

Department of Automatic Control

Automatic Procedure
for Determining Control Parameters

for Ship-to-Shore Cranes

Hampus Hellström

MSc Thesis
TFRT- 6071
ISSN 0280-5316

Department of Automatic Control
Lund University
Box 118
SE-221 00 LUND
Sweden

© 2017 by Hampus Hellström. All rights reserved.
Printed in Sweden by Tryckeriet i E-huset
Lund 2017

Abstract

The objective of this thesis has been to create a tuning functionality that can determine
the control parameters for a crane that loads and unloads containers from ships. To
accomplish this a model of the crane has been developed in MapleSIM and exported
into MATLAB’s Simulink. In MATLAB cost functions have been developed and
evaluated to later be used in optimisation algorithms to find the optimal parameters.

There are two sets of control parameters that the script needs to determine, the first
is composed of 6 subsets of 4 co-dependent parameters that need to be optimised together.
The other set consists of 66 parameters that are independent of each other. A few different
optimisation methods have been considered, but for the first set a particle swarm
optimisation was used and for the second set, due to the cost function, a form of binary
search was possible to use.

As concluding results, we found that the underlying model of the crane was not
accurate enough to determine the first set of control parameters. The second set of control
parameters are similar enough to the real values and can possibly be used on a real crane.

1

Acknowledgement

I would like to direct my thanks to my supervisor Jonas Öhr at ABB Crane
system where the thesis work was conducted who have helped me through this
project. I would also like to extend my thanks to the MapleSIM support team
in Cambridge for their help solving any MapleSIM related problems that arose
during the thesis.

Lastly I would like to direct my thanks to my supervisor Anders Robertsson
at the Faculty of Engineering, Lund University for his patience and his help.

2

Contents

1 Introduction 4
1.1 Background . 4
1.2 Thesis purpose . 4
1.3 Simulation Environments . 5
1.4 Confidentiality . 6

2 Theory 7
2.1 MapleSIM . 7
2.2 MATLAB and Simulink . 7

2.2.1 Parallel computing in MATLAB 7
2.3 Multidimensional optimisation algorithms 8

2.3.1 Discretisation . 8
2.3.2 Nelder-Mead Simplex method 9
2.3.3 Genetic Algorithm . 10
2.3.4 Particle Swarm . 13

2.4 One-dimensional optimisation algorithms 13
2.4.1 Golden Section Search . 14
2.4.2 Fibonacci Search . 15
2.4.3 Binary Search . 15

2.5 Flow dynamics of a check valve 17

3 Method 18
3.1 MapleSIM Model . 18

3.1.1 Hydraulics mounting dynamics 18
3.1.2 Cable Model . 21

3.2 Simulink model and Implementation into MATLAB 22
3.2.1 Integration with Optimisation algorithm 23
3.2.2 Cost function for X, Y , Z and W control parameter . . . 23
3.2.3 Cost function for the position control gain parameter . . . 24
3.2.4 Choice of 4D optimisation algorithm 30
3.2.5 Improving the 4D optimisation 32
3.2.6 Choice of 1D optimisation algorithm 33
3.2.7 Problems exporting into MATLAB 34

4 Results 35
4.1 Model output and its validity . 35
4.2 Optimisation algorithms performance 40
4.3 Comparison to manually determined parameters 40

5 Discussion and Conclusion 42
5.1 Future work . 42

A Flow Chart for the Simplex Method 43

B Simulink model 44

3

1 Introduction

1.1 Background

Automation has become more prevalent in all industries and since every con-
troller needs a set of parameters to ensure it operates as efficiently as possible
for its set of tasks, therefore, efficient ways of determining these control param-
eters are needed so not to spend resources manually testing for a good set of
parameters.

ABB Cranes [2] develops Electronic Load Controller (ELC) for cranes that
move containers between freight ship and the harbour, so called Ship-To-Shore
cranes (STS), see Figure 1. The purpose of the ELC is to either follow a prede-
termined path or follow a desired velocity while dampening the swaying in the
load.

ABB currently has a controller in the ELC but determining the control
parameters is a time-consuming task that requires a specialist on site, and
valuable time that could be more efficiently used and needed elsewhere. In
order to minimise this time, a method for determining these parameters before
the specialist arrives is needed.

Figure 1: STS cranes loading containers onto fright ships

1.2 Thesis purpose

The purpose of this thesis is to extend the existing MapleSIM model for an
STS crane. The current MapleSIM model does neither take into account the
elasticity of the cables driving the trolley nor the effects of the hydraulics that
make sure the tension in the cables are not too high or too low. Furthermore, this
model needs to be general enough so that by changing the physical parameters
it should be able to simulate any crane.

This model should later be exported into Simulink and combined with the
existing controllers used in the actual cranes. A suitable optimisation algorithm

4

needs to be implemented in order to determine the control parameters. There
are two sets of a total of 90 different parameter that need to be determined.
The first set makes up 24 out of the 90 parameters,Xi, Yi, Zi and Wi, i ∈ [1, 6]
, where each index corresponds to one subset of parameters used at a specific
region of the workspace, so-called gain-scheduling [5]. What subset should be
used, or what i is, depends on how long the cables are that the container is
hanging from. Longer cables result in a longer pendulum which needs different
parameters. These parameters are used to stabilise the container when a human
is steering by controlling the velocity of the container. Therefore the scenario
these parameters will be optimised for is when the crane operator releases the
joystick and the reference velocity goes to zero. The parameters stabilising the
container from swaying should do so in a manner that is both efficient and user
friendly, that is, it behaves as the operators expect it to. As the optimal values
for Xi, Yi, Zi and Wiall depend on each other they will have to be optimised
together, resulting in six 4-dimensional optimisation problems.

The other 66 parameters, the position control gains, P Irl,Idc can be
optimised one by one, resulting in another 66 1-dimensional optimisation
problems. These parameters are used when the container is set to move to
a specific location, and therefore no driver will be involved. Thus these will
be optimised for minimising the time it will take for the container to stabilise
at the desired position, given a certain distance it will be required to move.
Similar to the parameters Xi, Yi, Zi and Wi, each P Irl,Idc has an index Irl
defined for the same above regions as mentioned above. In addition this
index is Id ∈ [1, 11] indicates which of a fixed set of distances the container
needs to move between the initial location to the desired location, is used. As
there are a lot of parameters that need to be determined and each simulation
will have to be tested for multiple different container masses an efficient opti-
misation algorithm is needed to be able to complete this task in a timely manner.

1.3 Simulation Environments

The main programs that will be used in this thesis are MATLAB with Simulink
and MapleSIM. As part of the model had already had been built in MapleSIM it
was a natural choice to continue in this modelling environment. Since MATLAB
and Simulink are used at ABB and MapleSIM can export models as Simulink-
blocks, therefore running the optimisation in MATLAB and Simulink seemed
to be the best choice.

