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Abstract

Adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC) are the most common
forms of lung cancer. These two subtypes of lung cancer are usually classified by visual
inspection clinically. Our aim is to design an effective strategy based on convolutional
neural networks to classify histopathology slides of these two types of lung cancer. With
augmentation of the histopathology slides, different classifiers were trained and three en-
semble learning methods were compared in this project. Finally, we determined which
training strategy that produced the best result.

In the case of limited samples, we find that the combination of transfer learning and
ensemble learning greatly improves the classification accuracy for whole-slide images of
lung tissue. The optimal strategy achieved 94.2% accuracy with 120 training cases and
86.3% accuracy with 80 independent test cases. We consider this comprehensive strategy
remarkable in solving the classification problem with the different kinds of lung cancer.
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Popular science description

Artificial Neural network (ANN), as the name suggests, is a mathematical model to sim-
ulate the brain. Therefore, its development is more or less inspired by the research of
brain science. In the 1960s, when Hubel and Wiesel studied the local sensitive and direc-
tional selection of neurons in the cat’s primary visual cortex, they found that a unique
network structure can effectively reduce the complexity of the traditional ANN. Subse-
quently, many scientific researches were inspired by this work and built the basic structure
of convolutional neural network (CNN). Thanks to massive reductions in both the amount
of computation and the number of parameters, CNN has achieved unprecedented success
in the field of computer vision. Now, CNN has become one of the research hotspots in
many scientific fields, such as autonomous driving and natural language processing. While,
with the development of ANN, various technologies, such as transfer learning and ensemble
learning, have been proved effective in many aspects of computer vision.

Since visual inspection of histopathology slides is one of the main methods used by pathol-
ogists to assess the stage, type and subtype of tumors in the medical field, this naturally
leads to introduce CNN into the task of medical image classification. The use of machine
learning in medicine can not only improve the accuracy of medical image classification,
but also reduce the workload of physiologists. This study expects to build a powerful deep
CNN when the number of the medical image is limited, so that the model can achieve
better classification accuracy with two main subtypes of lung cancer, LUAD and LUSC.
Usually, in a large tissue section image, the cancer cells cover only part of the image. So
when the large image is segmented into tiles for training, we need to select tiles which
contain really important tumor information to train the neural network. As a result, we
adopted a multi-level training process to filter the unimportant tiles, allowing our model
to capture the really important cancer features from the informative images. Based on
this idea, only a small part of images in the database can be used to get a classification
accuracy rate higher than 85%. Besides, because many medical images have some degree of
similarity, we also hope to extend the remarkable strategy to other related medical image
classification tasks.
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1 Introduction

In the past few years, deep learning has been applied extensively in computer vision re-
search [1]. These studies have achieved outstanding results in image classification and
image recognition tasks. At the same time, many advanced techniques for Artificial Neural
Networks (ANNs), such as transfer learning, ensemble learning, and different regularization
methods, have greatly improved the performance of ANNs, and got excellent achievement
in a wide range of fields.

At present, visual inspection of histopathology slides is one of the main methods used by
pathologists to assess the stage, type and subtype of tumors in the medical field. Over
the years, an increasing number of histopathology slides have been collected in the medical
databases. This naturally leads to introduce deep learning techniques into the task of
medical image classification [2].

Lung cancer is one of the most malignant tumors with the fastest growth in morbidity and
mortality and the greatest threat to population health and life [3]. Data from the American
Cancer Society and the Cancer Statistics Center indicates that in 2018, new cases of lung
cancer reached 234030. In addition, from 2011 to 2015, the mortality rate of lung cancer
is as high as 43.4% [4].

There are two main types of lung cancer: about 80% to 85% of lung cancers are non-small
cell lung cancer (NSCLC) and about 10% to 15% are small cell lung cancer (SCLC). The
different types of NSCLC are characterized by cancer cells that grow and spread in different
ways. The two most common forms of NSCLC are lung adenocarcinoma (LUAD), lung
squamous cell carcinoma (LUSC), accounting for roughly 40% and 30% of all lung cancer
cases, respectively [5]. Because LUAD and LUSC differ in cell of origin, location within
the lung and growth pattern, they are considered as distinct diseases [6]. Therefore, the
classification of lung cancer type by the tumor slide images is a key diagnostic process.

The goal of this study is to design a deep learning-based cancer classification system that
classifies tumor slide images into LUAD and LUSC based on limited samples. Compared
with the classification by visual inspection, an automatic classification system provides a
quick and efficient way to solve the tasks. Besides, as an adjunct, it can also help the
pathologists to improve the accuracy of cancer identification to a certain degree.

The tissue section image usually has large size. In order to better train the CNN, we need
to segment these large images into small tiles and let the neural network extract features
from them. However, cancer cells usually cover only part of the tissue section image. In
this case, if all of the tiles are labeled as consistent with the label of the tissue section
image they came from, it may cause the CNN to extract the wrong features from the tiles
which do not contain any important cancer features, which will ultimately limit the final
classification accuracy and robustness of the model. Therefore, in this study, we designed
a multi-level training strategy to filter the unimportant tiles. After cleaning the data in
this way, combined with the visual analysis of the classification results, we found that the

4



newly trained model achieved higher classification accuracy, which also means that the
network extracted the truly important features from the images. In this process, ensemble
learning and transfer learning are used to further improve the accuracy and stability of the
final classification.
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2 Data

2.1 Data Introduction

High-resolution microscopy images of living tissues provide detailed information about the
morphology of normal and diseased tissue [2]. We aim to make a correct classification
about the type of cancer from the information contained in these medical images.

