
 

 

 

Analysis of Cryptocurrency volatility and statistical 

distributions using ARMA and GARCH-type models 

Zhiyi (Jenny) You 

May 16, 2019 

 

 

 

 
 
 

 

 
 

Master’s degree thesis in Statistics (15 ECTS) 
Supervisor: Peter Gustafsson 

 

  



Abstract 

The study aims to investigate and model statistical properties of Bitcoin and other 

major cryptocurrencies. There were recent drastic changes in the level of Bitcoin 

prices as it moved from $740 in 2014 to $19,187 in 2017, and down to $3,830 in 

2018. The current study aims to fill the gap in the analysis of cryptoccurencies, 

primarily Bitcoin returns statistical process. Specifically, the study selects and 

estimates a model that traces dynamics of returns using ARMA, and also volatility of 

the residual from the model. To my knowledge, there is gap in the academic 

literature for the case of Bitcoin to use such approach.  

The analysis involves data on past daily prices of Bitcoin, in British Pounds and USD, 

as well as those of Ethereum and Litecoin, both in Pounds. The results obtained from 

the study provide evidence that ARMA model in combination with eGARCH volatility 

model can be used for analysis of statistical process of Bitcoin returns. Moreover, 

significant statistical differences are identified between Bitcoin prices in UK Pounds 

and US Dollars. Although there is no evidence that shows the price level has an 

effect on volatility, significant decline is identified in the volatility of Bitcoin 

log-returns since 2018 as compared to the previous period. For each considered 

cryptocurrency, the current study determines the optimal specification of ARMA 

model, as well as GARCH-type model and optimal statistical distribution of the 

residual. The set of results can be used to estimate statistical process behind the 

cryptocurrency historical prices. Moreover, relation between ARMA(p, q) lag order, 

and type of optimal volatility model and residual distribution is explored, no 

significant relation is identified.  

Keywords: Cryptocurrency, Bitcoin, Litecoin, Ethereum, volatility, ARMA, GARCH-type 

models, eGARCH, Student’s t-distribution, Laplace distribution, statistical 

distributions 
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1 Introduction 

Background 

This study explores statistical properties of Bitcoin and few other major cryptocurrencies, 

such as Litecoin and Ethereum, which are the most widely traded cryptocurrencies, by their 

market capitalization. Bitcoin was first introduced and documented by Satoshi Nakamoto in 

2008. Bitcoin is a form of Cryptocurrency- an “electronic payment system based on 

Cryptographic proof” instead of traditional trust (Nakamoto, 2008). According to Kristoufek 

(2013), the wild fluctuations in Bitcoin price cannot be explained by economic and financial 

theory. Factors such as interest rates and inflation do not exist, as there is no central bank 

overseeing the issuing of Crypotocurrencies. Following Bouri, Azzi and Dyhrberg (2017), the 

market for cryptocurrencies exceeds market capitalization of any large company, and could 

in the near future achieve the size of the stock market. The size of the cryptocurrency 

market calls for obtaining sufficient empirical evidence about the statistical and 

distributional properties of the returns on these assets.  

Analysed properties are those of the type of volatility characteristics, as well as 

distributional properties of Bitcoin residuals. In fact during 2014-2018, the price of Bitcoin 

moved from $740 to $19,187 and then down to $3,830. Moreover, following the success of 

Bitcoin, quite a number of other cryptocurrencies were launched. Two other major 

cryptocurrencies, which still have much lower market capitalization, are Litecoin and 

Ethereum.  

 

Research questions 

In the course of extensive statistical testing and evaluation, the study aims to obtain 

answers to the following research questions: 

 What is the best ARMA-type model to model the return on Bitcoin, Litecoin and 

Ethereum?  

 Does price level or changes in price level affect volatility of Bitcoin returns?  
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 What distribution and which conditional volatility model provide the best suit for the 

Bitcoin residuals?  

 Are statistical properties of Bitcoin the same for Bitcoin prices in GBP and USD?  

 Are there relations between ARMA(p, q) lag order and choice of optimal GARCH-type 

model and distribution of residuals? 

The third research question is also addressed to Litecoin and Ethereum, in addition to 

Bitcoin. Moreover, Bitcoin price properties in GBP are compared to those of USD-priced 

Bitcoin, to evaluate whether the exchange rate has an effect on the Bitcoin behaviour. Such 

investigations of statistical properties of cryptocurrencies are of relevance for risk 

management of investors into cryptocurrencies. This is of high relevance as cryptocurrencies 

are used by a number of institutional investors, and also used on some major exchanges. 

That is appropriate levels of risk can be set and managed in a more effective way, when 

statistical properties of the cryptocurrencies are better understood.  

 

Contribution of the study 

The study relates to the literature that explores statistical properties of Bitcoin and other 

cryptocurrencies (Bouri et al., 2017; Chan et al., 2017) as well as studies that explore 

distributional properties of random variables (Devi et al., 2013; Huang et al., 2008). In fact a 

system to model Bitcoin returns is suggested, that includes three components, to model 

return, conditional volatility, and distribution of model residuals.   

The main contributions are as follows. First, properties of cryptocurrencies returns are 

explored by combining the ARMA model for returns modelling and their residuals obtained 

are subsequently fitted in various relevant distributions. Then the log-returns from ARMA 

model are explored by using GARCH-type models. Second, statistical properties of Bitcoin in 

GBP are compared to those of Bitcoin in USD. The obtained results are different between 

the two, as different optimal ARMA models are identified, as well as different optimal 

distributions are determined, namely Student’s t-distribution for GBP price of Bitcoin and 

Laplace distribution for USD price. Third, the relation between ARMA (p, q) lag order, and 
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type of optimal volatility model and residual distribution is explored, no significant relation 

is identified. The implemented analysis results in the better understanding of the statistical 

process underlying Bitcoin prices. Specific models and distributions are selected among 

considered alternatives, and can be applied for modelling future returns and volatility. The 

investigation of this study makes it possible that relevant statistical process behind 

movements in Bitcoin prices can be estimated. 

