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Abstract

Roots play a key role in terrestrial carbon and water cycles, and therefore for the global
climate system. They mediate plant evapotranspiration, influence photosynthetic pro-
cesses and are responsible for atmospheric carbon transport into the pedosphere. Fine
roots in particular are chiefly regulating water and nutrient uptake. Recent research has
suggested that the representation of fine roots in ecosystem models may be too simplistic
to accurately represent vegetation responses to predicted environmental changes. Hence,
this thesis explores the implications of incorporating a dynamic vertical root distribution
into a global dynamic vegetation model (LPJ-GUESS) for the modelled water and carbon
fluxes. In contrast to the current static root representation in LPJ-GUESS, root fractions
per soil layers dynamically adapt to permafrost, and to soil water conditions if plants are
under water stress. The different scheme outputs are contrasted and compared to obser-
vational data for gross primary production (GPP) and actual evapotranspiration (AET)
from 15 FLUXNET sites representing a selected set of (Sub-)Arctic, water limited, and
non-water limited ecosystems. Furthermore, the sensitivity of the new scheme to precip-
itation input and root reallocation rate is examined. It was found that the new rooting
scheme leads to differences in both modelled fluxes and can locally improve model ac-
curacy with regards to the observational data. The total root-mean-square error (RMSE)
for mean annual fluxes is reduced using the new scheme (GPP: 0.62 vs. 0.58 kg C m-2
year-1 and AET: 144 vs. 138 mm year-1). However, other sites and biomes were better
represented by the static scheme. It is therefore crucial to analyse local results carefully
as many input factors not directly determined by the root representation influence the ac-
curacy of modelled fluxes (e.g. dominating plant functional types). It must also be distin-
guished between monthly and annual flux model accuracy. In Arctic sites with low plant
productivity, the new initial root distribution and dynamic adaptation to permafrost do
not considerably change modelled fluxes. Moreover, a dynamic adaptation due to water
stress and availability alone may be too simplistic. Further development of the novel
rooting scheme is therefore needed which is aggravated by limited data availability.
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1 Introduction

1 Introduction

1.1 Background

1.1.1 Roots and the rhizosphere

Belowground vegetation processes are often overlooked. In addition to the obvious
sense that they are usually hidden from sight, for a long time they have also received
relatively low attention from the scientific community in comparison to aboveground
plant properties and mechanisms (Jochen Schenk 2005), especially in terms of their
representation in ecosystem models (Warren et al. 2015). Over recent years, however,
the importance of roots and their interactions with the environment, both above- and
belowground, is increasingly recognized (Warren et al. 2015). The domain within
soils where roots and their surroundings closely interact is referred to as the rhizo-
sphere (Iversen et al. 2015). Accordingly, it is the region within soils where most
biological and chemical processes take place (Schenk and Jackson 2005). There are
various different types and functional or structural definitions of roots. In the most
broad sense, they are often categorized as ’coarse’ (cross-cut larger than 2 mm) and
’fine’ (cross-cut smaller than 2 mm) (Blume-Werry et al. 2016). The former’s main
function is stabilization and storage, while the latter are short lived (i.e. frequently
replaced ih a process called root turnover) and mainly responsible for resource ac-
quisition (Iversen et al. 2015). Consequently, roots regulate plant water and nutrient
uptake, fuel microbial activity, and alter soil structure (Schenk and Jackson 2005).
Through root litter and exudates, photosynthetically assimilated carbon (C) is trans-
ported into the soil (Blume-Werry et al. 2016). Hence, roots also directly and indirectly
affect atmospheric processes: they mediate plant evapotranspiration which chiefly
regulates land surface energy and water balances (Warren et al. 2015). Moreover,
they sequester C in soils and control a plant’s ability to photosynthesize, therefore
substantially influencing the atmospheric C balance (Iversen et al. 2015). Thus, there
is also a direct link to recently observed climatic changes and reciprocal effects on the
biosphere (IPCC 2014).

1.1.2 Relevance of roots for the climate system

To illustrate the importance of root-atmosphere interactions for the global C cycle,
the relationship can be exemplified in northern high latitude ecosystems. There are
various ways to classify the ecosystems in this region (Walker et al. 2005). In this the-
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1 Introduction

sis, a rather broad definition is used: ’Arctic’ refers to regions north of 70◦N where
arctic tundra vegetation is the dominant land cover and ’Subarctic’ refers to regions
between 50◦N and 70◦N where the land cover is dominated by boreal forests or taiga
vegetation (Walker et al. 2005, and references therein). Accordingly, approximately
8% of the global land cover can be classified as Arctic tundra vegetation, even though
exact definitions of the spatial extent vary among studies (McGuire et al. 2012). This
biome is mostly comprised of short-statured flora growing on periodically frozen soil,
frequently situated on permafrost (Walker et al. 2005). Permafrost by definition is
ground that has a temperature at or below 0◦C for at least two consecutive years.
The thin soil layer that gets unfrozen in the summer is called the active layer, and the
depth it extends into the soil is referred to as active layer depth (ALD) (see Hugelius
et al. 2014). Accordingly, it was shown that an increase in active layer depth could
alter vegetation compositions, e.g. deep rooted species such as gramminoids could
get a competitive advantage and reach nutrients in currently frozen soil layers (Wang
et al. 2016a).

A large portion of the biomass of Arctic tundra plant communities is located below-
ground - often more than 80% of the total plant biomass can be ascribed to roots.
In boreal forests on the other hand, the fraction is 30% (Blume-Werry et al. 2016).
Accordingly, a substantial amount of total terrestrial soil organic C – approximately
50% - is stored in the Arctic tundra pedosphere, which corresponds to roughly twice
the current amount of C in the atmosphere (Iversen et al. 2015; Bradley-Cook and
Virginia 2018). A recently observed warming in the Arctic, increasing atmospheric
carbon dioxide (CO2) concentrations and coinciding permafrost degradation, trends
which are predicted to exacerbate in the future (IPCC 2014), therefore illustrate the
importance to understand and predict interactions between the biosphere, the rhizo-
sphere and the climate. Increased temperatures and elevated CO2 levels have direct
and indirect effects on ecosystem processes relevant for the regional C cycles such
as plant productivity, respiration rates, previously frozen soil C that becomes avail-
able for microbial decomposition through thawing permafrost, and nutrient cycling
(Schuur et al. 2008). However, large quantitative uncertainties about the intercon-
nection of these processes and how they will react to future developments remain
(McGuire et al. 2012).

This thesis therefore aims at reducing this knowledge gap on a more global scale.
More precisely, it will try to improve the representation of root structure and dynam-
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1 Introduction

ics in an ecosystem model. Consequently, the mechanistic understanding of processes
related to roots, and the ability to make future predictions about vegetation responses
to environmental changes could be enhanced. The following sections will explain this
in more detail.

1.2 Ecosystem modelling

One approach to study vegetation dynamics and ecosystem reactions to environmen-
tal parameters are process-based ecosystem models. The complexity and applications
of available models vary considerably (Iversen et al. 2015; Warren et al. 2015), but they
all share the same underlying principle to accurately represent ecosystem processes
using mathematical approximations. For instance, plants annually cycle more than
one third of atmospheric CO2 of which approximately 50% is assimilated through
photosynthesis and are therefore an important driver of the global carbon cycle (Sitch
et al. 2003). The growth of plants (through photosynthesis) and corresponding C up-
take, transport to the soil and release through respiration can be estimated derived
from experiment, theory or both. One sophisticated type of ecosystem model to study
vegetation dynamics on large temporal and spatial scales are process-based dynamic
global vegetation models (DGVM). They couple mathematical abstractions of biogeo-
chemical processes and vegetation structure and -composition to e.g. simulate plant
growth and competition for resources over time (Sitch et al. 2003).

1.2.1 LPJ-GUESS

The ecosystem model used in this thesis is the latest version of the Lund-Potsdam-
Jena General Ecosystem Simulator (LPJ-GUESS r7539) (Smith et al. 2001, 2014). The
dynamic vegetation model is designed to provide optimized results for studies on
global and regional scales. A description of the updated version including vari-
ous modifications such as a new set of plant functional types (PFT) can be found
in Ahlström et al. (2012). Moreover, the model incorporates a scheme for soil water
freezing (Zhang et al. 2013). A PFT is a group of plant species which share similar
structural, life-strategy and biogeochemical features. For example, PFTs differ in the
following attributes: growth form, phenology, photosynthetic pathway (C3 or C4),
bioclimatic limitations for establishment and survival, and, in case of woody PFTs,
allometry. In LPJ-GUESS, vegetation dynamics and corresponding ecosystem pro-
cesses are represented as follows: a modifiable number of n patches (area of 0.1 ha) is
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1 Introduction

assigned to a stand (area of 10ha - 2500 km2) which represents the overall vegetation
composition in a specific grid cell location. Each patch therefore depicts a ’random
sample’ of the locality, i.e. a number of PFTs that are able to grow in the given condi-
tions in order to account for effects of local disturbances and differences in stand age
(Figure 1). In this thesis, the ’cohort’ mode of LPJ-GUESS is used. Here, in the case
of woody PFTs, one average single individual represents an entire cohort of individ-
uals growing in the same patch. Primary production and plant growth are simulated
according to the approach of LPJ-DGVM (Sitch et al. 2003) that was extended by the
implementation of nitrogen cycling (Smith et al. 2014). The net primary production
(NPP) that is simulated for each average individual is partitioned to leaves, fine roots
and, for woody PFTs, sapwood. Here, each PFT has its own set of allometric relation-
ships that determine biomass acquisition, height and diameter growth (Sitch et al.
2003, see Figure 1). Plant recruitment and mortality (i.e. population dynamics) are
stochastic processes, influenced by current resource availability, plant age and the
life history characteristics of each PFT. Furthermore, vegetation composition is de-
termined by the plants’ competition for resources (e.g. incoming radiation based on
canopy properties). Figure 1 depicts a schematic representation of the most important
principles.

1.2.2 Motivation for a new rooting scheme

A growing body of research over recent years suggests that various current mecha-
nistic vegetation models do not capture key processes related to roots (Iversen et al.
2015) and are therefore limited to make predictions for future, possibly more stress-
ful, environments (Warren et al. 2015). For instance, Warren et al. (2015) suggest to
incorporate spatial and temporal dynamics for root productivity based on specific
root traits and environmental conditions in the soil. Wang et al. (2016b) conclude that
accurate implementation of vertical root distribution is crucial for hydrological, eco-
logical and climatic simulations.