The whole-slide images of lung tissue obtained from The Cancer Genome Atlas [7] is used
as the dataset for this study. Currently, the database contains about 500 whole-slide images
of LUSC and LUAD, respectively. Some of these images, although from cancer cases, are
normal lung tissues, which do not contain any cancer features. The database also includes
some metadata about the cases, such as the magnification. This information is helpful to
analyse whether the classification results are biased and how to standardize images.

Figure 1: The six tiles were taken from different locations within the same sample. Each
tile contains a percentage of valid features.

The size of the original image is too large (the lengths range from 5000 to 100000 pixels).
In order to better classify with Convolutional Neural Network (CNN), each original image
was segmented into small tiles with 299 × 299 pixels, as shown in Figure 1. Then, these
tiles from the original images are used for training, validation and testing. The size of the
tiles was chosen for two reasons. First, this size meets the input requirements of most pre-
trained models for transfer learning. Second, sufficient cancer features can be retained on
most tiles. Besides, since the original images have different magnifications, it is necessary
to choose a correct scaling factor before the segmentation to confirm that each tile contains
morphology features with the same scale.

2.2 Data selection

Each tile usually contains white pixels with different proportions, such as the tiles covering
the edges of the tissue, which include a large percentage of white pixels and do not provide
any features of disease. Therefore, it is essential to calculate the white ratio of each tile
and remove the tiles with a significant white fraction. To calculate the white ratio, the
tiles were converted from color images to gray scale. If the value of a pixel is larger than
204, it considered as a white pixel. In this way, after calculating the white ratio of each
tile, those tiles with white ratio higher than 70% were filtered out.
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Figure 2: Distribution of the number of tiles per slide for the 120 slides in this project.

The number of tiles from the different samples varies by the original image size, see Figure 2.
Large images can produce more than a thousand tiles, while small images might only
generate a few dozen tiles. For our model to treat the features from each sample equally,
some rules are employed to limit the number of tiles from a specific sample. These rules
can avoid the model over-fitting to the samples which contain a large number of tiles. Here,
we downloaded 120 samples (60 of them belong to LUSC and 60 of them belong to LUAD)
as training sets and validation sets. Rules for data selection were set as follows:

1. Segment the original images into small tiles, the size of each tile is 299 × 299 pixels.

2. Exclude tiles with white ratio higher than 70%.

3. If a sample contains more than 150 tiles, randomly pick 150 tiles into the dataset.
Otherwise, pick all the tiles from this sample.

4. If the number of tiles belonging to each type of lung cancer differs greatly, it is
necessary to augment the data of the cancer class which contains fewer tiles to balance
the classes.

5. After data augmentation, pick 80% of the tiles from the dataset randomly as the
training set and the others as the validation set.

The training set is used to train the model, and the validation set can provide an unbiased
evaluation of a model fit on the training dataset while tuning model hyperparameters. To
verify the performance of the trained model on the new samples, we also downloaded 80
independent samples randomly (40 of them belong to LUSC and 40 of them belong to
LUAD) as test set, which can provide an unbiased evaluation of the final model fit on the
training set.
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2.3 Data Augmentation

There are three main benefits with data augmentation: When data is limited, more valid
data can be obtained by appropriate augmentation. Even with a large amount of data,
augmentation can also prevent the model from learning unrelated features in the images
and thereby, improve the model performance fundamentally. For imbalanced classes, data
augmentation offers an effective method to create a balanced dataset.

For medical images, a lot of features are irrelevant with the essential features for classi-
fication, such as brightness, hue, saturation, contrast and uneven stain within a certain
range. This means that even if these features are changed, the important features of can-
cer for classification should remain the same. Therefore, by randomly perturbing these
irrelevant features in advance to get more varieties and use these enhanced images to train
the network, the model will extract important features more accurately and get better
classification results.

TensorFlow’s image library (tensorflow.image.random X) [8] was chosen to augment data
in this project. Implementation details are given in Table 1:

Table 1: Implementation details for data augmentation.

Function Parameter
random_brightness max delta = 0.25
random_saturation lower = 0.875, upper = 1.125

random_hue max delta = 0.04
random_contrast lower = 0.7, upper = 1.3

random_flip_left_right -
random_flip_up_down -

Tensorflow provides four functions to adjust the brightness, saturation, hue and contrast
of the images randomly within the set ranges respectively. Two functions are also provided
to randomly flip images. By perturbing these variables, we were able to get more images
without changing the important features of the cancer for final classification.
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3 Theory

3.1 Artificial Neural Network

Figure 3: The basic structure of the pyramidal cortical neuron [9], which inspires the
structure of ANNs.

Artificial neural network (ANN) is a mathematical model built by simulating the construc-
tion of biological neural networks [10], see Figure 3. With the advent of the digital age,
data in different fields have been accumulating rapidly. With the further improvement
of computing power and machine learning algorithm, ANN is gradually introduced into
various fields [11] [12]. In many cases, ANN has proven to be effective in solving some
repetitive, tedious tasks.

The basic component of ANN is the artificial neuron. The artificial neuron can receive
information from the incoming signals as the inputs and map these signals to output
through an activation function. The activation function does a kind of transformation to
the input, which allows the model with multiple layers to better handle complex tasks.
Under the action of the activation functions, the output value will map to a given range.

Figure 4: A perceptron with n-dimensional input. The components a1, a2, ..., an of the
n-dimensional input are weighted by the weights w1, w2, ..., wn, summed and added to the
bias b. The result is passed into an activation function f to produce the output t [14].
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The perceptron is one of the simplest feed-forward neural networks [13]. Figure 4 shows a
perceptron consisting of one input layer and one neuron. The input signals are connected
to the neuron by weighted connections respectively. When the input signals flow into the
neuron under its own weight, the neuron will map the total received value to a final result
by the activation function.

