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Abstract

With the Internet of Things era being here, more devices than ever are connected to
the Internet, making the need for higher security greater. One important aspect
of security to consider is encryption, which protects data from being read by
unauthorized parties. Integrating cryptographic algorithms can be done in many
ways and is usually dependent on restrictions of the area, speed, and power when
it comes to hardware. One way of integrating security into hardware is with the
use of stream ciphers, which can be very efficient in terms of power, area, and
speed.

In this thesis, we present different implementations of Grain-128AEAD, which
is a new stream cipher that can encrypt and decrypt data as well as provide au-
thentication for the data. The implementations are optimized both on a hardware
level, synthesis level and transistor level for different restrictions of area, power,
and speed. The optimizations on hardware level include Galois transformation,
isolation, pipelining and a transformation of the output function. For the synthe-
sis level optimizations, we developed three scripts: one for reducing area/power
with low power transistors (HVT) and two for increasing speed with high-speed
transistors (LVT). On a transistor level, we optimized the Boolean expressions
present in the feedback and output functions of the cipher.

In addition to that, we also present a new 64 times parallelization of Grain-
128AEAD by allowing connections between the feedback and output functions of
the cipher.

The combined effect of all the optimizations enabled the cipher to run at a
throughput of 1.25-33.6 Gb/s compared to the 1-19 Gb/s throughput for the non-
optimized versions. The area also improved by approximately 2-7% with the low
area/power script, while the transistor level optimizations further reduced it by
approximately 1-12% for the different parallelized versions. In addition to that,
the power improved by up to 37% and 92% at 10 MHz and 100 KHz respectively.
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Chapter 1
Introduction

In an industry where technology is becoming more advanced, security is starting
to become more of an issue. With the Internet of Things (IoT) era being here more
devices than ever are being connected to the Internet, making the need for security
greater. Companies are constantly looking for the best way to implement security
based on their own restrictions of chip cost/area, speed, and energy efficiency.

Security can be achieved and defined in many ways, but one important aspect
of security is encryption. Encryption protects data from being read by unautho-
rized parties. Encryption can be done in many stages of the design for a device,
but the earlier you do it the more secure and faster your device is. A simple and
fast way to encrypt data is using stream ciphers.

When companies and organizations want to make stream ciphers to be used
in their design, they usually have to implement and test out a few different stream
ciphers to see which one works best on their own restrictions of speed, area or
energy efficiency. Implementing and trying out many versions of different stream
ciphers can be very time consuming.

Our contribution with this thesis is to aid in this work by implementing a new
variant of the Grain-128a stream cipher called Grain-128AEAD and optimizing
it as much as possible based on different restrictions on area, power and speed.
The optimization will be made on not only a gate level but will also be on a
transistor level, which is something that can often be neglected when it comes to
optimizing stream ciphers. The idea is that the result and process presented in
this thesis can be used to compare with other stream ciphers implemented under
similar restrictions.

1.1 Purpose and Goals
The main goals of the thesis can be summarized as follows:

• Optimize Grain-128AEAD for speed, area and power through VHDL and
synthesis.

• Analyze and optimize the hardware implementation of the Boolean functions
used in Grain-128AEAD on a transistor level.

• Implement different synthesis scripts for high speed, low area and power.
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2 Introduction

• Make a comparision between the implementations to determine the best
implementation based on power, area, speed and script.

1.2 Thesis Outline
Chapter 2 (Background) provides the cryptography and hardware background
needed to understand the thesis.

Chapter 3 (Implementation) presents the implementation as well as optimiza-
tions that can be performed on Grain-128AEAD.

Chapter 4 (Synthesis) describes the synthesis of the Grain-128AEAD imple-
mentation and the different synthesis scripts that are used to obtain the result on
restrictions of speed as well as restrictions on area and power.

Chapter 5 (Transistor Level Optimizations) shows the general process of how
to find transistor level optimizations.

Chapter 6 (Results and Conclusion) presents the result as well as some dis-
cussions regarding the result obtained from synthesis and the transistor level op-
timizations.



Chapter 2
Background

To get a clear and full picture of what the thesis is about, it is essential to explain
some general concepts and definitions in the subject of cryptography as well as
describe some basic hardware implementations. In this chapter stream ciphers
are first described in a general sense. After that details about the design of the
Grain-128AEAD stream cipher are provided by going over the design of Grain-
128a and then describing the differences to Grain-128AEAD. Next, general theory
is provided on some standard hardware components and methods that will be used
in the implementation. Finally, some theory on area, speed, and power together
with a few optimization techniques used in the implementation section is described.

2.1 Stream Ciphers
A stream cipher [2] is a class of encryption algorithms that generates a time varying
pseudo-random stream of digits (keystream) and use it for encryption/decryption
of messages. Encryption of messages ensures that it cannot be read by any unau-
thorized parties. A plaintext message, mi can be encrypted in a stream cipher by
XORing each bit in the message, bit-wise, with each bit of the keystream, yi, as

ci = mi ⊕ yi, (2.1)

where ci is the encrypted text. Consequently, a ciphertext can be decrypted as

mi = ci ⊕ yi. (2.2)

2.1.1 Linear- and Nonlinear-Feedback Shift Register
Stream ciphers can be constructed in multiple ways. Some common ways of
construction a stream cipher includes using Linear-Feedback Shift Registers (LF-
SRs), Nonlinear-Feedback Shift Registers (NFSRs) or a combination of both. An
LFSR [3] and NFSR [4] is a shift register that has an input which is a function
of its own state, often referred to as a feedback function. The difference between
an LFSR and NFSR is that an LFSR only consists of linear gates like XORs in
its feedback function, while an NFSR can have nonlinear gates like AND gates
and Inverter gates as well. The bits of the shift registers that influence the inputs
are called taps. The selection of the taps together with the configuration of the

3



4 Background

NFSR/LFSR will determine the next state of the shift registers which can then be
used by an output function to generate the pseudo-random data.

2.1.2 Fibonacci Configuration
There are two possible configurations of LFSRs and NFSRs. One configuration is
the Fibonacci configuration [5], as seen in Figure 2.1. In the Fibonacci configura-
tion, the bit on the far-right side is called the output bit. The output bit is fed
back through a gate, together with each of the taps, into the bit position on the
far-left side which is called the input. Due to the fact that the output bit has to
go through a sequence of gates with each tap just to get to the input, the critical
path will increase for every tap in the shift register.

Shift-Reg

Figure 2.1: A Fibonacci LFSR.

2.1.3 Galois Configuration
Another configuration is Galois, which can be seen in Figure 2.2. In the Galois
configuration [6], there are instead multiple feedback functions between each tap,
which allows for a smaller critical path. Galois can however not be parallelized as
many times as the Fibonacci configuration.

Shift-RegShift-Reg

Figure 2.2: A Galois LFSR.

2.1.4 Output Function
The output function consist of a series of XOR, AND, OR and/or NOT gates. It
is used to generate the keystream bits for the encryption/decryption of messages.
Usually, the keystream bits can be generated after the IV and key has been loaded,
but for certain ciphers some additional initialization rounds are required before the
output function bits are considered to be keystream bits.

2.1.5 Strength of a Cipher
The strength of a keystream and the stream cipher itself is determined by how
random the sequence of ones and zeros generated from a keystream are. Nonran-
domness in the keystream can often be exploited in order to mount attacks on the
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cipher. Since the keystream is directly involved in the encryption and decryption
of data, it has to be as random as possible and be kept a secret for outsiders
who are not authorized to read it. Unfortunately, a purely random keystream can
not be generated by stream ciphers. Stream ciphers by definition only generate a
pseudo-random keystream as an output. What that means is that the output of
the stream cipher appears to be random for an outsider, but is really just generat-
ing the same output for the same key and IV. The downside of a pseudo-random
process is therefore that if an unauthorized person gets a hold of the key and IV
sent into a stream cipher, they can generate the same keystream and use it to
decrypt any data that has been encrypted by the keystream in the past.

2.2 Grain-128a

Grain-128a [1] is a new version of the Grain-128 [7] stream cipher with two modes:
with authentication or without authentication. It consists of two feedback regis-
ters, an NFSR and an LFSR that are both 128 bits long, and an output function.
The content of the NFSR is denoted as bi, bi+1, ..., bi+127, and the content of the
LFSR is denoted as si, si+1, ..., si+127.

2.2.1 Key and IV Loading

The feedback registers are loaded by two values: a 128 bit key denoted as ki,
0 ≤ i ≤ 127, and a 96-bit initialization vector (IV) denoted as IVi, 0 ≤ i ≤ 95.
The loading of the key and IV bits are performed as follows. The 128 ki bits are
sent into the NFSR as bi = ki, 0 ≤ i ≤ 127, and the 96 IVi bits are sent into the
first 96 bits of the LFSR as si = IVi, 0 ≤ i ≤ 95. The last 32 bits of the LFSR
are set to si = 1 for 96 ≤ i ≤ 126 and s127 = 0 for the last bit.

2.2.2 Feedback and Output Functions

The feedback function for the LFSR and NFSR is defined in Eq. 2.3 and Eq. 2.4.
Moreover, Grain-128a consists of one output function that generates the output for
the cipher. The corresponding output function for Grain-128a can be implemented
using Eq. 2.5.

In both the feedback functions, the yout signal, which is the result from the
output function, is fed back as yfeedback during the initialization state of the
stream cipher for the first 256 bits. Otherwise, the yfeedback signal is not fed back
to the shift registers.

In Figure 2.3 a picture of Grain-128a together with its feedback and output
functions can be seen.

