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Abstract

Planets that orbit their host star closely experience tidal forces due to the strength of
gravity not being uniform all over the planet. This leads to effects such as tidal spin syn-
chronization, tidal eccentricity damping and tidal semi-major axis damping. This project
aims to study how the time scales for these phenomena are affected by the planetary pa-
rameters such as mass, radius and the tidal dissipation quality factor Q as well as the
initial value of the semi-major axis.

Simulations were made using an averaging code which was based on the fact that
the Runge-Lenz vector e and the orbital angular momentum vector h vary slowly under
external perturbations such as tidal forces. Because of this the average of these vectors can
be used to calculate orbital elements instead of using N-body simulations which decreases
the calculation time.

We found that the time scales were of different orders of magnitude, with the spin time
scale of the order of 104 years, the eccentricity time scale of the order of 107 years and the
semi-major axis time scale of the order of 108 years. An increase of mass and the Q-value
both increased the time scale while an increase of radius decreased the time scale. For the
initial value of the semi-major axis a lower value gives a shorter time scale compared to
larger values.





Populärvetenskaplig beskrivning

Som de flesta av oss vet s̊a kretsar planeter i elliptiska banor runt stjärnor. Vissa
planeter som ligger väldigt nära de stjärnor som de kretsar f̊ar uppleva visa effekter som inte
märkbart p̊averkar de planeterna i omloppsbana längre bort. Dessa effekter uppkommer ur
s̊a kallade tidvattenskrafter som härstammar fr̊an det faktum att gravitationskrafter beror
väldigt mycket p̊a avst̊and mellan objekt. Det innebär t.ex att olika delar av en planet kan
uppleva gravitationen fr̊an en stjärna den kretsar runt olika starkt d̊a punkten p̊a planeten
närmast stjärnan och längst bort fr̊an stjärnan kan vara tusentals kilometer ifr̊an varandra.

Detta leder till effekter som spinsynkronisering, excentricitetsdämpning och dämpning
av halva storaxeln. Spinsynkronisering handlar om att rotationen av planeten synkronis-
erar sig med rotationen av stjärnan p̊a ett s̊ant sätt att det ser ut som att samma sida av
planeten alltid är vänd mot stjärnan, precis som hur v̊ar måne alltid har samma sida mot
jorden. Excentricitetsdämpningen leder till att planetens elliptiska omkrets istället blir
cirkulär, och dämpningen av halva storaxeln innebär att planeten rör sig närmare stjärnan
och f̊ar en mindre omkrets p̊a omloppsbanan.

Dessa processer p̊averkar klimatet p̊a planeten p̊a flera olika sätt. Genom spin syn-
chronizationen s̊a blir det evig dag p̊a ena sidan planeten och evig natt p̊a andra, och
när omloppsbanan blir cirkulär s̊a försvinner variationer av temperatur som tidigare har
p̊averkts av hur nära planeten ligger stjärnan under sin omloppsbana. Till slut s̊a blir plan-
eten varmare när den rör sig närmare stjärnan, vilket kan f̊a en planet att g̊a fr̊an frusen
till en öken. Dessa effekter kan även p̊averka eventuella planeter som kretsar stjärnan
längre ut genom gravitation. Ändras planetens omloppsbana s̊a ändras hela solsystemets
dynamik, s̊a även om tidvattenskrafterna inte p̊averkar alla planeter direkt s̊a p̊averkas
hela systemet indirekt i det l̊anga loppet.
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Chapter 1

Introduction

When a planet orbits a star it will feel a force raised by the gravity between them. Usually
this just keeps the planet in orbit around the star, but when the planet is very close to the
star other phenomena will occur. These phenomena are tidal locking, tidal circularization
and tidal semi-major axis damping. The time scale for these phenomena can vary with
parameters such as mass, radius, semi-major axis and so forth. The aim of this project is
to see how the time scales are affected by changes of different planetary parameters. What
these results gives us is a way to roughly determine the age of planets so close to their host
stars that they would experience the tidal phenomena.

The reason why these phenomena occur has to do with gravity and distance. In equation
(1.1) the gravitational force between objects is defined. The strength of gravity depends
on the inverse of the square of the distance r between the objects with mass m1 and m2

exerting the force multiplied by the gravitational constant G.

