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Abstract

Human hand gestures present a novel way of interacting with electronic devices.
A millimeter-wave radar setup utilizing a pulsed Resonant-Tunneling Diode signal
generator in the 60 GHz ISM band is used to measure 12 different hand gestures.
The data is used to train and validate Convolutional Neural Networks (CNNs).
The measurement setup utilizes a real time sampling oscilloscope and down-mixing
of the received radar signal. Three data types are under test: data without pro-
cessing (Range-Time), Fourier-transformed data (Range-Doppler) and windowed
Fourier-transformed data divided into three frames (WFT).

A pre-defined and pre-trained CNN ResNet50 is initially used for data clas-
sification. The validation accuracy for 12 gestures with 180 measurements each
and a training-validation quota of 60%-40% was 98% (Range-Time), 85% (Range-
Doppler) and 91% (WFT). Additionally, a proposed CNN architecture with less
complexity named SimpleNet is investigated, showing a validation accuracy (for
the same data and training-validation quota as for ResNet50) of 95% (Range-
Time), 85% (Range-Doppler) and 93% (WFT). For SimpleNet, the presented
results are the average values of 25 different training sessions.

Additionally, measurements from an independent test group were classified
using above trained networks, with results that indicated relatively weak general-
ization for the classifying networks under test.
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Popular Science Summary

Träffsäker geststyrning med höghastighetsradar och
maskininlärning
Att styra elektronik med handgester kommer att revolutionera sättet
vi interagerar med teknologi. Med en höghastighetsradar kan man till-
sammans med maskininlärning avläsa 12 olika hangester med över 95%
träffsäkerhet. Detta är en snabb och energisnål metod som fungerar
oberoende av ljusförhållanden.

Kontaktlös styrning med handgester kräver en hög noggrannhet om det ska kunna
ersätta eller utöka dagens existerande touch-skärmar och knappar. Elektronik
som är relevant för geststyrning är till exempel smartphones, smarta klockor och
infotainment-system i bilar.

Radar har klassiskt varit stora maskiner som använts för att upptäcka och
spåra stora fordon, raketer, och flygplan. Radar idag är annorlunda! Dagens
teknik har gjort det möjligt att bygga extremt snabba och noggranna radarsystem
inte större än en enkrona, som drivs av bråkdelen av den energi som en radar i
ett flygtorn behöver. Idag används sådana typer av radarsystem i bland annat
självkörande bilar. Nästa steg kan vara att bygga in en radar i användarelektronik
som till exempel smartphones. Här skulle man då med handgester kunna höja
volymen, starta en app, ta en bild, eller till och med skriva ett sms. Gestmätningar
med radar har fördelen att inget ljus behövs, som för en kamera till exempel.
Istället används elektromagnetisk strålning för att känna av handen. Då spelar
det ingen roll om det är kolsvart eller om radarsensorn är täckt av smuts heller för
den delen, den fungerar ändå.

För att klassificera de olika handgesterna används maskininlärning. Maskinin-
lärning är en typ av artificiell intelligens (AI) där datorn själv hittar mönster och
viktig information från radarmätningen, mönster och kopplingar som en människa
aldrig hade klarat av att göra. Det maskininlärnings-system som används i denna
studie kan särskilja mellan de 12 olika handgesterna med över 95% träffsäkerhet.
På hundra gester blir alltså bara max fem stycken feltolkade. Mer avancerad AI
kan öka träffsäkerheten, och ett system utvecklat av forskare och ansett vara en
av världens bästa dataklassificerare tolkade gesterna rätt till 99%.

Mätningarna från handgesterna tycktes dock vara relativt personliga, alltså
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var det en utmaning för AI-systemet att generellt tolka blandad data från ett
flertal personer. En utveckling för att göra radarmätningar av gester från många
olika personer kräver alltså ett mer utvecklad och ”generell” AI-system.

Denna studie använder handgester som passar till användarelektronik, du kan
till exempel svepa med handen åt höger eller vänster för att byta sida eller snurra
ditt pekfinger i en cirkel för att höja eller sänka volymen i din bilstereo. Allt utan
att behöva hitta en knapp i mörkret eller att ens kolla bort från vägen när du
kör. Möjligheterna för att implementera olika gester är nästan oändliga och kan
anpassas till de behov som användaren har.

I takt med att tekniken utvecklas kommer fler och fler användningsområden
att uppenbara sig. Avancerad gestmätning skulle kunna användas till VR-miljöer,
medicinska operationer på distans, teckenspråkstolkning, och mycket mer. Framti-
den ser i vilket fall ljus ut för geststyrning med radarteknik. Snart är kanske
störande fingeravtryck på mobilen ett minne blott!
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Nomenclature

ANN Artificial Neural Network
CNN Convolutional Neural Network
CR Cross-Range
DR Down-Range
EM Electromagnetic
ET Equivalent Time

FMCW Frequency-Modulated Continuous-Wave
FoV Field of View
FT Fourier Transform
IF Intermediate Frequency
IQ In-phase-Quadrature-phase
LO Local Oscillator

PRF Pulse Repetition Frequency
PRI Pulse Repetition Interval

ResNet50 Pre-defined and pre-trained CNN
RF Radio Frequency
RT Real Time

RTD Resonant Tunneling Diode
Rx Receiving antenna

SimpleNet Own, less complex CNN architecture
Tx Transmitting antenna

WFT Windowed Fourier Transform
WG Wavelet Generator
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Chapter 1
Introduction

Radio Detection and Ranging (RADAR) have historically been used as means of
object detection in large-scale applications, with technological development ini-
tially driven by the military sector [1]. The operating wavelength for early radar
systems was typically in the order of MHz, and had a large implementation size
and high energy demands. But as technology matured and electrical components
decreased in size, as well as the move towards solid-state integration, radars have
started operating with higher frequencies with wavelengths in the order of millime-
ters [2]. The term ”millimeter-wave radar” includes radars operational at 30-300
GHz. Today, radars together with sophisticated computing are used in many ap-
plications such as astronomy, weather detection, radar imaging, object tracking,
sensors, and hand-held instruments for measuring vehicle speed [2, 3, 4].

A big driving factor behind millimeter-wave radar today, aside from military
applications [2], is the automotive industry, with a key use in autonomous vehicles
[5]. Here there exists a need for radars with high accuracy sensing both outside
and inside of the vehicle. This industrial need is contributing to the interest and
development of short-range radar detection. While it is mainly the automotive
industry that drives the development, novel applications are investigated along
the way as the technology becomes more available. A key benefit with radar is
its independence of light (as for optical systems) and sound (as for audio or voice-
detecting systems) [6], it only relies on reflected electromagnetic (EM) waves.

As the usage of operating frequency and bandwidth is heavily controlled around
the world, it is attractive for researchers to investigate frequencies which have less
convention. A so-called unlicensed band presents the opportunity for novel stan-
dards and operations. One such band is the 60 GHz ISM (Industrial, Scientific and
Medical) band, with a center frequency of 60 GHz and an open 7 GHz bandwidth
[7]. With no strict demands and a relatively wide bandwidth, this frequency band
is of interest to both the industry and the scientific community. The 60 GHz ISM
band also has limited propagation range compared to lower frequencies due to
a higher EM attenuation in the atmosphere [7], which allows for re-usage of the
spectrum.

As modern electronic devices develop both in their performance and applica-
tions, a need for novel ways of interaction is presented. Especially contactless or
touchless interactions, which enables more convenient control of smaller devices
or devices out of reach. An example of an intuitive way of touchless interactions
with a device would be by using hand gestures. This could prove to be a future
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2 Introduction

way of handling upcoming types of consumer electronics [8, 6, 9].
The demands of touchless interactions lies both in reliability, power consump-

tion and device size [8]. The need for low power and low cost implementations
is crucial when it comes to battery driven consumer devices. Implementations
relying on touchless interactions needs to meet the standards of today’s market,
thus creating a demand for research in the field.

In contrast to for example mechanical interactions such as pressing a button,
where the intention of an input is clear, complex inputs with many variables need
capable methods for providing a correct output. This would be the case for gesture
recognition, as the measurement of a single gesture could contain large amounts of
data, for example in the form of finger position and velocity. Classification of infor-
mation is a large and active field of research, and as computational speed becomes
more available the use of data recognition methods such as Machine Learning
and Deep Learning becomes more feasible [10]. Methods such as Convolutional
Neural Networks (CNN) are extensively used for image classification, showing an
unprecedented performance in its ability to recognize images belonging to hun-
dreds or thousands of categories, or classifying hand-written text [10]. The field
of Deep Learning is in no way saturated and novel applications are investigated
all around the world.

The goal of this thesis is to evaluate millimeter-wave radars for touchless in-
teractions, specifically hand gesture sensing, and how well the gestures can be
classified. This is a field of interest for future modern electronic applications.
Current research of gesture classification using millimeter-wave radar systems re-
lies on frequency-modulated continuous-wave (FMCW) radar to a large extent
[6, 8, 11, 12]. Although FMCW implementations perform well in terms of resolu-
tion and detection, the power consumption is relatively high due to continuous EM
emission compared to pulsed emission. As FMCW provides convenient Doppler
processing, most research is directed towards utilizing and classifying Doppler pro-
cessed data.

This thesis will define a radar setup and use it to measure human hand ges-
tures with varying complexity. The radar setup utilizes an in-house developed and
manufactured resonant tunneling diode (RTD), which acts as a pulsed millimeter-
wave signal generator. It displays a large bandwidth due to pulse lengths in the
picosecond scale [13]. The data will be classified using different CNNs. A network
with an existing architecture found in literature, which is pre-trained on various
image types, will be trained with supplied radar data using transfer learning. Ad-
ditionally, a network of own design and less complexity is presented in this thesis,
only relying on the supplied radar data and no pre-training. A comparison of
networks with varying architectures will give insight in the importance of network
complexity. While the radar setup will not fulfill demands regarding power con-
sumption, size, and cost discussed above, it will work as a proof-of-concept for
implementing gesture sensing using a low-power and small size RTD pulsed signal
generator.

Both reciprocal (frequency-domain) and spatial data will be investigated in
regards to classification performance in this thesis. The measurements from the
radar setup will be processed using methods first shown on simulated data, dif-
ferent degrees of signal processing will be tested and evaluated. Classifying and
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comparing these methods will be useful for discussing the need of signal process-
ing for deep learning. The generated waveform is pulsed contrary to using the in
literature more popular FMCW approach. A number of 12 gestures, a relatively
larger number relative to what is often found in studied literature, are tested to
investigate limitations and/or capabilities of the proposed methods and difference
in response between the gestures.

This thesis is structured as follows. Chapter 2 introduces theory for under-
standing relevant physics, radar operations and signal processing, as well as deep
learning classification. Chapter 3 presents methods for choosing a suitable im-
plementation of the radar setup, along with two alternatives. The chapter also
presents measurement-and signal processing methods, as well as to how classifica-
tion will be performed. Additionally, a simulation process is introduced where the
proposed signal processing is visualized and tested. In chapter 4, results from the
measurements and classification are presented along with analysis and discussion.
Finally, chapter 5 summarizes the experiments, results, and discussions. Chapter
6 provides an outlook for further research as well as work that this thesis could
be complemented with. At the end, an Appendix is presented with additional
material, including additional tests and data visualizations.
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Chapter 2
Theory

In order to better understand the methodology and results in this thesis some
theoretical background in electromagnetic field theory, radar operations, signal
processing, and artificial neural networks is presented.

2.1 Electromagnetic Field Theory

Electromagnetic (EM) waves are a combination of electric field (E) and magnetic
field (B) waves. For plane waves the two fields exist in planes orthogonal to each
other and propagate with the speed of light , c = 3 · 108 m/s, in the direction
orthogonal to both E and B [14] (p.5-8).

The amplitude A of E and B can be mathematically described as sinusoidal
waves propagating in z-direction with time t, oscillating with a frequency f Hz:

A = A0cos(kz − ωt+ φ0) (2.1)

where A0 is the peak amplitude and φ0 the initial (fixed) phase. The angular
frequency ω rad/s and the wavenumber k rad/m are both related to frequency as:

ω = 2πf, k =
2π

λ
, λ =

c

f
(2.2)

where λ is the wavelength in meters.
The wavelength correlates to the propagation of an EM wave at a certain time

t, where it is the closest distance between two corresponding points with equal
amplitude on the sinusoidal E or B wave. Frequency can similarly be attributed
to the number of oscillations or cycles per second for the propagating EM wave
at a certain position z. The time between equivalent points on the EM wave is
called the period T , which is equal to the inverse of f . Figure 2.1 illustrates the
propagation of EM waves in free space, in the z-direction, at a certain time.
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6 Theory

Figure 2.1: EM wave propagating in free space (z) at a set time (t).