Figure 5: A typical MLP consists of an input layer, a hidden layer and an output layer.
The inputs are weighted by connection weights and passed to the nodes in the next layers,
get a final output value [15].

For more complex non-linear separable problems, the multilayer perceptron (MLP) can be
adopted. A MLP consists of an input layer, some hidden layers and an output layer, see
Figure 5. Except for the input layer which is determined by the input vector, each layer
contains a certain number of neurons. In this case, the non-linear activation functions
are introduced to add non-linear factors for the network. Therefore, in a neural network
with multilayer structure, after a neuron receives multiple inputs, these signals are weighted
with corresponding weights and pass through the activation function to produce an output,
which will be fed forward to the nodes in the next layer or output as a final result.

The process of obtaining information from data and storing the acquired knowledge in
the weights is called the learning process. It can be done by back propagation (BP)
algorithm. For supervised learning, the error between the output result with the expected
result is measurable by a proper loss function. Then, the gradient of the loss function can
be calculated layer by layer for the weights and fed back to the optimization method to
minimize the loss function by updating the weights in each layer. After this process has
been repeated many times, the result will be close to what is expected.
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3.2 Convolution Neural Networks

Convolutional neural networks (CNN) is one of the representative network structures in
deep learning. It can be considered as a MLP with a special structure. CNN can take
advantage of the 2-dimensional structure and the high correlation between adjacent pixels
of the image, thus avoiding the one-to-one connection between all pixel units.

Figure 6: An image is convoluted with a 3 × 3 convolution kernel [17].

In image analysis, the data that needs to be processed is a discrete, two-dimensional form.
So the convolution formula for the discrete variables can be written as:

g(x, y) =
a∑

s=−a

b∑
t=−b

w(s, t)f(x− s, y − t) ,

where g(x, y) represents the filtered image and f(x,y) represents the input image. The
function w(s, t) is the weighting function, which is also called the convolution kernel. By
training the convolution kernels, they can extract the features from an image that are
considered to be the most relevant to the classification. In general, a convolution kernel
covers only a small area of an image, see Figure 6. So the kernel needs to slide on the whole
image with a certain stride, which is the number of pixels the kernel shifts over the input
image at a time, to extract features in different positions.

The two important properties of CNN are sparse interactions and parameter sharing [16].
For an image, the correlation of the adjacent pixels is relatively important, while pixels
with far distances are weakly correlated. Besides, the convolution kernels should be the
same for the same feature in different positions of the image. Based on these ideas, the
concept of shared weights is proposed, and the number of parameters in a CNN is greatly
reduced. Therefore, small convolution kernels can save the essential features in an image
efficiently.

For multi-channel input convolution, such as a color image with three RGB input channels,
it usually has three kernels (one for each input) instead of one. As shown in Figure 7, the
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Figure 7: Convolution with three input channels and one output channel [18].

convolution kernels over the image pixels and perform convolution operation to obtain the
feature maps. During this process, the feature maps from the three channels are summed
to produce a final feature map as an output.

Figure 8: Example of max pooling with 2 × 2 filters and stride 2. According to the rules
of max pooling, the maximum value is extracted from the area covered by the pooling
kernel [19].

After the convolution layer, a pooling layer is usually inserted to further simplify the feature
map. Max pooling is one of the most common technologies in CNN. Like the convolution
kernel, the pooling kernel also needs to slide over the entire image to complete the pooling.
As shown in Figure 8, when an area on the image is covered by a max pooling kernel,
the maximum value in the area will be used as the output value. The obvious benefit of
the pooling layer is compressing the size of the feature map. For an image, max pooling
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helps to make the representation approximately invariant under a small translation. This
property is important when we care more about the feature itself than the location of the
feature. Besides, it also expands the size of the receptive field by keeping the important
features and compressing the image size.

Figure 9: The structure of a CNN. It usually consists of convolution, pooling, and fully-
connected layers [20].

In a complete CNN architecture, multiple convolution layers and pooling layers are usually
used. Since the convolution and pooling layers only output feature maps from the original
image, to get the final result, we need to transform the feature map into a feature vector
and input it to the fully connected layers. At the last layer, the probability corresponding
to each class will be output. A typical CNN structure is shown in Figure 9.

3.3 Optimization algorithm

In supervised learning, the targets corresponding to the input values are given. By compar-
ing the targets with the output values, we can obtain an error. Optimization algorithms
help us to minimize the error function E(x) used in the model to realize the learning
process.

To implement this algorithm, it is necessary to find an effective way to measure the error
between result and target. For the binary classification problem, the binary cross-entropy
function [21] is usually chosen as the error function, which can be derived from probability
theory:

L = −
N∑
i=1

[y(i) log ŷ(i) + (1 − y(i)) log(1 − ŷ(i))] ,

where ŷ is the output of a network and y is the corresponding desired output [22].

For the case where the training data is large, a mini-batch stochastic optimization algorithm
for finding the weights or coefficients of machine learning is usually adopted: split the
training dataset into some small batches and use them to calculate the error and update
the weights by back propagation algorithm individually. This method for optimizing a
differentiable error function is called stochastic gradient descent (SGD) [23].
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It is also important to select the right batch size. In general, large batch size allows faster
convergence, but it tends to converge to sharp minimas of the training functions, which
can lead to poorer generalization. Small batch size can offer a regularizing effect, but the
total training time can be very long, since it is difficult to converge [16]. Besides, the choice
of batch size also depends on the data and GPU memory. Therefore, we usually need to
try different batch sizes to balance the classification accuracy and training time.

Adam is another optimization algorithm that computes adaptive learning rates for each
parameter from estimates of first and second moments of the gradients, which is extended
from SGD [24]. All the models in this study were trained using Adam as the optimizer. It
makes the error have faster convergence speed and achieves better performance with final
accuracy.