5

1.4 Confidentiality

Since parts of this report will be confidential, some parts may be lacking some
information. However when this is the case the reader will be noted and the
time axis on plots will be normalised to the maximum value of the plot.

6

2 Theory

2.1 MapleSIM

MapleSIM is a product of Maplesoft [7]. It is a Modelica-based modelling and
simulation program. The program runs the symbolic mathematical engine of
Maple, a symbolic mathematical program also developed by Maplesoft. A sys-
tem of symbolic equations representing the model is generated by combining
sub models and components which each has symbolic equations defined for how
they behave and interact with neighbouring components. The individual com-
ponents are combined via a graphical interface, thus MapleSIM allows to build
complex model from simple components.
MapleSIM has built-in functions that allow the user to convert a MapleSIM
model to C file and also generate a script that creates a .m script which in
MATLAB creates a Simulink block from the C file.

2.2 MATLAB and Simulink

MATLAB and Simulink are products from MathWorks [8] which are mainly
used for numerical computing and simulation. Simulink is a visual modelling
tool, that can use scripts written in MATLAB and also be run from scripts in
MATLAB. Together they can be combined to produce models of systems and
to analyse how these system behave. Most code written in this thesis project
will be written in MATLAB.

2.2.1 Parallel computing in MATLAB

Most computers today have multiple cores in their processors, allowing
calculations to run simultaneously on each core. When running simulations in
Simulink MATLAB regularly does not utilise this. However with the function
parpool, MATLAB creates a pool of workers. This allows the parfor-loop
to assign the work to separate workers and simultaneously compute the work
assigned to each worker. Since the computation is running simultaneously
parfor requires that no loop can be dependant on information from another
loop. This proves to be a problem for some optimisation algorithms like
Nelder-Meads Simplex algorithm which is explained in a later section, 3.2.4, of
the report.

7

To make the parallel computation as effective as possible all workers should
be used at all time if possible. Therefore dividing the work into a multiple of
the number of worker would be the best. If this is not possible, the work should
be divided into as small parts as possible in order to use all workers as much as
possible.

2.3 Multidimensional optimisation algorithms

For the multidimensional optimisation, there are 6 sets of 4 dimensional op-
timisation. Since each simulation is rather time consuming an optimisation
algorithm that calls the function as few times as possible is desired, rather than
being efficiently implemented. As there are only 6 sets of optimisation that
need to be run, running one optimisation on each worker would not be optimal.
Most computers today have 4 core processor, which means that the last two
optimisations will run on two of the workers while the other two workers will
be idle thus not using the computer’s full capacity. Therefore an optimisation
algorithm that can utilise all cores or workers at the same time is preferable.

2.3.1 Discretisation

The first method considered is a simple discretisation method. It is a simple
approach to find the minimum of a function without any knowledge of its deriva-
tive. The version tested here generates a mesh with pi equidistant points along
the i-th axis. Let the search interval along the i-th axis be between bil and bih.
The distance between these point will then be set to ∆j = (bih − bil)/pij , where
j is the iteration number. After all points have been evaluated the point with
the lowest value will be the centre point for the grid and the ∆ will be updated
according to:

∆i
j+1 = 2

∆i
j

pij + 1
(1)

Thus the new grid will fit inside the n-dimensional cube around the last
minimum, as depicted in Figure 3 for n = 2.

(a) Iteration 1. (b) Iteration 2. (c) Iteration 3.

Figure 3: The blue points are the points included in the current iterations. The
green point is the one corresponding to the lowest value and so it will be the
centre for the next iteration.

8

The disadvantage of this method is that it is slow. As the number of times the
function has to be called for each grid is

∏n
i=1 pi, meaning it scales exponentially

with the number of dimensions. Therefore a more advance algorithm is needed;
one that chooses the evaluation points in a better way. One example is the
Nelder-Mead Simplex algorithm.

2.3.2 Nelder-Mead Simplex method

Nelder-Mead Simplex method (or just Simplex method) is one of the more
popular method for derivative free optimisation. This method is more sophis-
ticated than the discretisation method. Rather than making a grid of of each
parameter and evaluate at each intersection the Simplex method uses a few
points and from those calculating, according to certain rules, the next point
where to evaluate. It starts by choosing n + 1 points, n being the number of
dimensions. Then for each iteration it either replaces the point corresponding
to the highest value of the function or all points except the point with the
lowest value depending on the set of rules it works by. One version of the
Nelder-Mead Simplex method, as it is described by J. A. Nelder and R. Mead
in their original paper [10], is described below:

The method starts by choosing a set of n + 1 points, where n is the
number of dimensions. The vertices are chosen to form a simplex, which is a
n + 1-dimensional polytope. Let f(x) be the function to be minimised and let
xi, i ∈ {1, 2...n, n+ 1} be the points for the current simplex.

Step 1: Define xl and xh such that:

f(xl) = min
i

(f(xi)) (2)

f(xh) = max
i

(f(xi)) (3)

Calculate the centroid, x0, of all points except xh and the reflection point,
xr, such that:

x0 =
1

n

∑
i 6=h

xi (4)

xr = x0 + α(x0 − xh) (5)

where α is a positive constant. If f(xr) < f(xl) move on to step 2. Else
if f(xr) < f(xi),∀i 6= h move on to step 3. Otherwise replace xh with xr and
restart Step 1.

Step 2: Calculate the expansion point xe.

xe = x0 + γ(xr − x0) (6)

9

where γ > 0 is a constant. If the value at the expansion point is lower than
the reflection point replace xh with xe otherwise replace xh with xr and go
back to step 1.

Step 3: If f(xr) < f(xh) then replace xh with xr. Now calculate the con-
traction point, xc:

xc = x0 + β(xh − x0) (7)

where β is a constant such 0 < β ≤ 0.5. If f(xc) < f(xh), replace xh with
xc and return to step 1. If f(xc) > f(xh) replace all points except xl with

xi =
1

2
(xi + xl), ∀i 6= l (8)

then return to step 1.

Each time before returning to step 1 check if the minimising criterion has
been met and abort the algorithm if so. A flow chart over this method can be
seen in appendix A.

One disadvantage of the Nelder-Meads Simplex method is that it has
little possibility for parallellising as, most of the time, the next point which
should be evaluated is not know until the value of the previous point has been
calculated. The only time this is not true is during the initialisation and when
a the simplex contracts, where it has to compute n+1 and n points respectively.

2.3.3 Genetic Algorithm

The Genetic Algorithm, GA from now on, tries to mimic the evolution seen
in species from the process of natural selection. There are three main ways
to generate a new generation; these are through the processes of selection,
crossover and mutation [3]. Along with these there are other mechanisms like
elitism [11].