The phase of the E and B waves at t = z = 0 is set by the initial phase φ0
(2.1). The phase as the waves propagate is then determined by the total argument
of (2.1). The phase at a specific time and distance with a certain initial phase can
then be described as a function φ = f(z, t, φ0).

The intensity Q of an EM wave can be described as the power per unit area
of the wave, which is the same as power density (W/m2) [14] (p.10). In the
theoretical case with a singe point in space acting as an EM-transmitting antenna,
with an assumed isotropic radiation (equal power in all directions), the EM waves
will propagate so that the amplitude (and thus the power) is identical at all points
in a sphere around the antenna. The intensity Q is then the transmitted power
divided by the surface area of the sphere at radius r (from the antenna):

Q =
Pt

4πr2
(2.3)

The intensity of the wave is thus decreasing ∝ 1/r2 [14] (p.10).
When an EM wave hit a physical object, it induces electrical charge on the

surface of the object, which in turn radiates an EM wave back towards the origin
of the incident wave. This process is called scattering or reflection of the incident
wave. If the material is a conductor it means that charge can move freely in
the matter, and thus all of the EM wave energy is reflected. If not, some or all
of the wave energy will be absorbed in the matter, which results in a weaker or
non-existent reflection.

2.2 Radar Operations

By measuring the reflection of transmitted EM waves, information about the range,
relative position, velocity and direction of movement for one or multiple objects is
acquired through radar operations.

2.2.1 Basic Radar Principles

A radar consists in its simplest form of a transmitter that emits an EM signal
and a receiver which detects the transmitted and, upon contact with an object,
reflected signal. A basic schematic is illustrated in figure 2.2. The transmitter
consists of an electrical system that generates a signal and uses a transmitting
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antenna (Tx) for EM emission. The receiver often consists of an amplifier and
sometimes utilizes signal mixing (section 2.2.3) together with an analog-to-digital
converter [14] (p.4-5) for further digital signal processing. A receiving antenna
(Rx) receives the reflected EM waves.

Figure 2.2: Schematic of basic radar setup with mixing.

When using the same antenna for both transmitting and receiving EM signals
the radar is defined as monostatic. Bi-static radars use separate Tx and Rx an-
tennas (figure 2.2). A setup that is physically bistatic but with the angle between
the directed antennas close to zero can be seen as quasi-monostatic [14] (p.18-20).

In basic radar operations, there are two dimensions of spatial interest: cross-
range (CR) and down-range (DR), illustrated in figure (2.3). DR is the direct path
between the object of interest and the radar, and DR motion is movement along
that path (radial movement). CR is the directions normal to DR. A movement in
CR would not result in any movement in DR.

Figure 2.3: Down-range and cross-range illustrated with a monos-
tatic radar antenna as reference.
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Periodic waves can be classified as different waveforms depending on what
shape and characteristics they have [15] (p.160-161). EM waves used for radar
operations can generally be divided into two types of waveforms: continuous and
pulsed waveforms [14] (p.20-21).

Continuous waveforms are transmitted and received continuously, i.e. the
transmitter and receiver are always on. To determine a reflection of the signal
in time, the wave needs to have some detectable change in its characteristics.
This change is called modulation and can be in amplitude, frequency or phase. A
modulation would then introduce a reference in the signal that can be detected,
for example a section of increased amplitude or a sudden phase-change.

Pulsed waveforms are transmitted as pulses with a certain pulse duration τ .
These pulses are called wavelets. The receiver does not need to be on then the
transmitter is, as it detects the reflected pulsed signal with a delay ∆T , dependent
on the one-way distance (range R) to the reflecting object. ∆T and R relates to
each other as:

R =
c∆T

2
(2.4)

where a factor of 2 is introduced as ∆T is the total delay of a pulse travelling to
and from the reflecting object.

A pulsed monostatic radar with a single Tx/Rx can not differentiate between
objects depending on their angle towards the radar: the only observed difference
is for different DR distances (see figure 2.3). Multiple objects at the same distance
in DR but separate locations in CR would be indistinguishable from each other in
range.

2.2.2 Radar Measurements

The pulsed radar receiver will detect reflected pulses at a certain time after the
initial transmission. This time (seen as ∆T in equation (2.4)) is called ”Fast
Time” and represents range information. Assuming the signal consists of pulsed
waveforms, the pulse repetition frequency (PRF, in Hz) is the number of trans-
mit/receive cycles performed or measured per second. The pulse repetition interval
(PRI seconds) is the time between pulses and it relates to PRF as PRI = 1/PRF .
By recording the fast time with a time PRI between recordings (thus PRF can be
seen as rate of measurements or acquisitions) for a certain number of pulses each
recording can be seen as one point in the total acquisition time, also called ”Slow
Time” due to it having a relatively slower sampling interval than the fast time [14]
(p.502-503). This creates a 2D matrix of measurement data, seen in figure 2.4,
called the radar datacube, or a Fast-Slow Time matrix.
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Figure 2.4: A radar datacube. Fast time measurements are ”stored”
in each slow time cell, as pulsed wavelets.

2.2.3 Frequency Mixing and Coherence

For practical reasons, radars must often downconvert the transmitted signal to
an intermediate frequency (IF) that is low enough for detection in the limited
bandwidths of the receiving system.

The original radio frequency (RF) that is transmitted is received at the receiv-
ing antenna after reflection. By using a non-linear device called a mixer, illustrated
in figure 2.5 (a), the RF signal can be downconverted with a controlled and known
signal coming from a local oscillator (LO) with a certain frequency [16]. This
produces an IF (|RF-LO|) which is effectively downconverted in frequency (figure
2.5 (b)).

Figure 2.5: a) Schematic symbol of a frequency mixer. b) Frequency
spectrum with the two mixed frequencies (LO and RF) and the
resulting frequency (IF).

By using two mixers in parallel where the local oscillators supply the same
frequency signal but with a relative phase difference of 90◦(a sine and cosine wave
respectively), a two-channel output called ”In phase-Quadrature phase” or simply
”I” and ”Q” can be produced. Figure 2.6 shows a simple schematic for a an IQ
mixer.
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Figure 2.6: Schematic symbol of an IQ mixer.

A signal with I and Q components will in a unit circle produce both an ampli-
tude and phase response I + iQ, where i =

√
−1. In radar systems, this enables

coherent detection [14] (p.288-289), as the amplitude of the IQ signal is calculated
as

A = |I + iQ| (2.5)

where I = AI · cos(φ) and Q = AQ · sin(φ). As the phase determines the radial
vector angle in the unit circle, it is possible to separate positive and negative phase
changes as different rotating directions in the circle.

2.2.4 Sampling

When digitally measuring a signal, the sampling time T or sampling rate Rs = 1/T
is an important metric. To represent a signal f(t) completely, the sample rate Rs
needs to fulfill the Nyquist criteria [14] (p.497-499) of unambiguously representing
a signal with frequency f0:

Rs ≥ 2f0 (2.6)

If the criteria is not fulfilled a signal could suffer from aliasing, where sampling
points comes to far between to show the true oscillation pattern. Aliasing creates
an incorrect wave representation, illustrated in figure 2.7.



Theory 11

Figure 2.7: Sampling of a sinusoidal signal (red) where sample rate
Rs is below the Nyquist criteria of 2f0 samples/second, result-
ing in an aliased representation (blue) of the original signal.

Thus, measuring and sampling a signal in real time (called Real Time (RT)
Sampling) requires a sample rate that is at least twice that of the signal frequency.
This limits measurements of high frequency signals to equipment that have a suf-
ficiently high Rs, creating a ”digital bandwidth” that limits the highest frequency
detectable regardless of the ”analog bandwidth” (hardware limitation). While mix-
ing can be implemented (discussed in section 2.2.3) to achieve real time detection
of signals with a Rs lower than the limit, a method called Equivalent Time (ET)
Sampling can be used to sample a raw high-frequency signal with the only lim-
itation being the analog bandwidth [17, 18]. The method is based on sampling
a signal multiple times, each time at a slightly different trigger delay (which cre-
ates the demand for a repeating signal). Eventually, enough sample points exist
so the signal can be represented unambiguously. As this method relies on mul-
tiple triggers for one detection, it comes with a price of more required time per
measurement: effectively a lower measurement frame rate.

2.2.5 Doppler, Velocity, Range and Resolution

The physical phenomena of Doppler shift is when a transmitted frequency is ob-
served as higher if the transmitter is moving towards the observer and vice versa
[14] (p.274-276). The Doppler shift frequency (fd, difference between observed and
transmitted frequency in Hz) is expressed as

fd ≈
2v

λ
(2.7)

where v is the relative velocity of the transmitter and the observer.
Suppose the data from pulsed radar operations measuring a moving scatter

object exists in a fast-slow time matrix as in figure 2.4. Measuring the signal
phase at a specific sample point in fast time for each of the pulses in slow time
produces a standing wave if the wavelets vary in range for different points in slow
time. This standing wave yields a spatial Doppler frequency. If IQ mixing is
performed, described in section 2.2.3, both negative and positive shifts can be
detected due to coherent detection [19]. The Doppler frequency gives the relative
velocity of the scatter object as:

v ≈ fd · λ
2

=
fd · c

2 · fwavelet
. (2.8)
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The Doppler frequency shift is sampled at the pulse repetition frequency
(PRF). This creates a dependence on PRF as to not create frequency ambigu-
ities [14] (p.628-629), it sets a limit of the highest velocity Vmax that is possible
to calculate, according to the Nyquist criteria (2.6) the maximum frequency that
can be measured is half the sampling rate (PRF/2):

vmax ≈
c · PRF/2
2 · fwavelet

=
c · PRF

4 · fwavelet
(2.9)

This is a contributing factor when determining the setups Doppler limitations.
If the PRI is shorter than the longest return time ∆T for a pulse, the pulse

will be detected as part of another transmit/receive cycle ant thus produce a false
detection. The condition for this not happening is called unambiguous range [14]
(p.628-629) and is expressed as

PRI ≥ ∆Tmax (2.10)

and further, according to (2.4):

Rmax ≤
c · PRI

2
=

c

2 · PRF
(2.11)

The limitations in (2.9) and (2.11) both depend on the PRF, but one inversely
to the other. This creates a radar ambiguity where a large PRF is good for the
velocity limit and bad for the unambiguous range, and vice versa. The ambiguity
can also be changed by altering the wavelength in 2.9. In both cases, if the
ambiguity is surpassed, aliasing will occur along the range or velocity axis. This
can be seen as a folding of the spectrum, where for example an increasing positive
velocity becomes a decreasing negative one.

Further, the pulse length τ is important for range resolution. If two scattering
objects are in close proximity, so that a reflected pulse from both will to the
receiver look like a single but longer pulse, then the radar has reached its range
resolution limit: its ability to discern multiple objects at different distances. The
theoretical range resolution Sr (distance between two objects) should be that of a
half pulse width, according to:

Sr =
c · τ

2
(2.12)

2.3 Signal Processing

Radar data often undergoes processing in some way to achieve and interpret cer-
tain results. For many signal processing applications, including radar operations,
Fourier transform is a powerful tool for signal processing [15] (p.24-27). This,
together with the concept of sampling and non-periodic signal analysis will be
covered in the following section.
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2.3.1 Fourier Transform

Fourier transform (FT) is a mathematical operation that transforms a time-domain
function into a frequency-domain function [20]. The operation can be described
mathematically as:

F (ω) =

∫ ∞
−∞

f(t)e−jωtdt (2.13)

where F (ω) is the frequency-dependent function and f(t) the time-dependent func-
tion. A constant f(t) will in (2.13) produce a F (ω 6= 0) = 0, as the time-domain
function does not change over time, thus having no frequency. The component
with ω = 0 (F (0)) has a value separate from zero. For electronic signals, this can
be seen as a bias: direct current (DC). Further, an infinitely small pulse in time-
domain will translate to a infinitely broad frequency spectrum (constant F (ω)).
This follows from (2.13) where a f(t) only has a non-zero value at a certain time t,
which yields F (ω) = constant. The concept of frequency spectrum width is called
bandwidth, and is expressed in Hz.

