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Paul Gabriel dos Santos 

 

Abstract 
This paper explores the use of an automated pipeline to construct synthetic (artificially derived) trip data 

from aggregate socio-demographic sources to build a simulation of individual vehicles interacting with one 

another. The study shows that quality data sources are required in order to do this effectively and 

accurately. It is shown that aspects of typical patterns and behaviours may still not be represented within 

the final simulation. It is often a complex, expensive and impractical exercise to obtain in situ 

measurements across an entire city to build simulation scenarios to help with effective planning and 

understanding of emissions at a fine resolution. Since road traffic is a major source of harmful pollutant 

emissions, we explore the use of the simulation to generate emission outputs at a per vehicle level through 

simulation time. The paper concludes that although a valid simulation scenario can be constructed from 

the derived synthetic dataset, new techniques need to be developed in order to obtain an equilibrium in 

the simulation to allow it to not only behaves as a valid urban mobility scenario but can also be calibrated 

to align to represent reality. 
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1. Introduction 
Using a computer simulation of individual vehicles interacting with one another within the City of Cape 

Town, South Africa we will attempt to create a calibrated representation of reality in an automated way 

from trips synthetically derived from aggregated demand statistics. 

 

Using this simulated environment, we will calculate at a fine scale (per vehicle per second of the simulation) 

a range of emissions that these vehicles pump into the environment (CO2, CO, HC, NOx, PMx) as well 

as fuel consumption to illustrate the utility of such a simulation. 

 

Modelling this type of problem at such a fine resolution allows us to understand not only the dynamic 

interaction of agents acting in a system, but also which specific characteristics about the relationships 

between these agents have the largest impact on the simulated scenario. This project is unique in the sense 

that it will be the first piece of work at this level of modelling detail done for a sub-Saharan African city. 

 

We wanted to find out if a simulation could be built without in-situ measurements that closely 

approximates real conditions using synthetic data derived from aggregate population-level statistics. If this 

is possible, there are many benefits to being able to construct simulations of urban mobility that are not 

dependent on installation of complicated equipment or the coordination of complex field surveys. The 

model that is produced is evaluated against historical aggregates to measure how closely it approximates 

reality. 

The focus of this paper is on an automated pipeline that was developed to generate the relevant simulation 

data as well as the techniques that can be used to evaluate the simulation’s outputs and behaviours in a 

novel way. 
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2. Hypothesis & Aims 
 

2.1 Hypothesis 

By using a detailed model of vehicles acting on one another in a micro-simulation resultant from aggregate-

level demand data used to generate trips per simulated vehicle, details of the simulated environment (and 

scenario) can be modelled with a high degree of precision.  

2.2 Aim 

Automate the development of a microscopic simulation of urban mobility using synthetic trip data that 

can be leveraged to explore aspects of the generated traffic scenario throughout the simulated time and 

environment. 

2.3 Sub-Aims 

2.3.1 Develop an automated pipeline (process flow) for preparing the simulation input datasets from 

high level statistics describing the study area. 

2.3.2 Evaluate how closely the simulation approximates expected historic traffic conditions. 

2.3.3 Use the model to calculate emission estimations for the simulated scenario at a per vehicle level 

as an example of how such a simulation could be leveraged in practice. 
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3 Study Area 
Transportation in South Africa is dominated by road travel –over 15 million commuters use 200 000 mini-

bus taxis every day and this number continues to climb. The average age of these taxis is over 9 years old 

which poses safety risks to commuters – these vehicles are often poorly maintained and lack the emission 

efficiencies of newer counterparts. This informal sector of the economy accounts for approximately 

45 000 direct and 600 000 indirect jobs. (Transactioncapital.co.za, 2017) 

In 2017 Cape Town was named the most congested city in South Africa, according to the TomTom Traffic 

Index which measured congestion on the road of 390 countries around the world using data from 2016. 

According to this index, residents of Cape Town spent on average 35% extra time travelling (a 5% increase 

on the previous year) which amounts to 42 minutes per day or 163 hours per year per motorist. (TomTom 

Traffic Index, 2016). 

The City of Cape Town announced plans in April 2018 to combat traffic congestion in Cape Town by 

investing in a R481 million (approximately 34.38 million United States dollars) traffic-relief construction 

project.  (Reporter, 2018). Starting July 1, 2018, six projects are reportedly under construction and there 

are an additional 16 projects that are in the planning and design phase. 

As seen in figure 1, the central business district of Cape Town is an interesting challenge to model as found 

at approximately 33.91S and 18.43E. The city centre faces unique challenges as the city ‘bowl’ is built 

against Table Mountain on one side with the Atlantic and Indian Ocean on the other. As urbanisation 

increases, the city needs to be deliberate in its efforts to upgrade road infrastructure to ensure these 

upgrades have the maximum impact. 
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Figure 1 Study Area: City of Cape Town 

 

 

 

 



Page 7 of 59 
 

4 Literature Review 

4.1 Background 

Road traffic is a significant contributor to global atmospheric pollutants. In rapidly urbanising countries 

traffic is increasing leading to overcrowded roads and increased pollutants being released into the 

atmosphere as a result (Ragab, Hashim and Asar, 2017). An Environmental Protection Agency (EPA) 

report in 2005 showed that road traffic contributes heavily to several types of emissions on a large scale – 

58.8% of Carbon Monoxide (CO), 35.5% of Nitrogen Oxides (NOX), and 25.8% of Hydrocarbons (HC) 

emissions can be attributed to vehicle emissions (Environmental Protection Agency, 2005). 

To accurately measure the effectiveness of proposed traffic management measures, microscopic traffic 

simulations; a class of scientific models of vehicular traffic dynamics, can play an important role (Jeihani 

et al., 2015). In contrast to macroscopic models, microscopic traffic flow models simulate single vehicle-

driver units; the dynamic variables of the models represent microscopic properties like the position, 

velocity and emissions of individual vehicles. 

Much research has been done in this space outside the context of Africa. There are numerous examples 

of such studies being done across the globe – Eastern countries such as China (Kun and Lei, 2007) as well 

as European countries such as Germany (Neunhauserer and Diegmann, 2010) and Austria (Zallinger et 

al., 2010) feature in papers examining the utility microscopic simulations show when assessing the impact 

of congested road networks on harmful emission outputs. Recently, Egypt (Ragab, Hashim and Asar, 

2017) has received some academic attention in this space, however no literature can be found for Sub-

Saharan African countries. Many South African cities are faced with the burden of increasing urbanisation. 

The City of Cape Town is the most congested city in Africa (TomTom Traffic Index, 2016). 

 

4.2 The Evolution of Agent-based Simulation 

Digital computers appeared in the late 1940s, by the mid-1950s scientific applications involving spatial as 

well as temporal problems were being explored. Mathematical theories these are based on were slowly 

developing prior to the invention of the computer. In 1955, the first models of traffic flow were 

implemented in a digital environment in the Chicago Area Transportation Study (Heppenstall et al, 2014). 

 

Many of the first models and the ones that followed are typically referred to as Land Use Transportation 

interaction (LUTI) models due to the equilibrium-seeking nature – they aggregate at the population level 

to help with planning in the context of providing new transport capacity when urban areas develop driven 

by economic growth and are based in social physics and urban economics. Early models were very specific 

in design, but as our understanding of computer science grew, generic frameworks were developed that 
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paved the way for techniques such as cellular automata (CA) and agent-based models. (Heppenstall et al, 

2014). 

 

Cellular Automata Models are the simplest form of urban model because populations and environments 

are represented using the same ‘cell’ object which can effectively be turned on or off. In CA models, only 

the physically adjacent neighbours can influence each other, and this action is modelled to act uniformly 

in all directions, leveraging fractal patterns or using oriented diffusion based on certain developmental 

criteria. CA models are criticised for their supply-side modelling of physical constraints. Demand and the 

kinds of interaction reflected in transport cannot be modelled and CA models tend to simulate smooth 

spatial dynamics as a result. (Heppenstall et al., 2014). 

 

Heppenstall, et al. (2014) state that microsimulations are temporally dynamic with individuals represented 

in terms of their behaviour which is intrinsically dynamic. The population in the simulation is described in 

terms of a distribution of characteristics which means that if a random sample of agents were drawn from 

the model you would be able to describe the larger problem space. Microsimulation models are essential 

tools for sampling large-scale populations where it is impossible to represent all the individuals explicitly 

and where some sense of the heterogeneity of the population needs to be represented in the model.  