Note that all expressions above assumes that the most significant bit, si+127

and bi+127, is to the right.
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LFSRNFSR

g

f

Y

9

6524

8

yout

Figure 2.3: An overview of the Grain-128a non-parallelized ver-
sion [1].

fout = si + si+7 + si+38 + si+70 + si+81 + si+96 (2.3)
+yfeedback,

gout = si + bi + bi+26 + bi+56 + bi+91 + bi+96 (2.4)
+bi+3bi+67 + bi+11bi+13 + bi+17bi+18

+bi+27bi+59 + bi+40bi+48 + bi+61bi+65

+bi+68bi+84 + bi+88bi+92bi+93bi+95

+bi+70bi+78bi+82 + bi+22bi+24bi+25

+yfeedback.

yout = bi+12si+8 + si+13 + si+20 + bi+95si+42 (2.5)
+si+60si+79 + bi+12 + bi+95si+94 + si+93

+bi+2 + bi+15 + bi+36 + bi+45 + bi+64 + bi+73

+bi+89,

yfeedback =

{
yout, for the first 256 bits.
0, otherwise.

(2.6)

2.2.3 Parallelization

Grain-128a can also be implemented with a throughput of n output bits, where
n = {1, 2, 4, 8, 16, 32}. Implementations, where n is higher than 1, is done
through parallelization. Figure 2.4 shows how a two-times parallelized Grain-
128a is implemented. As can be seen by the figure the two feedback functions
and the output function are offset to the left by 1, each leaving behind another
feedback/output function in its place.
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For n times parallelization, the concept is very similar. The two feedback
functions and output function needs to be offset n − 1 times to the left, leaving
behind n − 1 functions each. As a result of this, as throughput increases so does
the amount of hardware and the area. Apart from the changes to the design the
NFSR and LFSR have to be modified to shift n bits to the left instead of just
shifting one bit at a time.

The expressions for the LFSR-feedback, NFSR-feedback and output functions
can be described as in Eq. 2.7, Eq. 2.8 and Eq. 2.9, respectively.

fkout = si+k + si+7+k + si+38+k + si+70+k + si+81+k + si+96+k (2.7)
+yfeedback.

gkout = si+k + bi+k + bi+26+k + bi+56+k + bi+91+k + bi+96+k (2.8)
+bi+3+kbi+67+k + bi+11+kbi+13+k + bi+17+kbi+18+k

+bi+27+kbi+59+k + bi+40+kbi+48+k + bi+61+kbi+65+k

+bi+68+kbi+84+k + bi+88+kbi+92+kbi+93+kbi+95+k

+bi+70+kbi+78+kbi+82+k + bi+22+kbi+24+kbi+25+k

+yfeedback.

ykout = bi+12+ksi+8+k + si+13+k + si+20+k + bi+95+ksi+42+k (2.9)
+si+60+ksi+79+k + bi+12+k + bi+95+ksi+94+k + si+93+k

+bi+2+k + bi+15+k + bi+36+k + bi+45+k + bi+64+k + bi+73+k

+bi+89+k.

ykfeedback =

{
ykout, for the first 256 bits .
0, otherwise.

(2.10)

where 0 ≤ k ≤ 31.
Note that it is once again assumed that the most significant bit, si+127 and

bi+127, are to the right in Figure 2.3.
Parallelization beyond 32 is possible but requires a different approach. The

approach is described in Section 3.4.

2.2.4 Authentication
Authentication can be performed after the 256 bits have been fed back to the
feedback functions in the initialization state, but only when IV0 = 1. When
IV0 = 0, authentication cannot be performed and is forbidden according to its
design details. During authentication 64 output bits from the Grain-128a output
function is taken and inputted into two registers: an accumulator and a shift
register, which are both 32 bits. The first 32 bits go into the accumulator as

aj0 = y256+j , (2.11)
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LFSRNFSR

g0 g1

Y0

yout

Y1

yout

g0 g1 g0 g1f0 f1

Figure 2.4: The Grain-128a parallelized 2 times [1].

where 0 ≤ j ≤ 31, denotes the index of accumulator register. Consequently, the
last 32 bits go into the shift register as

ri = y288+i, (2.12)

where 0 ≤ i ≤ 31, denotes the index of shift register. Note that bit y256 is the first
bit after initialization and bit y288 is the first bit after loading the accumulator.

After the initialization of the registers, a message of length L defined as mi,
0 ≤ i ≤ L − 1 with a high bit padded to its end, mL = 1, is sent into the
authentication hardware. The message, as well as the shift registers, are used to
update the accumulator register as

aji+1 = aji +miri+j , (2.13)

where 0 ≤ i ≤ L, 0 ≤ j ≤ 31, j denotes the index of accumulator register and ri+j

denotes the content of the shift register at index j.
The shift register is updated by shifting in every second bit after its been

loaded, y320+2i+1.
It is also possible to parallelize the authentication hardware up to 16 times

with a 32-bit parallelized Grain-128a since the authentication hardware only ac-
cumulates with every second bit. The expression for n times authentication par-
allelization is

aji+1 = aji +

n−2∑
k=0

mi+kri+j+k. (2.14)

Note that n− 1 additional bits are required, ri+32, ..., ri+32+n−2, which refers
to the first n− 1 values that are going to be shifted into shift register.

After all message bits have been sent in, the final content of the accumulator
register, a0L+1, ..., a

31
L+1, is denoted as the tag. The tag will then be used for

authentication.
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Accumulator

Register
yaccum

...Logic Logicmi

Figure 2.5: An overview of the authentication hardware [1].

2.2.5 Keystream Generation

For Grain-128a the keystream or the output from the design, used for encryption,
is defined differently depending on whether or not authentication is used. When
authentication is not used, the keystream of Grain-128a is defined as

zi = y256+i (2.15)

However, when authentication is used, the keystream of the Grain-128a is
defined as

zi = y320+2i, (2.16)

which means that only every second bit after the 64 bits used to initialize the
accumulator and shift registers, are used.

2.3 Grain-128AEAD

Grain-128AEAD is a newer version of Grain-128a. The design of the stream cipher
is the same as depicted in Figure 2.3. It contains an LFSR, NFSR, two feedback
functions and one output function that are identical to the functions used in Grain-
128a. There are mainly three differences between both designs: An additional
initialization of the LFSR; The increase from a 32-bit to a 64-bit accumulator and
shift register; A change of how the keystream is generated.

2.3.1 Additional LFSR Initialization

The additional LFSR initialization [8] is performed during the loading of the ac-
cumulator and shift register. The goal behind it is to prevent attacks such as state
recovery attacks from leaking the key. For this cipher, the key is XORed into the
LFSR state through its feedback functions as

s∗i = si + ki, (2.17)

where s∗i is the new value of the LFSR state at index i after the initialization.
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2.3.2 Authentication

The authentication process of Grain-128AEAD closely resembles the process for
Grain-128a in Section 2.2.4. The accumulator is initialized as in Eq. 2.11 with
0 ≤ j ≤ 63. Consequently, the shift register is initialized as in Eq. 2.12 with
0 ≤ i ≤ 63. Following the initialization of the registers, the accumulator is updated
in the same fashion as in Eq. 2.13, with 0 ≤ j ≤ 63. Similarly, the shift register is
updated by shifting in every second bit, y384+2i+1.

2.3.3 Keystream Generation

For Grain-128AEAD, the keystream is generated as

zi = y384+2i, (2.18)

when using and not using authentication.

2.4 Additional Hardware
Apart from the hardware belonging to the stream cipher, there are several other
types of hardware that can or needs to be used in the design of most hardware
implementations. For the ciphers, additional hardware will be required for load-
ing, initialization and keystream generation. In this section, all hardware used in
our implementation of the stream cipher is briefly described so that there is no
ambiguity surrounding the implementation of the ciphers in Chapter 3.

2.4.1 Storage Elements

In digital electronics there are two types of memory elements: flip-flops [9] and
latches [10]. Latches are the basic storage element that operates with a level
sensitive enable signal. They are commonly used in the design of asynchronous
sequential circuits. Moreover, latches are usually faster in comparison to flip-flops
because they don’t need to wait for a clock signal, due to this property they are
generally preferred in high-speed designs. In low area and speed designs, latches
are also preferred with their small die-size and low power consumption. The last
advantage of a latch is the Time-Borrowing property, in which if an operation is
not completed within a certain time, the required time for executing the operation
is borrowed from the other operational time.

Flip-flops are binary storage devices which can store a high or a low value. It
differs from a latch in that it has a clock input and is edge triggered. Being an
edge triggered storage device means that when the clock goes from high to low or
low to high its value updates, which makes it a clock-controlled memory device.

2.4.2 Multiplexer and Demultiplexer

A multiplexer [11] or a mux is a digital component that takes a number of input
signals and forwards one of the inputs to the output signal. The input that is
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selected as the output signal is determined by an additional signal the select signal.
A figure of a multiplexer can be seen in Figure 2.6.

.......

Sel

Figure 2.6: A figure of a multiplexer.

The opposite of a multiplexer is a demultiplexer [11]. A demultiplexer takes
one input signal and forwards it to a different output signal depending on the
select signal. A figure of a demultiplexer can be seen in Figure 2.7.

.......

Sel

Figure 2.7: A figure of a demultiplexer.

Multiplexers and demultiplexer are both very commonly used in designs since
they allow for the re-routing of signals.

2.4.3 State Machine
There are multiple ways to control a design. One way is using combinational
logic which takes an input signal and sends out the desired output signal, which
can be routed as a control signal for components like multiplexers. However, for
certain designs controlling a circuit based solely on the current inputs is simply
not enough. For those designs, an alternative solution is using sequential control
logic that takes not only an input but also a sequence of previous inputs in order
to determine the output signal. When it comes to sequential control logic, state
machines [12] are the most widely used, often forming the core of a magnitude of
digital systems today.