In order to find a minimum to the function f(x) the GA starts by selecting
a random initial population, consisting of the individuals b1, b2...bn. Each
individual’s performance is evaluated, and then the selection process begins.

The selection process removes the poorer performing individuals of the pop-
ulation. This is the main driving force behind the algorithm. The selection
process is a random process where the chance of removing an individual is de-
pendant on it performance. One simple way of selecting which individuals to
remove would be by randomly selecting a certain portion of the population,
where the probability of selecting an individual would increase as its fitness
decreases.

10

P (bi is removed) =
f(bi)∑
(f(bi))i

(9)

This requires the function f(x) to be positive for all x. If f(x) is negative
for some x, a new function needs to be introduced, φ(x). This function needs
to be non-negative and non-decreasing. If φ(x) fulfils these requirements then
the probability of removing an individual can be modified to instead be given
by:

P (bi is removed) =
φ(f(bi))∑
(φ(f(bi)))i

(10)

To ensure that the cost function is always decreasing, elitism can be
introduced, which will keep a certain portion of the best performing individuals
in the population to next generation.

The crossover process attempts to mimic the mating process in nature; a
process which combines the genetic material of two individuals that has ”sur-
vived” the selection process. This process will randomly choose two individual
in the remaining population and combine genetic material. The amount inher-
ited from each parent is randomly chosen through the crossover method. The
following crossover method is called Blend Crossover or BLX−α, [6]. Through
Blend Crossover, the offspring O is generated from its parents P1 and P2 with
the following equations:

O = (1− γ)P1 + γP2

γ = (1 + 2α)u− α
(11)

where u is a uniformly distributed random number between 0 and 1. α is the
exploration number. Setting α = 0 will cause the crossover method to coincide
with what is called Arithmetic Crossover method, see Figure 4, while an α > 0
would yield a larger space for where the offsprings can be generated, see Figure
5. It becomes clear why α is called the exploration number as it describes how
much outside of the parents’ genetic code that the offspring can explore.

11

Figure 4: The blue points are the parents while the yellow are the offspring
generated through the Arithmetical Crossover method (or Blend Crossover with
α = 0). The grey area represents the possible space where the offspring may be
generated.

Figure 5: The blue points are the parents while the yellow are the offspring
generated through the Blend Crossover method with α = 0.2. The grey area
represents the possible space where the offspring may be generated.

12

The last process is mutation. Mutation can be seen in nature as well, giving
rise to features previously not present in the population. One way of mimicking
this would be to for each individual in the population, with a probability of µ,
replace them with a new, randomly generated individual.

By combining these processes the population overall tends to become a bet-
ter solution to the minimisation problem for each generation. With elitism,
only looking at the best performing individual, the cost function shall be non-
increasing for each generation as the best individual or individuals are kept to
for the next generation.

2.3.4 Particle Swarm

The Particle Swarm Optimisation (PSO henceforth) is another optimisation
algorithm based on behaviour seen in nature. It is based on the swarm movement
of animals such as flocks of bird or schools of fish. It initialises with a randomly
generated swarm where each individual is given a random position and velocity.
For each new iteration the particles’ positions are updated according to their
velocities:

xi(t+ 1) = xi(t) + v(t) (12)

Each particle updates its velocity according to the acceleration it experi-
ences. Each particle will accelerate towards its own historical best position and
the best position of any particle so far [13]. In addition a random element is
multiplied with the acceleration in each of the previously mentioned directions.
The equation for updating the swarm’s velocity and acceleration thus becomes:

v(t+ 1) = ωv(t) + a

a = c1r1(pg − xi(t)) + c2r2(pi − xi(t))
(13)

where ω is the inertia weight, c1 denotes the acceleration constant towards
the global minimum and c2 denotes the acceleration constant towards a
particle’s historical best position and r1 and r2 are uniform random numbers
between zero to one. pi denotes the i:th particle’s best position. pg is the best
position of any particle.

Unlike the Nelder-Meads Simplex algorithm the PSO can utilise parallel
computations. As in every generation all individuals are independent of each
other each individual can be evaluated on a separate worker. The good thing is
that as the number of worker grows the algorithm will get faster and by making
sure the swarm size is a multiple of the number of cores the workers can be fully
utilised at all times.

2.4 One-dimensional optimisation algorithms

For the position control gain parameters a one-dimensional search algorithm is
required. As there are 66 parameters, there is no longer a real need to be able

13

to parallelise each optimisations itself. Instead all the different optimisation can
be split up amongst the worker rather than splitting up the evaluations in each
generation to make sure that each worker is utilised as much as possible.

2.4.1 Golden Section Search

The two ideas behind the method is that the search interval decreases at a
constant rate α, more specifically α = 1+

√
5

2 to reuse one of the calculations
from the previous iteration. The algorithm works as follows [4]: Given a search
range from ak to bk, the function will be evaluated at λk and µk which are given
by the following equation:

λk = bk − (bk − ak)/α

µk = ak + (bk − ak)/α
(14)

If f(λk) < f(µk) then the search interval is updated as follows

ak+1 = ak

bk+1 = µk
(15)

and the new point at which the function will be evaluated will once again

be given by Equation 14. If α is chosen to be α = 1+
√
5

2 the evaluation points
will be given by:

λk+1 = bk+1 − (bk+1 − ak+1)/α

µk+1 = λk
(16)

If however f(λk) > f(µk) the new search interval will be given by:

ak+1 = λk

bk+1 = bk
(17)

and the new points where the functions shall be evaluated will be given by:

λk+1 = µk

µk+1 = ak+1 + (bk+1 − ak+1)/α
(18)

As mentioned above, each iteration will decrease the search interval by α. If
the desired size of the interval of uncertainty is L then the least required number
of function evaluations n, are given by [4]:(

1

α

)n−1
≥ b1 − a1

L
(19)

14

2.4.2 Fibonacci Search

Fibonacci’s search method is a search method similar to the Golden Section
Search. However the search interval will not decrease at a constant rate, but
rather decrease according to the Fibonacci sequence which is defined by:

Fk = Fk−1 + Fk+2, k ≤ 2

F0 = F1 = 1
(20)

The Fibonacci search method now instead modifies α to be given by [4]:

α(n, k) =
Fn−k
Fn−k+1

(21)

Now α is dependent of the two variables k and n. k is the same as in he
golden section alorithm, the iteration number, and n is the total number of
iterations the search will run for, which has to be specified beforehand. If the
desired magnitude of the uncertainty is L then n will be required to fulfil:

Fn ≥
b1 − a1
L

(22)

where a1 and b1 are lower and upper bound of the search interval respec-
tively. From this equation the total number of iterations can be evaluated.
Comparing this to the Golden Section Search, Fibonacci Search has a slightly
better convergence rate for some intervals and desired search length, however
Fibonacci search will require the number of iterations to be specified before-
hand and calculating this from the final desired uncertainty will add some to
the calculations required.