In its current implementation, LPJ-GUESS utilizes a static rooting scheme. In general,
a PFT specific amount of totally assimilated plant C is assigned to root growth. The
investment of C to fine roots while growing is mainly constrained by water and ni-
trogen stress and a maximum leaf-to-root mass ratio. Moreover, fine roots can act as
a C reserve for leaves in times of stress. For more details refer to Sitch et al. (2003).
The amount of water that is taken up by the plants is thereby determined by the
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1 Introduction

Figure 1: Vegetation representation in LPJ-GUESS cohort mode. This scheme represents an
earlier version of the model which only used two soil layers (15 in the one used in
this thesis). Adapted from Smith et al. (2014).

availability per soil layer and the fraction of fine roots in those layers. The root frac-
tion distributions per soil layer in the static rooting scheme employed in this thesis
only vary among three different plant functional groups: shrubs and trees, grass and
low shrubs (Figure 2). The respective fractions are identical in the soil layers from
0-50 cm and 50-150 cm, respectively, as earlier versions of LPJ-GUESS represented
soil dynamics with only two layers. Plus, they remain constant even under changing
environmental conditions. For instance, they can be assigned to permanently frozen
soil layers. Therefore, the new rooting scheme that is developed in this thesis aims
at incorporating a more sophisticated root representation. It follows a similar mathe-
matical approach as proposed by Wang et al. (2016b, 2018) which was developed for
the Community Land Model (CLM). In their concept, fine roots are dynamically re-
distributed based on resource availability, more precisely on a compromise between
water and nitrogen occurrence per soil layer (Wang et al. 2018). However, in contrast
to CLM 4.5, LPJ-GUESS does currently not incorporate vertical distribution of nitro-
gen in the soil and root growth takes place annually as opposed to daily. Therefore,
the dynamic root fraction reallocation was adapted to the LPJ-GUESS framework: the
vertical root distribution is determined by water stress and water availability, and a
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1 Introduction

standard root distribution based on empirical studies (Zeng 2001) if water conditions
are not limiting. Thus, if an individual is under water stress conditions, a larger frac-
tion of the roots is allocated in soil layers with higher water availability. The current,
static implementation will henceforth be referred to as SI, the new, dynamic imple-
mentation will be referred to as DI.

Water availability is the most limiting factor in various ecosystems and strongly cor-
relates with plant growth and survival. It is mainly determined by precipitation and
evapotranspiration, and locally by soil characteristics and topography (Olmo et al.
2014, and references therein). Consequently, water availability in a specific location
can also vary substantially over time, for instance with changes in mean annual pre-
cipitation (MAT). Plants and vegetation compositions will therefore be affected by
future changes in precipitation patterns (Olmo et al. 2014). According to IPCC (2014),
while average annual rainfall is expected to increase in the majority of locations in the
future, especially mid-latitude and subtropical dry regions will likely deal with a sig-
nificant decrease in precipitation. Aridity may furthermore increase in some places
due to projected rises in temperature alone, independent of changes in precipitation
(IPCC 2014). Many plant species react to aridity and drought by relatively higher in-
vestment in root biomass as opposed to shoot biomass. Thus, transpiration rates are
reduced while simultaneously soil exploration and water acquisition are enhanced
(Olmo et al. 2014). This has also been shown to influence the vertical distribution
of roots. In times of drought, evapotranspiration causes a reduction of soil water in
upper soil layers. Numerous species react by enhanced root growth in wetter soil
layers (Cattivelli et al. 2008). For instance, Olmo et al. (2014) showed that 10 woody
species shifted their vertical root distribution towards higher proportions in deeper
soil layers under experimental drought conditions and Tsutsumi et al. (2002) illus-
trate a strong response of vertical root structure to punctual irrigation for Glycine max
(soybean).

The aforementioned findings provide the theoretical basis for the new root represen-
tation. According to the presented physiological functions of roots and their repre-
sentation in LPJ-GUESS, it is furthermore hypothesized that a change in vertical root
distribution will have an impact on modelled C and water fluxes. This may have
significant effects on a global scale - therefore, the implications of the new rooting
scheme are tested across several selected ecosystems with a special focus on (Sub-
)Arctic and water limited sites. For a schematic representation of the approach refer
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1 Introduction

to Figure 3. All relevant assumptions and equations, including a description how
water stress is determined, are presented in the methods.

1.3 Aim and justification

To summarize, this thesis aims at exploring the potential benefits of including a dy-
namic root redistribution in response to environmental change in an ecosystem model
(LPJ-GUESS) as e.g. discussed by Iversen et al. (2015). It depicts an exploratory at-
tempt at addressing the following questions:

1. How can a dynamic vertical root redistribution based on water stress and water
availability affect carbon and water fluxes across various biomes with a special
focus on water limited locations?

2. How does this new rooting scheme affect the performance of modelled gross
primary production (GPP) and actual evapotranspiration (AET) fluxes in rela-
tion to observational field data?

3. How does a dynamic adaptation of the vertical root distribution to frozen soil
and permafrost affect carbon and water fluxes in Subarctic and Arctic locations?

Tackling these questions is crucial as recent research has indicated that the repre-
sentation of roots in current ecosystem models, and in LPJ-GUESS in particular, may
be too simplistic for the more stressful environmental conditions projected for the fu-
ture (IPCC 2014; Iversen et al. 2015; Wang et al. 2018). Moreover, in earlier versions
of LPJ-GUESS, the vertical rooting profile of a PFT is based on a categorization into
one of three plant functional groups with fixed root fractions per soil layer. However,
empirical studies are available that provide parameter based root distributions for
a wider set of PFT and soil layers. It was shown that incorporating these findings
can improve model accuracy (Zeng 2001). Enhancing the performance of ecosystem
models through improving root representation could ultimately lead to more robust
predictions of the C balance between the biosphere and the atmosphere. As a conse-
quence, projections for future climate scenarios would become more accurate (Iversen
et al. 2015). Furthermore, in the current implementation of LPJ-GUESS, vertical root
distribution is not affected by permafrost. A dynamic adaptation is hypothesized
increase the root fractions in the (active) upper soil layers which may affect model
performance in Arctic regions, which are of special importance for the global climate
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2 Methods

system due to the large amount of C stored in the soils (Bradley-Cook and Virginia
2018).

2 Methods

2.1 Novel dynamic rooting scheme

2.1.1 Initial vertical root distribution

The static rooting scheme in the version of LPJ-GUESS used in this thesis assigns
fixed root fractions to individuals in each of the 15 soil layers. In this case, there
are different distributions for three plant functional groups (PFG): Shrubs and trees,
grass and low shrubs (Figure 2, see Table S1 for corresponding PFTs in the model), but
different root fraction assignments have also been utilized (see e.g. Sitch et al. 2003).
As in previous model versions the soil and hydrological processes were represented
using only two layers, the first two mentioned PFGs have identical fractions in soil
depths from 0 to 0.5 m and 0.6 to 1.5 m, respectively. A more advanced approach was
implemented for low shrubs. Refer to (Sitch et al. 2003) for a detailed description of
root and soil dynamics in the model.

Figure 2: Current static root fractions (a) and the initial root fractions of the new dynamic
rooting scheme (b) per current model version soil layer (15 layers, each with a depth
of 10 cm) for different plant functional groups in LPJ-GUESS. Refer to the appendix
(Table S1) for corresponding plant functional types.

The initial vertical root distribution and, accordingly, the distribution under no wa-
ter stress of the new dynamic scheme follows a more advanced approach as proposed
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2 Methods

by Zeng (2001). It builds upon an empirical global root distribution model from Jack-
son et al. (1996) and was shown to more accurately capture the maximum rooting
depths of plants while maintaining the same root fractions in the upper soil layer (i.e.
both mentioned models have identical root fractions up to a depth of 0.1 m which
corresponds to the top layer in LPJ-GUESS). Consequently, the performance of land
surface models in various biomes could be improved (Zeng, 2001). The function to
calculate the cumulative root fraction R f Z(d) is given as:

R f Z(d) = 1− 1
2
(e−ad + e−bd) (2.1)

where d is the soil depth in meters, and a and b are PFT specific parameters (Zeng
2001, see Table S1). To obtain the respective non-cumulative fraction in each soil layer
R f Z,i(d), the following formula is used:

R f Z,i(di) = R f Z(di)− R f Z(di−1) (2.2)

where i is the soil layer under the constraint that R f Z,i(di) = R f Z(di) for i = 1. If
the maximum rooting depth of a PFT exceeds the maximum soil layer depth of LPJ-
GUESS (in this version: 1.5 m), the root fractions are normalized as follows so that
they sum to 1:

R f Z,i,normalized =
R f Z,i(di)

∑n
i=1 R f Z,i(di)

(2.3)

where n is the total amount of soil layers. As a consequence, the differences be-
tween PFT root distributions are somewhat smaller compared to Zeng (2001). How-
ever, maximum rooting depths are flexible regarding possible future model updates
with deeper soil layers. R f Z,i,normalized and R f Z,i will hereafter be used interchange-
ably.

2.1.2 Water stress

In accordance with Wang et al. (2016b), a factor βt is utilized to approximate water
stress for plants. In this case, it is based on the ratio of leaf intercellular to ambient
CO2 concentration, which is utilized as a proxy for the daily water stress (Sitch et al.
2003). More precisely, it builds upon the fact that stomatal conductance strongly cor-
relates with a deficit of water vapor pressure, which can also be linked to changes in
the mentioned ratio (Tan et al. 2017). A λmax (0.8 for C3 plants and 0.4 for C4 plants, i.e.
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2 Methods

according to their respective photosynthetic pathway) value is assigned to each PFT
which denotes the optimal partial pressure ratio under no water stress. Subsequently,
a daily partial pressure value λ (0 ≤ λ ≤ λmax) is determined based on hydrological
conditions during the growing season (see next subsection). The growing season wa-
ter stress value used for the new rooting scheme is therefore calculated at the end of
each simulation year as:

βt =
∑ λ GPPns/ ∑ GPPns

λmax
(2.4)

where ∑ λ GPPns is the annual sum of daily λ times the potential GPP under no
water stress condition (λ) and ∑ GPPns is the potential GPP that would be obtained
without taking water stress into account (i.e. ∑ λ GPPns ≤ 0.8 ∑ GPPns for C3 plants
and ∑ λ GPPns ≤ 0.4 ∑ GPPns for C4 plants). Therefore, 0 ≤ βt ≤ 1 is the water stress
scalar over the growing season with a higher βt denoting higher water availability
and thus better growing conditions for the plant.

2.1.3 Water availability per soil layer

An annual mean water content for the growing season wgs,i (hereafter also referred
to as GSWC) is calculated for each of the 15 soil layers. Here, w denotes the water
content as a fraction of available water holding capacity (see Sitch et al. 2003). Ac-
cordingly, the more a plant is under water stress, the more proportion of C is assigned
to root layers where relative water availability during the growing season was high.
A growing season day is defined as a day with ambient air temperature T > 5◦C
where root redistribution is assumed to occur. Mean growing season water content is
therefore calculated as:

wgs,i =

{
1

dgs
∑

dgs
k=1 wd,i , dgs > 0

0 , dgs = 0
(2.5)

with i being the respective soil layer, k being individual growing season days, dgs

being the total amount of growing season days and wd,i being the daily water content
on a growing season day in the corresponding soil layer. Consequently, 0 ≤ wgs,i ≤ 1.