3.4 Batch Normalization

Another technique used in this project is batch normalization (BN) [25]. In the process
of training the neural network, the distribution of the input training data will change due
to the change of network parameters. This phenomenon is called internal covariate shift.
So, to reduce the internal covariate shift, BN normalizes the data at every training step
or at some interval. The general advantage of BN is that it allows us to use much higher
learning rates and be less careful about initialization. After data processing in batches,
BN can be implemented with the following steps:

1. Calculate the mean and variance of the input for each batch.

Batch mean: µB =
1

m

m∑
i=1

xi

Batch variance: σ2
B =

1

m

m∑
i=1

(xi − µB)2

2. Normalize the inputs for each batch.

xi =
xi − µB√
σ2
B + ε

,

where ε is a small number added to variance to avoid dividing by zero.

3. Scale and shift in order to obtain the output of the layer.

yi = αxi + β ,

where α and β are scale and shift coefficients learned during training.
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3.5 Regularization techniques

One of the major problems that occur during neural network training is over-fitting. This
phenomenon usually shows that the model performs well on the training set, but dose
badly on a new dataset. For enhancing the generalization of the model, early stop and
dropout technologies are adopted in this project to prevent over-fitting.

Figure 10: The principle of early stopping is stopping training at the point when the
minimal validation loss is achieved [26].

Early stopping is a simple technique implemented during the training. After randomly
dividing the dataset into a training set and validation set, one can get a generalized model
by returning the parameter that minimizes the validation loss, which is the loss on the
validation set during the training of the model, see Figure 10. Based on this idea, the
validation loss is treated as an essential indicator to stop training [27]. Although the
model does not fully converge on the training set, it enhances the performance of the
model with an independent dataset.

Figure 11: The principle of dropout is randomly invalidating some neurons in the training
phase [28].
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Dropout [29] is another extensively used method to prevent over-fitting. It relieves the
complex co-adaptations between neurons and reduces inter-neuronal dependence to some
extent by providing a way of approximately combining many different neural network
architectures efficiently. The implementation of dropout is randomly deleting some nodes
of the hidden layer at each training batch, as shown in Figure 11. Therefore, applying
dropout to a neural network amounts to sampling a thinned network from it. The thinned
network consists of all the units that survived dropout.

3.6 Model Selection

For model selection, it is usually important to compare multiple models with different
architectures and parameters, then select an optimal model as the final one. Because of
the training process and the selection of the dataset have a certain degree of randomness,
we should select an optimal model in a statistical sense.

Figure 12: Example of 5-fold cross-validation. We divide the data into 5 pieces, each being
20% of the full dataset. Each subset is used as a validation set once and the remaining 4
subsets are used as the training set [30].

Cross-validation is a statistical analysis method used to verify the performance of a classifier
[31]. The basic idea is splitting the original data into some subsets randomly. Then, use
one of the subsets as a validation set and the other part as the training set. The classifier
should train with the training set, and the trained model be validated by the validation set
to evaluate the accuracy of classification. K-fold cross-validation divides the original data
into K groups equally, as show in Figure 13. Each subset is used as a validation set once
and the remaining K − 1 subsets are used as training sets. After training, K models with
the same architecture will be obtained, the average classification accuracy on the validation
set of the K models can be used as the evaluation index of the model. By comparing the
cross-validation indicators of models with different configurations, the optimal model can
be determined. In this project, we used 5-fold cross-validation for model selection.

3.7 Performance Measures

The receiver operating characteristics (ROC) curve and Area Under the ROC Curve (AUC)
are typically used to evaluate the performance of a binary classifier [32,33]. In a ROC curve,
the horizontal axis represents the false positive rate (FPR), which can be calculated as (1

16



− specificity). The vertical axis represents the true positive rate (TPR), which is also
called sensitivity. Here, specificity means the fraction of actual negatives that are correctly
identified and sensitivity means the fraction of actual positives that are correctly identified.

Figure 13: An example for a ROC curve (orange) and the computed Area Under the Curve
(AUC) [34].

The sigmoid function was used as the activation function of the output layer in this study
when we trained binary classifiers. Because the output of the classifier is a probability
value, a discrimination threshold is needed to determine the output class of the classifier
when plotting the ROC curve. Generally, we’re going to take a series of thresholds from
high to low, and classify these samples with the different thresholds many times. When
a test sample has a higher probability than the threshold, it is considered as a positive
sample. Otherwise, it is negative. After the ROC curve is obtained with these different
choices of thresholds, the performance of the classifier can be evaluated by calculating the
value of the AUC, see Figure 13. The AUC value is used as the evaluation criterion. It
quantifies the ROC curve with a numerical value.

With these definitions, we can assert that the closer the ROC curve is to the upper left
corner, the better the performance of the classifier. The diagonal line in the ROC graph
represents a result of a random guessing strategy, meaning that the half of all the samples
were randomly guessed as positive, and the other samples were guessed as negative.

3.8 Transfer learning

Transfer learning refers to reuse the model parameters trained on a large dataset to the
specific task. It can also be treated as a method to initialize weights. Usually, these
pre-trained models have consumed a lot of time and computer resources during training.
Considering that many data contain similar features, such as edge features in the image,
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the trained parameters from one pre-trained model usually can be shared with the new
model in some way to improve the learning efficiency [35].

The benefits of transfer learning is mainly reflected in rapid convergence, higher accuracy
and simplified tuning process compared to the model we built ourselves or the model
without the pretrained weights. In our case, first, we don’t need to fine-tune the learning
rate to make the model converge quickly. Second, since some general features are saved in
the pre-training weights, the model will have high accuracy at the beginning of training, and
this result will further improve by training with our data. In this study, we transferred a
model based on the V GG16 architecture with pre-trained weights on ImageNet [36], then,
use our images to train the network.