 

Bazzan and Klügl (2013) explain that agent-based modelling in the context of traffic and transportation 

are adaptive and robust due to their self-organisation capability. Autonomous agents are appropriate for 

modelling heterogenous systems since every entity is described in terms of its own architecture, state and 

behaviour. There is an intuitive level of interaction between users and the system through high-level 

abstractions that allow modellers to visually interpret microscopic properties of a given system. Problem 

solving phases that an agent needs to consider in the context and environment of the network being 

modelled means that dynamic relationships can be controlled, disconnected and established from a local 

point of view allowing the modeller to describe entities over their life span in a simulation in a coherent 

way. 

 

4.3 Selecting a Modelling Environment 

There are several agent-based simulation packages that have evolved to model different aspects of 

transportation networks. Saidallah, El Fergougui and Elalaoui (2016) conducted an in-depth evaluation of 

eleven different microscopic traffic simulation packages most commonly used. Of these, 4 were found to 

be open source with the remaining 7 being commercial in nature. For this study we will be focusing on 

the open-source variants – refer to table 1. 
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Table 1 Open Source Agent-based Road Network Simulation Environment Comparison 

 
Vers. Release 

Date 

Platfor

m 

Openness License Documentation 

TRANSIMS 7.1 Jul-18 Window

s 

Source available on 

Google Code for 

version 4. 

SourceForge holds 

binaries for version 

7. 

NASA Open 

Source 

Agreement 

V1.3 

Poor. Broken wiki and 

old mailing lists. 

MITSIMLab Not 

Listed 

Aug-09 Linux - 

Redhat 

7.3 

Distributed as 

binaries, no public 

code repository 

MITSIMLab 

Open Source 

License 

Four-page flyer. 

MATSim 0.10.1 Aug-18 All (Java 

Source) 

Source available on 

GitHub 

GNU 

General 

Public 

License 

Dedicated 

documentation with a 

600-page user guide at 

its core. Active 

community. 

Sumo 1.0.1 Sep-18 All (Java 

Source) 

Source available on 

GitHub 

Eclipse 

Public 

License 

Version 2 

Dedicated 

documentation with a 

manual, tutorial and 

examples. Active 

community. 

 

Of these, MATSim and SUMO seem to be the most complete software packages at this stage. They have 

excellent documentation, are actively developed, are open in both use and code availability and have an 

extension/plugin framework allowing users to extend the base software past its initial design scope. 

4.4 Emission Calculations 

With regards to emission calculations for scenarios, in MATSim, you are dependent on an extension called 

‘emissions’. This extension uses the road segment enter and exit events, vehicle speed, stop & go & free 

flow sections of the link to look up emissions against the HBEFA 3.1 database for arbitrary vehicle types 

after emissions characteristics have been selected for the vehicle types. In SUMO, emission models are 

part of the core software – linking you to several emission models HBEFA 2.1, HBEFA 3.1, PHEMlight 

and an Electric Vehicle Model. Sumo allows you to evaluate the emissions for individual agent trips and 

to visualise emissions per vehicle or per lane. All models allow for the measurement of CO2, CO, HC, 

NOx, PMx and fuel consumption. The functionality available in SUMO appears to be more granular and 

is therefore most aligned with the research aims of this paper and thus was chosen as the modelling 

environment for this study. 

4.5 Emission Models 

The Handbook Emission Factors for Road Transportation (HBEFA) provides emission factors for 

existing vehicle categories such as PC, LDV, HGV, urban buses, coaches and motor cycles in g/km for a 
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variety of traffic situations. Both regulated and non-regulated pollutants are included - CO, HC, NOx, 

PM, several components of HC (CH4, NMHC, benzene, toluene, xylene), fuel consumption (gasoline, 

diesel), CO2, NH3 and N2O, PN and PM. This is an open source reference. HBEFA was developed on 

behalf of the Environmental Protection Agencies of Germany, Switzerland and Austria (Hbefa.net, 2018) 

The Passenger Car and Heavy-Duty Emission Model (PHEM) is a commercial, closed-source 

instantaneous vehicle emission model. A simplified version of this model was developed and embedded 

within SUMO to leverage the publicly available component of this model – this only covers two emissions 

classes which coverts passenger vehicles powered by Diesel and gasoline. Further vehicles classes need to 

be licensed to use them in SUMO (Sumo.dlr.de, 2018). This model, due to its closed source nature was 

not chosen for use in this study. 

4.6 Calibration 

An important calibration step in building an agent-based simulation of urban mobility depends on the way 

in which the network is loaded to ensure that people are travelling from one area to the next based on true 

demand scenarios.  

In MATSim an agent is given a plan for a series of stops which the synthetic traveller needs to follow. 

Entities are treated individually but modelled with a low level of detail meaning that the model is more 

mesoscopic in nature – this allows MATSim to run very quickly – often able to simulate 24 hours with a 

1% sample of millions of travellers in 10 minutes. The vehicle dynamics are loaded through a queue model 

and allows for other methods such as full kinematic waves. Public transit can be modelled with real 

schedules. (Matsim.atlassian.net, 2018) 

Demand (the agent plans) and supply (the execution of said plans within the constraints of the system) are 

iteratively resolved allowing the agents to learn. Agents favour plans with good performance but are also 

able to modify plans or re-evaluate inferior plans. 

Using real traffic count data Flötteröd, Chen and Nagel (2011) identified the importance of model 

calibration. Calibration can only happen for network segments that have real-world data – agents acting 

in other parts of the system, therefore, are implicitly changed through interactions with the adjusted agents 

in the network. 

In SUMO there are several methods for loading demand – the ACTIVITYGEN module can turn 

aggregate population statistics into traffic demand, OD2TRIPS allows you to use origin-destination data 

available from transport authorities into trip definitions, data from induction loops (traffic counters) can 

be used along with several other methods. Depending on availability of data for a given study, this allows 

for more adaptability in data sources that can be used to calibrate the model correctly. (Sumo.dlr.de, 2018) 
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Flitsch et al (2018) conducted a study specifically on the calibration of traffic simulation in SUMO – using 

heterogenous data sources (phone data, induction loops and Bluetooth sensors). They found that a 

significant amount of data for the whole network is required to effectively calibrate the entire network and 

that the use of real-time traffic data to load the model both initially and while trying to model scenarios in 

real-time is both possible and effective. Test rides and traffic cameras vehicle counts are identified as good 

sources for plausibility checks to assess the traffic data quality. 

4.7 Previous Experimentation 

Agent-based simulation has far reaching applications in traffic control and management system 

architectures & platforms, roadway transportation, air-traffic control and management, railway 

transportation and multi-agent traffic modelling and simulation (Dias et al., 2013). 

 

In 2009, Stevanovic et at. developed a traffic control optimisation to reduce fuel consumption and 

vehicular emission using an agent-based simulation at the level of components in the road network, 

namely, traffic signals. The authors encountered several challenges in their study based on the modelling 

techniques used. For example; if a vehicle is stopped and idling, it consumes less fuel than one that runs 

at 40 mph. So, although its fuel-per-mile consumption is higher when the vehicle is idling, its fuel-per-

second consumption and emissions are lower. The authors final conclusions state that the number of 

stops, fuel consumption and CO2 emissions are not reliable objective functions in the optimisation of 

signal timings – optimising for fuel consumption in their model only resulted in a reduction of 1%.  

Leveraging SUMO, Dias et al. (2014) developed an inverted ant colony optimization algorithm to be used 

as a decentralised traffic management system where the agents act in the way an ant colony does to avoid 

congestion and distribute traffic through the network. Their findings show that traffic density can be 

decreased using this type of routing algorithm and that travel times can be reduced by up to 84%. This 

has a significant impact on emissions as a result. It was found that when 75% of the agents were using the 

inverted ant colony optimisation, there was a reduction in CO2 emissions of 44% – with the future of 

autonomous cars not too far away, this type of insight will mean that self-driving cars can be designed in 

as optimal a fashion as possible. 

 

4.8 Policy and Legislation 

South Africa is planning on implementation a Carbon Tax in 2019 – the aim is to improve energy efficiency 

through switching to alternative energy, stimulate growth through new technologies and enterprises as 

well as to encourage the development of new products to stimulate investment and provide opportunity 

for the creation of additional jobs. 
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Due to the Paris Agreement (Pmg.org.za, 2018), a global initiative to reduce carbon emissions to try and 

ensure that temperatures to not increase past 2 degrees Celsius, most countries will have a form of carbon 

tax in the next few years. South Africa is one of the most carbon-intense economies in the world due to 

their tightly coupled dependence on coal which drives economic activity. The proposed pricing of 

R120(~$8.7)/tCO2e (in 2019) is being criticised as insufficient to properly institutionalise nation-wise 

change (Fakir, 2018). 