The operation can be performed in reverse, called inverse Fourier transform
(IFT):

f(t) =
1

2π

∫ ∞
−∞

F (ω)ejωtdω (2.14)

The expression in 2.13 can be expressed as a Discrete Fourier Transform
(DFT), to enable FT with a finite number of computations:

F (ω) =

N−1∑
k=0

f [k]e−jωkT (2.15)

where f [k] is a discrete sample of f(t) at t = k, N the total number of samples,
and T the time that separates each sample (sampling time). The Discrete FT can
thus be performed with a finite number of computations for all ω. Here, 1

NT = 1
Hz, and by setting ω = 2π · 1n = 2π

NT n, where n is an integer n = 0 to N − 1, the
equation 2.15 can be written as

F [n] =

N−1∑
k=0

f [k]e−j
2π
N nk (2.16)

where F [n] is the Fourier transform at ω = 2π
NT n. The process of DFT is used by

computers when digitally performing an FT.

2.3.2 Non-Periodic Frequency Analysis

Even though FT is ideal to analyze periodic signals, it is less suited for analysis of
non-periodic signals: signals with a time-dependent change of frequency. In those
cases, a FT of a signal would result in an integration over the total time and thus
the total frequency response without the distribution of different frequencies at
different times [21] (p.44-45).
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A solutions for this is Windowed Fourier transform (WFT) [21] (p.44-50).
This will perform a frequency-domain analysis with time-dependence as F (ω, t),
and is implemented by performing a FT on discrete and finite time-windows of the
signal. These windows in the time-domain signal can be defined by multiplying the
signal with a windowing function the size of the desired window. The ”Hamming”
windowing function used in this thesis takes its form after the equation:

w(n) = 0.54 + 0.46cos(2π
n

N
), 0 ≤ n ≤ N (2.17)

where N is the total number of discrete sampling points of the function. The
Hamming windowing function then suppresses the signal intensity at the ”edges”
of the window to decrease spectral leakage [22]. The function is illustrated in figure
2.8.

Figure 2.8: ”Windowed” sine wave (Blue) by multiplication with
a Hamming window function (Red). Sine wave displayed as
dotted line (Yellow).

2.4 Artificial Neural Networks

Artificial neural networks (ANN) is a very powerful tool for categorizing and un-
derstanding data. In a basic sense, an ANN is a set of algorithms that are able to
process the input data given to the network and find connections and similarities
in order to predict a specific output [23]. ANNs are vaguely inspired by the way
the human brain implements a large set of connected neurons to process the in-
puts it gets via stimulated senses [10]. This section will cover the fundamentals of
artificial neural networks, including the topics of network structure, training, opti-
mization and overfitting. The basic operations of Convolutional Neural Networks
(CNN) will also be covered here.

2.4.1 Network Structure and Components

ANNs is a collection of nodes organized in layers, the nodes are often referred to as
neurons and are connected to each other via several inputs and an output. Each
connection transmits information to other nodes and has adjustable weights that
the network can vary in order to change how much any given input will affect the
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likelihood of generating a specific output. The general structure of an individual
neuron can be seen in figure 2.9.

Figure 2.9: General structure of a neuron with three inputs.

The neuron can have multiple inputs denoted as n number of inputs X =
X1, X2, ..., Xn where each input is an independent variable. The neuron also has
n number of weights w = w1, w2, ..., wn, it can be useful to see each weight w
as connected to an input X [24](p.171). The output of the neuron g(w,X) is
calculated as the sum of the inputs and their weights according to equation 2.18

g(w,X) =

n∑
i=1

wnXn (2.18)

where w is the adjustable weights and X is the inputs to the neuron. The output
from the neurons is then normally processed by an activation function: the acti-
vation function modifies the networks output value and is another layer of control
for adjusting how the neuron behaves. There are different types of activation func-
tions, for example linear functions (f(x) = Const · x) or step-functions (f(x) = 0
if x < 0, f(x) = Const if x > 0). Some popular activation functions used in ANNs
are the Sigmoid, ReLu and the Tanh activation functions [25, 26].

An neural network can have many shapes, the simplest form of a neural net-
work would just have a single input layer and an output layer. Most neural net-
works however has one or more hidden layers in between the input and output
layers that adds complexity to the network which allows it to find more complex
patterns in the data [24](p.165). An example of an ANN can be seen in figure 2.10



16 Theory

Figure 2.10: A neural network with three input nodes, two hidden
layers with four nodes each and a output layer with two nodes.

The input layer is the first layer in the typical ANN an it is where the input data
enters the network. The input layer consists of an array of input nodes that each
represent an input value. The size and layout of the input layer varies depending
on the size and form of the input data. When working with fully connected layers
each input node is connected to the nodes in the proceeding hidden layer, the input
nodes forwards the input data to the hidden nodes where each neuron receives the
data according to the process previously described in equation 2.18. This process
in then repeated for the second hidden layer but now the first hidden layer is
treated as the input values. The number of hidden layers as well as the size of
each layer varies between different networks, extensive research has been made in
order to find a method for predicting the optimal number of hidden layers and
nodes but no reliable way has been found [27]. The last layer in the network is
called the output layer or the classification layer, this is the layer where the data is
retrieved after being processed by the network. Just as the other layers the output
layer may look very different depending on what kind of problem the network
is designed to solve. In classification problems the output layer usually has one
output node for each class with a value specifying the calculated probability of a
class. Other problems might only have one output node returning a single value
that is decided by the weights in the network.

2.4.2 Learning and Optimization

Tasks for machine learning networks are usually divided into two categories, su-
pervised and unsupervised learning. Unsupervised learning is often used for very
complex tasks where the goal might be to extract the underlying causes for prob-
lems where the right answer is uncertain or might not be available [28]. When
using supervised learning the task that the network needs to solve is usually well
known, a data set with labeled data is available and allows for training the net-
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work. When training a network using supervised learning the goal is to shift the
weights into values that create a mapping where the desired output is predicted
when the correlated input is given to the network [29]. The network is trained by
providing it with a set of training data that is labeled with the correct answer, the
data is processed by the network and a guess at the right answer is provided. If the
answer is wrong the weights are slightly adjusted and the same process is repeated
again, this process is done in an iterative fashion until the network manages to
solve as many of the problems as possible.

In order to measure how well the network solves a given task a measure of
accuracy is needed. A simple and common way to do it is to measure the networks
accuracy when predicting labels, this metric does not however include the factor of
how certain the network is on its guess. Instead networks are often trained using
a cost function where the goal is to measure how far away the current weights are
from an optimal solution [29]. For a network where the function f is the networks
transfer function, x is the input vector and y is the target class the cost function
can be described by using a mean square error function as can be seen in equation
2.19

C =
1

N

N∑
i=1

(f(xi)− yi)2 (2.19)

where C is the networks cost. By summing the squared difference between the
predicted class and the correct class we can express a measurement of the accuracy
of the network with a single mean squared error value which includes how close
or far away the network was from an optimal answer. The goal of the training is
now to minimize the systems cost [29].

The weights of the network are usually initialized as random small values before
the training procedure begins, after being initialized the weights are systematically
shifted into slightly smaller or larger numbers in order to find the best mapping
of weights to minimize the cost function. The process of updating weights in this
manner is called back propagation with stochastic gradient descent and is a very
popular method for training networks [30]. There are several different optimization
algorithms for updating the weights in a network, the one used in this thesis is
called Adam and is a more advanced version of stochastic gradient descent [31].
The basics of both optimization algorithms work in a similar manner where the
initial weight is updated by a small fraction ∆w over many iterations t according
to equation 2.20.

w(t+ 1) = w(t) + ∆w(t) (2.20)

This process is done for each weight in the network in order to find the optimal
weights for minimizing the cost function and finding the correct values for each
output f(xi) according to 2.21.

δC

δwi
=

δC

δf(xi)

δf(xi)

δwi
(2.21)

The iterative process of updating weights is continued until a minima is found,
however sometimes the network converges and gets stuck in a local minima where
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small nudges to the weights does not yield a better result even though a better
allocation of the weights is possible at the global minima, an example of this
problem can be seen in figure 2.11.

Figure 2.11: Visualization of a local and global minima of the cost
function at different weight values.

2.4.3 Generalization

The networks ability to solve problems that has not been a part of the training
data is referred to as the networks generalization and is an important factor in
judging the success of the network. When training a network it is important that
the the network performs well not only on tasks that was used during training but
also tasks that it has never seen before. Strategies that are used to improve this
ability are collectively known as regularization techniques. A common problem
in machine learning is that the network after many iterations becomes very good
at solving the specific tasks in the data set but completely fails at solving very
similar problems, this problem is known as overtraining or overfitting and results
from having a limited data set or a lack of regularization in the network [24](p.224).
It is common practice to split the available data into a training set and a validation
set, the training set is used to train the network using the iterative weight updating
process and then the network is tested against the validation data in order to
measure its performance[32]. The networks generalization is often discussed in
terms of bias and variance, a network structure with high variance is prone to be
very good at finding a solution for the training data but will often make the wights
too specific and lose out in terms of generalization while a high bias will not be
able to reach a high accuracy [24](p.127). In the context of a regression problem
where the task is to fit a line to a collection of data points it is easy to see the
results of the bias-variance trade off. In figure 2.12 we can see how the fit of the
curve in the second example hits all of the data points but if the trained model
would be used to classify other similar data the high variance network would not
longer perform as well.
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Figure 2.12: Representation of the Bias-Variance trade off in a net-
work.

One regularization technique that has been rising in popularity since it was in-
troduced is the dropout technique [33]. When using the dropout method each node
in the network has a predefined probability of being removed from the network
during that iteration of weight updates. This creates an ever changing network
structure that will work similarly to an ensemble of several different networks.
The ever changing network structure will prevent the network from overfitting to
a specific detail and keep the network generalized.

L2 regularization is another popular technique that is used to prevent overfit-
ting [34]. The goal of the L2 regularization technique is to keep the weights small
and not let any single weight grow too dominant. This is done by adding a regu-
larization term to the cost function described in equation 2.19 and thus penalizing
big weights by having them directly contribute to the cost function by the power
of two. The modified cost function can be seen in equation 2.22

C =
1

N

N∑
i=1

(f(xi)− yi)2 + λ
∑

W 2 (2.22)

where λ is called the regularization parameter and is a hyper-parameter that
has to be adjusted to a balanced value for each network.

2.4.4 Convolutional Neural Networks

Convolutional Neural Networks (CNN) is a type of neural network that is very
popular in the field of image analysis. Just like other neural networks they have
an input layer, an output layer and fully connected layers with hidden nodes, in
addition to these layers they also have convolutional and pooling layers [35] that
will be introduced in this section.

To understand the convolutional layers the concept of filters must first be
introduced. The filters used in CNNs are made to extract features in a matrix
that consists of scalar values (a gray-scale image would result in a AxBx1 matrix).
The filter systematically scans the image and performs a series of matrix operations
called convolutions to produce a new image [24](p.327). The general process of a
filter scanning an image is illustrated by the following matrix operation where an
4x4 image is convoluted by a 2x2 filter to produce a new 3x3 image:
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a b c d
e f g h
i j k l
m n o p

 ∗ [x y
z w

]
=

 (xa+ yb+ ze+ wf) (xb+ yc+ zf + wg) (xc+ yd+ zg + wh)
(xe+ yf + zi+ wj) (xf + yg + zi+ wj) (xg + yh+ zk + wl)
(xi+ yj + zm+ wn) (xj + yk + zm+ wn) (xk + yl + zo+ wp)


By using different values in the filter matrix the image can be scanned for a

certain feature. For example by using an
[
1 0
0 1

]
filter the image can be scanned

for features along a diagonal axis.
Convolutional layers use this mathematical process to extract features by slid-

ing the filter along an image according to figure 2.13 and thus creating a new image
that indicates or highlights a specific feature [24](p.328), the new image is referred
to as a feature map and is usually downsized compared to the original image. The
filters size and its stride (number of moved steps along the input image between
operations) is manually set before training, thus treated as a hyper-parameter.