The transfer learning strategy used here is not only to replace and retrain the model on
top of the CNN, but also fine-tune the weights of the pre-trained model by continuing the
back-propagation. It is possible to keep some of the earlier layers fixed and only fine-tune
some higher-level layers of the V GG16 model. The principle for this training strategy
is that the earlier features of the pre-trained model contain more general features, such
as edge detectors, that should be useful to medical images, but later layers of the model
becomes gradually more particular to the details of the specific images contained in the
training dataset. Therefore, for the pre-trained V GG16, the parameters in all the layers
but the last eight ones were frozen during training. In this way, it not only speeds up the
training of the model but also ensures that the training can achieve higher accuracy.

Figure 14 shows the architecture of V GG16. This structure is characterized by the use
of multiple small 3 × 3 convolution kernel stacks to replace the large convolution kernel,
which improves the network depth under the condition that the receptive fields are the
same. This change not only reduces the number of parameters, but also increases the
network depth and makes the network have better capability of nonlinear approximation.
After we obtain the final feature map of an input image from the last convolution block,
we flatten it as a feature vector and input the dense layer, which connects every neuron in
one layer to every neuron in another layer, for final classification.

Figure 15 shows our artificial network architecture based on V GG16 and all of the tech-
niques mentioned above. The size of the input layer of V GG16 was modified to be consis-
tent with the size of training tiles. The batch normalization and the dropout layer were
inserted after each dense layer in the red circle in Figure 14.
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Figure 14: Architecture of VGG16 [37]. In this example, the size of input image is 112×112
with three color channels. The Numbers in black brackets show the size of the feature map
at different stages.

Figure 15: Transfer learning architecture based on VGG16.

In the following, all the classifiers used in the different strategies have the same architecture
with different parameters.
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3.9 Ensemble Learning

Ensemble Learning accomplishes learning tasks by building and combining multiple clas-
sifiers. Compared to a single classifier, it generally has superior generalization perfor-
mance and solves the memory issue caused by training a single classifier with a large
dataset [38, 39].

Boosting is one of the ensemble learning strategies for primarily reducing bias and also
variance in supervised learning. The main idea of Boosting is to increase the weight of
the samples that were misclassified by the previous classifier and use this new data set to
train the next classifier. Thus, future classifiers will focus more on the cases which are
misclassified by the former classifiers.

There are many ways to use boosting. For our task, it is more important to determine the
classes of cancer based on the whole-slide image than a single tile. Therefore, when we use
the boosting method to train a new classifier, the data proportion were adjusted based on
the misclassified samples. This means that the number of tiles from misclassified samples
has been increased when training the new classifier.
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4 Ensemble Learning Strategies

Three strategies that achieved good classification results are compared in this project.
Unlike some of the tasks which only focus on the results at the tile level, the classification
results at the sample level and the average classification accuracy for each sample are also
important indicators in this research. Since the results of the different classifiers in our
strategies show pretty close values at the tile or sample level sometimes, it is important
to consider different indicators from different levels comprehensively to determine the best
strategy.

All of the three strategies have a three-level structure. The key idea is to use the classifiers
at the first two levels to filter out the tiles that do not contain any important cancer features
from the original dataset. Then, use the selected tiles containing significant cancer features
to train the three-class classifier at the last level (including tiles with two types of lung
cancer and normal lung tissues) to achieve a more accurate classification.

4.1 The First Ensemble Strategy

Figure 16: The training process of the first strategy.

The first strategy is shown in Figure 16. This strategy has a three-level structure. The
first two levels are composed of binary classifiers and the third level is composed of one
three-class classifier. The binary classifier at the first level was trained with the tiles
which are randomly augmented from the original tiles. Based on this, the misclassified
samples are screened out. After re-segmenting the misclassified samples in a different way,
a boosting technique was adopted to train the classifier at the second level. The final
three-class classifier was trained by the tiles containing important cancer features, which
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were selected by the second binary classifier, and the tiles from the normal samples.

There are two main disadvantages with a single binary classifier for classifying the tiles to
LUSC or LUAD. First, the classification result from a binary classifier might be different
from the real situation even if it has high validation accuracy. Since the coverage of cancer
features (such as cancer cells) do not reach 100% in a whole-slide sample, some of the tiles
from the same sample may not contain any cancer features. Because only two types of
cancer labels based on the whole-slide samples were used in the dataset, the model tends
to make some misjudgements when the tiles are normal tissue. Therefore, we need to
use a binary classifier to find the tiles containing important cancer features and build a
three-class classifier based on these tiles.

Second, screening valid tiles with a single binary classifier to construct a new dataset to
train the three-class classifier may result in loss of important cancer features. A kind of
misclassification situation generated by a single classifier is that almost all the tiles from a
sample are misclassified (the results section shows more details about this). If we construct
a new dataset based on this result, we may not obtain any tiles containing valid features
from this kind of misclassified samples, which will reduce the richness of some valid features.

The binary classifier in the second level is to improve the second disadvantage. Here, we
used the method of boosting in ensemble learning to train the new model by increasing
the proportion of misclassified samples from the first level. It should be noted that the
extra tiles selected for boosting are not based on the mistake at the tile level, but based
on the classification result of the whole-slide samples. This means that when half of the
tiles in a sample are misclassified, we will record this sample and re-segment the sample
in a different approach. Then, we will add these new tiles from the misclassified sample to
the previous dataset and train a new model.

Figure 17: With a different segmentation approach, each new tile contains part of the
information from the four original tiles.