2.4.3 Binary Search

Commonly used as a search algorithm for sorted lists, although, in the section
”Determining a cost function” it turns out that a version of binary search can be
used to find the optimal values for the one-dimensional optimisation problem.

Binary search traverses sorted lists by looking at the value at the index in
the middle of the search interval. From this value the algorithm determines
whether to continue searching before or after the middle index thus splitting
the search interval in half. From this new interval a new middle index is given
and we can repeat the algorithm until the sought value is found. This means
that the algorithm will split the interval in half for each comparison. The code
for implementing this is shown below [1]:

BinarySearch(arr[1,2...N],val)

low = 1

high = N

while (low <= high)

mid = (high + low) / 2

if (arr[mid] > val)

15

high = mid - 1

else if (arr[mid] < val)

low = mid +1

else

return mid

However, the version needed for the optimisation is a last occurrence version
binary search, which returns the largest index for which the sought value exists
in. For example, on the following array, if the sought value is the last occurrence
of 4, it would return the index 5.[

1 1 4 4 4 6 6 8
]

The algorithm described above only requires a few changes to instead look
for the last occurrence. Now the algorithm cannot be aborted as soon as the
correct value has been found, as it also needs to be verified that it is the last
value. The new code can be seen below:

BinarySearch_Last(arr[1,2...N],val)

low = 1

high = N

while (low <= high)

mid = (high + low) / 2

if (arr[mid] > val)

high = mid - 1

else

low = mid + 1

return low

16

As binary search reduces the search interval for each iteration and when
looking for the last occurrence the algorithm will always have to divide the
search interval until it is of size 1, therefore it will have to run for blog2 n+ 1c
iterations, where bc is the floor function.

2.5 Flow dynamics of a check valve

A check valve is a directional valve, meaning that it allows the flow of the fluid
in one direction while heavily restricting any flow in the opposite direction. In
Figure 6 the check valve allows fluid to flow from A to B, although some leakage
may occur that would allow small amount of fluid to flow from B to A. The flow
rate will be assumed to be that of an orifice. The flow will also, for simplicity
be assumed to be incompressible and laminar. That allows the volumetric flow
rate to be obtained from Bernoulli’s equation [9], which is given by the following
equations:

qv =
CDApass√

1− β4

√
2

ρ
∆p

Apass(p) =

Aleak for ∆p ≤ pcrack
Aleak + k(∆p− pcrack) for pcrack < ∆p < pmax

Amax for ∆p ≥ pmax
∆p = pA − pB

k =
Amax −Aleak
pmax − pcrack

(23)

where qv is the volumetric flow rate through the check valve, pA is the gauge
pressure at A and pB at B. pcrack is the pressure when the valve starts to open.
pmax is the pressure required to fully open the valve. Apass is the passage area
that the fluid can flow in the check valve. Aleak is the cross sectional area that
allows the fluid to leak through the valve in any direction when it is closed.
Amax is the cross sectional area when the valve is fully open. CD is the flow
discharge coefficient, which is the ratio between the actual discharge and the
theoretical discharge through a nozzle or orifice. ρ is the fluid’s density and β
is the ratio between the pipe diameter and the orifice diameter.

Figure 6: The schematic representation of a check valve

17

Figure 7: 3D visualisation of the model inside MapleSIM.

3 Method

To build the simulation environment MapleSIM and Simulink were used.
MapleSIM is a Modelica-based physical modelling tool, with which the physical
model of the STS crane was built. The physical model was then translated
into C-code, with the help of MaplseSIM’s code generations tools, and inte-
grated with the controllers in Simulink. The then complete model in Simulink
was used to run the algorithm in order to determine the parameters. As ABB
already had a version of the physical model implemented in MapleSIM, but
was lacking the dynamics of the cables and the hydraulics system, part of this
project was to continue extending this model, to get a more accurate model of
a crane.

3.1 MapleSIM Model

The MapleSIM model already provided had the cables the container is hanging
from and the main frame of the STS-crane had been implemented along with
the dynamics of these parts. A 3D model generated in MapleSIM can be seen
in Figure 7. This model does not take into account the dynamics for the cables
that are moving the trolley and the hydraulics where the cables are mounted,
which was needed to be added.

3.1.1 Hydraulics mounting dynamics

The hydraulic cylinders are mounted as seen in Figure 8. The first idea was
to build this using MapleSIM’s standard hydraulics library and mounting using
joint and rigid body frames from the multibody library. Unfortunately when
merging this with the other model the simulations failed due to an internal
error. This strategy was later abandoned for instead building a new model for
the hydraulic cylinder and valves.

From the real schematic, a simplified version of the hydraulics was made,
see Figure 9. In this simplified version the hydraulic cylinder is connected to
two check valves, see Figure 9. These check valves together cause the hydraulic
fluid to flow into the cylinder, extending it if the pressure drops below Plow and

18

Figure 8: Shows how the hydraulics is mounted on the STS-crane.

Figure 9: Simplified schematic over the hydraulic pipes and valve.

out of it, contracting it if the pressure exceeds Phigh. Each of the valves are
assumed have a crack pressure that is the same as the pressure required to fully
open it, i.e. pcrack = pmax, since there is little knowledge of exactly how the
check valves are constructed and is therefore assumed to be small in relation to
the normal working pressure in the pipes. In Equation 23 the flow rate through
a check valve is given. By combining two of these the flow to and from the
hydraulic cylinder is given by:

qv =

CDA√
1−β4

√
2
ρ (Phigh − Ph) for Ph > Phigh

0 for Plow ≤ Ph ≤ Phigh
− CDA√

1−β4

√
2
ρ (Ph − Plow) for Ph < Plow

(24)

A positive qv means that the hydraulic fluid is flowing into the cylinder thus
extending the hydraulics. The rate at which the cylinder extends depends on
both the flow rate as well as the cross-sectional area of the cylinder and is given
by:

19

Figure 10: A simplified version of Figure 8 with the lengths defined. Point A
and C are fixed revolute joints and B and D are free revolute joints.

dLh
dt

=
q

A
(25)

P =
Fh
A

(26)

The hydraulics are mounted as seen in Figure 8, a simplified schematic can
be seen in Figure 10. If the lengths L1, L2, L3 and L4 are defined as seen in the
figure along with the length of the cylinder, Lh, as well as the extension of the
cable, L, the force on the hydraulics cylinder, Fh, can be calculated as follows:

Fh = F
L2

L1
cos(θ − α) cos(θ) (27)

θ = arcsin
(L
L2

)
(28)

α = arctan
(L4 − L1 cos(θ)

L3 + L1 sin(θ)

)
(29)

while the extension of the cylinder, Lh causes the length L, to change ac-
cording to Equation 30

dL

dt
=

Lh
√
L2
2 − L2

L1(L4 sin(θ) + L3 cos(θ))

dLh
dt

(30)

Lh =
√

(L4 − L1 cos(θ))2 + (L3 + L1 sin(θ))2 (31)

20

Figure 11: Simplified picture of the trolley drive system.