 

Structure 

The study involves a number of sections. Thus, section 2 provides brief overview of relevant 

literature. Then, section 3 discusses methods and models that are used for the analysis, 

including ARMA models, conditional volatility models, and estimation of distributions as well 

as evaluation of their fit. Section 4 provides the results of the findings from statistical 

analysis, which suggests a system to model residuals that includes ARMA(p,q) model to 

predict Bitcoin returns, as well as conditional volatility GARCH-type model, and estimation 

of the best fit distribution to model residuals. The last section explores whether there is 

relation between the three components. Finally, the main findings are summarized in the 

concluding section, as well as recommendations for the future research.  

 

Data source 

All the Cryptocurrencies’ prices are obtained since 1st January 2014 up to 31st December 

2018. All the data were obtained from the international investment portal “Investing.com”. 

All the three cryptocurrencies’ prices are obtained in Pounds, while for Bitcoin also US Dollar 

prices are obtained. Then the Bitcoin Dollar prices are translated into the UK Pound with 

actual daily exchange rate. 

Estimation of the considered models, as well as obtaining MLE estimates of the distributions, 

is performed using statistical package R (R Core Team, 2016). Relevant software packages 

are those that aim to investigate time series analysis, including ‘tseries’ (Trapletti and Hornik, 
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2017), ‘rugarch’ (Ghalanos, 2017), ‘roll’ (Foster, 2019), as well as ‘propagate’ (Speiss, 2018). 

Previous researchers noted high relevance of R for time series analysis (Podgorski, 2015). 

 

 

2 Literature Review 

As cryptocurrencies appeared only in 2000s there has not been thorough investigation of 

statistical properties of Bitcoin and other cryptocurrencies. In fact, Bitcoin is known to be 

more volatile and more risky in comparison with traditional financial instruments such as 

stocks and bonds (Barker, 2019). In late 2010s, most trades in Bitcoin and other 

cryptocurrencies were implemented by Japan and the US. In fact, according to Jones (2017), 

Japan accounted for over 51% of Bitcoin transactions in 2017. In some countries, like China, 

issuing of new cryptocurrencies, so called ‘initial coin offerings’ (ICOs) are forbidden, due to 

lack of information about the behaviour and statistical properties of cryptocurrencies (Jones, 

2017). 

Engle (1982) introduced a model in which the variance at time t is modeled as a linear 

combination of past squared residuals and called it an ARCH (autoregressive conditionally 

heteroscedastic) process. Bollerslev (1986) introduced a more general structure in which the 

variance model looks more like an ARMA than an AR and called this a GARCH (generalized 

ARCH) process. Nelson (1991) suggested an even modified version of GARCH model, with 

the resulting process being called eGARCH (exponential GARCH). These approaches allow 

the standard deviation to eGARCH change with each observation. Glosten, Jagannathan and 

Runkle (1993) introduced GARCH with differing effects of negative and positive shocks 

taking into account the leverage phenomenon, which is called GJR-GARCH. All those 

mentioned GARCH-type models are the most well-known and used models for forecasting 

conditional variance and volatility (Hayashi, 2000). 

Brooks (2014) tells that in finance it makes sense to work with returns. Few recent studies 

explored some statistical aspects of Bitcoin returns. These include Chan et al. (2017) and 

Chu et al. (2015), who investigated volatility of log-returns, and also distributional 
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properties. First, Chu et al. (2015) evaluated the relevance of different GARCH-type models 

to better model the properties of cryptocurrencies volatility. Chu et al. (2015) determined 

model ‘GJR-GARCH’ as the one with the highest fit. Moreover, GJR-GARCH aims to capture 

asymmetry of innovations effect on conditional volatility.  

Later, Chan et al. (2017) explored the suitability of a number of statistical distributions, 

including Laplace and Gaussian for explaining the returns. In case with both, Bitcoin and 

Litecoin, generalized hyperbolic distribution provided the best fit. The determined 

distributions of the best fit were subsequently used to evaluate value-at-risk (VaR), and 

expected shortfall measures of risk. In the above mentioned studies, researchers used 2.5 

years of historical data on Bitcoin and other cryptocurrencies. The current study extends the 

time spans of available data, and chooses to evaluate five main strain distributions, where 

generalized hyperbolic distribution is not included. 

This study aims to combine two parts, using GARCH-type models to model clustering 

volatility nature, and also investigating the goodness of fit of a number of alternative 

distributions to evaluate the residual of returns on the considered cryptocurrencies.  

A review of GARCH-type models and approaches to their estimation was performed by 

Huang et al. (2008). The study considered two types of estimation methodologies, namely 

likelihood based on Gaussian Likelihood (GMLE), and another one that is 

log-transform-based estimator known as least absolute deviation estimator (LADE). The 

researchers concluded that the LADE estimation is a special case of GMLE estimator.  

 

 

3 Modelling Methodology   

This chapter reviews the methodology involved in the considered statistical models. These 

are the ARMA time series model for modelling returns, as well as GARCH-type models, as 

well as a set of considered distributions for modelling the residuals from ARMA models. In 

this study, the return 𝑅𝑡 is defined as the relative difference of the prices, 𝑅𝑡 =
𝑃𝑡

𝑃𝑡−1
 - 1 and 
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the log-return is then calculated as 𝑟𝑡 = log(𝑃𝑡) − log(𝑃𝑡−1), where 𝑃𝑡 is the price at time 

𝑡 and 𝑃𝑡−1 is the price at time 𝑡 − 1, i.e. one time unit before. One time unit is usually 

considered to be on basis of trading days. 