A state machine [13] consists of two main blocks: a memory, often registers,
and a combinational block. The memory block is used to store values that cor-
respond to the state of the design. The combinational block can be seen as two
different blocks. One block is used to determine the next state of the design, based
on the current state as well as the input to the state machine, while the other block
is used to generate the output of the machine. In Figure 2.8 a concept picture is
presented of how a state machine is built. The actual hardware used for the state
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machine depends very much on the use case. Some state machines are simple and
others are complex depending on how much of the design needs to be controlled.

... ...

Inputs

State Memory

Combinational logic

Next
State
Decode

Output
Decode

Outputs

Figure 2.8: A concept picture of a state machine.

2.4.4 Counters
A counter is a sequential circuit which is used for counting events like for example
clock cycles. They are designed using flip-flops with a clock signal applied. Coun-
ters are of two types asynchronous or ripple counters, and synchronous counters.
In an asynchronous counter, there is no universal clock, only the first flip-flop is
given a clock pulse, while the other flip-flops are dependent upon the output of
previous flip-flops. The flip-flop which is applied with the main clock pulse acting
as an LSB (least significant bit) in the counting sequence.

In the synchronous counter, the universal clock signal is given to all the flip-
flops so that the output changes in parallel. This makes a synchronous counter
operate at a higher speed in comparison with an asynchronous counter. These
types of counters are easy to design and less prone to the race condition, which
makes them more reliable compared to asynchronous counters.

2.4.5 Clock Dividers
A clock divider [14], also known as a frequency divider, is a circuit used to divide
a clock signal with frequency, f , into a new clock signal with frequency f/k, where
k is an integer. It can be used in many circuits where a design needs to be slowed
down or where an additional, lower frequency, clock is required. There are different
types of clock dividers with different divisions like division by two and division by
the power of two.

Clock division by two is a simple divider made by a flip-flop and an inverter.
When a high clock signal is received, the content of the flip-flop is inverted and
sent out. The value sent out will be a pulse that is high for one period and low
for another period of the input clock signal, making the pulse a clock signal with
two times the period and two times less frequency. A figure of the clock divider
with a division by two can be seen in Figure 2.9.

Clock division by a power of two is a little more complex. It requires an n-bit
counter to achieve a clock division by 2n. The benefit of a power of two counter
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Clock_div
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Figure 2.9: A figure of a clock divider by 2.

is that it can be used to generate all clock divisions by a factor of 2k, where
1 ≤ k ≤ n, without the use of any extra hardware. By looking at the content of
the counter it can be seen that each bit changes values every (2k)/2 clock cycles,
making the content of the counter bit at position k a perfect clock divider signal
by 2k. A figure of a power of two clock divider can be seen in Figure 2.10.

Clk_div16 Clk_div8

Clk

Clk_div2Clk_div4

1

Figure 2.10: A figure of a 4 bit power of 2 clock divider using a
counter.

2.5 Design Properties
In the design there are multiple properties that can be extracted from an imple-
mentation. Some properties include area, speed, and power consumption. In this
section, a short overview of these three properties is presented as well as some
general theory on how to optimize them.

2.5.1 Area
The area [15] of a design depends on multiple things. In general, the area is
defined as the space on a circuit or chip that the hardware takes up. How much
space the hardware take up is dependent on a lot of things. For ASIC the area
is dependent on the transistor technology and size that is used to make up the
logical gates of a design. Whereas, for FPGA (Field Programmable Gate Array)
the area is dependent on the number of resources the design use inside the FPGA.
For stream ciphers, it is difficult to reduce the area used in the design of the cipher
since registers and all logic functions in the design are of importance for the security
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of the cipher. Changing any part of the general design can alter the security of
the cipher, which needs to be taken into consideration when optimizing for area.
It is, however, possible to improve the area of an implementation by making sure
all other logic that is required for implementing the ciphers in hardware takes
up as little space as possible. The best way to do it is to make sure as much
hardware as possible is being shared. An alternative is also to reduce the number
of transistors in the gates that make up the hardware. For the stream cipher,
the amount of hardware cannot be reduced in the design and there is not much
hardware that can be shared. However, some transistor-level optimizations on the
Boolean expressions of the functions are later presented in Chapter 5.

2.5.2 Speed
Speed [16] is determined by the critical path, which is the longest path between an
input to a register, register to output or input to output, of a design. Reducing the
critical path of a design can allow it to function for a much higher clock frequency
and thus become faster. For certain designs like stream ciphers speed is often
defined by how many bits of data is sent out per time unit, which is called the
throughput of the design. In the case of stream ciphers, the throughput is defined
as the number of keystream bit sent out every second.

2.5.3 Power
Power [17] exist in many forms. In CMOS circuits, power is dissipated in two
forms: dynamic and static power.

Ptotal = Pdynamic + Pstatic. (2.19)

The dynamic power is dissipated when transistors change their state as

Pdynamic = Pswitching + Pshort-circuit. (2.20)

The switching power is the power dissipated due to charging and discharging of
capacitance present inside an integrated circuit. An expression for switching power
is given as

Pswitching = αfCV 2
dd, (2.21)

where α is the switching activity, f is the switching frequency, C is the overall
capacitance and Vdd is the supply voltage.

The power is dissipated by the occurring of a short circuit connection between
the main voltage and the ground when the gate changes its state is known as
short-circuit power and is given as

Pshort-circuit = IscV f, (2.22)

where Isc is the short-circuit current, V is the power supply and f the switching
frequency.

The static power occurs when a circuit is in steady state and the circuit is
turned on. Static power occurs because of leakage current [18] in the MOSFET.
The leakage current depends upon different factors like change in threshold voltage,
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supply voltage, the thickness of the oxide layer and the doping profile as mentioned
in Figure 2.11. An expression for static power is given in as

Pstatic = (Isub + Ijunction + Igate)VDD. (2.23)

N+ Source N+ Drain

Gate

P-Well Sub

I3 I4

I6

I1

I2
I5

I1 - Reverse Bias p-n Junction Leakage
I2 - Sub Threshold Current
I3 - Gate Leakage, Tunneling Current through Oxide
I4 - Gate Current due to Hot Carrier Injection 
I5 - Gate Induced Drain Leakage 
I6 - Channel Punch through Current

I1, I3, I4 - Present in both ON and OFF state

Figure 2.11: Leakage types in the MOSFET.

2.6 Optimization Techniques

When making a hardware implementation it is beneficial to know about some of
the optimization techniques which can be applied to the implementation in order
to improve the performance of the system. In the industry integrated circuits has
certain restrictions on the area, speed, and power and it depends on what context
the electronics hardware is used for. In the case of charging devices, it might not be
too hard to assume that low power is preferred so that the energy of the electronics
devices last longer. For servers or networking devices that need to transmit a lot
of data to multiple clients, power might not be the main concern but rather the
speed of the system without losing the data. In the following subsections, a few
optimization techniques are presented which are useful in optimizing the stream
cipher implementation in Chapter 3.

2.6.1 Pipelining

Pipelining [19] is a technique used to increase speed and reduce power by strategi-
cally inserting additional flip-flops at a certain part of a design. Adding additional
flip-flops along combinational paths, that contribute to the critical path, can signif-
icantly improve the speed/throughput of the design by shortening the propagation
delay. Decreasing the critical path can lead to a decrease in power as well since
it can allow for a much lower supply voltage for a circuit. Inserting additional
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flip-flops can also be beneficial to reduce glitches. Glitches [20] are present in ev-
ery implementation and are caused by converging combinatorial paths that have
different propagation delays, which causes unwanted transitions in gates that con-
sumes power. Pipelining can interrupt the propagation of glitches and thus reduce
the power consumption caused by them. Unfortunately, pipelining a design is not
always possible since it adds an extra clock cycle of delay for the signals. For the
stream ciphers, pipelining can not be done on feedback functions without altering
the functionality of the cipher. It can, however, be applied to other parts of the
design where adding an extra delay to the signal does not affect the functionality
of the cipher.

2.6.2 Galois Transformation

Galois transformation is a technique that can be used to transform Fibonacci
configurations of a feedback-shift-register into its Galois equivalent. The transfor-
mation is performed by simply adjusting the initial state as well as reverse the
order of all the connections to feedback function and then separate each feedback
function into multiple new functions with different connections. By performing the
transformation it can allow for a feedback shift register to run on a much higher
frequency and possibly the stream cipher itself, which makes it a good technique
to use when implementing fast stream ciphers. However, in order to select the
new feedback functions certain conditions have to be met. To guarantee that a
feedback shift register maintains its equivalence after and before shifting, no bits
with a lower index than the terminal bit, τ , can be shifted to. The terminal bit is
defined as

τ = max(indexmax(p)− indexmin(p)), ∀p ∈ P, (2.24)

where p is all the product-terms in the Fibonacci feedback function, indexmax(p)
and indexmin(p) denotes the minimum and maximum index of a term in p. In
addition to that, the transformation has to guarantee that all of the internal state
bits of the feedback shift register, as well as the bits used for generating the
output, is equivalent before and after the transformation. For Grain-128AEAD
the terminal bit would then have to be selected as 96 since that is the last bit used
by the output function. It is possible to extend this theory for parallelized versions,
by restricting the transformation connection only to bits from where feedback is
possible [21].

It is important to note that for LFSRs the Galois transformation is unique,
however, for NFSR it is not unique. This allows for a multiple of transformations
to be used in the NFSR case. An algorithm for finding the fastest NFSR trans-
formation is found in [21] and an algorithm for the most speed and area efficient
transformation can be found in [22].