F = G
m1m2

r2
(1.1)

By differentiating equation (1.1) we get the expression for the tidal forces, which is

F = 2GR
m1m2

r3
(1.2)

where R is the radius of the object in question.
It works in such a way that the closer the objects are to each other the stronger the

force is. This means that some parts of an object will experience different strengths since
not all parts of the object are equally close to the other object. Usually when a planet
orbits a host star that is so far away that its own diameter is very small compared to the
total distance. The difference between the gravity at the point of the planet closest to the
star and the point furthest away from the star would therefore be so small that it would
be negliable. However, when a planet is very close to its host star this changes. When
the diameter of the planet compared to the distance between the planet and the star isn’t
negliable the force difference between the different parts of the planet is large enough to
affect its evolution. This is the origin of the tidal forces and the phenomena mentioned
earlier.
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1.1. TIDAL LOCKING CHAPTER 1. INTRODUCTION

Another important equation describing the planet that needs to be introduced before
the phenomena due to tidal forces are explained more in detail is the equation for the
period of the planet. The period of the planet, which is the amount of time needed to orbit
its host star once, is defined as (Roy [2005])

P =
2π

n
= 2π

√
a3

GM∗
(1.3)

where a is the semi-major axis, M∗ is the mass of the star and n is the so-called mean
motion (Roy [2005]) given in radians per unit time.

n =

√
GM∗
a3

. (1.4)

The mean motion is the angular frequency needed for a planet to complete an orbit
around a star and helps describe the amount of time needed for a planet to orbit its host
star and is usually given in revolutions per day.

1.1 Tidal locking

One of the effects that a planet orbiting its host star closely will experience is tidal locking,
also known as spin synchronization. Tidal locking arises from the fact that the planet and
the star are tugging at each other due to gravity when they are rotating: the side of the
planet moving away from the star as its rotating will feel a force that is slowing it down
and pulling it back.

The spin of the planet will be adjusted by the tidal forces from the star. If the planet
spins quickly the side of the planet moving away from the star will be slowed down, while
the side moving towards the planet will be accelerated. If it on the other hand spins
slowly the opposite will happen. This can be seen in equation (1.5) which depends on the
difference between the spin Ω and the mean motion n. If Ω is larger than n the whole term
will become negative and thus the rate of change will also become negative and slow the
spin down. If Ω on the other hand is smaller than n then the equation will remain positive
and the spin will increase. The rate at which the spin of the planet Ωp changes is defined
in equation (1.5) (Gu et al. [2003]).

Ω̇p =
9n

2αpQ′p

(
M∗
Mp

)(
Rp

a

)3

(n− Ωp) (1.5)

Equation (1.5) depends on several parameters such as the mass of the star and the
planet M∗ and Mp as well as the radius of the planet Rp and the semi-major axis. There
are also two other parameters included which are less intuitive in their description, namely
αp which is determined by the internal structures of the planet, and the modified Q-value
Q’.
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1.2. TIDAL CIRCULARIZATION CHAPTER 1. INTRODUCTION

The modified Q-value for the planet is defined by Q′p = 3Qp/2kp (Gu et al. [2003]) which
in turn depends on the Q-value and the k-value for the planet (Murray and Dermott [1999]).
The Q-value is called the tidal dissipation quality factor and describes how easily energy
is dissipated throughout the object (Alvardo-Montes et al. [July 2017]). This means that
the higher the Q-value is the easier the planet in question dissipates energy. Q is defined
as (Goldreich and Soter [1966])

Q−1 =
1

2πEmax

∮ (
−dE
de

)
(1.6)

where Emax is the maximum energy stored in the distortion.
k is one of 3 dimensionless parameters called the Love numbers which describe the

rigidity and susceptibility to change due to tidal forces of a planet (Souchay et al. [2012]).
The k Love number describes the ratio between the deforming potential from the tidal
forces and the potential produced by the redistribution of mass.

1.2 Tidal circularization

The majority of planetary orbits are elliptical to some degree. Eccentricity e is the pa-
rameter which defines how elliptical an orbit is and takes values between 0 and 1 with 0
being completely circular and 1 being a parabola. In our solar system the values for the
eccentricity are between 0.205 and 0.07 which means that all orbits are slightly elliptical
(Williams). Tidal circularization, also known as eccentricity damping, is the phenomena of
the eccentricity decreasing until it reaches zero and thus have the orbit becomes completely
circular.

The cause of eccentricity damping come from tidal friction forces from the star. When
a planet is moving away from its host star in its elliptical orbit it will feel a tug towards
the star which will slightly affect its orbit until the orbit is adjusted. The planet will move
closer and closer to the star each time it completes an orbit so that the part furthest away
from the star, the aphelion, will be located more closely to the star. It will continue to do
so until all points of the orbit are equally distant from the star.

The rate of change for the eccentricity is defined in equation (1.7). This is an exponential
equation which shows that the speed at which the eccentricity changes will decrease over
time (Gu et al. [2003]).

de

dt
= −63ne

4Q′p

(
M∗
Mp

)(
Rp

a

)5

(1.7)

1.3 Tidal semi-major axis damping

The last effect from the tidal forces is the tidal semi-major axis damping. The semi-major
axis is half of the longest diameter in an ellipse and defined to be the average distance of a
planet to its host star. It’s usually described in terms of astronomical units (AU) with 1 AU
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1.4. TIME SCALES CHAPTER 1. INTRODUCTION

being defined as the average distance between the Sun and Earth which is approximately
150 million kilometers (IAU). Mercury for example, which is the planet closest to the Sun
in our solar system, is approximately 0.387 AU away from the Sun. For tidal semi-major
axis damping to occur the planet needs to be much closer, so in this report the semi-major
axis will be 10 times smaller than that of Mercury’s.