 

3.1 Stationarity tests 

With time series analysis, variables are needed to be stationary, according to Brooks (2014). 

Otherwise, regression modelling would be affected by spurious regression bias. Spurious 

regression bias is present when regression modelling shows significant relation between 

variables that do not have actual casual relation. For example, if two unrelated series grow 

similarly over time, regression can show an impact of one of these variables on the other.   

A stationary series has constant mean, constant variance and constant auto-covariance to 

each given lag (Brooks, 2014). An autoregressive time series of order one is stationary when 

its auto-regression coefficient is smaller than unit. The stationarity of time series of higher 

orders depends on the value of coefficients in the model. Otherwise, the process is known 

to have a unit root, when the autoregressive coefficient is 1. When the autoregressive 

coefficient is greater than 1, the process is considered as “explosive”. For this purpose, the 

study applies the Dickey-Fuller test to evaluate whether the time series is stationary or not. 

The relevant regression model for augmented Dickey-Fuller test (ADF) is as follows.  

∆𝑦𝑡 = 𝜓𝑦
𝑡−1

+ 𝜇 + 𝜆𝑡 + 𝑢𝑡                                                    (1) 

Under the null hypothesis the series y is non-stationary, which is equivalent to 𝜓=1. 

Equation (1) also includes the time invariant intercept μ and the time trend rate λ. The left 

hand-side variable is used in difference, that is why under 𝐻0 of non-stationarity 𝜓 = 1. 

When the null hypothesis is rejected, the time series is considered stationary. The 

coefficient is tested for significance using a standardized test-quantity with a nonstandard 

distribution. Critical values were obtained by Dickey and Fuller and are used for the purpose 

of this test in most statistical packages (Brooks, 2014). 
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3.2 ARMA Models 

Mean values of a single variable are predicted using ARMA model. This type of univariate 

models is also conveniently used for forecasting purposes. ARMA model contains 

auto-regressive components (AR(p)) and moving average components (MA(q)). The 

considered time-series variable 𝑦𝑡 therefore is modelled as a function of its AR(p) and 

MA(q) components as  

     𝑦𝑡 = 𝜇+∑ 𝜑𝑖
𝑝
𝑖=1 𝑦𝑡−𝑖+∑ 𝜃𝑗

𝑞
𝑗=1 𝑢𝑡−𝑗  + 𝑢𝑡                                    (2) 

so that the time series is a linear combination of its past realisations (AR-part), and a linear 

combination of the past realisation of the model errors (MA-part).  

The autocorrelation function (ACF) and partial autocorrelation function (PACF) are useful in 

determining the type of model for the given series. According to Brooks (2014), the 

following are peculiarities for AR, MA and ARMA processes. In case of an AR-process, ACF is 

geometrically decaying, and there are a number of non-zero points with PACF, which equal 

to the order of AR process. In case of a MA-process, there is geometric decay process with 

PACF, and the number of non-zero points with ACF indicates the order of MA process. For 

the ARMA process, which combines AR and MA, both functions, ACF and PACF, show 

geometric decay. In relation to ARMA model, researcher Devi, Sundar and Alli (2013) 

reported its high forecasting performance, and its ability to deliver high performance in 

comparison with modern data mining algorithms. 

Box-Jenkins (1976) approach to building ARMA model involves three steps - identification, 

estimation, and diagnostic testing. Identification can be tested based on the use of ACF and 

PACF, or the use of information criteria. Estimation is in fact obtaining model coefficients, 

and diagnostic testing involves adding further components to test whether they are 

insignificant, furthermore there is also autocorrelation test of residuals.   

 

3.3 Volatility GARCH models 

Due to changing nature of volatility of financial series, relevant models are developed to 

capture such characteristics. The relevant models include ARCH, as well as GARCH model. 
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Subsequently a number of further models are suggested, such as eGARCH and GJR-GARCH 

models.  

An ARCH model defines the current period variance as a function of the past realised 

residual. The formula below shows ARCH(1) model, but it can have higher order of 

parameters, ARCH(p) for p≥1.  

     𝜎𝑡
2 = 𝜔 + 𝛼1𝑢𝑡−1

2                                  (3) 

GARCH models further expand the above ARCH model. In addition to the ARCH component, 

it also includes a ‘GARCH’ component, which is the lagged conditional variance. The example 

below shows GARCH(1, 1) model, although it can be more general with p and q orders, 

respectively. Most widely used is GARCH (1, 1) model that fits most financial series (Brooks, 

2014). 

      𝜎𝑡
2 = 𝜔 + 𝛼1𝑢𝑡−1

2 +𝛽1𝜎𝑡−1
2                                (4) 

A number of other models provide enhancement of standard GARCH model. Specifically, 

there are models that strive to capture asymmetry in the actual data. For examples eGARCH 

and GJR-GARCH models are used to capture asymmetric effects in the volatility of returns. 

Magnitude of upwards and downwards volatilities are different, so that such effects are 

captured by these types of models. A generalized approach towards non-symmetric 

GARCH-type models was developed by Javed and Podgórski (2015). A popular model to 

capture non-symmetry is eGARCH. For this model, the asymmetry effect is captured by 

gamma (𝛾1). 

     log(𝜎𝑡
2) = 𝜔 + 𝛼1𝑢𝑡−1 + 𝛾1(|𝑢𝑡−1| − 𝐸|𝑢𝑡−1|) + 𝛽1log (𝜎𝑡−1

2 )               (5) 

In the eGARCH model, the coefficient 𝛼1  captures a size effect, while 𝛾1 captures ‘sign’ 

effect (Ghalanos, 2018). 