The South African Department of Environmental Affairs released a report in 2014 titled the Green House 

Gas National Inventory Report which covered the time from 2000 to 2010 in line with the Intergovernmental 

Panel on Climate Change (IPCC) 2006 guidelines. The main challenged of this extensive piece of work is 

the availability of accuracy activity data to be able to calculate emissions across different sectors of the 

economy (GHG National Inventory Report South Africa 2000 - 2010. (2014)). No update to the findings 

of the report have been conducted since, which leaves 8 years of uncertainty in terms of emission estimates 

at a national level. All findings are reported at a national level with a heavy focus on industries. South 

Africa has an abundant supply of mineral resources – the economy was originally centred on natural 

resources and agriculture with mining as a major component of the Gross Domestic Product (GDP). 

4.9 Reflection 

Agent-based simulations have developed over time into a useful tool that allows us to model complex 

behaviours in an efficient manner. This allows us to explore system-wide implications of agent-modelled 

behaviours. Particularly in the context of transportation network optimisation and planning it provides us 

the necessary tools to simulate both changes to the network and events on the network to inform decision 

making. 

Global policy is shifting to accommodate ‘greener’ thinking. Exploring emissions on a microscopic level 

thanks to technological advances can aid in how these policies evolve over time and can provide insight 

into how we impact our environment through daily commutes. 
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5 Method 

5.1 Scope 
 

The following components are included in the scope of this study and have a direct impact on model 

outputs. 

5.1.1 Traffic Management 

Arguably one of the most important control mechanisms in the dynamics of traffic modelling. Traffic 

lights are loaded directly from OSM using an actuated pattern. Actuated traffic lights switch phases based 

on time gaps between successive vehicles. This allows for better distribution of green-time among phases 

and affects cycle duration in response to dynamic traffic conditions. 

Traffic lights are coordinated and grouped by joining nearby junctions. The default 4-arm intersection 

layout will be used, this includes; a straight phase, a right-turning phase (for a dedicated lane), a straight 

phase orthogonal to the first one and a right-turning phase orthogonal to the first one (for a dedicated 

lane). 

Bus and taxi routes are explicitly modelled including bus and taxis stop at their dedicated locations. 

Re-routing devices are a mechanism in SUMO that allow us to model on-the-fly rerouting of vehicles 

based on current conditions within the simulation. 

5.1.2 Driver Behaviour 

The car-following model default in SUMO is called carFollowing-Krauss (Krauß, 1998). This is a 

modification of the model defined by Stefan Krauß in his paper Microscopic Modeling of Traffic Flow: 

Investigation of Collision Free Vehicle Dynamics. Vehicles can drive as fast as possible while maintaining 

perfect safety; always being able to avoid a collision if the leader starts braking within the acceleration 

bounds of both the leader and follower. A Euler-position update rule is used at each simulation step (a 

method solving the first order first degree differential equation with a given initial value). Drivers can 

change lanes while driving. A driver’s impatience is measured and grows whenever a driver has to stop 

unintentionally. This measure is used to represent a driver’s willingness to impede vehicles with higher 

priority – this effectively means that drivers with high impatience will use any gap that is safe while avoiding 

collisions even if other vehicles have to break as hard as they can. 

5.1.3 Mesoscopic Model 

The MESO model is a configuration of SUMO that runs up to 100 times faster than the microsimulation 

but still accepts all the same inputs. The decision to use this configuration in the simulation was made in 

order to ensure that the study area could cover a larger area while still having reasonable processing time 

per iteration. Over and above this, the MESO model is more tolerant of network modelling errors that 
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may be present in the network configuration or the traffic light signalling which means the user of the 

modelling pipeline need not worry about significant edits to the underlying road network for the simulation 

to run correctly. This speed increase is possible since traffic is modelling as a series of queues along 100m 

segments of network based on edges rather than lanes. 

Passenger road traffic is modelled explicitly. We do not explicitly model multi-modal routing apart from 

passengers taking buses or taxis and walking the first or last part of the trip. Due to the highly detailed 

nature of the model it is not practical to run a large-scale simulation as the output emissions files will be 

many 100s of Gigabytes. Over and above this it would take a considerable amount of time to calibrate the 

model equilibrium which requires iterative processing steps. 

 

5.1.4 Data Collection 

The bulk of the data used in this study is data freely available in the public domain. The only proprietary 

data sources leveraged include a POI dataset (to improve the quality and completeness of business 

locations loaded in the simulation) as well as a historical traffic patterns dataset which has been used to 

evaluate aspects of how closely the simulation behaves in accordance with real world measurements. 

All datasets were used as provided with minimal transformation apart from clipping and saving to different 

formats suitable for the modelling exercise. The characteristics and sources for the data used in this study 

are detailed in table 2. 

5.1.5 Data Sources 
Table 2 Data sources required by the modelling pipeline (workflow) that was developed for this study 

Dataset Characteristics Source 

Road Network 

Data 

High Accuracy 

Must include detailed descriptive attributes such 

as 

• Road class types 

• Road name 

• Road Type 

• Speed Limits 

• Travel Direction 

• Linked topology (through graph-based 

node/edge model) 

• Number of lanes 

• Lane categories 

Open Street Map Overpass 

API 

Emission 

Reference Data 

HBEFA v3.1-based pollutants by vehicle type, 

including 

HBEFA/SUMO 
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Dataset Characteristics Source 

• CO2 

• CO 

• HC 

• NOx 

• PMx 

• fuel consumption 

Vehicle 

Population 

Statistics 

Reference statistics of the number of registered 

vehicles per class per province 

eNaTiS 

Population 

Demographic 

Information 

Population statistics broken down by age-group 

and household. 

Statistics South Africa Census 

2011 & Community Survey 

2016 

Census 2011 Sub 

Places 

Geographic data describing the physical extent of 

the aggregated census units of geography 

Statistics South Africa 

MyCity Bus 

Schedule 

Descriptive characteristics of the bus schedule for 

the public transport system in Cape Town 

MyCiti Web Site 

Dwelling 

Framework 

Point dataset of each dwelling across the study 

area. This can be used to help calibrate origin-

aspects of the demand loadings. 

Statistics South Africa 

Dwelling Framework 

December 2017 

School Data Detailed information about schools including: 

• type 

• number of children 

• geographic location 

South African Department of 

Education 2018 

Business 

Location Data 

Points of Interest representing business locations 

including classification types. 

Here Technologies Q3 2018 

Historic Traffic 

Patterns 

Aggregated historical GPS-based traffic 

conditions in 15-minute time slices for the past 

two years 

Here Technologies Q3 2018 

Bus Data Routes and stops representing the public 

transport bus network in the study area 

City of Cape Town Open 

Data Portal (2017) 

Taxi Data Routes representing the informal taxi network in 

the study area 

City of Cape Town Open 

Data Portal (2017) 

 

5.2 Pre-Pipeline Data Processing 

The following steps were performed to prepare several datasets for the automated pipeline (processing 

workflow). This is intentionally minimal in nature as we wanted to allow the model to be able to handle as 

much of the data processing as possible. 
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The Dwelling Framework is a 3.8GB Esri File Geodatabase containing a point file representing each 

household with several attributes. Keeping only the location attributes, we exported this to a flat file for 

consumption by the model. 

The Business POIs come from a 20.3GB Esri File Geodatabase of Africa and the Middle East. The POIs 

falling in the study area were selected and exported to a GeoPackage. 

The taxi routes do not have accompanying stops or stations as these are very informally defined – in reality 

taxis stop and start where passengers require them to do so in South Africa. To simulate this behaviour, 

we generated points every 500m along each taxi route and excluded points along highways where this type 

of stopping is not possible. This output was then used as the taxi stop input. 

Digitisation of Traffic Lights – it became apparent early on that having accurate traffic light information 

would be important in ensuring that the simulation behaved correctly. Unfortunately, most traffic lights 

were either not digitized or incorrectly digitised in Open Street Map for the City of Cape Town. 

By extracting major intersections and pedestrian crossings from the road network and using a 5km x 5km 

grid of the study area we started with an exercise to digitize every traffic signal across the city using the 

OpenStreetMap iD editor. 

Figure 2 shows a screenshot of the OSM iD editor window and figure 3 shows the point locations of all 

traffic lights that were digitised. 