The reason of re-segmenting the misclassified samples is to obtain richer feature informa-
tion. If we simply train the second binary classifier by doubling the misclassified samples,
it usually results in severe over-fitting. But once the new tiles, which were generated by a
different segmentation method, are mixed with the old tiles, the over-fitting does not occur.
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In this study, we re-segment the samples by changing the starting point of the segment
window. As shown in Figure 17, for the first tile in the upper left corner of a sample, the
new segment window moves to the right and down with half of the tile length. In this way,
each new tile contains the features from the four original nearest tiles without changing
the magnification and size. In addition, some alternative methods for augmenting the tiles
from the misclassified samples are also worth trying, such as rotating the tiles randomly.
This kind of enhancement method can provide tiles from more angles without changing
the features of cancer.

Based on the classification results of the second-level classifier, we can filter out the tiles
which are misclassified and assume the correctly classified tiles contain significant cancer
features. In this process, those tiles whose classification results do not have a clear tendency
were also excluded: we only saved tiles with classification confidence greater than 55% (if
the result obtained by the binary classifier is between 0.45 and 0.55, the tile is rejected.).

It is still important to consider the tile distribution. When selecting tiles from different
samples, the previous data selection rules still need to be followed. At this point, a smaller
dataset which is relatively balanced and has more generalized cancer features was obtained.

Mixing the cancer tiles from the second-level classifier and the healthy lung tissue samples,
the third-level three-class classifier was trained with this new dataset. The ratio of cancer
tiles to the normal tiles is about 1 : 1.
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4.2 The Second and Third Ensemble Strategies

Figure 18: The training process of the second strategy. The main principle is to train
three independent three-class classifiers using the first strategy and get the final result by
averaging the results from the three independent classifiers.

Based on the first strategy, the ensemble method was introduced to build the second
strategy, see Figure 18. In this strategy, we used the same process as in the first strategy,
as shown in Figure 16, to train three independent three-class classifiers. The classification
results of these three independent three-class classifiers were averaged to determine the
final class of each tile.

In the third strategy, we improved the second strategy. Based on the process of the second
strategy, the classification results from the second-level binary classifiers were averaged.
With these results, we can save the tiles which are classified correctly as our dataset,
see Figure 19. The reason for this step is to pick more reliable tiles and eliminate more
accidental cases. As before, tiles with a classification accuracy close to 50% were also
excluded, even if they were correctly classified.

The next process is similar to the first strategy: mixing the selected tiles with normal tiles,
using the new dataset to train the three-class classifier.

It should be pointed out that for the tiles selected by the classifiers at the second level,
there is a certain degree of class imbalance. In the third strategy, the selected tiles were
augmented as two different datasets. For the first dataset, we perturbed and mirrored the
selected tiles randomly based on the method described in the data augmentation section.
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Figure 19: The training process of third strategy.

Then, we used this dataset to train the first three-class classifier. For the second dataset,
we balance the classes. It means some tiles from the class with fewer cases were randomly
selected and put into the dataset again. After the classes were balanced, we perturbed
and mirrored these tiles and used them to train our second three-class classifier. The test
results on the independent test set show that these two three-class classifiers are different.
So in order to get more stable performance and better generality, we average the results of
the two three-class classifiers.
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5 Implementation Details

5.1 Software Library

The programming language used in this project is Python (version 3.6.6). The design,
training and performance evaluation of neural networks were implemented using the Keras
library. Keras is a high-level neural network Application Programming Interface (API),
which is based on Tensorflow, Theano and Cntk backends. The characteristics are
to be able to quickly and efficiently achieve the ANN construction and convenient testing.

5.2 Hyperparameters

The VGG16-based binary classifiers have the layers shown in Figure 14.

Here, Dense 1 and Dense 2 use the Relu function as the activation function and Dense 3
uses the Sigmoid function for binary classification. The number of nodes in Dense 1 and
Dense 2 are 2048 and 1024 respectively. Half of the nodes are dropped with all of the
dropout layers. Adam is used as the optimizer to train the neural network. When training
all the binary classifiers, binary cross-entropy function was used as the loss function. The
learning rate is 0.0001 and the batch size is 16.

The VGG16-based three-class classifiers adapted similar layers and hyper-parameters as
the binary classifiers. The difference is that the activation function of Dense 3 is Softmax,
which is a function for multiple classifications. When training the models, the batch size
is 8.

In the section of results and analysis, we compare the results of the neural network structure
designed by ourselves with the neural network based on transfer learning. The architecture
designed by ourselves is shown in Table 2. The size of the convolution kernel is (3 × 3)
for each convolutional layer. The convolution layer from 1 to 5 contains 32, 64, 128, 256
and 512 convolution kernels, respectively. The size of the pooling kernel is (2× 2) for each
pooling layer. The number of nodes in Dense 1 and Dense 2 are 1024 and 512 respectively.
Half of the nodes are dropped with all of the dropout layers.
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Table 2: Architecture of the binary classifier without transfer learning.

Layer
Convolution layer 1

Batch Normalization 1
Max pooling layer 1

Convolution layer 2
Batch Normalization 2

Max pooling layer 2

Convolution layer 3
Batch Normalization 3

Max pooling layer 3

Convolution layer 4
Batch Normalization 4

Max pooling layer 4

Convolution layer 5
Batch Normalization 5

Max pooling layer 5

Flatten 1

Dense 1
Batch Normalization 6

Dropout 1

Dense 2
Batch Normalization 7

Dropout 2

Dense 3
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6 Results and Analysis

6.1 Improvement of transfer learning

Table 3: Validation accuracy of two neural network models.

Model Validation accuracy
First Architecture 73.5%

Second Architecture 82.8%

For the binary classifiers, two network architectures were compared in this study. The first
architecture is shown in Table 2, which was built by ourselves. The second architecture is
based on transfer learning with the pre-trained V GG16 model, as shown in Figure 15.