2.6.3 Clock Gating

Clock gating [23] is a low-power technique that is used to reduce power consump-
tion. The technique reduces the power consumption by disabling or suppressing
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the clock for certain parts of the design when they are not used. This prevents un-
necessary transitions from occurring in sequential elements like flip-flops, in those
certain parts, because the clock is not active when they occur. Since all transi-
tions that occur in sequential elements consumes power, power will be saved by
preventing these transitions from occurring. Clock gating on a design is only pos-
sible if there are sequential elements within the design that are unused in certain
clock periods. A basic implementation of clock gating using an AND-gate or an
OR-Gate can be seen in Figure 2.12.

Q

ClockEnable

DQ

ClockEnable

D

Figure 2.12: Clock gating using an OR gate (left) and an AND gate
(right)
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Chapter 3
Implementation

So far the general cryptography and hardware theory, together with the design
details have been presented in order to get a general idea of how to make an
implementation. However, as previously described in Chapter 2, ciphers require
additional control hardware than that presented in the design details to regulate
when and how it needs to be loaded, initialized and output the keystream. It
is largely dependent upon the designer to make an efficient implementation that
yields the best performance in terms of area, speed, and energy efficiency. In this
chapter, we present implementations of the Grain-128AEAD cipher from Chap-
ter 2, as well as the application of some hardware efficient optimizations, in order
to improve the performance of the designs.

All implementations presented in this chapter are designed at Register Transfer
Level (RTL) using VHDL and are verified by simulation in both Vivado v2016.1
and Modelsim 10.0d.

3.1 Grain-128AEAD Implementation

An implementation of Grain-128AEAD, without any optimization, can be seen in
Figure 3.1. It consists of all the hardware presented in Figure 2.3 with the addition
of some extra hardware used for controlling the cipher, mainly the controller. In
the design, there are multiple muxes, regulated by the controller, which are used
for managing the input to the registers in addition to the output of the design.
There are many ways to implement a controller, but the most common practice
is to use a state machine [13] and/or a counter [24]. To begin with, our Grain-
128AEAD controller uses a state machine together with a counter to keep track
of and decide when to switch state. Later on, an alternative controller is explored
in Section 3.3.

The controller to begin with consists of five states: reset, loading,
initialization, accumloading and normal state. The controller starts off in
the reset state. In the reset state, the controller blocks off the muxes, making
the input of the register as well as the output of the design zero. Once an enable
signal is received from outside the design, the controller moves on to the loading
state.

19
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Figure 3.1: An overview of the non-parallelized Grain-128AEAD
implementation without any optimization.

3.1.1 Key and IV Loading
During the loading state, the controller opens up the muxes connected to the
NFSR and LFSR for the key and IV respectively. For the non-parallelized version,
the key and IV is loaded one bit at a time per clock cycle. However, in the n-
parallelized version, the key and IV is loaded by n bits per clock cycle instead of
just one. The reason for that is because the number of loading bits per clock cycles
for the parallelized versions does not have a significant effect on the area and also
decreases the bottleneck for the overall design drastically. Finally, when loading
is finished the design moves onto the initialization state.

3.1.2 Initialization
In the initialization state, the controller opens up the mux for the y value so
it is XORed with the output of the f and g function, which is then sent into the
LFSR and NFSR, respectively. After 256 clock cycles have passed or after 256 y
bits have been generated for the parallelized versions, the controller moves on to
the accumloading state.

3.1.3 Accumulator Loading
When in the accumloading state, the controller opens up the mux connected to
the shift register for all the y values sent out by the design. The bits then get
shifted into the shift register n bits at a time. When 64 bits have been loaded
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into the shift register, the message mi gets set to 1 by the controller. Setting the
message to one at that specific time allows the content of the shift register to be
loaded into the accumulator according to Eq. 2.13. Note that the accumulator
content is zero at that point. After the loading of the accumulator, the controller
stays in the accumloading state until 64 more values have been shifted into the
shift register so it gets loaded as well. Throughout the accumloading process,
the key XORed with the output from the f function is fed back to the LFSR.
To save area, the key is sent in once again from the start of the accumloading
state up until all key bits have been sent in, which happens to be exactly when
the accumulator and shift register have finished loading. Moreover, a signal yflag
is also sent out at the start of the accumloading state to notify from outside the
design that the key bits need to be sent in again. After the key bits have been
sent in and the accumulator and shift register are loaded, the design moves on to
the normal state.

3.1.4 Keystream and MAC Generation
In the normal state, all the y bits following the loading of the accumulator and
shift register are divided up into two groups: keystream bits used for encryp-
tion/decryption and accumulator/MAC bits used for generating the tag. Every
second y bit becomes a keystream bit and goes to the yout signal, while every other
bit becomes a MAC bit and goes to yaccum.

For the non-parallelized version, it can be noted that the accumulator and
shift register needs to be slowed down by a factor 2 through a clock divider. The
reason for the slowdown is to prevent the shift register from shifting when a yaccum
value is not generated. For the parallelized versions, a clock divider is not used
during authentication. Instead, the controller alters the number of shifts of the
shift register to n/2 during the normal state, since only half of all bits go to
the accumulator every clock cycle. The additional hardware needed for selecting
between an n or an n/2 shift for the parallelized versions can be seen in Figure 3.2.

Shift Register ...n/2...n/2

Sel

Figure 3.2: n and n/2 shift selection hardware.

3.1.5 Encryption and Decryption
Encryption and decryption can be performed after the generation of each yout bit
in the normal state. It is controlled by the signals ce and cm. ce is used in each
clock cycle to select if a specific message mi should be encrypted/decrypted or just
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be sent out from the design. If the value is high yout is XORed with mi producing
a new message ti, which is the encrypted/decrypted message. cm, on the other
hand, is used to select between decryption and encryption. For decryption, the
plaintext will be ti and mi will be the ciphertext, while for encryption the opposite
is the case. What that means is that there needs to be a mux controlled by cm that
select ti when doing decryption and select mi when doing encryption, as the input
message for the accumulator logic. In the design, a high value on cm is used for
decryption and a low value for encryption. It can be noted for the non-parallelized
version that an extra register is required in order to delay the ti signal, during
decryption, in order to ensure it is sent in when a yaccum/MAC bit is available.
For the parallelized versions the register is not required since the keystream bits
and MAC bits are generated in the same clock cycle.

3.1.6 Tag Generation
At the end of authentication when the message has been sent in, the controller
opens up the mux for the tag so that the content of the accumulator is sent out
as the tag. Otherwise, the controller keeps the mux closed by only sending zeros,
which prevent the cipher from leaking the content of the accumulator at every
state of the design.

3.2 Critical Path Analysis
When it comes to finding paths [25] for optimization there are a few that can be
modified without changing the function or security of the cipher. Those paths are:

− Dn: the maximal delay from any NFSR or LFSR flip-flop to any other
NFSR or LFSR flip-flop.

− Dy: the maximal delay from any NFSR or LFSR flip-flop through the y
function to the output of the cipher.

− Dya: the maximal delay from any NFSR or LFSR flip-flop through the y
function to any accumulator flip-flop.

− Da: the maximal delay from any flip-flop in the authentication section of
the cipher to any accumulator flip-flop or output.

− Dyn: the maximal delay from a flip-flop of the NFSR or LFSR through
the y function to the first flip-flop of the NFSR. Only active during the
initialization state.

In Figure 3.3 a representation of the paths is given.

3.2.1 Galois Transformation
Improving the delayDn, might seem like a difficult task since it cannot be pipelined
without stopping the cipher completely. However, according to the theory in
Section 2.6.2 it is possible to transform the g function in its original Fibonacci
form into its Galois equivalent without affecting the security. The transformation
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Figure 3.3: A figure showing the possible paths for optimization of
the Grain-128AEAD implementation.

will as previously stated decrease the path. Apart from that, there is not much that
can be done to improve the path delay, Dn. As previously stated in Section 2.2.3,
the 32 parallelized version cannot be transformed into its Galois configuration,
which means that the path cannot be optimized.

Using the algorithm found in [21] and [22] the Galois transforms can be gen-
erated. The Galois transformation of the NFSR for the non-parallelized version is
given as:

g127 = s0 ⊕ b0, g102 = b103 ⊕ b71,
g126 = b127 ⊕ b39b47, g101 = b102 ⊕ b0,
g125 = b126 ⊕ b59b63, g100 = b0 ⊕ b0b32,
g124 = b125 ⊕ b0b64, g99 = b100 ⊕ b63,
g123 = b124 ⊕ b52, g98 = b99 ⊕ b59b63b64b66,
g116 = b117 ⊕ b0b2, g97 = b98 ⊕ b38b54,
g110 = b111 ⊕ b0b1, g96 = b97 ⊕ b39b47b51,
g105 = b106 ⊕ b0b2b3,

(3.1)

where gk is the next bit for the NFSR flip-flop at index k. The 2 times
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parallelized NFSR is given as:

g127 = s0 ⊕ b0, g111 = b112 ⊕ b6b8b9
g125 = b126 ⊕ b1b65, g107 = b108 ⊕ b58b62b50,
g123 = b124 ⊕ b57b61, g105 = b106 ⊕ b18b26,
g121 = b122 ⊕ b5b7, g103 = b104 ⊕ b72,
g119 = b120 ⊕ b9b10, g101 = b102 ⊕ b30,
g115 = b116 ⊕ b15b47, g99 = b100 ⊕ b40b56,
g113 = b114 ⊕ b12, g97 = b98 ⊕ b58b62b63b65.

(3.2)

The 4 times parallelized NFSR is given as:

g127 = s0 ⊕ b0 ⊕ b3b67,
g123 = b124 ⊕ b22 ⊕ b52 ⊕ b23b55,
g119 = b120 ⊕ b9b10 ⊕ b3b5,
g115 = b116 ⊕ b70b66b58,
g111 = b112 ⊕ b6b8b9,
g107 = b108 ⊕ b68b72b73b75,
g103 = b104 ⊕ b72 ⊕ b37b41,
g99 = b100 ⊕ b40b56 ⊕ b63 ⊕ b12b20.

