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Abstract

The research field of automatic music transcription has vastly grown during the 21st century,
where the goal is to transcribe a polyphonic music signal into annotated sheet music. Within
this field, the subproblem of fundamental frequency estimation in a piece of music is a difficult
problem, e.g., due to dissimilar structures in signals from different instruments playing the same
note. This becomes further convoluted in a polyphonic signal consisting of several notes, where
the harmonic overtones of the notes interact. To solve this and other issues, machine learning
techniques have furthered the research in music transcription, which is the main focus of this
thesis. This is undertaken by comparing the best performing fundamental frequency estimators
from recent years, mainly from MIREX competitions from 2015-2017. These are recreated and
evaluated on a customized test set consisting of MIDI files of various instruments. The evaluation
consists both of typical music transcription measures such as precision, recall and accuracy, but
also by deeper analysis in order to find the large-scale structural biases. The evaluation of the
tests herein shows that the best performing models are THK1 and CT1 from MIREX 2017 which
are based on CNN. This work has identified some structural errors in these methods pointing out
potential for further improvements. In addition, a novel approach of applying complex-valued
neural networks in music transcription is also examined, by modifying research in an existing
deep complex neural network model. The proposed and improved model finishes on third place
in the evaluation, indicating that complex neural networks may develop the research area of
music transcription even further.
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1 Popular scientific summary (in Swedish)

Forskning kring att utvinna information om musik direkt från en ljudinspelning har pågått sedan
slutet av 1900-talet. Många nya upptäckter har gjorts de allra senaste åren, dels på grund av
att forskningsområdet har varit relativt outforskat men också då den tekniska utvecklingen har
gått framåt väldigt kraftigt. Denna avhandling utforskar en gren inom forskningsområdet, kallad
multipel fundamentalfrekvensestimation, där målet är att få en dator att omvandla musik i form
av en ljudinspelning av flera samtidigt spelande instrument, till ett notblad med korrekt tran-
skriberade noter. En fundamentalfrekvens motsvarar ljudvågornas svängningshastighet för varje
ton i notsystemet. Rent intuitivt kan detta låta som magi, och som man kan förvänta sig finns
det heller inte någon enkel formel som felfritt löser problemet. De lösningsmetoder som finns
är snarare inriktade på att göra en så bra estimation av det korrekta notbladet som möjligt.
Tillvägagångssätten består generellt sett av avancerade modeller som i flera steg omvandlar data
och optimerar parametrar utifrån olika tekniska och musikteoretiska aspekter. Hur forskningens
senaste modeller fungerar och hur bra de presterar är två ämnen som denna avhandling utreder.

Tillämpningsmöjligheterna för forskningsområdet är stora, givet att en modell skulle fungera i
princip felfritt. En musiker skulle t.ex. kunna få ut noterna till vilken ljudinspelning som helst,
vilket skulle vara uppskattat och praktiskt för musiker på alla nivåer.

Avhandlingen går inledningsvis igenom de tekniska och musikteoretiska delarna som de senaste
forskningsmodellerna baseras på, samt vilka hinder man behöver få bukt med. En stor del av
svårigheten i multipel fundamentalfrekvens-estimation ligger i att ljudet från flera olika instru-
ment går in i varandra och frekvenser kan på så vis både förstärkas eller ta ut varandra. Vidare
vet datorn inte vilken uppsättning av instrument som ljudet kommer från, samt hur många
toner som spelas samtidigt. Ett nyligen applicerat segment inom forskningsområdet är machine
learning genom så kallade neurala nätverk. Ett neuralt nätverk lärs upp till att automatiskt
identifiera mönster i ett okänt dataset genom att anpassa parametrar på en stor mängd trän-
ingsdata. Hur neurala nätverk fungerar rent praktiskt och hur de appliceras för att estimera
fundamentalfrekvenser är något som också utreds i denna avhandling.

Ett avsnitt är tillägnat åt att implementera en egen modell som baserar sig på insikter från
existerande modeller. Den presenterade modellen använder sig av en variant av neurala nätverk
som tillåter komplexa värden, det vill säga roten ur negativa tal. Detta är en nyintroducerad
variant av neurala nätverk inom forskningsvärlden som inom bland annat bildigenkänning har
visat bättre resultat än likvärdiga realvärda neurala nätverk. I avhandlingen görs en omfattande
utvärdering där totalt 24 modeller testas på 12 musikstycken i olika stilar och instrumentkonstel-
lationer. Den föreslagna modellen presterar väldigt väl och är enligt testerna den tredje bästa
modellen.

Testerna används dels för att avgöra vilka modeller som presterar bäst, vilket ger ett mått på
vad dagens forskning kan åstadkomma. Testerna används också för att analysera vilka frekvenser
modellerna klarar av att estimera samt om det går att hitta några strukturella fel som de inte
klarar av. Att grundligt utvärdera metoderna inom dagens forskning kan förhoppningsvis hjälpa
till att vägleda framtidens forskning till att fortsätta göra nya framsteg.
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2 Introduction

To automate music transcription would in many applications be appreciated and developing.
Take for example a musician sitting next to the guitar writing a song. The melody which was
just invented on the guitar turned out to be perfect and the musician starts to write down the
notes as good as it was remembered. Imagine the musician using an automatic music transcribing
device, the melody would instead simply appear on a music sheet just as it was played. Another
example is a musician listening to a song which the musician wants to play himself. Instead of
listening to the song recording in slow motion in order to write down the tones one by one, an
automatic music transcriber would give the sheet music directly. The musician could instead
spend the time on practicing the song directly.

So why don’t everyone use an automatic music transcription device? The simple answer is that
it doesn’t exist, at least not a completely working one, at least not right now. The follow-up
question is of course, when will it exist? This question can of course not be answered by a master
student in mathematical statistics. What a master student can answer, which this thesis will be
about, is how well the currently best music transcription devices perform statistically, how they
work and perhaps how far from perfect they currently are. To determine the directions of further
research, this is an important question to answer. This question is actually answered every year
in a conference called MIREX where music transcription models are evaluated. But the MIREX
evaluation is not optimal in order to lead the way of future research, which will be motivated
herein.

Every year researchers send their novel algorithmic solutions to MIREX and the best performing
one is decided. The issue is that the question "why" it performs the best, is not further analyzed.
In this thesis a broader selection of models, more corresponding to what currently is available
in the music transcription area, will be evaluated. Also, the results will be presented such that
different features in the models may be analyzed. In order to limit this thesis, both models in
MIREX which were participating 2014 and before as well as other models which haven’t par-
ticipated in MIREX, have been omitted. It should be mentioned that even if more models are
evaluated in this thesis than in one single MIREX conference, there are published models claim-
ing to perform state-of-the-art which are not considered in this thesis.

The most recent music transcription models are based on machine learning, which can be de-
scribed as methods where a large amount of data is used to train a network consisting of often
several thousands of parameters. Machine learning has previously been proved to be successful
for image analysis, but recently also for music transcription. This thesis will study the novel
approach of applying complex-valued neural networks to music transcription. Complex-valued
neural networks is a newly discovered area which has been showed to enrich other applications
such as image recognition [1]. This thesis will aim to answer if complex-valued neural networks
may enrich the area of music transcription as well.

Comparable studies as this thesis has been made, for example [2] where many types of music
transcription techniques are explained and compared, or [3] where the challenges for the auto-
matic music transcription area are described and what needs to be developed in order to make
further progress.
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This thesis is aimed for two types of readers. The first is the dedicated researcher in the music
transcription subject, for whom the test results might be the most interesting. The second is the
student who is new to the area and wants to get a thorough review of the current research and the
underlying theory. The thesis will be structured as follows: In chapter 3 the fundamental tools
for music transcription will be described. Chapter 4 will describe what a music transcription
model is supposed to perform and how it is evaluated. In chapter 5 all the considered music
transcription models are presented. In chapter 6 statistical testing of the models is described.
In chapter 7 the test results are presented, and finally in chapter 8 conclusions of the results are
made.
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3 Theory

In this section the basic theory behind music translation will be introduced: First a general review
of what automatic music transcription is presented in Section 3.1. The steps are then further
explained by analyzing the music signal using different methodologies, such as spectral analysis
in Section 3.1.1, musical theory in Section 3.1.2, signal processing in Section 3.1.3, and technical
difficulties that may appear in Section 3.1.4. Then the theory behind the pitch estimation is
explained, which essentially amounts to different solutions to a signal processing classification
problem. An approach called subharmonic summation is described in Section 3.2.1, whereafter
an introduction to neural network in Section 3.2.2, followed by different types of neural networks
in Section 3.2.3 and 3.2.4. The section ends with the translation of pitch probabilities to a music
sheet in Section 3.2.5.

3.1 Introduction of Automatic Music Translation

Transcribing music is complicated, therefore the solutions may be very advanced. The solutions
also differ depending on who tries to solve the problem. There are a couple of steps on the path
to a complete music transcription model which the current research seems to have agreed on [2].
The researchers’ attempts to optimize these steps will be explained in this section.

First of all, if one wants to understand music transcription, one needs to understand some theory
about audio. The formal definition of audio, stated in [4], is vibrations which propagate through
a transmission medium such as a gas, liquid or solid. As further explained, humans can only hear
these vibrations if the waves cycles in the specific range 20 Hz to 20 · 106 Hz (Hz = cycles per
second). Considering blowing in a whistle, the high whistling sound is simply the transmission
material air which vibrates a high amount of Hz. A tone played by a musical instrument consists
of a duration, a loudness and a pitch, among other features [4]. The pitch is the part of the
tone which is related to the amount of wave formed cycles per unit of time. Two tones with the
same duration and loudness but with different pitches will sound different and each tone can be
judged as either higher or lower.

Humans don’t perceive sound as wave formed signals, but a computer does. From a wave formed
signal one can find the amount of cycles per second the signal contains, also called the frequency
of the signal. There are a couple of technical ways to establish the frequency. The most famous
and well known is the Fast Fourier Transform (FFT) [5], which computes the discrete Fourier
transform (DFT). The DFT is a complex-valued transformation describing the frequency content
of the signal. The original wave formed signal is transformed by the DFT to the frequency
domain. The formula of the DFT in [5] is:

Xk =

N−1∑
n=0

xne
−i2πkn
N k = 0, ..., N − 1 (1)

where X is the output sequence (the Fourier transformed signal), x is the wave formed signal
and N is the length of the wave formed signal. The FFT computes the DFT with less op-
erations than calculating the DFT directly from the sum in (1), according to [5], and that is
the reason why the FFT has become so famous. What practically happens in the DFT is that
the data is divided into equally spaced frequency bins, and for each frequency bin a complex-
value is calculated corresponding to a phase and amplitude of the frequency content in the signal.
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The output of the DFT is complex-valued and its absolute value corresponds to the amplitude of
the transformed signal. The absolute value gives an illustration of the signal’s frequency content
which is easier to interpret, and is called the amplitude spectrum. In Figure 1, a guitar playing
the tone A3 is visualized together with the amplitude spectrum1.

Figure 1: Top plot shows how the strike of the guitar string appears right after the time starts.
One can also see how the power is decaying as the tone is fading out. The middle plot shows a
zoomed in version of the above plot which is highlighting the wave form of the signal. The bottom
plot shows the absolute value of the discrete Fourier transform which has a high peak at 220 Hz
and a smaller but distinct peak at 440 Hz. By looking closer to the bottom plot one can find some
smaller peaks at higher frequencies as well.

About the amplitude spectrum in Figure 1 some words must be said. The tone A3 corresponds
to the pitch of 220 Hz, and a high power in the amplitude spectrum for that frequency can be
noticed, corresponding to a high content of that frequency. Another distinct amplitude appears
at 440 Hz which would correspond to the pitch of tone A4. A medium high content of the fre-
quency 440 Hz is found even if tone A4 was not played. The peak at 440 Hz in the spectrum has
appeared due to a property of musical instruments called overtones, as explained in [6]. Notice
that the second peak appears around 440 Hz which is 2× 220 Hz. This approximately multiple
phenomena of the peaks is not a coincidence. By looking closer at the amplitude spectrum, one
finds the smaller peaks in higher frequencies to occur at approximately multiples of 220 Hz (660,

1In music transcription one is interested in describing the signal as much as possible by the frequency rep-
resentation. In order to perfectly recreate the signal from its frequency representation, the signal needs to be
stationary. Clearly the top figure is not stationary, because of the changes in the envelope of the curve. If
one studies a shorter segment of the data, like the middle plot, the data can be considered as stationary. The
amplitude spectrum in the bottom plot is determined from 100 ms of data.
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880, 1100 Hz and so on). All these multiples are called overtones. The frequency corresponding
to the actual pitch is called the fundamental frequency. In many real-world sounds including
signals from musical instrument, it is a common fact that overtones appear at approximately
multiples of the fundamental frequency. The power in each overtone differs between instruments,
as well as the envelope of a tone [6]2. This is closely related to the concept of timbre which will
be further discussed in this thesis.

One observation to notice from the amplitude spectrum in Figure 1 is that the fundamental
frequency has more power than the overtones. The most powerful frequency is called the pre-
dominant frequency and the fundamental frequency is by far the most common predominant
frequency. This discovery has contributed very much to the music transcription research [2].

The fact that fundamental frequencies appears as peaks in the amplitude spectrum together with
the expectation of distinct amplitudes for frequencies at multiples of the fundamental frequencies,
makes up the two main conditions for estimating fundamental frequencies. When the expected
fundamental frequencies are found the pitches can easily be transcribed to tones in a music
sheet. The so far mentioned theory is just a scratch on the surface of music translation, but it
is basically enough to be able to understand the principles of music transcription. This process
is summarized in Figure 2.

Figure 2: The main steps included in music transcription according to [2]. The word "Pitch"
corresponds to the fundamental frequencies.

3.1.1 Spectral Analysis

To motivate the importance of advanced signal processing, one may return to Figure 1. Here the
complicated wave formed signal of a guitar playing the tone A3 is transformed into an amplitude
spectrum, where the sought fundamental frequency is easily seen. It should be mentioned that
this is actually a very simple signal considering one instrument playing one tone. Further in this
thesis the goal will be to estimate a polyphonic signal which consists of multiple tones, sometimes
also played by multiple instruments. This causes new issues compared to estimatinga single tone
from a single instrument.

First of all different instruments have different sounds. But also two instruments of the same kind
may have different sounds. For example, two guitars may sound different because of the material
of wood or strings. Actually a single instrument can have different sound as well, depending on
how it is played and by whom. For example, one may play with different articulation such as
staccato (detached) or legato (connected). This is included in a concept called timbre. Timbre
is what distinguishes different sounds from each other and is a well investigated area. Different
timbre can be exemplified by the envelope of the signal, the amount of noise, the power of the
different overtones or how the overtones change through time (Spectral Envelope). The fact that
a single pitch may have many different appearances, is a factor which makes polyphonic music

2The envelope of a tone is how the strength of the tone changes over time, for example from the strike of a
guitar string until the sound fades out.
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transcription a complicated problem.

Another issue in polyphonic music transcription is related to the earlier mentioned overtones,
Section 3.1. By studying a simple example of 2 tones played by a guitar and the mixture of
the tones, an interesting phenomenon occurs. The tones that are mixed is a guitar playing the
tone A3 and a guitar playing the tone A4. The mixture is created by simply adding the signals
together which is illustrated in Figure 3.

Figure 3: The top plot is the signal is the Guitar playing the tone A3, the middle plot is the Guitar
playing the tone A4 and the bottom plot is the two signals added together.

The issue appears clearer by applying the FFT to these signals. This is illustrated in Figure 4.

From Figure 4 one finds a couple of interesting observations. By studying the top and middle plot
one notices the similar structure of the overtones, which is a high peak at the fundamental fre-
quency, 220 Hz and 440 Hz respectively followed by a distinct peak at the first overtone, around
440 Hz and 880 Hz respectively. In lower frequencies in the middle plot one finds a distinct peak
corresponding to noise3. In the bottom plot there are three distinct peaks at 220, 440 and 880
Hz. The peaks at 220 and 880 Hz appear with similar amount of power as in the top and middle
plot respectively. The peak at 440 Hz appear with more power than in both the above plots.
This is explained as the first overtone of tone A3 overlapping with the fundamental frequency
at A4. The plot can give the impression that the power of the peaks has been added together,
which sort of has been the case here. But a different phase of the mixed signals could likewise
cause the peaks to cancel each other out. To understand why this may happen, this thesis refers

3The noise could possibly come from AC voltage which has a frequency of 50 Hz and might affect the recording.

11



Figure 4: The top plot is the amplitude spectrum of a guitar playing the tone A3 (220 Hz), the
middle plot is the amplitude spectrum of a guitar playing the tone A4 (440 Hz) and the bottom
plot is the amplitude spectrum of the two signals added together. All amplitude spectrums in the
plot are of 100 ms of data.

to theory about of addition of complex numbers [7]. Whether two overlapping peaks from two
signals which are mixed together should be added together, take each other out, or anything in
between, can in a real world scenario be considered as random. When dealing with polyphonic
music signals, overlapping overtones will occur very frequently and as described, these overtones
may not be easily identified or separated.

If one pretends to be given the bottom plot in Figure 4 and asked to determine the active pitches,
one may think that it is an easy task just to pick out the two highest peaks. That would be
easy given the number of active pitches and what instrument that is used. But when these ques-
tions should be answered automatically by a music transcription model, the number of pitches
and what instruments used, are unknown. One may realize that this turns out to be a more
complicated task. Given the knowledge that the piano has an overtone structure where the first
overtone has about the same power as the fundamental frequency [6], the amplitude spectrum
in the bottom plot in Figure 4, could likewise be estimated as a single tone played by a piano.

By adding more instrument signals to a mix, the number of overlapping overtones will just
increase and the music transcription will appear more complicated. In order to have optimal
conditions at the pitch estimation part (Figure 2) one would like to use some kind of spectrum
which contains as much and robust information as possible and as little noise as possible. This
is further discussed in Section 3.1.3.
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3.1.2 Musical- and Overtone Theory

In this section some basic concept of music theory will be explained a bit further. Knowledge in
basic musical theory is essential for a technically oriented music transcriber. In Section 3.1, it
was stated that a musical tone consisted of for example a duration, a loudness and a pitch. In
this section the pitch of the tone will be focused.

The pitch is the lowness or highness of a tone corresponding to a low or high amount of oscillating
cycles per second in the wave-formed signal. Specific frequencies are named with a letter name
corresponding to a certain tone, for example the pitch 440 Hz is called A4. The "4" in the name
A4 means that it is a tone A in the fourth octave. A piano consists of tones from A0 at 27.50
Hz up to C8 at 4486.01 Hz which is illustrated in Figure 5

Figure 5: The piano keys with the corresponding letter and pitch in Hz [8].

An octave is a certain distance step between two tones of either the double or the half fre-
quency. The tone A3 appears at 220 Hz and the tone A5 appears at 880 Hz which is half and
twice the pitch of A4 correspondingly. Between each octave there are 12 different tones named
with letters. The authors of [9] explain that the frequency of the tone which follows after A4
is 21/12 × 440 ≈ 1.05946 × 440 = 466.13 and is named A#4 which is pronounced: A sharp
four. It is also said that the distance between two adjacent tones is called a semitone and is
always 21/12 − 1 ≈ 6% of the frequency. Humans hear sounds in a logarithmic scale where the
semitone distance sounds equal independently of what octave the tones are [4] 4. Note that
440 × (21/12)2 = 493.88 which is B4 which is the tone after A#4. Also one may note that
440× (21/12)12 = 440× 2 = 880 which is A5. All frequencies from tone A0 to C8 are illustrated
in Table 1. From the table it gets clear how the logarithmic structure of the fundamental fre-
quencies of the tones appears.

In Section 3.1 the concept of overtones as something which occurs from musical instruments were
introduced5. It was noted that overtones occurred at approximate multiples of the fundamental
frequency. Considering the tone A3 with 220 Hz, the first overtone appears at approximately 440
Hz. According to Table 1, the same frequency appears as the fundamental frequency of the tone
A4. The second overtone of A3 should appear around 660 Hz. One may note that there is no
tone with fundamental frequency of 660 Hz in the table, but the tone E5 with 659.25 Hz is close.

4For example, the distance between A2 and B2 sounds equal as the distance between A3 and B3.
5The physical explanation of why they occur is not needed for further musical analysis.
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C C# D D# E F F# G G# A A# B
0 27.50 29.14 30.87
1 32.70 34.65 36.71 38.89 41.20 43.65 46.25 49.00 51.91 55.00 58.27 61.74
2 65.41 69.30 73.42 77.78 82.41 87.31 92.50 98.00 103.83 110.00 116.54 123.47
3 130.81 138.59 146.83 155.56 164.81 174.61 185.00 196.00 207.65 220.00 233.08 246.94
4 261.63 277.18 293.66 311.13 329.63 349.23 369.99 392.00 415.30 440.00 466.16 493.88
5 523.25 554.37 587.33 622.25 659.25 698.46 739.99 783.99 830.61 880.00 932.33 987.77
6 1046.50 1108.73 1174.66 1244.51 1318.51 1396.91 1479.98 1567.98 1661.22 1760.00 1864.66 1975.53
7 2093.00 2217.46 2349.32 2489.02 2637.02 2793.83 2959.96 3135.96 3322.44 3520.00 3729.31 3951.07
8 4186.01

Table 1: Frequencies of musical notes in the range of a piano. The notes in a scale are in each
column and the octaves are in each row. The table should be read as the frequency of tone C2 is
found in the C-column (1st column) on the 2-row (3rd row) as 65.41. The frequencies are rounded
to 2 decimals.

Actually E5 is close enough in order to interact with the second overtone of A3 and one may say
that A3 and E5 have overlapping overtones at around 660 Hz (interaction between overlapping
frequencies were described in Section 3.1.1). Actually all tones in Table 1 with frequencies ≈ 660

n
for all n ∈ Z will have an overlapping overtone with A3 at 660 Hz. This similarly holds for all
overtones of A3, also at the fundamental frequency. When describing all active frequencies in a
tone, both the fundamental frequency and the overtones, at once, the term harmonics is used.
The first harmonic is the fundamental frequency, the second harmonic is the first overtone and
so on.

One may note that all combination of two tones, given enough active overtones, will sooner or
later have two harmonics which will overlap6. For some combination of two tones this occurs
for high frequencies while for others it occurs for lower frequencies. A mix of two tones where
the first overlapping overtone appears at a high frequency are nicest from a music transcription
perspective, since there are less interactions in the spectrum, which are hard to deal with.
Unfortunately for the music transcriber, a mix of tones in music sound more pleasantly and
sweetly from a psychological perspective if the tones are in harmony and the overtones become
merged. This psychological feeling has been sought by music creators throughout time, and the
music humans listen to is mainly in harmonies. It would have been advantageously for a music
transcriber if the music humans listen to was out of harmony. But as the world look like, a user
of a music transcription device would only be interested in transcribing harmonic music which
sounds good, so that is what the music transcription models should be able to handle. The
psychological phenomenon of good and bad sound according to different combinations of tones,
is called consonance and dissonance between tones.

3.1.3 Signal Processing

FFT is this far the only signal processing method mentioned in this thesis. However, the FFT
is rarely used in common music transcription models. The reason why it has been used in the
above examples is partly because of its simplicity and its familiarity to technical skilled persons,
but also since many of the other signal processing methods have similarities to the FFT.