 
 

Figure 2 Screenshot of OSM iD Editor showing the feature editor capability used to digitise traffic signals 
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Figure 3 Locations of individual traffic signals digitised or corrected for simulation purposes 

 

Vehicles are assigned to routes across a distribution per vehicle type. The following distributions were 

created for the model: 

Default Type 

As can be seen in figure 5, this is comprised of 6 petrol vehicles, 6 diesel vehicles & 1 alternative fuel type 

vehicle. Euro 6 is the latest emission standard available in HBEFA3. This represents the 2014 standard 

for light passenger and commercial vehicles. Since we were not able to attain a dataset that describes the 

relative age of registered road vehicles for the study area, the model shown in figure 4 was assumed based 

on year-of-manufacturing linked to the HBEFA classifications. The model was applied to both the petrol 

and diesel vehicles and a very small percentage of vehicles were given the probability that they run on an 

alternative fuel source (such as electricity). The distribution closely follows a second order polynomial with 

a bias towards the EURO6 standard. Vehicles are twice as likely to be assigned the EURO6 standard than 

the EURO3 standard of 2000.  
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Figure 5 HBEFA selection probabilities by class for vehicles within the simulation 

Random Type 

This is a replica of the default vehicle type, but the vehicles are assigned unique IDs, so we know that they 

form part of the random set of generated trips which fall outside of the demand-derived trip set. 

Bus Type 

Only one bus type was defined using the generic HBEFA3 Bus type. 

Taxi Type 

Three taxi types are modelled using the light duty vehicle diesel standard: 20% of class EURO4, 60% of 

class EURO5, 20% of class EURO6. 

5.3 Pipeline 

An automated pipeline was developed to be able to generate the synthetic trip data for anywhere in the 

study area. The rationale behind this model is that, although this study is being conducted for the area 

around the City of Cape Town CBD, in practice a user would be able to input a centre point for any area 

to build a complete simulation in an automated manner utilising the methodology documented in this 
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paper. This makes the work highly reusable with minimal reconfiguration – the main changes required 

would be to source datasets to ensure all the elements are properly covered within the new extent which 

makes it transferable to other region outside of the selected study area. 

Figure 6 illustrates the various steps included in the processing model that was coded. The model is aligned 

to the requirements of both SUMO itself and the ACTIVITYGEN tool that allows a user to generate 

synthetic trip data for a given study area from aggregate population statistics. The pipeline produces most 

of the inputs required by SUMO and ACTIVITYGEN in a dynamic, programmatic manner. 

 

Figure 6 Steps inside the automated pipeline that generate the required input datasets for the simulation of urban mobility utilising derived synthetic trip data 
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Each of the steps in the methodology will be highlighted in further detail throughout section 5.3. 

5.3.1 Generate Study Area with Concentric Exterior Zone 

This function accepts a centre point (in WGS84 Geographic Coordinates), the study area radius (in meters) 

and a concentric boundary ring radius (in meters). The inner and outer rings are illustrated in figure 7. The 

point is projected to the Albers Equal Area Africa projection. The concentric buffers are created and the 

output re-projected back to WGS84 (EPSG:4326). The internal ring is written to a file that conforms to 

the OSM POLY forma which will be used later to clip data downloaded from OSM. The interior and 

exterior rings are then written to Shapely data types and stored within a GeoPandas GeoDataFrame for 

use elsewhere in the script as required. For this paper we are using a study area with a radius of 7km from 

the CBD with an exterior ring of 3km. 

 

 

Figure 7 Generated study area and exterior ring showing the road network used in the simulation 

5.3.2 Extract Road Network for Study Area Bounding Box 

Data is extracted from Open Street Map using the Overpass API. The API accepts a bounding box for 

data extraction. The bounding box for the study area is calculated and passed to the API. The data that is 

returned is saved to the OSM *.osm.xml format. 

5.3.3 Clip Road Network to Study Area 

In order to clip the returned road network a utility called OSM Convert is used. The POLY file generated 

earlier is used to clip the network. Road segments that intersect the boundary are kept. 
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5.3.4 Build SUMO Network and Visualisation Polygons 

The Open Street Map extract needs to be converted into a SUMO network. Using the SUMO 

NETCONVERT module within the osmBuild.py convenience script included with SUMO, the network is 

built.  

5.3.5 Build Statistics File 

SUMO includes a utility called ACTIVITYGEN that can generate trip definitions from certain input 

statistics to effectively generating a synthetic population from high level inputs. 

These statistics include the following characteristics: 

General 

High level attributes about the city including total inhabitants, households, children age limit, retirement 

age limit, probability for an adult to own a car, the unemployment rate, the distance someone is willing to 

travel on foot, the total incoming traffic and outgoing traffic. Several of these are calculated in the pipeline, 

apart from the following: Car ownership probability – calculated from city-level eNatis statistics of total 

vehicle ownership in the city minus buses, trucks, motorcycles and ‘other’. The max foot distance is set at 

500m. 

Parameters 

These settings impact the behaviour of the population within the generated ‘city’. Preference for someone 

to take public transport (set at a 0.6 likelihood given they have the option of taking a taxi or a bus within 

the foot distance limit). Mean Time per kilometre in the city (set at 360s). Free time activity use of personal 

vehicles (0.15). Proportion of uniform random traffic that should be generated relative to the total traffic 

demand (0.2). Departure variation to model human behaviours of departing against a fixed schedule (300s).  

All other components of the Statistics file are generated in the pipeline. 

These include Population age distribution; Work hours distribution; Number of people living on each 

road; Number of job positions on each road; City gates – roads at the edge of the network that generate 

incoming and outgoing traffic calculated from the outer ring; School positions and characteristics; Bus 

Lines, Stations and Schedules. 

In order to include taxi data we loaded these as a subtype of the bus data type with specific identifiers that 

make them distinguishable as taxis in order to properly load their vehicles types in the simulation since 

ACTIVITYGEN does not cater for taxi trip generation. 
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Using this method for generating trips we are not explicitly covering certain types of traffic. Through 

traffic from outside the simulation to outside the simulation, i.e. people moving through the study area as 

part of a longer journey; Traffic for specific businesses, e.g. deliveries as well as tourist traffic. 

However, since we have specified that 20% of the trips should be generated randomly, some of these 

traffic scenarios will implicitly be a part of the simulation and covered by this added ‘randomness’ added. 

5.3.6 Load Network 

The SUMO network is loaded using the sumolib Python library. This is used in several places later. 

5.3.7 Build GeoDataFrame of Network Edges 

This is one of the utility functions in the pipeline. The GeoDataFrame is used to assist in visualizing 

aspects of the network when generating the statistic file. 

5.3.8 Align School Data to Network 

The school data is loaded and clipped to the study area, see figure 8 for schools in the study area extent. 

Geometries are created from the included coordinates. Based on the school types, the age brackets per 

school are calculated. All schools are given an opening time of 6AM and a final closing time of 5PM. Using 

the loaded SUMO network, the schools are linked using linear referencing to the part of the road network 

that they belong to. 

 

Figure 8 Schools modelled in the simulation 
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5.3.9 Prepare Household Location Data for Apportionment 

The dwelling framework is loaded and clipped to the study area. For the study area, the households are 

linked to their road edges using linear referencing. For households in the exterior ring the raw household 

data is returned to be used later to be used in the calculation of incoming and outgoing traffic. 

5.3.10 Calculate Population Per Network Edge 

The study area dwelling framework linked to the road network is linked to StatsSA population statistics. 

A point-based apportionment is then applied to calculate the population per network edge. Since the 

population statistics are from 2011, we then apply a transformation based on the population growth at the 

city level between 2011 and the 2016 Community Survey and project to 2018. This is effectively a year-

on-year increase of ~1.4%. The total population is then divided by the total length of the network edge 

since ACTIVITYGEN requires the per meter population. 

5.3.11 Calculate Population in Exterior Ring 

The exterior ring dwelling framework is linked to StatsSA population statistics. Since the population 

statistics are from 2011, we then apply a transformation based on the population growth at the city level 

between 2011 and the 2016 Community Survey and project to 2018. This is effectively a year-on-year 

increase of ~1.4%. The total population is return and will be used for incoming and outgoing traffic 

generation. 

5.3.12 Calculate Work Positions Per Network Edge 

The POIs are filtered to the study area. The POIs are then linked to the nearest network edge using linear 

referencing. Based on distribution of the POI categories a normalised value is created from 0 to 1 and 

multiplied by 50 in order to simulate the number of jobs available at each POI. At this stage the selection 

of 50 is somewhat arbitrary – it was decided based on the link between the number of working adults and 

number of jobs required to support them within this specific synthetic population being generated after 

several iterations. The total number of jobs is then divided by the total length of the network edge since 

ACTIVITYGEN requires the number of per meter work positions. 

5.3.13 Calculate Work Positions in Exterior Ring 

The POIs are filtered to the exterior ring. Based on distribution of the POI categories a normalised value 

is created from 0 to 1 and multiplied by 50 in order to simulate the number of jobs available at each POI. 

At this stage the selection of 50 is somewhat arbitrary – it was decided based on the link between the 

number of working adults and number of jobs required to support them within this specific synthetic 

population being generated after several iterations. The total number of jobs is then returned and will be 

used in the generation of incoming and outgoing traffic. 
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5.3.14 Align Bus Stops and Routes to Network 

Bus stops and routes are loaded into the model, see figure 9 for the spatial extent of the bus routes in the 

study area. .Using linear referencing, the bus stops and routes are linked to the SUMO network The bus 

stops are linked to their associated routes. 