The rate of change for the semi-major axis depends on the eccentricity and its change
as well as the angular momentum of the system which can be seen in equation (1.8) (Gu
et al. [2003]). When an orbit becomes more circular due to tidal forces it’s the outer points
that move inwards rather than the inner moving outward. Therefore the semi-major axis
will decrease too since the average distance now decreases.

ȧ = a

(
2eė

1− e2
+

2(J̇∗ + J̇p)

Jo

)
(1.8)

where J∗ and Jp are the angular momenta from the spin of the star and the planet on the
planet’s orbit and Jo is the total angular momentum from the planet’s orbit.

1.4 Time scales

The forces which play a part in the evolution of the semi-major axis, eccentricity, and spin
of the planet with different magnitudes and contributions. They all depend on the same
type of parameters such as mass, semi-major axis, radius and Q-value. Those parameters
therefore make good variables to make different simulations for since it would affect all the
time scales.

The spin synchronization time scale defined in equation (1.9) which can be obtained
from the time-averaged equations of motion depends not only on the variables already
mentioned but also on the initial value of the spin. It is also the only time scale that
depends on αp and εp. The factors αp and εp are determined by the internal structures of
the planet as well as the fraction of the planet which participates in the angular momentum
exchange induced by the tidal forces (Gu et al. [2003]). We use a value of 0.4 for their
total contribution in this paper.

τΩp = 0.187αpεp

∣∣∣∣∣ 1day/(2π/Ωp)

0.34(M∗/M
1/2
�) (0.04AU/a)3/2 − 1day/(2π/Ωp)

∣∣∣∣∣
×
(
Q′p
106

)(
Mp

MJ

)(
M�
M∗

)3/2 ( a

0.04AU

)9/2
(
RJ

Rp

)3

Myr

(1.9)

The time scale for the eccentricity and the semi-major axis are defined in equation
(1.10) and (1.11) respectively. Whereas the semi-major axis depend directly on the mean
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1.4. TIME SCALES CHAPTER 1. INTRODUCTION

motion defined in equation (1.4) the eccentricity time scale does so indirectly via its rate
of change. The semi-major axis also depend on the spin of the star Ω∗.

τe = 0.33

(
Q′p
106

)(
Mp

MJ

)(
M�
M∗

)3/2 ( a

0.04AU

)13/2
(
RJ

Rp

)3

Gyrs (1.10)

τa ≡
a

ȧ
'
(

7n

Ω∗ − n

)(
Q′∗
106

)(
M∗
M�

)1/2(
MJ

Mp

)( a

0.04AU

)13/2
(
R�
R∗

)5

Gyr (1.11)

Here we also have Ω∗ which is the spin of the star. This has a value of 0.05 years in
the code, or about 18.26 days.
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Chapter 2

Method

To be able to examine how different parameters affect the time scale a number of simu-
lations were made. The code is based on the equations found in Rosemary A. Mardlings
and D.N.C Lins paper Calculating the tidal, spin, and dynamical evolution of extrasolar
planetary systems (Mardling and Lin [2002]) and the orbit averaging method used there.
It was written by Thijs Kouwenhoven at Xi’an Jiaotong-Liverpool University in Suzhou,
China.

2.1 The averaging code

For an unperturbed orbit the Runge-Lenz vector e and the orbital angular momentum
vector for the inner orbit h are constant and their components will vary slowly compared
to the orbital period under external perturbations such as tidal forces. The Runge-Lenz
vector e is a vector with magnitude equal to the eccentricity and the direction of periastron.
This vector, together with the angular momentum vector of the inner orbit h = r× ṙ where
r is the distance between the bodies, are used to calculate the secular evolution of the
orbital elements. These elements include the eccentricity e, semi-major axis a, inclination
i, argument of periastron ω, and longitude of the ascending node Ω. Therefore, by having
the vectors vary very slowly, the average of the vectors can be used to calculate the orbital
components instead of using a N-body simulation and the calculation time will be reduced.

