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Abstract

As a beam of particles moves through a storage ring each particle will perform trans-
verse oscillations as a result of the focusing magnetic fields it encounters. The amount
of transverse oscillations performed in a single revolution of the ring is known as the
particle’s betatron tune. The goal of this project was to investigate the tunes by insti-
gating an oscillation using a short-lived, strong magnetic field to cause a disturbance
to the entire beam. This was performed and positional data was collected throughout
the ring. This data, and its oscillating patterns, was analyzed using an algorithm simi-
lar to a Fourier transform in order to find the beam’s tune. Furthermore, investigating
the tune’s change between turns travelled in the storage ring allowed for a rough mea-
surement of the beam’s stability. The resulting frequency maps, maps of the betatron
tune in the two transverse planes, showed the effect on the beam when it is situated at
certain tunes. This provides insight into areas of tune to avoid or seek out during op-
erations. The project was successful in creating these maps, although further studies
into areas of interest within the results could be advantageous.
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1 Introduction

The basis of accelerator physics is the acceleration of charged particles using magnetic
and electric fields. These particles are formed into what is known as a beam, a semi-
continuous stream of particles moving at high speeds. When it comes to storing a
beam, maintaining a set amount of charge and energy, a storage ring is a commonly
used solution. By having the particles move in a closed orbit, they could theoretically
be maintained forever, assuming energy is being provided to keep the energy of the
particles constant. But of course, this is not the case in practice.

In reality there are many challenges to maintaining a beam in a storage ring, among
them, maintaining a good tune. As the particles move through the ring, they oscillate
around a nominal orbit. The number of transverse oscillations performed throughout
one revolution is known as the rings betatron tune. If these oscillations resonate be-
tween rotations, even partly, the amplitude will increase and the beam’s stability will
eventually be lost. Therefore many such resonances must be avoided and this is where
this project becomes relevant. The goal of this project is to affect the beam’s position
in some point, initiating oscillations of the beam, perform a frequency analysis of the
oscillating positional data and read the resulting tune. From this, a so called frequency
map will be constructed, mapping how the frequency of these oscillations in the trans-
verse planes depends on their amplitude, along with how the varying tunes will affect
the beam.

Knowing how the tune is altered by momentary disturbances, resulting in trans-
verse oscillations of different amplitudes, can be useful in many ways. During normal
operation and as the beam is used for scientific study, orbital disturbances are often
unavoidable. Knowing how such disturbances may affect the tune of the beam can
prevent possible interruptions to delivery, such as the beam becoming unstable or even
lost as accelerated particles hit the walls of the beam pipe. These kinds of disturbances
are costly, in money and time, as they can disturb or even ruin ongoing experiments at
beamlines, the experimental stations. Furthermore, the information provided by this
project can assist in future diagnostics of the machine, as knowing the areas where
the tune makes the beam unstable means staff can alter the machine settings when
nearing these areas, either to avoid them or suppress the effect they have on the beam,
minimizing the risk of disturbances.

1.1 The Beta Function

After an initial kick instigates the movement of the beam, the steering and focusing
performed by the dipole and quadrupole magnets causes the beam’s trajectory to os-
cillate throughout a revolution. This oscillating trajectory is described in each plane by
the beta function β(s), where s is the longitudinal position of the beam, i.e. its position
throughout the ring. When describing the amplitude E(s) of these transverse oscil-
lations, or betatron oscillations, throughout the ring, the beta function is used along
with the emittance ε to form the function below.

E(s) =
√

εβ(s) (1)

The emittance ε is a constant of motion set by the initial conditions and the optics of
the ring, which remains constant no matter the longitudinal position s. [1]
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1.2 Tunes

The amount of betatron oscillations, transverse oscillations, performed in a single ro-
tation of the ring is known as the betatron tune of the beam, Q. As mentioned in the
introduction, resonances of these tunes can lead to major disturbances to the beam.
This occurs due to optical resonances from the magnetic optics. As the beam will pass
the same magnetic structures at the same positions with each rotation, resonance in
tune will result in the particles passing each magnetic structure in a possibly resonant
position with the field of the magnet.

For example, a full integer tune Q = n, the beam performing an integer number of
betatron oscillations in a revolution, will result in an optical resonance with any dipole
field errors in the magnetic optics. This occurs since the beam will always pass these
magnets at the same phase of the oscillating path, whereupon the dipole errors will
always kick the beam with the same error, adding the kicks constructively. This results
in the positional error becoming more and more extreme with each rotation until the
beam is lost. The optical resonances also couple higher order resonances to higher
order magnetic fields, i.e. half integer tunes, Q = 0.5 · n, result in an optical resonance
with the quadrupoles and so on.