Figure 2.13: A 3x3 filter with stride 2 scans an 7x7 image.

In a convolutional layer the image is scanned several times with different filters
to create several feature maps. Each feature map contains information highlighting
where a specific feature or pattern is present in the image.

Due to the vast amount of parameters being created when using multiple filters
the convolutional neural networks often include pooling layers. A pooling layer
is usually located after a convolutional layer in the network. The pooling layer
downsizes the image reducing the amount of parameters that is being used in
the model, the progressive reduction in parameters helps to reduce the amount
of needed computations and thus making the network faster while at the same
time reducing over-fitting in the training process [24](p.336). There are different
pooling operations available but the most common one in CNNs is the max-pooling
operation. Just like the filters the max-pooling operation scans the image like in
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figure 2.13, the max-pooling operation however returns only the largest value in
the window.

After the last convolutional and pooling layer the CNN ends with a set of fully
connected layers that will process the information extracted by the convolutional
layers, see image 2.14. In order for the fully connected hidden layers to process
the information in the last feature map a flattening operation is performed where
the feature map matrix is transformed into a 1D array of values [24](p.352). This
array is then treated as an input array for the hidden layer network. The processed
information is finally forwarded to the output layer that returns a value with the
calculated probability of each class.

Figure 2.14: General structure and operations of a convolutional
neural network.
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Chapter 3
Method

The aim of this thesis is to explore the capabilities of an in-house radar for measur-
ing hand gestures, and using convolutional neural networks (CNNs) to categorize
the measured data.

This chapter will introduce two different setups used for measurements, as well
as present the methodology for evaluating and choosing one of them. These two
setups are centered around the use of a certain wavelet generator (WG). Further,
the gestures under test will be presented, as well as the methods of measuring a
large data set. The signal processing used on the data will also be discussed and
presented along with radar simulations. Finally, a pre-trained and pre-designed
CNN will be presented, as well as methodology for designing and optimizing a less
complex CNN to be used for additional classification.

3.1 Millimeter-Wave Setups

For radar signal transmission, a coherent Resonant Tunneling Diode (RTD) WG is
used. The RTD emits an electromagnetic (EM) signal at a certain frequency, which
is dependent on the electronic bias as well as the device design. The device can
produce wavelets with pulse lengths in the picosecond scale [13]. Distinct wavelets
(signal pulses) are created by a switching transistor (MOSFET). The WG is pre-
fabricated in-house and positioned on a silicon wafer die, and is contacted using a
three-point probe. Here, a center frequency of 63GHz (in the 60 GHz ISM band)
was emitted and used for gesture measurements.

For the following radar experiments in this thesis, two types of millimeter-wave
radar setups were investigated and tested individually. The setups are based on the
setup used in [36]. The central part of these setups is the use of the WG described
above. The differing aspect of the setups is the method used for sampling the
received signal when performing measurements.

One variant uses a ”real time” (RT) sampling oscilloscope with a limited input
signal bandwidth, and is illustrated in figure 3.1. This setup utilizes IQ down-
mixing (thus coherent) with a local oscillator to bring the signal down to a center
frequency that fits the oscilloscope bandwidth (see section 2.2.3 and 2.2.4). Even
with a low enough center frequency, the signal needs to fit in the limited oscil-
loscope bandwidth, thus a longer signal pulse length τ is needed as bandwidth
∝ 1/τ . This is due to the fact that a transform of a time domain pulse to fre-
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quency domain results in a larger spectrum of frequencies the shorter the pulse is
(see section 2.3.1).

The other variant utilize an oscilloscope capable of ”Equivalent Time” (ET)
sampling. This setup is illustrated in figure 3.2. ET sampling enables measure-
ments without any downmixing step. Thus, the received signal is recorded at
native frequency. This also enables the use of shorter pulse lengths, as the sig-
nal bandwidth is of less concern. The main difference of the setups is thus the
frequency down-mixing that occurs for the RT setup in figure 3.1.

Figure 3.1: Real Time (RT)
setup.

Figure 3.2: Equivalent Time
(ET) setup.

The RT setup uses a Rohde & Schwarz RTO 1044 oscilloscope with a band-
width of 4 GHz and sampling speed of 20GSa/s (Gigasamples per second), while
the ET setup uses a Lecroy Waveexpert 100H - SE70 oscilloscope with a nomi-
nal bandwidth of 70 GHz. For the RT setup, the pulse length is set to 600 ps. For
the ET setup, the pulse length is set to 80 ps.

For the RT setup, a Agilent Technologies E8257D PSG signal generator
with f = 15.3 GHz is after multiplication (with a Millitech AMC-RFH00 4x mul-
tiplier) used as an local oscillator (LO) signal at LO = 61.2 GHz. An identical
signal generator is connected to the BERT with a 10 GHz internal clock refer-
ence signal. A 10 MHz reference signal ensures that the phase of the LO and the
10GHz control signal is coherent. The IF output from the mixer (a Millitech
MIQ-15-01900 mixer) comes as an I-and Q-signal and is recorded by the oscil-
loscope in two separate channels. The LNA, mixer and horn antennas have a
”WR-15” waveguide interface, enabling a series connection between them without
intermediate connectors or converters. The ET setup is more simple in the aspect
of number of components. No mixer, LO or multiplier is used.

Both setups are bistatic (alternatively quasi-monostatic, due to closely spaced
antennas) with Flann 25240-20 horn antennas as transmitter (Tx) and receiver
(Rx) antennas. They display a gain of 20 dBi [37]. A bias-T is used to supply
power to a wavelet generator which is connected to the setup using a probing
station with three-point probes. The generator is in turn excited with digital
pulses from a Agilent Technology N4906B Serial Bit Error Rate Tester (BERT).
The pulse length from the BERT decides the length of the WG from the generator
and transmitted by the horn antenna. The BERT is also used to trigger the
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oscilloscope for detection. To amplify the received signal, a HXI HLNAV-383 Low
Noise Amplifier (LNA) is used at the receiving antenna. It presents a small-signal
gain of 30 dB (at 50-65 GHz) with a noise figure of 5.2 dB (at 52-67 GHz) [38].
The setup is mounted on an optical table for reduced vibrations at the probing,
and in fixed positions to ensure no cable bending.

A generated wavelet with a 100 ps pulse length is measured for reference and
illustrated in figure 3.3 as the detected signal in the Rx horn antenna. It is sampled
by the ET oscilloscope, and displays a center frequency of 62.5 GHz. Observe that
multiple wavelet generators were used, and the one used for later measurements
displayed a center frequency of 63 GHz.

Figure 3.3: A measurement of a transmitted wavelet with a set 100
ps pulse length.

3.1.1 Choice of Setup

To evaluate the two setups, certain factors are taken into account.
The acquisition speed of the different oscilloscopes determines how many times

the signal is measured during a performed gesture. This can effectively be seen
as the pulse repetition frequency (PRF), which then can be used to calculate
limitations according to section 2.2.5.

The smallest possible pulse length differs between the setups, which will create
differences in the measurements.

Finally, the external control of the oscilloscope will be taken into account.
This would include saving of data to external storage and initialization of measure-
ments. The speed of data transfer, measurement saving and sending commands is
of importance for convenient experiments.

Initial measurements of a small gesture set (6 gestures) is performed on both
setups to relate the result with the differing factors under consideration.

3.2 Large Data Set Measurements

The final data set that is used for classification consists of 12 different gestures.
This section describes the different gestures as well as methods of measurement
and the precautions taken in order to create a valid data set.
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3.2.1 Gestures

During the process of evaluating the capabilities of the radar setup, a set of gestures
was tested and progressively expanded. Some gestures were modified compared
to their initial implementation while some gestures were removed completely. The
final set of gestures consists of the 12 different gestures that can be seen in figure
3.4.

Figure 3.4: G01: Hand Forth, G02: Hand Back, G03 CR Wave,
G04: Close and Open Fist, G05: Come Here, G06: Fold two
Fingers, G07: Hand Swipe Right, G08: Hand Swipe Left, G09:
Spin Finger in Circle, G10: Click with thumb and index finger,
G11: Wiggle two Fingers, G12: Slide thumb back and forth on
index finger.

G01 and G02 are two very basic motions where a hand is moved toward and
away, respectively, from the radar in the down range (DR) direction (see section
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2.2.1, figure 2.3). G03 is a waving motion performed in the cross range (CR)
direction where the hand moves back and forth one time in front of the radar. In
G04 the hand is closed into a fist and then opened again. For G05 the fingers are
folded towards the palm and then opened again in a ”come here” motion. In G06
the index and middle finger are folded together towards the radar and then back
again. G07 and G08 is two swiping gestures, in G07 the hand swipes towards the
right and in G08 the hand swipes to the left. G09 starts with a closed fist with
only the index finger pointing towards the radar, the finger is then rotated in a
circular spinning motion. In G10 a click motion is performed with the thumb and
the index finger, most of the movement is performed by the index finger. In G11
the index and middle fingers are wiggled back and forth, the fingers start separated
and then perform a back and forth motion twice thus passing each other a total of
four times. In the last gesture G12 the thumb slides along the index finger pointing
towards the radar; the thumb slides towards the radar and then back again.

For most gestures the hand enters and exits the radars field of view (FoV) in
a CR motion at the start and ending of each gesture. The exceptions to this is
G01, G02 and G09. In G01 and G02 the hand enters the radars vision in the DR
motion at the beginning or ending of the gesture. During G09 the hand never
exits the radars FoV, the gesture is performed until the end of the measurement
period.

As described in section 2.2.1 the radar setup is only capable of measuring
distances in the DR direction, which affected the choice of suitable gestures. The
different gestures have a varying amount of movement in the DR and CR directions,
for instance G01 and G02 moves only in the DR direction while G03 practically
only moves in CR. The gestures were chosen to have varying levels of difficulty
and some gestures were intentionally designed to have similarities to each other
,such as G06 and G12 that include a small movement in the DR direction, or G09
and G11 that include a repeating periodic movement.

3.2.2 Method of Measurement

All of the measurements for the final data set were performed using the same setup.
The gesture measurements were performed and measured in an distance-interval
of 30 cm (corresponding to a 2 ns fast time interval on the oscilloscope). The time
period for a single measurement was approximately 5 seconds per gesture. The
distance from the Rx and Tx antennas to the closest point of a performed gesture
was approximately 10 cm.

The measurement environment is depicted in figure 3.5. Figure (a) shows
the setup in the direction of the radar emission, while (b) shows the opposite
direction (looking ”into” the antennas). Figure (b) also shows an on-going gesture
measurement, and the rough hand placement that was used. The antennas were
facing an open area where the person performing the gestures was standing slightly
to the side outside the radars FoV: only the hand performing the gesture was visible
to the radar setup. EM-shielding barriers were placed down the direction of the
radar emission (figure 3.5 (a), indicated in green) from the antennas to prevent
any unwanted reflections from the background. Shielding was also installed around
the antennas (figure 3.5 (b), indicated in green), to minimize any reflections in the
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forward direction.

Figure 3.5: Measurement environment. Green lines indicate the EM
shielding barriers. White arrows indicate direction of EM trans-
mission. a) Setup shown in the direction of radar emission. b)
Antennas and an on-going gesture. Antennas protrude through
an EM shield plate.

3.2.3 Creating a Valid Data Set

To produce classification results with a high fidelity from deep learning models, a
large amount of data is needed. A data set consisting of 180 measurements for each
of the 12 gestures was recorded, thus resulting in a total of 2160 measurements.
The measurements were conducted by two people (the authors) performing 90
measurements per gesture each, with measurements progressing through the ges-
ture set instead of multiple measurements of the same gesture back to back. The
measurements were initialized with a laptop running MATLAB that was connected
to the oscilloscope. The laptop provided information to the user with start and
stop times as well as what gesture to perform, thus no visual feedback from the
oscilloscope was required. This increased the focus on performing the gesture as
defined, instead of relying on visual feedback to modify the gesture and get an
optimal radar response by looking at the signal plotted on the oscilloscope. When
training the network, the training and validation data was chosen randomly and
in approximately equal amounts from both authors.