(3.3)

The 8 times parallelized NFSR is given as:

g127 = s0 ⊕ b0 ⊕ b3b67 ⊕ b88b92b93b95,
g119 = b120 ⊕ b9b10 ⊕ b3b5 ⊕ b32b40 ⊕ b60b76,
g111 = b112 ⊕ b10 ⊕ b40 ⊕ b11b43 ⊕ b75 ⊕ b6b8b9,
g103 = b104 ⊕ b72 ⊕ b37b41 ⊕ b46b54b58.

(3.4)

The 16 times parallelized NFSR is given as:

g127 = s0 ⊕ b0 ⊕ b56 ⊕ b3b67 ⊕ b11b13 ⊕ b40b48 ⊕ b70b78b82,
g111 = b112 ⊕ b10 ⊕ b75 ⊕ b80 ⊕ b1b2 ⊕ b11b43 ⊕ b45b49 ⊕ b72b76b77b79 ⊕ b68b52.

(3.5)
The Galois transform for the 1, 2 and 4 times parallelized LFSR is given as:

f127 = s0 ⊕ s7,
f123 = s124 ⊕ s34,
f119 = s120 ⊕ s62,
f115 = s116 ⊕ s69,
f111 = s112 ⊕ s80,

(3.6)

where fk is the next bit for the LFSR flip-flop at index k. The 8 times parallelized
LFSR is given as:

f127 = s0 ⊕ s7 ⊕ s38,
f119 = s120 ⊕ s62,
f111 = s112 ⊕ s65,
f103 = s104 ⊕ s72.

(3.7)
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Finally, the 16 times parallelized LFSR is given as:

f127 = s0 ⊕ s7 ⊕ s38 ⊕ s70,
f111 = s112 ⊕ s65 ⊕ s80.

(3.8)

3.2.2 Isolation of Authentication Section

In the parallelized versions of Grain-128a the expression for updating the accumu-
lator, Eq. 2.14, requires future values of ri that are not yet shifted into the shift
register in order to update the first few accumulator flip-flops. What that means
is that the path Dya for the parallelized versions, n > 2, become longer than
that of the non-parallelized version. The problem can be resolved by isolating the
authentication section from the y function with flip-flops at the cost of an extra
clock cycle of latency for the tag.

Accumulator

Register

64

yaccum

...

Tag

Logic Logic
mi

cm

ti+1

Figure 3.4: An overview of the isolation of the authentication state
for the n > 2 parallelized versions.

3.2.3 Transforming and Pipelining Y

In order to reduce Dy and Dyn, two methods can be applied: pipelining y and
transforming y. During the initialization state, pipelining is not possible since
y needs to be feedbacked to the shift registers in that state. It is however possible
to transform the y function under the same conditions as the Galois transform,
which will reduce the paths. For the other states where y is not feedbacked to the
shift registers the y transform is not possible, but pipelining is. By combining and
selecting between both methods it is possible to realize an implementation that
reduces the path Dy and Dyn. A figure of the hardware can be seen in Figure 3.5.

As an example, the transformation of the y function for the non-parallelized
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Figure 3.5: An overview of y transformation and pipelining [1].

version from the figure is given as:

y127 = b12s8 ⊕ s13s20 ⊕ b95s42,
y126 = b11b94s93 ⊕ b72 ⊕ b1 ⊕ s59s78,
y125 = s91 ⊕ b87 ⊕ b13 ⊕ b34 ⊕ b43 ⊕ b62,

(3.9)

where y125+i, 0 ≤ i ≤ 2, indicates the value that is fed back to s125+i and b125+i.
It is possible to design the y transform for the 2-16 parallelized version. Because of
similar restrictions as for the Galois transformation, it is not possible to transform
y for higher parallelized versions than 16. Note that apart from adding both
the transformation and pipelining hardware, muxes are also required in order to
switch between both methods. The switching of the methods is regulated by the
controller.

3.3 Modifying the Controller
After improving most of the path in Section 3.2, the only other improvements to
be made is to make sure as little logic as possible is used to control the design in
order to further increase the performance. In this section, an alternative controller
is represented using a clock divider and shift register in order to improve area and
speed. The controller functions by shifting in a high value into a shift register
every time its clock is high and after a start signal has been received from outside
the design. A clock divider is used to slow down the shift register clock signal by
2k, where k is a positive number, making it so the register shifts at a lower speed.
This design allows for a bit in the shift register to represent how many clock cycles
have passed in total and thus the state of the design, by simply checking if a flip-
flop value is high at a certain index. What that means is that only a clock divider
circuit is required for updating the state and a maximum of 1-3 bits are required in
order to generate the control signals for the multiplexers in the design. The number
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of flip-flops required for the shift register depends on both the parallelization, n,
and the value of k as 512/(2kn) where 512 is the number of clock cycles required
for the non-parallelized version to get to the normal state without a clock divider.
Adding that together with the k flip-flops from the counter makes the total amount
of flip-flops required as 512/(2kn) + k. Note that it is not possible to select a 2kn
larger than 128 since that would mean that each shift takes longer than 128 clock
cycles making it impossible to determine when to enter and leave the loading
state. A figure of the controller can be seen in Figure 3.6 where Mux Ctrl refers
to the signal used to control the muxes. The input to the control logic are the
bits of the shift register that become one during the start of initialization,
accumloading, and the normal state respectively. Their indexes are calculated as

iinit =
128

nk
,

iaccum =
128 + 256

nk
,

inorm =
512

nk
.

(3.10)

The control logic is different from muxes to muxes. For muxes that remain
open after they are first turned on, the signals can be directly ported to the
multiplexers. However, for other signals that are only activated in one state an
inverter together with an AND-gate is required to generate the mux control signal.

Shift Register

Control Logic

Clock Divider

clk

Mux Ctrl

...........

Figure 3.6: An overview of the modified controller.



28 Implementation

3.4 Unrolling
Unrolling [26] is a general technique that has been discussed already in Section 2.2.3
to increase the throughput of a design. However, in the section, it is referred to
as parallelization and it is stated that a parallelization beyond 32 is not possible
using the method described in the section. Fortunately, it is possible to realize a
parallelization or unrolling larger than 32 by simply allowing connections between
the copies of the feedback and output functions. This can be confirmed by looking
at Eq. 2.8 with a k higher than 31. If k is equal to 32 the value bi+96+k in the 33rd
g function will be equal to bi+128, which is the bit from the first g function. The
downside of allowing these types of connections is that the critical path will rapidly
increase with the number of unrolls after 32. This does however not necessarily
mean that the maximum throughput of the design will decrease with unrolling.

Apart from speed, unrolling is also an effective method for saving energy. A
n times unrolled cipher compared to the non-parallelized version saves energy by
allowing the stream cipher to encrypt a larger amount of data in each clock cycle
so that fewer glitches and transitions occur.

A figure of the implementation of unrolling for the NFSR at k = 32 can be seen
in Figure 3.7, where g0 refers to the first feedback function and g32 the last feedback
function. For k > 32 the concept is very similar, with there only being more
connection to the previous function for the y, g and f functions respectively. In
the thesis, only the 64 unrolled version is implemented. It is possible to implement
other unrolled versions, but that would require a controller capable of being in two
states at once.

It is also possible to unroll the accumulator with a higher number than 16
using Eq. 2.14 assuming that the Grain-128AEAD parallelization is twice as high.

NFSR

g0 g1 g31 g32...

Figure 3.7: A figure showing the concept of unrolling for the g
function at n = 33.



Chapter 4
Synthesis

In the previous chapter, we presented different implementations and techniques for
the optimization of Grain-128AEAD at RTL level, which all improve the cipher
functionality at hardware level. The following chapter will cover the different pos-
sibilities for synthesizing the RTL code in the Synopsys Design Compiler 2013.12
with an ST65nm ASIC technology.

4.1 Cipher Synthesis
Synthesis [27] is a process that uses hardware description language to generate
a gate-level net-list for the circuit designer. It consists of three important steps:
Translation, Optimization and Technology Mapping.

• Translation: The RTL code is converted to technology-independent repre-
sentation, in the form of a Boolean expression.

• Minimization: The Boolean expressions are minimized using the SoP (Sum
of Product) or PoS (Product of Sum) method.

• Technology mapping: The optimized Boolean expressions are mapped to
the technology-dependent library file to produce a gate-level netlist.

4.1.1 Conditions and Restrictions
Since we are going to compile our RTL code in Design Vision some operating
conditions needs to be set in the tool.

The first phase of synthesis is to analyze and elaborate [28] the RTL files which
will covert the HDL to a readable format for the synthesis tool.

After this step, the design environment is set for the compiler by specifying
the search path, link library, target library, symbol library and synthetic library
for the specific technology, pads, etc. in the Synopsys tool.

The search path is the path to the technology-specific library. Whereas, the
link library and target library are the files that contain the cells as well as some
additional information related to the cells, such as its operating conditions, pin
names, and delays, etc. In addition to that, the link library also helps in connect-
ing all the library components and designs, while the target library helps in the
mapping of the standard cells.
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Moreover, the symbol library is the graphic symbols used by the library to
represent its cell in a graphical interface, which allows for the schematic view of a
synthesized circuit.

Timing & Power
analysis

Formal
Verification

Constraints
(SDC)

IP DesignWare
Library

Technology
Library

Symbol 
Library

Timing
optimization

Datapath
optimization

Power
optimization

Area
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Test
synthesis

Timing
closure

HDL

HDL Compiler

Design Compiler

Optimized netlist

Figure 4.1: Synopsis DC flow diagram.