 

Figure 9 Bus routes modelled in the simulation 

 

5.3.15 Calculate Bus Schedule 

A default maximum end-to-end trip duration is set at 3000 seconds (50 minutes) as per the MyCity bus 

schedule. The rate of a bus returning to a stop is set to a default 20 minutes. All routes start at 6AM. All 

routes end at 10PM. This is somewhat of a crude schedule. Additional time in future iterations should be 

spent on more accurately modelling the schedule. 
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5.3.16 Align Taxi Stops and Routes to Network 

Taxi stops are loaded into the model, see figure 10 for the taxi routes that traverse the study area. Using 

linear referencing, the taxi stops are linked to the SUMO network. 

 

Figure 10 Taxi routes modelled in the simulation 

 

5.3.17 Calculate Taxi Schedule 

A default maximum end-to-end trip duration is set at 3000 seconds (50 minutes). The rate of a taxi 

returning to a stop is set to a default 30 minutes. All routes start at 6AM. All routes end at 10PM. This is 

somewhat of a crude schedule. Additional time in future iterations should be spent on more accurately 

modelling the schedule. 

5.3.18 Calculate Working Hours 

A normally distributed set of hours for arriving and leaving work are generated. Morning hours extend 

from 6:30 to 10:00. Afternoon hours extend from 15:30 to 19:00. 

5.3.19 Extrapolate Household Information to Network Data 

StatsSA 2011 household information is loaded and clipped to the study area. The total households are 

calculated and extrapolated to 2018 figures based on the growth between 2011 and 2016 which is 

effectively a rate of ~2.7% year-on-year. 

5.3.20 Calculate Income and Outgoing Traffic Volumes 

The incoming traffic is calculated as: 
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𝐴𝑏𝑠(
𝑒𝑥𝑡𝑒𝑟𝑖𝑜𝑟 𝑟𝑖𝑛𝑔 𝑗𝑜𝑏𝑠 –  𝑠𝑡𝑢𝑑𝑦 𝑎𝑟𝑒𝑎 𝑗𝑜𝑏𝑠

𝑒𝑥𝑡𝑒𝑟𝑖𝑜𝑟 𝑟𝑖𝑛𝑔 𝑗𝑜𝑏
)  ×  𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 

 

The outgoing traffic is calculated as: 

𝐴𝑏𝑠(
𝑠𝑡𝑢𝑑𝑦 𝑎𝑟𝑒𝑎 𝑗𝑜𝑏𝑠 − 𝑒𝑥𝑡𝑒𝑟𝑖𝑜𝑟 𝑟𝑖𝑛𝑔 𝑗𝑜𝑏𝑠

𝑠𝑡𝑢𝑑𝑦 𝑎𝑟𝑒𝑎 𝑗𝑜𝑏
)  ×  𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 

5.3.21 Generate Activity-based Demand with Statistics 

Using the ACTIVITYGEN module trips are generated that describe the synthetic population using the 

Statistics file that is dynamically generated using the pipeline. The output of this is a file containing 758 

534 trips. Some of these trips (particularly the uniform randomly generated trips) are invalid in that they 

may link parts of the network that are not connected in a way a vehicle may cover the trip and will be 

dropped in the simulation. Figure 11 shows the number of generated trips by hour of the day. 

 

Figure 11 Trips generated by ACTIVITYGEN using the automated pipeline 

 

5.3.22 Coordinate Traffic Light Offsets 

Using the tlsCoordinator script supplied by SUMO, the traffic signals are coordinated. This script should 

be run every couple of iterations to ensure the coordination is in line with the simulation trip definitions. 

Figure 12 illustrates a traffic-controlled junction within the simulation. 
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Figure 12 Vehicles at a traffic light-controlled junction within the simulation 

 

5.3.23 Replace Vehicle Type Definitions with Emissions Distributions 

The ACTIVITYGEN output by default includes basic vehicle definitions. Since we already have a pre-

defined vehicle definition file that we have created with their associated emission classes we have to 

remove these conflicting definitions from the output of ACTIVITYGEN. Additionally, at this step, taxis 

are assigned their specific vehicle class (since ACTIVITYGEN assigned them to the bus type). Some 

additional cleaning of the file occurs – there may be a bug in ACTIVITYGEN which seems to create a 

subset of trips with no proper reference IDs that impact the simulation – these trips are explicitly removed. 

5.3.24 Iterative Dynamic User Assignment 

At this point, the trip file holds the most basic definitions required to describe a trip. Typically, this includes 

start and end points with some mandatory road edges along the route. When loading these trips naively 

into the simulation all vehicles will take the fastest path available under the assumption that they are the 

only vehicle in the network. This results in bottlenecks and traffic jams because of this unrealistic 

behaviour. 

The problem of determining suitable routes that consider travel times in a traffic-loaded network is called 

user assignment. In SUMO there are effectively two methods to achieve this. 

One technique enables us to attain a dynamic user equilibrium through iteratively calling DUAROUTER 

and SUMO. Using this technique weights from previous iterations are used to generate a set of route 
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choices per trip which are then probabilistically selected in the next simulation step. The Gawron route-

choice algorithm is selected. (Gawron, 1998). The input is a weight (w) on the edges of the network and a 

set of routes (R) where each route (r) has an old cost cr and an old probability pr (from the last iteration) 

and needs a new cost c'r and a new probability p'r. The Gawron algorithm computes probabilities by 

selecting from a set of alternative routes for each driver observing: the travel time along the used route in 

the previous simulation step; the sum of edge travel times for a set of alternative routes and the previous 

probability of selecting a route. 

Since we are trying to model real traffic patterns, a very important requirement that had to be added at 

this step is that vehicles that miss their intended departure time within 1 minute are excluded from the 

simulation. This is in order to prevent excessive jamming at unusual times of day as a result of overloading 

the scenario with more trips that the network can support. 

It also became apparent that too many trips are generated for the simulation out of ACTIVITYGEN – 

when trying to push these through the simulation it adds unnecessary computation time and results in 

unrealistic behaviours. In order to overcome this the trips are only allowed to enter the simulation if they 

can depart on time and an additional hard cap of 10 000 vehicles running at any one point in time was set 

in order for the simulation to not create excessively long running high traffic scenarios during peak time. 

By default, we use Dijkstra’s shortest path routing algorithm. 

The progress of each iteration is tracked and compared against previous iterations using the tests detailed 

in section 6. Once there is no measurable improvement to the equilibrium in the system the iterative 

process is stopped.  

5.3.25 Final Iteration with Re-Routing Enabled to Generate Outputs 

After we are satisfied with the simulation equilibrium, the final iteration is modified to include several 

other characteristics. 

Re-routing devices are added to 20% of the simulated vehicles probabilistically. This means that when we 

run this iteration again 1 in every 5 cars will adapt within the simulation to changing traffic scenarios in 

simulation time. This is meant to simulated people either using GPS devices for routing or simply choosing 

different routes based on observed conditions. 

The simulation is also set to output the emissions per vehicle in every simulation step, i.e. all emissions for 

all vehicles are recorded for every second of the simulation. 
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5.3.26 Evaluation of Outputs 

Before we dive into the emission calculations, it is necessary that we evaluate the performance of the 

simulation across as many measurable metrics as possible in order to ascertain whether we have created a 

valid traffic scenario. 

After considerable experimentation through trial and error, the following techniques were decided upon 

in order to evaluate the modelled outputs. 

To validate some of these measures we used the historic traffic patterns dataset from Here Technologies. 

This represents travel speeds for segments of roads in 15-minute time slices aggregated over two years. 

Specifically, in this analysis we are evaluating the output of the simulation against an ‘average Monday’ for 

the convergence of the dynamic user assignment. 

These metrics include two types, observational and comparative. The observational metrics simply need 

to stabilise into an expected pattern while the comparative metrics provide a way for us to evaluate the 

performance of the model as it is iterating through each step against historical aggregate data. 

5.3.26.1 Observational 

a. Volume of loaded vehicles 

Since we are trying to simulate as close to a normal day as possible, some of the parameters that build the 

simulation such as the maximum depart delay have been configured in such a way so ensure that additional 

vehicles are not loaded into the simulation that result in unrealistic traffic scenarios at unusual times of the 

day due to excessive jamming.  

b. Typical traffic pattern 

Linked to the above metric, traffic should effectively spike during the morning and afternoon rush hours 

with a low, steady state the rest of the day. In this metric we also observe the number of vehicles ‘halting’ 

or in a totally jammed state. 

c. Mean Speed 

The average speed at each time step will give an indication of the load on the network as well as how 

jammed the scenario is at that point in time. This should be closely linked to the number of vehicles in the 

simulation at that point in time. 

d. Mean Travel Time 

Mean travel time is an interesting measure to evaluate as it behaves somewhat unintuitively in certain cases 

when assessed across the entire study area. For example, during the peak traffic times more vehicles couple 
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be driving on roads with higher speed limits which in turn means that travel times are decreased in certain 

cases. 