Furthermore, having the same tune in both transverse planes may also lead to in-
creasing instabilities. In the higher multipolar fields we see that the field’s effect on
the beam in one plane will depend on the beam’s position in the other, thus coupling
the two betatron tunes and creating coupled resonances whenever the two tunes couple
to form an integer. So whenever mQx + nQy = p, where m, n and p are all integers.
Below in Figure 1, a full map of all the possible resonances up to the fifth order can be
seen. It should be noted that these are the fractional tunes, the tune with the integer
part subtracted. [1, 4]

Figure 1: Full tune-map with resonance lines up to the fifth order. [4]
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The effect a change of amplitude of the beam’s oscillations on its tune is known
within accelerator physics as amplitude dependent tune shift. As the position of the beam
is displaced more and more from a perfectly closed orbit, we see a change in the tune
follow as the beam’s position effects its reaction to the magnetic optics throughout
the ring. This is one of the qualities of the rings which can be extracted utilizing a
frequency map. [5]

1.3 Chromaticity

Chromaticity describes the tunes dependence on the difference in momentum between
particles of the beam and the nominal momentum. Say we have a beam with a mo-
mentum offset ∆p from the nominal momentum of the beam, p. As this beam moves
through the quadrupoles and sextupoles of the ring it will be affected differently from
a beam of nominal momentum. Different amount of focusing results in different op-
tics which results in a different tune. This resulting shift to the tune can be calculated
using

ξ ≡ ∆Q
∆p/p

=
1

4π

∮
(m(s)D(s) + k(s))β(s)ds (2)

Wherein k(s) is the strength of the quadrupole field, m(s) describes the strength of
the sextupole fields, D(s) is the dispersion function describing the closed orbit for a
beam with unit relative momentum deviation and β(s) is the beta function. This is
what is known as the chromaticity of the beam. This can often be displayed in the form
(ξxξy), representing the chromaticity in the horizontal and vertical planes respectively
[1]. Under normal conditions the MAX IV storage rings both have a chromaticity of
nearly (1 1), the chromaticity their optics were designed to have.

1.4 The Synchrotron

There are many different uses of accelerators throughout the scientific community.
A synchrotron, such as MAX IV, utilizes the accelerated particles to produce what’s
known as synchrotron radiation. According to Maxwell, radiation is produced when
charged particles are affected by a force, accelerated, and a synchrotron utilizes this
phenomenon along with the laws of special relativity in order to produce a highly in-
tensive beam of light. The light is produced at any directional change of the beam’s
trajectory and energy losses to this "bending" radiation is one of the challenges to over-
come when constructing a storage ring. The power of the emitted light P can be clas-
sically calculated using Equation (3) below.

P =
e2

6πε0m2
0c3

(d~p
dt

)2
(3)

Wherein e is the charge of the accelerated particle, ~p = m0~v is the momentum of the
particle, ε0 is the permittivity of vacuum and c is the speed of light. From this we can
see that the power of the emitted light is proportional to the square of the change of
momentum of the particle with respect to time, or more simply, its acceleration. We
can also see that the power depends on a factor e2

m2
0
, which suggests particles such as

electrons are preferable for this form of accelerator, as they are very light relative to
their charge compared with for example protons. In a completely classical scenario,
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i.e. v << c, the light would be emitted with the shape of a classical dipole emitter.
However, these particles are moving much closer to the speed of light, and the laws
of special relativity interfere, causing an angular distortion to the emitted light. This
results in the light being emitted in a sweeping cone along the bending undergone.
The light used in scientific research at a synchrotron facility is produced in a similar
fashion, although one utilizes an insertion device, such as an undulator. An undulator
uses a long series of oppositely polarized magnets set along a straight section of the
ring in order to produce even more intense, forward directed light as the electrons are
"shook" by the oscillating fields they move through. [1]

2 Method

2.1 MAX IV

The MAX IV facility houses two large storage rings, both of which will be investigated
throughout this project, and they are classified by their stored beam energy, the kinetic
energy of the stored electrons. There is the smaller, 1.5 GeV ring, referred to as "R1" in
this report, and the larger 3 GeV ring, referred to as "R3" in this report. The particles
stored in the rings are accelerated using a linear accelerator, or a "linac" for short. In
order to guide the beam along circular paths of the rings, large bending magnets are
used, dipole electromagnets with iron cores. Between these larger magnets are straight
sections where corrections and focusing takes place.

The focusing is performed by quadropole magnets, electromagnets with four poles,
the fields of which creates a focusing effect in one plane, de-focusing in the other.
These are set up in a way to create a net focusing effect. Slight corrections to the
beam’s path is performed using dipole correction magnets, although the trajectory
changes are much smaller than those made by the bending magnets. Furthermore,
there are sextupole magnets present in both rings and octupole magnets present in
R3. The sextupoles are used to correct the chromaticity, i.e. how the tune depends on
a momentum deviation, brought up below. However, the sextupoles are non-linear
magnets and will effect the tune of a beam with non-zero amplitude oscillations. The
octupoles are introduced to counteract this effect. More detailed information on the
use of higher pole magnets at MAX IV can be found in the Detailed Design Report, or
DDR, for the facility, specifically in chapters 2.3 and 3.3. [7]

Both rings are built up of multiple achromats, R3 of 20 and R1 of 12. An achro-
mat is a collection of magnets, and in the case of the MAX IV storage rings they are
set up to be optically symmetrical, i.e. the magnetic setup is repeated with each fol-
lowing achromat. [7] This means multiple magnetic fields and diagnostic outputs are
optically identical throughout the ring. The data collected from diagnostic machinery
throughout the ring will repeat along with the achromats.