By assuming that the inner orbit is Keplerian and that its orbital elements remain
unchanged for one orbit so-called orbit averaging can be performed. Possible outer bodies
affect inner one and causes perturbations which depend on the ratio between distances
between the bodies and the host star r/R, but these perturbations will not be included in
this paper since we will be looking at a 2-body system. Spin on the other hand depends on
the ratio between the radius of the star S1 and the distance between it and bodies which is
S1/R. By taking the average of both of these perturbations we obtain averaged equations
for the Runge-Lenz vector and the angular momentum vector which are

〈dh
dt
〉 = 〈dquad〉+ 〈doct〉+ 〈dQD〉+ 〈dTF 〉 (2.1)
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2.1. THE AVERAGING CODE CHAPTER 2. METHOD

〈de
dt
〉 = 〈gquad〉+ 〈goct〉+ 〈gQD〉+ 〈gTF 〉 (2.2)

where ”quad” is the quadrupole contributions, ”oct” is the octupole contributions,
”QD” is the quadrupole distortion, and ”TF” is the tidal friction. These contributions
are obtained by averaging each one of them. The quadrupole and octupole contributions
come from possible outer bodies and is therefore unimportant for this report. The most
important contributions come for the tidal friction forces.

10



Chapter 3

Results

All the simulations depend on some variable parameters which were changed to see how
they affected the time scale. To be able to see how they change we use a nominal model
which we will compare to other simulations. Table 3.1 displays the values used in the
nominal models. The planet has a radius which is roughly twice the size of Jupiter’s, and
the star has a radius which is roughly the same as the Sun’s radius. Unless otherwise
stated in the coming sections the values displayed in table 3.1 were the parameters used
in the simulations. The period P was set to have a value of 2.8 days.

Table 3.1: The values of the parameters used in the simulations.

Rp R∗ Mp M∗ Q-value k-value Ωinit a

1.50 ·105 km 7.48 ·105 km 2 MJ 1 M� 105 0.1 18 days 0.04 AU

3.1 Nominal model

In the code used for the simulations we have had the ability to choose if we wished to
include the contributions from the tidal friction, which arises from stretching of bodies due
to gravity, and the quadrupole effects, which is due to rotation of the bodies and them
being flattened at the pole (Marchenko [1979]). This can be seen in equation (2.1) and
(2.2), and it could be included to the tidal forces for both the planet and the star. In this
section and the coming ones we will only use the tidal friction force, but plots for other
configurations can be found in appendix A. Those include one simulation for when both the
tidal friction and quadrupole contributions were included, one when only the quadrupole
contributions were included, and one where only the tidal friction from the star felt by the
planet was included and not from the star. We will look at the different time scales for the
spin evolution, the eccentricity evolution and the semi-major axis evolution.
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3.1. NOMINAL MODEL CHAPTER 3. RESULTS

Spin evolution for the nominal model

Figure 3.1: The spin evolution.

We have the spin evolution when the quadrupole contributions are excluded and only
the tidal friction forces are enabled in figure 3.1. The initial value of the spin of the planet
is 18 days, and it will decay to 3 days. The reason why we get down to 3 days is related to
equation (1.5) which describes what the change in the spin is at any given moment. The
spin of the planet will continue to change as long as Ω̇p has a non-zero value, and this is
the case as long as the spin is different from the mean motion. The value for the mean
motion in our case is 3 days, which explains why the spin goes to a value of 3 days in our
plot.

Of all the effects the time synchronization have the shortest time scale of a few thousand
years. In the cases simulated in figure 3.1 the time scales have a value of roughly 15 000
years, before settling on a new spin value of 3 days. Putting the values from table 3.1 into
equation (1.9) we get an estimate for the time scale which agrees with the simulation.
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3.1. NOMINAL MODEL CHAPTER 3. RESULTS

Figure 3.2: The spin evolution with initial value 1 day and 18 days.

The spin will also change even if its initial value is lower than that of the mean motion.
This is shown in figure 3.2 where we tried a simulation for an initial spin value of 1 day.
Instead of slowing down the parts of the planet moving away from the star when it’s
rotating, the parts moving towards the star will be accelerated due to being pulled towards
the star. For the case simulated the time scale for a spin of 1 day is about 0.020 Myr,
which is slightly longer than for an initial value of 18 days.
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3.1. NOMINAL MODEL CHAPTER 3. RESULTS

Eccentricity evolution for nominal model

Figure 3.3: The eccentricity evolution.

The time scale for the eccentricity is about 100 times longer than the time scale for
the spin synchronization which is seen in figure 3.3. Inserting the values in table 3.1 into
equation (1.10) gives an estimate of the time scale which agrees with the values in the plot.
Also included in the plot is an analytical result for how the eccentricity should behave.
This comes from the differential equation (1.7) which was solved by hand which gave

e = e−c (3.1)

with

c =

(
63n

4Q′p

)(
M∗
Mp

)(
Rp

a

)5

. (3.2)

An array of different values for the time between 0 and 30 Myr was put into the equation
which then gave the analytical result represented by the blue dotted line in figure 3.3. As
can be seen, the analytical expression of e and the simulation agrees well with each other
and gives the same time scale for the nominal model.
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3.1. NOMINAL MODEL CHAPTER 3. RESULTS

Semi major axis evolution for nominal model

Figure 3.4: The semi-major axis evolution.