The GJR-GARCH model faces the asymmetry between the positive and negative innovations 

in straightforward manner. This is captured with coefficient 𝛾1 , which is the slope 

coefficient for the interaction variable that includes the innovation 𝑢𝑡−1 and an indicator 

for a negative innovation 𝐼𝑡−1,  
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     𝜎𝑡
2 = 𝜔 + 𝛼1𝑢𝑡−1

2 + 𝛾1𝐼𝑡−1𝑢𝑡−1
2 + 𝛽1𝜎𝑡−1

2                        (6) 

 where 𝐼𝑡−1=0, if 𝑢𝑡−1 ≥ 0 and 𝐼𝑡−1 = 1, if 𝑢𝑡−1 < 0.       

Evaluation of the GARCH models is considered based on Akaike’s information criteria (AIC) 

and Bayesian information criteria (BIC). Such model selections are implemented for each of 

the considered three cryptocurrencies- Bitcoin, Litecoin, and Ethereum. The analysis of 

volatility models in this study is performed for log-returns since volatility is defined as the 

annualized standard deviation of log-returns (Bennett et al., 2012). 

 

3.4 Distribution Fitting 

While returns on Bitcoin, and also other cryptocurrencies (Litecoin and Ethereum) are 

modelled using ARMA, the residuals from the model are obtained and their distribution is 

fitted using a number of alternative distributions. Most of the considered distributions in 

this section are symmetric, because the distributions of the residuals of cryptocurrencies 

shown in Figure 9 are rather more symmetric.   

Residuals of returns gained from ARMA model on Bitcoin can be explored by considering 

what distribution is closest to the actual distribution of returns on Bitcoin and other 

cryptocurrencies. Such distributions are explored as Normal distribution, Skewed normal 

distribution, Student’s t-distribution, Laplace distribution and Weibull distribution. The 

cumulative density functions (CDF) of these distributions are explored below, as well as their 

parameters are mentioned. The summary of the estimated parameters and evaluation of 

the fit is provided in section 4.4 below.  

 

Normal distribution (Gaussian) 

The following is the CDF of the general normal distribution where 𝑥∼N (𝜇, 𝜎2): 

F(x) = Φ(
𝑥−𝜇

𝜎
)                                                         (7) 

where 
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Φ(x) =
1

√2𝜋
∫ 𝑒

−𝑡2

2
𝑥

−∞
𝑑𝑡                                           (8) 

is the CDF for the standardized normal distribution, 𝑁(0,1). 

The mean of normal distribution is defined on the whole set of real numbers, while variance 

has to be finite, and also non-negative. In fact, the use of Q-Q plots in this study is visually 

explored in order to evaluate whether the cryptocurrencies log-returns follow normal 

distribution.   

  

Skewed normal distribution 

A version of normal distribution that is not symmetric is referred to as skewed normal.  

Its CDF is as follows:   

       F(𝑥)=𝛷(
𝑥−𝜆

𝛿
)-2Ͳ(

𝑥−𝜆

𝛿
, 𝛼)                                                                            (9)      

where λ is a location parameter, 𝛿 is a scale parameter, and 𝛼 is a shape parameter. Here 

Ͳ(
𝑥−𝜆

𝛿
, 𝛼) is Owen’s 𝑇-function (Owen, 1956), which is a function involving an integral of a 

weighted normal density function. 

Relevance of this distribution is related to its applicability to a number of processes that are 

skewed and therefore cannot be fitted with normal distribution. In fact, the distributions of 

residuals from cryptocurrencies are further shown in the Figure 9 to be rather symmetric 

but not perfectly, so that this distribution could turn out to be relevant.  

 

Student’s t-distribution 

Another alternative is Student’s t-distribution, which entails relatively fatter tails, compared 

to the normal distribution. Student’s t-distribution CDF is provided below. It involves the 

Gamma function (.) and hypergeometric function (.)12 F .  

     F(x) = 
1

2
 + 

𝑥−𝜇

𝜎

𝛤[
1

2
(𝜈+1)]

√𝜋𝜈𝛤(
𝜈

2
)

 2𝐹1[
1

2
,

1

2
(ν+1); 

3

2
 ; 

−(𝑥−𝜇)2/𝜎2

𝜈
]                  (10) 
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Student’s t-distribution involves location parameter μ, scale parameter 𝜎 (here, 𝜎2 is not 

the variance) and the shape parameter 𝜈  which is commonly known as “degree of 

freedom”.  

 

Laplace distribution 

The Laplace distribution, also called the double exponential distribution, is the distribution 

of differences between two independent variates with identical exponential 

distributions (Abramowitz and Stegun, 1972).  

It has CDF given by: 

     F(x) = 
1

2
 [1 + sgn(x-𝜇)(1-𝑒−|𝑥−𝜇|/𝑏)]                                     (11) 

Parameters of Laplace distribution involve location (μ, real number) and scale (b, positive 

real number). The Laplace distribution has been proved to be more relevant than the  

Gaussian for modelling in topography (Johannesson et al., 2017).  

 

Weibull distribution 

The Weibull distribution was first identified by Fréchet in 1927 and is named after Waloddi 

Weibull who was first to promote the usefulness of this distribution by modelling data sets 

from various disciplines (Murthy, Xie, and Jiang 2004).  