2.1.1 The Pingers

There are two main dipole pinger magnets utilized to disturb the beam’s trajectory
for the measurements performed for this project. There is one exciting the beam in
the horizontal plane, referred to as the "kicker", and one in the vertical plane, referred
to as the "pinger". Both are functionally the same, except for the orientation of their
generated fields. They both function through charging up a capacitor with a high
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voltage on the kV scale, then releasing the current into two longitudinal conductors,
about 0.1 m in length, creating a strong magnetic dipole field for a short time, in the
microsecond range. This field disrupts the path of the beam suddenly and will initiate
oscillations of the beam around its design orbit, for several hundred turns around the
ring. [1]

When working with these sorts of extreme voltages, it is important to change things
carefully, in order to avoid overheating and damaging the equipment. At MAX IV,
these precautions are built into the machinery, and the scripts used to alter the voltage
provided by the power supplies will set the device in an alarm state for steps higher
than 2000 V, and also automatically de-charges the supplies slowly if the setpoint is
suddenly lowered.

The kicker magnets are discharged and activated when sent a signal by the rings
event generator (EVG). The EVG has three different timings for these signals. It can
either send a single pulse on command, stop all pulses being sent or pulse with the
frequency of arriving electrons from the linac, 2 Hz at the time of this project. For data
collection it was important to avoid the more frequent pulsing, as it resulted in the
beam being almost continuously kicked with very high amplitudes, resulting in any
minor beamloss with each kick being rapidly repeated until the beam is completely
gone.

2.1.2 The BPM

The Beam Position Monitor (BPM) is a device used for measuring the current position
of the center of charge of the beam within the beam pipe. The device consists of four
electrodes, measuring the electric and magnetic fields surrounding the beam. The
induced field in these electrodes is used to locate the beam’s transverse position within
the beam pipe. [1] There are 198 BPMs within R3 and 35 within R1. For this project
they will be enumerated according to their position within the ring, starting at the
injection point with BPM nr. 0.

As the beam strays further from the center of the BPM, the fields it induces within
the beam pipe are no longer linearly dependent on the position of the center of charge.
This can be solved through a linearization of the positional data. A study [2] shows
how using a few assumptions, the dependence of the induced signal in the electrodes
of the BPM on the position of the center of charge of the beam can be reduced to a two
dimensional electrostatic problem, with only unknown being the induced charge on
the boundary, i.e. the beam pipe. This induced charge can be found using a boundary
element method, using only two assumptions. Firstly that the charge density within
the beam pipe is point-like, i.e. it has a negligible transverse size in relation to the
size of the vacuum chamber. Secondly that the induced charge on the boundary is
constant over each boundary element. The first assumption is sound for the MAX IV
storage rings, which both hold a beamsize on the scale of a few hundred µm2 and the
beampipe has a diameter on the cm-scale. Then, knowing the geometry of the beam
pipe and the BPM electrodes, a numerical linearization can be made. The code for this
linearization, along with the plotting of all the data can be seen in Appendix C, which
was done manually for this project, utilizing the theory presented in [2].
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2.2 Data Collection

In order to get as even a kick as possible to the beam, as few bunches as possible were
injected into the ring to be measured in. This was done since the strength of the kick
to the beam has a half-sinusoidal shape with a width of twice the revolution time,
meaning it will kick any off-crest bunches twice. Thus, few bunches were injected and
the timing of the kicker and pinger magnets were altered until a single strong kick
was performed, meaning all bunches were approximately on crest with the kick. Once
injection was finished and initial correction to the orbit had been done, the BPMs were
set to the correct settings for collecting turn-by-turn data of the beam. Once these
settings were in place, kicks were applied to the beam. After each kick, 2000 turns of
positional data was collected from each BPM in the ring, 198 for R3 and 35 for R1. The
raw turn-by-turn data of R3 resulting from a kick of 2310 V in the horizontal plane and
a 480 V kick in the vertical plane can be seen below in Figure 2. In the figure we see
some BPMs have an offset applied to the measured position. This may be significant
in normal operation of the machine, but for this project data with this kind of offset
was ignored.

Figure 2: Raw turn-by-turn data collected by all BPMs in R3. The different colored
plots signify the 198 different BPMs.

As kicks of increasing amplitude are applied to the beam, it will inevitably begin to
lose current as the disturbance to the trajectory is too much for the machine to main-
tain. Therefore, the limits for kick voltages were set beforehand by kicking the beam
with increasing voltages until it began to lose current. The limit was set wherever
the beam lost 0.2 mA/kick and the limits for pure horizontal and vertical kicks were
found at Vx = 3900V and Vy = 1400V for R3, and Vx = 6300V and Vy = 6900V for
R1. However, when collecting data, kicks were applied in both planes simultaneously,
and as such smaller limits than these were utilized.

In Figure 2 we can see a sudden decrease of amplitude around turn 300. This
does not reflect the oscillating movement of the beam suddenly stopping, but is rather
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an artifact caused by the BPMs measuring the position of the center of charge, not
the position of individual particles. The particles of the beam will diverge from the
nominal momentum with varying ∆p, and as can be seen in Equation (2), with non-
zero chromaticity, this will lead to a variation in tune between the particles. This causes
the particles to end up in different phase until at last the charges negate each other and
the BPMs see a centralized beam. This process is known as decoherence and limits the
resolution of the final analysis, the number of turns that can be used [3]. The code
used for all the data collection can be seen in Appendix A.

In total, three data sets were collected for this project, listed below in Table 1. One
data set of each ring in delivery settings, although the R3 data set was far smaller due
to limited beam time availability of the ring. Beyond this a data set with R3 in close
to (0 0) chromaticity was collected to investigate the effect on the decoherence. Setting
the machine to this chromaticity meant altering the non-linear optics to some degree,
affecting both the initial tunes as well as the beam’s reaction to optical resonances.