4.1.2 Compiling or Mapping the Design

The next phase of synthesis is compiling and mapping the design. Design Vi-
sion [29] needs three different inputs to compile the cipher and generate the result.
These inputs are the RTL code, design constraints, and standard library cell.
There are two commands which can be used for compiling the RTL files in Design
Vision compile and compile_ultra [30]. Both commands have lots of flags that
can be set to optimize for power, speed or area. Some of the flags which were
used in writing the synthesis script include clock gating, which enables the clock
gating technique to reduce power in the circuit; grouping that helps in creating
the hierarchy level of cell and optimize the design for speed; Ungrouping which
removes the level of hierarchy and merge with the surrounding logic to reduce the
area.

4.1.3 Reporting the Results

This is the last step in the process of synthesis which helps in generating the reports
for the optimized results. Design Vision can generate different reports through
command line [31] or by click on the toolbar options. There are a lot of commands
to generate reports [32] but we were interested in some specific information for the
design of the cipher at different frequency range like timing (it helps in finding the
worst critical paths and slack), power consumption, clock, constraint (to determine
whether DC encountered any violations), area and gate-count.
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Figure 4.2: Flow diagram for optimizing Grain128-AEAD.

4.2 Synthesis Scripts
Since the cipher is to be implemented for different frequency ranges and restric-
tions, two different scripts Appendix A are therefore written for optimizing at low
power/area and high speed. The first script is written for low power/area by using
HVT cells and enabling the clock gating feature in compile_ultra command in
the script to reduce the power consumption of the circuit. The second script is
written to run the cipher for maximum speed without caring about power/area.
In the latter script, the compile_ultra command is used with and without the
autoungroup feature with the combination of LVT cells for optimizing the cipher
to run as fast as possible.
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Chapter 5
Transistor Optimizations

Today, digital circuits are mainly driven by demand for high processing speeds
and low power applications. Metal Oxide Semiconductor (MOS) transistors are
commonly used as switches with high or low-speed activities. Since the circuit
topologies that are presented in this thesis are based on threshold voltage of MOS
devices, a brief overview of the MOSFET and optimization technique to reduce
leakage in the CMOS device is provided in this chapter. Later on, there is a
discussion about the Boolean expression optimization for reducing the area, power
and improving the speed of the ciphers.

5.1 MOSFET

Moore’s law [33] explains that the transistors count in an electronics circuit will
double about every two years. So moving a design from a longer length of MOS-
FET to a shorter length, will always be an interesting way to mitigate the power
consumption in the circuits.

5.1.1 Region of Operation of MOS Transistor

Transistors can operate in different regions of operation [34] which are satura-
tion and linear regions refer in Figure 5.1, depending on the voltage applied to
the gate(G), drain(D) and source(S). There are two type of transistors NMOS and
PMOS. In NMOS, the majority carriers are electrons, and they can flow faster than
holes. As a result, NMOS transistors are smaller than PMOS devices. The ma-
jority carriers in PMOS are holes. Holes flow more slowly compared to electrons,
therefore it is easier to control the current. The combination of both transistors
is called complementary-symmetry metal–oxide–semiconductor (or CMOS), which
has high noise immunity and low static power consumption which will be discussed
next section.

5.1.2 Techniques to Reduce Leakage Current

Circuits are designed for performance and they are designed using large gates and
parallel architecture with the same logic. Actually, to improve the performance
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Figure 5.1: Transistor region of operation.

of the digital circuit the overall parasitic capacitance (i.e., gates and intercon-
nects) and the supply voltage should be decreased. Moving to a small MOSFET
size reduces the supply voltage (Vdd), the threshold voltage (Vth), and the gate
oxide thickness (Tox). There are three types of the transistors depending upon
threshold voltage: Low Threshold Voltage (LVT) transistor that are used for high
performance, Standard Threshold Voltage (SVT) transistors and High Threshold
Voltage (HVT) transistor use for low leakage.

There are different techniques that have been proposed to reduce the leak-
age energy without affecting the performance. These techniques can be divided
based on the available time slack. They are called design time techniques and run
time techniques. Design time technique is used for non-critical paths which help
in reducing leakage with Multi-Supply Voltage [35] and Dual Vth [36] technique.
They are static and cannot be changed while the circuit is operating. Run time
techniques can be sub-divided into two groups depending on the reducing standby
leakage or active leakage. Standby leakage puts the system in low leakage mode
when the operation is not required with support of sleep transistors [37], stack-
ing [38] and VTCMOS [39]. Active leakage makes the system slower by changing
the Vth or Vdd when performance is not required, while reducing the leakage with
the DVS [40] and DVTS [41] technique.

Table 5.1: Optimization technique for leakage current.

Design time techniques Run time techniques
Standby leakage reduction Active leakage reduction

Dual Vth Sleep transistor DVS (Dynamic Vdd Scaling)
Multi-Supply Voltage Stacking and VTCMOS DVTS (Dynamic Vth Scaling)
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5.1.3 Techniques for Optimization Cipher Expressions
Circuit optimization is a crucial part of designing high-performance circuit. Op-
timization is an automated process for achieving the performance of the circuit
which is already done in the previous chapter. In this section the main focus is on
Boolean expression optimization at transistor level which will later be designed in
cadence to get proper functionality of the circuit.

Boolean Algebra

Boolean algebra [42] is a set of rules which are developed to solve or reduce the
number of logic gates required to perform some particular digital logical functions.
It is mathematics which help in the analysis of digital gates and circuits. There
are lots of different laws of Boolean algebra like Annulment Law, Identity Law,
Idempotent Law, Double Negation Law, De Morgan’s theorem (Figure 5.2), etc.
In Grain-128AEAD [1] there are complex Boolean expressions which are designed
using XOR and XNOR gates, which cannot be optimized using Boolean algebra
at a transistor level, therefore, there are different design techniques for complex
Boolean expressions [43]. In our thesis, we will analyze pass-transistor logic and
transmission gate logic for transforming the complex expressions to other Boolean
expressions that use fewer transistors. They are explained in the following sections.

break!

NAND to Negative-OR

(AB)

A + B

NOR to Negative-AND

(A B)

(A + B)

break!

Figure 5.2: De Morgan’s theorem.

MOSFET as a Pass Gate logic

The pass transistor [44] design has the advantage of being simple and fast. Com-
plex combinational logic can be implemented with a minimal number of transistors,
which will reduce parasitic capacitance. Hence, the circuit will work faster. As a
pass transistor design example, Figure 5.3 shows a Boolean function realized using
pass transistors. In this circuit the F output is either the NOR (A+B), XOR
(A⊕B), NAND (AB), AND (AB) or OR (A+B) depending on the values of P1,
P2, P3 and P4.

One of the main drawbacks of the pass transistor implementation is the voltage
drop when signals pass through them. Another is the high internal capacitance
because the junction capacitors are open to the signals passing through. Therefore
to overcome this problem each pass gate based circuit should follow with an active
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logic block(level restorer), such as a CMOS inverter support with a full swing
PMOS (as shown in below Figure 5.4).
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Figure 5.3: Standard gate design using pass transistor.
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Figure 5.4: Level restorer.

MOSFET as a Transmission Gate Logic

The transmission gate [45] operates as a bi-directional switch. It requires two
control signals to control NMOS and PMOS. Through transmission gates, we can
design XOR/XNOR, latches, multiplexers and flip-flops. The schematic and truth
table is shown in Figure 5.5. The control signal A is applied to the NMOS and
the complement of the control signal S to the PMOS. If the control signal A
is high, both transistors are turned on providing a low resistance path between
IN and OUT. If the control signal A is low, both transistors will be off and the
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path between the nodes IN and OUT will be an open circuit. There are lots of
advantages of a transmission gate. A complex gate can be implemented using
a minimum number of transistors using a transmission gate. The combination
of both NMOS and PMOS in the transmission gate avoids the problem of static
power dissipation, noise margin and switching resistance.

Vdd

Out

In

NMOS

PMOS

Clk+

Clk-

Out/InIn/Out
Clk+

Clk-

(b)
(a)

Clk nMOS pMOS Output
0

1(C) ON ON INPUT

OFF OFF Z(impedance)

Figure 5.5: Transmission Gate circuit diagram and symbol.

5.2 Boolean Expression Optimization for Grain-128AEAD
All the optimization of the cipher [1] in the Synopsys tool is completed using a
standard cell library. Later on, while analyzing the synthesis output in Design
Vision different circuit were there for different functions of the cipher.

The general criteria to convert any Boolean expression to transistor level is
to design the truth table and analyze the expression using the K-map method.
The second step is to design a Pull Up Network (PUN) and a Pull Down Network
(PDN) circuit for the Boolean expression like shown in Figure 5.6. For “A AND
B” the PDN network will have two transistors in series and PUN will have two
transistors in parallel. Similarly, for “A OR B” the PUN network will be in series
and a PDN network will be in parallel.
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P P1

N

N1

A

B
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F = ~(A*B)
NAND

A

B

F

VddVdd

F = ~(A+B)
NOR

Figure 5.6: Boolean expression to transistor level.
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The cipher expressions that are going to be optimized are complex Boolean
expressions, therefore, the general Boolean algebra technique is not applicable
when it is optimizing for low power, less transistor count or high speed. We need
to refer to complex circuit optimization techniques which are mentioned in the
previous sections. During the analysis of different functions of Grain-128AEAD,
the first optimization is applied to y function, which has a duplicate variable in its
expression and it looks similar to “AB ⊕ ACD”. Therefore, we tried to optimize
the y using a transmission gate technique for reducing the transistor count and
improving the functionality of the expression as seen in Figure 5.7.
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Figure 5.7: A figure of a boolean expression “AB xor ACD” optimized
at transistor level.