The semi-major axis evolution for the nominal model can be seen in figure 3.4. The
result can be related to equation (1.11). Inserting the values gives us an estimated timescale
of 0.71 Gyrs. The reason why the plot does not show the evolution until 0.71 Gyrs was that
the simulations stopped working after roughly 500-600 Myrs. We do however see that the
semi-major axis seem to approach the values estimated by equation (1.11), but we cannot
say with certainty that they agree. From what is seen in the figure 3.4 the rate of change
seems to increase over time and make the line steeper the further along the x-axis it is. It
is therefore not unreasonable to believe that the time scale could be 0.71 Gyrs.

In the beginning of the plot we see that the semi-major axis decreases more rapidly
than it does later on. This occurs over a time period of about 30 Myrs which corresponds
to the eccentricity evolution time scale. In fact, what is visible in the plot for the first 30
Myrs is the circularization of the eccentricity. This can be explained by equation (1.8).
There are two terms that affect the change in a: one that depends on the eccentricity and
the change of eccentricity over time, and one that depends on the angular momentum.
Once the eccentricity is zero, that term will stop contributing, which explains why there’s
a change in the rate of change.

One can also think about how the circularization will affect the semi-major axis: the
distance to the aphelion will become shorter when the elliptical orbit becomes circular.
After about 30 Myr the orbit of the planet will have become circular, and therefore the
first term in equation (1.8) will become 0 and not contribute anymore. The second term,
which includes Jp and J∗, will still be there with Jp = 0 and be nonzero, but this term will
be very small because the force on the star exerted by the planet is small.
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3.2. VARIATION OF MASS AND RADIUS OF THE PLANETCHAPTER 3. RESULTS

3.2 Variation of mass and radius of the planet

There are 3 simulations in each plot in this section. One is the nominal graph for compar-
ison with the simulations with new values for the parameters. The other two are when the
mass have been doubled, and when the radius have been increased by 50%.

Spin evolution for the nominal, increased mass, and increased radius.

Figure 3.5: The spin evolution for different mass and radius.

In figure 3.5 the three different simulations for the nominal model, increased mass and
increased radius can be seen. The nominal model is visible in red and have the same time
scale as before in section 2.1 where it reaches a spin of 3 days after about 0.015 Myr. The
dark blue line represents the spin evolution for a planet that’s twice as massive as the one
used in the nominal model. The cyan line represents the evolution for a planet with a
radius that’s 50% larger than that of the planet in the nominal model.

For the spin evolution increasing the mass by 100% so that it reaches a value of 2
Jupiter mass makes the time scale twice as long. Instead of reaching a spin value of 3 after
roughly 0.015 Myr it converges to it after 0.030 Myr. This we see in equation (1.9) where
we have the factor (MJ/Mp), and we can there see that the timescale is proportional to
the mass of the planet.

The radius on the other hand doesn’t change the time scale in the same way like the
mass does. Instead the time scale depends on the cube of the radius of the planet which
can be seen at the end of equation (1.9). An increase in radius will actually decrease the
time scale since the radius of the planet is in the denominator. For our case in figure 3.5
the simulation where the radius was increased by 50% the time scale was decreased to
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3.2. VARIATION OF MASS AND RADIUS OF THE PLANETCHAPTER 3. RESULTS

about 0.005 Myr. This means that our time scale decreased by 33% from 0.015 Myr to
0.005 Myr.

Eccentricity evolution for the nominal, increased mass, and increased radius.

Figure 3.6: The eccentricity evolution for different mass and radius.

The three simulations described earlier can be seen in figure 3.6. The red line is from the
nominal model which can also be seen in figure 3.3 in section 2.1. The blue line represents
the eccentricity evolution when the mass of the planet in table 3.1 have been doubled, and
the cyan line represents the eccentricity evolution for a 50% increase of the radius in the
same table.

For the increased mass simulation we expect that the time scale depends directly on
Mp by comparing with equation (1.10), and by doubling Mp we expect the timescale to
also be doubled just like in the case for the spin evolution. From the plot we can see that
the estimation agrees with the plot. The eccentricity reaches 0 at 60 Myr which is twice
as long than for the nominal model where the circularization is complete at 30 Myr.

We also checked what happens if the radius is increased by 50%. Once again checking
with equation (1.10) we can estimate the time scales. This time we also see that the time
scale depends on the cube of the radius, just like for the spin evolution. Therefore, by
increasing Rp by 50%, we expect the time scale to decrease by roughly 70% just like it did
for the spin evolution. This would give us a time scale of around 9 Myr instead of 30 Myr,
which seems to agree reasonably well with our plot.
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Semi-major axis evolution for the nominal, increased mass, and increased ra-
dius.

Figure 3.7: The semi-major axis evolution for different mass and radius.