Table 1: The three data sets and their parameters.

Data Set Max. Pinger Voltages, X and Y (V) dV (V) # of Data Points
R3 Delivery 3200 and 1400 100 485

R3 (0 0) Chromaticity 3000 and 990 30 3398
R1 Delivery 5000 and 5000 50 10100

2.3 Data Analysis

After turn-by-turn data had been collected, some different forms of data analysis were
performed to construct the desired frequency maps. The data analysis were in large
parts identical for all three data-sets. Firstly, the points with the maximum kick ampli-
tude was extracted for each BPM. This data was then linearized, as outlined in section
2.1.2, changing the more extreme points to an extrapolated "real" point. For the R3
delivery data set BPM nr. 20 was chosen for the frequency analysis, nr. 1 for the chro-
maticity (0 0) set and nr. 7 for the R1 set. These were chosen mostly due to their
minimal need for linearization.

The amplitude oscillates between turns, as can be vaguely seen in Figure 2 and
more clearly in Figure 3 below were the first 200 turns of the raw data are highlighted.
It is from a frequency analysis of these oscillations the tune of the beam can be ex-
tracted. The frequency analysis was done using a NAFF algorithm. The algorithm
is similar to a classic fast Fourier transform, but superior in precision, although with
a longer computation time. The higher precision was necessary as the decoherence
issues limited the number of turns available for the analysis.
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Figure 3: The positional data of the first 200 turns at BPM 1.

For each data set three iterations of analysis was done. For the R1 and R3 delivery
sets the first 200 turns were analyzed, then the first 100 and then the following 100.
For the R3 delivery data set, another analysis was made using only 100 turns for the
initial analysis. The same process was done for the (0 0) chromaticity set, although 300
turns were used instead. The two data points, in the vertical and horizontal planes,
from the total turns were used to present the data in tune space, Qx plotted against
Qy. The four data points from the segmented versions of the analysis were then used
to calculate the diffusion parameter D.

D = log(
√
(Qx1 − Qx2)2 + (Qy1 − Qy2)2) (4)

Wherein Qx1 and Qx2 are the segmented frequencies extracted from the horizontal
turn-by-turn data and Qy1 and Qy2 from the vertical. This parameter was then used
as a color-code for the data maps in the results. It shows how fast the tune changes
between turns. If the tune is changing very rapidly it is represented by a higher value
of D.

Beyond this, the amplitude of each full frequency analysis was also recorded. This
was squared and plotted against the BPM number as this should be of similar shape to
the beta function, according to Equation (1). The code for all frequency analysis made
can be seen in Appendix B.

3 Results

Below the three different data sets are displayed and briefly analyzed. Each data set is
presented in positional space as well as tune space.
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3.1 R3

Below in Figure 4 the positional map for the R3 delivery data set can be seen, color-
mapped according to the diffusion parameter. The data presented is from BPM 20 in
the ring and this plot presents the maximum amplitude of each kick, thus this map
consists of 485 points. The few outliers in the bottom left of the diagram is caused
by an error in the code where data collection did not wait for the kicker magnet to
reset completely to 0 V before kicking again. This results in all later horizontal kicks
having some residual voltage left in the magnet and a small kick always being present.
This minor error is present in this and the R1 data set, but was reconciled for the (0 0)
chromaticity data collection. We can see the diffusion increasing at the data points in
the upper left of the map. This suggests the beam losing stability, but appears not to
be directly connected to the amplitude of the kick, as the kicks in both planes in the
upper right shows less diffusion. This is further explained by the tune map in the next
figure.

Figure 4: The measured positional disturbance of the beam in R3 with delivery settings
at BPM 20, color-graded according to the diffusion parameter

Figure 5 displays the same data as Figure 4, but in tune space rather than positional.
We also see the resonance lines within the figure. The fifth order resonance line can
be seen on the right and two coupled resonances can be seen, one of the fifth order
above and one of the fourth order below. We can see what may be an effect of the fifth
order resonance, as the data points near it increase in diffusion dramatically. We also
see some points becoming "stuck" before the fourth order coupled resonance, which
may also be an effect of nearing this stronger resonance, discussed further with Figure
6 below. The original working point, the point in tune space the beam was originally
located in, was at Qx = 0.1878 and Qy = 0.2755.
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Figure 5: The measured frequencies of the R3 ring with delivery settings, displayed
in tune-space and color-graded according to the diffusion parameter. Also displayed
with fourth and fifth order resonance lines. The original working point was located at
Qx = 0.1878 and Qy = 0.2755.

Below in Figure 6 the R3 delivery data set can be seen in tune space again, although
this time, only the first 100 turns have been used for the frequency analysis. The same
diffusion parameter is used. We can see here in this "earlier" measurement of the tunes
that they appear much closer to the resonance lines than can be seen in Figure 5. This
may suggest that the tunes do not get "stuck" before the resonance, but rather dampen
away from it. We can see how the diffusion increases along the resonances, in line
with the theory.