5.3.26.2 Comparative 

a. Linear Regression 

A simple linear regression is calculated to assess how closely the simulation speeds mirror real world 

speeds. A perfect model of an average Monday would result in a perfectly linear relationship between the 

simulation outputs and the historical aggregates. 

b. Relative Entropy (Kullback-Leibler divergence) 

Relative Entropy is a measure in information theory that represents a way of measuring the average rate 

at which information is produced by a random source of data by specifically measuring how different one 

probability distribution is from another. We measure the relative entropy specifically of the travel speeds 

at each 15-minute time step against the historic traffic patterns. This gives us a very clear indication of 

relative information loss or gain through simulation time as the simulation behaves like the expected 

output. 

c. Two-Sample Kolmogorov–Smirnov test 

The KS test is a nonparametric test of equality comparing two continuous distributions of one dimension. 

The only assumption is that the two distributions are continuous – this test does not require the data to 

follow a normal distribution as the cumulative distribution is observed. The null hypothesis is that the two 

distributions are identical. 

d. K-sample Anderson-Darling test 

The Anderson-Darling test can be used to measure the agreement between two distributions. The null 

hypothesis is that the samples provided from the two distributions provided are in fact drawn from the 

same population. After these metrics have been measured we then produce the fundamental diagram of 

traffic as illustrated in figure 24. 

5.3.26.3 The Fundamental Diagram of Traffic 

This is a well understood way of evaluating the relation between traffic flux (vehicles per hour) and traffic 

density (vehicles per kilometre). (Immers and Logghe, 2002). 

The fundamental diagram is an important tool for understanding the mechanics behind what is happening 

in the simulation for a number of reasons: the more vehicles are on a road, the slower their velocity will 

be; to prevent congestion and to keep traffic flow stable, the number of vehicles entering an area must be 

smaller or equal to the number of vehicles leaving the zone in the same time; at a critical traffic density 
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and critical velocity, the state of flow will change from stable to unstable & if one of the vehicles brakes 

in an unstable flow, the flow will collapse. 

There are several methods for representing the fundamental diagram, we will be using the flow-density 

form. Flow-density diagrams are used to identify the traffic condition of a roadway. It clearly illustrates 

the intersection of free flow and congested traffic and can be used to illustrate the capacity of the road or 

network. 

 

5.3.26.4 Emissions Calculations 

The following emissions are tracked throughout the simulation per vehicle in milligrams per second: 

i. CO2 – Carbon Dioxide 

ii. CO – Carbon Monoxide 

iii. HC - Hydrocarbon 

iv. NOx – Nitrogen Oxides 

v. PMx – Particulate Matter 

Fuel consumption is tracked throughout the simulation per vehicle in millilitres per second. 
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6 Results 

6.1 Introduction 

The following results represent the simulation after the 20th iteration including the re-router step. This 21st 

simulation step showed no measurable change over and above the simulation results from the dynamic 

user assignment as at the 20th iteration. This proves that the dynamic user assignment process was able to 

find an optimal equilibrium within the system which could not be further improved by allowing some of 

the vehicles to re-route themselves ‘live’ in the simulation. 

 

6.2 Observational 

6.2.1 Volume of Loaded Vehicles 
 

Figure 13 shows that of the 346 089 valid trips generated – all of them were prepared for the simulation. 

Due to the max depart deviation cap as well as the maximum cap of 10 000 vehicles running at any point 

in time, only 222 601 (65%) were loaded into the simulation. The morning influx of vehicles into the city 

is clearly identifiable as the first slope increase with the afternoon exodus starting around 4PM. The small 

gap between the Ended vehicles (vehicles that have exited the simulation or not been allowed to enter the 

simulation) and the Loaded vehicles represents the increase in delayed travel times for certain commuters 

during peak traffic. 

 

Figure 13 Vehicles inserted, loaded & ended in the simulation after Dynamic User Assignment and Re-routers were configured for the simulation 

 

6.2.2 Typical Traffic Pattern 
 

Figure 14 illustrates the total number of vehicles both running and halting in the simulation. A halting 

vehicle is a vehicle that is not moving at all due to congestion at that point in time. 
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Figure 14 Traffic volume of running and halting simulated vehicles 

The clearest distinction here is that the simulation can support fewer vehicles at equilibrium in the morning 

coming into the city when compared to the number of vehicles in the simulation during the afternoon 

peak period leaving the city. The hard 10 000 cap can be seen getting hit in the afternoon, implying that 

the simulation would be able to hold additional vehicles if possible. Interestingly, when the simulation was 

allowed to run unbounded by the hard cap, the same pattern of approximately 60% of the afternoon load 

being supported by the morning load was observed, i.e. the afternoon peak included 20 000 vehicles at its 

max with the morning peak including 12 000 vehicles at its max. The hard cap was a necessary limitation 

to maintain reasonable processing time as well as reasonable end times for peak traffic.  

The fact that fewer vehicles can make their way into the simulation during the morning peak indicates that 

morning traffic in the study area would be considerably worse. The time period between 9AM and 4PM 

as well as between 8PM and 22PM includes the small number of randomly generated trips as well as 

personal trips as generated by ACTIVITYGEN. 

6.2.3 Mean Speed 

 

For each simulation step the mean speed of vehicles running in the simulation is recorded as illustrated in 

figure 15. As expected, the first few vehicles to increase the load on streets and highways with higher speed 

limits results in a spike at the beginning of the peak periods in terms of the average speed being travelled. 

The average speed quickly drops as the scenario becomes more congested. The drop in the morning 

average speed follows a linear pattern – this is since during this time cars are starting off their trips on 

uncongested roads. Due to a more concentrated volume of cars trying to leave the CBD in the afternoon, 

the average speed is reduced quicker during this time. The oscillating pattern observed during low traffic 

volumes is simply due to the way the simulation is adding and removing vehicles from the simulation. 
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Figure 15 Average speed for all vehicles running in the simulation at each simulation step 

 

6.2.4 Mean Travel Time 

 

At the start of the simulation there are no vehicles running (midnight), therefore the travel time calculations 

in the first few simulation seconds are unrealistically underreported – this quickly stabilises to around 6 

minutes and 40 seconds per trip until the morning rush where the average travel time decreases as shown 

in figure 16. This is due to several factors – more vehicles driving on higher speed roads as well as more 

vehicles conducting short trips (to school, on the bus, etc). After the afternoon rush the average travel 

time is the highest. 

 

Figure 16 Average travel time for all vehicles running in the simulation at each simulation step 

 

6.3 Comparative 

6.3.1 Linear Regression 
 

Since we are effectively comparing historical travel speed against the simulation travel speed for different 

steps in time, in a perfect simulation of the historical aggregate we should find this relationship to 
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approximate 1:1. It’s clear with such low correlation coefficient (R2) values in figure 18 that the model 

does not exhibit this pattern of behaviour and we can reject the null hypothesis that there is a linear 

relationship between historical travel speeds and the simulated travel speeds. Figure 17 shows the R2 value 

and the intercept. The intercept in this type of modelling effectively holds the extra components of 

information not being told by simply looking at the travel speed. Ideally, the intercept should be very close 

to 0 with a high R2 (accompanied by a low p-value) and should be stable throughout simulation time. It’s 

clear that during peak traffic the relationship breaks down further. However, even during periods of low 

traffic volumes the relationship is not linear. 

 

Figure 17 Coefficient of determination and intercept for linear regression model between historical & simulated travel speeds 

Looking at the delta between the historical travel speeds and the simulation travel speeds (on the left of 

figure 18) across the full duration of the simulation we observe this relationship at a road segment level. 

The distribution is centred around -8m/s indicating that simulation is consistently running vehicles at 

approximately 8m/s faster than what is expected, even so with the current setup, we should expect the 

scatter plot on the right of figure 18 to show a linear pattern which is not evident. 

 

Figure 18 Speed deltas and scatter plot showing non-linear relationship between historical travel speeds and simulated travel speeds 
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We believe this has something to do with the way vehicle trips have been generated. In a future iteration 

of this study it would be worth exploring whether we could use the reduction of this delta as an objective 

function in order to treat this component of the simulation as an optimisation problem to better align the 

simulation to a specific historic condition. SUMO can leverage a weight file to assist in the determination 

of vehicle routes that are created. Using the historic data, we loaded a weight file into the simulation – the 

only noticeable difference it made was that the simulation was able to reach an equilibrium state in fewer 

steps, however it did not improve upon the expected linear relationship we were expecting from this test. 