2.1.4 Dynamic root allocation

Fine root growth takes place at the end of each simulation year. To take the vertical
distribution of the previous year into account, it is assumed that fine root longevity
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(see Sitch et al. 2003) partly determines the new year’s root distribution, unless root
longevity is shorter than 1 year. The amount of C associated with the roots is there-
fore divided into two variables: one denoting this year’s root growth (Cinc) and one
containing the total root C (Ctot; new growth plus remaining C from previous years).
The updated fraction of C in a soil layer C f r,i is calculated as follows:

C f r,i =

[
(1− βt)

wgs,i∆zi

∑n
i=1 wgs,i∆zi

+ βt R f Z,i(di)

]
· Cinc +

[
(Ctot − Cinc) · R f i

]
(2.6)

where ∆zi is the difference of the depths of soil layer i and soil layer i− 1 (in me-
ters) to account for possible differences in soil layer depth of future releases, n is the
number of soil layers and R f i is the root fraction of layer i in the previous year. There-
fore, if a plant is under water stress (βt < 1), the fraction of available soil water in a
soil layer (in relation to the sum of GSWC in all layers) will partly determine the frac-
tion of roots that is assigned to that layer. For instance, during drought conditions
when the top layers’ water content is depleted (Olmo et al. 2014), the weighting ratio
for water availability (as per fractional GSWC) will be higher in lower layers and a
higher root fraction will be assigned here. Consequently, βt acts as a weighting fac-
tor that determines whether root fraction allocation will be determined by soil water
availability or the standard root distribution. Thus, on the contrary, the less a plant
is water limited, the more the resulting distribution will be determined by the initial
(optimum) Zeng (2001) distribution R f Z,i(di) per soil layer. Additionally, in order to
avoid root growth in frozen soil, one additional constraint was implemented which
affects the dynamic reallocation independent of water stress. For all layers di with a
depth i situated below the active layer depth (ALD), the root fraction becomes zero:

∀ R fi | i > ALD : R fi = 0 (2.7)

If at least one soil layer was permanently frozen over the year, the fractions in the
other ones are normalized based on the proportion of total C in the unfrozen layers
(Equation 2.8). Finally, the new root fractions in each soil layer are updated as follows:

R f i =
C f r,i

∑n
i=1 C f r,i

(2.8)

Refer to Figure 3 for a schematic representation of the assumptions and principles
of the new rooting scheme.
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Figure 3: Schematic representation of the novel root distribution algorithm DI.

2.2 Model setup and adaptations

This section briefly describes utilized important run options for LPJ-GUESS and the
adaptations that were made for the implementation and output of the novel rooting
scheme. For more details refer to (Smith et al. 2014). All simulations were executed
for n = 10 patches using the cohort mode of LPJ-GUESS (Smith et al. 2001). The
model spin-up phase was 500 years. Here, a 30 year climate input obtained from the
beginning of the historic simulation period is cycled repeatedly. During this period,
vegetation C and nitrogen (N) pools are established and reach an equilibrium state
with the climate at the beginning of the historic simulation period (year 1900). The
dynamic root reallocation only takes place after the spin-up phase of the model. Sim-
ulations included fire and random disturbances, i.e. generic patch-destroying events
that eliminate all living vegetation while litter remains. The vegetation water uptake
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in the model is based on patch PFT properties, therefore a mean patch PFT root frac-
tion (i.e. of all individuals belonging to the same PFT in a patch) per soil layer is
calculated. The adapted model output for each simulation year includes the water
stress factor βt, and for each soil layer: mean root fractions per PFT, a total mean root
fraction (arithmetic mean of PFT root fractions; used for analysis in this thesis) and a
mean GSWC across patches.

2.3 Data

This section describes the data and the preprocessing that was used to drive the
model and to evaluate the model output. For a more detailed description of the data
used for processes in LPJ-GUESS refer to Smith et al. (2014) and Sitch et al. (2003).

2.3.1 Climate forcing data

LPJ-GUESS requires climate forcing input data to drive ecosystem processes. The
data sources and handling of the annual atmospheric CO2 concentrations (derived
from observations) and the monthly N deposition rates are described in Smith et al.
(2014). The input for monthly precipitation, temperature and radiation in this thesis,
however, combines a global data set and regional input for the chosen observational
data sites. The CRUNCEP data set (Viovy 2018) spans the entire ice-free global land
surface on a 0.5◦ × 0.5◦ (latitude, longitude) grid. It merges meteorological infor-
mation of the CRU (mean monthly values at 0.5◦ × 0.5◦ resolution) and the NCEP
(6-hourly values at 2.5◦ × 2.5◦ resolution) data sets and is therefore widely used for
modelling purposes (e.g. Wang et al. 2016b). Moreover, the FLUXNET sites used in
this thesis (see subsection 2.3.2) provide climatic data measured in situ. This locally
optimized information is used to bias correct the input of the nearest CRUNCEP grid
cell as follows: a mean error between the FLUXNET and the CRUNCEP data is cal-
culated for the available observational period. Subsequently, this mean error is uni-
formly subtracted from the CRUNCEP input of the entire historical model simulation
period (1900-2015). This assumption therefore aims at improving the climate input
parameters for each site individually.

2.3.2 Carbon and water flux data

The FLUXNET2015 data set (freely available at https://fluxnet.fluxdata.org (accessed
05-10-2019), see Baldocchi et al. 2001; Pastorello et al. 2017) was utilized to relate the
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Figure 4: Locations and identifiers of the utilized FLUXNET data sites.

model output of the different rooting schemes to observational data. FLUXNET is a
scientific network measuring atmospheric state variables (e.g. air temperature, hu-
midity, CO2 fluxes, incoming and outgoing radiation) continuously at more than 900
sites across the globe. This thesis examines the effect of a dynamic root distribution
on carbon and water fluxes across biomes with a special focus on water limited and
Arctic sites. Hence, sites which fulfill these criteria were identified based on their lo-
cation (Figure 4), site description, mean annual precipitation (MAP) and mean annual
temperature (MAT). Additionally, some sites without water limitation were added to
explore the influence of the new rooting scheme on other biomes (e.g. GF-Guy, see
Table 1). Furthermore, sites were selected based on long term data availability (at
least 10 years) to improve statistical robustness of the results. One exception to this
is the site RU-SkP (Takata et al. 2017) which was added due to the fact that it is the
only FLUXNET site where the vegetation is classified as DNF (deciduous needleleaf
forest, i.e. larch forest) that can also be affected by frozen soil layers during the early
growing season. In total, 15 sites were selected. Their names and available meta data
are shown in Table 1. To evaluate carbon and water fluxes, the following measured
variables were compared to the model output data:

1. Monthly gross primary production (GPP)
Gross primary production (GPP) is defined as the total amount of C that is as-
similated by plants through photosynthesis (Hatfield and Dold 2019). GPP can
therefore be expressed as the difference between net ecosystem exchange (NEE,
i.e. net C flux from the biosphere to the atmosphere) and ecosystem respiration
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Table 1: Meta data for the FLUXNET sites used in this thesis (NA = data not available). For
details refer to Pastorello et al. (2017). IGBP denotes respective vegetation land cover
classification (Loveland and Belward 1997): Savanna (WSA), Evergreen needleleaf
forest (ENF), Evergreen broadleaf forest (EBF), Deciduous needleleaf forest (DNF),
Grassland (GRA) and Shrubland (OSH).

Site ID Site name Data start* Data end* Lat Lon Elevation IGBP MAT MAP
[◦] [◦] [m.a.s.l.] [◦C] [mm yr−1]

(Sub-)Arctic
CA-Obs Saskatchewan -

Western Boreal
Mature Black
Spruce

Tier2: 1997 Tier2: 2010 53.99 -105.12 628 ENF 0.79 406

DK-ZaH Zackenberg
Heath

Tier1: 2000 Tier1: 2014 74.47 -20.55 38 GRA -9 211

FI-Hyy Hyytiala Tier1: 1996 Tier1: 2014 61.85 24.29 181 ENF 3.8 709

RU-Cok Chokurdakh Tier1: 2003 Tier1: 2014 70.83 147.49 48 OSH -14.3 232

RU-Fyo Fyodorovskoye Tier1: 1998 Tier1: 2014 56.46 32.92 265 ENF 3.9 711

RU-SkP Yakutsk
Spasskaya Pad
larch

Tier2: 2012 Tier2: 2014 62.26 129.17 246 DNF NA NA

Other
AU-How Howard

Springs
Tier1: 2001 Tier1: 2014 -12.49 131.16 NA WSA NA NA

FR-Pue Puechabon Tier1: 2000 Tier1: 2014 43.74 3.6 270 EBF 13.5 883

GF-Guy Guyaflux
(French
Guiana)

Tier1: 2004 Tier1: 2014 5.28 -52.92 48 EBF 25.7 3041

IT-MBo Monte
Bondone

Tier1: 2003 Tier1: 2013 46.01 11.05 1550 GRA 5.1 1214

IT-Ren Renon Tier1: 1998 Tier1: 2013 46.57 11.43 1730 ENF 4.7 809

US-SRM Santa Rita
Mesquite

Tier1: 2004 Tier1: 2014 31.82 -110.87 1120 WSA 17.92 380

US-Ton Tonzi Ranch Tier1: 2001 Tier1: 2014 38.43 -120.97 177 WSA 15.8 559

US-Var Vaira Ranch -
Ione

Tier1: 2000 Tier1: 2014 38.41 -120.95 129 GRA 15.8 559

US-Wkg Walnut Gulch
Kendall
Grasslands

Tier1: 2004 Tier1: 2014 31.74 -109.94 1531 GRA 15.64 407

*Tier1 and Tier2 refer to different data use policies and indicate which data set was used.

