimated parameters are:

σ̂ ξ̂

0.749 −0.488

and the lower endpoint is −0.035. The probability of collision is computed to

0.0003 and for a year it would be ∼ 44 collisions. It is based on 374 encounters

per day for 365 days (0.0003 ∗ 374 ∗ 365). If two collisions are added in the data

the parameters are

σ̂ ξ̂

0.755 −0.484

and the risk of collision would be 0.0009 with 124 collisions per year. Even
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though this data is fabricated and generates a high probability of collision it

gives an idea of how much more data that are required. A sequence that is

triple the size of the current one could be a good start.
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4. Conclusions

This thesis aims to propose a model for analyzing the road safety data. The

modeling has been done with Generalized Extreme Value distribution and Gen-

eralized Pareto distribution. Moreover, a model using the probabilities from

GPD along with Poisson distribution has been constructed.

The modeled probabilities using POT with GPD on the negated data are

more precise than using block maxima with GEV distribution. Furthermore, the

focus is on the encounters between cars and cyclists when GPD is fitted. The

proposed model for PET seems to fit the data well. It is proper for near collision

estimations and the modeled probability is within the confidence interval for

the empirical probability. Regarding TTCmin are two models constructed with

GPD and the outcomes are reasonable for near accidents. The risk of collision

according to one of the methods is ∼ 0.3% and the question that arises is: is it

likely that the risk of collision is 0.3%?

The obtained probabilities for TTCmin and PET using GPD in combination

with Poisson distribution resulted in various outcomes. The estimated proba-

bility seems reasonable. Although, as stated in Section 3.3 under Remark an

interesting approach that probably generates a better result is to focus on the

rush hours and use a nonhomogeneous intensity1. Also, more data is required

for both TTCmin and PET. Specifically, small values so estimation of collision

can be done. More things can be made to continue the project of applying

extreme value theory on road safety. For example:

• Use a nonhomogeneous Poisson process

• Investigate other approaches of the point mass in the origin

• Use data from other locations to see differences in the fitted models.

1The majority of the small values (< 0.3s) in PET are between 17.00-20.00 o’clock.
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A. Calculations of Point masses

Point mass m1 is computed by

m1 =

∫ 0

−∞
ηũ

(
1 + ξ

u− x
σ

)−(1+ 1
ξ )

= ηũ

[(
1 + ξ

u− x
σ

)−1/ξ]0
−∞

= ηũ
(
1 + ξ

u

σ

)−1/ξ − lim
x→−∞

ηũ
(
1 + ξ

u− x
σ

)−1/ξ
= ηũ

(
1 + ξ

u

σ

)−1/ξ
Point mass m2 is computed by:

m2 = 1− ηũ
(
1 + ξ

u

σ

)−1/ξ − ηũ[(1 + ξ
u− x
σ

)−1/ξ]u
0

= 1− ηũ
(
1 + ξ

u

σ

)−1/ξ − (ηũ1−1/ξ + ηũ
(
1 + ξ

u

σ

)−1/ξ)
= 1− ηũ
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B. Calculations of Probability in

R

As said before in Section 3.3 it is straight forward to compute the probability

of near accident using GPD in R. However, the thinking is ”reversed” due to

the use of POT on negated data, with threshold ũ. Let the fitted parameters

be σ, ξ and the threshold u (= −ũ). By the use of function pgpd in package evd

(and fExtremes) the probability of an encounter under a seconds is:

P (0 < X < a) = ηũ(1− pgpd(u− a, σ, ξ)) (B.1)

Figure B.1: The left Figure depicts the probability function for parameters

and the right picture is a way to think when computing the probability for a

distribution that was fitted for negated data
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