The tiles from 120 samples were divided into training set and validation set according to
the process mentioned in the data selection section. The results in Table 3 are the average
validation accuracy with 5 independent classifiers (5-fold cross validation).

Figure 20: ROC curve of the two architectures on the validation and test sets.
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Figure 20 shows the ROC curves of the first and second architectures on the validation
dataset and independent test sets. These data indicate that transfer learning works much
better than the best structure of the classifier we have found so far. Therefore, all of the
other models in this study are based on transfer learning techniques.

6.2 Results from Ensemble Learning

When comparing the different strategies of ensemble learning, there are four main indica-
tors for measuring the pros and cons of these strategies.

• Validation Accuracy at Sample Level.

• Test Accuracy at Sample Level.

• Average Validation Accuracy at Tile Level.

• Average Test Accuracy at Tile Level.

The first two indicators only provide information about the classification at the sample
level. The last two indicators reflect the average performance of the classification at the
tile level on a single sample. Before training, the tiles from 120 samples were mixed
and randomly generated the training set and validation set based on our selection rules.
Therefore, when we calculate these indicators with these 120 samples at the different
levels, the training accuracy actually refers to the overall accuracy of the training set and
validation set. But all of these tiles used to calculate the accuracy were not disturbed
with color. In addition, all of the test accuracies were calculated from 80 independent
samples. The importance of different indicators varies according to the different roles of
the classifiers at different levels. For the classifiers at the first two levels, because the
purpose is to select the tiles containing significant features from each sample, the stability
and accuracy of the training set at the sample level are more important. For the final
results, the performance on the independent test set can better reflect the generalization
of the model and the validity of the classification, so the test results are more critical.

Figure 21 shows a basic structure of our ensemble strategies which are described in the
previous section. All the three strategies involve a three-level structure. Each level contains
some different binary classifiers and three-class classifiers, respectively. The following shows
the performance of classifiers trained by different strategies.

6.2.1 Results of The First Strategy

Table 4 shows the classification results of the classifiers at the first level and the second
level from the first strategy described above. The ROC curves in Appendix A, Figure 25,
show the performance of these classifiers in the validation set.

By analyzing the misclassification in the first layer, there are two types of misclassification
at sample level that are noteworthy.
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Figure 21: A basic structure of our three ensemble strategies. Based on different strategies,
the number of classifiers in the third level is different.

Table 4: Comparison of stability between the models at first level and second level.

Model Level Validation Accuracy at Sample Level
Model 1 1 95.8%(115/120)
Model 2 1 92.5%(111/120)
Model 3 1 90.8%(109/120)
Model 1 2 95.0%(114/120)
Model 2 2 94.2%(113/120)
Model 3 2 95.0%(114/120)

The first type of misclassification usually occurs at the edge of the sample, but in this case,
the classification of the whole-slide images will not be affected, see Figure 22.

The second type of misclassification indicates that almost all of the tiles from one sample
are misclassified, as show in Figure 23. This not only reduces the classification accuracy at
the sample level, but also makes it difficult to extract the tiles with main cancer features
from these misclassified samples.

After training the binary model at the second level with the new dataset, the accuracy
at sample level of the model has more stable performance. The enhanced stability of the
classifier helps to better screen the tiles. That is to say, the second level classifiers can
selected more tiles with important cancer features from the different samples, which makes
the dataset of the three-class classifier more reliable and informative.
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(a)
(b)

Figure 22: The first typical misclassification. Figure (a) shows a heatmap of a sample,
yellow indicates that the classification is completely correct. Figure (b) is the corresponding
whole-slide image.

(a)
(b)

Figure 23: The second typical misclassification. Figure (a) shows a heatmap of a sample,
black indicates that the classification is completely wrong. Figure (b) is the corresponding
whole-slide image.
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Table 5: Test results for the models at different levels

Model Level Test Accuracy at Sample Level
Average Test Accuracy

at Tile Level
Model 1 1 80.0%(64/80) 69.9%
Model 2 1 80.0%(64/80) 70.0%
Model 3 1 78.8%(63/80) 71.0%
Model 1 2 81.3%(65/80) 69.7%
Model 2 2 81.3%(65/80) 71.6%
Model 3 2 77.5%(62/80) 70.1%
Model 1 3 85.0%(68/80) 74.4%
Model 2 3 85.0%(68/80) 73.5%
Model 3 3 82.5%(66/80) 73.8%

Table 5 shows the classification results from three independent models with the first strat-
egy. The ROC curves in Appendix A, Figure 26, shows the performance of all the binary
classifiers in the test sets.

The principle of calculating the accuracy indicators of a trained three-class classifier is to
count the number of correctly classified tiles after excluding tiles that are considered as
normal (because there is no tile from a cancer sample that is labeled as normal).

The classification results of the three-class classifiers at the sample level are better than the
binary classifiers at the first two levels. The average classification accuracy at the tile level
of each sample is also significantly improved. Compared with the model at the first level,
the model at the second level got more stable classification results with the whole-slide
images. The other indicators at the tile level are roughly equal.
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(a) (b)

Figure 24: Comparison of classification results between binary classifier and three-class
classifier. Figure (a) is the classification results of tiles from a sample by the binary
classifier. Figure (b) is the classification results of tiles from the same sample by the three-
class classifier. Red dots represent misclassified tiles, blue dots represent normal tiles, and
green dots represent correctly classified tiles.

Visualizing the classification results of the tiles in each sample helps to see the improvement
of the three-class classifiers. As shown in Figure 24, the three-class classifier judges most
of the misclassified tiles in the binary classification as normal tissues that do not contain
cancer features. This result is consistent with our expectation.