(RECO, i.e. heterotrophic respiration, e.g. from soil organisms, plus autotrophic
respiration from plants). By convention, a positive NEE means net C flux from
the atmosphere to the biosphere, while a negative NEE means the C flux to the
atmosphere through respiration is higher than C assimilation by the biosphere
(Hatfield and Dold 2019). In the case of the employed FLUXNET data, a night-
time model (Reichstein et al. 2005) is used to calculate GPP from NEE flux tower
measurements based on nighttime data that is used to estimate RECO. This ex-
plains why the data includes several negative values for GPP which is techni-
cally not consistent with its definition. The FLUXNET GPP data (GPPFLUX) is
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given in g C m−2 day−1. To convert it to the output data for GPP of LPJ-GUESS
(GPPLPJ) which is given in kg C m−2 month−1, the following formula is used:

GPPLPJ =̂ (GPPFLUX/1000) · 30.416 (2.9)

2. Monthly evapotranspiration
The term evapotranspiration (ET) refers to the process where liquid water is
transformed into water vapour through the addition of energy. The required en-
ergy chiefly stems from direct solar radiation and, to a smaller degree, from the
ambient air temperature. ET is the sum of evaporation from the soil surface and
transpiration, i.e. the vaporization of water within plant tissues. Therefore, both
the soil and the plants lose water to the atmosphere through ET (Allen 1998). It
is distinguished between potential ET (PET) and actual ET (AET), where the for-
mer refers to the physical potential of the atmosphere to remove water through
ET assuming no limitation on water supply and the latter to the ET that is actu-
ally measured. Hence, plant water usage can be estimated by the difference be-
tween PET and AET. In FLUXNET sites, AET is measured using the latent heat
(LE) energy flux (LEFLUX), given in W m−2, using eddy co-variance techniques.
LE is linearly correlated to the amount of evaporated water (Allen 1998). It can
therefore be converted to mm month−1, which in LPJ-GUESS is used as the unit
of the AET output (AETLPJ) following an adaptation of the conversion formula
given by Allen (1998):

AETLPJ =̂ LEFLUX · 0.933 (2.10)

Note that this approximation assumes water with a density of 1000 kg m−3 that
has a temperature of 20◦C.

2.4 Evaluation metrics

This sections presents the statistical methods used to compare the different algo-
rithms, to evaluate the model performance and to quantify the variation within data.
One aim was to employ commonly utilized metrics in order to facilitate comparabil-
ity to other modelling studies (see e.g. Morales et al. 2005). Subsequent equations
denote observed values as Oi, modelled or predicted values as Pi, generic input val-
ues as Xi, mean values as a bar above the corresponding measure (e.g. Ō) and n as
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the total amount of values in a population. Firstly, the coefficient of determination
(r2) was used to quantify the linear relationship between two variables. The value
ranges between 0 and 1, where 1 indicates a perfect linear agreement and 0 indicates
no linear relationship. It is calculated as follows:

r2 =

 ∑n
i=1(Oi − Ō)(Pi − P̄)(

∑n
i=1(Oi − Ō)2 ∑n

i=1(Pi − P̄)2
)0.5


2

(2.11)

The average error of the model in relation to the observations was quantified by
calculating the root-mean-square error (RMSE). One major advantage of the metric is
that it has the same unit as the input variables which facilitates interpretation. On the
other hand, one must consider the units when comparing different RMSE values. It
is calculated as follows:

RMSE =

√
∑n

i=1(Pi −Oi)2

n
(2.12)

In order to quantify the variation within data sets (e.g. for mean values of a time
series), the standard deviation (SD) was calculated for some analyses. It indicates the
dispersion of data around their mean value (Reeuwijk 1998) and is calculated as:

SD =

√
∑n

i=1(Xi − X̄)2

n
(2.13)

More sophisticated statistical tests to examine significant differences and trends
between flux outputs of the two rooting schemes were considered (e.g. a two-paired
t-test and various non-parametric tests). However, due to the non-trivial nature of
the data (repeated, cyclical measurements; differences of the outputs not normally
distributed) and given time constraints, a more detailed statistical analysis was not
carried out in this thesis and is suggested before a possible future development of the
scheme.

3 Experiments

The functionality of the novel rooting scheme was tested in different scenarios and
applications. This section describes the experimental setups chosen to examine how
water stress and vertical root structure are interconnected using the new algorithm,
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how annual and monthly water and carbon fluxes differ using the different rooting
schemes, how the permafrost adaptation affects modelling results in grid cells with
frozen soils and how the model performance in relation to observational data is af-
fected.

3.1 General performance and influence of permafrost

The first experiment aims at verifying whether the novel root redistribution algo-
rithm DI results in the desired behaviour, i.e. distribution shifts towards available
soil water if βt is low and there are no root fractions in frozen soil layers. The simula-
tions were executed for LPJ-GUESS grid cells corresponding to the chosen FLUXNET
sites to make use of the locally optimized climate input and to facilitate interpreta-
tion regarding prevalent ecosystems. Therefore, the mean root fraction Mean R fi of
all individuals in the model grid cell is determined for each soil layer (see subsec-
tion 2.2.1) for both SI and DI runs and subsequently plotted together with the mean
GSWC per soil layer. The values were averaged over the available observational data
period (see Table 1). Additionally, the same procedure is executed using only the ini-
tial root distribution of DI without dynamic reallocation of roots (henceforth called
Zeng, see subsection 2.2.1 and Table 2). This is done to illustrate how Mean R fi using
DI deviates from the initial conditions due to the reallocation and simultaneously to
evaluate how the model output is affected by the new initial root distribution alone.
An average value over all individuals and the corresponding time period of βt for DI
and Zeng is given to compare differences in water stress. Note that due to the current
model implementation, βt is not calculated for SI. Moreover, the model outputs of
GPP and AET using SI, DI and Zeng are examined by adding the mean annual fluxes
of the given period to the plot. For corresponding standard deviations and modelled
PFTs, refer to Table 3 and Table 4. The modelled maximum active layer depth (hence-
forth referred to as Max ALD) during the entire time series is depicted to illustrate
how it affects the vertical root distribution and consequently AET and GPP in plots
with continuously frozen soil layers.

3.2 Model output sensitivity

For the novel rooting scheme (DI) it was hypothesized that the dynamic realloca-
tion of roots can play an important role for GPP and AET fluxes under water limited
growing conditions. Therefore, the different schemes were compared regarding the
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Table 2: Description of the different rooting schemes.

Abbreviation Full notation Description

SI Static rooting
scheme

Fixed root fractions per soil layer, 90% in top 50 cm
soil depth, 10% in 60-150 cm soil depth. Differ-
ent parametrization for three plant functional groups
(Shrubs and trees, Grass, Low shrubs; see Figure 2a).

Zeng Root distribution
according to
Zeng (2001)

Fixed root fractions for 8 plant functional groups (see
Figure 2b and Table S1) which are based on model
fitting to empirical global rooting depth data. Root
fractions can be assigned to generic soil depths based
on PFT specific parameters according to Equation 2.1.

DI Dynamic rooting
scheme

Dynamically reallocates root fractions based on wa-
ter stress and availability, and permafrost at the end
of each simulation year (Equation 2.6). Uses same ini-
tial root distribution as Zeng and strives towards this
distribution if water conditions are not limiting.

relationships of these fluxes and the precipitation input, as well as the factor which
determines the rate of reallocation βt in two separate experiments. Both were limited
to one identical grid cell. It corresponds to the FLUXNET site US-Var (Vaira Ranch -
Ione, USA, see Table 1) and was chosen for the following reasons: here, as expected
based on the meta data, the model indicates a moderate water limitation for the plants
(see section 4). Moreover, the dominant IGBP vegetation cover classification is sa-
vanna, an ecosystem which is considered appropriate for testing the algorithm due
to frequently occurring water stress. The ecosystem productivity is highly depen-
dent on precipitation events and the wet season (Grant et al. 2012). Moreover, the
modelled vegetation composition is relatively homogeneous and mostly dominated
by C3 grass (Table 3). This minimizes additional external influences (e.g. competition
between woody and herbaceous PFTs). The individual experiments are described
below.

3.2.1 Sensitivity to precipitation input

The bias corrected precipitation input was artificially altered during the available ob-
servational data period (2000-2014) by multiplying all daily values by a factor p f
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ranging from 0.25 to 2 in 0.25 steps. Hence, 8 different scenarios for each rooting
scheme were simulated. For instance, if daily precipitation is 4 mm and p f = 0.5
then the manipulated daily precipitation input is 2 mm. To analyze the effects on
modelled GPP and AET, their mean annual values were plotted against p f . However,
the analysis of annual fluxes includes only the last 5 years of the manipulation ex-
periment to allow the ecosystem to adjust to the new environmental conditions and
thus to reduce variation in the output values. Therefore, for low p f this experiment il-
lustrates how the different rooting schemes affect ecosystem productivity under long
lasting drought conditions, which might be relevant according to projected climatic
conditions in this site location (IPCC 2014). Differences in fluxes are examined both
in absolute and relative terms.

3.2.2 Sensitivity to reallocation factor βt

The reallocation rate of root fractions in DI due to water stress and availability is, at
the current state, mainly based on theoretical assumptions and limited observations,
and not supported by extensive empirical data (see subsection 1.2.2). Therefore, the
influence of the water stress factor βt on GPP and AET fluxes was tested by adding a
weighting factor Φ to Equation 2.6 as follows:

C f r,i =

[
(1− βt

Φ)
wgs,i∆zi

∑n
i=1 wgs,i∆zi

+ βt
Φ R f Z,i(di)

]
· Cinc + ... (3.1)

and 0.125 ≤ Φ ≤ 8 (value doubled for a total of 7 runs). Therefore, Φ < 1 results
in a relatively lower root fraction reallocation due to water stress (i.e. low βt) and vice
versa for Φ > 1. Climate parameters remain unaltered for all runs and the analysis
was carried out for the available observational data period. Results for mean annual
AET and GPP output were plotted for the different Φ values and bars indicating
observational data and the results for SI are added as a reference.

3.3 Comparison to observational data

To assess the model performance for monthly AET and GPP using the different root-
ing schemes, seperate simulations were carried out for all 15 FLUXNET sites. Sub-
sequently, the time series of all respective monthly fluxes were plotted against the
observed values and relationships were quantified by determining r2, RMSE and lin-
ear regression equations. The results are displayed in a table that also take modelled
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PFT, the mean total leaf area index (LAI; one-sided green leaf area per unit ground
surface area which is used as a proxy for vegetation density) and the water stress
factor βt into account. Moreover, the total mean annual AET and GPP values of the
different rooting schemes were determined and plotted against observations for each
site to illustrate the overall model performance.
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Figure 5: Comparison of mean root fractions (Mean R fi), mean growing season water con-
tent (GSWC), mean plant water stress (βt), maximum active layer depth (Max
ALD) and modelled mean annual GPP/AET fluxes for the different rooting schemes
(SI = Static, DI = Dynamic, Zeng (2001) = Zeng) for selected FLUXNET data sites.
Values are averaged over the available observational data period. Units: βt [ratio],
GPP [kg C m−2 year−1], AET [mm year−1].

4 Results

4.1 General performance and influence of permafrost

To illustrate the most important findings, the analysis result figures for four sites (RU-
SkP, FI-Hyy, RU-Cok, US-Var) are presented in this section (Figure 5). Refer to the
appendix (A.3) for analysis result figures for the remaining sites. In most cases, the
modelled fluxes using the novel dynamic rooting scheme DI clearly differ from the
corresponding static rooting scheme SI output for GPP (see AU-How, CA-Obs, Fi-Hyy,
FR-Pue, GF-Guy, IT-Ren, RU-Cok, RU-Fyo, US-SRM, US-Var, US-Wkg) and AET (see
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AU-How, Fi-Hyy, FR-Pue, GF-Guy, IT-Ren, IT-MBo, RU-Cok, RU-Fyo, US-SRM, US-Var,
US-Wkg, subsection A.3).