The CDF is defined as:  

     F(𝑥)= 1- exp[-(
𝑥−𝑎

𝛽
)𝛾],  for 𝑥 > 𝑎                                       (12) 

𝐹(𝑥) = 0, for 𝑥 ≤ 𝑎. Here 𝑎 represents the location parameter, 𝛾 represents the shape 

parameter and 𝛽 represents scale parameter. The three-parameter Weibull distribution 

can be used to model both positive and negative observations. 

 

http://mathworld.wolfram.com/ExponentialDistribution.html
http://mathworld.wolfram.com/ExponentialDistribution.html
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3.5 Model selection 

There are several steps for the analysis of Bitcoin, Litecoin, and also Ethereum. First, the 

dynamics of returns on cryptocurrencies is modelled using ARMA model. Second, volatility is 

modelled using clustered volatility models, and their performance is compared. Third, 

residual returns from ARMA model are obtained and their statistical properties are 

modelled using statistical distributions. Goodness of fit of these distributions is evaluated 

based on information criteria; the Akaike’s information criterion (AIC) and the Bayesian 

information criterion (BIC). AIC (Akaike, 1973) is a popular method for comparing the 

adequacy of multiple, possibly nonnested models. An alternative model selection criterion is 

BIC, which penalizes more on the additional parameters of the model (Schwarz, 1978). 

Formulas for the information criteria are provided as follows: 

     AIC = 2𝑘 − 2ln𝐿( ) 

     BIC = 𝑘ln𝑛 − 2ln𝐿( ) 

where 𝑛 is the number of data points in the training set, 𝑘 is the number of parameters in 

the model, and 𝐿 is the maximized likelihood of a model .  is an estimator of  and  

 is the vector of the relevant parameters of distribution. The most appropriate 

distribution results in the minimum information criterion.  

 

 

4 Analysis of Results 

This chapter provides statistical analysis results. Cryptocurrencies’ returns are explored by 

combining the ARMA model for returns modelling and their residuals obtained are 

subsequently fitted in various relevant distributions. Then the approach is to fit different 

statistical distributions and then implement goodness of fit based on a number of errors and 

information criteria. The log-returns from ARMA model are explored by using GARCH-type 

models for modelling conditional variance. At last, to explore and evaluate the relations 

between ARMA(p,q) lag orders and choice of optimal GARCH-type models and the residual 

distributions. 
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4.1 Descriptive statistics 

Firstly, statistical features of the distribution of the considered cryptocurrencies are 

considered. These include the analysis of the prices and daily log-returns. Among the three 

cryptocurrencies, the price (in £) is the highest for Bitcoin, then Ethereum, and on average, 

the lowest price is for Litecoin. All price level series are non-stationary, which is proved by 

augmented Dickey-Fuller test in Table 1. 

Table 1 – Summary statistics of Cryptocurrency prices 

 

Furthermore, basic statistical properties of log-returns are evaluated in Table 2. The min 

daily log-return of -12.36% is the lowest for Ethereum, and the highest daily log-return is 

48.69% in case of Litecoin. On average, log-return is 0.02% for Bitcoin, 0.21% for Litecoin, 

and 0.13% for Ethereum. Among the three cryptocurrencies, the one with the highest 

volatility is Litecoin (sd=3.19%).  

Table 2 – Summary statistics of Cryptocurrency daily log-returns 
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Augmented Dickey-Fuller tests are used to evaluate the stationarity of prices, returns and  

log-returns for Bitcoin, Litecoin and Ethereum. The results indicate that prices are 

non-stationary, whereas the returns and log-returns are stationary and therefore suitable 

for time series regression analysis. 

 

Histograms of the three cryptocurrencies’ returns are provided in Figure 1. The following 

plot indicates that actual returns of Bitcoin do not have fat tails, and most of returns 

distribution is close to zero. In general, the distributions of cryptocurrencies are in fact 

narrower in comparison to normal distribution.  

 

Figure 1 - Histogram of returns on cryptocurrencies 
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In addition to the distributional analysis, descriptive analysis is performed to evaluate 

relation between volatility of Bitcoin returns and Bitcoin price. It can be expected that price 

levels may cause effect on the volatility of Bitcoin returns. The relation between Bitcoin 

prices (P), as changes of Bitcoin prices (∆𝑃 ) with volatility is explored using scatter plot and 

pairwise correlation. Figure 2 indicates the absence of definitive relation between volatility 

of Bitcoin returns and Price, as well as between volatility of Bitcoin returns and change in 

Price. Correlation relation is statistically tested, and the results are not significantly different 

from zero. 

 

Figure 2 – Bitcoin prices and volatility 

 

Figure 3 below aims to illustrate the considerable changes Bitcoin price has gone through 

during the years 2014 to 2019. This study divides the time interval of log-returns into three 

periods in order to test whether there are any differences in volatilities under these periods. 

The first period involves relatively low price of Bitcoin and lasted till May 2017. The second 

period involves considerable acceleration of Bitcoin price and can be considered to last till 

April 2018. The third period involves some decline of Bitcoin prices, after April 2018. The 

F-test shows that there is no significant difference in the variances between Period 1 and 

Period 2 (F = 0.969, p=0.74), while the variance in the third period is much lower in 

comparison to the second period (F = 2.902, p <0.01 ). The results from comparing variances 

in different time periods of log-returns can vary depending on how the time periods are 

identified. The plot of log-returns indicates that the log-return is almost zero, and the 

volatility seems to be nervous since there exist many very large fluctuations. 
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Figure 3 - Time series of Bitcoin prices (left) and log-returns (right) in 2014 - 2019 

 

4.2 Modeling of returns with ARMA 

On this stage, the goal is to identify and estimate the ARMA model, for estimation of the  

daily returns. Forecasting of returns is relevant for investors as they need to predict future 

returns in order to earn returns. Following the three step Box-Jenkins methodology, the 

steps include identification, estimation and evaluation. Identification is performed using ACF 

and PACF (Figures 4 - 6). The analysis of the ACF and PACF functions for Bitcoin, Litecoin and 

Ethereum return shows that both functions experience some intricate dependent structure 

of ARMA characteristics. Therefore, the relevant ARMA model has to involve both AR and 

MA components for all three cryptocurrencies.  