The second optimization is attempted for the nonlinear feedback polynomial
function which uses a polynomial of two, three and four variable. Hence, all the
Boolean expressions like “AB ⊕ CD ⊕ EF ⊕ GH” (Figure 5.8), “AB ⊕ CDE”,
“CDE ⊕ FGH” etc. are designed using transmission gate technique to improve
the circuit performance for the battery operated embedded security devices. In
Appendix B additional transistor optimizations can be seen for the above mention
Boolean expression.
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Chapter 6
Result & Conclusion

The result is divided into two groups: straightforward implementations and opti-
mized implementations. In each group we use the scripts presented in Chapter 4
to obtain one circuit optimized for maximum speed and another circuit optimized
for low area and power. The high-speed circuit uses two different scripts that we
refer to as synthesis script 2 and 3, where the script that gives the best result for
each parallelization is listed in the result. Synthesis script 2 is compile_ultra
with grouping and synthesis script 3 is without grouping as is described in Sec-
tion 4.1.2. The low area/power circuit is synthesized using the best high-speed
script and the low power/area script for comparison between the scripts. The low
power/area script, which we refer to as synthesis script 1 includes compile_ultra
with clock gating. The high speed script uses high-speed transistors (LVT) and
the low power/area script uses low-power transistors (HVT). Moreover, the result
for the low power/area script is given in two frequencies: 100 kHz and 10 MHz.

6.1 Straightforward Implementation
In the straightforward implementation, no RTL optimizations are used, which
makes it a good candidate for low area and power applications compared to the
optimized versions that all use extra hardware to increase throughput. The max-
imum speed is however still investigated in order to get a comparison with the
optimized implementation.

6.1.1 High Speed

The result for the high-speed circuit of the straightforward Grain-128AEAD im-
plementation for all parallelizations are presented in Table 6.1 using the standard
state machine and counter controller.

To see how the modified controller performs in comparison to the normal
controller for the straightforward implementation, the same result is presented
using the modified controller in Table 6.2

It can be noted from the result that the new controller seems to perform
significantly better in comparison to the standard controller. The area is smaller
and the power consumption is even decreased for the 32-parallelized version even
though the cipher is running at a higher maximum frequency.
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Table 6.1: High speed result for the straightforward implementation.

n Max Per. Max Freq. Throughput Area Power Script
(ns) (GHz) (Gb/s) (µm2) (mW )

1 0.49 2.04 1.02 5594 0.17 3
2 0.61 1.64 1.64 5774 0.14 2
4 0.64 1.56 3.12 6932 0.21 2
8 0.69 1.44 5.76 8994 0.42 2
16 0.77 1.29 10.32 13032 0.92 2
32 0.84 1.19 19.04 21271 2.54 2

Table 6.2: High speed result for the straightforward implementation
using the modified controller.

n Max Per. Max Freq. Throughput Area Power Script
(ns) (GHz) (Gb/s) (µm2) (mW )

1 0.48 2.08 1.04 5219 0.18 3
2 0.49 2.04 2.04 5498 0.19 2
4 0.51 1.96 3.92 6385 0.28 2
8 0.56 1.78 7.12 8056 0.57 2
16 0.63 1.59 12.72 11966 0.91 2
32 0.73 1.37 21.92 19047 1.62 2

6.1.2 Low Power and Area
The result of running the low area/power script (synthesis script 1) compared
to the best high-speed script at 10 MHz and 100 kHz is given in Table 6.3 and
Table 6.4. In the table, the area/power script is denoted PS and the speed script
is denoted SS. The SS script used for each parallelization is the one that gave the
best result and is listed in the table under script. Moreover, a result when using
the modified controller with the area/power script is also included in the table,
denoted as PS2, for comparison.

It is also worth mentioning that the energy per bit in the table is estimated
from the power result as TP/n where T is the clock period and P is the power
result from the table.

Overall the area and power are decreased as expected for lower frequencies.
By comparing the power/area script and high-speed script, it is clear that the low
power/area script is superior when it comes to power. However, the area did not
improve very drastically between the two, but still improved slightly. It is safe to
assume that the reason for the slight improvement in the area is because there is
not much hardware that can be changed or removed without altering the function
of the design at such low frequency.

From the power result, it is clear that the non-parallelized version consumes
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Table 6.3: Result for the straightforward implementation running
at 100 kHz with the speed script compared to the power/area
script using the standard and modified controller.

n Area (µm2) Power (µW ) Energy/bit (pJ) Script
SS PS PS2 SS PS PS2 SS PS PS2 SS

1 5218 4939 4861 2.29 0.23 0.26 22.9 2.3 2.6 2
% - -5 -7 - -89 -88 - -89 -88 -
2 5391 5383 5222 2.33 0.28 0.30 11.6 1.4 1.5 2
% - 0 -3 - -87 -86 - -88 -87 -
4 6141 6137 5952 2.33 0.29 0.32 5.8 0.72 0.81 2
% - 0 -3 - -87 -86 - -87 -86 -
8 7686 7679 7475 2.76 0.31 0.35 3.4 0.38 0.44 2
% - 0 -2 - -88 -87 - -88 -87 -
16 10749 10729 10511 3.77 0.42 0.39 2.3 0.26 0.24 2
% - 0 -2 - -89 -90 - -88 -89 -
32 16990 16903 16537 5.93 0.62 0.46 1.8 0.19 0.14 2
% - 0 -3 - -90 -92 - -89 -92 -

Table 6.4: Result for the straightforward implementation running
at 10 MHz with the speed script compared to the power/area
script using the standard and modified controller.

n Area (µm2) Power (µW ) Energy/bit (pJ) Script
SS PS PS2 SS PS PS2 SS PS PS2 SS

1 5219 4939 4861 33.66 22.07 25.21 3.3 2.2 2.5 2
% - -5 -6 - -34 -25 - -33 -24 -
2 5391 5384 5222 33.96 26.93 29.13 1.6 1.3 1.4 2
% - 0 -3 - -21 -14 - -18 -12 -
4 6141 6139 5958 34.43 27.38 31.05 0.86 0.68 0.77 2
% - 0 -3 - -20 -10 - -20 -10 -
8 7686 7682 7477 36.83 29.38 33.59 0.46 0.36 0.4 2
% - 0 -3 - -20 -9 - -21 -13 -
16 10749 10737 10518 44.02 39.49 36.93 0.27 0.24 0.23 2
% - 0 -2 - -10 -16 - -11 -14 -
32 16897 16907 16535 66.02 57.08 41.66 0.20 0.17 0.13 2
% - 0 -2 - -13 -37 - -15 -35 -

less power, as expected. However, since higher parallelized versions compared to
lower parallelized versions allow for more bits to be generated in each clock cycle,
the consumed energy per generated output bit is actually decreased. What that
means is that in situations where the cipher is not running all the time, it can be
more energy efficient to use the higher parallelized versions. The biggest save in
terms of energy comes at 86-92% running at 100 kHz and 10-35% at 10 MHz.

It can also be noted that the modified controller outperforms the standard
version in terms of area. For power, however, the standard controller beats the
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modified controller for the 1-8 parallelized versions, while the opposite is true
for 16-32. The version that benefits the most is the 32 version with a 92% and
37% power improvement on 100 kHz and 10 MHz respectively. The versions that
benefit the least but still plenty is the 2-parallelized and 4-parallelized versions
with an 86% power improvement at 100 kHz and the 8-parallelized version with
an improvement of 9% on power at 10 MHz.

6.2 RTL Optimizations

In an attempt to improve the result in the previous section the optimizations
presented in Section 3.2 are applied to the straightforward implementation. For the
1, 2, 4, 8 and 16 parallelization version the Galois transformation, y transformation
and the isolation of the authentication state is performed. However, for the 32 and
64 versions, only the isolation of the authentication state optimization is possible,
thus the two other optimizations are not included in those versions.

6.2.1 High Speed

The result for running the high speed script at maximum frequency can be seen
in Table 6.5 and Table 6.6.

Table 6.5: High speed result for the optimized implementation.

n Max Per. Max Freq. Throughput Area Power Script
(ns) (GHz) (Gb/s) (µm2) (mW )

1 0.43 2.3 1.15 5806 0.24 3
2 0.46 2.17 2.17 5824 0.21 2
4 0.47 2.13 4.26 6936 0.29 2
8 0.48 2.08 8.32 9436 0.67 2
16 0.50 2 16 13042 1.44 2
32 0.69 1.45 23.2 19028 2.66 2
64 1.0 1 32 34565 4.76 2

As can be seen from the result, the 64 unrolled version gives the highest
throughput, area and power consumption. This result is very interesting since
a 64 unrolled versions of Grain-128a and Grain-128AEAD have not up to this
point been considered before.

Overall the optimized version with the modified controller gives the best result
in terms of throughput with 33.6 Gb/s for the 64-parallelized, being the highest
throughput achievable. It is safe to say that the optimized modified controller is
the better version when it comes to speed.
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Table 6.6: High speed result for the optimized implementation using
the modified controller.

n Max Per. Max Freq. Throughput Area Power Script
(ns) (GHz) (Gb/s) (µm2) (mW )

1 0.4 2.5 1.25 5501 0.25 3
2 0.43 2.32 2.32 5605 0.23 2
4 0.48 2.08 4.16 6654 0.29 3
8 0.46 2.17 8.68 9252 0.67 2
16 0.48 2.08 16.64 14805 1.55 3
32 0.64 1.56 24.96 19149 1.78 3
64 0.95 1.05 33.6 35272 2.76 3

6.2.2 Low Power and Area
For comparison to the straight forward implementation, the result from running
the low area/power script for the optimized version is presented in Table 6.7 for
100 kHz and in Table 6.8 for 10 MHz. In the table OPS and OPS2 is denoted as
the result for running the low area/power script on the standard controller and
the modified controller respectively. Moreover, the best result from Table 6.3 and
Table 6.4 is included for comparison. The best result from the straight forward
implementation is specified in the table under script as either 1 for PS or 2 for
PS2.