The vertical root structure of sites with relatively high modelled water limitation (ap-
prox. βt < 0.7) is often clearly distinguishable from its initial Zeng distribution (e.g.
Figure 5a). Accordingly, Zeng and DI mean root fractions per soil layer in sites with a
relatively high βt are more similar (e.g. Figure 5b). It is also evident that the different
rooting schemes can strongly impact the available water per soil layer and can there-
fore lead to distinct vertical GSWC profiles (e.g. Figure 5d). Moreover, the mean plant
water stress (βt) when comparing DI and Zeng can vary - differences range from 0
(Figure 5d) to 0.1 (AU-How, Figure S1 a).

The modelled annual GPP and AET fluxes in cold Arctic and Subarctic sites are rela-
tively low in comparison to the other sites (e.g. RU-SkP GPP = 0.05 kg C m−2 year−1,
Figure 5a) and vary only slightly among the different rooting schemes despite differ-
ences in vertical root structure (Figure 5a). There are no root fractions in permanently
frozen soil using DI (Figure 5c).

4.2 Model output sensitivity

The modelled GPP and AET fluxes at the site chosen to examine model sensitiv-
ity, US-Var, are sensitive to changes in precipitation input for both rooting schemes.
Higher water influx leads to higher plant productivity and evapotranspiration, and
vice versa. DI and SI output results, however, are affected by changes in different ways
(Figure 6).

For the standard precipitation input p f = 1, DI in comparison to SI has higher
modelled GPP (1.11±0.2 kg C m−2 year−1 versus 1.05±0.23 kg C m−2 year−1, Fig-
ure 6a) and AET (390±82 mm year−1 versus 360±82 mm year−1, Figure 6b). How-
ever, for descending p f < 1 both fluxes steadily decline, but at a higher rate for
DI. Thus, for p f = 0.25 it results in lower absolute values for both GPP (0.41±0.09
kg C m−2 year−1 versus 0.51±0.17 kg C m−2 year−1) and AET (129±36 mm year−1

versus 133±39 mm year−1). In relative terms, a decrease in precipitation by 75%
(p f = 0.25) for DI results in a reduction of GPP by 63% and of AET by 67%, and
for SI in a reduction of GPP by 49% and of AET by 63% (Figure 6 c,d). For ascending
p f > 1, GPP and AET also increase steadily for both DI and SI. A 75% increase in
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Figure 6: Comparison of the sensitivity of modelled GPP (a, c) and AET (b, d) using DI and SI
to changes in precipitation input. The daily precipitation during the observational
data period (2000-2014) for the FLUXNET site US-Var was multiplied by factor
p f . Figures show averages of the last 5 years of the manipulation period. For the
relative figures (c, d), p f = 1 denotes the reference value of the respective rooting
scheme. Error bars indicate one SD (a,b) or one relative SD (c,d; respective SD
divided by mean annual AET/GPP values).

precipitation (p f = 1.75) results in an increase of GPP by 14% and of AET by 18% for
DI, and of GPP by 14% and of AET by 22% for SI.

Modelled GPP and AET fluxes using DI are furthermore affected by the weighting
(Φ) of the root fraction reallocation factor βt (Equation 3.1) in US-Var (Figure 7). GPP
is highest for Φ = 1 (1.08±0.17) and Φ = 0.5 (1.08±0.2, both in kg C m−2 year−1) and
declines for both higher and lower values of Φ (Figure 7). The lowest mean annual
GPP was modelled for Φ = 8 with 0.94±0.15 kg C m−2 year−1. A similar distribution
is observed for AET - however, here the lowest value was modelled for Φ = 0.125
and Φ = 2 with 362±52 mm year−1 and 362±65 mm year−1, respectively.
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Figure 7: Sensitivity of modelled mean annual GPP and AET to the water stress (βt) weight-
ing factor Φ for the grid cell corresponding to the FLUXNET site US-Var using
the new dynamic rooting scheme. Values were averaged over the observational data
period (2000-2014), and corresponding observational (Obs) and modelled static
scheme (Stat) values are added as a reference. Error bars indicate standard devi-
ations.

4.3 Comparison to observational data

The results for evaluation metrics of DI in comparison to SI with regards to relating
modelled AET and GPP to the FLUXNET data are substantially site dependent. A
full summary for each site (r2, RMSE, comparison of total annual output, modelled
leaf area index, modelled PFT, mean βt) can be obtained from Table 3 and Table 4.
Additionally, time series scatter plots for monthly GPP and AET, and corresponding
1:1 representations including linear regressions for each site can be found in the ap-
pendix (A.3). One such set of plots for the site FI-Hyy is included here to illustrate
commonly observed patterns (Figure 8).

Vegetation in FI-Hyy has relatively low water stress (mean βt = 0.93). However,
the new standard root distribution results in different patterns for modelled monthly
GPP and AET. While the GPP curves are somewhat identical for most of the annual
cycle and in high agreement with observations (r2 = 0.9, RMSE = 0.03 kg C m−2 year−1

for both schemes), DI results in a consistently lower peak (annual maximum value)
during the growing season (Figure 8a). In some years, the observations are there-
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Figure 8: Time series of modelled monthly GPP (a) and AET (b) against observations in the
FLUXNET site FI-Hyy (Finland, Hyytiälä) and corresponding 1:1 plots (c) and
(d), respectively.
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fore more accurately represented by DI (e.g. 2007, 2010) whereas in other years, the
higher growing season peak of SI is closer to observed values (e.g. 2001, 2011). The
mean total annual GPP for DI is 1 ± 0.1, for SI is 1.11 ± 0.1 and respective obser-
vations were 1.1 ± 0.2 (all in kg C m−2 year−1). The same lower growing season
peak can be observed for the modelled AET time series (Figure 8b). However, here
the agreement of DI is slightly higher (SI: r2 = 0.93, RMSE = 7 mm month−1; DI:
r2 = 0.94, RMSE = 6 mm month−1). Moreover, observed AET in the winter time is
underestimated by both schemes in some years (e.g. 2009). The same general trend
of lower modelled AET and GPP during the growing season peak can be observed in
the following sites (dominant PFT based on mean LAI in parentheses): IT-MBo (BNE,
BINE), IT-Ren (BNE, BINE), RU-Fyo (IBS,TeBS), US-SRM (C3G, BLSE), US-Ton (C3G,
TeBE) and US-Wkg (C3G, BLSE). To the contrary, in GF-Guy (TrBE, TrIBE), DI results
in higher growing season peaks for both AET and GPP. In AU-How (TrIBE, TrBE),
modelled monthly GPP using DI is in overall higher during the growing season, but
lower between growing seasons. Simultaneously, monthly AET on average is lower
during and between growing season compared to SI. Both schemes underestimate
observed GPP and AET in this site.

In unproductive Arctic and Subarctic sites (i.e. sites where modelled PFT are grasses
and shrubs with mean total LAI < 1, see Table 3) the monthly GPP and AET time series
curves for DI and SI are hardly discernible and they both consistently underestimate
the two variables (e.g. Total annual mean AET in RU-Cok - SI: 37± 8 mm year, DI:
40± 8 mm year, Observed: 245± 99 mm year). Moreover, in DK-ZaH, there is no veg-
etation establishment in some years (GPP = 0, see Figure S4).

For most sites, the differences in model performance regarding monthly GPP ex-
pressed as r2 and RMSE using DI versus SI are relatively small. Differences in re-
spective r2 are 0.02 or smaller for 10 out of 15 sites (Table 3 and Table 4). Above this
threshold, SI has higher r2 in FR-Pue (0.51 versus 0.43), US-SRM (0.1 versus 0.04) and
US-Wkg (0.24 versus 0.18). DI on the other hand has higher r2 in US-Ton (0.39 versus
0.25) and US-Var (0.62 versus 0.59). The same trend regarding these mentioned sites
account for differences of r2 in monthly AET (refer to Table 4 for respective values).
Additionally, here the r2 of DI is higher in RU-SkP (0.43 versus 0.38) and DK-ZaH
(0.13 versus 0.08).
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Table 3: Evaluation metrics to compare monthly gross primary production (GPP) LPJ-
GUESS output (n patches = 10) using SI and DI with selected FLUXNET data
sites. IGBP* denotes respective vegetation land cover classification. Total leaf Area
Index (LAI), mean water stress (βt) and total annual GPP values were averaged
over the observational data period as given in Table 1. LPJ-PFT denotes the two most
dominant PFT in the respective LPJ-GUESS grid cell (based on highest LAI; for a
list of PFT, refer to Table S1).

r2 RMSE Total GPP (±SD)
[-] [kg C m−2 mth−1] [kg C m−2 yr−1]

Site ID IGBP* LPJ-PFT LAI βt SI DI SI DI SI DI Obs

(Sub-)Arctic
CA-Obs ENF C3G,IBS 0.2 0.45 0.59 0.58 0 0 0.07 (±0) 0.07 (±0) 0.8 (±0.07)

DK-ZaH GRA C3G 0 0.68 0.01 0.01 0 0 0 (±0) 0 (±0) 0.1 (±0.05)

FI-Hyy ENF IBS,TeBS 2.8 0.93 0.9 0.9 0.03 0.03 1.11 (±0.1) 1 (±0.1) 1.1 (±0.19)

RU-Cok OSH C3G,BLSE 0.8 0.97 0.58 0.58 0.02 0.02 0.17 (±0) 0.18 (±0) 0.4 (±0.18)

RU-Fyo ENF TeBS,IBS 3.6 0.86 0.88 0.87 0.04 0.04 1.27 (±0.1) 1.21 (±0.1) 1.5 (±0.2)

RU-SkP DNF C3G,BNS 0.1 0.49 0.24 0.24 0 0 0.05 (±0) 0.05 (±0) 0.1 (±0.19)

Other
AU-How WSA TrIBE,TrBE 3.7 0.55 0.5 0.5 0.05 0.06 1.16 (±0.1) 1.26 (±0.2) 1.8 (±0.45)

FR-Pue EBF TeBE,TrBR 3 0.65 0.51 0.43 0.07 0.06 1.97 (±0.1) 1.74 (±0.2) 1.2 (±0.24)

GF-Guy EBF TrBE,TrIBE 5.8 0.96 0.06 0.07 0.07 0.07 1.74 (±0.1) 1.81 (±0.1) 3.4 (±1.09)

IT-MBo GRA BNE,BINE 4.3 0.91 0.84 0.82 0.06 0.06 1.99 (±0.2) 1.99 (±0.2) 1.3 (±0.42)

IT-Ren ENF BNE,BINE 4.1 0.95 0.59 0.58 0.08 0.08 1.7 (±0.1) 1.65 (±0.1) 1.1 (±0.61)

US-SRM WSA C3G,BLSE 2.2 0.63 0.1 0.04 0.04 0.03 0.68 (±0.2) 0.53 (±0.1) 0.3 (±0.11)

US-Ton WSA C3G,TeBE 2.4 0.56 0.25 0.39 0.06 0.05 1.04 (±0.2) 1.05 (±0.2) 0.9 (±0.17)

US-Var GRA C3G,TeBE 2.7 0.58 0.59 0.62 0.04 0.04 1.02 (±0.2) 1.08 (±0.2) 0.7 (±0.2)

US-Wkg GRA C3G,BLSE 2.2 0.6 0.24 0.18 0.05 0.04 0.76 (±0.2) 0.66 (±0.1) 0.2 (±0.11)

*Savanna (WSA), Forest (ENF,EBF,DNF), Grassland (GRA), Shrubland (OSH). Refer to Loveland and Belward (1997).