The main data set used for training the network was created using only data
with gestures from the authors. To investigate the generalization of the data
and the classifying networks, two additional data sets were recorded. These two
data sets were created by two additional persons (referred to as ”Test group”)
who were not familiar with the project beforehand. The data sets were smaller,
consisting of 10 measurements per person for each of the 12 gestures for a total
of 240 gestures for the two data sets. The test group performed the gestures
with no other instructions regarding how the gestures were performed than the
predefined instructions in figure 3.4 with some initial feedback from the authors
and pointers regarding the radar setups FoV. These smaller sets were used for
validation purposes and not for inclusion in the training process. This will be
discussed in section 4.3.5.
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3.3 Signal Processing

Two domains are of interest for the measured data: time-domain and frequency-
domain. The measured data is in its simplest form represented as varying range
over time (Range-Time), where no processing is needed. To extract the range
information, equation 2.4 is used.

Performing a Fourier transform (FT) of the slow time data (section 2.2.2) in
the time dimension yields the frequency domain as a Range-Doppler spectrum,
as described in 2.2.5. The DC component of each fast time column is removed
according to:

S = S0 −mean(S0); (3.1)

where S0 is an arbitrary time-varying signals, and S represents the same signal
but after removing the DC component.

The Doppler shift can directly be related to velocity, and thus the processed
data shows the ranges where reflecting (scattering) objects have a certain velocity,
which in most cases is not constant for the whole gesture range interval. Although
this yields an additional dimension of information it also removes the dimension of
time. To represent a Range-Doppler spectrum with an aspect of time, a ”windowed
FT” (WFT) can be performed (section 2.3.2). By dividing the measurement time
in a number of frames N and performing a FT on each frame, a time-dependence in
N points can be shown for the Range-Doppler data. A window filter (Hamming,
see 2.17) is applied for the Range-Doppler at each frame to decrease spectral
leakage.

Figure 3.6 illustrate the numerical propagation of this ”sliding frame” WFT
technique, where a frame size and frame overlap is shown. Overlapping frames
will result in more possible frames for a set frame size, but is not implemented in
the WFT method for this thesis.

Figure 3.6: Illustration of a WFT process.

Before performing WFT, the Range-Time spectrum is cropped to exclude time
intervals where no gesture is taking place. This is to ensure that the frames contain
gesture radar data. The spectrum is cropped by defining a signal level where no
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gesture is taking place (noise level) and iterating through the columns in the fast-
slow time matrix (along the slow time axis) to find the closest column from the start
and end respectively where the mean signal level exceeds the defined noise level
with a certain factor. Here, the noise level for a certain spectrum is determined
by calculating the mean signal level for a small square area in the top corners in
the fast time-slow time data matrix. The threshold for start-and end cropping is
defined as 20 percent larger than the defined noise level for a certain spectrum. If
the threshold is not reached, the WFT is performed on the whole image.

3.3.1 Data Representation

In this thesis, three data representations were used for classification. One was
Range-Time data, without any signal processing except for removal of the DC
component (equation 3.1). The second was a Range-Doppler representation, with
a FT over the whole slow time interval. The third was Range-Doppler with WFT
signal processing. All data representations have a native size of 434x343 pixels.

There are different options for representing time-domain in a WFT Range-
Doppler spectrum as an image. For example concatenation, where the images are
added in succession to create a larger image. Alternatively, the frames can be
added and color-coded to indicate the order. Implemented here is a three-frame
WFT with a step size of zero where the frames are represented as RGB (red, green,
blue) channels respectively in a single image. Each frame is separately normalized
to values between 0 and 255.

When converting matrices to images a decision of color representation needs
to be made. Matlab has a built-in color scale, or color map, called ”hot”. This
color map represents the pixel intensity with a color between black (zero intensity)
and white (maximum intensity) with intermediate colors of red and yellow. This
color map is here used in images for classification, due to the fact that in the
case of conversion to gray scale the low-high intensity colors are black and white
respectively. This yields an intensity range from 0 to 255, where 0 and 255 are the
respective pixel values for black and white pixels in a gray scale image.

3.4 Simulating Radar Operations

By simulating wavelets with a specified frequency and length, a pulsed radar oper-
ation can be simulated by defining the wavelet placement in time domain (section
2.2.2). This is used to verify theory for the systems, such as unambiguous velocity
limit, and the signal processing operations, such as the WFT process.

For basic simulations, some assumptions are made. The scattering object at
range R(tn) is defined as an infinitely small perfect electrical conductor (PEC). The
path of propagation is in a non-loss environment and the EM waves do not decrease
in intensity meaning that eq. (2.3) in section 2.1 is disregarded. The digitally
generated wavelet is sinusoidal. Finally, the radar is assumed to be monostatic.
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3.4.1 Fast-Slow Time Operations

By defining a function R(t) where t is slow time and R the object range for pulsed
radar operations, a fast time-slow time matrix can be acquired by calculating the
wavelet time domain placement ∆T (fast time) according to (2.4) for each point
tn in slow time:

∆T (tn) =
2R(tn)

c
(3.2)

A fast-slow time matrix can be built as column vectors for each point tn in
slow time where there exists a wavelet w(∆T (tn)) at ∆T (tn) with a constant
pulse-width τ and frequency:[

w(∆T (t1)) w(∆T (t2)) w(∆T (t3)) . . . w(∆T (tN ))
]

In the case of multiple reflections and detections in the same PRI, the fast-slow
time matrix can be expressed as a sum of wavelets

∑M
k=1 wk(∆T (tn,k)) for each

slow time: [∑M
k=1 wk(∆T (t1,k)) . . .

∑M
k=1 wk(∆T (tN,k))

]
A frequency-mixing process (section 2.2.3) can be replicated in simulations by

multiplying the RF signal with an LO-signal to acquire IF (|RF-LO|). An I and
Q signal can then be generated through down-mixing as:

I = wn · cos(2πfLOtf ) (3.3)

Q = wn · sin(2πfLOtf ) (3.4)

where wn is a wavelet at slow time tn, and tf is time in fast time. Applying a
low-pass filter will then result in the down-sampled wn to IF=|RF-LO| (see figure
2.5 b).

3.4.2 Simulation of Scatter Points

The presented steps of signal processing is Range-Doppler and WFT data with
three frames and no overlap. The WFT data is represented as three frames in
RGB channels, as discussed in section (3.3). A Hamming window was used to
perform signal windowing for each frame, reducing spectral leakage but in the
process removing some signal intensity at the start and end of the range-interval
(see figure (2.8)).

The parameters for the simulations are presented in table 3.1. A down-mixing
of the signal is simulated. This motivates the use of a pulse length of 600 ps as a
down-mixing process would occur for a setup with limited signal input bandwidth,
thus requiring a longer pulse length (section 3.1).
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PRF 140 Hz
fwavelet 63 GHz

Pulsewidth 600 ps
fLO 60 GHz

Lowpass filter cutoff 4 GHz

Table 3.1: Simulation parameters.

Observe that in figure 3.7, 3.8, 3.9, the division of frames is noted as colored
bars under each corresponding time interval (x-axis) for the Range-Time data.

3.4.3 Linear Movement

A linear movement in DR is defined in figure 3.7 (a), where the Range-Time data in
(b) is Fourier transformed in (c) yielding a velocity of 0.02m/s = 2cm/s, which is
in agreement with the defined range-time function in (a). The Doppler velocity is
calculated according to (2.8). As the velocity is constant for the whole movement,
the WFT results in (d) are similar to the result in (c) but for different range
intervals. The simulations also show a correct interpretation of a fast time-slow
time matrix in (b), according to previous theory.

Figure 3.7: Linear continuous movement. a) Range as a function of
time. b) Simulated fast time-slow time matrix (Range-Time).
c) Range-Doppler over total measurement time. d) WFT with
three frames (respective order in time: red, green, blue).

Figure 3.8 shows the simulation results for a linear but discontinuous movement
divided into three parts. The object velocities is calculated in (a) to 5cm/s, 0cm/s
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and −11cm/s respectively. The Range-Doppler in (c) shows the expected response
of all Doppler frequencies (velocities) present in the movement. By performing
a WFT the three velocities are extracted for their time-dependent fashion, as
presented in (d).

Figure 3.8: Linear discontinuous movement. a) Range as a function
of time. b) Simulated fast time-slow time matrix (Range-Time).
c) Range-Doppler over total measurement time. d) WFT with
three frames (respective order in time: red, green, blue).

3.4.4 Non-linear Movement

Figure 3.9 presents a simulation of a non-linear movement, defined in (a) as an
exponential range-time function. The velocities for this movement ranges from
≈ 0cm/s at the beginning of the measurement and ≈ 21cm/s at the end of the
measurement (calculated with tangents at start-and endpoints in slow time). The
unambiguous velocity limit (2.9) is here calculated to

Vlimit =
c · PRF

4 · fwavelet
≈ 17cm/s. (3.5)

This indicates that the maximum velocity at the end of the gesture, ≈ 21cm/s,
should exceed the maximum velocity permitted by the unambiguous velocity limit
with current parameters. This is the case as seen in (c) where the majority of
velocities lies under the limit, but with clearly noticeable velocities also exceeding
the limit. This can also be seen in (d) for the last frame (blue) and it confirms the
expression in 2.9 for radar operations simulated as presented. This also presents a
visualization of velocities exceeding the unambiguous limit: the Doppler response
folds and appears on the other side of the velocity spectrum, now with reversed
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direction. This is known as aliasing, indicated by a red square in figure 3.9 (c) and
(d), see section 2.2.4.

Figure 3.9: Non-linear movement. a) Range as a function of time.
b) Simulated fast time-slow time matrix (Range-Time). c)
Range-Doppler over total measurement time. d) WFT with
three frames (respective order in time: red, green, blue). The
red square in c) and d) indicates the observed aliasing of the
signal.

Figure 3.9 (d) also shows the value of WFT (compared to a complete Range-
Doppler such as in (c)) for a signal with a frequency that is time-dependent (non-
constant velocities). Smaller frequency changes in time or smaller windows yields
a sharper velocity-time dependence, as can be seen in frame one (red) and two
(green) where the velocity is relatively constant. While in frame 3 (blue) the
velocity interval is noticeably increased, due to the constant frame size but expo-
nential velocity increase.

3.4.5 Multiple Scatter Points

A human hand will not act as a single scatter point: but as a surface that sim-
plified can be seen as a collection of scatter points. To verify the proposed signal
processing for radar measurements containing more than one reflected signal, a
simulation containing all three above defined movements (figure 3.7, 3.8, 3.9) are
combined and simulated as one measurement. The simulated response is seen in
figure 3.10, which shows that the simulation and signal processing work as it did
above for the single scattering objects. Here the product of signal processing is
equal to a sum of the singular cases above. The WFT in (d) shows a closer group-



Method 35

ing of Doppler velocities in the red and green frames, but more divergent in the
blue. To note is that the figures in (c) and (d) has a post-simulation amplified
intensity to better observe the aliasing as the image intensity is dependent on rel-
ative signal strengths. But aliasing is non the less present as expected for multiple
scatter points.

Figure 3.10: Combination of three previously defined movements.
a) Range as a function of time. b) Simulated fast time-slow
time matrix (Range-Time). c) Range-Doppler over total mea-
surement time. d) WFT with three frames (respective order in
time: red, green, blue). The red square in c) and d) indicates
the observed aliasing of the signal.

3.5 Classification

Developments in the field of deep learning have made CNNs viable as computer-
vision tools where the result of a classification comes from the input of an image
[10]. Radar data as spectrum images in different executions can thus act as inputs
to a CNN.

The viability of using CNNs to classify radar data is evaluated. This section
presents an already existing network to be used for initial classification, called
ResNet50. It also presents the methodology for designing and optimizing a new
CNN to be used for radar data classification.

3.5.1 ResNet50 - A Pre-Defined Network

As a first order of analysis, the radar measurement data will be classified using
transfer-learning from a pre-defined network. Transfer-learning utilizes pre-trained
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networks that are extensively trained on image sets that often range in the order
of millions with thousands of different classes. Instead of starting at zero or being
randomly initialized, the weights in the CNN have a starting value dictated by
the previous training. Training the network on new data continues to update the
pre-allocated weights and thus adapting them to the new material.

A pre-trained and pre-defined network that is highly regarded in literature
and which will be used in this thesis is called ResNet501 [39, 40]. The network
architecture presents 25.6 · 106 trainable parameters. The network is pre-trained
on the ImageNet2 image set.