The semi-major axis evolution is plotted in figure 3.7. The nominal model is shown in
red, the simulation for an increased mass is showed in blue, while an increased radius is
shown in dotted cyan. The semi-major axis have the same factor (MJ/Mp) that the time
scale for the spin evolution and eccentricity evolution depend on. Just as for the other two
effects the time scale will be half of the original value if the mass is doubled since the time
scale depends directly on the inverse of the mass of the planet. We therefore see the time
scale in the above figure go from about 600 Myr to 300 Myr. A higher mass will make the
force from the star stronger, so the pull will be greater and therefore the process will be
much quicker.

The semi-major axis does not depend on the radius of the planet at all. In equation
(1.11) one can see that the radius of the planet isn’t included, but the radius of the star
compared to the solar radius is included. The one way the semi-major axis could perhaps
be affected by the planets radius is via the eccentricity damping which happens in the
beginning of the plot. This will however not affect the time scale for the semi-major axis
very much since the time scale of the eccentricity damping is so short compared to the
semi-major axis time scale that it won’t affect much in the long run.
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3.3 Variation of semi-major axis

In each plot in this section there are two simulations: the nominal, and one where the
semi-major axis to the star have been decreased from 0.04 AU to 0.03 AU.

Spin evolution for a close in planet.

Figure 3.8: The spin evolution for a close in planet.

In the above plot there’s the nominal model in red and the simulation for a close in
planet with a semi-major axis of 0.03 AU. Looking at equation (1.9) we can see that the
time scale depends on the semi-major axis in two different places in the equation. We have
one term which depends on a to the power of 9/2, and we have another one which depends
on inverse of a to the power of 3/2. Overall these two terms together gives us a decrease
of the time scale which in figure 3.8 shows as being around 0.0025 Myr. This is a 83%
decrease compared to the nominal value of 0.015 Myr.

The final spin period is also changed from roughly 3 days to 1.9 days. This is because
of how the mean motion n is defined. In equation (1.4) we see that the value n depends on
inverse of the semi-major axis to the power of 3/2. This can then be put into equation (1.3)
which describes the period. By decreasing the semi-major axis a we’re actually decreasing
the period too, and by how this is defined the mean motion has to decrease. Instead of the
spin converging to 3 days it will converge to 1.9 days, which is exactly what we can see in
figure 3.8.
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Eccentricity evolution for a close in planet.

Figure 3.9: The eccentricity evolution for a close in planet.

In figure 3.9 we see the nominal model represented in red and the simulation with a
semi-major axis of 0.03 AU represented in blue. The time scale for a close in planet with a
semi-major axis of 0.03 AU is significantly shorter than for 0.04 AU with the circularization
done after just 4 Myr. This is the case because of the term containing a in equation (1.10)
which is to the power of 13/2. By changing the semi-major axis with 0.01 AU the time
scale decreases from 30 Myr to about 4 Myr which can be seen in figure 3.9. This is a
roughly 85% decrease of the time scale compared to the nominal model.

20



3.3. VARIATION OF SEMI-MAJOR AXIS CHAPTER 3. RESULTS

Semi-major axis evolution for a close in planet.

Figure 3.10: The semi-major axis evolution for a close in planet.

Figure 3.10 shows the semi-major axis evolution for an initial semi-major axis value of
0.03 AU in blue and the nominal model in red. Most notably for a close in planet is that
the initial value will of course be lower since the planet is closer to the star. Instead of
starting at 0.04 AU we now start at 0.03 AU. This means that the distance to the lower
values of the semi-major axis will be shorter, giving the damping process a sort of head
start compared to the nominal model. In equation (1.11) we can see the term discussed for
the eccentricity too, namely (a/0.04AU) to the power of 13/2. This will greatly decrease
the time scale of the semi-major axis damping.

In equation (1.11) we have that the timescale is defined as the semi-major axis a over
the rate of change for the semi-major axis ȧ, and this rate of change is defined in equation
(1.8). The change in the semi-major axis from 0.04 AU to 0.03 AU will affect the rate of
change and make it shorter. Also, since the eccentricity now ends already at 4 Myr, this
parameter will reach lower values quicker. This in turn will increase the time scale since
the rate of change is in the denominator in (1.11). The semi-major axis itself however
decreases which we can see from equation (1.11) decreases the time scale, so what we have
is that the semi-major axis and the rate of change for the semi-major axis both affect the
time scale but in opposite ways. The decrease of a is bigger than the decrease of ȧ so the
time scale as a whole will still decrease. Instead of reaching values below 0.02 AU after
approximately 600 Myr it now reaches these values after under 100 Myr. If one studies
the curve for the close in simulation and compare to others we can see that the curve is
steeper. The change in a is therefore more rapid for lower initial semi-major axis values
than for higher initial values.
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3.4 Variation of tidal Q-value

In this section we have increased our planetary Q-value from 105 to 106. This is not the
same as the Q′p = 3Qp/2kp which is the parameter used in the equations, but the change
will still be proportional to the Q-value.

Spin evolution for a planet with larger Q-value.