Accordingly, the accuracy for modelled mean annual GPP and AET fluxes is site
dependant. Figure 9 shows the average values for each site with regards to obser-
vations. The RMSE regarding GPP for SI is 0.62 [kg C m−2 year−1] and for AET is
144 [mm year−1], and for DI 0.58 [kg C m−2 year−1] and 138 [mm year−1], respectively.
It is important to note that both the highest mean annual AET and GPP values were
simulated for GF-Guy, a neotropical rain forest ecosystem site (Bonal et al. 2008) with
low modelled water limitation and r2 = 0.06 for both rooting schemes (Table 3). The
annual fluxes in sites classified as Arctic or Subarctic with low productivity and veg-
etation cover (i.e. MAT < 1◦C and/or mean LAI < 1) are consistently underestimated
(e.g. mean annual AET in RU-Cok: SI = 37(±8), DI = 37(±8), Observed = 245(±99),
all in mm year−1).

28



5 Discussion

Table 4: Same as Table 3, but for actual evapotranspiration (AET).
r2 RMSE Total AET (±SD)
[-] [mm month−1] [mm year−1]

Site ID IGBP* LPJ-PFT LAI βt SI DI SI DI SI DI Obs

(Sub-)Arctic
CA-Obs ENF C3G,IBS 0.2 0.45 0.52 0.52 1.16 1.15 16 (±3) 16 (±3) 283 (±42)

DK-ZaH GRA C3G 0 0.68 0.08 0.13 0.01 0 0 (±0) 0 (±0) 111 (±28)

FI-Hyy ENF IBS,TeBS 2.8 0.93 0.93 0.94 6.79 5.73 249 (±25) 225 (±19) 272 (±40)

RU-Cok OSH C3G,BLSE 0.8 0.49 0.33 0.34 4.79 5.07 37 (±8) 40 (±8) 245 (±99)

RU-Fyo ENF TeBS,IBS 3.6 0.97 0.77 0.77 17.25 15.99 357 (±33) 341 (±27) 336 (±76)

RU-SkP DNF C3G,BNS 0.1 0.86 0.38 0.43 1.24 1.16 14 (±1) 14 (±1) 66 (±120)

Other
AU-How WSA TrIBE,TrBE 3.7 0.55 0.52 0.52 31.41 31.57 828 (±83) 797 (±84) 948 (±162)

FR-Pue EBF TeBE,TrBR 3 0.51 0.54 0.51 18.93 19.63 493 (±27) 502 (±28) 343 (±79)

GF-Guy EBF TrBE,TrIBE 5.8 0.96 0.06 0.06 43.46 48.6 785 (±39) 880 (±29) 1132 (±360)

IT-MBo GRA BNE,BINE 4.3 0.91 0.91 0.89 11.11 12.31 481 (±30) 502 (±27) 375 (±122)

IT-Ren ENF BNE,BINE 4.1 0.95 0.54 0.55 21.3 18.97 422 (±28) 384 (±26) 427 (±203)

US-SRM WSA C3G,BLSE 2.2 0.63 0.44 0.36 14.6 10.06 272 (±51) 179 (±46) 256 (±87)

US-Ton WSA C3G,TeBE 2.4 0.56 0.45 0.63 16.75 13.97 352 (±96) 367 (±65) 325 (±53)

US-Var GRA C3G,TeBE 2.7 0.58 0.7 0.77 12.47 12.14 357 (±73) 392 (±74) 263 (±34)

US-Wkg GRA C3G,BLSE 2.2 0.6 0.53 0.51 15.03 11.23 283 (±44) 235 (±45) 220 (±82)

*Savanna (WSA), Forest (ENF,EBF,DNF), Grassland (GRA), Shrubland (OSH). Refer to Loveland and Belward (1997).

5 Discussion

5.1 General assessment

Firstly, it can be stated that the dynamic root reallocation of the new rooting scheme
works as intended and can alter the vertical root structure in response to soil water
conditions. In sites with a relatively low βt (approx. < 0.7), the vertical root distribu-
tion of DI is clearly discernible from the initially assigned fractions as indicated by the
Zeng curves in Figure 5. Accordingly, in sites with βt values close to 1, root fractions
per soil layer hardly deviate from their initial state (Zeng). The DI root distribution
under water stress conditions in some cases seems to converge to the SI distribution
(e.g. RU-SkP, Figure 5), i.e. an abrupt decrease in fractions at 60 cm as opposed to
50 cm soil depth is observed. This can be explained by the fact that LPJ-GUESS uses a
leaky bucket model with two buckets (bucket 1: 10-50 cm depth, bucket 2: 60-150 cm
depth) to represent soil hydrology (for details refer to Sitch et al. 2003). Accordingly,
soil water frequently accumulates at the bottom of the first bucket which in turn at-
tracts root growth under water stress conditions (Equation 2.6). This can therefore
be understood as a validation of the intended behaviour of the algorithm. More-
over, there seems to be agreement between low βt values and sites where water stress
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Figure 9: Evaluation of model performance in terms of modelled mean annual GPP (a) and
AET (b) output of DI (Dynamic) and SI (Static) against corresponding observations
of all 15 utilized FLUXNET sites (names omitted for readability, refer to Table 3 and
Table 4). Values are averaged over the respective available data collection periods
(see Table 1), error bars indicate standard deviations. For the unit of RMSE refer to
the respective axis.

would be expected according to dominant vegetation cover and MAT/MAP values
(Table 1), for instance, in all of the southwestern US grassland/savanna sites, i.e. US-
SRM, US-Ton, US-Var and US-Wkg (see Grant et al. 2012). This could indicate that βt

is in principle a suitable metric to determine water stress during the growing season
and consequently structural root adaptation caused by it.

One limitation of the current implementation of DI is the assumption that all PFTs
react to water stress by shifting their vertical fine root distribution at the same rate.
Many studies have shown that, for certain species, drought leads to a shift of root
fractions to deeper soil layers or an increase in rooting depth (e.g. Persson et al. 1995;
Tsutsumi et al. 2002; Padilla and Pugnaire 2007; Olmo et al. 2014). This research is
often carried out under laboratory conditions or on plants in early life stages. On the
other hand, however, a study on the response of fine root biomass to irrigation in the
upper soil layer of a water limited pine forest site found no significant differences
between irrigated and control plots (Brunner et al. 2009). Generally, Equation 2.8 and
the results shown in Figure 7 show that modelled fluxes of the new rooting scheme
can be influenced by the weighting of water stress reallocation. The general lack
of available data can conceivably partly be owed to the difficult nature of measur-
ing belowground processes (Warren et al. 2015). The Fine-Root Ecology Database
(FRED; http://roots.ornl.gov [accessed 12-05-2019], see Iversen et al. (2017)) for ex-
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ample contains more than 70 000 fine root trait observations merged from different
data sets. Here, one of the main goals is to relate root variables to environmental
variables (Iversen et al. 2017). However, it does not provide data that could be used
to link the relationship of vertical root structure on a high spatial (vertical soil profile)
resolution to corresponding soil moisture measurements or water stress changes over
time. Generally, the analysis for the current implementation of DI revealed, however,
that modelled plant productivity (GPP) and water fluxes (AET) are sensitive to the
reallocation weighting factor βt (subsection 3.2.2). Further data collection is therefore
needed to parameterize a dynamic and PFT specific root adaptation to water stress.
In any case, a redistribution based on water availability and stress alone is too sim-
plistic to accurately capture fine root dynamics (e.g. Persson et al. 1995; Warren et al.
2015). Another limitation that should be noted is that due to the setup of LPJ-GUESS,
the root redistribution is lagging one year behind the climate data, i.e. a current year’s
root distribution is determined by the previous year’s soil water conditions. The im-
plications on model output are however estimated to be small over long time periods.

Moreover, it is evident that the new rooting scheme can have substantial effects on
the soil water profile (Figure 5). This could in combination with the observed changes
in AET have strong implications for the model results of global and regional water
balances and climatic variables not considered in this thesis (e.g. runoff, air tempera-
ture). Wang et al. (2018) for example showed that their implementation of a dynamic
rooting scheme in a global simulation had significant effects on, among others, local
wind patterns and air temperatures.

It was further demonstrated that DI in relation to SI can lead to different C and water
flux responses to changes in precipitation input at a site with continuous relatively
high modelled water limitation (Mean βt = 0.58; Figure 6). Here, absolute GPP was
lower for DI in comparison to SI with a drastic decrease in precipitation (p f = 0.25)
despite being higher under unaltered conditions (Figure 6). As the average of the last
5 years out of a 14 year artificial drought period was analyzed, this could therefore be
explained by a faster and/or more efficient depletion of available soil water reserves
in the beginning of the simulated drought. However, due to time constraints this
could not be analyzed in detail and the counter intuitive lower productivity despite
the expected improved use of water resources must be further evaluated in the future.
Generally, the possibility to adequately capture plant responses to drought in some
sites might be hampered by the fact that the current model version of LPJ-GUESS has
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a maximum soil depth of 1.5 m. Even though on a global mean level 95% of roots for
all PFTs can indeed roughly be ascribed to the top 1.5 m (Schenk and Jackson 2002),
roots in e.g. tropical forest sites with a dry season can extend to as far as 18 m down
in the soil (Lindh et al. 2014).

Finally, the influence of permafrost on vertical root structure is captured more accu-
rately using DI over SI, as roots no longer grow in permanently frozen soil layers
(Figure 5c). The redistribution of fine roots from permanently frozen soil to the ac-
tive layer in theory allows roots to take up more water and nutrients (Blume-Werry
et al. 2016). Nevertheless, neither considerably higher plant productivity (GPP) nor
higher water fluxes (AET) could be shown for affected sites with the current model
setup (Figure 5a and site DK-ZaH in Figure S4; this will be further discussed in sub-
section 5.2). Additionally, with a dynamic root fraction adaptation to the active layer
depth using DI, vegetation composition in Arctic biomes could be affected. Wang
et al. (2016a) showed for instance that deep-rooted graminoids may get a competitive
advantage over shrubs in tundra biomes with thawing permafrost due to their ability
to reach nutrients in deeper soil layers. The new rooting scheme could therefore ul-
timately be a groundwork for improving the process-based representation of Arctic
vegetation dynamics.