Although radar data might be a different sort of input compared to the data
used when pre-training ResNet50, the network still carry an ability to recognize a
range of shapes and details in the image. Fine-tuning the training with new data
could yield a powerful model of classification, although probably after a very time-
consuming training process due to the deep design of the network architecture.

3.5.2 SimpleNet - A Low-Complexity Network

In addition to ResNet50, an unique CNN architecture is developed and trained
from scratch. It will henceforth be referred to as SimpleNet.

An important aspect to be taken into consideration when working on a project
with a limited time-frame is the time needed for training. A network with a large
number of trainable weights (parameters) will take longer to train than a network
with fewer trainable weights. In the case of ResNet50, with 25.6 million parame-
ters, the computational load and time will be significant. The training time is also
of importance if hyperparameter optimization is of concern, which requires numer-
ous training iterations (see section 3.5.3). Thus, a demand on the architecture of
SimpleNet is a relatively low complexity. A comparison between SimpleNet and
ResNet50 would give insight in how complex the design of a network needs to be
for a certain result.

Here, four different layouts were tested using two different image sizes as the
inputs. Classification accuracy and training time is of concern when choosing
network, and serves as the basis for the choice of network. The networks were
varied with two conditions: one or multiple convolutional (Conv, or ”C”) layers,
and one or multiple Fully Connected (FC) layers. The input sizes under test was
24 x 24 and 48 x 48, illustrated in figure 3.11.

1A detailed layout of the network architecture (accessed 2019-05-20) can be found at
http://ethereon.github.io/netscope/#/gist/db945b393d40bfa26006.

2Information about ImageNet (accessed 2019-05-20) can be found at
http://www.image-net.org.

http://ethereon.github.io/netscope/#/gist/db945b393d40bfa26006
http://www.image-net.org
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Figure 3.11: Example of simulated data downsized from its original
size 434x343 to 24x24 and 48x48.

These networks were trained with one-channel (gray scale) Range-Time data
with 60%-40% training-validation data. MaxPool layers (MP) was used to de-
crease the image size as it propagates through the network. Dropout (DO) and
L2-regularization was utilized, and the training period was 200 epochs. A ”Soft-
max” layer is used to normalize the output to a probability distribution, used for
classifying the input. The network layouts were designed as presented in table 3.2
and the training options are denoted in table 3.3.

Single FC Single FC
Multiple Conv Single Conv
Multiple FC Multiple FC
Multiple Conv Single Conv

=
Net 1 Net 2
Net 3 Net 4

Table 3.2: Schematic of four networks with two changing conditions
(left). Notation of different networks (right).

Optimization Algorithm ADAM
Train/Validation 60%/40%

Epochs 200
Minibatch size 200
Learning rate 0.0001

L2-reg. constant 0.0005
Dropout chance 50%

Table 3.3: Training options for Net 1-4.

A detailed layer architecture for networks with 24 x 24 input size can be seen
in table 3.4, a visual representation of a CNN can be found in figure 2.14. The
networks with 48 x 48 input size is identical but all convolutional layers (filters)
are of twice the size.
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Net 1 Net 2 Net 3 Net 4
10 C(8 x 8) 20 C(12 x 12) 10 C(8 x 8) 20 C(12 x 12)
MP(2 x 2) MP(2 x 2) MP(2 x 2) MP(2 x 2)
10 C(6 x 6) FC(512) 10 C(6 x 6) FC(100)
20 C(6 x 6) DO(50%) 20 C(6 x 6) DO(30%)
10 C(6 x 6) FC(12) 10 C(6 x 6) FC(100)
MP(2 x 2) Softmax MP(2 x 2) FC(100)
20 C(4 x 4) 20 C(4 x 4) DO(30%)
FC(512) FC(100) FC(100)
DO(50%) DO(30%) FC(12)
FC(12) FC(100) Softmax
Softmax FC(100)

DO(30%)
FC(100)
FC(12)
Softmax

Table 3.4: Layout of Net 1-4 with (24 x 24) input size. ”C”: Con-
volutional Layer, ”MP”: MaxPool Layer (stride 2), ”FC”: Fully
Connected Layer, ”DO”: Dropout Layer. All ”C” layers has ReLU
activation function, normalization layer and stride 1.

For each network, the classification accuracy and total training time were
recorded and the total number of trainable parameters were calculated. Observe
that the purpouse of the ”time” observations are to show the difference in speed
between networks, and are not supposed to be reproducible. The networks were
trained in Matlab on a single Intel i7 3400 Sandy Bridge CPU.

3.5.3 Hyperparameter Optimization

The hyperparameters of the chosen model are optimized using a process called
”Bayesian Optimization” [41]. This process is here used to maximize network val-
idation accuracy by varying hyperparameters in pre-determined intervals. The
method builds a surrogate model of the optimization problem and moves the pa-
rameter values in a calculated ”guess” of optimal direction. The operation needs no
function derivatives. The relevant hyperparameters and their respective defined
interval of interest were the learning rate: 1e − 4 to 1 in logarithmic scale, L2
regularization rate: 1e − 6 to 1e − 1 in logarithmic scale, mini batch size: 10 to
1296 in linear scale (integers), and dropout rate: 0 to 1 in linear scale. A session
with 60 training iterations of SimpleNet were performed, with the data from the
large data set.



Chapter 4
Results and Discussion

The results of this thesis includes a choice of radar setup, measurements of the
chosen gesture set, classification results using transfer-learning on the pre-defined
convolutional neural network (CNN) ResNet50, as well as the design and classifica-
tion results from an additional and less complex CNN called SimpleNet. Analysis
and discussion is presented regarding the results, as well as an evaluation of the
trained models classifying data from a test group not involved in training the
networks.

4.1 Setup Evaluation

This thesis presents two different millimeter-wave radar setups, a real time (RT)
sampling setup and an equivalent time (ET) sampling setup, with two different
oscilloscopes (section 3.1). In preparation for measuring the final data set a ques-
tion of big importance was the decision of which of the two setups to use. The
oscilloscopes have different properties in regards to what frequencies they can mea-
sure as well as acquisition speed and pulse length. In this section the results from
cross-comparison of the setups is presented.

4.1.1 Difference in Performance

Initially, pros and cons of the two setups are presented in table 4.1. The setup
acquisition rates were 140 Hz and 14 Hz for the RT and the ET setup respectively.
This was the maximum implementable measurement speed on the instruments
used.

39
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ET RT
+ +

ET Sampling Faster acq. rate (140 Hz)
=⇒ Higher range res. (80 ps) =⇒ Higher velocity lim.

Simpler setup Externally controllable,
fast operations

− −
Slower acq. rate (14 Hz) RT Sampling with limited BW
=⇒ Lower velocity lim. =⇒ Worse range res. (600 ps)

Inconvenient to implement More complex setup
external control, slow operations

Table 4.1: Pros and cons with the two different setups.

The complexity refers to the number of components in the setup.
As an initial setup evaluation, measurements of a small gesture set (six ges-

tures) were performed. Of these six gestures, five exist in the final gesture set (see
section 3.2.1: hand forth (G01), cross range wave (G03), fold two fingers (G06),
hand swipe left (G08), wiggle two fingers (G11)). Initial classification using a sim-
ple CNN design yielded a relatively high validation accuracy (>80%) for a positive
outlook of gesture classification using both setups. This classification was done
with 21 data points for each class, thus it is hard to draw conclusions from the
result except that it for both setups seems possible to perform classification using
CNNs.

Also, several test measurements were performed where the radar pulse was
reflected against a metal plate that was moving toward the radar at a fixed velocity.
Figure 4.1 shows a measurement performed at 15 mm/s. Here it is clearly visible
how the pulse lengths differ between the setups. According to equation 2.12, the
ET and RT setup has a higher and lower range resolution respectively, due to the
pulse lengths used (see section 2.2.5). The different range resolutions, unambiguous
ranges (equation 2.11) and unambiguous velocities (equation 2.9) are presented in
table 4.2. The acquisition rate is effectively seen as the pulse repetition frequency
(PRF) in the fast-slow time matrix (see section 2.2.2).

Unambig. range Unambig. velocity Range res. (Sr)
RT 1071 km 16.7 cm/s 9 cm
ET 10’710 km 1.67 cm/s 1.2 cm

Table 4.2: Unambiguous range/velocity and range resolution for the
RT and ET setups.

It is evident that the unambiguous range is of no concern for either setup, as
gestures will be performed a factor of 106 closer. Although the range resolution
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is larger for ET, the unambiguous velocity limit is higher for the RT setup due to
a higher PRF - with a factor of 10. Figure 4.2 shows the Fourier transform (FT)
of the images in figure 4.1, where the velocity limit is illustrated. As for range
resolution, the RT setup shows an Sr only 13.3% of the ET Sr.

Figure 4.1: Range-Time diagram of a metal plate moving 15cm
towards radar at 15mm/s with acceleration and deceleration at
the start and end of the movement. RT setup (left) and ET
setup (right).

Figure 4.2: Range-Doppler diagram of data from figure 4.1. RT
setup (left), zoomed RT (middle), ET setup (right). The X-axis
in the left and right image represents the approximate velocity
limit of the corresponding setups.
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4.1.2 Choice of Setup

The scope of the thesis allowed for use of only one setup for the large data set mea-
surements. Although initial classification experiments yielded a positive outlook
for both setups, the data under test was limited. The setups differed in theoretical
limitations, which will be the basis for the choice. The ET setup and the higher
range resolution would be attractive for detailed finger movement, but the limita-
tions in velocity measurements is limiting for frequency-based classification. The
RT setup shows an acceptable unambiguous velocity limit, as well as range reso-
lution still in the order of centimeters. A big factor behind the decision of setup
was also how convenient the instruments could be controlled and recorded, as well
as the time efficiency for the oscilloscope operations. With reasonable range reso-
lution, good velocity limit, convenient and fast data recording and management,
the RT setup was chosen for recording a big data set for classification.

4.2 Measurement Data

Measurements with Range-Time representation for each of the 12 gestures de-
scribed in 3.4 can be seen in figure 4.3.

The hand forward and hand back motions (G01 and G02) were before the
measurements regarded as the two easiest gestures to perform and measure, this
assumption seems to be correct as they both produce easily distinguishable di-
agonal lines corresponding to the hand moving toward or moving away from the
radar.

The movement in the waving motion (G03) is primarily in the cross range
direction, the actual movement in the down range direction is negligible and the
pattern produced is created from the hand moving in and out of the radars field
of view (FoV) and thus creating two flashes where a pulse is reflected.

The pattern from closing and opening a hand into a fist (G04) is not as easily
distinguishable. A continuous signal is observed for the entire length of the gesture
with a clear variation in distance that can be seen as the fist is opened and closed
since the fingers move closer to the radar in the fist position and the palm moves
slightly away during the process.

The motions from folding two fingers (G06), clicking with thumb and index
finger (G10) and sliding thumb back and forth on index finger (G12) all show
similar patterns to that of G04. The hand movement when performing G06 has
a resemblance to the one performed in G04, both gestures have fingers moving
towards and away from the radar with a fist like stance in between. This similarity
expresses itself in the radar patterns for the two gestures, G06 has a slightly larger
variation in distance. G10 includes a movement separated in cross range but not
in down range: we can not distinguish between the thumb and the index finger
but rather their distance to the radar changing at the same time (see section 2.2.5
and range resolution). G12 shows a smoother curve where the thumb is slowly
sliding back and forth along the index finger.

When performing the come here motion (G05) a recognizable U-shape pattern
is created that originates from the motion where the fingers moves away and then
returns towards the radar. Two flashes in signal intensity can be seen at the times
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the fingers are pointing vertically to the radar.

Figure 4.3: The 12 gestures represented as Range-Time data. G01:
Hand Forth, G02: Hand Back, G03 CR Wave, G04: Close and
Open Fist, G05: Come Here, G06: Fold two Fingers, G07: Hand
Swipe Right, G08: Hand Swipe Left, G09: Spin Finger in Circle,
G10: Click with thumb and index finger, G11: Wiggle two
Fingers, G12: Slide thumb back and forth on index finger. The
axis in the bottom left represents all measurements. Observe
that the range interval 0-30 cm is relative for the gesture and
not the actual distance from the radar antennas.