Figure 6: The measured frequencies of the R3 ring with delivery settings using a fewer
amount of turns for the analysis. Displayed in tune-space and color-graded according
to the diffusion parameter. Also displayed with fourth and fifth order resonance lines.
The original working point was located at Qx = 0.1878 and Qy = 0.2755.
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Figure 7 displays the positional map of the larger (0 0) chromaticity data set. As
may be expected due to the change of the optical setup we see an increase to the sen-
sitivity of the beam, causing it to be lost more easily and thus decreasing the possible
amplitude at which data could be collected. Because of this, many of the areas of in-
terest in Figures 4 and 5 above are not visible here, such as the higher diffusion when
nearing the fifth order resonance, in the upper left of Figure 4. Most of this data ap-
pears quite homogeneous in respect to the diffusion. The suddenly increased diffusion
in the lower left is most likely an artifact of running the frequency analysis without a
kick in both planes. One can just barely see a line of lower diffusion on the right side
of the figure.

Figure 7: The measured positional disturbance of the beam in R3 with near (0 0) chro-
maticity settings at BPM 1, color-graded according to the diffusion parameter

The tune map of the (0 0) chromaticity data set can be seen in Figure 8. Here, some
effect of altering the optics can be seen more clearly. The starting tunes have been
altered such that the fourth order coupled resonance is never approached and the fifth
order resonance is crossed completely. We see the fifth order resonance has little to no
effect on the diffusion and that the fifth order coupled resonance can be seen to ever
so slightly decrease the diffusion where it crosses the data. The original working point
was located at Qx = 0.1942 and Qy = 0.2791.
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Figure 8: The measured frequencies of the R3 ring with chromaticity near (0 0) settings,
displayed in tune-space and color-graded according to the diffusion parameter. Also
displayed with fourth and fifth order resonance lines. Data from BPM 1. The original
working point was located at Qx = 0.1942 and Qy = 0.2791.

Figures 9 and 10 show the measured amplitudes squared in the horizontal and
vertical planes which, according to Equation (1), should match the shape of the beta
function. The shape of these plots suggests the data is sound as they match the general
shape of the theoretical design beta function, plotted along with the values for each
plane in the figures. Displayed is only a single achromat, achromat 4 to be specific,
although as mentioned the optics should be symmetrical throughout the achromats.
It should be noted that the beta function is usually presented with the unit meters,
the right vertical axis which displays the theoretical values can be seen to follow this,
while the left vertical axis presents the measured amplitudes squared.
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Figure 9: The squared amplitudes of the measured frequencies in achromat 4 in the
horizontal plane along with the design beta function on the right-hand vertical axis,
plotted against the longitudinal position.

Figure 10: The squared amplitudes of the measured frequencies in achromat 4 in the
vertical plane along with the design beta function on the right-hand vertical axis, plot-
ted against the longitudinal position.

3.2 R1

Below in Figure 11, we can see the positional map for the R1 data set. It should be
noted that the amplitude of these kicks are far higher than those for the R3 data sets.
Instantly obvious is the strong streak of high diffusion running along the right side of
the data. This is most likely an artifact caused by the coupling of the frequencies at
high kicks along one plane, and low kicks along the other. Beyond this we also see
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an interesting pattern to the diffusion running throughout the data, as it appears to
oscillate between low and high diffusion as the kicks increase in amplitude. The cause
for this pattern is hard to determine. It is possible that it is merely an artifact of the
frequency analysis, similar to the high diffusion area, although the complexity of the
pattern could suggest it is a physical effect within the machine.

Figure 11: The measured positional disturbance of the beam in R1 with delivery set-
tings at BPM 7, color-graded according to the diffusion parameter.

Figure 12 displays the data set of Figure 11 in tune space, along with two coupled
resonance lines, both of the fifth order. We see the tunes cross one of these coupled
resonances, which has little to no effect on the diffusion of the beam. We once again
see the artifact in the part of the data with lower tunes. We also see the oscillating
pattern, here appearing almost solely dependent on the horizontal tune. It should be
noted that this data was also mapped along with much higher orders of resonance and
no crossings following the oscillating pattern could be found. The original working
point was at Qx = 0.2296 and Qy = 0.1328.
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Figure 12: The measured frequencies of the R1 ring with delivery settings, displayed
in tune-space and color-graded according to the diffusion parameter. Plotted along
with two coupled resonance lines of the fifth order. The original working point was
located at Qx = 0.2296 and Qy = 0.1328.

4 Conclusion

Frequency maps were constructed for both rings under varied conditions, and the
response of the beam to certain tunes and resonances could be read from the results.
This fulfills the basic goal of the work.

Furthermore, in R3, the connection of these responses to the set chromaticity of
the machine can be gleaned somewhat by comparing the results of the delivery and
(0 0) chromaticity data. We see, for example, that the instability caused by nearing or
crossing the fifth order resonance line appears highly dependent on the kind optical
changes made when altering the chromaticity. The results of this project also maps the
amplitude dependent tune shift of the rings as a comparison between the positional
and tune-space maps gives the tunes response to a oscillation of a certain amplitude.

Further analysis of the data could be made. For example, despite the achromat
structure of the rings limiting the amount of unique data originating from the BPMs,
this report only displays data from one BPM from each data set. More could be ana-
lyzed to see the effects throughout an achromat. Altering the chromaticity is a start,
but the process of constructing the frequency maps could be repeated under very dif-
ferent optical setups to find how the different optics affects the tunes and the beam’s
response to optical and coupled resonances.