5.2 Model performance

This section examines the most important findings and trends for model performance
regarding the different FLUXNET site ecosystems, often summarized by their given
vegetation land cover classification (Table 1). It is however important to note that each
site has a unique set of properties and environmental conditions which can all influ-
ence observations and model outcome. A detailed individual analysis is therefore
beyond the scope of this thesis which aims at evaluating general implications of the
new rooting scheme rather than trying to locally optimize or explain model results.
The same therefore accounts for an extensive relation to all the different ecosystem
properties and characteristics. For more insights about each site and ecosystem refer
to their citations as given by the FLUXNET network (Baldocchi et al. 2001).

Overall, it cannot be stated that the current implementation of the new rooting scheme
DI generally improved the model performance for modelled water and carbon fluxes
in relation to the utilized FLUXNET sites (Table 3, Table 4), even though the total
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RMSE for both modelled mean annual fluxes was lower using DI (Figure 9). First,
it must be clearly distinguished between the model agreement in terms of mean
annual and monthly fluxes. For instance, at the site GF-Guy, the error for annual
mean AET and GPP was decreased using DI over SI (Figure 9, highest measured
values). However, analysis of the monthly AET fluxes (GF-Guy, Figure S7b,d), for
example, reveals that the reduction in total error stems from the fact that DI leads
to an overestimation of values at the modelled peak of plant productivity during the
growing season. At the same time, between growing seasons, the models severely
underestimate AET. Both schemes each year simulate minimum values of approx.
10 mm month−1, while the observations year round constantly fluctuate around ap-
prox. 100(±25) mm month−1. Accordingly, the RMSE for monthly AET for DI is
higher than for SI (Table 4). This is crucial when evaluating results on a global scale
as the high fluxes in tropic ecosystem are an important driver of global climate and
C balance (Bonal et al. 2008; Wang et al. 2018) which should motivate further model
assessment of LPJ-GUESS in tropical ecosystems. These results are nevertheless con-
sistent with Wang et al. (2018) who also found a total reduction of annual GPP and
ET underestimation in tropical sites. Here, the strongest effects of a dynamic root-
ing scheme on climatic parameters such as local wind patterns were furthermore ob-
served in (sub-)tropical regions. In the context of this thesis it is therefore important to
note that the new rooting scheme can substantially affect fluxes in ecosystems with-
out modelled water limitation. Accordingly, Zeng et al. (1998) summarize that root
distribution mainly influences modelled AET and soil water content in tropical and
midlatitudinal regions.

Grasslands and savannas
One striking outcome is the improvement of r2, both for AET and GPP for the sites
US-Var and US-Ton (Table 3 and Table 4; henceforth summarized as US1) which have
a mean βt of 0.56 and 0.58, respectively. The distance between these two sites is
only roughly 2.5 km (Table 1; Figure 4) and they hence utilize the same LPJ-GUESS
CRUNCEP climate input. The IGBP vegetation cover is nevertheless different, US-
Ton is classified as savanna, and US-Var as grassland. The modelled dominant PFTs
are identical (C3G, TeBE in that order as per mean LAI; Table 3, Table S1). The C
fluxes in seasonally dry grasslands were shown to be correlated to the timing of pre-
cipitation events (Grant et al. 2012). An analysis of the corresponding monthly fluxes
at both sites (US-Ton Figure S14, US-Var Figure S15) shows that model results are
hampered by the fact that there are modelled distinct peaks in AET and GPP at the
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beginning of each growing season which in their magnitude are not consistent with
observations. This could, therefore, be partly explained by the resolution or quality
of the bias corrected climate data. Especially at US-Ton, DI more accurately captures
observations. Here, additionally to higher r2, RMSE is lower for both GPP (Table 3)
and AET (Table 4). At the same time, however, model agreement in terms of r2 at the
sites US-SRM and US-Wkg (henceforth summarized as US2) is lower for DI in com-
parison to SI. US2 are also in close proximity and classified as savanna and grassland
(Table 3), but are at a higher elevation and substantially drier than US1 (MAP approx.
400 mm year−1 versus approx. 560 mm year−1).

Interestingly, when comparing US1 to US2, the modelled water limitation is higher
for US1, even though measured MAT and MAP would suggest otherwise (Table 1).
Reasons for this could be multifarious: differences in soil properties, climate data
quality, or the modelled occurrence of BLSE as second most dominant PFT (as per
mean LAI) at both US2 sites. BLSE stands for arctic evergreen low shrubs which have
a distinct vertical root distribution according to "Low shrubs" (Figure 2, also see verti-
cal root distribution for SI in the figures in Figure S1 l,m), high drought tolerance and
should not occur in non-Arctic sites. This stresses the importance of the LPJ-GUESS
model setup and conditions regardless of root distribution when comparing results.
At the savanna site AU-How, DI leads to higher modelled GPP and lower AET dur-
ing the growing season which in both cases seems to be generally in higher agreement
with observations, while both fluxes get underestimated to a higher degree in com-
parison to SI between growing seasons. As a consequence, model performance in
terms of r2 and RMSE is hardly affected. Finally, the fluxes and model agreement in
the site IT-MBo with low water limitation (βt = 0.91) are hardly affected by the dif-
ferent schemes. To summarize, DI leads to varying patterns in modelled AET and
GPP fluxes for different savanna and grassland sites in relation to both observations
and DI, but was shown to be locally able to improve monthly flux model agreement
while at the same time increasing mean annual flux error due to simulation bias ef-
fects. This must, however, be further evaluated and a more sophisticated statistical
analysis that takes different model parameters and more site-specific configurations
into account is required.

Mid-latitudinal forests
The RMSE for annual GPP at the two sites that represent forests in southern Europe,
one evergreen broadleaf forest (FR-Pue and one mountainous evergreen needleleaf
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forest (IT-Ren), was reduced using DI despite lower r2 values (Table 3). However,
GPP is still overestimated by both schemes. In the case of IT-Ren, the results should
be treated with caution as the observational data shows irregularities in some years
with close to zero productivity, which might explain the magnitude of overestimation
(Figure S9 and Table 3). When comparing the two sites, DI in relation to SI leads to
larger variation at IT-Ren in AET and at FR-Pue in GPP, which could motivate a more
detailed analysis of the different effects on the two different forest types. Hence, in
summary, modelled annual GPP using DI is lower for both temperate forest sites
which is in both cases reducing bias despite lower r2 with regards to the monthly
observations. A detailed assessment of the performance of LPJ-GUESS in European
forest flux sites (using the static rooting scheme) can be found in Morales et al. (2005).

Arctic and subarctic locations
The Arctic and Subarctic locations can be roughly partitioned into three groups: cold
and unproductive high Arctic grassland and shrubland with MAT < 0◦C (DK-ZaH,
RU-Cok; henceforth referred to as AC1), the subarctic evergreen needle leaf forests
with MAT > 0◦C (CA-Obs, Fi-Hyy, RU-Fyo; henceforth referred to as AC2) and the
deciduous larch forest in subarctic Russia (RU-SkP). Firstly, it can be stated that at
AC1 and RU-SkP both AET and GPP are consistently underestimated, for both root-
ing schemes. Moreover, the modelled monthly and annual fluxes for DI and SI are
almost identical (RMSE and r2 in Table 3, Table 4 and respective site figures in A.3).
This shows that, even though the modelled PFT seem to be in agreement with the
given land cover classification in all locations (Table 3), LPJ-GUESS does currently not
capture the relatively low plant productivity and the seasonal magnitudes of fluxes at
these Arctic and Subarctic sites. Although in absolute numbers this may appear of mi-
nor importance at first glance, the fact that a large fraction of total land cover is popu-
lated by these biomes can lead to significant consequences for modelling C and water
fluxes on a global scale (Schuur et al. 2008; Blume-Werry et al. 2016). The new rooting
scheme with a dynamic adaptation to the maximum active layer depth could despite
higher total amount of root fractions in unfrozen top layers not help to reduce the
underestimation. One way to tackle this could be to test the new rooting scheme with
the Arctic version of LPJ-GUESS which incorporates additional ecosystem processes
and PFTs optimized for applications in the Arctic (Miller and Smith 2012). It was not
used for this thesis to ensure comparability of the model output. Moreover, water
limitation plays generally a subsidiary role in many Arctic ecosystems where veg-
etation composition, competition and productivity is often constrained by nutrient
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availability and related processes (Iversen et al. 2015). A dynamic root distribution,
at least for Arctic tundra, should therefore also incorporate a vertical nitrogen distri-
bution in the soil (see Wang et al. 2018). Moreover, the assumption of Equation 2.6
that GSWC calculation is limited to the growing season with ambient air tempera-
tures higher than 5◦C may be inadequate for Arctic tundra, where the below ground
growing season was shown to be significantly longer (Blume-Werry et al. 2016).

The same systematic underestimation with constantly low fluxes is observed at the
site CA-Obs which has a MAT of 0.79◦C and, with a MAP of 406 mm, is relatively
dry (accordingly, βt = 0.45). The dominant modelled PFTs here are C3 grass and, to
a lesser extent, summergreen broadleaf trees as opposed to evergreen needleleaf for-
est as given by the IGBP landcover classification (Table 1) which might explain the
underestimation. The fluxes at the other AC2 sites, on the other hand, are very well
captured by the model. Here, DI consistently leads to lower modelled GPP and AET
values at the peak of the growing season. As a consequence, annual GPP fluxes are
underestimated, even though in some years the monthly flux curves agree better with
observations (Figure S5, Figure S11). At RU-Fyo, the RMSE of AET could on the other
hand be reduced by using DI (see Table 4). Generally it can be concluded that even
though differences are relatively small, SI better represents fluxes in subarctic and
not evergreen needleleaf sites that are not water limited. As FI-Hyy and RU-Fyo have
low water limitation (mean βt > 0.85), the root distributions closely follow their initial
state (Figure S1 d,j). Possible explanations for the better representation could there-
fore be inaccuracies of the initial distribution (Zeng 2001) or general parametrization
of LPJ-GUESS that might lead to optimized results for the current root distribution.

5.3 Future improvements

This section will briefly explore possible adaptations that could be investigated to
possibly improve the novel rooting scheme based on the thesis results and literature
recommendations. In general, more field data is needed to parameterize a dynamic
redistribution of roots with changes in environmental conditions (Warren et al. 2015;
Iversen et al. 2017). Results have shown that model performance with regards to
the utilized rooting scheme is substantially site dependent. Accordingly, the factor
Φ that acts as a weighting factor for the reallocation factor βt (Equation 3.1) could
potentially receive unique values for PFTs or PFGs to account for respective differ-
ences of plant fine root redistribution as a reaction to water stress. As a first step,

36



6 Conclusions

parameter fitting techniques could be employed with observational flux data as in-
put to assess potential benefits. One major limitation for the algorithm is that LPJ-
GUESS currently does not include vertical nitrogen distribution in the soil. In many
ecosystems, nutrients are the main factor limiting plant growth and they strongly in-
fluence vegetation competition and root architecture (Iversen et al. 2015). The rooting
scheme could therefore benefit from the incorporation of a new nitrogen scheme (see
also Wang et al. 2018). Finally, additional structural features and traits regarding the
rhizosphere could be examined, such as mycorrhizal associations or hydraulic redis-
tribution. For a detailed assessment of general root representation recommendations
in ecosystem models refer to Warren et al. (2015).