6For two tones x and y, one can see that x×(21/12)m and y×(21/12)n, for some m,n ∈ Z, will be approximately
equal.
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One of the most frequently used signal processing methods in music transcription is the Constant-
Q transform (CQT) [10]. To explain what it does it is often compared with the FFT, see (1).
For the FFT, the frequency axis is linearly spaced, which means that the difference between
two neighbouring frequency bins is always the same. In the CQT, the frequency axis instead is
geometrically spaced. According to [10], its frequencies are

fk = f0 · 2
k
b k = 0, 1, ... (2)

where b is the number of frequency bins per octave and f0 is a chosen center frequency. The mo-
tivation of geometrically spaced frequency bins is that is more similar to the human logarithmic
hearing. For example, the step difference between G3 (196 Hz) and A3 (220 Hz) does for a human
sound the same as between G4 (392 Hz) and A4 (440 Hz) even if the step difference is twice
as big measured in absolute frequency. The frequency resolution of the CQT remain constant
in different octaves while the frequency resolution of the FFT is higher for higher octaves than
lower octaves. This can also be considered as a downside of the CQT since the resolution of pri-
marily higher frequencies are lost compared to the FFT. In the CQT, for each frequency fk, the
corresponding multiples (...14fk,

1
2fk, 2fk, 3fk, ...) will also get their frequency content evaluated,

which is convenient due to the importance of overtones in musical transcription. For the FFT,
the frequency axis will in general not contain all exact multiples of fk.

About the parameters in (2), b is usually chosen to be a multiple of 12 since that is the number
of tones in each octave. f0 is usually chosen as the lowest tone which is expected in the signal
(which for a piano would be A0 with 27.50 Hz). Because its better alignment to the human
audio perception, the CQT (or versions of it) is considered to be a more robust transform than
the FFT and is therefore more frequently used in music transcription models.

Other versions of the FFT where the frequency axis is differently scaled are commonly used in
music transcription models. One variant is the Equivalent Rectangular Bandwidth where the
frequency axis is transformed by

ERB(f) = 6.23 · f2 + 93.39 · f + 28.52 (3)

which is a designed to approximate the bandwidth of human auditory filters [11].

Another scaling of the frequency axis is by the Mel scale. Frequencies are transformed to mels
m, by

m = 2595log10(1 +
f

700
) (4)

which also is based on the human perception of sound [12].

3.1.4 Technical Complications

In a piano roll representation a tone is represented as a quarter note, a whole note or something
similar given a rate of beats per minutes. Comparing a musician to a computer by playing a
melody from a music sheet, the musician may hit all tones correctly, but due to tempo changes,
different pronunciation or other timbre differences, they will not be identical. In order to create
a dataset containing both a real music recording and a ground truth music sheet, the sheet music
needs to be manually recreated from the recording. To create a such sheet music is not trivial.
The music transcription models consider time bins of 10 ms, therefore the note sheet needs the
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same accuracy. Considering a melody of 30 seconds, that is 3000 time bins which should be filled
with the correct frequencies. Creating a perfectly working dataset is complicated and takes lots
of time. This has caused a lack of established datasets, which is affecting the research.

The hardest part in manually recreating the sheet music is to determine where a tone ends, or
specifically where the offset occurs. Due to the envelope of for example a guitar tone, with sharp
fluctuations in the beginning and high power in the spectrogram, both the fluctuations and the
spectrogram power decays towards offset of the tone7. Thus it is not perfectly clear where the
tone ends. Often some kind of threshold is used when transcribing to determine when a tone
should be considered active or inactive. By defining the onset and offset by a threshold usually
gives an accurate precision of where the onset appears but a quite vague precision of where the
offset appears.

Another issue when considering real recorded music is that the instrument must be tuned per-
fectly. If not, the pitches of the tones will differ from the ground truth. By recording a melody
one needs to consider the choice of sampling frequency. The highest possible frequency which
can be identified from a recording is the half sampling frequency, fs2 , and is called the Nyquist
frequency. The highest tone on a piano is the C8 which occurs at 4186.01 Hz. The sampling
frequency should reasonably be of at least 2 · 4186.01 = 8372.02. A final technical consideration
needs to be taken about the instruments which have a vibrating sound, like the flute or the violin,
where the pitch tends oscillates around the true pitch. This is a feature which is not captured
by the piano roll representation but may affect an estimation.

3.2 Pitch Estimation

This section will describe the step in the music transcription algorithm where a set of given
spectrums are used to estimate the active pitches. One intuitive way of this would be to search
for all the peaks is the spectrum, set a minimum threshold such that peaks caused by noise can
be excluded, then finally transcribe the frequencies corresponding to the acceptable peaks into
a music sheet. Using this method one would probably be able to find most of the correct tones,
but since there will be peaks in the spectrums which correspond to overtones, a lot of incorrect
tones will be estimated. Thus, a more sophisticated algorithm must be used.

By analyzing the models in the research field, there are in general three variants of pitch estima-
tion methods: probabilistic, parametric and neural network-based methods. The probabilistic
methods are complicated to explain in a general form but is based on combined estimated proba-
bilities about features in the signal. Further a parametric method and a couple of neural network
methods will be explained in detail. In general the different variants of methods ends up in prob-
abilities for each pitch candidate to be a fundamental frequency, which is the pitch estimation
part of the problem. Given those probabilities some optional method, called postprocessing, is
used to choose which pitches should be the estimated fundamental frequencies, which completes
the pitch estimation part.

3.2.1 Subharmonic Summation

In order to not mistakenly estimate overtones as fundamental frequencies one way is to use the
Pair-Wise Subharmonic Summation [2]. This method compares all the peaks (potential pitches)

7Also called the onset of a tone.
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in the spectrogram with each other. For each pair of the pitch candidates there will be one higher
and one lower frequency which are notated by fhigh and flow. [2] divides the algorithm into two
parts, and first it is assumed that they are successive harmonics. If the ratio h = flow

fhigh−flow is
close to an integer then h can potentially be the harmonic number of flow and correspondingly
h+ 1 can be the harmonic number of fhigh. As in [2], similarly it is tested if the peaks have an
odd harmonic relation by h = 2flow

fhigh−flow . If the ratio is close to an integer, h can potentially be
the harmonic number of flow and correspondingly h + 2 can be the harmonic number of fhigh.
Following the algorithm in [2], after all possible pairs of peaks has been evaluated, fp, called the
virtual pitches, are calculated as fp = fi

hi
. The virtual pitches correspond to weights which after

a few more steps in the algorithm in [2], are added to the peak candidates of the fundamental
frequencies.

There are a couple of ways these candidates can be classified as pitches. The simplest way is by
setting a straight threshold which may have been achieved through training on data. The pitch
candidates who fulfill the threshold condition becomes the estimated fundamental frequencies.
There are more advanced variants of thresholds which will be described in Section 3.2.5.

The subharmonic summation is a method which goes under the category of parametric methods
since the weights are threatened with trained parameters in order to form the pitch candidates.
The subharmonic summation is built on the assumption that overtones always appear in music
signals, which is most often true. But a weakness is that different instruments have different
amount of overtones which might favor or disadvantage different musical instruments. The
subharmonic summation was in 2016 claimed by [2] to be the best and most current method of
pitch estimation.

3.2.2 Neural Networks

Neural networks have recently become immensely popular with an ever increasing number of
applications. Before 2016, the use of neural networks in music transcription was very limited but
nowadays the neural network methods are dominating the field8.

Neural networks are complicated systems loosely inspired by the human brain. By feeding the
network with a lot of training data one can explain a neural network as a system that learns itself
to find patterns and to solve problems. Classification problems are typical problems which neural
networks have been proven to be successful within. To reconnect this to music transcription,
one can describe the pitch estimation as a classification problem where some input data of the
spectrum form is given. Each of the potential pitches (for example the 88 tones for a piano from
A0 (27.5 HZ) to C8 (4186.01 Hz)), should be estimated as either active (1) or inactive (0).

There are many different types of neural networks, but a few are more popular in the musi-
cal transcription area. The most common network types are the convolutional neural network
(CNN) and different types of recurrent neural networks (RNN) such as the long-short term mem-
ory (LSTM) network. This section describes how a standard neural network, called a Multilayer
perceptron (MLP), works with theory based on [13], [14] and [15]. Further, in Section 3.2.3, a
review of different types of networks will be presented.

8Both according to the participating models in the music transcription competition MIREX and other publi-
cations in the area.
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Every neural network consists of an input layer, one or more hidden layers and an output layer
[14]. The input layer consists of neurons which is explained in [14] as a holder of a number which
is determined by what is fed into the network. In a typical neural networks, a vector of data is fed
to the network which can be of various types, e.g., time series data, multidimensional biological
data or images. Not all of these seem naturally as a vector of numbers, but by stacking multiple
columns or transforming colors by the RGB-scale for example, a vector can be created and used
as neurons in the input layer. The output layer does also consist of neurons and the amount of
neurons in the output layer is usually specified to the number of classes there are in the data
[14]. For example, if one wants to classify images of hand written digits one naturally specifies
10 classes each corresponding to the numbers 0-9. The hidden layers are described in [14] as the
heart of the neural network. For an MLP there can be one or more hidden layers. The hidden
layers do also consist of neurons, called hidden units. The numbers the hidden units consist of
are values in the input layer and some weights [14]. The MLP is a fully connected network, which
means that all neurons in the input layer are connected to each of the neurons in the first hidden
layer, and each of these connections have an individual weight [13]. From the hidden units in the
first hidden layer there are connections to the hidden units in the second hidden layer and so on
such that all neurons are connected to all neurons in the other layers over the whole network9.
The connections from the input layer to the first hidden layer is mathematically written in [13]
as:

aj =
D∑
i=1

w
(1)
ji xi + b

(1)
j , j = 1, ...,M (1) (5)

where aj is called the activation of the j’th hidden unit. The superscript, (1), indicates that
the parameters correspond to the first hidden layer which consists of totally M hidden units10.
x is the data in the input layer which consists of totally D neurons. w(1)

ji are the weights, each
corresponds to the connection between a neuron in the input layer and a neuron in the hidden
layer. b(1)j are called biases and can be seen as constant terms. The weights and biases can both
be positive and negative, and initially they are randomly initialized for example by drawing from
a Gaussian distribution [13].

The hidden units z are, as in [13], formed by a differentiable activation function h(·)

zj = h(aj) (6)

where aj are the activations from (5). The activation function can for example be chosen to be
a sigmoidal function, such as the logistic sigmoid

zj =
1

1 + e−aj
(7)

which squeezes R onto [0, 1], as defined in [13], or the tanh function. Another popular activation
function is the Rectified Linear Unit (ReLU), also defined in [13], which is determined as

zj = max(0, aj). (8)
9Note that a neuron never is connected to another neuron in the same layer.

10That the parameters correspond to the first hidden layer means the connections from the input layer to the
first hidden layer.
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For the second hidden layer, in [13], the activations are formed similarly to the first hidden layer,
by

ak =

M(1)∑
j=1

w
(2)
kj zj + b

(2)
k , k = 1, ...,M (2) (9)

Where the superscript, (2), indicates that the weights and biases correspond to the second hidden
layer. The hidden units zj corresponds to the first hidden layer which was determined in (5) and
(6). To achieve the hidden units of the second hidden layer an activation function as in (6), is
applied to (9).

This continues in the same way for all hidden layers until the output layer appears. For the
output layer, the activation function often differs from the functions which are used for the other
layers, and is denoted by σ instead of h. The output layer activation function is determined
by the purpose of the neural network. If the purpose is linear regression, then the activation
function could simply be yk = σ(ak) = ak. If the purpose is classification, the softmax function

yk = σ(ak) =
exp(ak)∑
j exp(aj)

(10)

as defined in [13], could be used. If one has a neural network with a single hidden layer, the
output can directly be written as a function of the input, i.e.,

yk(x,w) = σ

(
M(1)∑
j=1

w
(2)
kj h

(
D∑
i=1

w
(1)
ji xi + b

(1)
j ,

)
+ b

(2)
k

)
, j = 1, ...,M (1), k = 1, ...,M (2) (11)

where w(2)
kj and b

(2)
k are the weights and bias between the hidden layer and the output layer.

M (2) is the number of neurons in the output layer. The MLP consists basically of input data,
activation functions and weights. The format of the input data and the variants of activation
functions are manually designed when creating the neural network. The weights have to be
determined by training which is done by feeding the network with training data. For supervised
learning the output is known and the weights are adapted by a computer to minimize an error
function. The error function may be chosen with regards to the purpose of the network. For
many common applications of a neural network, the error function, E(w), may have the form as
in [14], which is

E(w) =
1

2

N∑
n=1

(y(xn, w)− tn)2 (12)

called squared loss error, where w are the weights, xn is the n’th input vector of totally N
training samples, y(xn, w) is the estimated output by the network (similar to (11)), and tn is
the expected output which is given in the training data, also called the ground truth. The error
function will for each training example achieve a cost and by taking the average cost of all the
training samples one will get a score on how well the network is doing [14]. A low cost is desirable
and by using gradient information, the optimizer may change the weights in order to find a lower
cost value. It should be noted that this is a quite complicated procedure since this single error
score should be used to optimize all the weights in the network, which for a reasonable simple
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neural network structure, still can be tens of thousands of weights. It is described in [14] that
this huge amount of weights makes the error function extremely multidimensional, which results
in a large amount of minimum points. There are ways to analytically find a local minimum but
not a global one [15]. In order to find the optimal minimum of the error function, the global
minimum needs to be found, which is a complicated task. The strategy of finding the global
minimum is closely related to the way of finding local minimum points.

Local minimum points of a function in a multidimensional space can be found where the deriva-
tive is equal to zero. For that assumption to hold it is of great importance that the function is
differentiable over the whole space [13]. From (11), considering differentiable choices of activation
functions, h and σ, one sees that neural networks are differentiable. A differentiable function
yk(xn, w) inserted into (12), the error function is also differentiable.

Given some starting point in the multidimensional space, there are different ways of finding local
minimum points. In [15] Conjugate directions method, Newton’s method or Steepest descent are
mentioned as methods which are used for this kind of task, but with some differences in efficiency
and assumptions of once or twice differentiable functions. The algorithm of the steepest descent,
described in [15], which assumes a once differentiable function method will further be explained
herein. The derivative at the starting point x is first calculated. Since Oy(x) indicates in which
direction y has the largest growth, −Oy(x) indicates in which direction y has the steepest descent.
Steepest descent then makes a one-dimensional search along this direction

d = −Oy(x) (13)

for the minimum point. The process is then repeated. This is thus an iterative method, where
the next point is determined by

xk+1 = xk + λkdk (14)

where λk is chosen such that it satisfies, for example, the Wolfe conditions or the Barzilai-Borwein
method [16], which guarantee that y(xk+1) < y(xk). By letting k →∞ the minimum value will
be found under certain conditions. In practice one will not do this infinitely many times. Instead
[15] solves this by setting a threshold value close to zero, and if the derivative is below that
threshold, a minimum value is assumed to be found. [15] claims that this method actually turns
out to be poor in relation to the other mentioned methods. Further it is explained that the
steepest descent especially has problems when the function’s curvature is of an elliptic shape.
The reason why this example was used is because the other ones have similar structure but are
less intuitive.

By the steepest descent method a local minimum can be found11. Considering an extremely
multidimensional function, as the error function of a neural network, a random local minimum
will not be a good choice of weights, since the probability that it would be the global minimum
is extremely low, because of the large amount of local minimum points [14]. A very ineffective
way would be to find thousands of local minimum points by randomizing starting points, and
then choose the best one. Anyhow, this approach would not necessarily give a good result [15].
A cleverer way of updating the weights in a neural network is therefore needed. The regular way
of doing this is through a method called backpropagation.

11Even if another choice of method would be more appropriate.
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In backpropagation the weights are being estimated by starting from the back of the network
(the output layer) and then moving backward to end up with the weights from the input layer.
In [14] this is described by zooming in on the cost of a single weight, wjk, between the k’th
output neuron yk and the j’th neuron from the last hidden layer zj in a single training example
x0. The cost function from (12) appears as

Ck =
1

2
(yk(x0, wjk)− tk0)2 (15)

where tk0 is the ground truth of class k of a single training example, denoted by subscript 0. Ck
is the cost of this specific example12. yk(x0, wjk) is the estimated class k output value of the
network. Note that this is a clear simplification since in a standard neural network yk would
depend on wjk for all j and not just a single weight. In the optimal case Ck = 0. If Ck is large
it means that the system needs to put much effort in changing yk(x0, wjk). If Ck is close to zero
the system will not put as much effort in changing it. In [14] it is shown that yk(x0, wjk) can be
rewritten as a function of the earlier steps in the network by

yk(x0, wjk) = σ(w
(L)
jk z

(L−1)
j + b

(L)
j ) (16)

where wjk is the weight and bj is the bias. (L) indicates the last layer (the output layer) and
the w(L)

jk and b
(L)
j are connections between layer L − 1 and layer L. Here, σ is the activation

function and zj is the j’th hidden unit of layer L − 1. It is possible to rewrite this further as
z
(L−1)
j = h(w

(L−1)
ij z

(L−2)
i + b

(L−1)
i ) and so on where i is the i’th hidden unit of layer L − 2. In

order to keep this intuitive the form of (16) will be used. In backpropagation it is of interest to
change yk(x0, wjk) depending on how much error it causes [14]. This is determined by calculat-
ing weights’ and biases’ impact on yk(x0, wjk), since the weights and biases is what indirectly
influence the cost of yk(x0, wjk). The impact of the weights is calculated by the derivative ∂Ck

∂w
(L)
jk

[14]. Recall that in backpropagation the training starts from the back, at layer L, which means,
first estimate w(L)

jk (for all j and k), then w(L−1)
ij (for all i and j) and so on.

By the chain rule the derivative may, as in [14], be rewritten as

∂Ck

∂w
(L)
jk

=
∂a

(L)
k

∂w
(L)
jk

∂yk

∂a
(L)
k

∂Ck
∂yk

(17)

Where yk(x0, wjk) is shortened as yk and a(L)k = w
(L)
jk z

(L−1)
j +b

(L)
j which is the inner part of (16).

The derivatives of the right hand side of (17) can, as in [14], be calculated one by one as

∂Ck
∂yk

= yk(x0, wjk)− tk0 (18)

∂yk

∂a
(L)
k

= σ′(a
(L)
k ) (19)

∂a
(L)
k

∂w
(L)
jk

= z
(L−1)
j (20)

12A more appropriate variable name would have been Ck0,x0,wjk but in order to simplify notation it is shortened
as Ck.
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where a couple of constant terms has been cancelled. Combining (18), (19) and (20), as in [14],
makes (17) to be rewritten as

∂Ck

∂w
(L)
jk

= yk(x0, wjk)− tk0)σ′(a
(L)
k )z

(L−1)
j (21)

which may be evaluated directly. One interesting fact from this is that the impact of the weights
between layer L − 1 and L is directly related to neuron z(L−1)j in the hidden layer L − 1. This

means that a weight w(L)
jk only can be influential if the neuron zj in hidden layer L− 1, is influ-

ential.

By going further in the backpropagation and examining ∂Ck

∂w
(L−1)
ij

, one needs to take into account

all the different paths each neuron can influence each output. For the neurons in layer L − 1,
the term ∂Ck

∂yk
, may as in [14], be replaced by

∂Ck

∂z
(L−1)
j

=

n(L)∑
i=1

=
∂a

(L)
i

∂z
(L−1)
j

∂z
(L)
i

∂a
(L)
i

∂Ck

∂z
(L)
i

(22)

which looks a bit messier, but it’s actually just adding all connections together. The backprop-
agation in [14], for the weights, continues like this all the way back to the input layer. The same
thing is done for the biases

∂Ck

∂b
(L)
j

=
∂a

(L)
k

∂b
(L)
j

∂yk

∂a
(L)
k

∂Ck
∂yk

(23)

where ∂a
(L)
k

∂b
(L)
j

= 1, which gives the following cost derivative

∂Ck

∂b
(L)
j

= (yk(x0, wjk)− tk0)σ′(a
(L)
k ) (24)

which is found to be independent to other weights and biases in the L’th layer. The further steps
in the backpropagation for biases is calculated in the same way as for the weights. The total
cost of the whole network is in [14] defined by

C0 =
1

2

N∑
h=1

n(L)∑
l=1

(yl(xh, w)− tlh)2 (25)

where N still is the number of training samples, n(L) is the number of neurons in the output
layer, yl(xh) is the l’th neuron in the output layer (determined by wjl for all j), xh is the h’th
input, lh is the corresponding expected output, and w indicates all weights and biases in the
network. The cost derivative is calculated for all weights and biases and suggests how much each
of them should change to get a better estimation. Combining the cost derivatives one may, as in
[14], form

OC0 = [
∂C0

∂w(1)
,
∂C0

∂b(1)
, ...,

∂C0

∂w(L)
,
∂C0

∂b(L)
] (26)

where

∂C0

∂w(1)
= [

∂C0

∂w
(1)
11

, ...,
∂C0

∂w
(1)
1n(1)

, ...,
∂C0

∂w
(1)
n(2)1

, ...,
∂C0

∂w
(1)
n(2)n(1)

] (27)
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are the cost derivatives for each connection weight between the input layer and the first hidden
layer. The bias derivatives

∂C0

∂b(1)
= [

∂C0

∂b
(1)
1

, ...,
∂C0

∂b
(1)
n(2)

] (28)

are similarly calculated as the weight derivatives. The cost derivative is calculated for all the
training samples13. This gives suggested changes for each of the weights in order to minimize
the cost function by averaging the derivatives over for all the training data [14]. Then a local
minimum point is search for around the suggested weights. This is done by one of the minimum
searching methods and then a new round of backpropagation is applied. These two alternates
an optional (preferably large) amount of times until a local minimum can be considered close
enough a global minimum [14].

The statement that the cost derivative was calculated for all the training samples needs to be
clarified. However, calculating the derivative from all training samples is expensive, and typically
not done in practice. Instead [14] says that all training data usually are divided into mini-batches
which each consists of a smaller amount of randomly chosen training data. The derivative of a
mini-batch only approximates the derivative of the whole training set, but it greatly reduces the
computational complexity. [14] claims that letting the network train to the limit, it will converge
to the same answer but much faster.

3.2.3 Types of Neural Network

The MLP neural network described in Section 3.2.2 is the simplest version of a feed forward
neural network. Feed forward means that the connections between the nodes do only send in-
formation forward in the network, which means that no cycle connections exists. A commonly
used variant of feed forward neural network is the convolutional neural network (CNN) which is
introduced in this section. Moreover, a neural network which is not categorized as feed forward
may use recurrent layers. Such occur in recurrent neural networks (RNN) and its extension called
long short-term memory (LSTM) networks which are mentioned later in this section.

The CNN is the most common architecture used for classifying objects in images. To this effect,
[17] mentions classification of the MNIST-dataset, containing hand written digits, as an exam-
ple where the CNN has been proved successful. The CNN is specifically designed to find local
structures and to combine them, or in other words it is said to be shift invariant, which means
that it doesn’t matter where in the image the object is located [17].