Figure 4 - ACF and PACF for Bitcoin (£) 
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Figure 5 - ACF and PACF for Litecoin  

  

Figure 6 - ACF and PACF for Ethereum residuals 

  

  

  

While there is no definitive conclusion from visual analysis of ACF and PACF, additional 

analysis is needed. There are additional analysis based on obtaining and comparison of the 

information criteria. The iterative analysis is implemented in order to consider the full set of 

all possible models with combination of AR(p), where p is an integer in the interval [0, 10] 

and MA(q), where q is an integer in the interval [0, 10]. Therefore, the testing set includes 

121 models.  

For the Bitcoin prices, the result shows that in fact the specification of optimal ARMA model 

is different for the case of GBP prices and in case of USD prices for Bitcoin (Table 3). The 

models provided in the table are the optimal models selected based on the criterion of AIC 

minimization.  
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Table 3 – Optimal ARMA models summary 

 

 

Figure 7 shows the plot of all possible ARMA models starting with ARMA(0, 0) and going up 

to ARMA(10, 10). The lowest value of AIC is that for ARMA (9, 8). But there are a number of 

close competitor models of lower order, for example ARMA (5, 6) has AIC = -9269.6, which is 

higher by less than 0.03%. Moreover, most of models to the right of the considered 

spectrum have relatively poorer performance, as compared to the models in the left part of 

the spectrum. This might suggest that with modelling financial asset returns, such as Bitcoin, 

simpler models might be generally preferred, since the results turned out to be relatively 

close to each other. Over-parameterization can also be avoided by applying simpler models. 

Since ARMA (9, 8) shows top performance among the considered models, it is retained for 

the subsequent analysis as the optimal one. Comparison with lower lag order ARMA models 

is implemented in further parts. 

Figure 7 - Dynamics of AIC from ARMA(0, 0) to ARMA(10,10) (Bitcoin £) 
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4.3 Conditional volatility models Estimation 

The conditional variance is frequently modelled using the GARCH-type models, which are 

capable of predicting variance, and also modelling its clustering nature (Tsay, 2010). Four 

models from the GARCH family of models are considered, and their parameters are 

estimated and provided in Table 4.  

Table 4 summarises the considered GARCH-type models for Bitcoin and two other 

cryptocurrencies. The analysis for Bitcoin is performed based on its GBP and USD prices. 

Based on AIC and BIC criteria, it can be concluded that eGARCH is the best model 

specification for Bitcoin UK price, Litecoin and Ethereum. Even though for Bitcoin US dollar 

price, the GARCH model provides slightly lower AIC and BIC, but since the difference 

between the information criterion of two models is smaller than 0.1% and all components’ 

coefficients are highly significant in eGARCH model, the study concludes that eGARCH is the 

best model for Bitcoin US price as well. According to Brooks (2014), ARCH (1) and GARCH 

(1,1) are sufficiently rich for financial and economics. This study has also evaluated some of 

the ARCH and GARCH models by including more lags but there were no improvements in 

terms of information criteria. 

Moreover, from the eGARCH model, relevance of the model components is different for the 

different cryptocurrencies. For the Bitcoin case, all coefficients are significant, including the 

constant term, as well as the ARCH(1) and GARCH(1,1) components, and also the sign 

component (α1). The effect of the sign component is about of the same magnitude for the all 

three cryptocurrencies. Unlike for Bitcoin, for Litecoin and Ethereum the ARCH(1) 

component is not significant. Relevance of GARCH(1,1) component is highly significant for all 

three cryptocurrencies.  
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Table 4 - GARCH-type model 

 

 

4.4 Fitting the best distribution for the residuals 

The residuals are obtained from estimated ARMA models of the considered 

cryptocurrencies. From ARMA models, residuals are obtained as the difference between 

actual and predicted by the model values. Now the distribution of these residuals is 

evaluated. Firstly, Q-Q plots are considered, in order to observe the nature of the residuals. 

The Q-Q plots are provided in Figure 8.  

A Q-Q plot is a scatterplot conducted by plotting two sets of quantiles against one another. 

If the data is normally distributed, the points in the plot follow a straight diagonal line of 

45-degrees. For all three cryptocurrencies, the Q-Q plot departs considerably from a 

45-degree line, in particular in the lower and upper ends of the distribution. In this way, the 

Q-Q plot indicates that actual distribution is far from normal. Additional insight is that the 

three distributions are different from each other. For example, Litecoin plot exhibits greater 

asymmetry as compared to the two other cryptocurrencies (Figure 8).  
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Figure 8 - Q-Q plots of cryptocurrencies 

  

 

Further exploration is performed for the residuals of the three cryptocurrencies. As the first 

step, distributional characteristics of residuals for the three cryptocurrencies are shown in 

the histograms of the residuals in Figure 9. The results indicate that there are thin tails for 

Bitcoin residuals, while those are thick in case of Ethereum and especially for Litecoin.  
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Figure 9 - Return residual distributions 

  

 

 

Fitting of the residuals for Bitcoin, Litecoin and Ethereum is implemented using the 

considered five distributions. The distribution fitting performance are summarised for each 

of the cryptocurrencies, and each of the distributions, in Tables 5, 6, 7 and 8. Then Table 9 

provides the summary of the best fit distribution and summarises its parameters.  