The gestures for swiping right and left (G07 and G08) show patterns that
resemble each other but are inverted, as expected. Two stationary parts of the
gesture from before the hand enters or exits the radars FoV and then a small
portion similar to the ones seen in G01 and G02 where the hand moves towards
or away from the radar during the swiping motion.
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Spinning a finger in a circle (G09) and wiggling two fingers back and forth
(G11) both produce a repeating pattern of periodic detection. For G09 it seems
that at a certain point during the hands rotation there is a larger reflection and
the rest of the time the comparative signal level is so weak that it is not visible.
The same thing happens for gesture 11 where there are spikes in intensity each
time the two fingers cross each other, the periodic flashes in signal intensity creates
two patterns that look very similar to each other.

In appendix, figure A.3, A.4 and A.5, the WFT and Range-Doppler data
representation for the measurements in figure 4.3 can be seen. The cropped Range-
Time data used for acquiring the WFT data is also shown.

4.3 Classification

This section presents classification results for the gesture measurements. Initial
classification was performed with ResNet50. The chosen architecture of SimpleNet
is presented, along with discussion behind the choice as well as SimpleNet hyper-
parameter optimization results, followed by classifications with SimpleNet. The
gestures are also evaluated by studying confusion matrices from SimpleNet. Ad-
ditional analysis is performed with gesture measurements from a test group that
were not involved in the network training.

4.3.1 Classification Using ResNet50

The pre-trained network ResNet50 is trained via transfer-learning. The network
was trained with Range-Time data, Range-Doppler data, and three-frame WFT
data (section 3.3.1). Here, the results come from a single training session of the
network and no averaging between multiple sessions, as training ResNet50 is a
relatively time consuming process. No sophisticated hyperparameter optimization
was performed for ResNet50 other than some manual optimization. Both data
representations have an input size of 224x224x3 pixels (three channels, RGB) as
this is the image input size of ResNet50. The model has a total number of 25.6·106

parameters. No layers were frozen when training ResNet50, meaning all layers had
updating weights when training with novel data (see section 3.5.1). The training
parameters are presented in table 4.3.

Opt. Algorithm ADAM
Train/Validation 60%/40%

Epochs 15
Minibatch size 64
Learning rate 0.0001

L2-reg. constant 0.001

Table 4.3: Training options for ResNet50. ”Opt. Algorithm”: Opti-
mization Algorithm.

The validation results are presented in figure 4.4. The final validation accuracy
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for the completely trained network is presented in table 4.4, for Range-Time,
Range-Doppler and WFT data respectively. Confusion matrices for the three data
representations can be seen in appendix (figure A.2).

Figure 4.4: Validation accuracy for ResNet50. Results are from a
single training session.

Range-Time Range-Doppler WFT
Val. Acc (%) 97.9 84.6 90.6

Table 4.4: Validation accuracy of different data types on ResNet50.

In figure 4.4, it is seen that Range-Time data performs best, followed by the
WFT data. The worst performance is seen with Range-Doppler data. This is
reasonable, as no time-information is present here (section 2.3.2) thus removing
a dimension of interest to the classifier. The WFT data has both range, velocity
(Doppler) and time as dimensions. A representation of time in frequency-domain
is thus evidently important for radar hand gesture classification using CNN. Al-
though, more than three frames might yield even better classification results.

4.3.2 Choice of SimpleNet Architecture

The data presented in table 4.5 are the results from the network design experiments
detailed in section 3.5.2.
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Network Validation Accuracy (%) Time (min) Total nr of params
24 x 24
Net 1 91.8 9.2 394’098
Net 2 89.7 5.4 378’248
Net 3 90.8 9.3 125’662
Net 4 90.9 5.3 105’552

48 x 48
Net 1 92.7 40.5 1’568’798
Net 2 89.9 9.3 1’492’808
Net 3 92.1 40.2 407’182
Net 4 89.9 8.9 331’192

Table 4.5: Performance of different networks for different image
input sizes.

The models that utilize a single fully connected (FC) layer has a higher total
amount of parameters compared to the ones using multiple FC layers. This is
because the FC and Conv layers are of a smaller size when there are multiples of
them compared to the networks only utilizing one, as can be seen in table 3.4. Net
1 is the best performing network regarding validation accuracy, the 48 x 48 input
is better still but more time consuming. Due to limited time and the need to test
many different permutations of the data the computational time is of importance
when choosing the network. Having a simple fast network that is complemented
by ResNet50 that is a more complex and slow network makes Net 1 with input
size 24 x 24 a suitable choice.

To increase performance in the network, hyperparameter optimization with
Bayesian optimization (section 3.5.3) was performed to maximize validation accu-
racy. The results can be seen in table 4.6:

Parameter max(Accuracy)
Learning Rate 0.0046595
L2 reg rate 0.005242

Mini Batch Size 246
Dropout Rate 0.87

Table 4.6: Result of hyperparameter Bayesian optimization, maxi-
mizing validation accuracy.

The yielded learning rate in table 4.6 was after the optimization process low-
ered to 0.0005 (an approximate factor of 10). This was to decrease the relatively
aggressive weight updates after each iteration. This manifested as large dips in
accuracy at some places, even though the accuracy at the end of training was of
a good degree. A decrease in learning rate to 0.0005 did not yield any worse ac-
curacy results, but resulted in a ”smoother” training process. Thus, the final and
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applied learning rate is documented in table 4.7.

4.3.3 Classification Using SimpleNet

The SimpleNet network was trained using the hyper-parameter configuration seen
in table 4.7, the network was trained with Range-Time data, Range-Doppler data,
and three-frame WFT data. The image input sizes in pixels are 24x24x1 for
Range-Time and Range-Doppler (1 channel: gray scale) and 24x24x3 for WFT
(three channels, RGB).

As validation accuracy varies between training sessions, probably due to a
random division of training and validation data as well as random initial weight
values causing the network to find different local minima (as described in section
2.4.2 and shown in figure 2.11), training of the model is performed 25 times with
averaged validation accuracy. This is seen in figure 4.5 as the mean validation
accuracy together with a 95% confidence interval. Table 4.8 shows the mean
validation accuracies together with the peak validation accuracy, defined as the
maximum measured validation accuracy at the end of a training session.

Optimization Algorithm ADAM
Train/Validation 60%/40%

Epochs 200
Minibatch size 246
Learning rate 0.0005

L2-reg. constant 0.005242
Dropout rate 0.87

Table 4.7: Training options for SimpleNet.

Figure 4.5: Mean value with a 95% confidence interval for validation
accuracy during training of Range-Time data, Range-Doppler
data, and WFT data.
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Range-Time Range-Doppler WFT
Mean Val Acc (%) 95.0 85.0 93.0
Peak Val Acc (%) 97.2 86.6 94.7

Table 4.8: Validation accuracy of different data types on
SimpleNet.

SimpleNet performed best on the Range-Time data, closely followed by the
WFT data. The Range-Doppler data was noticeably the worst. These results
agree with the results from ResNet50.

From a trained network, a confusion matrix can be produced with the val-
idation data. The matrix presents true classes vs predictions, illustrating the
classification performance for different classes (gestures). For the results of multi-
ple SimpleNet training sessions (figure 4.5), confusion matrices was calculated at
each training session, then summed up and averaged. The matrices are shown in
figure 4.6 top left, top right, bottom, for Range-Time, Range-Doppler and WFT
data respectively.

Figure 4.6: Confusion Matrices for SimpleNet classification.
Range-Time (top left), Range-Doppler (top right), WFT (bot-
tom). Results are averaged for 25 training sessions and rounded
to closest integer.
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The results in figure 4.6 mirror those from figure 4.5: Range-Time and WFT
data performs best for SimpleNet classification. For all three data representations,
the errors exist mainly for gestures G04-G12 (see figure 3.4 and 4.3 for information
about the gestures). This is reasonable as G01 (hand forth), G02 (hand back) and
G03 (waving hand) can be seen as the gestures with least complexity and clearest
”intent” among the 12 gestures. For these three gestures, the whole hand is moving
as a flat surface, without any separate finger movement.

One relatively prominent trend for all three data representations is that of G06
(fold two fingers) being classified as G12 (slide thumb). Studying the Range-Time
response in figure 4.3, there are similarities in the range measurements, as folding
two fingers first approaches then moves away from the radar similarly to the thumb
sliding along the index finger. One would expect a reciprocal error, where G12 is
also classified as G06. This is observed as well, but not quite as prominent. It is
possible that measurements from G12 thus is more uniform than those from G06.

For the frequency-domain data, it is observed that G10 (click fingers) and G12
is classified as each other to some extent, as well as G07 (hand swipe right) and
G08 (hand swipe left). As above, G10 and G12 have similar measured spectras in
figure 4.3. Both gestures are based on stationary hands with one or two fingers
moving. This is not observed in Range-Time to the same extent. For G07 and
G08, they can ideally be seen as mirror images to each other. This is grounds
for possible difficulties in separating them with the Range-Doppler data, as both
G07 and G08 has a stationary part either before or after the movement, thus
the information of whether it is located before or after the motion is lost in the
Range-Doppler data. The WFT classification is observed to decrease the amount
of errors for faulty G10-G12 and G07-G08 classification. This might be due to
the reintroduction of a time-dependence, yielding additional information to the
classifying network. The loss of the time-aspect in measurements is evidently a
large factor in Range-Doppler classifications under-performance.

Overall, the results shows that both distinct and less distinct gestures can be
classified to a relatively high degree for Range-Time and WFT data, but with lower
accuracy for the Range-Doppler data. The classification results are also notewor-
thy when taking the range resolution (see section 4.1) of the setup into account.
Even though some gestures utilize sub-or on-the-border-resolution movement with
different scatter points on the hand, for example G10, G11, G12, a >95% classifi-
cation result can be presented. Additionally, the unambiguous velocity limit might
be another reason for the sub-par performance of the Range-Doppler data for cases
where this limit might have been surpassed. This is expected to affect both the
Range-Doppler and WFT data classification performance, but the WFT represen-
tation might counter this with the time-dependent frame order which might help
differentiate the gestures.

Additional experiments for data with a thirteenth gesture G13 which consisted
only of noise (no gesture taking place under measurement) were performed to
investigate if any of the original 12 gestures were classified because of a lower signal
strength and thus recognized because of its higher level of noise. The SimpleNet
network was thus trained using Range-Time data while including a 13th gesture
that consisted of the noise data, the results showed a 100% validation accuracy for
G13. Further, no other gestures were classified as G13, which indicates that none
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of the 12 original gestures relies on only noise for classification.

4.3.4 Comparison of SimpleNet and ResNet50

The classification of Range-Time data proved to be effective with both ResNet50
and SimpleNet. While ResNet50 had a higher accuracy for Range-Time data, it
also presents a large model complexity (25.6 ·106 parameters) and is more compu-
tationally heavy compared to SimpleNet which presents a much lower complexity
(394 · 103 parameters). Additionally, the image input size for ResNet50 is approx-
imately a factor of 10 larger than for SimpleNet.

For the WFT data, the SimpleNet outperforms ResNet50 with 2.4 %. One
reason for the worse performance on the WFT data with ResNet50 could be due
to the type of data used. ResNet50 is pre-trained on large amounts of images
that has a correlation between the different color chanels in the spatial domain,
the RGB channels previously had no time-dependence between them and thus
the model might be unsuitable for classification of frequency-domain data with a
time-dependence between its color channels. Another reason might be that the
model needs more regularization to increase its ability to generalize, although L2
regularization was in fact used for training ResNet50. A Bayesian hyperparameter
optimization was performed on SimpleNet but not on ResNet50, which might be a
reason for the slight under-performance of WFT data with ResNet50. The reason
for no Bayesian hyperparameter optimization for ResNet50 was the very large time
required for network training (section 3.5.2 and 3.5.3).

The Range-Doppler data was the worst performing data representation for
both networks. As discussed, a time-dependency in the data seems important.

To note is that the results from ResNet50 comes from one training session,
and are not averaged as for SimpleNet.