The CNN has an input layer, an output layer and multiple hidden layers just as the standard
MLP neural network and according to [17] the input is commonly an image with a certain size (it
is important that this size is constant for all images). The output is commonly a couple of nodes,
each corresponding to a probability of a certain classification. If a neural network consists of a
convolutional layer it is said to be a CNN which is what differs from an MLP [17]. A standard
CNN commonly also consists of pooling layers and fully connected layers.

13Actually not all samples at the same time. This will be discussed further down.
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An image is just pixels with numbers in different scales (for example RGB-scale or black and
white scale) and these numbers of n×m× 3 (RGB-scale) or n×m (Black and white scale) are
what the input neurons are filled with. The first layer in a CNN is generally a convolutional layer
[17]. In the convolutional layer one starts by considering an optional small area in the top left
of the image, for example 5× 5 pixels. The convolution is made by multiplying each pixel in the
area with a specific weight, and then summing all these weights up, the area is estimated into one
number which is inserted to a corresponding neuron. The next step is to move the area of 5× 5
pixels a specified number of steps to the right (this number is called strides) and then repeat
the convolutional steps. This continues until one reaches the right border of the image14[17].
When the top row is finished, the area of 5 × 5 pixels moves a specified number of steps down
from the top left corner and continues in the same way until the bottom right corner is reached
15 [17]. The layer which follows from a convolutional layer can be described as a new image,
which now has a new size according to the specified settings of the pixel area, strides and padding.

A CNN or other neural networks consisting of many hidden layers are called deep networks.
After a convolutional layer, a ReLU layer and some kind of pooling layer generally follows, [17].
The ReLU layer is a non-linear activation function which truncates negative values to zero, as in
(8). The pooling layer is a kind of non-linear down-sampling where a specified area of an image
is convolved by its max value or average value. It can be noted that the ReLU and pooling layer
don’t involve any weights. The pooling layer does only simplify the training of the networks,
while the ReLU makes the communication in the network possible.

The network structure of a CNN does typically rotate by a convolutional layer, a ReLU layer
and a pooling layer [17]. Typically, the last layer is fully connected and connects each pixel in
the second to last layer to each of the outputs, as explained in Section 3.2.2. Since the CNN is
a feed forward network, it is trained through backpropagation, similarly as the MLP.

One may wonder why a CNN is considered in a thesis about music transcription, when CNN
mainly is applied to image classification. By considering the participants in MIREX 2016-2017
[18], CNN is actually a very commonly used method in the music transcription area. By stacking
spectrums for consecutive time steps, a time-frequency representation with the power in the third
dimension is obtained, called the spectrogram, and is visualized in Figure 6. Analyzing a spec-
trogram image means analyzing spectrums over time. This seems to be a reasonable approach
since a spectrum is highly dependent of the adjacent spectrums.

Another type of neural network layer is the recurrent layer, which in its simplest form occurs
in the RNN16. An RNN is similar to an MLP in the sense that the layers contribute to the
following layers through an activation function with weights. The difference is that an RNN uses
the fact that the input is formed as a sequence, where the next value in the sequence is related
to the previous ones [19]. If the input is related to the previous inputs in the sequence, then the
activations must be related to the previous activations in the sequence. To use this relation, the

14The right side of the right boarder is padded, which means that zeros are added outside the image. When
the right boarder of the image is reached, there are two standard options, either to stop just as the padded zeros
are reached, or one may continue until the 5 × 5 pixel area just contains the right boarder of the image. Which
one to use is optional but the following layer will have different size depending of the choice.

15The bottom side of the image is also padded and the same boarder options occurs for the bottom boarder as
for the right boarder.

16Recurrent neural network.
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Figure 6: Spectrogram of a tone A3 played by a guitar. One may find that the power changes over
time, but the changes are quite smooth. By considering two adjacent spectrums with 10 ms (0.01s)
difference, the power doesn’t change very drastically.

activations are saved for the following sequence step. The activation at the second step in the
sequence is therefore dependent of both the input data from the second step in the sequence and
the activation from the first step in the sequence. The connection schedule is shown in Figure 7.

Figure 7: Recurrent neural network where xt is the input at sequence t and ht is the activation at
sequence t. The activations move both forward in the network and as input to the next activation.
The image is from [19].

For an RNN, the input data is always a sequence of vectors of size n 6= 0 ∈ N, 17. For a recurrent
feature to make any sense, one finds that the data at step t in the sequence needs to have some
relation to the data at the steps [0, t− 1] in the sequence. One example of this is of course time
series data, where the specific example of spectrums from succeeding time bins is applicable in
music transcription. MNIST is a typical dataset for which the recurrent feature in an RNN would
not be of any use. This is because the order of the samples of hand written digits is randomized.

17If the input data would not form a sequence, for example if the input would be a single vector, the recurrent
feature in the recurrent layer would be unused and the RNN would be identical to the MLP.

25



For an RNN the weights don’t change for different steps in the sequence. The algorithm described
in [19] for an RNN, is the following:18

ht = w1xn + w2ht−1 (29)

where w1 and w2 are two different weight matrices. x is the previous layer which for example
could be the input, and h is the activations. This gives

h0 = w1x0, h1 = w1x1 + w2h0 = w1x1 + w2w1x0 (30)

and similarly

h2 = w1x2 + w2h1 = w1x2 + w2(w1x1 + w2w1x0) = w1x2 + w2w1x1 + w2
2w1x0. (31)

Estimating parameters for an RNN is typically quite complicated, [19]. For the RNN, a variant
of backpropagation, called backpropagation through time, is used in [19]. The problem is that
backpropagation through time needs to handle a structure of dependencies. Since backpropaga-
tion through time is built on the derivatives of dependencies, the influence of x0 for the activation
h100 will contribute with w100 · x0, which is critical. If w < 1 the contribution of x0 will be mul-
tiplied with almost nothing (0.9100 = 0.00002656139) and if w > 1 the contribution of x0 will
be very significant (1.1100 = 13780.6123398). This relatively small change of 1.1− 0.9 = 0.2 for
the weights can make a considerably large difference for the output. Many local minimums will
appear due to these large influence possibilities of the weights but the most of them will give
very bad estimates [19].

This issue is called the vanishing or exploding gradient, and in order to solve it, the RNN is often
extended. One extension is the LSTM network, which builds on the idea that all information
from all previous sequences is not needed to be used, only the previous information which turns
out to be important should be used19. In a LSTM, the network learns which information that
can be useful for later and the rest is thrown away. The structure of the LSTM network is shown
in Figure 8.

The LSTM has an input layer and ends up by calculating an activation, just as the RNN. Also,
the activation of the previous sequence is used as input for the next. The main difference de-
scribed in [19], is that there is another input from the previous sequence as well, called the cell
state C. The cell state is visualized in Figure 9.

It is the cell state which holds the important information which will be saved for many sequences
in the network. Information in the cell state can be added or deleted through each sequence.
What information that is added or deleted is determined through weights trained by the network.

In [19], a forget gate layer ft is created through ft = σ(Wf [ht−1, xt] + bf ) where Wf is the
corresponding weight matrix, bf is the corresponding bias, and σ is a sigmoid, (7), which forces
all values to be between [0, 1] 20. The forget gate layer is convolved with the previous cell state.
The ft values which are close to 1 makes the cell state to remember its previous value while a ft

18The algorithm can be easier understood by studying Figure 7.
19LSTM stands for Long short term memory.
20Just as for other neural networks, the weights and biases are the only parameters which are trained by the

neural network.
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Figure 8: The structure of a Long Short-Term Memory network. The image is from [19].

Figure 9: Close-up of the cell state, Ct, which is the long term memory part of the Long Short-Term
Memory network. The image is from [19].

value close to 0 makes the cell state to forget its previous value.

The next step in [19] is to add new information to the cell state, which is done in two steps. First
the input gate layer it = σ(Wi[ht−1, xt] + bi) decides which values in the cell state that should be
updated, where Wi and bi are the weights and bias corresponding to the input gate layer. The
second part is to create new cell state candidates C̃t = tanh(WC̃ [ht−1, xt] + bC̃) [19]. WC̃ and
bC̃ corresponds to weights and bias for the candidate values. Here the tanh activation function
maps all values to [−1, 1]. The input gate values are then convolved with the candidate values
and then added to the cell state. The cell state finally becomes

Ct = ft ∗ Ct−1 + it ∗ C̃t (32)

and will be sent to the next sequence as well as it will be used for creating the activations of the
current sequence. The activations are created both through the activations from the previous
sequence ht−1, the input layer xt and the current cell state Ct. How it’s done is illustrated in
Figure 10.
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Figure 10: Close-up at the output layer which is the short term part of the Long Short-Term Memory
network. The image is from [19].

The output layer ot = σ(Wi[ht−1, xt] + bi) in [19] corresponds to the short term memory part of
the LSTM, with Wi and bi as corresponding weights and bias. The output layer is multiplied
with a filtered version of the cell state using the tanh activation. The final activation in [19]
then becomes ht = ot ∗ tanh(Ct).

The weights and biases are determined from backpropagation through time. One may note that
the issue of vanishing or exploding gradients have been stabilized since ht only do additive up-
dates of Ct instead of multiplicative as for RNN. The parameter estimates for a LSTM thus
become more stable [19]. This is one reason why the LSTM is more applicable than the RNN,
both in music transcription and other areas.

3.2.4 Complex Neural Network

Neural networks are often described as a computer version of the human brain with millions of
neurons which communicates between themselves through connections. Often are these neurons
described either as active 1 or inactive 0. This might be a reason why complex-valued neural
networks haven’t been a high topic area of the current neural network research. Recently it has
been found that complex-valued neural networks can contribute in many areas both for image
classification, music transcription and speech recognition[1, 20]21.

All theory of neural networks described herein, are so far adapted for real-valued numbers. How
these real-valued operations and representations should be adapted for complex values are not
obvious and currently (spring 2018) none of the open source neural network libraries supports
complex-valued numbers. In this section, complex-valued counterparts to the convolutions, the
activation functions and batch normalization are introduced with the theory based on [20].

First a short introduction to complex values is given. A complex number is written as z = a+ ib,
21The autors of [1] very recently, July 2018, achieved 100% rate on the MNIST dataset using complex-valued

neural network. Another example is [20] who used Deep complex-valued neural networks on all these areas with
impressive results.
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where a is the real part and b the imaginary part, where i2 = −1. In order to make it compatible
with the non-supporting neural network libraries, z is in [20] represented as a n× 2-matrix with
a and b in each column.

A complex-valued convolution of two complex-valued functions are comparable to the cross cor-
relation between the functions. An example is when a complex filter matrix W = A + iB is
convolved with the complex vector z, where A and B are real matrices. The convolution is
presented in [20] as

W ∗ z = (A ∗ a−B ∗ b) + i(B ∗ a+A ∗ b) (33)

which in matrix notation this is represented as[
Re(W ∗ z)
Im(W ∗ Z)

]
=

[
A −B
B A

]
∗
[
a
b

]
(34)

where Re(·) is the real part and Im(·) is the imaginary part.

The activation function ReLU, as defined in (8) is not compatible with complex numbers. A
couple of complex-valued versions are suggested in [20] where the best performing one was found
to be the naivest one, called the Complex ReLU, CReLU(·) which is defined as

CReLU(z) = ReLU(Re(z)) + iReLU(Im(z)) (35)

which is complex-valued with a, b ≥ 0, i.e., simply the ReLU for the real and complex part
separably.

Batch normalization is a common tool used in training of the neural network. When each of
the batches in the training state is normalized, there will be less overfitting and faster training
as described in [21]. For the first part of real-valued batch normalization in [21] the mean and
standard deviation is calculated from the values in the batch. The mean is then subtracted from
the data and finally divided by the standard deviation.

x̃ =
x− E(x)√

V (x)
(36)

where x is the real-valued data in the batch. In addition to this normalized data, x̃, a shift
parameter β and a scaling parameter µ is trained in the network to recreate normalized values
close to the original. The final result in [21] of a batch normalization have the form

y = µx̃+ β (37)

where y is real-valued. The standard batch normalization is defined for real values only. To
make it compatible for complex values, first the normalization step needs to follow the complex
normal distribution. The way the complex-valued batch normalization is defined in [20], is that
the normalization part from (36) becomes

ẑ =

[
â

b̂

]
√
V (z)

(38)
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where
[
â

b̂

]
is a 2 × n vector where the rows correspond to the real and imaginary part of the

complex-valued vector z − E(z). The denominator consists of

V (z) =

(
Cov(Re(z), Re(z)) Cov(Re(z), Im(z))
Cov(Im(z), Re(z)) Cov(Im(z), Im(z))

)
(39)

which is a 2 × 2 matrix consisting of real values. Analogously with the real-valued batch nor-
malization, the shift and scaling parameters are trained and y = µẑ + β is thus formed. Here
the scaling parameter is a 2 × 2-matrix (corresponding to the inverse of the square root of the
covariance matrix) formed as

µ =

(
µrr µri
µri µii

)
. (40)

The normalized vector ẑ in (38) is centered at 0 but does not follow the complex normal distribu-
tion. If the real or imaginary part have different variance, the normalized vector will be elliptic
shaped rather than circular, which would have been the case for a complex normal distributed
vector.

3.2.5 Postprocessing

In pitch estimation methods such as neural networks, probabilistic or parametric methods, the
estimators typically yield approximative probabilities, or something similar, for the candidate
pitches to be a fundamental frequency. Most often those probabilities are not simply 1 or 0. In
that case the fundamental frequency extraction would be obvious.

In an MLP for a classification purpose, Section 3.2.2, a softmax, (10), was suggested as the
final activation function. In order to achieve probability 1 for one of the classes, the activations
for all other classes contributing to the softmax must be −∞. This is practically infeasible to
achieve by numerical methods, and one must probably trust a system which says that a pitch is
significantly active, with probability > 0.95. But one would probably trust lower probabilities
as well. To automatically choose which probabilities to accept, the simplest solution is to set a
binary threshold. Output pitches with higher probabilities than the threshold are, by the binary
threshold method, set to 1 and pitches with lower probabilities are set to 0. The output after
the binary threshold has been applied can easily be translated into a music sheet.

The binary threshold can be computed in different ways. One way is to train the threshold by
maximizing the MIREX accuracy, (43). By setting a binary threshold one is determining where
on the precision-recall scale to be placed. By choosing a high threshold, the precision will be
high since only pitches with a high probability will be chosen. By choosing a low threshold, the
recall will be high since even the least salient fundamental frequencies will be captured. This
can be summarized in the precision-recall curve, Figure 11.

Other versions of postprocessing can also be considered. For example, due to the spectrum
envelope of a tone with high power at the onset which then is decaying, the pitches may appear
with a higher probability from a neural network or subharmonic summation close to the onset.
One may therefore consider lower probabilities close to the offset. Different algorithms for this
exists and are explained further in [2].
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Figure 11: A precision-recall curve of two neural network models called Complex and Real consisting
of probabilities ∈ [0, 1] for each pitch candidate. The curve can be described as a function of the
binary threshold. When the threshold is close to 1 the precision is close to 1 and the recall is close
to 0, that means that the threshold only let candidates with a high probability to pass. On the
other hand, when the threshold is close to 0 the recall is close to 1 and the precision is close to 0
which corresponds to the case where almost all tones are estimated as fundamental frequencies. For
optimizing the accuracy, usually the precision and recall should be of similar level which corresponds
to a balance of the number of estimates and the probability that they are correct. In this case the
Complex curve appears above the Real curve. This yields that the complex-valued model have a
higher average precision. The average precision can be interpreted as the area under the curves.

3.3 Available Datasets for Model Training

The main part of the automatic music transcription models is dependent of parameters which in
some way are trained. In order to train the parameters, a dataset containing both a music signal
and an annotated sheet music is needed, preferable a large amount of such which may represent a
broad set of music. Especially the Neural Network based methods are dependent of the amount
of training data and would perform poorly if the dataset used for training would be too small.
There are problematically not that many datasets available, which inhibits the research. Some
of the datasets which are available are listed in Table 2.
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Dataset Instrument Including Year
MAPS [22] Piano 31 GB piano music generated from MIDI

files. Consisting of monophonic sounds, random
chords, usual chords and pieces of music.

2008

MusicNet [23] Ensemble & piano 330 classical real music recordings with sheet
music annotated by trained musicians.

2016

Bach10 [24] Ensemble Real music recordings of woodwind quartet play-
ing 10 different songs by Bach.

2011

RWC [25] Ensemble Including 50 pieces classical music and 50 pieces
jazz from MIDI files, performed by a variation
of ensemble instruments.

2002

MIREX Develop-
ment set [26]

Ensemble 1 piece of real music recording of a woodwind
quintet.

2005

Su Dataset [27] Ensemble & piano 5 pieces of piano and 5 pieces of string instru-
ments, real music recordings.

2015

Table 2: Available datasets for music transcription.
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4 MIREX

MIREX stands for Music Information Retrieval Evaluation eXchange and started up 2000 in
a small edition. This is an annual conference arranged by the International Society for Music
Information Retrieval (ISMIR) where different researchers from all over the world presents their
solutions to different tasks, or estimation problems, in music information retrieval (MIR). The
conference, has been growing since the start and for MIREX 2017 totally 22 different tasks where
included in the conference, such as Tempo Estimation, Chord Estimation, Classical Composer
Identification, KPOP Genre Classification, Cover Song Identification and more [18]. The number
of tasks is changing from year to year since new areas of MIR are discovered as time goes by.
This follows as the relatively small field of MIR is growing.

One of the tasks in Mirex is called Multiple Fundamental Frequency Estimation and Tracking,
which mainly focuses on correctly finding the notes in a music piece. This task was the in-
spiration to this thesis and it will be in focus. The goal of this task is to identify the active
fundamental frequencies in a polyphonic music signal. Compared to other tasks, this one is
quite straight forward. Multiple Fundamental Frequency Estimation and Tracking has been a
task in the conference since 2007 where it replaced the closely related task Melody Extraction [18].

The task is divided into subtasks, which will be explained in detail in this section. How the
subtasks are organized is described in Section 4.1, the design of the test set is declared in
Section 4.1.1, how the estimates are measured for Multi-F0 are explained in Section 4.2, and the
counterpart for Note Track is described in 4.3.

4.1 MIREX Evaluation

The competing researchers first send in their models a couple of weeks before the conference.
For the Multiple Fundamental Frequency Estimation and Tracking task, the models are then
evaluated on two similar subtasks which gives different scores. Those two tasks can be read
about in [18] and are Multiple F0 Estimation, where each active fundamental frequencies should
be presented for each time frame, and Note Tracking where the result is presented as notes
with a certain duration, which is more similar to sheet music. Both subtasks are evaluated on
two different datasets, the The so called MIREX and Su datasets, introduced 2009 and 2015,
respectively, which both are real-world recordings. The MIREX Dataset is kept secret for the
competitors while the Su Dataset is open for the public and available through [27]22. Further in
this thesis, when referring to the results, results on the MIREX Dataset are considered if nothing
else is claimed23.

4.1.1 The MIREX Dataset

The MIREX Dataset (used in task Multiple Fundamental Frequency Estimation and Tracking)
consists of 40 clips of half minutes long polyphonic music of with 2-5 ensemble instruments [18].

22The confidentiality for the MIREX dataset is one of the reasons why the competing researchers needs to send
in their models instead of just evaluating and presenting the results themselves.

23Because of higher thrust in a secret dataset.
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There is a total of 11 songs, each with different combinations of the instruments, resulting in
totally 40 music files. Some of the music clips comes from a woodwind quintet transcription of
L. van Beethoven’s String Quartet Op. 18 No.524. The rest of the clips are RWC MIDI and
MIDI samples including pieces from Classical to Jazz collections [18].

For the Note Tracking task, there is a total of 34 music files, where 24 came from polyphonic
ensembles of 2-5 instruments and 6 polyphonic piano files. For the Note Track piano subtask,
only the 6 piano files are considered, generated using a disklavier playback piano [18].

4.2 Multiple Fundamental Frequency Estimation

The first subtask considered herein is the Multiple Fundamental Frequency Estimation, or Multi-
F0 as it is shortened. In the submission format, as described in [18], for each time frame of 0.01
seconds (10 ms), one is supposed to determine which fundamental frequencies are active25. The
general form is

time F01 F02 F03
time F01 F02 F03 F04
time . . . . . . . . . . . .

and a model output might look like

0 .78 146 .83 220 .00 349 .23
0 .79 349 .23 146 .83 369 .99 220 .00
0 .80 . . . . . . . . . . . .

To measure how the different models are performing, the estimates are compared to the ground
truth fundamental frequencies. If an estimated pitch is within a quartertone (±3%) from the
ground truth it is assumed to be correct26. From this comparison one first finds the amounts of
true and false positives (TP and FP) and true and false negatives (TN and FN). These measures
are understood simply by studying Figure 12.

From these measures one can, as in [29], calculate the two most standard classification measures,
precision and recall, as

Precision =
TP

TP + FP
(41)

Recall =
TP

TP + FN
(42)

and in text, precision describes how probable an estimated pitch was to be correctly estimated,
while recall describes how probable a true pitch is estimated active. Both measures are bounded
by [0, 1] where a score close to 1 is considered good and a score close to 0 is considered bad.

Precision and recall are in some sense describing how good an estimate is. But, for example, if
one would estimate only one pitch to be active, and it turned out to be correct, the precision

24Even if the song is known, the woodwind quintet transcription is not known. Also, this specific music piece
is about 25 min, so it is not obvious which parts are included in the dataset.

25ms stands for Milliseconds and the fundamental frequencies are measured in Hz.
26In the evaluation of an estimate in MIREX, only one true fundamental frequency can be associated with

one estimated pitch. That means, for example, that if two true pitches differ by a quarter tone and a pitch is
estimated in between them, it can only be associated with one of the true pitches.
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Figure 12: The green area represents the ground truth pitches and the red area represent the pitches
which are not active. The area within the circle represents the estimated pitches and the area outside
the circle represents the pitches which are estimated to be not active. True positive is the green
area inside the circle, that is the amount of correctly estimated active pitches. False negative is the
green area outside the circle which is the amount of active pitches which were mistakenly estimated
to be not active. False positive is the red area inside the circle and corresponds to the pitches which
are mistakenly estimated to be active while they were not active. Finally, the true negative is the
red area outside the circle which corresponds to the pitches which were correctly estimated to be
not active. The image is presented in [28].

score would be 1 even if the other pitches were not found. And conversely, if one estimates all
possible pitches to be active all the time, one would get a recall score of 1, even if most of the
estimated pitches are truly inactive.

Therefore, another measure is often used as the primal measure when evaluating models, termed
Accuracy. In MIREX, the accuracy is defined as [29]

Accuracy =
TP

TP + FP + FN
(43)

and one should note that the MIREX accuracy differs from the formal derivation of accuracy as
[30]

Accuracy(∗) =
TP + TN

TP + FP + TN + FN
(44)

where the TN term is added. If the TN would have been included in the MIREX accuracy in
(43), one would achieve a high accuracy score by simply estimating no active pitches at all, which
is why the TN term is excluded in the MIREX version of accuracy27.