With equations 24 - 31 the dynamics of the point where the cables are
attached, dL/dt, can be described by the force F , the cable extension L and
cylinder length Lh.

3.1.2 Cable Model

The model also needed to take into account the elasticity in the cables that
moves the trolley. As the stress is comparatively low the yield point of the
cables, Young’s modulus for the cables, will be assumed to be constant during
the simulation. With this assumption cables will be approximated as spring-
damper systems. Thus the force is given by Equation 32.

F = −k∆L− c d
dt

(32)

where k is the spring constant, c is the damping constant and ∆L is the
extension of the cable defined as ∆L = L − L0, where L0 is the relaxed cable
length at a specific moment and L is the actual cable length at the same moment,
see Figure 11. Since both L and L0 are time dependant, the position of the
trolley is controlled by varying L0 is the way, d∆L/dt is given by d∆L/dt =
L̇ − L̇0. However since a cable only excerpts a force when it is stretched, the
mass of the cable will be ignored as it is very small in comparison with the
trolley. To accommodate this, the following modification was made:

F = −(k∆L+ c
d

dt
)
1

2
(tanh(β∆L) + 1) (33)

To create a differentiable step function, β is a value to increase the ”sharp-
ness” of the step and should therefore be rather large. Since the length of the
cable varies over time so will k and c. Since k is given by:

k =
F

∆L
=
AcE

L0
(34)

where Ac is the cross-sectional area of the cable, E is the Young’s modulus
of the cable and L0 is the relaxed cable length. This causes k to vary as the

21

trolley moves. As the different cables are of different lengths the shore side cable
will have a different k than the sea side cable. c is also dependent of the relaxed
length of the cable. The equivalent dampening constant for dampers connected
in series is:

1

ceq
=
∑
i

1

ci
(35)

Here ci assumes the damping value for the cables per meter, which is constant
over the whole cable. The equivalent dampening constant will therefore be
approximated as:

ceq =
c

L0
(36)

Similar to k, c will also change as L0 is changing.

To control the position of the trolley in the simulation, the relaxed
length of the cables will be controlled so as to simulate reeling in and
out the cable on each side. On the shore side the relaxed total length is
L0 = s + Lshore − Wtrolley/2, where s is the position of the trolley when
the cables are relaxed and the other are simply defined in Figure 11. The
cable on the sea side is implemented in a similar way. However, L0 on the
sea side is defined as L0 = Ltot − s −Wtrolley/2 + Lsea. Once again Ltot and
Lsea are defined in Figure 11. If the relaxed length of each of the cables is
defined as above the position of the trolley can be controlled by controlling s,
physically, this is done by letting the driving engine wind the cable in either way.

For better control over the trolley, there is some tension in the cables at
all time. The amount of this force to counteract the force from the minimum
pressure in the hydraulic cylinder mentioned in previous section 3.1.1, since
when the trolley has been still for some short time the valve separating the
lower pressure reservoir and the cylinder opens and the hydraulic reverts to its
vertical normal position. This tension has been mimicked by decreasing the
relaxed length of the cables by ∆Lshore on the shore side and ∆Lsea on the sea
side, thus shortening the cables on both sides. As the beam between B-D, as
defined in Figure 10, is kept vertical when the crane is not used the amount
that each side has to be shortened can be calculated from the following:

PminAc
L1

L2
= Fshore = kshore∆Lshore = Fsea = ksea∆Lsea (37)

From this equation ∆Lshore and ∆Lsea are easy to evaluate.

3.2 Simulink model and Implementation into MATLAB

The Simulink model, which can be seen in the appendix B, has previously been
made to emulate the control system on the STS cranes. By combining this with
the MapleSIM model we have a complete system for simulating the crane with

22

controller. Not much has been changed with the Simulink model itself as it
already is the same which is used for the real system. However, in order to be
able to run the optimisation on this model some changes were required.

3.2.1 Integration with Optimisation algorithm

In order to be able to run the optimisation the Simulink model requires a
few modification that allows for changing the control parameters from the
workspace. By setting the parameters as global parameter they can be defined
outside of Simulink and later used by the controller functions in the Simulink
model.

As Simulink uses the variables in the current workspace, it will not be pos-
sible to use parallel computation as two different simulations will try to use the
same values. However, this can be taken care of by using an instanced workspace
that is specific for each simulation.

3.2.2 Cost function for X, Y , Z and Wcontrol parameter

When optimising over the control parameters X, Y , Z and W the main goal
is to minimise the time it takes to come to a stop after the velocity reference
becomes zero. Although to allow for intuitive control the position of where the
trolley comes to a stop should be predictable, thus not sway back and forth
and instead come to a stop in one smooth motion. Even if preventing this
would result in a longer stabilising time it becomes more easier for the operator
to steer the crane. Therefore we wish to have a cost function that penalises
this behaviour in order to find control parameters that prevents the trolley
from decelerating and then start accelerating again while stabilising, instead it
should be one sustained deceleration. Examples of when the trolley decelerates
and the accelerate before finally stabilising is shown in Figure 12.

As it is hard to determine what is the right combination of how fast a crane
can stabilise and how it steers, a cost function would preferably be constructed
from two parts; one part which increases as the stabilising time increases and
one which increases the more the trolley switches between decelerates and ac-
celerates. Furthermore, it should have a constant which allows to change the
weight of each part. A proposed cost function is thus

Figure 12: An example of an undesirable trolley trajectory, where the trolley
comes to a stop and then starts moving again.

23

cost(X,Y, Z,W) = p1 + cp2

p1 = tstable − tstep
tstable = min(t) such that |v(t)| < tolv ∀t > tstable

p2 =

∫
t∈a−

atrolley(t) dt

(38)

where v(t) is the velocity of the container, tstep is the time at which the veloc-
ity reference goes to zero, tolv is the accepted uncertainty in velocity, a(t) is the
acceleration of the trolley and a− is the time when the acceleration of the trolley
is negative except for the last sustained declaration that stabilises the container.

3.2.3 Cost function for the position control gain parameter

The position control gain parameter, P Irl,Idc , are in use when there is no
interactions with a human driver, as the controller using the position control
gain parameters is only used when while the crane is driving automatically.
This means that the time it takes to stabilise at a certain location is the only
parameter that is needed to be taken into consideration, therefore, another cost
function is needed to optimise these control parameters.