In case of Bitcoin, the results for prices in GBP and in USD are provided in Tables 5 and 6. 

The results for the two cases are different - while Student’s t-distribution shows the top 

performance for Bitcoin prices in GBP, Laplace distribution is the top-performing one in case 

of the USD Bitcoin prices. With these mentioned distributions, the values of BIC are 

minimized for the two series of returns. Even though in case of GBP Bitcoin, Laplace 



 

26 

 

distribution is not the top performing one, still there is solid performance of this distribution 

as it shows slightly higher value of BIC information criterion (Table 5). Vice versa, for the 

Student’s t-distribution in the case of US Bitcoin, it provides as good a fit as the optimal one 

- Laplace distribution (Table 6). The weakest performance is in the case of Weibull 

distribution which provides the highest BIC and the largest error. 

Table 5 – Residuals distribution fitting of Bitcoin (£) 

 

 

 Table 6 – Residuals distribution fitting of Bitcoin ($) 

  

In case with Litecoin (Table 7), the best fit is obtained in case of Laplace distribution. Also, 

solid fit is achieved with Student’s t-distribution. These are the two leading distributions 

that are the same for Bitcoin. The weakest performing distribution is the Weibull 

distribution, as its fitting errors are the highest, and the value of BIC is in fact the largest as 

well (as opposed to be minimized). The same rationale is valid as for Bitcoin – the Weibull 

distribution provides the weakest performance for both the UK Pound price and the US 

Dollar price. 
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Table 7 – Residuals distribution fitting of Litecoin (£) 

 

 

Finally, for the case of Ethereum, Table 8 shows that the best performing distribution is the 

Student’s t-distribution (BIC= -663.60), followed by the Laplace distribution (BIC = -654.28). 

The weakest performing distribution is the Weibull distribution. 

 

Table 8 – Residuals distribution fitting of Ethereum (£) 

 

 

The best and the worst performing distribution seems to maintain its persistence for all 

cases. The Laplace distribution and the Student’s t-distribution provide the best descriptions 

of the residuals in this study. The Weibull distribution provides the weakest fit in all cases. 

Among the considered three cryptocurrencies, the best fit also is somewhat varied. The 

value of BIC information criterion is the lowest for Litecoin (BIC = -820.84), suggesting that 

the use of its best fit distribution would be more effective than the use of the best fit 

distribution for Bitcoin (BIC = -460.12) or Ethereum (BIC = -663.60).  
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Table 9 – Best fitted distributions and their parameters 

 

 

4.5 Relation between models and distributions 

This final section aims to explore and evaluate relations between the considered models 

and the residual distributions. The three components of the larger model are the ARMA 

model, as well as conditional volatility model, and specific distributions of residual. These 

components can be related to each other, in some way as it is schematically shown in Figure 

10 below.  

Figure 10 - Components of a larger model 

 

Of the three components, the ARMA(p,q) model is used to predict future return on Bitcoin, 

with a related ARCH/GARCH model responsible to model conditional volatility of Bitcoin 

log-returns, and a specific distribution is then required to effectively evaluate risks and for 

hypotheses testing. Thus the three considered aspects can be considered as parts of a 

ARMA(p,q)

Distributions
ARCH

GARCH
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system that is used to model Bitcoin prices. It is possible that ARMA(p,q) models maintain 

persistence in terms of optimal GARCH-type model and residual distribution. Or, 

alternatively, there can be some changing patterns.  

In order to test possible linkages, the following approach is considered using the case of 

Bitcoin. The optimal ARMA is ARMA(9, 8) that is a high order model with lowest AIC value, 

which has an accompanying optimal GARCH-type model eGARCH, and the distribution of 

residuals being Student’s t-distribution. The approach is aiming to gradually decrease the 

level of ARMA(p,q) model for Bitcoin, and observe the change of optimal GARCH-type model 

and optimal residual distribution. For the purpose of such exercise, such models are 

considered as ARMA(7, 7), ARMA(5, 5), ARMA (3, 3) and ARMA(1, 1). The summary of ARMA 

models and their optimal GARCH models, as well as optimal residual distributions are 

summarized into Table 10. 

 

Figure 11- AIC plot of five chosen ARMA models 
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Table 10 - Optimal components comparison for ARMA(p, q) Bitcoin (£) models 

 

 

The above results indicate that the optimal conditional volatility model is the same for all 

considered alternative ARMA(p,q) models. The eGARCH model is optimal in each of the 

considered cases. The lack of any relation between lag order of ARMA and the conditional 

distribution model hints towards the conclusion that there is not much relation between the 

type of model for modelling conditional volatility of Bitcoin and a model to estimate return 

of Bitcoin. 

Also, when the optimal distribution of residuals is considered, the results were also 

confirmed to be rather consistent. In fact, the Student’s t-distribution appeared to be 

optimal in 4 out of 5 models. Only for ARMA (3,3) the Laplace distribution provides better fit. 

In fact, in all of the considered ARMA models, the Laplace distribution provides almost as 

good fit as that of the Student’s t-distribution. For example, in case of ARMA(9,8) model, 

from Table 5, BIC for the Student’s t-distribution is -460.1, while BIC for Laplace is -443.7. 

Thus both these distributions, namely Student’s t-distribution and Laplace provide close fit 

for residuals of Bitcoin returns, for all considered lag orders of ARMA(p, q) model.  