Precision, recall, and accuracy are the three measures this thesis will focus on while evaluating
different Multi F0-models. In MIREX, a couple of other additional measures are evaluated, often

27If for example 4 pitches out of 84 would be active in the ground truth and 0 pitches were estimated by the
model, TN=80. This would give the accuracy a score of 80

80+4
≈ 0.95. This high accuracy score wouldn’t give a

fair score of the model.
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termed error scores. These are used mainly to describe what type of errors that appear in the
estimates from the model. A perfect estimation will achieve an error score of 0. The error scores
mentioned in this section, are however, not used to analyze the models considered herein. First,
ESub is defined as [31]

Esubs =

∑
tmin(Nref (t), Nsys(t))−Ncorr(t)∑

tNref (t)

where Nref (t) = TP (t) + FN(t), which is the number of true pitches in frame t. Nsys(t) =
TP (t) + FP (t) is the number of estimated pitches at frame t. Ncorr(t) = TP (t) is the correctly
estimated pitches at frame t. Esubs gives a measure similar to recall since it counts how many
of the ground truth pitches which are actually estimated, but it is less robust than recall since
an underestimating model (which estimates less pitches than the ground truth) can also get a
good score. Actually one will get a perfect score of 0 if the model either estimates all pitches,
no pitches at all or exactly the correct pitches. The measure is bounded by [0, 1] where a score
close to 0 is sought. The second error score is Emiss which is defined as [31]

Emiss =

∑
tmax(0, Nref (t)−Nsys(t))∑

tNref (t)

which is indicating if the model estimates too few pitches. If a model estimates exactly the same
number of pitches or more it will achieve an error score of 0. The measure is bounded by [0, 1].
The Efa is defined as [31]

Efa =

∑
tmax(0, Nsys(t)−Nref (t))∑

tNref (t)

and is the opposite of Emiss. Efa is a measure which indicates if a model estimates too many
pitches. If the model estimates exactly the same amount of pitches or less, it will get a good
score close to 0. The measure is non-negative but not upwards bounded. The final error score
Etot is defined by [31]

Etot =

∑
tmax(Nref (t), Nsys(t))−Ncorr(t)∑

tNref (t)

which is a shortened formula of the sum of all the other error scores together. One finds this
measure to be the only robust of these error scores, since only the perfect model will get a score
of 0. This score is non-negative but not upwards bounded.

For the Mulit-F0 task the 7 measures (precision, recall, accuracy, Etot, Esubs, Emiss, Efa) are
also evaluated for chroma results. This means that all estimated frequencies are mapped to a
single octave before the evaluation is done. The reason why this is done is since one of the most
common mistakes when estimating the fundamental frequency, fk, is to mistakenly estimate the
half tone 1

2fk (also called the sub octave) or the first overtone 2fk
28. In some areas one might

only be interested in the chroma tones. That gives two reasons why this transcription is exam-
ined in MIREX. Historically in MIREX, one finds that the rankings in the chroma list of result
don’t differ that much from the rankings in the standard list of result [18].

The final MIREX performing measure presented in the Multi-F0 task is the Friedman test, where
differences among the models’ performances are examined as significant or not. The performance

28See Section 3.1.2 and 3.1.3 for details about overtones.
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is measured in accuracy, being considered as the most overall measure. The Friedman test mainly
consists of a Tukey-Kramer HSD Multi-Comparison [32]. Pairwise, student T distributed-based,
confidence bounds between each model’s accuracy measure are formed by

Ii,j = µi − µj ±
qα,df√

2
σ̂ε

√
2

n

Where µk is the accuracy for model k, q is the student T value for the confidence rate α (typically
0.95) with degrees of freedom df . The estimated standard deviation σ̂ε is calculated from all
models (not just the two that are compared), and n is the number of test samples. If 0 is in the
interval Ii,j , then the model i and model j cannot be proven to perform statistically different [32].
The spread of each model performance is considered by the test, which can be claimed to be the
most correct way of comparing models. However, in the work of this thesis, the Friedman test
would be too complicated to apply because of its parameters being determined from all involved
models. The test will thus not be considered further in this thesis.

4.3 Note Tracking

The second subtask considered herein is Note Tracking. This format is more closely related to the
way a person reads music from a music sheet. There are different ways to symbolically represent
a tone in a music sheet, but here the piano-roll convention is used. The piano-roll submission
format in [18] for each estimated tone, consists of: An onset time, an offset time and a single
estimated frequency. That is when the tone starts, when the tone ends and what pitch. The
general format [18], looks like

onset o f f s e t F01
onset o f f s e t F02
. . . . . . . . .

which may look like

0 .68 1 .20 349 .23
0 .72 1 .02 220 .00
. . . . . . . . .

which appears easier to translate to a music sheet than the Multi-F0 format. To classify a tone
to be correctly estimated, the estimated pitch first of all have to be within a quartertone (±3%)
from the reference pitch. Also the estimated onset needs to be within ±50 ms from the reference
onset. Finally the offset needs to be within 20% range from the true tone offset (the percentage
is depending on the length of the true tone)[18]. All these three conditions need to be fulfilled
in order to classify an estimated tone as correct. Similarly as for the Multi-F0 task, only one
ground truth tone can be associated with one estimated tone. For Note Tracking the measures
precision and recall are calculated in the same way as for Multi-F0 in (41) and (42). Here one
may note that the number of correct and incorrect estimated tones, generally is less than the
correct and incorrect estimated frequencies each time bin for Multi-F0, making the precision and
recall for Note Tracking more sensitive.

In Multi-F0, accuracy was used as the main measure. For Note Track, this is replaced by the
F-measure. The F-measure is defined in [29] from the precision and recall by
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F = 2 · Precision ·Recall
Precision+Recall

This measure is bounded by [0, 1] and gives a fair average of the precision and recall. It is robust
against shortcuts such as maximizing only one of the precision or recall29. In order to maximize
the F-measure, the precision and recall should in general be of similar levels.

There is a fourth measure (in addition to precision, recall and F-measure) for Note Tracking called
Average Overlap. This measure will only be mentioned here but not considered any further in
this thesis. The average overlap measures, for each ground truth tone, the ratio of how well the
onset and offset matches the closest estimated tone’s onset and offset. The ratio is determined
by combining the reference and the estimated onset and offset. The Overlap Ratio is, as in [29],
defined as

OR =
min(refoffset, estoffset)−max(refonset, estonset)

max(refoffset, estoffset)−min(refonset, estonset)

where the inner interval of onset to offset is divided by the outer interval of onset to offset30. To
achieve a high Average Overlap score, the estimated onset and offset should be as identical as
the reference onset and offset as possible. The Overlap Ratio is bounded by [0, 1].

For the Note Tracking task, these 4 measures are evaluated for chroma results in the same way as
for Multi-F0 (Section 4.2). This will, in the same way as for Multi-F0, not be considered further
in this thesis. In the Note Track task in MIREX one test is on ensemble music and one test is
on piano music [18]. This is taken into consideration further when designing the test dataset,
described in Section 6.1.

There are also results presented without considering the offset. Thus an estimated tone only
needs to fulfill the criterion of being within the quartertone and to have an onset within ±50
ms. This is of interest because the definition of the offset definition is quite vague, Section 3.1.4,
and in addition it is often the most crucial criterion. To illustrate the vague definition of an
offset one may again consider a Figure 1. Because of the shape of the signal it is not so easy
to determine exactly where the tone ends and where the offset should appear. The way it is
determined practically for the ground truth, is that a threshold is set and when the amplitude
of the tone is below this threshold, the tone is considered as inactive. From Figure 1 one finds a
peak when the tone starts, making it quite easy to identify where the amplitude will be above
the threshold and where the onset should appear. To find where the amplitude will fade below
the threshold is not as obvious and therefore the offset is more complicated to determine.

Finding when a tone starts and what pitch the tone has may be considered being the most im-
portant information. Along with the knowledge that those two criteria are the most trustworthy
in the ground truth, one may in some cases consider the Note Track representation without the
offset to be the fairest one. Further in this thesis, both the standard result including the offset
criterion and the result excluding the offset criterion will be considered.

29Ways of maximizing precision and recall one by one was mentioned in Section 4.2.
30In MIREX there are some low-performing models which achieves negative average overlap which contradicts

this definition of the overlap ratio. Thus the MIREX version of the average overlap and the one in [29] may differ.
Anyway, the MIREX version of overlap ratio is not expected to differ that much from this one.
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In the same way as for Multi-F0, a Friedman test is evaluated for the models, using Tukey-
Kramer HSD Multi-Comparison. Here the significance tests are based on th F-measure which is
considered to be the most general measure. However, this measure is deemed to be of limited
interest in this thesis and will not be considered in the evaluations.
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5 Models of Multiple Fundamental Frequency Estimation and
Tracking

A main part of this thesis consisted of understanding and evaluating the most recent methods
used in the research area of polyphonic music transcription. This was done by finding interesting
models, understanding how the models should be executed and then evaluating them on a cre-
ated test set. Afterwards the models have been analyzed in order to explain different behaviours
in the test results.

In this section, first a description of which models are considered in this thesis, Section 5.1, then
each of the considered models in MIREX will be introduced and shortly explained together with
a summary of their result in MIREX along with technical details, Section 5.2-5.4, followed by
a summary of MIREX 2015-2017 in Section 5.5, then a similar introduction to models which
haven’t participated in MIREX in Section 5.6. Then two herein proposed models (which are
variants of the model in Section 5.6.4) are presented in Section 5.7, and finally in section 5.8
the models are summarized and compared, in order to identify some trends of the models. All
results from MIREX which the following sections will refer to, are found in [18].

5.1 Evaluated Models

Ever since the late 90’s, many different models has been suggested considering polyphonic mu-
sic transcription. To consider them all would not be possible in the scope of this thesis. A
selection of models was therefore considered mainly based on models published in conjunction
with MIREX conference. While aiming to get the most recent research, the models published
in MIREX 2015-2017 were considered. All models aimed at solving the fundamental frequency
estimation problem are, however, not published in conjunction with MIREX and some effort was
done to track these. Such methods considered herein were found from suggestions by researchers
in the area.

The documentation one gets from the participating models in MIREX is a short report, referred
as an abstract, for each submitted model. To be able to evaluate the models, the corresponding
authors were contacted through e-mail and asked to share their code of their model31. Most of
participants sent code for their trained models while some returned their model estimates by
e-mail after receiving the test files32. The models which weren’t reached from MIREX was either
available on the Internet or delivered through e-mail.

Some participants submitted more than one model. Examples of this could be one version for
Multi-F0 and one for Note Track or one model trained on ensemble music and one model trained
on piano music. A third example is someone sending both a slow model, as well as a fast but
less accurate model. All these versions will not be considered in the thesis, instead a selection

31Not all models from MIREX 2017 and 2016 are presented in this thesis. Time limited forced a selection of
models to be considered, thus 6 models were disregarded. The disregarded models were: PRGR1, PRGR2, WCS1,
ZCY2, SL1 (MIREX 2017) and KB1 (MIREX 2016). The best performing models in MIREX 2017 which were
not considered in this thesis was WCS1 which came in 5th place in the Multi-F0 task and PRGR1 which came in
3rd place in the Note Track task. For MIREX 2016 KB1 came in 5th place in Note Track (all positions are based
on the accuracy or F-measure depending on the Multi-F0 or Note Tracking task). All the disregarded models
were in MIREX stated to be significantly lower performing than the best performing model the corresponding
year of participation. Thus, this thesis can be claimed consider the best performing models from MIREX.

32This was done for the authors who, for publishing reasons, could not send their complete models.
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will be made, motivated in each specific subsection.

The models considered, do in general have a long name, referring to how it works. To keep no-
tation simple, a long name for a model has been changed into the initials of its author. If there
were more than one author, the first letter in the surname of each author is used. If multiple
models by the same authors are considered, the name of each model will be appended by different
numbers.

5.2 MIREX 2015 Participating Models

MIREX 2015 had a quite thin lineup, with only 3 participating research teams (compared to
MIREX 2014 which had 9 research teams). However, each team instead contributed with 2-4
models, which resulted in a total of 9 participating models. In short, for the Multi-F0 task, the
clear winner according to the accuracy measure was model BW1 followed by model MPE1. For
Note Tracking model BW2 performed the best on the mixed music dataset followed by BW3.
On the subtask with piano music there was reversed rolls where the BW3 came 1st followed by
BW2. These will now be briefly presented.

5.2.1 BW

Overall model BW can be seen as the winner of MIREX 2015, both in the Multi-F0 and the Note
Track task. The model for MIREX 2015 was an improved version of their model 2014, which
ended up in 3rd place for both tasks.

The BW model for MIREX 2015 consists of three similar versions [33]. BW1, which is trained
on ensemble music for Multi-F0, BW2, which is trained on ensemble and piano music for Note
Tracking, and finally BW3, which is trained on piano music only for Note Tracking.

The model applies the Equivalent Rectangular Bandwidth to the input data, see (3). It is claimed
that the ERB gives a better temporal resolution while simultaneously keeping the frequency axis
compact [33]. The model then uses the probabilistic latent component analysis (PLCA), where
the probability of a certain tone at a certain time step is calculated based on the sound state,
pitch and instrument [33]. This can be understood clearer by considering a tone played by a
piano. A piano tone has different evolutions through a tone, referred as attack, sustain, and
decay. Also it is probable that a tone in the middle register (somewhere between 110-880 Hz) is
played. These unknown probabilities are updated for each time step until they converge, using
the expectation-maximization (EM)-algorithm. These weighted probabilities are used when cal-
culating the probabilities of a certain pitch at a certain time step. If the probability is higher
than a set threshold, the pitch is considered as active [33].

The model was written by Emmanouil Benetos and Tillman Weyde at Queen Mary University.
The code of the model was written in Matlab. The training data came from the RWC database
[25] for all instrument except piano where the MAPS dataset [22] was used.

5.2.2 CB/Silvet

CB, or Silvet as it is referred to in the literature, is one of the most recurrent models in the
MIREX competition. This model submission is identical to their model submitted 2012, as well
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as every year since. In MIREX 2015 it is performing averagely. Their top placement in MIREX
2015 occurred at the Note Tracking for piano music task with a 2nd place. At Note Tracking for
ensemble music, the model came in 3rd place.

The model is superficially described in [34] and more in detail in [35] and is mainly created for
Note Tracking, but the authors have also converted the model estimates to the Multi-F0 format.
They also train the model on ensemble music and piano music separately, which equates a total
of 4 models. In this thesis, the Multi-F0 model for ensemble and piano music is analyzed as
well as the Note Track model for ensemble music (Note Track for piano music is disregarded).
There also exists a so-called Silvet-live model, which is essentially faster than the default Silvet
at the cost of results. Since the running speed of the models are not directly measured in this
evaluation, this model is not considered in the thesis.

Silvet is a multi-feature model which includes a couple of different music feature extractions
such as onset/offset detection, beat/tempo estimation, instrument classification and key/chord
detection. Silvet uses these features together with CQT-transformed data for estimating tones
in Note Tracking using a probabilistic latent-variable estimation method, similar to the earlier
described model BW (Section 5.2.1) [34]. In the model a couple of thresholds are trained from
the mentioned features which decides the note activations. The training is done on solo instru-
ment recordings and source separation is performed on the input data in order to estimate the
different parts of the signal [35].

The Silvet model is created by a couple of researchers at Queen Mary, University of London.
The researchers which are referred as the authors of the music transcription part of the model
are Chris Cannam and Emmanouil Benetos. 33. The code of the model is written in C+ +. The
training data is from the MAPS dataset [22] and MIDI files extraction from a Disklavier piano.
Data from the RWC [25] database and the MIREX development set [26] are used for training
for the ensemble parts (which is criticized by the authors to be too small datasets).

5.2.3 SY/MPE

The SY model is in the literature also referred to as MPE. In MIREX 2015, 4 variants of the
MPE model participated, where MPE1 was the one performing the best in both Multi-F0 and
Note Tracking. MPE1 achieved the 2nd place both in Multi-F0 and in Note Tracking. It isn’t
very usual that a single model performs on such high level in both tasks. It is worth to mention
that the MPE1 achieved 1st place in Multi-F0 for the Su dataset, but some criticism to these
results are motivated since the authors of MPE are the same as those who created the Su dataset.

The model is considered robust due to its high performance in both the Multi-F0 and the Note
Tracking. Concerning what differentiates the 4 different models, the available abstract [36]
doesn’t indicate how. A guess is that they are either trained on different datasets or have differ-
ent thresholds. In order to be prudent, all 4 models were considered in this thesis.

The model’s authors also propose a new approach to music transcription called combined fre-
quency and periodicity. The model is based on the theoretical framework for single pitch estima-
tion [37]. The spectral and a temporal representation is calculated both in form of a log-scaled

33It may be noted that Emmanouil Benetos also was involved in model BW in Section 5.2.1.
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spectrum and the logarithm cepstrum. The log scaled spectrum is the logarithm of the absolute
value of the DFT or similar. The power cepstrum is

|F−1{log(|F{xt}|2)}|2

where F is the Fourier transform and F−1 is the inverse Fourier transform. The formula describes
the squared inverse Fourier transform of the logarithm of the squared Fourier transform. The
authors claim that the cepstrum directly yields the subharmonics or the fundamental frequency,
and is robust against so called octave errors, i.e., nf0 for all n ∈ Z, where the fundamental
frequency is denoted f0. The spectrum of a pitch signal consists of the fundamental frequency
and its overtones, and [36] claims it to be robust against sub-octave errors, i.e., 1

nf0 for all n ∈ Z.
Combining the spectrum and the cepstrum in a smart way should thus be robust against both
sub-octave errors and octave errors. This assumption is applied to a multipitch scenario and a
pitch estimation function is applied34.

The MPE models are created by Li Su and Yi-Hsuan Yang at Research Center for Information
Technology Innovation, Academia Sinica , Taipei, Taiwan. The code was written in Matlab. The
training data is unknown from the abstract, but it is not unrealistic to assume that parts of the
Su Dataset was used, as it was also created by these authors.

5.3 MIREX 2016 Participating Models

MIREX 2016 had, just like the previous year, quite low participation. The competition was
between 4 participating research teams where the number of participating models was 5. In
short, for the Multi-F0 task the model MM1 outperformed the other ones while the model DT1
was the best performing model on the Note Track task both on the mixed dataset and the piano
dataset, based on the F-measure [18]. The model KB1 was participating but was not considered
in this thesis due to its bad score35.

5.3.1 CB/Silvet

CB is essentially the same model as described in Section 5.2.2. It performs moderately well and
achieves a 2nd place in the Multi-F0 task at MIREX 2016 and a 3rd place in Note Tracking for
both subtasks. Recalling MIREX 2015, Silvet was performing better in the Note Track tasks
than the Multi-F0 task, which suggests that Silvet is quite universal.

5.3.2 DT

The model DT achieved an impressive score on the Note Track task, resulting in a 1st place both
for the ensemble and the piano music subtasks. On the Multi-F0 task it was placed 3rd.

The DT model described in [38], is one of many participating models this year which are based
on neural networks. This specific model uses CNN, as described in Section 3.2.3. The model uses
a variant of the CQT where non-linear scaling is added together with some form of normaliza-
tion. There was a whole number of frequency bins per note for a pooling layer to not mistakenly
merge frequencies of two different tones. The model then detects where onsets may appear in

34Further details about the model, such as exactly how the spectral and temporal representation should be
designed or how the pitches are declared, are not available through the given available abstract [36].

35Which was partly due to bugs in their submitted code.
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the signal. This is done by considering a spectrogram and identify where many frequency bins
increased in power in a short period of time. The spectrogram is then divided into rectangular
windows from one onset to the next. These sliced spectrograms were then used as input to the
CNN [38].

The CNN architecture is based on a state-of-the-art image detection architecture [39]. The out-
put layer in the CNN is an array of length 88 where each neuron represents a tone [38]. A
difference from the CNN described in Section 3.2.3 is that the sigmoid (7), was used as activa-
tion function. This results in approximative probabilities (or independent probabilities)36. In
addition to these probabilities, some filtering was made in order to detect separate notes. All
neurons which received a probability over a certain threshold were considered as fundamental
frequency candidates, and the rest were set to 0. The probabilities appear as peaks at different
frequencies which were ordered from most probable to least. From the empirical results in [38],
one of the fundamental frequencies in the signal is typically likely to have the strongest peak.
This peak is then selected to be considered as a fundamental frequency. All candidate frequencies
of a multiple of the selected frequency is disregarded of consideration of being a fundamental
frequency. The next fundamental frequency is determined from the rest of the candidates, and so
on, until no candidates were left. Finally the CNN output probabilities and the filter candidates
are combined to produce a final estimate. For each estimated fundamental frequency, the onset
was estimated using onset detection and the offset was set to the time point where the next onset
was estimated [38].

The DT model was created by Daylin Troxel at the company Lunaverus. The network was trained
to maximize the standard accuracy (44). The model was trained on 2.5 million of samples auto-
generated from 3000 MIDI files. The samples in MIDI-format were translated to .wav-format.
The code for the model was not open source. In order to receive the test results from DT1, the
test files were sent by e-mail to the author who then returned the estimates.

5.3.3 MM

The MM model performed very well at MIREX 2016. In the Multi-F0 task, it came on 1st place,
and on both subtasks in Note Track it was placed 2nd.

The MM model stands out from the other models in a special way, even if it is one of many
submissions this year which are using neural networks. The model is submitted in MIREX 2016
but the article which it is referred to is published 2004. The model’s article [40] states that no
previous references to works that uses neural networks for music transcription was found. The
MM model was way ahead of the research back then and it was a pity that this work didn’t
get more attention in order to inspire the research area to start elaborating more with neural
network for music transcription.

From its paper, [40], it is quite clear that it is a couple of years old. Many tools which are used
in this model has not been seen in the other music transcription models in more recent years.
Many concepts in this work needs some explanation and a lot of theoretical aspects should be
added to understand this model completely. This extra work is considered unnecessary for the
scope of this thesis, therefore only some parts of this model are explained.

36Which sum could become above 1.
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The model consists of the two main parts. In the first part the music signal is presented as a
spectrogram on the time-frequency scale and the second part is where the notes are recognized.
Both parts are using neural networks in different ways. The first part divids the signal into
frequency channels by so called gammatone filters and a hair cell model. In the second part,
where a spectrogram is given from the frequency channels, a set of 76 different neural networks
are introduced. Each network’s mission is to determine if a certain frequency is in the signal.
The use of 76 networks and not 88 (which is the amount of tones on a piano, Section 3.1.2), is
motivated by the claim that the 10 ms of data considered in each spectrum makes it impossible to
distinguish low frequencies. Therefore the lowest octave is disregarded37. This is a bit different
from the described neural network for music transcription in Section 3.2.2. In this case the final
layer consists of a single neuron where a high value indicates that the corresponding frequency
is in the signal and a low value that it is not.

It should be mentioned that this model is quite complicated in the sense that many features
are added to the model. To determine the active frequencies by the 76 networks, first a partial
tracker module is used in order to reduce octave errors [40]. Also an onset detector using the
MLP is added to the networks. The neural network model which is used is a time-delay neural
network which often is applied in speech recognition. Given the estimated active frequencies, a
detector of repeated notes is added to the model. This is supposed to determine whether a pitch
which is active for a long time sequence where multiple onsets are appearing, is one long tone
or multiple repeated shorter tones. This detector consists of an MLP. Finally, the length and
loudness of the tones are estimated, and the transcription is complete [40].