6.3.2 Relative Entropy (Kullback-Leibler divergence) 
 

The important thing to note with figure 19 is the relative differences between the different times of the 

day. Relative entropy used in this way can tell us how much information is lost between the historic speeds 

and the simulation speeds. From the figure below, the period of maximum relative entropy occurs during 

the afternoon rush. Periods of the lowest relative entropy occur when there are very few cars on the road. 

Interestingly, the morning rush exhibits relatively low entropy indicating that the simulation could be a 

better reality fit for the morning traffic spike when compared to the afternoon period. 

 

Figure 19 Relative entropy calculated through simulation time 

 

6.3.3 Two-Sample Kolmogorov–Smirnov test 
 

The KS test is commonly used to evaluate the null hypothesis that two distributions come from the same 

population. As illustrated in figure 20, with the p-value consistently at 0 we can reject the null hypothesis 

and conclude that these two distributions are different throughout the simulation time. 
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Figure 20 D-statistic and p-value for Kolmogorov-Smirnov through simulation time 

 

This is made evident when we look at the cumulative distribution functions of all the historical speeds for 

the study area against the simulation speeds on the left of figure 21. For us to accept the null hypothesis 

of the KS test these two CDFs should be very much aligned. Even if we take the simulation speeds and 

adjust them by the average 8m/s we see that the distributions are still not the same as illustrated on the 

right of figure 21.  

  

Figure 21 Cumulative distribution functions showing a misalignment between historical travel and simulation travel speeds 
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6.3.4 K-sample Anderson-Darling test 
 

Like the KS test, the AD test (as illustrated in figure 22) provides a framework for us to either accept or 

reject the null hypothesis that the two samples come from the same population. The test statistic is many 

orders of magnitude higher than the 25% critical value throughout simulation time, therefore we reject the 

null hypothesis – the two distributions do not come from the same population. 

 

Figure 22 Test statistic and 25% critical value for Anderson-Darling test 

What is interesting to note with this statistic is the shape around the afternoon peak period from 5PM 

where the test statistic seems to improve somewhat. 

6.4 Fundamental Diagram of Traffic 
 

Figure 23 represents the fundamental diagram of traffic for the simulation scenario in 3-hour intervals in 

flow-density form. This type of diagram is useful to determine at which point the optimum flow occurs. 

 

Figure 23 Fundamental diagrams of traffic flow in 3-hour increments across simulation time 
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Our fundamental diagrams represent the full simulation for the full network, in practice, this means that 

we have several fundamental diagrams for different roads all in one figure which we are evaluating in the 

aggregate. 

This is made evident by the fact that there are a distinct set of lines in each plot in figure 24. Using the 

00:00 – 03:00 example, there are three distinct collections of routes (portions of the network) supporting 

different volumes of cars for the same density. The diagrams with low density represent free-flowing, 

unbounded traffic and include the 03:00 to 6:00, 12:00 to 15:00 and 21:00 to 24:00 examples. The straight 

lines in each figure represent the free flow branch of the fundamental diagram. 

The 6:00-9:00, 15:00-18:00 and 18:00-21:00 plots in figure 24 show many points of low velocity where 

vehicles are in a congested state. In an ideal flow diagram these would be more concentrated forming an 

arc as in the figure below. The fact that the vehicles do not form this arc means that vehicles are in a 

jammed state with severely hampered congested flows. An example of a true fundamental diagram without 

heavy congestion is illustrated in figure 24. 

 

Figure 24 Expected fundamental diagram of traffic flow 

The 6:00-9:00, 15:00-18:00 and 18:00-21:00 plots all exhibit a series of points forming a straight line up 

the right-hand side of the plot – this represents the effect of the default ‘teleportation’ option SUMO uses. 

When a vehicle has not been moving for 5 minutes it is teleported to an available location along its route 

to continue with its journey – this setting makes the simulation less sensitive to errors in the road network 

or traffic signal timings in jammed states but does leave artefacts behind in the simulation data which 

clearly impact the fundamental diagram. 

6.5 Emissions 

Generating the emissions data is a computationally expensive task which has been left for the very final 

stage. For our study area, the output file is 43GB in size and represents the emissions for every vehicle at 

each second of the simulation which covers a full day. An increased number of vehicles or increased 

simulation time will result in a significantly larger output. 

In order to process this data a utility was developed that allows us to read portions of the file aggregated 

into one-minute slices into memory in order to generate the following plots in a piecemeal manner. 
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Table 3 shows the total emissions were recorded for the simulated day. 

 

Table 3 Aggregated emissions for the full simulation runtime by vehicle type 

Vehicle Type CO2 (kg) CO (g) HC (g) NOx (g) PMx (g) fuel (L) 

busstandard 3 469 6 003 1 544 27 385 654 1 480 

passengeralternative 1 173 11 537 200 650 26 606 

passengerdiesel 105 634 60 408 13 539 435 966 18 065 39 740 

passengerpetrol 152 714 1 262 783 18 722 90 019 2 902 65 660 

randompassengeralternative 433 2 757 64 228 8 224 

randompassengerdiesel 33 073 18 265 4 223 123 442 5 468 12 444 

randompassengerpetrol 46 903 167 051 4 494 25 917 633 20 165 

taxi 16 688 1 835 714 57 369 66 6 279 

Total 360 087 1 530 639 43 502 760 976 27 822 146 596 

 

6.5.1  Emissions by Type 

There is a very direct correlation with the plots in this section and figure 14 showing the number of running 

vehicles through simulation time. The plots in this section show the aggregated total emissions each 

measure is pumping into the atmosphere (or burnt in the case of fuel) through simulation time split by the 

generic vehicle types that were initially defined for the simulation. 

An interesting observation here is that the bus and taxi schedules can be clearly seen through their 

corresponding emissions. Additionally, when the simulation was in its congested peak afternoon state, 

buses, taxis and the random trips were not able to enter the simulation on schedule and thus were skipped. 

Once they were able to start entering the simulation again they joined the congested network and 

subsequently increased their emission outputs relative to less busy times as expected. 

The emission type that produces the most output by pure volume is carbon dioxide with the main 

contributors being the passenger petrol and diesel vehicles emitting over 500kg of CO2 per second across 

the simulated network in the afternoon peak as illustrated in figure 25. 

 

Figure 25 CO2 Emission Heatmap 

 



Page 42 of 59 
 

 

Petrol vehicles clearly seem to emit the most carbon monoxide through simulation time as shown in figure 26. 

Carbon monoxide is a toxic substance that reacts with certain aldehydes and nitrogen oxides producing 

photochemical smog. 

 

Figure 26 CO Emission Heatmap 

 

Hydrocarbons are one of the lowest emissions by total grams dumped into the atmosphere as shown in figure 27. 

Hydrocarbons emitted in this way represent unburnt petroleum or diesel being emitted due to inefficient 

combustion. 

 

Figure 27 HC Emission Heatmap 

 

Diesel vehicles are responsible for the largest emissions of nitrogen oxides as illustrated in figure 28. Nitrogen oxides 

react with ozone to produce photochemical smog. 

 

Figure 28 NOx Emission Heatmap 
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Diesel vehicles are clearly responsible for the majority of particulate matter emissions as illustrated in figure 29. 

They are known to cause wheezing, coughing and shortness of breath and typically include heavy metals that are 

toxic. 

 

Figure 29 PMx Emission Heatmap 

 

As expected, more fuel is burnt when vehicles are in a congested state as illustrated in figure 30. Reducing congestion 

will reduce fuel consumption which in turn will reduce all the other emissions tracked in our simulation. 

 

Figure 30 Fuel Consumption Heatmap 

6.5.2  Emissions Heatmap 

Figure 31 was created by running a kernel density estimator over all of the per vehicle per second emission 

points weighted by carbon dioxide emissions in order to visually represent which parts of the road network 

through simulation time contributed the most to the above-mentioned emission outputs. 

This allows us to visually interpret the effect the underlying network configuration may have on resultant 

emission outputs. 

The heatmap is rendered using a 1% low/99% high clip to slightly emphasize the regions of interest. 

Major routes, major interchanges as well as primary and secondary roads linking the central business 

district to the surrounding areas resulted in the majority of emission outputs. 

Patterns of heightened emissions seem to form at regions typical of stop streets, lane mergers and bends 

in the road. 
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Figure 31 Geographic representation of the emissions heatmap for the full simulation time 
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7 Discussion 
 

Borshchev and Filippov (2004) illustrate that agent-based modelling is a valid methodology to use when 

we need to move past the limitations of system dynamics and discrete event approaches. Specifically, in 

the case of active objects such as people and vehicles where timing, event ordering and individual 

behaviour is key. 