A simple cost function can be constructed similar to the first part in the
previous cost function, Equation 38.

cost(P) = tstable − tstep
tstable = min(t) such that |y(t)− r(t)| < tolp ∀t > tstable (39)

where P is a vector of control parameter for the simulation, y(t) is the
position of the container in meters, r(t) is the desired position for the container
and tstep is the time at which the change in reference occurs. Albeit a very
simple cost function, since it contains the only property that is desired to be
minimised, it may have multiple local minima. Therefore a few cost functions
will be proposed and tested to find one which has a minimum at the same
location as the cost function (39) and which is convex. Since there is no need to
take the human-machine interface into consideration this section will only focus
on getting a cost function that is as close to convex as possible. Even though
the human-machine interface does not prevent convexity it does add another
element to the penalty function, making it harder to achieve convexity.

The proposed cost functions are:

cost(P) =

∫ tsim

tstep

(y(t)− r(t))s(t)dt

s(t) =

{
1 for |y(t)− r(t)| > 0.10

0 for |y(t)− r(t)| ≤ 0.10

(40)

24

where tsim is the time at which the simulation ends, the rest is same as
defined above.

cost(P) =

∫ tsim

tstep

(y(t)− r(t))s(t)n(P (t))dt

s(t) =

{
1 for |y(t)− r(t)| > 0.10

0 for |y(t)− r(t)| ≤ 0.10

(41)

P (t) is the number of times the output has passed the reference point until
the time t and n is a number greater than 1 determining how much to punish
each pass. This is to prevent the load from swinging past the reference point.

Here the cost function (39), may have multiple local minima as can be seen
in Figure 13. Cost function (41) yields a cost function that will be easier to
optimise on, see Figure 14. The global minimum for each of the cost functions
are located at the same location for almost all different cost functions of
and differs at most 0.01 from the optimal value of (39). It eliminates most
local minima and allows both Fibonacci and golden section search to work
well. The plots seen in figures 13 - 14 are just a handful from each cost function.

However, from analysing the plots in Figure 13 there is another way to
optimise the parameter, as it can be seen that the cost function decreases until
it sharply rises. This is then repeated as can be seen in most of the plots in
Figure 13, and in particular we can see it in the plot where Irl = 4 and Id = 3.
This is due to the container overshoots the reference and just passes outside the
tolerated error, r ± tolp, see Figure 15. Since the cost function is the time for
which all later y are within r ± tolp, the one that overshoots get a significantly
higher cost.

25

Figure 13: The cost from the cost function in (39) plotted against the value of
P Irl,Idc . All costs has been normalised.

26

Figure 14: The cost from the cost function in (41) plotted against the value of
P Irl,Idc . All costs has been normalised.

27

Figure 15: Two trajectory where the control parameter are similar, 16 (blue)
and 17 (red) , but they yield very different costs since the red one overshoots
by a small margin.

If the number of times the trajectory passes the limits r ± tolp are plotted
against the value of the control parameter, see Figure 16, we notice that it is
non decreasing, meaning a higher value leads to a more aggressive controller and
the risk of overshooting the target location increases. Therefore another way to
minimise (39) would be to find the highest value for the control parameter that
does not overshoot the target. We can thus construct the cost function:

cost(P) = n (42)

where n is the number of times y(t) has left the region r ± tolp.

28

Figure 16: Number of times y passes the r ± tolp

29

3.2.4 Choice of 4D optimisation algorithm

To decide which optimisation function to use the different methods were tested
on a few different test functions. Since not much is know about the properties
of the cost function the optimisation algorithm has to be tuned and improved
on multiple test functions to make it as robust as possible. Commonly used test
functions will be used to test the convergence rate of the optimisation algorithm
and how it performs on functions with multiple local minima. The functions,
taken from Simon Fraser Virtual Library of Simulation Experiments [12], that
will be used for testing are:

• Ackley Function

f(x) = −a exp

(
− b

√√√√1

d

d∑
i=1

x2i

)
− exp

(
d∑
i=1

cos(cxi)

)
(43)

a = 20, b = 0.2, c = 2π

• Levy function N.13

f(x) = 10d+

d∑
i=1

x2i − 10 cos(2πxi) (44)

• Styblinski–Tang function

f(x) =
1

2

d∑
i=1

x2i − 16x2i + 5xi (45)

• Michalewicz function

f(x) = −
d∑
i=1

sin(xi) sin

(
ix2i
π

)2m

(46)

m = 10

• Hartmann function

f(x) = −
4∑
i=1

αi exp

(
−

d∑
j=1

Aij(xj − Pij)2
)

(47)

α =
(
1.0 1.2 3.0 3.2

)
T

A =

10 3 17 3.5 1.7 8

0.05 10 17 0.1 8 14
3 3.5 1.7 10 17 8
17 8 0.05 10 0.1 14

30

P = 10−4

1312 1696 5569 124 8283 5886
2329 4135 8307 3736 1004 9991
2348 1451 3522 2883 3047 6650
4047 8828 8732 5743 1091 381

Each of the optimisation algorithms were tested 1000 times on each function

were the initial swarm, population or simplex is randomly chosen each time. In
order to be able to more easily compare the different algorithms, a new measure
has been added in the last row of each table. This measure is a ”crude” estimate
of the number of function evaluations required to reach a success rate of 99%,
which has been calculated with the following equation:

N0.99 = N
ln(0.01)

ln(1− r)
(48)

where N is the average number of evaluations and r is the success rate.

The performance of the optimisation algorithms on the test functions are
the following:

Ackley function
PSO GA Simplex

Success Rate 99.1 % 96.7 % 5.8 %
Average Eval 733.0 998.7 59.9
Nbr Eval for 99 % 716.6 1348.2 4620.0

Styblinski–Tang function
PSO GA Simplex

Success Rate 80.5 % 84.5 % 15.2 %
Average Eval 636.6 932.5 54.5
Nbr Eval for 99 % 1793.2 2303.3 1521.6

Levy function N. 13
PSO GA Simplex

Success Rate 97.6 % 93.7 % 47.4 %
Average Eval 515.7 644.9 42.1
Nbr Eval for 99 % 636.8 1074.3 301.6

Hartmann function
PSO GA Simplex

Success Rate 73.3 % 77.2 % 14.7 %
Average Eval 736.6 1169.2 73.9
Nbr Eval for 99 % 2568.7 3642.0 2141.8

31

Michalewicz’s function
PSO GA Simplex

Success Rate 99.5 % 99.3 % 19.4 %
Average Eval 744.1 1064.5 66.2
Nbr Eval for 99 % 646.7 988.0 1414.5

For the multidimensional optimisation the PSO was chosen. It performed
better than the GA and was more consistent on the test functions than
Nelder-Mead Simplex and also because it is better at utilising multiple cores
for parallel computing.

3.2.5 Improving the 4D optimisation

The success rate of the optimisation function is currently low on the Hartmann
function and the Styblinski-Tang function. To increase the success rate a larger
swarm size is needed, although this will increase the number of function evalua-
tions, which is, as previously mentioned, more important to keep at a minimum.
One way to reduce the number of function evaluations would be to remove par-
ticles that are close to each other as there is no real need to evaluate two similar
positions. Thus a particle can be removed if it is within the accepted error of
another particle i.e.