The MM model is created by Matja Marolt at University of Ljubljana. The model was trained on
a dataset consisting of a set of 120 MIDI piano pieces of various styles including classical music,
ragtime, jazz, blues and pop. To make the dataset able to recognize low and high tones which
didn’t occur in the MIDI dataset, synthesized piano pieces with one to six tones played simulta-
neously. Totally the final dataset contains 300’000 pairs of input-output patterns. Each of the
networks were trained on a smaller amount where 1/3 of the datasets included its corresponding
frequency. The code was written in C++.

5.4 MIREX Participating Models 2017

MIREX 2017 had a total of 10 participating research teams with a total of 14 participating
models. The high number of participants increased the quality of the competition. In the Multi-
F0 task model THK1 performed best, followed by KD2 on a second place, and MHMTM1 on
a third place38. In the Note Track task for ensemble music model, CT1 achieved the 1st place,
KD2 came 2nd and CB1 came on third. In the Note Track task for piano music CT1 still ended
1st, CB1 came 2nd and PR1 ended 3rd.

5.4.1 CB/Silvet

The Silvet (CB) model is familiar from Section 5.2.2 and 5.3.1. The model is perhaps not the
best, but it is performing fairly good every year. This year the performance in Note Track was

37It is also mentioned in [40] that so low tones are very rare in general music.
38KD1 got exactly equal score as KD2 on the Multi-F0 task but no result at all at the Note Track task, therefore

it is disregarded.
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the best, and CB came on 3rd place in ensemble music and a 2nd place in piano music, which is
impressive.

5.4.2 CT

The model CT only participated in the Note Tracking task, in which it performed best of all
models in both subtasks. In the piano subtask the superiority was clear while the ensemble music
was not significantly better than the second placed model.

The CT model, as described in [41], is built on CNN but includes recurrent layers. As an input
to the network, the data is preprocessed by a variant of the CQT called sliCQ. The resulting
spectrograms are log-scaled power spectrograms and finally stacked in the depth dimension39.
The spectrograms are then used as input. There are two separate channels introduced, one called
articulation and one sustain. The sustain channel is 1 whenever some kind of sound appears and
0 whenever it is quiet. The articulation channel is 1 at the specific points where a note event
occurs, i.e., when an onset appears. The neural network performs a succession of convolutions
and average pooling operations. They are followed by a LSTM layer with convolutions, called
ConvLSTM. Layer normalizations are also applied. The final layer is a network-in-network layer,
which is a variant of deep convolutional neural network. A sigmoid activation, i.e., (7), is applied
in the final layer. Finally the postprocessing consists of combining the estimated active frequen-
cies with the articulation and sustain channels to identify the onset and offset of each tone [41].

The CT model is created by Carl Thomé and Sven Ahlbäck at DoReMIR Music Research AB.
The dataset by which the model is trained is not specified in the abstract [41], neither is the
source code language. Similarly to the DT model in Section 5.3.2, the code was not open source
and in a similar fashion, estimates on the test data were received through e-mail.

5.4.3 KD

The KD model performed very well in MIREX 2017. In the Multi-F0 task it came 2nd just as
it did in the Note Track task. For the Note Track piano subtask it did not perform as well,
achieving a 5th place.

KD is described in [2] and is a parametric pitch estimation model. A multi-resolution FFT is
used as input, implemented by the model author in [2]. The multi-resolution FFT is the FFT
with adapting frequency and time resolution. When applying the standard FFT there is always a
resolution issue whether one wants high frequency resolution or high time resolution. Since high
frequencies have higher resolution with regards to semitones, the loss of frequency resolution is
not very critical40. Therefore higher frequencies can be estimated with a higher time resolution.
On the other hand, lower frequencies need higher frequency resolution, so the loss of time reso-
lution is argued being a price worth paying. If one reasons that lower octaves are usually used to
play chords, the time resolution perhaps isn’t that essential. The multi-resolution FFT adapts
the time-frequency resolution according to the frequency scale in the described way [2].

From the resulting spectrogram of the multi-resolution FFT, subharmonic summation is applied
for pitch estimation, described in Section 3.2.1. For tones played by instruments, there is usually

39The power spectrogram denotes the squared amplitude spectrogram.
40Higher frequencies have higher resolution due to the logarithmic behaviour of sound and music.
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a strong emphasis in the beginning of the tone followed by a slow decline in the power. This
expected envelope is used to predict the onset and the offset of the tone in [2]. The envelope of
the tone is estimated in combination with an onset detection for each pitch. The pitch candi-
dates from the subharmonic summation are then used in an iterative process where first the pitch
which is most probably a fundamental frequency is considered to be extended from the signal, as
described in [2]. Some further analysis is then made whereafter the second most probable pitch
is considered and so on.

The KD model is created by Karin Dressler at Technische Universität Ilmenau, Germany. The
model algorithm consists of many combined individual steps where parameters for each step
are trained on the MIREX development dataset from 2005 [26], less than 1 minute of audio.
Nevertheless it is the most similar dataset to the test data which MIREX will evaluate the
model on, making it a good approach in order to get a high score in MIREX. The code of the
model was private, but the estimates were achieved by an executable file.

5.4.4 MHMTM

The MHMTM model consists of two submissions which perform quite similarly, but MHMTM1
was slightly better and achieved the 3rd place in the Multi-F0 task. It was not participating in
the Note Track task.

The MHMTM model in [42] is based on a CNN. The difference between the two submitted mod-
els is that MHMTM1 is trained on all types of music such as solo piano, piano together with
other instruments and ensemble music, while MHMTM2 similarly is trained on different types of
music, but an estimator is categorizing which type of music the audio consists of, for which the
appropriate network is used. When the code of the model was achieved from its author, only the
code for MHMTM1 was attached, so that is the only MHMTM model which will be evaluated
herein.

In this model, the audio first is preprocessed by the CQT, forming the spectrogram matrix. The
time step between each centralization of the spectrums in the spectrogram is 0.02 seconds and
different overlap ratios between the spectrums were applied. The frequency axis reaches from
the highest to the lowest tone on a piano, and each octave is divided into 36 frequency bins.
The spectrum is then normalized and the logarithm of the spectrum calculated [42]. The CNN
network is based on the same CNN image detection architecture, see [39], as the DT model in
Section 5.3.2. The input corresponds to 0.1 seconds of data, corresponding to 5 spectrums, which
were stacked, and the output is an array of 88 neurons corresponding to a probability for each
pitch41. A binary threshold is set using the first approach in Section 3.2.5.

The MHMTM model was created by a research team consisting of Shinjiro Mita, Gaku Hatanaka,
Alexis Meneses, Nattapong Thammasan and Daiki Miura at Osaka University. The source
code was written in Tensorflow. The training data consisted of a selection of 130’000 MIDI
files consisting of pop, rock, jazz, classical music and videogame music. The MIDI files were
transformed by custom programs for the piano and ensemble music to sound more realistic.

41The stacking can be compared to an RGB image which has 3 color dimensions which are stacked, Section
3.2.3.
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5.4.5 PR

The PR model was performing with mixed results in MIREX 2017. In the Multi-F0 task it came
10th, on the Note Track it came 5th for the ensemble music, and 3rd for the piano music.

Only one version of PR (PR1) was submitted to MIREX, but in this evaluation both a PR1 and
a PR2 model are evaluated. The reason is that the model consists of two separate versions, one
for Multi-F0 and one for Note Track outputs. In this evaluation both outputs are calculated,
and afterwards translated to the other format (this will be explained further in Section 6.2), such
that both models will be evaluated in both tasks. In this evaluation PR1 is originally given on
Multi-F0 format and PR2 originally on Note Track format.

The PR model is a technically advanced model [43]. The model consists of one signal process-
ing part and one pitch tracking part. The authors propose a signal processing technique called
Dynamic Mode Decomposition, which consists of transforming time segments of audio data to a
spectrum form similar to the FFT. The technique is based on eigenvalue decompositions of linear
autonomous systems and is considered outside the thesis’ scope. The peaks in the spectrum are
then identified and the salience of each pitch is calculated by taking both the spectrum, the
timing and the harmonics into account. The pitches are then sorted by the salience, if the pitch
with the highest salience is above a set threshold it is estimated as a fundamental frequency. All
other pitches which appear as overtones are penalized, after which the second highest salience is
considered, and so on.

The PR model was created by Leonid Pogorelyuk and Clarence Rowley at Princeton University,
USA. The source code was written in Python. The data on which the model was trained was
not specified in the abstract [43].

5.4.6 THK

The THK model only participates in the Multi-F0 task where it performed very well and came
on 1st place by margin.

The THK model is briefly described in [44], and in more detail in [45]. The model is built on
CNN, similarly to many other models. But there are a couple of things in the model which stand
out. First of all the audio data is transformed using a hand-crafted filter bank consisting of
512 cosine-windowed filters. The audio data is transformed to a frequency representation with
logarithmic spaced frequency bins from 50 Hz to 6000Hz [44]. The handcrafted filter bank is mo-
tivated by gained advantages in a CNN. Each filter considers 1/12 seconds of audio. The stride
of the filters is 10 ms, and stacking 25 filters results in a spectrum of 25 dimensions covering
about a 1/3 second of audio which is used as the input for the neural network [44].

The network architecture is interesting because it is not very deep, with only two hidden layers.
The first layer is a convolutional layer using 128 hidden nodes with a stride of 2. The second
hidden layer is a fully connected layer with 4096 hidden multidimensional nodes. The resulting
output is matrix of size 193 × 4096 [44]. This output is fed to a linear classifier for each pitch.
This classifier is a linear regression model which is trained in order to minimize the square loss.
If the classifier for a certain pitch is over a set threshold it is considered to be a fundamental
frequency [45].
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The THK model was created by John Thickstun, Zaid Harchaoui and Sham M. Kakade at
University of Washington, USA, together with Dean Foster at Amazon. The model is trained on
the MusicNet dataset [23] which is a dataset containing both ensemble music and piano music
constructed by the same authors. To reduce overfitting, the audio was randomly stretched by up
to 5 semitones when the model was trained. Also the speed was randomly raised and decreased.
By changing the training data, each training sample would not appear exactly similarly twice
and the network would thus not overfit the model [44]. The code was written in Tensorflow.

5.5 Result from MIREX 2015-2017

In this section the results from MIREX 2015-2017 is summarized in Figure 13a, 13b and 14.
The tables are extracted from the MIREX summarized evaluation results for each year [18]. The
results for both the MIREX Dataset and the Su Dataset are presented. The measure which is
considered for the Multi-F0 task is accuracy. For the two subtasks of Note Track, the result
without the offset criterion is presented with both the average F-measure and the average over-
lap, and done so for both the MIREX Dataset and the Su dataset.

Among the results in MIREX 2016 and 2017 in Figure 13b and 14, the top row in each column
represents the overall best score in MIREX for the corresponding measure. This gives a guideline
of what the state-of-the-art can perform, which is what this thesis is supposed to answer. The
use of this thesis can however be motivated by its content of thoroughgoing analysis of why
certain models get higher scores than others.

By studying Figure 14, the overall best scores are stated for all MIREX years. Apparently the
best Multi-F0 accuracy score was achieved 2014 and is therefore not presented in this thesis,
which is unfortunate. But the THK1 model is only slightly behind with a score of 0.003 less
than the model from 2014. For the Note Track mixed dataset, a model from 2014 has the highest
F-measure, and the difference to the best model in 2017, CT1, is more significant. For the Note
Track piano subtask, the best score was achieved 2016 by DT1, slightly better than CT1.
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(a) MIREX 2015. For the Multi-F0 task, the BW1 model achieves the best accuracy score, followed by the SY
models (the MPE models). For the Note Track mixed dataset, model BW2 achieves the highest F-measure and for
the piano music model BW3 performs best. The result holds also for the Su dataset which indicates a robustness
in the BW models. The average overlap score is very even for all models, almost independently of the F-measure
which indicates that this measure is not very exposing.

(b) MIREX 2016. For the Multi-F0 task, the MM1 model achieves the best accuracy score, followed by CB1. It
can be noted that the CB1 model achieves not exactly the same results as for MIREX 2015 (Figure 13a) and
MIREX 2017 (Figure 14) which it should, since it is the same model and the same dataset. This is regarded as
an issue but will not be further analyzed. For Note Tracking, model DT1 stands out with the best F-measure
for both the mixed dataset and the piano dataset. The scores of the Su dataset appears quite unrealistic for the
DT1 and KB1 model. Some kind of bug in the evaluation can be expected here.

Figure 13:

5.6 Other models

Extending the evaluation in the thesis, in order to cover more parts of the music transcription
area, a couple of models which haven’t participated in MIREX were considered as well. Those
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Figure 14: MIREX 2017. For the Multi-F0 task model THK1 achieves the highest accuracy followed
by the KD models. For the Note Tracking task CT1 achieves the highest F-measure for both the
mixed dataset and the piano dataset followed by KD2. Just as in Figure 13b a couple of abnormal
scores appears for the Su dataset for the PRGR models and the SL1. This indicates in a way that
it is less trustworthy comparison than for the MIREX Dataset.

models will be briefly summarized in this section.

5.6.1 DOPT

The DOPT model was recommended in an e-mail conversation with one of the MIREX partici-
pants. The paper [46] is entitled Onsets and Frames: Dual-Objective Piano Transcription which
was shortened to DOPT.

The model as described in [46], is neural network built on convolutional and recurrent layers.
The input to the model consists of a spectrogram with logarithmic amplitude and with frequency
spacing from the mel-scale. As defined in (4), it is a type of a logarithmic scaling which is sup-
posed to be more adapted to the human logarithmic hearing. Each spectrum corresponds to
about 13 ms audio data and consists of 229 frequency bins.

The model consists of two networks, where one network is predicting onsets and one network
is predicting pitches. The onset detection network consists of a convolutional layer followed by
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a LSTM layer and finally a fully connected layer which outputs a vector of 88 neurons [46].
Each neuron in the output layer corresponds to a probability that an onset has occurred for
that specific tone. The architecture for the pitch estimation network is similar as for the onset
detection. A convolutional layer is followed by a fully connected layer, which together with the
onset prediction output is fed into a LSTM layer. The final step is a fully connected layer which
outputs a vector with 88 neurons, indicating the probability of an active pitch.

In addition, a velocity estimator is added. The velocity is used to capture the speed which a piano
key was depressed which is related to the loudness and articulation. As explained in [46], this
estimator is built with similar structure as the onset detector and pitch estimator, but doesn’t
affect the note estimation more than making the resulting transcription sound more natural.

The DOPT model is created by a large group consisting of Curtis Hawthorne, Erich Elsen, Jialin
Song, Adam Roberts, Ian Simon, Colin Raffel, Jesse Engel, Sageev Oore and Douglas Eck at
Google Brain Team, Mountain View, USA. The model is trained on the MAPS dataset [22] and
is therefore supposed to only be applicable to piano data [46]. The code is written in Tensorflow.

5.6.2 PEBSI-Lite

PEBSI-Lite denotes Pitch Estimation using Block Sparsity, - Improved and Lighter.42. The
model has not been participating in MIREX.

The model as described in [47] differs from all the other models in the sense that it is data-
independent, i.e., that it doesn’t use any training data at all, except for 2 regularization param-
eters that need to be manually set. Instead, it is built on the strong prior assumption that each
frame of data consists of a stationary sequence of harmonically related sinusoids, i.e.,

x(t) =

K∑
k=1

Lk∑
l=1

ak,le
iωklt

where t = 1, ..., N is the time point, ωk is the frequency of the l’th harmonic in the k’th pitch and
ak,l is a complex-valued parameter denoting magnitude and phase. The fundamental frequencies
are estimated by estimating the ak,l-parameters for a grid of candidate fundamental frequencies.
This is done in [47] by minimizing the convex optimization problem

C(Ψ) =
1

2

N∑
t=1

∣∣∣y(t)−
P∑
p=1

Lmax∑
l=1

ap,le
iωklt

∣∣∣2+λ1

P∑
p=1

Lmax∑
l=1

|ap,l|+λ2
PLmax∑
q=1

|aq+1e
−ϕq+1−aqe−ϕq | (45)

where Ψ represent all parameters in the model, except for λ1 and λ2 which are regularization
parameters that are set manually or using cross-validation. The cost function consists of three
parts. The first is an error score which becomes as small as possible if the signal is perfectly
matched. The second part is a penalty on the amplitude parameters which push down ampli-
tudes which only contribute marginally. The third part is built on the idea that the spectral
envelope is smooth. Thus, two amplitudes of adjacent overtones are penalized if the absolute
difference is large.

42Hence the model has nothing to do with any type of soft drink.
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The model considers 10 ms audio data at each time. For each time sequence an ADMM optimizer
is used on (45). This is made independently of the adjacent time sequences [47]. The model is
typically not rounding of the fundamental frequency estimate to the closest tone, which most
part of the other models does.

The model is created by Ted Kronvall, Filip Elvander, Stefan Ingi Adalbjornsson and Andreas
Jakobsson at Lund University. The regularization parameters were trained on Monte Carlo
simulation of signals with different fundamental frequencies and different signal-to-noise ratios.
The code was written in Matlab and it can be mentioned that it is very time consuming, due to
the need to solve an advanced optimization problem for every 10 ms data.

5.6.3 ESACF

ESACF denotes the Enhanced Summary Autocorrelation Function, and has not been participat-
ing in MIREX.

ESACF is the oldest model considered in this thesis, as it was published in the year 2000 in [48].
The model divides the signal into two channels, one being high pass filter for frequencies above
1000 Hz, and a low pass filter for frequencies below 1000 Hz. The Fourier transform is then per-
formed on the two filtered signals. The absolute value of the transforms is summed together and
the inverse Fourier transform is applied [48]. This yields the summary autocorrelation function
(SACF). The next step in the model is to determine which of the resulting peaks correspond to
fundamental frequencies. The number of active fundamental frequencies is manually fixed. The
model finds the strongest peak which is most probable to correspond to a fundamental frequency.
All frequencies which appear at multiples (up to a set parameter) of this frequency are extracted
and then the highest of the remaining peaks are considered. This is repeated until the set number
of fundamental frequencies are found [48].

The ESACF model is written by Tero Tolonen and Matti Karjalainen at Helsinki University of
Technology, Finland. The recommended parameter settings were found by testing on real data43.
The code was written in Matlab and is very fast. In order to evaluate ESACF on the test dataset,
the number of instrument sources were manually set individually for each test file. For the piano
music files, that manually set number of tones was the maximum of the simultaneously played
tones.

5.6.4 Deep Complex model

This model differs in many ways from the above mentioned models. The model is presented in
a paper [20] on complex-valued neural networks where the main focus is on the mathematical
framework of implementing operations on complex-valued numbers in neural networks. There
are a couple of applications of complex-valued neural networks presented where automatic music
transcription is one of them. It can therefore be assumed that the authors haven’t put all their
effort in tweaking and optimizing the model.

In the paper, four different models are presented where the model called Deep Complex per-
formed the best. Deep Complex is influenced by a deep neural network model originally created

43The data which was referred to in [48] could not be found, probably since the article has become a few years
old.
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for image recognition [49]. In the paper the model was compared to a real-valued deep neural
network model with similar architecture. The result was that the complex-valued model out-
performed the real-valued one. Until recently, complex-valued neural networks have been an
unmentioned topic in the machine learning community. But recent research has shown that
complex-valued neural networks outperform the earlier real-valued state-of-the-art neural net-
works in many fields, where one example is hand written digit classification [1]. This invites to
investigate the potential of complex-valued neural networks in polyphonic music transcription as
well and compare it to the acknowledged models.

It is not unrealistic that a complex-valued neural network would outperform a real-valued coun-
terpart. Transforming the music signal to any amplitude-frequency representation, by for exam-
ple the Fourier transform, the transformation initially appears on comple-valued form consisting
of both amplitude and phase. A complex-valued signal seems complicated for a human to in-
terpret, and perhaps for this reason, the magnitude spectrum is considered in almost all music
transcription models44. But there is an information loss by applying the absolute value. By
keeping the complex-valued representation, information might be gained. This gained informa-
tion, which is much easier for a computer to deal with than for a human, could possibly improve
the estimates.

The Deep Complex model in [20] estimates active pitches at independent time segments. The
input is the DFT from the FFT of a time segment of about 0.37 seconds, consisting of complex-
valued data with 0.012 seconds overlap. According to the authors [20], the core of the Deep
Complex model is its 6 convolutional networks in 1 dimension which convolve 3 − 6 adjacent
complex values, as detailed in (34). A convolution is followed by a complex-valued batch nor-
malization, a CReLU (35), as activation function and an average pooling. The dimensionality
is decreasing because of the convolution and the pooling but for each convolution the number
of filters is doubled, implying a high number of parameters45. The model ends with two fully
connected layers where the last one uses a sigmoid function to get an output layer of size 84 (one
neuron for each possible note) with corresponding probabilities46 [20].

The model is trained using an optimizer called ADAM on the MusicNet dataset [23], which is
resampled from 44100 Hz to 11000 Hz. The network is trained by dividing the data into batches
consisting of 0.37 seconds segments from each of the 321 music files in the training set. In order
to cover the whole dataset, about 1000 batches are needed. A training section of 1000 batches
are called an epoch, and totally the model was trained on 200 epochs. The total training time
was about 12 hours47.

The model is claimed to be state-of-the-art [20]. This turned out to be incorrect since the only
comparison that is made in the paper is with the real counterpart and an example model available
in [23]. In [50] the Deep Complex model is outperformed by a couple of models. The result of
the Deep Complex model is only presented using the average precision metric which corresponds
to the area under the precision-recall curve, see Figure 11. To make it comparable with the other

44All except PEBSI-Lite.
45A similar structure will be shown for the extension of the Deep Complex model where the model architecture

is shown in Figure 15.
46Note that a piano contains 88 notes but only 84 tones appeared in the training set. Thus the network would

not be able to train the weights for the last 4 output neurons and which thereby could be excluded.
47On a PC with CUDA-programmable NVIDIA GPUs.
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models, a binary threshold was trained, as described in Section 3.2.5.

5.7 Proposed models - Deep Complex model with LSTM and CQT/FFT

By analyzing the Deep Complex model, Section 5.6.4, a couple of remarkable features were found
which weresn’t clearly motivated from a music transcription perspective. The fact that the model
was written by researchers who are more focused on machine learning than music automation
might explain this. In this thesis, a novel method is proposed, in which these features are changed
to be more proper from a signal processing and music theoretical perspective. The features were
implemented directly in the source code of the Deep Complex model, but the main part of the
code was left unchanged. The shortcomings of the Deep Complex model and the changes will be
described further. The parts which are not mentioned are also not changed.

First of all one may note that the resampling of the dataset is not done by a multiple of 2 since
44100
11000 ≈ 4.009. This makes it not obvious how the resampling was performed. In order to evaluate
the Deep Complex model fairly, the test data needed a similar resampling as for the data it was
trained with. The resampling was performed using the Python SciPy function signal.resample
which probably doesn’t differ markable from the resampling performed on the training data.
Anyway, the same resampling ratio was kept for the proposed model to being able to train it on
the same dataset.