6 Conclusions

A new rooting scheme for LPJ-GUESS was developed in this thesis. Research sug-
gests that the current static rooting scheme may be too simplistic to represent be-
lowground processes in changing environmental conditions and hence could be in-
sufficient to represent vegetation dynamics in future climate scenarios (Warren et al.
2015). The new scheme dynamically adapts the vertical root distribution to soil mois-
ture conditions if a plant is under water stress, as it was observed in several experi-
ments (e.g. Persson et al. 1995; Olmo et al. 2014). Building on previous studies and
theory (Sitch et al. 2003; Wang et al. 2016a), it was therefore hypothesized that vertical
root structure has an impact on modelled carbon and water fluxes. Accordingly, the
changes in model output of two variables (AET and GPP) were analyzed and related
to observational data from selected FLUXNET sites. The goal was to assess effects on
different ecosystems with a special focus on (Sub-)Arctic (additional dynamic adap-
tation to permafrost) and water limited sites. The main findings were:

1. The algorithm fulfills the desired functionality. The root fraction reallocation
per soil layer is affected by soil water content if a plant is under water stress.
Mechanistic validity could be improved by making root fractions dynamically
adapt to permafrost.

2. Utilizing different vertical root structures can change modelled water and car-
bon fluxes. Even though results are site dependant and no global trend in the
change in fluxes could be identified, the static scheme, the dynamic scheme
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including root reallocation, and the updated initial root distribution for the dy-
namic scheme alone can all lead to differences in modelled GPP and AET fluxes.

3. The root fraction reallocation in its current implementation may be too simplis-
tic. General model performance was not improved and using water stress and
availability alone to determine root reallocation may not be sufficient (Warren
et al. 2015). Moreover, the assumption that all PFTs reallocate roots at the same
rate is unrealistic (e.g. Brunner et al. 2009).

4. The algorithm is a good framework. The initial distribution is based on empiri-
cal data (Zeng 2001) and the scheme can act as a basis to incorporate additional
processes (e.g. nitrogen availability, deeper soil layers, etc.). This is however
limited by data availability and knowledge gaps (Iversen et al. 2017).

5. The relatively largest impact of root distribution on modelled fluxes was in
a non water limited tropical site where annual flux error was reduced, while
monthly flux error was simultaneously increased. This stresses the importance
of root distribution beyond the scope of water limitation.

6. The different rooting schemes lead to different relative responses of the fluxes
to drought conditions which must be further analyzed and validated.

7. Modelled fluxes in cold and unproductive Arctic sites were hardly affected by
the new rooting scheme. The dynamic adaptation of rooting depth to per-
mafrost did not considerably enhance plant productivity and the fluxes of all
respective observational sites were underestimated.

8. The new scheme could locally improve monthly model agreement to observa-
tions in two water limited grassland/savanna sites, but the accuracy was de-
creased in others. The new scheme performed slightly worse in Subarctic ever-
green needleleaf forests. In two southern European forest sites, RMSE for AET
was reduced but r2 was lower. Therefore, results with regards to model per-
formance are highly site dependent and must be analyzed in detail due to the
amount of influencing factors. Also, additional statistical evaluation is needed.

9. The differences between rooting schemes in modelled GPP and AET can have
big impacts on global and regional water and carbon cycles and therefore future
climate projections.
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6 Conclusions

A higher degree of attention to belowground processes and a further development
of the rooting scheme are therefore well motivated. Additional fundamental research
should focus on data collection and hence the quantification of processes and en-
vironmental factors that affect vertical root distribution over time. Simultaneously,
adequate simplifications are needed that are suitable for large scale modelling appli-
cations.
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A Supplementary Materials

A.1 Additional tables

Table S1: Plant functional types (PFT) in LPJ-GUESS, their corresponding plant functional
groups (PFG) according to Zeng (2001) and corresponding PFG in the current
static rooting scheme. Parameters a and b are used for initial root distribution
according to Equation 2.1. [ST] = shade tolerant, [SI] = shade intolerant, NA = not
included.

PFT LPJ-GUESS PFG Zeng (2001) PFG in SI a b

BNE (Boreal needle leaved
evergreen tree [ST])

Evergreen needleleaf
tree

Shrubs
and trees

6.706 2.175

BINE (BNE [SI]) Evergreen needleleaf
tree

Shrubs
and trees

6.706 2.175

TeNE (Temperate needle leaved
evergreen tree [SI])

Evergreen needleleaf
tree

Shrubs
and trees

6.706 2.175

BNS (Boreal needle leaved
summergreen tree [SI])

Deciduous needleleaf
tree

Shrubs
and trees

7.066 1.953

TeBS (Temperate broadleaved
summergreen tree [ST])

Deciduous broadleaf
tree

Shrubs
and trees

5.990 1.955

IBS (Broadleaved summergreen
tree [SI])

Deciduous broadleaf
tree

Shrubs
and trees

5.990 1.955

TrBR (Tropical broadleaved
raingreen tree [SI])

Deciduous broadleaf
tree

Shrubs
and trees

5.990 1.955

TeBE (Temperate broadleaved
evergreen tree [ST])

Evergreen broadleaf
tree

Shrubs
and trees

7.344 1.303

TrBE (Tropical broadleaved
evergreen tree [ST])

Evergreen broadleaf
tree

Shrubs
and trees

7.344 1.303

TrIBE (Tropical broadleaved
evergreen tree [SI])

Evergreen broadleaf
tree

Shrubs
and trees

7.344 1.303

C3G (Cool C3 grass) Short grass Grass 10.74 2.608

C4G (Warm C4 grass) Tall grass Grass 8.235 1.627

CROP Crop/mixed farming NA 5.558 2.614

BLSE (Arctic evergreen low
shrub)

Evergreen shrub Low
shrubs

6.326 1.567

BLSS (Arctic summergreen low
shrub)

Deciduous shrub Low
shrubs

6.326 1.567
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A.2 Vertical root structure

Comparing differences in modelled vertical root structure and associated variables in the

chosen FLUXNET sites using the different rooting schemes. Refer to the figure caption at the

end for a more detailed explanation of depicted variables.
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Figure S1: Mean vertical root distribution (Rfi), mean growing season soil water content
(GSWC), maximum active layer depth (Max ALD), mean water stress (βt), mean
annual gross primary production (GPP) and mean annual actual evapotranspira-
tion (AET) over the indicated period for the different FLUXNET sites, using the
different rooting schemes [Static (red), Dynamic (blue) and Zeng (black)].
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A.3 Modelled GPP and AET versus observations

AU-How

Figure S2: Comparing modelled monthly (a) gross primary production (GPP) and (b) actual
evapotranspiration (AET) with respective 1:1 plots (c,d) for the different rooting
schemes to observational data from the FLUXNET site AU-How.
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CA-Obs

Figure S3: Comparing modelled monthly (a) gross primary production (GPP) and (b) actual
evapotranspiration (AET) with respective 1:1 plots (c,d) for the different rooting
schemes to observational data from the FLUXNET site CA-Obs.
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DK-ZaH

Figure S4: Comparing modelled monthly (a) gross primary production (GPP) and (b) actual
evapotranspiration (AET) with respective 1:1 plots (c,d) for the different rooting
schemes to observational data from the FLUXNET site DK-ZaH.
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FI-Hyy

Figure S5: Comparing modelled monthly (a) gross primary production (GPP) and (b) actual
evapotranspiration (AET) with respective 1:1 plots (c,d) for the different rooting
schemes to observational data from the FLUXNET site FI-Hyy.
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FR-Pue

Figure S6: Comparing modelled monthly (a) gross primary production (GPP) and (b) actual
evapotranspiration (AET) with respective 1:1 plots (c,d) for the different rooting
schemes to observational data from the FLUXNET site FR-Pue.
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GF-Guy

Figure S7: Comparing modelled monthly (a) gross primary production (GPP) and (b) actual
evapotranspiration (AET) with respective 1:1 plots (c,d) for the different rooting
schemes to observational data from the FLUXNET site GF-Guy.
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IT-MBo

Figure S8: Comparing modelled monthly (a) gross primary production (GPP) and (b) actual
evapotranspiration (AET) with respective 1:1 plots (c,d) for the different rooting
schemes to observational data from the FLUXNET site IT-MBo.
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IT-Ren

Figure S9: Comparing modelled monthly (a) gross primary production (GPP) and (b) actual
evapotranspiration (AET) with respective 1:1 plots (c,d) for the different rooting
schemes to observational data from the FLUXNET site IT-Ren.
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RU-Cok

Figure S10: Comparing modelled monthly (a) gross primary production (GPP) and (b) actual
evapotranspiration (AET) with respective 1:1 plots (c,d) for the different rooting
schemes to observational data from the FLUXNET site RU-Cok.
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RU-Fyo

Figure S11: Comparing modelled monthly (a) gross primary production (GPP) and (b) actual
evapotranspiration (AET) with respective 1:1 plots (c,d) for the different rooting
schemes to observational data from the FLUXNET site RU-Fyo.
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RU-SkP

Figure S12: Comparing modelled monthly (a) gross primary production (GPP) and (b) actual
evapotranspiration (AET) with respective 1:1 plots (c,d) for the different rooting
schemes to observational data from the FLUXNET site RU-SkP.

59



A Supplementary Materials

US-SRM

Figure S13: Comparing modelled monthly (a) gross primary production (GPP) and (b) actual
evapotranspiration (AET) with respective 1:1 plots (c,d) for the different rooting
schemes to observational data from the FLUXNET site US-SRM.
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US-Ton

Figure S14: Comparing modelled monthly (a) gross primary production (GPP) and (b) actual
evapotranspiration (AET) with respective 1:1 plots (c,d) for the different rooting
schemes to observational data from the FLUXNET site US-Ton.
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US-Var

Figure S15: Comparing modelled monthly (a) gross primary production (GPP) and (b) actual
evapotranspiration (AET) with respective 1:1 plots (c,d) for the different rooting
schemes to observational data from the FLUXNET site US-Var.
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US-Wkg

Figure S16: Comparing modelled monthly (a) gross primary production (GPP) and (b) actual
evapotranspiration (AET) with respective 1:1 plots (c,d) for the different rooting
schemes to observational data from the FLUXNET site US-Wkg.
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