Table 6.7: Result for the optimized implementation running at 100
kHz with the power/area script for the standard controller and
the modified controller compared to the best result from the
straightforward implementation.

n Area (µm2) Power (µW ) Energy/bit (pJ) Script
PS OPS OPS2 PS OPS OPS2 PS OPS OPS2 PS

1 4939 5173 4968 0.23 0.29 0.29 2.3 2.9 2.9 1
% - 4 0 - 27 28 - 26 26 -
2 5383 5534 5391 0.28 0.29 0.30 1.4 1.4 1.5 1
% - 3 0 - 2 5 - 0 7 -
4 6138 6378 6232 0.29 0.30 0.32 0.7 0.7 0.8 1
% - 4 2 - 4 9 - 0 14 -
8 7679 8153 7988 0.31 0.34 0.35 0.4 0.4 0.4 1
% - 6 4 - 8 12 - 0 0 -
16 10510 11556 11385 0.39 0.43 0.41 0.2 0.3 0.3 2
% - 10 8 - 8 4 - 50 50 -
32 16537 17371 17148 0.46 0.64 0.51 0.1 0.2 0.1 2
% - 5 4 - 40 12 - 100 0 -
64 28705 30247 29938 0.63 1.08 0.74 0.09 0.2 0.1 2
% - 5 4 - 72 18 - 122 11 -
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Table 6.8: Result for the optimized implementation running at 10
MHz with the power/area script for the standard controller and
the modified controller compared to the best result from the
straightforward implementation.

n Area (µm2) Power (µW ) Energy/bit (pJ) Script
PS OPS OPS2 PS OPS OPS2 PS OPS OPS2 PS

1 5209 5173 4968 22.07 29.62 28.57 2.2 2.9 2.8 1
% - 0 -4 - 34 29 - 31 27 -
2 5383 5538 5394 26.93 27.58 28.43 1.3 1.3 1.4 1
% - 3 0 - 2 6 - 0 7 -
4 6139 6380 6237 27.38 28.43 30.05 0.6 0.7 0.8 1
% - 4 2 - 4 10 - 16 33 -
8 7682 8157 7992 29.38 31.70 32.86 0.36 0.39 0.41 1
% - 6 4 - 8 12 - 8 14 -
16 10516 11565 11388 36.93 39.80 38.18 0.23 0.24 0.23 2
% - 10 8 - -0.4 3.4 - 4 0 -
32 16534 17369 17147 41.66 59.93 47.14 0.13 0.18 0.14 2
% - 5.0 4 - 44 13 - 38 8 -
64 28728 30265 29956 55.93 100.6 67.23 0.08 0.15 0.1 2
% - 5 4 - 80 20 - 87 25 -

As can been seen from the results of the tables, the power consumption and
area does not get better using the optimized RTL version, which makes the
straightforward implementation the winner in terms of power and area.

6.3 Transistor Level Optimizations
To get an estimation of how much the transistor level optimizations improve the
design, we need to look at the gate and transistor count for the whole design.
However, in order to do that we must first look at the transistor count and the
gate count of each cell. Table 6.9 contains the transistor count and gate count for
a few different gates in ST65nm standard cell library. The gate count of every gate
is calculated as its transistor count divided by the transistor count for NAND (4).
All transistor counts are retrieved from the ST65nm cell libraries. The result for
the original cipher without any transistor optimization is denoted as ORG in the
table, while the cipher with the transistor optimizations is denoted as OPT.

The transistor-level optimizations are made only on expressions with AND
and XOR gates, which are changed to NAND and XNOR gates by the synthesis
tool. So, in order to estimate how many gates can be saved with the transistor
level optimizations we consider the feedback and output functions as NAND and
XNOR gates. Since the optimizations can only be studied in terms of area due
to the difficulty of implementing a custom library used for synthesis, the standard
modified controller at 100 kHz, which has the best area, is used for calculating
the gate count of all the control/extra logic. In Table 6.10, the gate count for
design before and after optimization is displayed. The result before optimization
is calculated using Table 6.9. The result after optimization is estimated using the
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Table 6.9: Transistor count and gate count for the ST65nm tech-
nology.

ST65nm
Function Transistor Count Gate Count
Inverter 2 0.5
AND/OR2 6 1.5
AND/OR3 8 2
AND/OR4 10 2.5
NAND/NOR2 4 1
NAND/NOR3 6 1.5
NAND/NOR4 8 2
XOR/XNOR2 10 2.5
DFF 32 8

same table with the difference being that XNOR is worth 2 instead of 2.5 in the
gate count. This change comes from the fact that the transmission gate acting as
an XNOR gate saves 2 transistors.

Table 6.10: Gate count for Grain-128AEAD without transistor level
optimization compared to with transistor level optimization.

Gate Count Parallelization
Building Block 1x 2x 4x 8x 16x 32x 64x

Version ORG OPT ORG OPT ORG OPT ORG OPT ORG OPT ORG OPT ORG OPT
LFSR 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024
NFSR 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024

f 12.5 10 25 20 50 40 100 80 200 160 400 320 800 640
g 49.5 42 99 84 198 168 396 336 792 672 1584 1344 3168 2688
y 35.5 29.5 71 59 142 118 284 236 568 472 1136 944 2272 1888

Accumulator 512 512 512 512 512 512 512 512 512 512 512 512 512 512
Shift Register 512 512 512 512 512 512 512 512 512 512 512 512 512 512

Accumulator Logic 224 192 224 192 448 384 896 768 1792 1536 3584 3072 7168 6144
Total 3393.5 3347.5 3491 3431 3910 3790 4748 4508 6424 5944 9776 8816 16480 14432

% - -1 - -2 - -3 - -5 - -7 - -10 - -12

According to the result 1% to 12% is saved in total. For other ciphers, it might
be possible to save more area, but for Grain-128AEAD not much else can be done
unless different technologies other than CMOS is considered.

6.4 Analysis
Looking at the design result it can be interesting to analyze how, based on our
result, the Grain-128AEAD performs in general. If we take a normal AAA battery
with approximately a 1.3 Wh capacity and let it act as a power source for the
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Grain-128AEAD. It can be estimated, assuming for simplicity that the capacity
is constant, that the most power efficient (standard implementation) can run for
236 to 562 years at 100 kHz and 3 to 7 years at 10 MHz non-stop. Moreover,
the fastest implementations (Optimized version with modified controller) can run
for 19 to 220 days at full speed non-stop. For more realistic situations where the
cipher is not constantly encrypting/decrypting every clock cycle, the result is of
course higher.

Looking at techniques, one interesting technique to look at is RFID (Radio
Frequency Identification). RFID is a very common technique that plays a large
role in the Internet of Things. It uses electromagnetic induction to detect, track,
identify and communicate with tags that contain stored data. RFID is used in
today’s industry for an abundant amount of things like for example assset tracking,
ID badging, access control and so on. Unfortunately, most common RFID tags
can easily be cloned and read by unauthorized parties [46][47]. For tags that
require additional security to prevent these issues it is estimated that for a 5
cent design roughly 500 to 5000 gates can be used as resources for security [48].
Looking at our gate count result from Table 6.10 it seems plausible to fit the
lower parallelized versions of Grain-128AEAD onto such a design in order to give
the tags authentication and encryption/decryption. There already exist certain
designs already that uses Grain-128a, which is very similar to Grain-128AEAD, to
add security features. One example being the IT70 Secure Passive RFID Tag [47].
For the lowest cost tags with around 500 gates it is of course not possible to fit
Grain-128AEAD since the gate count is too high, but also because the power
consumption for such tags are limited to 10 uW at around 10 MHz [49], which is
approximately what the cipher itself consumes.

6.5 Conclusion

In conclusion, we have managed to achieve all goals set out for the thesis. We have
optimized Grain-128AEAD on an RTL level, transistor level and synthesis level
for the area, speed, and power. Giving us the best throughput at 1.25 Gb/s for the
non-parallelized version and 33.6 Gb/s for the new 64-parallelized version. The
best area improvement of 2-7% for synthesis at 100 kHz and 10 MHz, and 1-12%
for the transistor level optimizations. In addition to the best power improvement
of 52-94% for the 64-parallelized version and the least improvement of 21% for the
4-parallelized version running on the power script.

When it comes to answering the question of which version is the best in terms
of area, speed, and power, the answer is that the 64-parallelized optimized version
using the modified controller is the fastest for high speed and the non-parallelized
version with the modified controller is the best in terms of area. For power it is dif-
fers depending on the parallelization with the 1-8 parallelized versions performing
better with the straightforward implementation without the modified controller
and the rest performing slightly better with the modified controller when it comes
to the 16-64 parallelized versions.

Future work could include making optimizations for other ciphers and see how
their result compares to Grain-128AEAD. It could also be to make more unrolled
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versions of Grain-128AEAD with a controller that can handle a parallelization
which is not in the power of 2.
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Appendix A
Code

The VHDL and synthesis code for the implementations can be found at https:
//github.com/Noxet/Grain-128AEAD

55

https://github.com/Noxet/Grain-128AEAD
https://github.com/Noxet/Grain-128AEAD


56 Code



Appendix B
Transistor Optimization of the

Grain-128AEAD Boolean
Expressions

In this appendix some additional transistor optimizations are presented. The
Boolean expressions are extracted from the feedback functions and output function
of Grain-128AEAD.
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Figure B.1: A figure of a boolean expression “ABCD xor EFG” op-
timized at transistor level.
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Figure B.2: A figure of a boolean expression “AB xor CD” optimized
at transistor level.
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Figure B.3: A figure of a boolean expression “ABC xor DE” opti-
mized at transistor level.
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Figure B.4: A figure of a boolean expression “AB xor CD xor EF”
optimized at transistor level.
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