A second observation is that the input is the whole DFT from the Fourier transform of 4096
complex data values. The Fourier transform is symmetric around zero for real-valued data which
means that the all the input values have a doublet. This is maybe not a very complicated
problem for a neural network to learn, but the number of parameters can be reduced and the
calculation speed and the risk of overfitting can be reduced. To consider all 4096 Fourier values
is therefore a bad choice. The Nyquist frequency at fs

2 = 11000
2 = 5500Hz is the highest possible

frequency the Fourier transform is able to identify, where fs is the sampling frequency. The
amount of data values which is reasonable to consider, could instead of all 4096 values be related
to the Nyquist frequency, which in this case is 2048 data values. One may also note that the
highest note on a piano is C8 with fundamental frequency 4186.01 Hz, which is smaller than the
sampling frequency. On the other hand, no overtones of C8 can be identified, which may not be
a very big issue since such high pitches are rarely occurring48.

Considering the proposed models, the only difference between them is that one is built on the
Fourier transform (described in Section 3.1) and the other on the Constant-Q transform (Section
3.1.3). The model based on the FFT has, for each 0.37s time sequence, 2048 input values cor-
responding to a spectrum with equally spaced frequency steps from, but not including zero, up
to the 5500Hz, i.e., the Nyquist frequency. The model based on the CQT has 504 input values
corresponding to 84 pitches with 12 · 6 = 72 frequency bins in each octave. The lowest pitch
which is possible to detect from the CQT is A0 at 27.50 Hz and the highest pitch is G#7 at
3322.44 Hz. One could claim that the CQT should cover even higher frequencies since a piano
goes up to the tone C8. But the fact is that no such high pitches occurred in the training data,
so the model would not be able to categorize those high tones correctly anyway.

Another observation about the Deep Complex model is that it has no recurrent layers. Since the
48The first overtone f1 appears at 4186.01 · 2 = 8372.02 Hz.

55



model is originally built for image recognition [49], where the order of the images is randomized,
recurrent layers would not be of any use49. But for music data, there is a string dependence
on previous and following data values, which almost all models in MIREX take into account.
Therefore a recurrent LSTM layer may be added to the proposed models. This LSTM layer is
placed just before the final two fully connected layers. Where in the network the LSTM layer
should be placed optimally was not analyzed.

For the recurrent layer to make any sense, the code of the training batches needed some correction
since the Deep Complex model used one time segment from each music file in the training. The
correction meant that first a music file was randomized, then the start position in that music file
was randomized and the following 321 time segments were considered as one batch. By making
this correction, the amount of training data was not changed but the number of music files used
in each epoch could be less since two music files can be randomized in the same epoch.

One final difference between the proposed models and the Deep Complex model is the number
of epochs performed. Because of the longer training time caused by the LSTM layer and the
Constant-Q transform, the number of epochs for the proposed models was decreased to 100. The
training time for 100 epochs was about 15 hours and because of limited time, 200 epochs were not
possible to perform. This would of course give a fairer comparison to the Deep Complex model
since more epochs would have improved the training. However, the first 100 epochs seemed to
give an acceptable estimate.

The model architecture is similar for both models, but the different inputs change the dimen-
sionality of the layers further in the network, due to different dimensionalities of the FFT and
the CQT. The complete architecture and the number of parameters is shown in Figure 15.

One aspect which would have been desirable to change is the loss the Deep Complex model
is trained to maximize the standard accuracy (44) instead of the MIREX accuracy (43). The
difference is that under estimating models (which estimate too few pitches) can achieve good
scores using the standard accuracy measure, while the MIREX accuracy weights the estimates
more reasonably. This change was however not applied to the proposed model50.

5.8 Summary and Trends about the models

There are some trends which can be seen in the models. To illustrate those, the models are
categorized in different methodical structures. This is presented in Table 3 where the methods
for both signal processing, pitch estimation and potential feature detection are presented for the
different models.

For pitch estimation, the models have been categorized into probabilistic, parametric and neural
network methods in Table 3. The probabilistic methods are those which are using probabilistic
latent component analysis. The parametric methods are using pitch estimation functions based
on parameters which either are set by training or manually. The parametric methods can also
be rule-based algorithms, like iterative methods, which are dependent of parameters. Neural
Network methods are methods using some kind of machine learning (such as CNN or complex-
valued neural networks). The feature detection column in Table 6 indicates whether there are

49They are randomized such that there is no relation to the previous or following images.
50Also because of limited time.
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Figure 15: The architecture of the two herein proposed Deep Complex LSTM models. The left one
is the FFT model using 2048 input values and the right one is the CQT model using 504 input
values. There is a repeating structure with a complex-valued convolutional layer, a complex-valued
batch normalization, a ReLU activation function, and an average pooling. This structure is repeated
4 times. Then follows a similar structure but with two complex-valued convolutions. In the end
there are a LSTM layer followed by two fully connected layers mapping to the 84 pitches. Except
the input sizes, the only difference in the network architecture is the output shapes. For example,
the output shape of average_pooling1d_5 (fourth from bottom) has shape (None, 32, 256) for the
FFT model and (None, 7, 256) for the CQT. This comes from the input size and since each pooling
step is halving the dimension of each feature map and each convolution step doubles the number
of feature maps. The number of parameters is almost 3 million which is a lot. As can be seen
a big part of those are because of the LSTM layer. Thus a Deep Complex LSTM model is more
challenging to train than without the LSTM layer.

any other features, except the fundamental frequencies, which are estimated by the model.

From Table 3 one may note that all neural network models are from 2016 or 2017, except the
MM model which is from 2004. That can be regarded as a trend which is a natural process due
to the recent growth of machine learning. It is reasonable that the probabilistic models have
feature detections, but one may also note that four of the neural network models also detects
features, mainly by an onset detector. Three models are using the FFT straight off. Comparing
these with the other models may indicate whether some more advanced processing of the signal
should be applied.

In Table 4 the training data of all the participating models are listed together with an explana-
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Model Signal Processing Pitch Estimation Feature Detection Year
ESACF FFT Parametric 2000
MM Gammatone filters Neural Network Partial tracker, onset, repeating notes 2004
Silvet CQT Probabilistic Onset, offset, beat, instrument, chord 2012
BW ERB Probabilistic Instrument source, sound state 2015
MPE Spectrum, cepstrum Parametric 2015
PEBSI-Lite Parametric 2015
DT CQT Neural Network Onset 2016
CT sliCQ Neural Network Onset 2017
DOPT Mel scaled FFT Neural Network Onset 2017
KD Multi res. FFT Probabilistic Tone envelope, onset 2017
MHMTM CQT Neural Network 2017
PR DMD Parametric 2017
THK Filterbank Neural Network 2017
DeepComp FFT Neural Network 2017
DeepLSTMCQT CQT Neural Network 2018
DeepLSTMFFT FFT Neural Network 2018

Table 3: Table of the basic structures in the models. Models with multiple variants such as different
training data etcetera, are merged together in this table (for example PR=PR1&PR2).

tion of how all participating models were estimated.

From Table 4 it can be noted that there is a limited amount of training datasets which are used
by the models. MusicNet and MIREX development set are real value data while the RWC and
MAPS datasets are MIDI files which are simulated sound. About the evaluation it should be
noted that the estimates from models CT1 and DT1 were received by mail after sending the test
files to the model authors. All other estimates were calculated in-house.
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Model Training Data Evaluation Test files
BW1 RWC, orchestral Matlab
BW2 RWC, orchestral Matlab
BW3 MAPS, piano Matlab
CT1 Unknown Achieved through mail
DeepComp MusicNet, orchestral and piano Python, tensorflow
DeepLSTMCQT MusicNet, orchestral and piano Python, tensorflow
DeepLSTMFFT MusicNet, orchestral and piano Python, tensorflow
DOPT MAPS, piano Python, tensorflow
DT1 MIDI files, orchestral and piano Achieved through mail
ESACF Unknown Matlab
KD1 MIREX development set, orchestral Executable file
MHMTM1 MIDI files, orchestral and piano Python, tensorflow
MM1 MIDI files, piano Executable file
MPE1 Unknown Matlab
MPE2 Unknown Matlab
MPE3 Unknown Matlab
MPE4 Unknown Matlab
PEBSI-Lite None Matlab
PR1 Unknown Python
PR2 Unknown Python
SilvetMF0 RWC, MAPS, Disklavier, orchestral and piano Executable file
SilvetMF0piano MAPS, Disklavier, piano Executable file
SilvetNT RWC, MAPS, Disklavier, orchestral and piano Executable file
THK1 MusicNet, orchestral and piano Python, tensorflow

Table 4: The training data of each model together with a description of what program the test files
were estimated with.
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6 Tests

One of the most interesting questions this thesis is trying to answer is: Which model is state-
of-the-art in music transcription right now? The reason why this answer is not readily found on
the Internet or even at MIREX, is because all music transcribing models are not evaluated at
the same time or at the same dataset51. This thesis gathers many of the last years recent models
and compares them on the same dataset. One advantage with the tests in this thesis is that the
datasets afterwards will be available for the public and it will thus be possible to see exactly how
each model is performing for each tone in each song52.

In this section, the steps taken by going from estimates to a measure of the performance will
be explained. First by presenting the test dataset in 6.1, then explaining how an estimate of
Note Track form is converted to Multi-F0 form (and vice versa) in 6.2. Then, in Section 6.3, the
methods are aligned to give outputs of the same format, and finally in Section 6.4 it is explained
how the MIREX measures are calculated practically.

6.1 Dataset

There was a couple of things to consider while designing the test-dataset. The main idea was
to make it representative of the MIREX development dataset. The only comparable dataset is
the MIREX development dataset which consists of real instrument recordings in mono, sampled
at 44, 1 kHz53. The MIREX development dataset consists of the fifth variation from L. van
Bethoven Variations from String Quartet Op.18 N.5. The song is arranged for a woodwind quin-
tet consisting of Bassoon, Clarinet, Flute, French Horn and Oboe. Each of the instruments are
performed and recorded by itself while the performer was listening to the other parts through
headphones. Finally they are mixed together. The sheet music annotations are manually tran-
scribed and are used as the ground truth for the model [18].

For the scope of this thesis, it was not possible to record a test dataset as realistically as the
MIREX development dataset. A couple of real recordings with manually annotated sheet music
are available on the Internet, such as the MusicNet dataset and the Bach-10 dataset, summarized
in Table 2. But since these datasets are few, there is always a risk that one of the models has
used this dataset as its training set, which wouldn’t give fair evaluation. Instead, inspired of the
partly realistic MIDI-version of the real recording of the MIREX development dataset, MIDI files
from MuseScore [51] were used as the test set. Sheet music from famous composers arranged by
private persons are being shared on the MuseScore homepage and can be downloaded for free.
Only sheet music which was available for commercial use has been part of the test dataset. By
using MuseScore, the sheet music could be transformed to wav-files with more realistic sound
than MIDI files. Also, the ground truth is completely known. Compared to sheet music annota-
tions made manually by professionals, the MIDI file sheet music representation is actually more
precise. For example, in the MusicNet dataset, there is an expected error rate of 4%. One could

51A model in MIREX is only compared with participating models of the same year and all other papers about
music transcription which are not participating in MIREX are mainly evaluated on extracted parts of the training
dataset.

52In Section 4.1 it was stated that the MIREX Dataset is needed to be kept secret.
53The MIREX development dataset is available for research. A request form was filled in and accepted by the

MIREX organizers.
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note that the play time of a wav-file and a MIDI file differs. By analyzing the music files, the
playtime of the MIDI file ends directly when the sound ends while the wav-file has some quite
seconds in the end. This indicates that the MIDI file is the true ground truth and therefore this
issue is disregarded.

The test dataset consists of 11 music files from MuseScore and 1 music file from the Bach-10
dataset. The Bach-10 file was added to investigate how the models were performing on real
recorded music and not only simulated music. By a quick analysis of the evaluated models, none
of them seemed to have been trained on the Bach10 dataset which approves the use of it in the
testset54. The test dataset was chosen to be as wide and general as possible but still similar to
the MIREX test set. It needed to contain at least some ensemble music and some piano music
since that is what the MIREX Dataset does. The test dataset is restricted to classical music
and hymns with no percussion or singing. There are woodwind compositions and piano music
similarly to the MIREX test set, but some other instruments are investigated here as well such
as the guitar, the violin and a string quartet. The pace of the tones varies from the different
music files as well as the number of tones played at the same time, so each of the music files
in the test set investigates how well each model manages a certain type of music for a certain
instrument. The test files were chosen to have a similar length of time and no replays55. The
test dataset is stated in Table 5.

One thing to notice is that the wav-files from MuseScore were in stereo, while the wav-file from
Bach-10 were mono. The majority of the models were able to handle multi-channel recordings,
while some models (PEBSI-Lite, ESACF and THK1) could only cope with single-channel inputs.
In those cases, the two channels were mixed together by summing the signals.

6.2 Translation between formats

The two different formats for Multi-F0 and Note Track, illustrated in Section 4.2 and 4.3, fill
different purposes but are still similar. Each model either has an output similar to the Multi-F0
format or the Note Track format56. To be able to evaluate each model for both the tasks a
translation between the different formats was needed to be implemented.

From Note Track to Multi-F0 is a straight-forward translation. In each row of the Note Track
output there is a tone represented by an onset, an offset, and a frequency. The translation al-
gorithm does the following: For each tone, each of the time bins between the onset and offset
creates a pair for that frequency. Finally, all frequencies which are paired with each time bin are
stacked in a row, resulting in the active frequencies for that time bin such that each time bin
corresponds to none, one, or multiple frequencies.

Going from Multi-F0 to Note Track is a bit complicated. In the Multi-F0 output there are time
bins with corresponding active frequencies. The translation algorithm does the following: Start-

54Since the Bach10 dataset only consists of 10 music files, it would for example not be reasonable to use the
Bach10 to train a neural network. Therefore the risk that Bach10 would occur as training dataset for some of the
models is low.

55A similar time was needed such that they wouldn’t need a weighting when the results are added together. No
replays should appear since two equal parts of a song would give a very similar estimation which would not add
anything to the evaluation.

56except MPE which gave both output formats directly and the Deep Complex model (as well as the Deep
Complex LSTMCQT and Deep Complex LSTMFFT) which gave another type of output.
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Music piece name Composer Arranger Short
name

Instruments Numb.
of in-
stru-
ments

Song
length

Song
speed and
style

Nun bitten wir den
heiligen Geist (from
Bach10)

J.S. Bach - mix1 Violin, clar-
inet, saxophone,
bassoon

4 0:37 Hymn, long
tones

"Graduale" from th
Requiem in C Minor
No.2

L. Cheru-
bini

Mike Maga-
tagan

mix2 Flute, oboe, clar-
inet, bassoon

4 01:13 Slow, long
tones

Tochter Zion G. F.
Händel

User:
Oboeli95

mix3 Flute, oboe, Bb-
clarinet, french
horn, bassoon

5 01:03 Medium,
long &
short tones

Prelude: "Helft mir,
Gottes Güte preisen"

J.S. Bach Mike Maga-
tagan

mix4 Flute, oboe, A-
clarinet, bassoon

4 01:12 Fast, short
tones

Hark! The Herald
Angels sing

F.
Mendels-
sohn

User:
dan.ricci.37

mix5 Violin × 2, viola,
flute, Bb clarinet,
bassoon, Bb trum-
pet × 3, C tuba

10 0:39 Hymn, slow

B flat scale - User:
Hersey1754

piano1 Piano 1 0:33 Monopho-
nic, long
tones

Lullaby J. Haydn Don Moss piano2 Piano 1 01:12 Slow, long
tones,
chords

Sonata No.2 4th

Movement Opus 35
F. F.
Chopin

User: Clas-
sicMan

piano3 Piano 1 01:25 Fast, short
tones

Trepak (Russian
Dance) From the
Nutracker Ballet
Suite Op. 71A: II.
C.

P. I.
Tchaikov-
sky

User:
Alphonse
Gayloa
Samson

piano4 Piano 1 01:08 Fast, short
tones,
chords

Adantino Op.241
No.20

F. Carulli User:
Marieh

guitar1 Guitar 1 0:52 Medium,
long &
short tones

Divertimento in F
K138 III. Presto

W. A.
Mozart

User: AR-
Boyes

violin1 Violin 1 0:22 Medium,
long &
short tones

Alla Rustica III. Al-
legro

A. Vivaldi User:
pribylova

strings1 Violin × 3, violin-
cello

4 0:52 Monopho-
nic, short
tones

Table 5: Summary of the test dataset. All music pieces are used as -wav format. The top dataset
(short name mix1) is a real recording from Bach10 dataset [24]. The rest are simulated sound from
MuseScore files [51].
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ing at the first time bin, the first frequency is considered as a part of the first tone. The onset
of this tone is the first time bin. In the following time bins, this frequency is searched for. If
the frequency is found, the tone is considered as still active and the next time bin is considered
and so on. If the frequency is not found, the previous time bin is considered as the offset of the
tone. Then one goes back to the second frequency of the first time bin and repeat the process.
This is repeated until for all frequencies of the first time bin. For the following time bin one
searches for frequencies which were not active in the previous time bin. For each new frequency
the procedure of finding an offset is done.

The described translation of Multi-F0 to Note Track does only work for a Multi-F0 representa-
tion where frequencies has been truncated to the closest tone. For example, if a model estimates
a frequency of 225 Hz the closest tone is A3 with a pitch of 220 Hz (A#3 is the second closest
with tone with pitch 233.082 Hz). Most of the models do this truncation automatically, but some
don’t57. With the above algorithm, almost all tones appear only for one time bin for the models
without this automatic rounding. Since this is not a fair way of comparison, the translation con-
siders all frequencies which are within ±3% from a tone to be rounded to the corresponding pitch.

6.3 Conversion to MIREX format

There are very strict rules in the MIREX format for evaluation. In order to evaluate the estimates
they need to be given on a consistent fashion58. For most of the MIREX models, the output of
the given source code was correctly, but some models needed minor modifications. This section
will describe which modifications were needed to evaluate the models. The modifications should
not affect the performance of the models, but to recreate the presented results, similar changes
are needed.

Some methods yielded more accurate time or frequency estimates than a two decimal precision,
which is the MIREX standard for both Multi-F0 and Note Track. In those cases, the values were
rounded to two decimals59. Another case that was handled was when some models didn’t output
a text file. For the outputs in excel format, the estimates were just copied into a txt-file. For
the models which gave a matrix or cell-array output in Matlab, the output was converted into
a text file. Two of the models gave MIDI files as output. Those cases were converted in Matlab
with [52] which transforms the MIDI file to a variant of Note Track format. The transformation
includes the onset and offset as well as the MIDI number, the velocity and instrument number.
A MIDI number corresponds to a certain pitch and can be translated to a frequency as in [9] by

fn = 2
n
12 · 440Hz (46)

where n is the MIDI number and fn is the corresponding frequency. By extracting the onset,
offset, and MIDI number, and transforming the MIDI number to frequency, the Note Track for-
mat was obtained. This conversion was also used when transforming the MIDI files in the test

57It is common for music transcription models to automatically round to the closest tone since a piano roll
representation usually is what is wanted. Anyway, there are models like PEBSI-Lite and ESACF which just
estimate active frequencies independently of what frequencies can be expected from musical instruments.

58One format for Multi-F0 and one for Note Track as described in Section 4.2 and 4.3.
59In MIREX it is accepted to submit estimates with more than 2 decimals. But when various formatting files

were written for this thesis, this was not considered. In order to not rewrite all the formatting files the rounding
solution was the most efficient.
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dataset to the ground truth Note Track and Multi-F0 format.

The most demanding conversion was for the Deep Complex models60. The output was a n× 84
matrix with probabilities for each of the 84 possible tones in each of the n time bins61. To
determine which tones to be considered as active, a binary threshold as in Section 3.2.5 was
implemented. Probabilities which appeared higher than the threshold were considered as ac-
tive tones. The threshold was trained for each of the Deep Complex models by maximizing the
MIREX accuracy (43), for the Music net test set using Matlab to minimize the negative accuracy.
Using the threshold the active tones were extracted for each time bin and then transformed to
pitches62. The output finally achieved the Multi-F0 format.

Presenting the output of the Deep Complex model as probabilities is not a bad idea, since the
average accuracy could be calculated from the precision recall-curve using the probabilities, Sec-
tion 3.2.5. However, a presentation with a Multi-F0 or Note Track format is more intuitive and
closer to a usable product. That is probably the reason why a probability based output is not
considered in MIREX.

As summary of the output formats of the different models, consider Table 6. To get all models
of both Multi-F0 and Note Track format, the above presented conversions and the presented
translations in Section 6.2, were applied for the models which didn’t output both formats directly.

6.4 MIREX Evaluation

The output as Multi-F0 or Note Track format from the models are evaluated with different
measures, as described in Section 4.2 and 4.3. The measures which are considered in this thesis
are, for Multi-F0, the 3 measures precision, recall and accuracy and similarly for Note Track,
the 6 measures precision, recall and F-measure both with and without the offset criterion63. To
calculate these measures, the Python library mir_eval version 0.4 was used from [29].

One advantage with using an existing evaluation library is that the results can easily be recre-
ated. Another is that this library is very user friendly. The library is also transparent such that
it is robust to a shift between the estimation and the ground truth64. The disadvantage is that
the evaluation is not identical to how MIREX is evaluating the different measures. This would
have been possible to achieve by proposing a new evaluation program. Some disadvantages are
that bugs can be hard to identify and if any changes are made in the library by its authors, the
exact same results might not be possible to recreate65.

For evaluating the Multi-F0 the multipitch function [29] was used, which doesn’t differ particu-
larly from the MIREX evaluation. The number of matching frequencies for each time bin between
the estimated Multi-F0 output and the ground truth on Multi-F0 form is calculated and from
this, precision, recall and accuracy are calculated. If the matching is not ideal (accuracy 6= 1 in

60Deep Complex model, Deep Complex LSTMCQT and Deep Complex FFT.
61The size was motivated in Section 5.6.4.
62Recall that this is a n × 84 matrix where 1 indicates an active tone and 0 indicates an inactive tone. The

transformation from this matrix was done with a similar formula as for the MIDI number, (46).
63Accuracy is referred as the MIREX accuracy, (43).
64To avoid implementing this, saved the author many hours of work.
65Some bugs were identified in the library due to weird test results. These bugs were possible to work around

by adjusting the data, but there might be smaller bugs in the library which weren’t found in this thesis.
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Model Multi-F0 Format Note Track Format MIDI Format Other
BW1 x
BW2 x
BW3 x
CT1 Detailed version

of Note Track
DeepComp Note Probabilities
DeepLSTMCQT Note Probabilities
DeepLSTMFFT Note Probabilities
DOPT x
DT1 Note Track in Ex-

cel (3 decimals)
ESACF Multi-F0 in Mat-

lab Matrix
KD1 Note Track (6

decimals)
MHMTM1 x
MM1 x
MPE1 x x
MPE2 x x
MPE3 x x
MPE4 x x
PEBSI-Lite Multi-F0 in Mat-

lab cell array
PR1 x
PR2 x
SilvetMF0 x
SilvetMF0piano x
SilvetNT x
THK1 x

Table 6: "x" corresponds to the format of the model output. There are 4 models (MPE 1-4) which
output was not modified at all by the author. The other models were modified by a translation or
conversion (or both).
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(43)), the time bins of the estimate are resampled using nearest neighbour to achieve the best
possible match of the estimate and ground truth. The frequencies of the estimate, corresponding
to the time bins which appear outside the ground truth time bins after the resampling, don’t
contribute to the evaluation.