Furthermore, for each of considered five ARMA models, the estimated Student’s 

t-distribution parameters are summarised in the Table 11. The results indicate that although 

these distributions are close to each other, they are not identical.  
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Table 11 – Parameters of Student’s t-distribution of ARMA models (Bitcoin £) 

 

 

Moreover, for the above distributions, the probability density functions (PDF) are plotted 

(Figure 12). These end up being highly close to each other. Visual inspection of the fitted 

distributions indicate that fitted distribution of the residuals from the five different lag order 

ARMA models are not very much different from each other. It thus probably makes sense to 

use lower lag order ARMA model, rather than a higher order one, since the differences are 

very small. 

 

Figure 12 - Fitted t-distribution of residuals from ARMA models 
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5 Conclusion and future research 

The study suggests a system to model Bitcoin returns, which includes three components.  

These three components include modeling logarithmic returns using ARMA model based on 

Box-Jenkins (1976) methodology. Volatility of the log-return, obtained from the optimal 

ARMA model, is modeled using GARCH-type models of conditional volatility, as well as using 

different statistical distributions to evaluate the residuals obtained from ARMA model, such 

as Normal, Laplace, and Student’s t-distribution. Also, analysis is performed to explore 

whether different lag orders of ARMA model has an effect on selection of optimal 

GARCH-type models and selection of optimal residual distributions. The answers to the 

research questions (RQs) are aimed to be obtained.  

RQ1: What is the best ARMA-type model to model the return on Bitcoin, Litecoin and 

Ethereum?  

In fact, model identification results in different models chosen: ARMA(9,8) for Bitcoin in GBP, 

ARMA (10,10) for Bitcoin in USD, ARMA(10,4) for Litecoin, and ARMA(8,8) for Ethereum. 

 

RQ2: Does price level or changes in price level affect volatility of Bitcoin returns? 

No significant relation is identified between the price level or the changes in price level and 

volatility of Bitcoin. In case of Bitcoin, returns distribution, as well as that of price changes is 

relatively symmetric around zero. Moreover, volatility of Bitcoin is shown not to be related 

to the returns on Bitcoin, so that in periods of high returns volatility is roughly the same as 

in periods of low returns. This feature makes Bitcoin to stand out of the traditional approach 

that viewed financial assets (such as stocks) to have expected return - volatility trade-off. 

Although the issue can be explored deeper in further research. 

 

RQ3: What distribution, and which conditional volatility model provide the best suit for the 

Bitcoin residuals?  
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Student’s t-distribution shows the top performance for Bitcoin prices in GBP, Laplace 

distribution is the top -performing one in case of the USD Bitcoin prices. The best models 

are eGARCH(1, 1) for all of the three cryptocurrencies. The fit of this model is significantly 

higher than that of standard GARCH, ARCH, or GJR-GARCH. This confirms relevance of 

eGARCH models for fitting the residual volatility of Bitcoin and other cryptocurrencies. 

These findings make up the tool set that can be used to estimate the underlying statistical 

process behind the Bitcoin price dynamics.  

 

RQ4: Are statistical properties of Bitcoin the same for Bitcoin prices in GBP and USD?  

The analysis is conducted separately for Bitcoin traded in GBP and that in USD. The obtained 

results suggests that the optimal models and distribution for Bitcoin prices in Pounds are 

ARMA (9,8), eGARCH and Student’s t-distribution. An ARMA(10,10) model for the returns, 

an eGARCH for the volatility and a Laplace distribution for the Bitcoin returns in Dollar 

shown to be the best performing model. This suggests that statistical properties of 

cryptocurrencies do differ between the considered currencies. Since the statistical 

characteristics of Bitcoin are not the same depending on the choice of currency, this 

provides evidence that the exchange rates, which is another type of time dependent process, 

interfere with the statistical properties of Bitcoin. This finding enhances the research 

outcomes about exchange rates of Bitcoin, which was conducted by Chu, Nadarajah and 

Chan in 2015 (Chu et al., 2015). 

 

 

RQ5: Are there relations between ARMA(p,q) lag order and choice of optimal GARCH-type 

model and distribution of residuals? 

This study gradually decreases the level of ARMA(p,q) model for Bitcoin, and observes the 

change of optimal GARCH-type model and optimal residual distribution. The optimal 

conditional volatility models are the same for all considered alternative ARMA(p,q) models. 

Student’ t-distribution appeared to be optimal in 4 out of 5 chosen models. Only for ARMA 
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(3, 3) the Laplace distribution provides better fit. In fact, in all of the considered ARMA 

models, the Laplace distribution provides almost as good fit as that of t-distribution. In 

conclusion, no significant relation is identified.  

 

To apply spectral analysis to Bitcoin prices would be an alternative way to model the 

statistical properties of Bitcoin. Following Cryer and Chan (2008) spectral analysis aims to 

identify hidden repeating patterns within distribution of time series variables, involving sine 

and cosine functions. For example, spectral specification of ARMA model can be estimated 

to closely fit the observed history of cryptocurrency price. The performance of such model 

can be compared to that in the current study.   

 

The further research could be extended to include more cryptocurrencies, and also to 

compare the statistical properties of cryptocurrencies to those of the major stock market 

indices. Also, intra-day frequency data could be used for such analysis. The analysis in this 

study is implemented using the Bitcoin exchange rates versus GBP, additional insights could 

be obtained from the analysis of Bitcoin and other cryptocurrencies prices versus other 

major currencies and further explore how exactly the exchange rates affect the statistical 

properties of Cryptocurrencies. Moreover, to research the rationale behind the drastic 

increase of Bitcoin prices during 2018 would also be interesting. 
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