The performance of ResNet50 compared to SimpleNet illustrates that the
gap of model complexity does not necessarily mean a gap of classification perfor-
mance. It is possibly so that ResNet50 is unnecessarily complex as classifying the
radar data used in this thesis arguably is not as difficult as classifying 100’000s or
1’000’000s of widely varying images in 1000’s of classes. Still, controlling devices
with hand gestures and radar data will have high requirements on speed and it is
a positive outlook that the classification methods can go down in complexity and
data input size, and still achieve acceptable performance.

4.3.5 Classifying Data from Test Group

Gesture measurements from the test group (section 3.2.3) were used as validation
data on both the SimpleNet and ResNet50 networks, after training using the au-
thors data set. The data from the test group thus had no influence on the training
and were only used for testing the model classification capabilities. Observe that
for SimpleNet, the network was that of one single training session, without any
type of averaging.

Range-Time and three-frame WFT data was classified. The results of the
validation is presented in table 4.9, with confusion matrices in figure 4.7.
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SimpleNet ResNet50
All gestures
Range-Time 53.75% 70.0%

WFT 59.17% 45.0%

Table 4.9: Validation accuracy for data from test group.

Figure 4.7: Confusion matrices for data from test group. ResNet50
Range-Time (top left) and WFT (top right), SimpleNet Range-
Time (bottom left) and WFT (bottom right).

The test-only data shows relatively poor results when validated on the net-
works trained on data from the authors. The classification for the Range-Time
data with ResNet50 performs the best with 70% accuracy, which is 27.9% lower
than in table 4.4. The discrepancy between ResNet50 and SimpleNet results for
Range-Time data is here larger than previous tests (section 4.3.4) and ResNet50
performs 16.3% better than SimpleNet. On the other hand SimpleNet outper-
forms ResNet50 on the WFT data with 14.2%. Again, as in section 4.3.1, a weaker
performance on WFT data is observet for ResNet50.
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While the Range-Time previously showed the best results for SimpleNet, WFT
data here provides the highest classification results with an accuracy of 59.2%. This
could mean that SimpleNet can generalize the model for WFT data better than
for Range-Time data. Combining this with the good results from Range-Time
training in table 4.8, one conclusion could be that the model is more accurate for
Range-Time data but more general for WFT data.

According to figure 4.7, G12 generally has the worst performance for both
of the networks. It is also noticeable that G12 to a high degree is classified as
G10 and many of the other gestures in the Range-Time data also has the same
tendency. When analyzing the training data from the authors it was observed that
the average image of G10 has a relatively high level of noise, meaning that the
signal level for the gesture is generally quite weak. Thus this might indicate that
some gestures is partially categorized due to its weak signal instead of the measured
radar pattern. This trend mostly seems to be prevalent in the Range-Time data
and not as obvious in the WFT, thus the signal processing steps performed in the
WFT seems to alleviate this issue. For the classification of Range-Time data using
SimpleNet, a trend in error where G04-G07 are classified as G08 is also observed.

The results from the test group would point towards the need of personalized
training of the model, alternatively a larger number of persons contributing to
measurements. To note is the relatively small size of the test-only data set: it
is hard to draw conclusions, as more data would be needed for more confidence
in the result. Additionally, classification results from training on data from one
author and validation on the other are presented in appendix A.2.
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Conclusion

Initially, two different radar setups were tested and evaluated, one using equivalent
time (ET) sampling and the other using real time (RT) sampling and down-mixing
of the signal. Due to a higher acquisition rate (effectively pulse repetition frequency
PRF) and more convenient implementations of data recording the RT setup was
found to be the most suitable setup. A pulse length of 600 ps and a PRF of 140
Hz was used.

A data set consisting of 12 different gestures was recorded, each gesture had
180 measurements per gesture, 90 from each of the two authors, and an addi-
tional 20 measurements from a test group with two volunteers for a total of 200
measurements per gesture.

The gestures were selected with different degrees of complexity. They were
chosen continuously up until the time for big scale measurements. They were
performed under the same time-span and in the same distance interval to the
radar.

The measured gesture data was classified with convolutional neural networks
(CNNs). The data was presented in three different image representations: Range-
Time data (no processing), Range-Doppler data (Fourier transformation (FT) on
data), and WFT data (Windowed FT). The different data representations were
presented to the CNN as spectrum images in time and frequency (Doppler) do-
main respectively. WFT processing produced a Range-Doppler representation
with three frames, represented as the R, G, and B-channel in an image. In order
to verify the signal processing, radar simulations in MATLAB was performed and
analyzed.

Two different networks were used to analyze the data, one pre-defined and
pre-trained network called ResNet50 used for transfer learning, and a network of
lower complexity designed for this thesis called SimpleNet. During the design
of SimpleNet multiple permutations of different layer structures were tested and
evaluated, resulting in the choice of the network with second-best validation accu-
racy but with fastest training time. The accuracy difference between the best and
second-best was ≈ 1%. Bayesian optimization was used to optimize SimpleNet
hyper-parameters. The hyperparameters of ResNet50 was not optimized with an
algorithm, but manually to due to the significantly larger time consumption for
network training.

The results from SimpleNet and ResNet50 training-validation is summarized
in table 5.1. The SimpleNet results are averaged for 25 number of trainings.
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Range-Doppler data was the worst performing for the networks, probably due to
no time-dependency to be found in the data.

Some difference was seen between SimpleNet and ResNet50 for Range-Time
data, which was the best data representation result-wise. WFT data classification
performed worse for ResNet50 than for SimpleNet, possibly owing to the fact
that ResNet50 is pre-trained with data without any time-dependence between
the R, G, and B-channels. The relatively similar results contrast the relatively
large difference in complexity between the networks. Thus, relatively low-complex
CNNs can be used for radar gesture classification using the presented methods.

The results from validating trained models with test-only data (Range-Time
and WFT) from the test group is also summarized in table 5.1. ResNet50 outper-
formed SimpleNet with Range-Time data, while SimpleNet outperformed ResNet50
with WFT data. The generalization abilities of the networks is from these results
shown to be sub-par for accurate classification of gesture data from different indi-
viduals than those who provided data for model training. Important to consider
is that the test-only set is relatively small, and thus it is hard to draw any conclu-
sions with high confidence. These results would then be considered as an indication
towards what a result with more data possibly would look like.

SimpleNet ResNet50
Data from author (averaged)

Range-Time 95.0 97.9
Range-Doppler 85.0 84.6

WFT 93.0 90.6
Test-only data
Range-Time 53.8 70

WFT 59.2 45.0

Table 5.1: Summary of classification results, as validation accuracy
(%).

The goal of this thesis, to investigate the possibilities of hand gesture sensing
and classification using an in-house pulsed radar setup and convolutional neural
networks was thus accomplished, with validation accuracies in the mid-and upper-
90% range for two of the three signal processing methods under test. Both spatial
and reciprocal data were tested. The setup and classification method show great
potential for pulsed millimeter-wave radar hand gesture recognition using a low-
powered pulsed resonant-tunneling diode (RTD) wavelet generator, with future
possibilities to refine results by for example modifying the setup or performing
more extensive measurements.



Chapter 6
Outlook

While the setup used in this thesis is not considered low-powered, except for the
wavelet generator, it serves as a proof-of concept for said generator. It would be
of further value to investigate complete low-powered setups, possibly also imple-
menting on-chip detection. On-chip detection of 60 GHz ISM band signals would
be a field of large possibilities, where the limit of small implementation size as well
as power consumption can be explored.

Regarding the radar operations, a higher acqusition rate or recording frame
rate (PRF), would be attractive because of the increase if unambiguous velocity
limit (see section 2.2.5). As the PRF increases, the unambiguous range decreases,
but it would be of no concern regarding short-range detection due to the linear de-
crease and excessively long limit in the case of this thesis (≈ 1000 km for PRF=140
Hz, see section 4.1). Additionally, a shorter pulse length would yield a higher range
resolution, which together with a higher possible measured velocity could prove
more robust for hand gesture radar detection.

To further investigate the process of classifying radar gesture data, a larger
data set would be attractive. Mainly, as mentioned in section 4.3.5, a larger number
of participating individuals would be desirable due to the probable increase in
model generalization ability. Additionally, tests could be performed in how much
personal data a new user needs to provide to a pre-trained (on gesture data) model
until classification yields acceptable results. Alternatively, investigations could be
made into how much variation is needed for acceptable results on novel data,
something achieved with training data augmentation for example.

Like discussed in section 4.3.4 it is of importance that the network complexity
can be relatively low while still maintaining good classification results. Alterna-
tives to CNN classification could yield less complex while still accurate classifi-
cation. This could be processes where the data is analyzed as discrete signals,
and not as spectrum images. For example, feeding pulsed signals to a RNN (Re-
current Neural Network) could yield good results due to the networks possession
of a long-short-term-memory and ability and analyze time-dependent data [42].
Also, when performing transfer learning on ResNet50 one could reduce the ef-
fective complexity by ”freezing” layers that does not need to train specifically on
the provided data (for example the top CNN layers that detect overall and gen-
eral patterns) while perform transfer learning on the layers that would need to be
more unique for the provided data (the last layers in the network which performs
very fine image analysis together with the fully connected layers). Additionally,
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as was observed in figure 4.4, some generalization issues exists for the WFT data
in ResNet50, even though L2-regularization is implemented. This could be coun-
tered by adding drop-out or augmenting the images, for example by stretching
along the x and y-axis and shearing of the image. This is an effective method
against under-generalization [43].

When it comes to signal processing and data representation, an interesting
analysis would be to classify WFT with more than three frames. This would
introduce a more accurate time representation as well as more discrete velocities
(see section 2.3.2 and 3.3). This would create the demand on > 3 frame input
in CNNs, possibly utlizing CNNs with more than three channel (R, G, B) inputs.
Additional investigation could also be made into combining WFT and Range-Time
data in a complementary way for classification.

While this thesis deals with the technical aspects of radar gesture sensing, it
would be interesting to evaluate the method with an industry perspective. As
power, latency, device size and cost needs to be taken into account, it is important
to look at all these factors and analyze the viability of this method of touchless
interaction. With the performance derived in this thesis being as good as it is in
some aspects, it would be feasible to continue researching the subject and other
aspects needed for implementing a system of this kind.
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Appendix

A.1 Results of Alternative Classification Methods

Various other methods of data classification are here superficially tested for com-
parison. The methods used was those present in the Matlab ”Classification Learner”
application1.

The input data is the large data set from the authors and is in all cases
the Range-Time spectrum, downsized to a 25x25x1 pixel image and flattened to a
25x25x1 long vector. 75%-25% training-validation is used. The validation accuracy
of the three best performing classification methods are presented in table A.1.

Method Validation Acc. (%)
Medium Gaussian SVM 67.0

Linear SVM 64.1
Quadratic SVM 63.5

Table A.1: Validation accuracy for alternative classification meth-
ods. ”SVM”: Support Vector Machine.

1https://au.mathworks.com/help/stats/classificationlearner-app.html
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A.2 Classification of Data Divided Between Authors

SimpleNet is here trained on data from one author and validated on data from
the other. There are 90 measurements per gesture per author. The settings are
used as in section 4.3.3, but here with 50%-50% training-validation (one author
for training, one for validation). The validation results for classification on Range-
Time andWFT data are presented in figure A.1 table A.2. The results are averaged
over eight training sessions.

Figure A.1: Validation accuracy (%) for SimpleNet (author vs au-
thor, averaged). The results are averaged for author 1 vs author
2, and author 2 vs author 1.

Range-Time WFT
Author 1 train, Author 2 val. 63.8 54.4
Author 2 train, Author 1 val. 62.3 55.9

Table A.2: Validation accuracy (%) for SimpleNet (author vs au-
thor, averaged).
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A.3 Confusion Matrices from ResNet50

Figure A.2: Confusion Matrices for ResNet50 classification. Range-
Time (top left), Range-Doppler (top right), WFT (bottom).
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A.4 Additional Representations of Measurement Data

Figure A.3, A.4 and A.5 shows data representations from the same measurements
presented in figure 4.3. Shown here is Range-Time data with red lines indicating
result from cropping (left column), WFT data from cropped raw data (middle
column), Range-Doppler data (right column). Observe the indication of 0 velocity
in the middle and right column.

Figure A.3: Range-Time, WFT, Range-Doppler data. G01-G04.
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Figure A.4: Range-Time, WFT, Range-Doppler data. G05-G08.
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Figure A.5: Range-Time, WFT, Range-Doppler data. G09-G12.
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