Figure 3.11: The spin evolution for a different Q-value.

The nominal model is represented in red in figure 3.11 while the simulation for the
planet with a larger Q-value is represented by the blue line. We can see that the blue line
takes significantly longer time to reach 3 days than the red line. The time scale for the
tidal locking becoming roughly 10 times slower with an increased Q-value. The blue line
in figure 3.11 reaches 3 days after roughly 0.15 Myr compared to the nominal model in red
which reaches 3 days after 0.015 Myr. This is also what we can expect from equation (1.9)
where the Q′p is put to be 106 instead of 105 like in the nominal model. If we increase Q′p
with a factor of 10 then the timescale will also increase by that factor.
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Figure 3.12: The eccentricity evolution for a different Q-value.

For the eccentricity we expect the change in timescale to be directly proportional to
the change in Q. This we can see from equation (1.10) where we see that the change in Q
is direct to the time scale change. Therefore we expected the time scale to increase by a
factor 10 when we increased the Q-value by a factor 10, which is also what we can see in
figure 3.12. Instead of reaching 0 eccentricity at 30 Myr we now reach it at 300 Myr which
is 10 times longer.
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Figure 3.13: The semi-major axis evolution for a different Q-value.

In figure 3.13 we don’t see any difference for the time scale for a higher Q-value com-
pared to the nominal model, and that is because the semi-major axis depend on the Q’ -
value of the star rather than the planet as seen in equation (1.11). We do however see a
difference in the beginning of the plot where the cirularization dominates and affects the
slope. Since the eccentricity damping time scale will be 10 times longer for the new Q-value
of 106 compared to the nominal model the contributions from the first term in equation
(1.8) will last 10 times longer. In the long run however the difference in the beginning
won’t matter much since they are too small to affect the total time scale significantly.
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Chapter 4

Conclusion and discussion

4.1 Conclusion of the nominal case

The results show quite clearly that there are different orders of magnitude for the time scale
of the three different phenomena. The spin synchronization has the shortest time scale and
is usually finished after just a few thousand years, and for the nominal model we get that
the spin synchronization is complete at 15 000 years. The eccentricity damping time scale
is a factor 103 longer than the spin synchronization and thus usually have values of tens
of millions of years. In our nominal model we got that the eccentricity damping took 30
million years to complete. Lastly we then have the semi-major axis damping which have
the longest time scale of all of the phenomena. The time scale is usually several hundred
million years and is thus a factor 10 longer than the eccentricity damping and a factor
104 longer than the spin synchronization. In our nominal model we got that a decrease
from 0.04 AU to 0.02 AU took roughly 580 million years. After reaching a value of 0.02
AU however our simulation was unable to compute any more values. The reason for this
isn’t completely clear, but I suspect it has to do with how close the planet comes the host
star. The star’s radius is approximately 0.004 AU, so the star’s radius stands for 20%
of the distance to the planet. It is unclear though if this is the reason why and other
configurations of the variables in table 3.1 could be tested to see if that is the case. We
were in any case unable to reach lower values for the semi-major axis and do not know
what happens at even lower values.

4.2 Conclusion of the increased mass and radius cases

Thereafter we looked at how an increase in mass and radius respectively of the planet
changed the time scale. For an increase in mass the time scale increased for the spin syn-
chronization and the eccentricity damping, but decreased the time scale for the semi-major
axis damping. For an increase of the radius on the other hand decreased the time scale for
the spin and eccentricity but left the semi-major axis damping time scale unchanged.

25



4.3. CONCLUSION OF THE DECREASED SEMI-MAJOR AXIS CASECHAPTER 4. CONCLUSION AND DISCUSSION

4.3 Conclusion of the decreased semi-major axis case

The third thing we checked was how a decrease of the semi-major axis affected the time
scale. For all three cases a decrease in the semi-major axis also meant a decrease for the
time scale. For the spin synchronization the semi-major axis depended on the power of
9/2, while for the eccentricity the change for the semi-major axis depends on the power of
13/2. For the semi-major axis evolution it of course decreases if we actively push it down
from 0.04 Au to 0.03 AU, but the time scale also changes by a factor depending on the
value of the semi-major axis to the power of 13/2.

What’s interesting about a change for the semi-major axis is that it changed the final
value for the spin. Instead of going towards a value of 3 days it changed to 1.9 days. This
is the only case amongst all simulations where a change of the variables actually changed
the final value of the parameter. In all cases for the eccentricity we reached a value of 0,
and for the semi-major axis we always reached below 0.020 AU before the simulations were
unable to continue.

4.4 Conclusion of the increased Q-value case

The last thing we checked was how a change for the Q-value would change the time scales.
For both the spin synchronization and the eccentricity damping the time scales are in-
creased proportionally to the increase of the Q-value. The time scales both increase by 10
since the Q-value was increased by a factor 10. The semi-major axis time scale however
is not notably changed by the change in Q-value except at the beginning of its evolution
where it still depends on the eccentricity.