The evaluation of the Note Track is done by the transcription function [29] which is not as
intuitive as for Multi-F0. The evaluation method counts how many of the estimated notes which
match the ground truth and how many which don’t. Based on these counts, the precision, recall,
and F-measure are calculated. The criteria for a tone to be considered correct is (from Section
4.3) that the onset is within ±50 ms, the frequency is within ±3% (a quartertone), and the offset
needs to be within a 20% range, from the ground truths66. In this evaluation library, the offset
criteria is slightly changed to be within 20% range from the ground truths’ offset or within ±50
ms, whichever is larger67. Another note to make is that the evaluation method uses a bipartite
graph matching to find the optimal paring68.

The library is used both to evaluate the Note Track estimation with the offset and without the
offset criterion69. Compared to the MIREX evaluation method, this library is expected to give
a higher score of the precision, recall and accuracy by about 1% − 2%70. This is not perfectly
desirable but since the difference is not considerably large it will not make that big difference.
Also, all models will be evaluated with the same conditions, thus this will not affect the result.

A couple of smaller modifications are necessary to address, in order for the functions in the
library to compile. Some of the estimates got negative time bins, which could for example look
like

−0.02
−0.01 220 .00
0 .00 220 .00
. . .

which were not accepted. In these cases, the time bins < 0 were deleted. Another error occurred
for some of the Note Track estimates when a tone only appeared for a single time bin (onset and
offset appeared on the same time bin). Since it is technically impossible for a tone to hold on
for less than 0.01 seconds, those tones were deleted from the Note Track estimates to make the
library function compile.

66The "within" is clarified as −50 ms ≥ f0 ≤ 50 ms for example. I.e., all "within" measures includes the limit.
67There is contradictory information about the criterion for the offset on the MIREX homepage [18], that’s

why this confusion may have appeared.
68This is done since each estimated tone can only be paired with one true tone.
69The score without the offset criterion is always higher (≥) than the score with the offset criterion
70According to tests by the authors of the library [29].
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7 Results

The results of this thesis are in one way presented as plots of the models’ estimates of
test files combined with the ground truth. Another way the result is presented is by
the general measures of precision, recall and accuracy/F-measure which are shown in
diagrams for all models simultaneously. A third presentation of the results would be to
listen to the MIDI-translations of the model outputs. This would give a quite proper
measure of how well a model is performing according to how a user would perceive it.
Because of natural causes this measure will be disregarded in the thesis.

In this section first the diagrams of the Multi-F0 evaluation is presented Section 7.1,
followed by the same for Note Track 7.2. Afterwards some of the estimates will be
plotted in Section 7.3 and finally the results are analyzed in Section 7.4.

7.1 Results of Multiple Fundamental Frequency Estimation

First the mean of the test files is presented for all files, for all ensemble files (called mix
files) and all piano files. Since the results differ from each test file, the diagram for each
of the 12 test data files are presented as well.

7.1.1 Averaged Multi-F0 Results

Figure 16: Compilation of all mean values for the Multi-F0 estimates
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7.1.2 Single Test Files Multi-F0 Results

Figure 17: Compilation of all Multi-F0 estimates on the ensemble files in the test
dataset

Figure 18: Compilation of all Multi-F0 estimates on the piano files in the test dataset
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Figure 19: Compilation of all Multi-F0 estimates on the other files in the test dataset

7.2 Result of Note Track

7.2.1 Averaged Note Track Results

Figure 20: Compilation of all mean values for the Note Track estimates
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7.2.2 Single Test Files Note Track Results

Figure 21: Compilation of all Note Track estimates on the ensemble files in the test
dataset

Figure 22: Compilation of all Note Track estimates on the piano files in the test
dataset
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Figure 23: Compilation of all Note Track estimates on the other files in the test
dataset

7.2.3 Note Track Without Offset Criterion

Figure 24: Compilation of all mean values for the Note Track without offset criterion
estimates
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7.3 Plots of estimates

The results presented in the figures in Section 7.1 and 7.2 are the main results of this thesis. In
order to analyze the results and to find out the types of errors behind the performance metrics, a
subset of results will be visualized in time-fundamental frequency plots. Visual inspection makes
it possible to connect the different methodical structures in the models to their performance.
Because of the large number of test files (12) and models (24), the results of all test files of all
models (12 · 24 = 288) cannot be presented. Instead, a selection of these, where specific results
are of more interest, will be included.

In this section a lot of plots will be presented. Each plot will include the ground truth of the
whole part of one test file (a whole song) and the estimate from a single model. The plots are of
the Multi-F0 representation, where the estimated pitches for each time bin of 10 ms (100 samples
per second) are visualized. For each estimation, the plot will indicate a true positive pitch (a
correctly estimated pitch within a quartertone from the ground truth) by a large black dot. A
false positive pitch (incorrectly estimated pitch) will be indicated by a pink cross. Since a tone in
general lasts longer than 10 ms, the dots will be stacked such that they will look like a line. The
ground truth is a thin colored dot where the color indicates which instrument that was playing
that pitch71.

The representation will give a fairer indication of the Multi-F0 score than the Note Track score.
To include some indications of the Note Track score, each pitch which is incorrectly estimated but
within the time interval of ±50 ms of a ground truth pitch, will be indicated by a yellow square.
Those incorrect frequencies may in the Note Track representation, be included in a correctly
estimated tone. A final indicator is if an estimated pitch appears between a quartertone and
a semitone from a ground truth pitch. Those pitches will be marked by an orange star and
indicates that the signal processing has failed. Thus, the incorrect tones marked by a pink cross
will mainly indicate where the pitch estimation has failed, that is a false positive. Another type
of error is when a ground truth tone is not estimated, indicated by a colored line which has no
black line behind, i.e., a false negative. The plots which follow are analyzed further in Section
7.4.

71Note that the models only estimate pitches and not which instrument playing each pitch. However, the ground
truth information about the instrument can be used for analyzing the result.
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Figure 25: Alla Rustica by A. Vivaldi. Performed by a string quartet. Multi-F0 scores:
Precision = 0.85294, recall = 0.86435, accuracy = 0.75224. Note Track scores: Precision=
0.31186, recall = 0.28840, F-measure = 0.29967. The string ensemble was in general quite
complicated to estimate especially for the Note Track task. THK1 got the highest accuracy
score for Multi-F0 and the second highest F-measure score for Note Track. The precision
and recall are well balanced which is optimally in achieving a high accuracy and F-measure.
One can see that the model estimates pitches of both higher and lower frequencies with
a similar specificity. The only structural error found, is for the violincello between 24-27
seconds and 37-45 seconds when fast octave jumps occurs.

Figure 26: Alla Rustica by A. Vivaldi. Performed by a string quartet. Multi-F0 scores:
Precision = 0.83192, recall= 0.80690, accuracy = 0.69380. Note Track scores: Precision
= 0.59639, recall = 0.62069, F-measure = 0.60829. From the plot it looks much similar
as the estimation of the THK1 model in Figure 25. A higher rate of false negatives is
estimated by CT1 than THK1. Due to a higher Note Track score, CT1 is concluded to hit
the onset and offset better than THK1.
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Figure 27: Alla Rustica by A. Vivaldi. Performed by a string quartet. Multi-F0 scores:
Precision = 0.82711, recall = 0.60387, accuracy = 0.53619. Note Track scores: Precision
= 0.06147, recall = 0.08777, F-measure = 0.07230. The MHMTM1 performs relatively
well but it’s a clear difference from THK1 and CT1. By studying the lower frequencies
a lot of false positives (pink crosses) are found, while in higher frequencies, a lot of false
negatives are estimated (thin colored lines with no thick black line behind).

Figure 28: Sonata No.2 by F. F. Chopin. Performed on piano. Multi-F0 scores: Precision
= 0.81629, recall = 0.74094, accuracy = 0.63505. Note Track scores: Precision = 0.88862,
recall = 0.81195, F-measure = 0.84855. The estimation of this high speed piano melody
gets very well estimated by THK1. Very few false negatives occur, only some of the highest
tones from what can be seen in the plot. On the last chord at 83-86 seconds, a couple of
false positives appears.
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Figure 29: Sonata No.2 by F. F. Chopin. Performed on piano. Multi-F0 scores: Precision
= 0.89047, recall = 0.79800, accuracy = 0.72667. Note Track scores: Precision = 0.95129,
recall = 0.87500, F-measure = 0.91155. Also a well performed estimation by CT1. A
lot of yellow squares, similar as Figure 28, indicating a minor time resolution error which
doesn’t affect the Note Track score. Also similarly, the final chord consists of a couple of
errors.

Figure 30: Lullaby by J. Haydn. Performed on piano. Multi-F0 scores: Precision =
0.78113, recall = 0.95356, accuracy = 0.75251. Note Track scores: Precision = 0.49533,
recall = 0.64898, F-measure = 0.56184. A well performed estimation with a very high
recall in the Multi-F0 task. A couple of tones seem to be estimated as false positives
around 80 Hz, this is odd since they don’t seem to appear at the half frequency of any
ground truth, 1

2
fk. Most probable, they are related to 1

3
fk which would be quite easy to

prevent by tweaking the model. Other failed estimates seem to appear after the offset of
the true tone.
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Figure 31: Lullaby by J. Haydn. Performed on piano. Multi-F0 scores: Precision =
0.91234, recall = 0.78978, accuracy = 0.73407. Note Track scores: Precision = 0.62963,
recall = 0.62449, F-measure = 0.62705. This is the same test file as in Figure 30, but
in another scale in order to include the failed estimates of the high frequencies. MM1
performs a bit different from the DOPT, but also with a high accuracy and F-measure.
There are very few false positives, but more false negatives estimated by the model. This
issue is most salient for the frequencies around 600 Hz.

Figure 32: Lullaby by J. Haydn. Performed on piano. Multi-F0 scores: Precision =
0.93444, recall = 0.49732, accuracy = 0.48055. Note Track scores: Precision = 0.27354,
recall = 0.24898, F-measure = 0.26068. An average performance of model BW2 as a lot
of false negatives are estimated. The main part of the tones has some parts covered by an
estimation, but commonly the offset is estimated too early. Some false positive estimates
also seem to occur at 1000 or 2400 Hz.
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Figure 33: Lullaby by J. Haydn. Performed on piano. Multi-F0 scores: Precision =
0.95114, recall = 0.48539, accuracy = 0.47358. Note Track scores: Precision = 0.23451,
recall = 0.21633, F-measure = 0.22505. BW3 has very similar measures and plot as BW2
in Figure 32, even if the parameters are trained on different data.

Figure 34: The B flat scale. Performed on piano. Multi-F0 scores: Precision = 0.93444,
recall = 0.96189, accuracy = 0.88137. Note Track scores: Precision = 0.98851, recall =
0.98851, F-measure = 0.98851. A simple test file but with an almost perfect estimation.
There is one tone where the offset is missed (the F-measure for Note Track without offset
is 1), but which tone is impossible to see from the plot.
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Figure 35: Trepak by P. I. Tchaikovsky. Performed on piano. Multi-F0 scores: Precision
= 0.58251, recall = 0.75757, accuracy = 0.49098. Note Track scores: Precision = 0.16349,
recall = 0.12794, F-measure = 0.14355. A well performed estimation by DT1 on this
complicated test file with many short tones and chords. Few false negatives are estimated,
resulting in a high recall. The performance in the high frequencies appears similar as in the
lower frequencies. The false positive estimates do mainly appear between two repeating
tones. This is seen at 150 Hz from 3-26 and 48-66 seconds where two tones are repeating
at two different frequencies. At 150 Hz again but from 26-45 seconds the tones are not
repeating and the failed estimates are much fewer.

Figure 36: Trepak by P. I. Tchaikovsky. Performed on piano. Multi-F0 scores: Precision
= 0.59000, recall = 0.47999, accuracy = 0.35993. Note Track scores: Precision = 0.14879,
recall = 0.11538, F-measure = 0.12997. Compared to Figure 35, the same type of error
with repeating tones occur, but only in the lower register. In general there are many false
negatives estimated resulting in low recall. But there are many true positives, that is the
tones which are estimated are in general correct, especially for the frequencies > 200 Hz,
resulting in a relatively good precision.
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Figure 37: The Divertimento by W. A. Mozart. Performed on violin. Multi-F0 scores:
Precision = 0.40795, recall = 0.98256, accuracy = 0.40502. Note Track scores: Precision
= 0.05983, recall = 0.10687, F-measure = 0.07671. DOPT does as in Figure 30, estimate
few false negatives and receives a high recall score. Differently from the piano2 estimation,
the failed estimates appear in the higher frequency region and can commonly be mapped
as the first overtone of a ground truth fundamental frequency.

Figure 38: Hark! The Herald Angels sing by F. Mendelssohn. Performed on violin. Multi-
F0 scores: Precision = 0.97401, recall = 0.53655, accuracy = 0.52898. Note Track scores:
Precision = 0.26357, recall = 0.14011, F-measure = 0.18296. There are lots of tones to
keep track of in this test file, but the THK1 estimation performs very well. The only
tones which seem problematic is the clarinet at 700-900 Hz where many false negatives are
estimated, that means quite few ground truth tones are estimated.
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Figure 39: Hark! The Herald Angels sing by F. Mendelssohn. Performed on violin. Multi-
F0 scores: Precision = 0.45456, recall = 0.26800, accuracy = 0.20279. Note Track scores:
Precision = 0.00000, recall = 0.00000, F-measure = 0.00000. The estimation by PEBSI-
Lite appears very noisy with a lot of false positives. Irregardless of that, the precision and
recall appear not extremely low for Multi-F0. Study Figure 40 for further analysis.

Figure 40: Zoomed in version of the first 5 seconds in Figure 39. About half of the
ground truth tones are successfully estimated in each time step. A couple of semitones are
estimated, illustrated by an orange stars at 300 Hz from 1.5-2 seconds for example. This
error hasn’t appeared for the other models in the same extent and can be explained by
the high time resolution with lower frequency resolution in the model.
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Figure 41: Nun bitten wir den heiligen Geist by J.S. Bach. Performed on violin, clarinet,
saxophone and bassoon. Multi-F0 scores: Precision = 0.75322, recall = 0.85980, accu-
racy = 0.67083. Note Track scores: Precision = 0.43548, recall = 0.46154, F-measure =
0.44813. A good estimation of KD1. The balance between precision and recall is quite
good, especially for the Note Track task, resulting in a high accuracy and F-measure. It
is noticeable how the failed estimates seem to be perfectly spread over the frequency (and
time) axis. Errors can be identified, but no structural errors. Similarities has only been
identified for neural network models with a very low error rate.

Figure 42: Tochter Zion by G. F. Händel. Performed on flute, oboe, Bb-clarinet, french
horn, bassoon. Multi-F0 scores: Precision = 0.60421, recall = 0.73074, accuracy = 0.49418.
Note Track scores: Precision = 0.11211, recall = 0.10482, F-measure = 0.10834. Compared
to Figure 41, there are lots of structural errors such as the flute is estimated as false
negatives, that is the true tones of the flute is not estimated. Also the tones of the oboe
are estimated to be much longer than the ground truth. The french horn and the clarinet
in the middle frequency register seem to be the only instruments which are well estimated.
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Figure 43: "Graduale" from th Requiem by L. Cherubini. Performed on flute, oboe,
clarinet, bassoon. Multi-F0 scores: Precision = 0.30622, recall = 0.52641, accuracy =
0.24008. Note Track scores: Precision = 0.00493, recall = 0.08333, F-measure = 0.00930.
A quite bad estimation by the Deep Complex model with lots of false positives and lots of
false negatives. It is a bit noisy to see, but the bassoon is in a large extent missed.

Figure 44: "Graduale" from th Requiem by L. Cherubini. Performed on flute, oboe,
clarinet, bassoon. Multi-F0 scores: Precision = 0.67075, recall = 0.80831, accuracy =
0.57870. Note Track scores: Precision = 0.05652, recall = 0.29333, F-measure = 0.09478.
Compared to the 43, there are much less false positives. The failed estimates which occurs
can often be mapped as the first overtone of the true fundamental frequencies, for example
at 300 Hz for 30-75 seconds, the ground truth bassoon has similar frequency movements
on half the frequencies. Similarly at 800 Hz, which has similar frequency movements as
the oboe at 400 Hz.
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Figure 45: "Graduale" from th Requiem by L. Cherubini. Performed on flute, oboe,
clarinet, bassoon. Multi-F0 scores: Precision = 0.52875, recall = 0.81376, accuracy =
0.47167. Note Track scores: Precision = 0.00571, recall = 0.04667, F-measure = 0.01017.
Similarly to 44, the LSTMFFT model has few false negatives and high recall. It also
has many false positives at the first overtone of the bassoon and the oboe. One may
also find semitones to be estimated at for example 600 Hz from 70-75 seconds and they
appear next to a correctly estimated pitch by the clarinet. The error source could either
be a bad spectral representation where two adjacent frequency bins shares the power in
a fundamental frequency which appears between them, or that the convolutional layer
convolves the spectral power in a non-optimal way. Similar issues can be seen in the
LSTMCQT model as well.

Figure 46: Adantino by F. Carulli. Performed on guitar. Multi-F0 scores: Precision =
0.72149, recall = 0.75169, accuracy = 0.58263. Note Track scores: Precision = 0.06275,
recall = 0.27391, F-measure = 0.10211. The Deep Complex model seems to perform quite
well, as all ground truth tones looks to be estimated. But considering the recall score for
Multi-F0, it is significantly less than both Figure 47 and 48. That yields that many false
negatives are estimated, for some time steps which cannot be seen in the plot.
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Figure 47: Adantino by F. Carulli. Performed on guitar. Multi-F0 scores: Precision =
0.67649, recall = 0.87181, accuracy = 0.61529. Note Track scores: Precision = 0.09581,
recall = 0.37826, F-measure = 0.15290. The LSTMCQT performs slightly better than the
Deep Complex model does. The same failed estimates appear at around 1000 Hz but also
some more in connection to a ground truth tone where the onset or offset is missed.

Figure 48: Adantino by F. Carulli. Performed on guitar. Multi-F0 scores: Precision =
0.45502, recall = 0.86302, accuracy = 0.42437. Note Track scores: Precision = 0.00232,
recall = 0.01739, F-measure = 0.00410. The similar structures as could be seen in the
Figure 46 and 47. Similar recall as the LSTMCQT model but lower precision, resulting in
the lowest accuracy of the Deep Complex models.
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7.4 Analysis of Results

First, the average scores for the Multi-F0 and Note Track tasks will be considered for analysis,
and the best performing models will be discussed. Thereafter, some interesting models or specific
test files will be considered.

The model THK1 can be concluded to perform significantly better than all the other models in
the Multi-F0 task, since it achieves the highest averaged accuracy scores in Figure 1672. The
model CT1 clearly has the 2nd best accuracy, followed by the herein proposed model Deep Com-
plex LSTMCQT. The significance for the THK1 model is clear both for the ensemble test files
and the piano test files. Considering each individual test file in Section 7.2.2, one may note that
the models THK1 and CT1 are very robust and achieves high accuracy scores for all types of files,
while for example the models MM1 and DOPT performs better on piano music than ensemble
music. THK1 has more equal scores of precision and recall than the rest of the models, while
CT1 has a higher precision than recall for the Multi-F0 task.

Furthermore, considering the Note Track task, average scores are presented in Figure 20. CT1
performs significantly better than the other models and achieves the highest F-measure for both
the ensemble test files and the piano test files with a margin. The models THK1 and DT1
perform significantly better than the fourth best model. Again the models DOPT and MM1
perform well on the piano test files but worse on the rest. The proposed model performs rela-
tively bad on the Note Track task compared to the Multi-F0 task. The CT1 model is found to
have a more equal score of precision and recall which was not the case for the Multi-F0 task.
Considering Note Track with no offset criterion in Figure 24, CT1 might be one of the models
which F-measure increases the least, but it is still the best model considering all test files. For
the averaged piano test files, the models DOPT and MM1 performs better and achieves shared
2nd best accuracy with DT1.

Overall it can be said that the THK1 and CT1 are the best performing models in the evaluations.
The models’ estimates of the test file strings1 are plotted in Figure 25 and 26. Both models per-
form very well on this test file and receives the two highest accuracy scores and F-measure scores
in both the Multi-F0 and the Note Track task. The models are performing very similarly and
succeed to estimate both high and low frequencies very well. Both models also have problems
with the octave jumps of the violincello as described in the figure texts. One thing that can
be seen is that the CT1 model estimates more false negatives than THK1, resulting in a lower
recall score for the Multi-F073. But for Note Track, the recall score is higher for CT1. This is
perhaps not obvious from the plots, but THK1 seems to be trained to find as many frequencies
as possible, while CT1 seems to be trained to find as many complete tones as possible. One may
see in the plots that THK1 has more pink crosses that are sparsely spread, while CT1 obtains
such errors in clusters. In Note Track, a cluster of failed estimates are as bad as a lonely failed
estimation, while each time bin for a failed estimation counts equally in the Multi-F0 task. Also,
in Note Track, a couple of correctly estimated frequencies may count as failed estimates if the
length of the estimated tone is not enough. The different models are thus optimized for different
purposes and may therefore achieve different scores in the two tasks, even if the plots indicate
similar performance.

72No tests has been made to statistically prove that the results are significant. The term significant indicates
a large difference, at least > 5% better than the second best model.

73For specification of TP, FP, TN, and FN, see Section 4.2
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In order to explain how well THK1 and CT1 are performing compared to other models, the
estimation of MHMTM1 on the test file strings1 is plotted in Figure 27. MHMTM1 performs
relatively well on strings1, achieving the 4th best accuracy score in the Multi-F0 task. Struc-
tural errors can moreover be found, such as overestimating lower frequencies, i.e., a lot of false
positives, giving a high recall but low precision in the region of frequencies below 200 Hz. On the
other hand, many ground truth frequencies above 400 Hz tend to not be estimated by the model,
i.e., many false negatives, which results in high precision but low recall. In order to optimize
the accuracy, the precision and recall should be similar, which is clearly not the case. This is an
issue that doesn’t appear in THK1 and CT1, which indicates a structural advantage for those
models.

Another impressive result for THK1 and CT1 is shown in Figure 28 and 29, for an advanced
piano test file with many fast and short tones. From the plots it can be seen that almost all
true pitches are estimated, i.e., with few false negatives. However, many yellow squares appear,
indicating that the estimates are slightly off in the time domain but correct in the frequency
domain. This error does only affect the Multi-F0 score negatively. That is probably the reason
why the Note Track scores appear higher than the Multi-F0 scores. Interestingly, the only ob-
viously error in the estimates is made in the end, where six long tones are played. One could
otherwise guess that long tones would be easier to estimate since a high time resolution is not
needed. Probably the uncommonly high tone at 1900 Hz is confusing the models.