The project was just launched and needs improvements and developments when
similar studies are to be made in the future. No stronger optical resonance was ever
crossed during data collection. It could be interesting to see exactly how the beam re-
acts when nearing a resonance it will not be able to cross without beamloss. This could
be achieved by changing the optics of the ring in order to move the initial tunes closer
to one of the resonances, then using the amplitude dependent tune shift to pass over
it, if possible. Furthermore, data collection was limited to the amplitudes wherein no
major beamloss was present. This simplified collection of data a lot, but it could cer-
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tainly be interesting to investigate the more extreme conditions for the beam. Looking
at the R3 delivery data, its very possible that the beamlosses at high horizontal kicks
were a result of nearing the fifth order optical resonance and if more beamloss was
allowed, the interaction with of the beam with this resonance could be more closely
studied. The oscillating pattern in the R1 data could also be studied further, perhaps
performing the same analysis with some slightly different optical setup. Comparing
such a data set with the one presented above, one could see how the pattern is effected
by different changes to the optics of the ring.

Despite these possible improvements, the project in a whole fulfilled the basic goal
of producing frequency maps for both rings, as well as observing some additional re-
sults. The tools and scripts developed as part of the project also hold more general
use and could be utilized for other projects in the future. The diagnostic information
gleaned in the results could be useful both in further developmental work at the facil-
ity as well as during delivery to scientific beamlines.

References

[1] Wille K, The Physics of Particle Accelerators, 2000, Oxford University Press

[2] Stella A, Analysis of the DAφNE Beam Position Monitor with a Boundary Element
Method, 1997, INFN-LNF, Accelerator Division

[3] Papaphilippou Y, Farvacque L, Plouviez E, Revol J-L, Ropert A, Experimental Fre-
quency Maps for the ESRF Storage Ring, 2004, ESRF, Grenoble, France.

[4] Görgen P, Tune Diagram in Python, 28 November 2013,
https://pgoergen.de/2013/11/tune-diagram-in-python/

[5] Gelfand NM, Amplitude Dependence of the Tune Shift, Conf.Proc. C870316 (1987)
1014.

[6] Tavares PF, Al-Dmour E, Andersson Å, Cullinan F, Jensen BN, Olsson D et al. Com-
missioning and first-year operational results of the MAX IV 3 GeV ring, Journal of Syn-
chrotron Radiation. 2018;25(5):1291-1316.

[7] MAX IV Detailed Design Report, MAX IV Laboratory, Lund, Sweden, Aug. 2010.

18



Appendix A: Data Collector

import PyTango as PT
from PyTango import DeviceProxy as DP
import time
import matplotlib.pyplot as plt
import numpy
numpy.set_printoptions(threshold=numpy.nan)

print(’Running’)

’’’ DEVICES ’’’
#R3
db = PT.Database()
devR3 = db.get_device_exported_for_class(’LiberaDeviceClass’)[:]
bpms_allr31 = filter(lambda v: v.startswith(’R3’) and ’BPM’ in v,devR3)
bpms_allr3=[]
bpms_allr3str=[]
for i in range(len(bpms_allr31)):

bpms_allr3.append(DP(bpms_allr31[i]))
pingr3=[DP(’R3-A110110CAB30/MAG/PSBA-01’), DP(’R3-A111110CAB30/MAG/PSBB-01’)]
timEVGr3=DP(’R3-A101911CAB03/TIM/EVG-01’)
timEVRr3H=DP(’R3-A110111CAB04/TIM/EVR-01’)
timEVRr3V=DP(’R3-A111011CAB04/TIM/EVR-01’)
DCCTr3=DP(’R3-319S2/DIA/DCCT-01’)
for i in bpms_allr3:

bpms_allr3str.append(str(i))

#R1
bpms_allr11=[]
bpms_allr1=[]
bpms_allr1str=[]
for j in range(1,10):

for i in range(1,4):
bpms_allr11.append(’R1-10’+str(j)+’/DIA/BPM-0’+str(i))

for j in range(10,13):
for i in range(1,4):

bpms_allr11.append(’R1-1’+str(j)+’/DIA/BPM-0’+str(i))
for i in range(len(bpms_allr11)):

bpms_allr1.append(DP(bpms_allr11[i]))
pingr1=[DP(’R1-D110210CAB31/MAG/PSBC-01’),DP(’R1-D111210CAB32/MAG/PSBD-01’)]
timEVGr1=DP(’R1-D110210CAB04/TIM/EVG-01’)
timEVRr1=DP(’R1-D110210CAB04/TIM/EVR-01’)
DCCTr1=DP(’R1-101S/DIA/DCCT-01’)
for i in bpms_allr1:

bpms_allr1str.append(str(i))
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timSEL=DP(’G/TIM/SEL’)

’’’ Setting the machine up for measurements ’’’
def MachineSet(ring, buffersize):

if ring==’r3’:
timSEL.Injection=’SPF’
timEVGr3.Inject_Stop()
for bpm in bpms_allr3:

bpm.AGCEnabled=False
bpm.ConditionSwitching=False
bpm.TDEnabled=True
bpm.TDBufferSize=buffersize

for i in [0,1]:
pingr3[i].EnableTrigger()

if ring == ’r1’:
for bpm in bpms_allr1:

bpm.AGCEnabled=False
bpm.ConditionSwitching=False
bpm.TDEnabled=True
bpm.TDBufferSize=buffersize

timSEL.Injection=’SPF’
timEVGr1.Inject_Stop()
timEVRr1.Output00Delay=18501
for i in [0,1]:

pingr1[i].EnableTrigger()