6.2.2 Results of The Second Strategy

Table 6: Final results from the first and second strategies with the training samples and
test samples.

Model Level
Validation Accuracy at

Sample Level
Average Validation Accuracy

at Tile Level
Model 1 3 90.8%(109/120) 83.8%
Model 2 3 92.5%(111/120) 83.9%
Model 3 3 90.0%(108/120) 83.0%

Ensemble 3 89.2%(107/120) 84.8%

Model Level
Test Accuracy at

Sample Level
Average Test Accuracy

at Tile Level
Model 1 3 85.0%(68/80) 74.4%
Model 2 3 85.0%(68/80) 73.5%
Model 3 3 82.5%(66/80) 73.8%

Ensemble 3 85.0%(68/80) 74.5%
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The results from the second ensemble strategy shows that the final result determined by
the average of the three classifiers is very close to the previous single three-class classifier
in Table 6. For the original training samples without color perturbation, the classification
results at the sample level are even slightly lower than the training result from the single
three-class classifier.

We believe that such results are due to the similarity of these three classifiers. Although
the randomness generated during the data selection process will make certain differences in
the trained classifiers, such classifiers will still make similar judgements at the sample level.
Therefore, after combining the classification results of the three classifiers, the results are
more likely to produce an average accuracy, not the highest.

6.2.3 Results of The Third Strategy

Table 7: Performance of different strategies with training samples and test samples.

Frame Validation Accuracy at Sample Level
Average Training Accuracy

at Tile Level
strategy 1 90.8%(109/120) 83.6%
strategy 2 89.2%(107/120) 84.8%
strategy 3 94.2%(113/120) 86.1%

Frame Test Accuracy at Sample Level
Average Test Accuracy

at Tile Level
strategy 1 83.8%(67/80) 73.9%
strategy 2 85.0%(68/80) 74.5%
strategy 3 86.3%(69/80) 73.6%

Table 7 shows the final performance of the third strategy on the validation set and the test
set, and also compares these results with the first and second strategy. With the third
strategy, we got better results on both the original training samples and the independent
test samples.

To evaluate the performance of the three-class classifiers and make them easier to compare
with the results of the binary classifiers, tiles which are classified as normal by the three-
class classifiers were excluded. Finally, the classification accuracy was calculated based on
the tiles which are considered to contain the cancer features.

It should be pointed out that when training all the models in this study, the random
color perturbation and mirroring operations were performed on the original tiles. But
when calculating the four indicators at the sample level and tile level, the original samples
(undisturbed tiles) were used.

Comparing the results based on the original training samples and the test samples, it can
be deduced that the third strategy is slightly better than the first two strategies. The first
and second strategies have different results under different verification criteria.
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Table 8: Results from another ensemble method based on the third strategy.

Dataset
Average Accuracy

at Tile level with the
new ensemble method

Average Accuracy
at Tile level with the

ensemble method used before
Validation 87.6% 86.1%

Test 75.4% 73.6%

In order to further improve the accuracy at the tile level, another ensemble method is also
considered: when calculating the classification accuracy of a sample, we also exclude the
tiles which are classified into different classes by the two three-class classifiers. By com-
paring the results, it is found that adopt this ensemble method can slightly improve the
average classification accuracy at tile level based on the third strategy, see Table 8.

7 Outlook

7.1 Conclusion

By comparing the transfer learning and the neural network architecture designed by ourself,
the V GG16 model which was pre-trained on imagenet has an excellent improvement in
the classification of lung cancer images. Therefore, we decided to use the single classifiers
based on V GG16 to design a powerful strategy to achieve better classification results.

Three different ensemble strategies were compared based on the idea of excluding normal
tiles from original samples. The third strategy is considered to be the best ensemble learn-
ing strategy. The first two strategies have different performances on different indicators.

In general, all of the three ensemble strategies improve the accuracy of cancer classification
much more than a single classifier. Especially when the samples are limited, all the three
strategies have strong ability to extract and generalize significant features.

7.2 Further work

The results of this study show that combining multiple classifiers to clean the original
data and using the method of ensemble learning to classify lung cancer images can greatly
improve the classification accuracy. Therefore, if more computational power is available,
we can try to use most of the samples (more than half) in the database to train the
classification system with these strategies. When more images are used to train neural
networks, the classification results should be further improved because the features can
be better generalized. Since different training strategies have different performances on
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different indicators, all three strategies are worth trying.

Extracting features from the dense layer of the classifiers and using Support Vector Machine
(SVM) for final classification can obtain more stable results with the training set (Appendix
B) [40]. However, SVM does not perform well on independent test sets. A possible reason
is that the limited training samples lead to over-fitting of SVM with certain features that
only exist in the training set. Therefore, using SVM is still a worthwhile approach when
training with more samples.
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A The ROC curve of the binary classifiers from en-

semble learning

Figure 25: ROC curve of the classifiers at the first and second level with the validation
sets.
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Figure 26: ROC curve of the classifiers at the first and second level with the test sets.
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B Classification results with SVM

Table 9: The classification results from the SVM with third strategy at sample level.

Classifier Validation Accuracy at Sample Level Test Accuracy at Sample Level
SVM 1 93.3%(112/120) 82.5%(66/80)
SVM 2 95.0%(114/120) 82.5%(66/80)

SVM 1 + SVM 2 94.2%(113/120) 83.6%(67/80)

Table 9 shows the SVM classification results from the third ensemble strategy. Here, we
extracted the output features from the flatten layer in the two three-class classifiers and
used them as input to train the SVM. The Gaussian kernel was used during training. The
results show that SVM achieves high accuracy at sample level with the training set, but
just have average performance on the independent test set.
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