4.5 Discussion

In this report we have mainly been using a model of a planet similar to so-called ”hot
Jupiters” which are Jupiter-sized planets orbiting closely around stars. Therefore the
timescales which have been discussed in this report won’t be accurate for an Earth-like
planet. We can however estimate the time scales using our results. A summary of the
results obtained can be seen in table 4.1. If we instead had an Earth-like planet then the
mass, radius and Q-value would all be smaller and the total time scale would be smaller
than it has been for the cases in this report. It will of course depend on the magnitudes of
these variables since a smaller radius will increase the time scale while a smaller mass and
Q-value will decrease it and it’s a matter of what affects the time scale the most.
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Planetary
parameter

τΩp τe τa

M↑ ↑ ↑ ↓
R↑ ↓ ↓ -
a↓ ↓ ↓ ↓
Q↑ ↑ ↑ -

Table 4.1: Summary of results.

We only checked what would happen for an increase of the value for the variables and
not how a decrease would affect the time scale except for in the case of the semi-major axis.
The reason is because all of the time scale equations are linear and that the change would
be in the same magnitude but with opposite effect if we checked for a decrease. Future
studies in this area could show how a decrease of these values would affect the time scale.
In the case for the semi-major axis it could be interesting to see how far away a planet can
be to experience these phenomena during the host stars lifetime. Perhaps one could find a
threshold for the phenomena, and if the threshold would be the same for them all or if we
could experience only one of these. It could also be interesting to see how different stellar
parameters, such as the spin, mass, and radius, could change the time scale.

What would also be interesting to check is how an inclusion of a third and fourth body
would affect the system, something that we simply did not have time to do in the time
span given. As mentioned in section 2.1 the orbit averaging depends on perturbations from
outer bodies, and the code is actually written to include more than just 2 bodies. It would
be interesting to see just how much other bodies would affect the time scale and how the
distance between the bodies would change the interaction. The inner bodies would also
affect the outer ones, and perhaps that would decrease the time scale for the outer planets.

As mentioned in the introduction these results can give us a way to roughly determine
the ago of close in exoplanets. If we see a planet that has achieved tidal locking but not
quite yet achieved a circular orbit we know the time span in which it could have been
formed. This of course depends on all the planetary parameters which can be hard to
obtain if we’re looking at an exoplanet far away. We also get a time line which we can
expect exoplanets to follow. As we have seen the time scales haven’t been random but
follow the equations and the variables very well. We will therefore know how the planets
are expected to move in the future which will not only affect itself but other planets in the
system too.

For just the planet itself a change of spin, eccentricity and semi-major axis will greatly
affect the climate on the planet. When a planet becomes tidally locked only one side of
the planet will receive the flux of energy and heat of the host star, and unless there is any
weather or winds on the planet this heat and energy is likely to remain on that side. A
planet could therefore be several hundreds of degrees Kelvin on one side and near absolute
zero on the other side. By having a circular orbit the planet would not experience a change
in velocity and acceleration over one orbit. A change of the semi-major axis will greatly
affect the climate on the planet. Since the semi-major axis decreases the planet will move
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closer to the host star and increase in temperature in all cases.
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Appendix A

Figure A.1: The spin evolution.

There are several contributions to the tidal forces which govern the time scales for the
spin synchronization, the circularization of the orbit and the semi major axis damping.
In figure A.1 one can see simulations for different configurations of enabled forces. From
what can be seen in the plot for the spin is that the main contributions to the effect
come from the tidal friction contributions. There is no effect at all when the tidal friction
contributions have been removed which shows us that the tidal friction forces play a more
vital part than the quadrupole contributions.
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Figure A.2: The eccentricity evolution.

We see the same phenomena in figure A.2 for the circularization of the orbit as for the
spin synchronization in figure A.1. When we only have the quadrupole contributions we
do not see any effect, but as soon as we have tidal forces then the eccentricity will start
to dampen. This then depends same type of forces as used for the spin synchronization,
in other words the tidal friction forces. That explains why there is no effect when only
the quadrupole contributions are enabled and no tidal friction forces. As can be seen the
graphs looks the same for when both the forces are enabled and when only the planetary
tidal friction forces are included, which shows that the planetary forces are the ones that
govern the time scale.
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Figure A.3: The semi-major axis evolution.

In figure A.3 the tidal friction forces from the star is much more important than those
from the planet. Here we have, just like for the spin and eccentricity, that the semi major
axis does not change when there are no tidal forces in play. When only the planetary
tidal forces are enabled the semi-major axis decays at first during the first 30 Myr but
then remains constant. This is because the planetary tidal forces affect the eccentricity
which makes the semi-major axis decay, but once the eccentricity evolution is finished the
semi-major axis remains unchanged.
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