’’’ Reseting changes to the machine ’’’
def MachineReset(ring):

if ring==’r3’:
for bpm in bpms_allr3:

bpm.AGCEnabled=True
bpm.ConditionSwitching=True
bpm.TDEnabled=False

timEVGr3.Inject_Frequency()
timEVRr3H.Output00Delay=18241
timEVRr3V.Output00Delay=17900
for i in [0,1]:

pingr3[i].DisableTrigger()

if ring==’r1’:
for bpm in bpms_allr1:

bpm.AGCEnabled=True
bpm.ConditionSwitching=True
bpm.TDEnabled=False

timEVRr1.Output00Delay=18506
timEVRr1.Output01Delay=18241
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timEVGr1.Inject_Frequency()
for i in [0,1]:

pingr1[i].DisableTrigger()

’’’ Collect TbT data ’’’
def TbT(ring, ping, pingvoltx, pingvolty):

absx=[]
absy=[]
X=[]
Y=[]
Sum=[]
if ping==1:

if ring==’r3’:
pingr3[0].voltageSetPoint = pingvoltx
pingr3[1].voltageSetPoint = pingvolty
time.sleep(2)
timEVGr3.Inject_Single()
time.sleep(0.1)
for bpm in bpms_allr3:

X.append(bpm.XPosTD)
Y.append(bpm.YPosTD)
Sum.append(bpm.SumTD)

if ring==’r1’:
pingr1[0].voltageSetPoint = pingvoltx
pingr1[1].voltageSetPoint = pingvolty
time.sleep(2)
timEVGr1.Inject_Single()
time.sleep(0.1)
for bpm in bpms_allr1:

X.append(bpm.XPosTD)
Y.append(bpm.YPosTD)
Sum.append(bpm.SumTD)

else:
if ring==’r3’:

for bpm in bpms_allr3:
X.append(bpm.XPosTD)
Y.append(bpm.YPosTD)
Sum.append(bpm.SumTD)

if ring==’r1’:
for bpm in bpms_allr1:

X.append(bpm.XPosTD)
Y.append(bpm.YPosTD)
Sum.append(bpm.SumTD)

# X=BPM.XPosTD
# Y=BPM.YPosTD
# Sum=BPM.SumTD

t=range(len(X[0]))
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for i in range(len(X)):
for j in range(len(X[0])):

absx.append(abs(X[i][j]))
absy.append(abs(Y[i][j]))

return [t,X,Y,Sum,absx,absy]

’’’ Take maximums of multiple runs ’’’
def Stepper(ring, pingmaxx, pingmaxy, stepof):

maxx=[]
maxy=[]
pingx=0
pingy=400
pingxl=[]
pingyl=[]
i=1
while i==1:

pingx+=stepof
if ring==’r1’:

Curr1=DCCTr1.InstantaneousCurrent
else:

Curr1=DCCTr3.InstantaneousCurrent
m=TbT(ring, 1, pingx, pingy)
time.sleep(1)
if ring==’r1’:

Curr2=DCCTr1.InstantaneousCurrent
else:

Curr2=DCCTr3.InstantaneousCurrent
# maxx.append(max(m[4]))
# maxy.append(max(m[5]))

pingxl.append(pingx)
pingyl.append(pingy)
t1=time.localtime()
numpy.savez(’SAVE’+ring+’ ’+str(t1[0])+’-’+str(t1[1])+’-’+str(t1[2])
+’ ’+str(t1[3])+’:’+str(t1[4])+’:’+str(t1[5])+’, PINGS:
pingx=’+str(pingx)+’,’+’ pingy=’+str(pingy),bpms_allr3=bpms_allr3str,
bpms_allr1=bpms_allr1str,pingxl=pingxl,pingyl=pingyl,
t=m[0],X=m[1],Y=m[2],Sum=m[3],absx=m[4],absy=m[5])
print(’Saved data for PINGS: pingx=’+str(pingx)+’,’+’ pingy=’+str(pingy))
if Curr2/Curr1 < 0.9 or pingx==pingmaxx:

pingy+=stepof
pingx=0

if pingy==pingmaxy+stepof:
i=0

’’’ PLOTTING! ’’’
#timSEL.Injection=’SPF’
#m=TbT(’r1’, 1, 0, 0)
Stepper(’r1’, 6300, 400, 100)
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’’’
plt.figure(1)
for i in range(34):

plt.plot(m[0], m[1][i])
plt.title(’X’)
plt.figure(2)
for i in range(34):

plt.plot(m[0], m[2][i])
plt.title(’Y’)
plt.figure(3)
for i in range(34):

plt.plot(m[1][i],m[2][i], ’.’)
plt.title(’All data’)
plt.figure(4)
#plt.plot(maxx,maxy, ’.’)
#plt.title(’Max points’)

t1=time.localtime()
numpy.savez(’SAVE’+’r1’+’ ’+str(t1[0])+’-’+str(t1[1])+’-’+str(t1[2])+’ ’
+str(t1[3])+’:’+str(t1[4])+’:’+str(t1[5]),
bpms_allr3=bpms_allr3str,bpms_allr1=bpms_allr1str,
t=m[0],X=m[1],Y=m[2],Sum=m[3],absx=m[4],absy=m[5])
’’’
print(’Complete’)
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Appendix B: Frequency Analyzer