Remove particle if
∑
i

(
xi
toli

)2

< 1 (49)

where x is the position of the particle and toli is the error tolerance along
the i-axis. This can sometimes be a problem as this will remove a particle that
is close to another but has different velocity and that would explore a different
area. Thus it is likely to lower the success rate as well. This will be tested on
the Hartmann function as there is more room for improvement than there is on
the other test functions. The error tolerance has been set to mimic the same
error tolerance as in the 4D optimisation problem. The results can be seen in
table 3.2.5 below:

Hartmann 4D function
PSO Opt.1 Opt.2
Success Rate 76.9 % 77.7 %
Average Eval 675.9 874.6
Nbr Eval for 99 % 2124.1 2684.0

Table 1: Option 1 removes a particle if it is too close to another particle. Option
2 leaves them as they were. Both have a swarm size of 80

As expected the number of evaluations is reduced, even if there is a slight
reduction in the success rate. Using the same measure as before, as defined
in Equation 48, removing particles that are too close to other particles proves
worth it.

32

Since we do not require a resolution better than the error tolerance of each
variable we can discretize each axis. This will make the search space finite which
may make it easier to find the minimum and possibly also lower the number of
function evaluations required.

Hartmann 4D function
PSO Opt.1 Opt.2
Success Rate 76.7 % 76.4 %
Average Eval 630.5 676.3
Nbr Eval for 99 % 1993.3 2156.8

Table 2: Options 1 uses discrete states. Options 2 uses continuous states. Both
remove particles that are too close to other particles

The success rate did not increase and the number of evaluations did not
decrease significantly. However, with the discrete state some of the particles
will end up in previous evaluated states. By storing all function evaluation in a
lookup table and using that instead of evaluating the number of function eval-
uations can be decreased further, this time without compromising the success
rate.

Hartmann 4D function
PSO Opt.1 Opt.2
Success Rate 78.4 % 78.9 %
Average Eval 475.6 633.3
Nbr Eval for 99 % 1429.2 1874.4

Table 3: Opt. 1 uses discrete states and saves all evaluated states to recall if it
needs to evaluate it again. Opt. 2 evaluates the function every time regardless.

Reusing old function evaluations with the discrete states does reduce the
number of function evaluations by a fourth but leaves the success rate unaffected.
With these changes to the PSO, the number of function evaluations can be
reduced greatly.

3.2.6 Choice of 1D optimisation algorithm

Due to the discovery in section 3.2.3, it is enough to find the highest value of
the control parameter that does not overshoot r ± tolp. Since the cost function
Equation 42 is non decreasing it is possible to use a binary search method that
finds the last occurrence, which has a slight advantage to both the Fibonacci and
the golden sections search algorithms. Assuming we require an error tolerance of
1 the number of function evaluations from using a binary search method would
be: ⌊

log2

(
40− 0

1

)
+ 1

⌋
= blog2(41)c = b5.37c = 5 (50)

33

Using the same interval and error tolerance the number of evaluations for
the golden section search method 19 is given from the following equations:(

1

α

)n−1
≥ 40− 0

1
= 40

n > 1 +
ln(40)

ln(1
α)

= 8.66... −→ n = 9

(51)

and for the Fibonacci search the number of function evaluations 22 is given
by the following equation:

Fn ≥
40− 0

1
= 40 −→ Fn = 55 −→ n = 9 (52)

where Fn is the Fibonacci sequence defined in Equation 20. Meaning that
in this case both the golden section search and Fibonacci algorithms will need
the same number of function evaluations, which compared to the binary search
method is almost twice as many. For this case the binary search method out-
perform the other algorithms and will therefore be used for the one-dimensional
optimisation.

3.2.7 Problems exporting into MATLAB

When the MapleSIM model was exported to MATLAB the model became
unstable. With the help from MapleSIM support a solution to this problem
was found. The issue was partly attributed to a bug in MapleSIM, not allowing
π to be set as a symbol in MapleSIM, and instead using its numerical value.
Another problem was that one of the gain-blocks was set to 0, which resulted
in that an equation being removed during the simulation. However, correcting
these problems did not solve the issue entirely. Although after copying the
changes made to the model into an older model the problems seem to be solved.
The exact cause of why this fixed the issues is not known. In later versions of
MapleSIM new functionality allow the user to easier analyse the problem more
closely.

Another problem that has arisen in the model when combining it with the
controllers is illustrated in Figure 17. This only happen for Irl = 1 and Irl = 2.
The trolley slams into one of the ends of the track and afterwards does not
register the error and does not correct it. Therefore it will not be possible to
determine the parameters for Irl = 1 and Irl = 2.

34

Figure 17: Shows the trajectories for the load and trolley from the simulation
where Irl = 2.

4 Results

4.1 Model output and its validity

In Figure 18 is the comparison between a simulation run in MapleSIM and one
run in Simulink and the difference between the two. These are done without
any controller and with the same input to show the deviation between the
models.

In Figure 19 is the trajectory for the trolley and the load generated in
Simulink along with the regulator.

35

Figure 18: The difference between the same model simulated in MapleSIM
compared to Simulink.

36

Figure 19: The trajectory for the load (blue) and trolley (red).

In Figures 20 and 21 we see the elongation in the cables driving the trolley,
∆L in the Equation 37.

Figure 22 shows the movement of the hydraulic. In figures 20 – 22 the time
step takes place at t = 0.1. All of them are taken from MapleSIM simulation.
Therefore there is no controller dampening the sway of the load.

Figure 23 shows the trajectories differences for the position of the trolley
(red) and the load (blue) respectively, for the simulation with and without the
hydraulics dynamics activated.

37

Figure 20: Stretching on the sea side cable.

Figure 21: Stretching on the shore side cable.

38

Figure 22: Shows the movement of the hydraulic mounting.

Figure 23: The difference in trajectory due to the effects of the hydraulics. The
red is the difference in position for the trolley and the blue is the difference in
position for the load.

39

4.2 Optimisation algorithms performance

The time it takes to run the optimisation for all parameters is around 14 hours,
running in total around 13000 simulations, on a laptop with the following hard-
ware.

• CPU: Intel Core i7 - 4710HQ (4 cores @ 2.50 GHz)

• RAM memory: 16 GB

• Operating system: 64-bit Windows 10 home

This is acceptable run time since if the optimisation is started at the end of
a workday it should have finished by the next day.