In this paper we have shown that it is possible to develop an agent-based simulation of urban mobility 

using synthetic trip data. 

In terms of the overarching hypothesis, we have shown that using synthetic trip data in such a simulation 

is a feasible way to create granular emission outputs based on how agents act on one another within the 

simulation at a high level of detail through simulation time. 

Considerable effort was spent going through the road network and capturing the traffic signal locations 

across the city using the OpenStreetMap iD editor – these edits are now a part of OSM and publicly 

available for other to use across many different applications that can leverage this publicly available dataset. 

Bankes (2002) raises that considerable emphasis has been placed on representational design in agent-based 

modelling. However, in order for this type of modelling to realise its potential, Bankes argues that focus 

needs to be redirected to loading of use cases to be explored in the simulation, uncertainty analysis, 

calibration of models to data and methodologies for using models to answer specific questions to solve 

problems. 

Using a series of statistical tests, we have shown that there are a number of checks that need to be 

performed to understand what is going on in the model and how it relates to historic aggregates. 

Because of the microscopic nature of the simulation, considerable processing time and effort is required 

to ensure that things run as expected in the simulation. Small errors in the underlying network topology, 

scheduling of routes, scheduling of traffic signal and vehicle definitions have compounding effects that 

impact measured outputs. 

Uppoor et al. (2014) found that simplistic assumptions about the macroscopic or microscopic dynamics 

of road traffic can greatly affect the network topology – this has the added risk of introducing bias in the 

performance evaluation of these simulated environments. The authors noted that future work should 

focus on finding rigorous means to validate the generated trips with realistic signal propagation 

information as well as including comprehensive network connectivity analysis.  
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Observationally, the simulation in this paper is modelling a full day with heavy congestion in the morning 

and afternoon peaks that conforms to expected typical traffic patterns that can be expected of such a 

simulation. Comparatively, the simulation travel speeds do not align to the historical aggregate travel 

speeds, so we cannot say that we have constructed a simulation of an average Monday over the past two 

years (which the historic dataset represents). 

Due to the fact that the simulation conforms to the observational expectations of such a simulation as 

shown in section 7.2, although we cannot say that we have modelled an historical average through the 

comparative tests in section 7.3, we would be confident in saying that it is a valid simulation of a possible 

day within the study area within the limitations explicitly modelled in this study. 

Model calibration and effective validation are indispensable steps to ensure the reliability of the developed 

model and the output of subsequent scenario-based experiments. The accuracy of results is dependent on 

the quality of both the calibration and validation process (Milam, 2000). 

Due to the granular nature of the patterns of behaviour being modelling there is a lot of room for 

improvement to be able to generate a generic enough simulation that can approximate a given week day 

for an area of interest utilising synthetic trip data. 

Uppoor et al. (2014) used an origin-destination matrix approach focussing on the generation and analysis 

of a synthetic large-scale urban vehicular mobility dataset. They concluded that more real-world data is 

required to allow for a more rigourous validation process. It was inconclusive whether or not the dataset 

they had generated for Köln would be sufficiently accurate for networking studies. 

There are some unknowns and additions that would have to be a part of the simulation in future iterations 

to make the outputs more credible, these include: 

1. Having a better way of knowing the true number of vehicles that should be running through 

simulation time – the hard cap we set of 10 000 maximum running vehicles at any one time was 

determined through iterative runs and observing the behaviour of the model across the 

observational and comparative metrics discussed. This is in line with what Uppoor et al. (2014) 

found with regards to requiring real world data to properly calibrate the model. 

2. Having the real traffic signal timings and configurations used in the study area – the configuration 

used in this model is a best guess. 

3. In the model we have not explicitly simulated dedicated bus lanes or car-pooling lanes which are 

common in these types of urban environments and have a direct impact on travel time. 



Page 47 of 59 
 

4. Although 20% of the trips generated were completely random, the patterns of behaviour this set 

of trips represents should be explicitly modelled – these include things such as business deliveries, 

trucks delivering/collecting cargo from the port or tourist-related traffic. 

5. The simulation should be able to run without the teleportation function – this would mean having 

a 100% topologically accurate representation of the network (and its control systems) as well as 

having the correct scaling of demand on each road segment through simulation time in order to 

prevent the excessive jamming scenarios that this functionality addresses. Similarly, the necessary 

setting of only allowing vehicles to enter the simulation if they are able to at the modelled step in 

time would need to be addressed by the same work. This would result in a better representation 

of the fundamental diagram of traffic as discussed in section 7.4. 

6. In this simulation we are referencing the HBEFA v3.1 vehicular emissions database – similar 

databases should be compared and contrasted to validate the emission outputs. Over and above 

this, in situ measurements could be taken for a study area and compared to simulated outputs 

within an agent-based simulation similar to what has been created in this study. Elkafoury et al 

(2015) focussed on comparing Carbon Monoxide emissions measured in situ against HBEFA V3.1 

for New Borg El-Arab in Egypt and found that the HBEFA model underestimated emission 

figures. Elkafoury et al. (2015) went on to develop their own regression model to try and predict 

CO emissions and found it to be more accurate than the HBEFA estimations which were not 

aligned to the vehicle classes and behaviours of the study area. 

7. Subsequent work should focus specifically on treating the generation of the trips and the dynamic 

user equilibrium configuration as an optimisation problem focussed on minimising the error 

between a simulated measure (such as travel speeds) and historic data. In doing so, it means we 

will be able to use high-level population statistics to create accurate models of reality without the 

need for considerable in situ measurements – this would accelerate the extent and scale at which 

this type of study can be carried out in the absence of more granular data.  Paz et al. (2015) 

proposed a Memetic Algorithm which combines a genetic algorithm and simulated annealing that 

would allow for accurate calibration of such models; however this type of calibration is directly 

dependant on having access to vehicle count data at different parts of the network through the 

time period you intend on simulating. 

Once we are at a point where we can statistically prove that the model represents historic aggregates then 

this type of model becomes a very powerful scenario planning tool as made evident by Ragab, M., Hashim, 

I. and Asar, G. (2017) who explored some simulation scenarios for Egypt that showed an increase in road 

speed can reduce emissions and fuel consumption and reducing traffic volumes can reduce emissions and 

fuel consumption (with minimal impact on travel time). 
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8 Conclusion 
This paper investigated how a computer simulation of individual vehicles interacting with one another on 

a microscopic scale within the City of Cape Town, South Africa using derived trip data from aggregate 

statistics in an automated way can be used to emulate traffic conditions within the city. 

Using this simulated environment, emissions that these vehicles pump into the environment namely CO2, 

CO, HC, NOx, PMx (and the requisite fuel consumption) were calculated after careful configuration and 

testing of the simulation environment. 

Modelling this type of problem in this way can enable researchers to understand not only the dynamic 

interaction of agents acting in a system, but also which specific characteristics about the relationships 

between these agents have the largest impact on reducing total emissions. Modelling at such a fine scale 

means the researcher has many ‘levers’ they can pull once they have a properly calibrated model. 

Although the simulation was not able to represent an average Monday for the study area, the simulation 

is still valid in many of the observational characteristics for a given passenger road network. In conducting 

this exercise, we have also explored the complexities involved in modelling users of a road networks at a 

granular level using aggregate data as a source. 

This paper has also shown the importance of running tests on the simulation outputs – one may be able 

to very easily create a traffic scenario using these techniques, however more advanced modelling needs to 

be employed to ensure that the synthetic data produces a simulation that is able to approximate true 

conditions for the study area. 

There are many aspects of urban mobility that can be added and extended upon this research, this is only 

scratching the surface of what is possible with such a detailed model. Global policy is shifting to 

accommodate ‘greener’ thinking. Exploring emissions on a microscopic level thanks to technological 

advances can aid in how these policies evolve over time and can provide insight into how we impact our 

environment through daily commutes. 

Future studies can build on the framework laid out in this paper and it is recommended that for this type 

of synthetic trip generation to be valid for modelling a realistic ‘real world’ day considerable attention 

should be paid towards developing a methodology that allows a user of the simulation to calibrate the 

simulation to a known state as closely as possible in an automated manner. 

Agent-based simulations have developed over time into a useful tool that allows us to model complex 

activities. The research conducted in this paper forms the basis for what is required to allow researchers 

to explore system-wide implications of agent-modelled actions, behaviours and decisions. Particularly in 

the context of transportation network optimisation and planning, these kinds of models provide us the 
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necessary tools to simulate both changes to the network and events on the network to inform decision 

making which could ultimately result in the development of smarter urban infrastructure based on 

empirical evidence.  
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