Two other models that are performing well and worth discussing further are DOPT and MM1.
The models achieve high scores for all piano test files, Figure 18 and 22. They also have the
second best F-measures for Note Track without offset criterion considering the piano test files,
Figure 24. For almost all other test files, these models perform averagely. This may be explained
by the fact that the models are built on neural networks trained on piano music only. The models
seem to learn very well how to estimate piano music, but no other instruments. The estimates on
piano2 for the two models are shown in Figure 30 and 31. The two models perform similarly in
the accuracy and F-measure, but quite differently when it comes to precision and recall. DOPT
tends to get high recall and lower precision, and MM1 tends to get high precision and lower
recall. From the plots this becomes clear, as DOPT has almost no false negatives but has plenty
of false positives. The MM1 model has very few false positives but quite many false negatives.
One may also note that both models are very accurate in finding the onsets. However, for the
offset, a structural error seems to appear for the two models, where MM1 tends to put the offset
too early while DOPT tends to put the offset too late. Another structural error seems to be that
DOPT mistakenly estimates low frequencies while MM1 mistakenly estimates high frequencies.

The results of MM1 are also interesting since it performs better than DT1 in MIREX 2016 for
the Multi-F0 task on ensemble music and DT1 performed better than MM1 on Note Track on
piano music. The comparisons herein show that DT1 scores higher in both Multi-F0 and Note
Track. Since DT1 is trained on both ensemble and piano music, these new Multi-F0 results are a
more expected. An interesting comment about the DOPT and MM1 models is their performance
on the guitar1 test file. In the Note Track task, see Figure 23, it can be seen that they may
perform well for other instruments than piano. This can be explained by the fact that the sound
of a guitar and a piano are similar as they both are stringed. Also their overtone structures are
very similar, as explained in Section 3.1.1.
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Considering another test file, the plot of estimates by BW2 and BW3 on piano2 is illustrated
in Figure 32 and 33. In this case BW2 is trained on ensemble and piano music while BW3 is
trained on piano music only. Both models are trained for Note Tracking. Interestingly, the model
trained on ensemble and piano music gets a higher score in both accuracy and F-measure for the
piano2 test file. By comparing the plots of the estimates, one notices that they are very similar.
They almost have the same tones estimated correctly and incorrectly and the small differences
which occurs may just as well be random. By studying the Note Track results for all the piano
files, Figure 22, one may note that BW2 and BW3 tend to perform similarly, while in Figure 21
BW2 seems to perform better than BW3. One may question the idea of focusing a BW model
on piano music by training it on piano music only, since that didn’t seem to improve the model.
This is contrary to the conclusion about DOPT and MM1 where their high performance on the
piano test files was explained by the fact that they were trained on piano music74. One difference
between DOPT & MM1 and BW2 & BW3 is that DOPT and MM1 are neural network models
while BW2 and BW3 are probabilistic models. The probabilistic models seem to be more robust
to the type of training data. This is confirmed by studying SilvetMF0 and SilvetMF0piano in
Figure 17, where the model trained on piano performs almost as well as the model trained on
ensemble and piano music.

By this discussion, the training data seems extra important for the neural network models. Those
models trained on the MAPS dataset or MIDI files have a natural advantage in the tests herein
since the main part of the test files comes from MIDI files. If the best performing models would
have been trained on MIDI files, the results of this evaluation could be questioned. Perhaps DT1
would not achieve the third best F-measure in the Note Track task if it hadn’t been trained on
MIDI files. The THK1 and Deep Complex LSTMCQT models are trained on MusicNet which is
a real recorded music dataset. Unfortunately, the dataset which CT1 is trained by is not public
or detailed. MusicNet may be considered a very powerful dataset, since it can be used to out-
perform models trained on MIDI files for test files constructed by MIDI files. Interestingly, the
network architecture of THK1 is quite shallow which might indicate that a music transcription
model is more dependent of a good training dataset than adding more advanced architecture of
the network or more feature detections. On the other hand, CT1 has more advanced architecture
and feature detections. Whether a perfectly working model is achieved by improving the training
dataset or by changing the architecture and adding more features, or both, is an unresolved in
this thesis. This question should be further investigated.

The test file piano1 is quite special and was included in the test set to be the simplest possible
melody to estimate. It consists of a single pitch melody, or more specifically a chromatic scale, on
a piano. Since the models are able to estimate quite advanced polyphonic melodies, this simple
melody was expected to achieve full score of almost all models. However, most models actually
struggled with it, as can be seen in Figure 18 and 22. One model lived up to the expectations and
achieved an almost full score in the Note Track task. That was model DT1 and its corresponding
estimates for piano1 are shown in Figure 34. A couple of yellow squares in the plot indicates
small misses in the time dimension, reducing the Multi-F0 score but not the Note Track score.
The Multi-F0 score is interesting in the sense that a perfectly estimated melody according to
the Note Track accuracy, only receives a Multi-F0 accuracy of 0.88137. The source of the errors

74While many other models which used ensemble music as training data did not perform as well on the piano
test files.
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which occur according to the Multi-F0 score is tracked as misses in the onset and offset. If 90%
of a half second long true tone (500 ms or 50 timebins) is estimated, the onset and offset may
together differ by 5 timebins (50 ms). It is hard to achieve better precision than that according
to reasons mentioned in Section 3.1.4. This indicates a limit of what a Multi-F0 model possibly
can achieve75. One could be disappointed in the performance of the models in general on piano1,
but they are not trained for this kind of data. There already exists fine working single pitch
estimators for this problem, which are not considered in this thesis.

DT1 scored almost perfectly on piano1, the simplest test file considered. For a more advanced
melody, the model struggled, as may be seen in Figure 35 where the estimate for piano4 is pre-
sented. DT1 succeeds in finding the main part of the true tones, i.e., few false negatives, both
in the high and low frequency register. But a lot of false positive estimates appear at repeating
tones, the reason is partly due to the very short tones in the test file. For model SilvetMF0piano
in Figure 36, the issue of repeating tones is not salient, which indicates that it is possible to
circumvent the problem. The model SilvetMF0piano has other issues, mainly the high amount
of false negatives.

A test file similar to piano1, but slightly more difficulty is violin1, which is almost a single
pitch melody throughout. The challenge comes from the instrument, since the violin has a large
amount of strong overtones while the higher overtones on a piano generally taper off quickly. The
models succeed quite well with new false negatives, resulting in a high recall, seen in Figure 19.
The problem is that the overtones of the violin are often estimated as fundamental frequencies,
resulting in many false positives and low precision. One example of this is illustrated in Figure 37
where the issue is clearly seen along with the offset being estimated too late. One could maybe
expect the pitch to be more complicated to estimate due to the vibrating pitch of a violin, but
this was not found in the estimates.

The most complicated test file to estimate is mix5, consisting of an ensemble of 10 instruments.
This file was included to give the models a challenge, which it turned out to be. Even if the
scores in Figure 17 were not very impressive, the plot of THK1 in Figure 38 look quite satisfying.
In the figure, almost all tones are perfectly estimated with few false negatives, except the clarinet
in the high frequencies. The clarinet is notoriously complicated to estimate due to its overtone
structure where the odd numbered overtones are strong and the even are weak. The reason why
the accuracy score is so low is that multiple instruments are playing the same pitch simulta-
neously. The model estimates only a single fundamental frequency, which in the calculation of
the measures, only can be set as one instrument. As seen in Figure 17, the precision is high for
many models but the recall is often low, which indicates similar issues for several models. The
performances on this complicated test file are above expectation by considering the plots of the
estimates.

A model that is also worth to mention is PEBSI-Lite, which in this evaluation doesn’t seem
to perform very well. The model is quite different from the others as it estimates frequencies
using only 10 ms data at each step, independently of the adjacent time step estimates. This is
the reason why the Note Track scores are close to 0 for almost all test files. Also, the model
outputs pitch estimates which are not rounded to the closest musical note, which the other mod-
els do. A visualization of the PEBSI-Lite is presented in Figure 39. The plot may look very

75For example model THK1 can therefore be claimed to estimate the piano2 test file in Figure 18 perfectly.
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nasty as there is a very large amount of false positives, but considering a zoomed version of the
first 5 seconds, as in Figure 40, the model doesn’t seem to perform catastrophically bad. There
are a lot of false positives, resulting in a bad accuracy, but it has a precision and recall which
is about half of the THK1 model, which in turn was considered as a very well performing model76.

A model which was expected to perform a little bit better was KD1. In MIREX 2017 it achieved
the second place both in the Multi-F0 task and the Note Track task for ensemble music. But
for the tests herein, the model is quite far from the top performing models. There is one test
file it performs much better on, namely mix1. A plot of the KD1 estimate of mix1 is shown in
Figure 41. In the plot the instruments in the middle register, the saxophone and the clarinet, are
ideally estimated. At the same time, a couple of true tones from the bassoon are missed and the
offset of the violin quite often appears too late, as well as a couple of false positives in the high
and middle register. But in general KD1 performs very well on this test file, unlike the rest of
the test files. The reason is probably that the model is using parameters trained on the MIREX
development set, which is a real recorded music file just like mix1. Studying Figure 17 and 21,
the KD1 estimates for the other ensemble files, which consists of simulated sound, achieves lower
scores for the than mix1. In Figure 42, the KD1 estimate of mix3, which is a test file consisting
of simulated sound, is plotted. The estimate appears distinctly different to the estimate of the
real recorded music test file mix1. Lots of false positive estimates appears where the failed esti-
mates form long continuous tones. Also big parts of the flute appear as false negatives. Thus,
the training data seems to be crucial for what type of music the KD1 model succeeds to estimate.

Other models which perform much better on the real recorded music test file mix1 than the rest,
are BW1, BW2, and BW3. On both the Multi-F0 and the Note Track task, these models achieve
the highest accuracy and F-measure after THK1 and CT1 respectively for mix1, Figure 17 and
21. Both BW1, BW2, BW3, and KD1 were performing very well in MIREX, but they seem to
be focused on only the type of data which appears in MIREX, real recorded music. The test files
generated from MIDI files in this thesis seem to not be in favor of these models. Considering
a real life application of a music transcription model, one would almost always consider real
recorded music, which they work quite well in. Neither BW1, BW2, BW3, or KD1 are neural
network-based models. Also, the parametric model PR performs better on the real sound test
file than the simulated sound test files. From Figure 17 and 21, the neural network model THK1,
trained on real sound, and DT1, trained on MIDI files, both seem to be able to deal with both
simulated and real sound, independently of what kind of data the model has been trained on.
This is a sign of robustness for the neural network models. There are exceptions of non-neural
network models which may handle both types of data, such as the MPE models, Figure 17, but
the trend is quite clear that the neural network models is better of dealing with different types
of data.

A general observation from the models’ performances is that false positive estimates are most
common in either very high frequencies, far from the ground truth tones, or at the end of the
tones where the offset is estimated too late. The false positives which occur far from the ground
truth are usually octave errors or other multiples of a fundamental frequency, where an over-
tone is mistakenly estimated as a fundamental frequency. This is probably the most common

76Some of the failed estimates by PEBSI-Lite are semitones which are estimated due to the high time resolution
and low frequency resolution. Exclusively most false positives can be linked as overtones which mistakenly are
estimated as fundamental frequencies.
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error. The failed estimates corresponding to the missed offsets were expected, due to issues with
the offset determination described in Section 3.1.4. False positive errors which don’t occur as
commonly as expected are estimates occurring between a quartertone and a semitone, which
would occur due to bad frequency resolution. The errors which are indicated as such in the
plots are mainly due to late offsets and that the following ground truth tone jump is a semitone.
The reason why this type of error doesn’t appear that frequently is possibly due to the perfectly
tuned simulated instrument sounds from the MIDI files or that the models are using well working
spectral representations.

Finally the Deep Complex models will be discussed. The models are designed for the Multi-F0
task, which will be in focus. First, considering Figure 16, it can initially be noted that the Deep
Complex LSTMCQT achieves the 3rd highest accuracy based on the average of all models. This
is a very pleasing result. Comparing the different Deep Complex models one may note that the
Deep Complex LSTMCQT has a slightly higher average accuracy than Deep Complex which in
turn has slightly higher than the Deep Complex LSTMFFT. The proportions are almost equal
considering only the averaged ensemble or piano test files. This suggests a structural improve-
ment of the LSTMCQT model and a structural degradation of the LSTMFFT model compared
to the Deep Complex model. The three models are very similar in their structure, but the few
differences seem to have a quite large impact. The small differences in the model structures give
quite large differences in the estimates, which is illustrated in Figure 43, 44, and 45, where the
estimates of the test file mix2 are shown. For this test file, the Deep Complex model performs
poorly and a large amount of false positive estimates are apparent both in the high and the low
frequency region. The estimates from the LSTMCQT model are cleaner as there are not as many
false positive estimates even if there clearly are some. However, the number of false negatives
is low. The false positives seem to appear at frequencies which can be linked as overtones of
the true fundamental frequencies. For example, the false positives around 800 Hz have a similar
form as the oboe playing around 400 Hz. The same is true for the false positives around 300 Hz
between 30-75 seconds, where a similar form as the tones from the bassoon appear around 150
Hz. The plot of the LSTMFFT model have similar look as the LSTMCQT where the overtones
seem to be mistakenly estimated as fundamental frequencies. The LSTMFFT also has more false
positives than LSTMCQT. The optimized threshold for the LSTMFFT model was a bit lower
than the LSTMCQT, which might be a reason why its number of false positives is higher.

Also, the Deep Complex models are considered for the test file guitar1 in Figure 46, 47, and 48.
For this test file the standard Deep Complex model performs better and achieving the highest
precision of the three models while the LSTMCQT and LSTMFFT models achieve a higher re-
call. The reason is probably that the estimates of the Deep Complex model have limited relation
to the adjacent time steps. Studying Figure 46, it looks like almost all true frequencies are esti-
mated, but from the recall score it says that about 25% was false negative estimates. Since the
Deep Complex model estimates each time bin independently, it fails to estimate the frequency
for all time bins of the tone. A disadvantage of using a relation of the adjacent time bins can be
seen for the LSTMCQT and LSTMFFT in Figure 47 and 48 where some tones are estimated to
be longer than the ground truth, i.e., the offset is estimated to late. Another issue is that a false
positive estimate may affect the following estimates to also become a false positive estimation.
This makes the false positives of the Deep Complex model to last for shorter periods than the
false positives do for LSTMCQT and LSTMFFT. This is most clearly seen for the LSTMFFT.
In general, the Deep Complex model achieves a precision close to the Deep Complex LSTMCQT,
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but a lower recall resulting in an overall better accuracy for the LSTMCQT model.

Finally it needs to be stated that it is much easier to point out structural errors than it is to
solve them. The music transcription research is based on both scientific discoveries and empirical
tests. Thus, it is not always simple to point out exactly what is needed to correct an error. The
best approach is probably to add a feature which could correct the error and then empirically
test if it worked. The goal of this thesis is not to solve the structural errors which occurs in the
different models. Instead this thesis reveals what can be improved and presents differences in
the approaches of the models wherein the solution might exist.
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8 Conclusions and Summary

The problem formulations in the outset of the thesis were: How well does the best current music
transcription model performs. How does it work and why does it work so well? Can complex-
valued neural networks enrich the music transcription research area? These questions will be
answered in this Section 8.1-8.3 followed by some further elaborations in Section 8.4.

8.1 Summary of the Test Results

The results on the test files show that there is one model, THK1, which is clearly superior
in Multiple fundamental frequency estimation, and that there is another model, CT1, which
is clearly superior in Note Tracking. This is the same result achieved in MIREX 2017, which
strengthens the credibility of both the evaluation made in this thesis and the MIREX evaluation.
This thesis also illustrates how well the models perform by visualizing the estimates against the
ground truth for different models. Even if the accuracy score was not perfect for the best models,
the plots of the estimates showed a satisfying result where only minor structural errors could
be found. This indicates that the respective researchers have come far in the process towards
automatic music transcription. But even if the structural errors barely exist, there are things
which may be fine tuned in order to make the models even more accurate, perhaps the missing
component is already existing as a part of another model.

8.2 Discussion of Model Features

To find the most valuable features it is natural to start studying the two best performing models,
THK1 and CT1. Both models are neural network based models using CNN. Both models use
a logarithmically spectral representation, one using the sliced CQT and one using hand-crafted
filter banks. The outputs of the networks are then postprocessed to output the final estimates,
one uses a linear classifier and one uses estimated features such as the onset and offset. The
models are concluded to be quite similar, but there are a couple of differences.

In THK1, much effort is put into training the network such that no overfitting should occur.
This is very reasonable since for example the spectrum of the piano tone E3 activates different
parameters in the network than the piano tone F3, but the spectrums of the two tones are very
similar, just a shift in the frequency. Randomly shifting the training data makes the model learn
the structure of a piano tone and not only the structure of the piano tone E3. The THK1 model
has a surprisingly shallow neural network model, only consisting of one convolutional layer and
one fully connected layer. This indicates that the deeper models are perhaps too complicated
to be trained correctly with the amount of available data. Finally, it should be mentioned that
the model is trained on the new dataset MusicNet, which can be motivated to be the best one
available, due to its size and all its combinations of instruments.

CT1 has a more advanced and deeper network structure. It uses a succession of convolutional
layers and a convolutional LSTM layer in two different channels where one channel is estimating
the onsets and is used as input to the pitch estimation channel. The onset approach is mo-
tivated by its appearance in other successful models, such as MM1 and DOPT. These models
were solely trained on piano data, which makes them perform well on the piano test files only.
THK1 includes temporal dependence, but only for 1/3 of a second. Due to the convolutional
LSTM layer in CT1, the model may use longer time dependencies as well. It is not clear from the
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results herein whether a longer time dependence is important. Some time dependence between
the estimates can nevertheless be motivated by the weaker performance of the Deep Complex
model and PEBSI-Lite, which don’t use any time dependence at all.

By considering the average results of both Multi-F0 and Note Track, Figure 16 and 20, at least
the three best performing models are neural network based. This clearly indicates that neural
networks are the state-of-the-art in music transcription. One could argue that all the parametric
and probabilistic models should be forgotten and all focus for further research should be on
optimizing the architecture of the neural networks, but there are features used in the old models
which could probably also be used in the neural network models. One example is postprocess-
ing, where the output of the neural network is very similar to many of the probabilistic and
parametric pitch estimators, in which the postprocessing is usually more advanced than a binary
threshold, which is used in some neural network models. Another example is the onset detector,
which is already used in a couple of neural network models and seems to give effective results.
But other feature detectors could probably also be added to the networks such as beat or chord
estimator. It can be argued that feeding as much valuable information for music transcription
as possible into the neural network, only improves the network. The network could then be able
to learn by itself in what extent these features should be used.

Herein, complex-valued neural networks are proposed. It has been shown in this thesis that a
complex-valued neural network, even if the structure is very simple, can match the best per-
forming real-valued models. It is true that the Deep Complex LSTMCQT model was quite far
from both THK1 and CT1, but considering the simple structure of the model consisting of a
neural network and a binary threshold, the result is quite impressive. One part of its success is
probably that it has been trained on a solid dataset, and compared to THK1, which is the only
model which has been trained on the same dataset, it performs badly77. A couple of potential
improvements of the Deep Complex model are suggested in Section 8.3. The use of complex
values in neural networks for music transcription is theoretically motivated by that a neural net-
work performs better if it is given more usable information. The complex-valued representation
of a signal which keeps both phase and amplitude intact, is herein claimed to be more useful
than only the absolute value.

The THK1 and CT1 may be the best performing models right now, but the research is changing
fast. It can be expected that the few structural errors identified herein being overcome in a few
years, perhaps using some of the improvements suggested herein. Right now one might be able
to fine-tune the estimates to look perfectly in a plot. Further, the goal will be to achieve the
perfect precision and recall scores78.

77Almost the same dataset. THK1 add some actions to avoid overfitting to the dataset which are not considered
for Deep Complex LSMTCQT.

78An example of a research field which has come a step further than the music transcription field, is the
research about hand written digits. Models for the MNIST dataset are optimized to achieve the perfect precision.
Currently, year 2018, the error is 0.21%. It should be noted that this level of fine tuning not is possible in the
music transcription field at the moment, for example due to an approximate 4% error in the annotation of the
MusicNet training dataset.
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8.3 Analysis of the Proposed Models

The herein proposed models were inspired by the original Deep Complex model and by models
participating in MIREX, where the latter provided inspiration to add a recurrent layer to the
network, and to use the CQT. It is interesting how the LSTM layer by itself (by keeping the
FFT representation) worsened the model while adding the CQT together with the LSTM layer
improved it. One reason could be that the LSTM layer increased the number of parameters and
the amount of 100 epochs in the training section was not enough for the FFT model in order
to find the optimal weights. 100 epochs seemed to be enough for the CQT model which can be
explained by the CQT consisted of 1/4 the input data as the FFT model used. The reason why
the CQT did improve over the Deep Complex model is probably because of the convolutional
layer, in which it is advantageous to convolve the same number of frequency bins between each
musical note. A convolution of an FFT representation with linearly spaced frequency bins might
convolve frequencies corresponding to two different musical notes, which would then not be pos-
sible to distinguish.

The Deep Complex LSTMCQT model achieved the 3rd best accuracy score in the Multi-F0
task. Despite that, a couple of possible improvements are possible. First of all, the model was
trained to optimize the accuracy, (44), where the true negatives were counted in the score. In-
stead, the MIREX accuracy in (43) should be used. The second suggested improvement is about
postprocessing, where a more advanced method than the binary threshold should probably be
used. From the plots of the estimates it was clear that the model often estimated the second
harmonic as a separate fundamental frequency. Using a more specialized algorithm could prob-
ably reduce the amount of false positives. For future work it would also be of interest to change
the architecture of the neural network and change some of the convolutional layers79. Some
feature detectors could be added to the model, such as, for example, an onset detector and a
beat detector. Finally, the training data may be randomly shifted in the frequency domain, in
order to reduce overfitting.

8.4 Ideas for Future Research

A couple of ideas emerged while typing this thesis. One was about the recurrent layers in a
neural network which are dependent of the previous data. Unlike other application areas of the
recurrent layers, the input data for the next time bins is known. Therefore the future input data
could be used for predicting the frequencies in the previous time step, as a reversed recurrent
layer. A version of this exists in convolutional neural network where spectrums from previous
and future time bins are convolved, but the idea is that there might be even longer dependencies
in the future as well as the past. A combination of a neural network and a Hidden Markov model
might be used for this purpose.

Another idea was about a big issue in the music transcription research area, namely the lack of
available datasets consisting of instrumental music and its annotated sheet music. This thesis
shows that some models, mainly parametric and probabilistic, are performing differently on real
recorded music and simulated music. For those models, which generally are older, the type of
data is crucial both for training and testing. This thesis also shows that other models, mainly
neural network models, perform equally on real and simulated music. If a study would consider
the same test files in two versions, both real and simulated music, in order to investigate if one

79As the THK1 performed very well on fewer amount of hidden layers.
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can prove that the neural network based methods are performing equally on the different types
of datasets, thousands of datasets with perfectly annotated sheet music will be available very
cheaply. Also, the sheet music annotations would be perfectly aligned with the sound files, which
is currently not possible to achieve manually. This would break a lot of limitations which the
research field has been struggling with for a long time.
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