4.3 Comparison to manually determined parameters

The control parameters given by the optimisation on the model are:

X =
(
− − 2.0 1.8 1.6 2.0

)
Y =

(
− − 2 2 2 2

)
Z =

(
− − 3.0 2.0 1.0 1.0

)
W =

(
− − 3.5 2.8 4.2 1.4

)
Pc =

 − − − − − − − − − − −− − − − − − − − − − −
20 19 15 15 15 15 13 12 14 17 14
15 11 11 11 11 11 11 11 10 11 11
9 8 6 5 5 6 6 6 6 6 6
6 4 2 2 2 2 2 2 3 3 2

compared to the parameters used for a real crane which are:

X =
(
1.65 1.6 1.64 1.64 1.68 1.68

)
Y =

(
3 3.5 5 5.5 5.5 5.5

)
Z =

(
9.0 9.6 10.0 10.0 14.0 14.0

)
W =

(
2.1 2.1 2.1 2.1 2.1 2.1

)
Pc =

 24 22 18 16 16 16 16 16 16 16 16
24 22 18 16 15 15 15 16 16 16 16
20 20 18 16 15 15 15 16 16 16 16
20 16 14 14 14 14 14 14 13 13 13
13 13 10 10 10 10 10 8 6 6 6
15 13 10 4 4 4 4 4 0 −4 −4

40

Figure 24: Histogram showing the distribution of differences between the solu-
tion to the optimisation problem and the real value for the PosCon parameter.

If the first two rows in the value matrices for the parameter Pc are excluded,
as the simulation failed to optimise these, a histogram over the difference be-
tween the solution to the optimisation problem and the values of the real crane
can be seen in Figure 24. The average value for the error is −2.32, i.e. the value
from the optimisation algorithm is lower than the values currently used.

41

5 Discussion and Conclusion

One of the big problems in this thesis is that there has not been any real
verification of the MapleSIM model against data from real cranes. The only
verification is to compare the output to what the supervisor, Jonas Öhr, has
observed. However, the model still catches some of the effects of a real crane
compared to an simpler model of a pendulum on a stiff rod.

For the 4-dimensional optimisation algorithm, the number of function
evaluations was reduced by half on Hartmann function, although the im-
provements did not increase the success rate. For the one-dimensional
optimisation a cost function that allowed for a deterministic search method
was found. The last occurrence binary search method proved to decrease
the number of function evaluations required to find the optimal the position
control gain parameters by 30%. Furthermore, as the method is deterministic
it will always find the correct minimum if the observations are true for all
possible cases, which seems to be a fair assumption under the current conditions.

When comparing the parameter in section 4.3, it is clear that there are a
lot of differences between the manually tuned values for Xi, Yi, Zi and Wiand
the ones given by the model. However, the values for the position control gain
parameters shows closer resemblance. With an average deviation of −2.32
these parameters will probably see use. The fact that they are lower means
that the optimisation algorithm is more cautious, as lower value for the control
parameters are less likely to swing past the reference. So if the error tolerance
in the position of the container had been increased the mean error would be
reduced.

Apart from determining the position control gain parameters it will also
be a good tool to analyse how the parameters change when parameters of the
model change, and even though they may not be accurate it can at least provide
indication of how, i.e. the hydraulics, affects the control parameter.

5.1 Future work

In order to improve the final parameters, improvements to the MapleSIM model
would be the first place to start. To improve the crane model, one should
collect data from different cranes around the world and use that to improve the
model. Since the optimisation algorithm performs well enough, it can find the
optimal parameters for the given model and search interval within a reasonable
time frame.

Another improvement would be to find what is causing the results shown in
Figure 17, as this prevents the script from being able to determine the control
parameters for Irl = 1 and Irl = 2.

42

A Flow Chart for the Simplex Method

Figure 25: Flow chart for Nelder-Mead simple algorithm. This flowchart has
been adapted from [10]

43

B Simulink model

44

References

[1] C. Pal A. Oommen. “Binary Search Algorithm”. In: International Journal
of Innovative Research in Technology 1.5 (Oct. 2014), pp. 800–803.

[2] Crane systems ABB. url: http://new.abb.com/ca/about/technology/
crane-systems (visited on 04/02/2017).

[3] U. Bodenhofer. Lecture Notes; Genetic Algorithms: Theory and Applica-
tions. Dept. of Knowledge-based Mathematical Systems, Johannes Kepler
University, Linz, Austria, 2003/2004.

[4] L.-C. Böiers. Mathematical Methods of Optimization. Lund, Sweden.: Stu-
dentlitteratur AB, 2010. isbn: 9789144070759.

[5] D. J. Leith and W. E. Leithead. “Survey of gain-scheduling analysis and
design”. In: International Journal of Control 73.11 (Jan. 2000), pp. 1001–
1025. doi: 10.1080/002071700411304. url: https://doi.org/10.

1080/002071700411304.

[6] A. John Arul S. Rajeswari K. K. Kuriakosa S.A.V. Satya Murty M. Mehra
M.L. Jayalal. “Study on Different Crossover Mechanisms of Genetic Al-
gorithm for Test Interval Optimization for Nuclear Power Plants”. In: In-
ternational Journal of Intelligent Systems and Applications 6 (Jan. 2014),
pp. 20–28. doi: 10.5815/ijisa.2014.01.03.

[7] MapleSim. url: https://www.maplesoft.com/products/maplesim/
(visited on 04/02/2017).

[8] Inc MathWorks. url: http : / / www . mathworks . com (visited on
04/02/2017).

[9] R.W. Miller. Flow measurement engineering handbook. Chemical en-
gineering books. McGraw-Hill, New York, NY, United States, 1996.
isbn: 9780070423664. url: https : / / books . google . se / books ? id =

0e9RAAAAMAAJ.

[10] J. A. Nelder and R. Mead. “A Simplex Method for Function Mini-
mization”. In: Computer Journal 7 (1965), pp. 308–313. url: http://
www.bibsonomy.org/bibtex/2053fb791805bd1debd80a198e8f3e45c/

brian.mingus.

[11] A. Popov. “Genetic algorithms for optimization”. In: Programs for MAT-
LAB. Hamburg, Germany. (2005).

[12] S. Surjanovic and D. Bingham. Virtual Library of Simulation Experi-
ments, Simon Fraser University. Burnaby, Canada. Dept. of Statistics
and Actuarial Science, Accessed: 2016-05-20. url: https://www.sfu.ca/

~ssurjano/optimization.html.

[13] Y. Zhu W. Wang Y. Zhou X. Li. “A discrete particle swarm optimization
algorithm applied in constrained static weapon-target assignment prob-
lem”. In: 2016 12th World Congress on Intelligent Control and Automa-
tion (WCICA) (June 2016). Guilin, China, pp. 3118–3123. doi: 10.1109/
WCICA.2016.7578704.

45

Document name

Date of issue

Document Number

Author(s) Supervisor

Title and subtitle

Abstract

Keywords

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title ISBN

Language Number of pages Recipient’s notes

Security classification

	Blank Page