import time
import matplotlib.pyplot as plt
import numpy
import os
numpy.set_printoptions(threshold=numpy.nan)
from PyNAFF import *
#Maxx=[]
#Maxy=[]
#Minx=[]
#Miny=[]
k=os.listdir(r’DATA’)
dat=numpy.load(r’DATA’)
#datY=numpy.delete(dat[’Y’],3,0)

def maxpoints(directory):
Maxx=[]
Minx=[]
Maxy=[]
Miny=[]
for j in range(198):

maxx=[]
minx=[]
maxy=[]
miny=[]
for i in k:

loader=os.path.join(r’DATA’, i)
dat=numpy.load(loader)
datX=dat[’X’]
datY=dat[’Y’]
maxx.append(max(datX[j]))
minx.append(min(datX[j]))
maxy.append(max(datY[j]))
miny.append(min(datY[j]))

Maxx.append(maxx)
Minx.append(minx)
Maxy.append(maxy)
Miny.append(miny)
print(’saved bpm’)

#plt.figure(1)
#plt.plot(Minx+Maxx,Miny+Maxy, ’.’)
#plt.title(’Max points’)

saver=os.path.join(r’DATA’, directory)
numpy.savez(saver, Maxx=Maxx,Maxy=Maxy,Minx=Minx,Miny=Miny)
return ’DONE’
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xfreql=[]
yfreql=[]
xfreq1l=[]
yfreq1l=[]
xfreq2l=[]
yfreq2l=[]

diff=[]

def FreqAnalysis(bpm, directory):
for i in k:

dire=os.path.join(r’DATA’, i)
dat=numpy.load(dire)

# datX=numpy.delete(dat[’X’],3,0)
# datY=numpy.delete(dat[’Y’],3,0)

xfreq1=PyNAFF.naff(dat[’X’][bpm],100,3,0,False,window=1)
yfreq1=PyNAFF.naff(dat[’Y’][bpm],100,3,0,False,window=1)
xfreq2=PyNAFF.naff(dat[’X’][bpm],100,3,100,False,window=1)
yfreq2=PyNAFF.naff(dat[’Y’][bpm],100,3,100,False,window=1)
xfreq=PyNAFF.naff(dat[’X’][bpm],200,3,0,False,window=1)
yfreq=PyNAFF.naff(dat[’Y’][bpm],200,3,0,False,window=1)
if len(xfreq)==0:

continue
diff.append(log(((xfreq1[0][1]-xfreq2[0][1])**2
+(yfreq1[0][1]-yfreq2[0][1])**2)**(1/2)))
xfreql.append(xfreq)
yfreql.append(yfreq)

# xfreq1l.append(xfreq)
# yfreq1l.append(yfreq)
# xfreq2l.append(xfreq)
# yfreq2l.append(yfreq)
# if yfreq[0][1]>0.20 and len(yfreq)>1:
# yfreql.append(yfreq[1][1])
# yfreqa.append(yfreq[1][2])
# else:
# yfreql.append(yfreq[0][1])
# yfreqa.append(yfreq[0][2])

direc=os.path.join(r’DATA’, directory)
numpy.savez(direc, xfreql=xfreql, yfreql=yfreql, diff=diff)

# plt.figure(1)
# plt.scatter(xfreql,yfreql,c=diff)

def Beta(kick, dirname):
xfreqa=[]
yfreqa=[]
for j in range(198):

dire=os.path.join(r’DATA’, k[kick])
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dat=numpy.load(dire)
datX=dat[’X’]
datY=dat[’Y’]
xfreq=PyNAFF.naff(datX[j],250,3,0,False,window=1)
yfreq=PyNAFF.naff(datY[j],250,3,0,False,window=1)
if len(xfreq)==0:

continue
# xfreql.append(xfreq[0][1])
# yfreql.append(yfreq[0][1])

#xfreqa.append(abs(xfreq[0][2]))
#yfreqa.append(abs(yfreq[0][2]))
fftx=numpy.fft.fft(datX[j])
ffty=numpy.fft.fft(datY[j])
fftx1=numpy.delete(fftx, 0)
ffty1=numpy.delete(ffty, 0)
xfreqa.append(max(abs(fftx1)))
yfreqa.append(max(abs(ffty1)))

xfreqa.pop(0)
xfreqa.pop(108)
yfreqa.pop(0)
yfreqa.pop(4)
yfreqa.pop(107)
direc=os.path.join(r’DATA’, dirname)
numpy.savez(direc, xfreql=xfreql, yfreql=yfreql,
xfreqa=xfreqa, yfreqa=yfreqa)
betax=[]
betay=[]
for i in range(len(xfreqa)):

betax.append(xfreqa[i]**2/400)
for i in range(len(yfreqa)):

betay.append(yfreqa[i]**2/10)
plt.figure(1)
plt.plot(range(len(xfreqa)),betax)
plt.title(’X’)
plt.figure(2)
plt.plot(range(len(yfreqa)),betay)
plt.title(’Y’)

plt.figure(1)
for i in range(198): #r1 35 r3 198

plt.plot(range(2000), dat[’X’][i])
#maxx.append(max(datX[i]))
#minx.append(min(datX[i]))

plt.xlabel(’Turns/cnt.’)
plt.ylabel(’Amplitude/nm’)
plt.title(’X’)
plt.figure(2)
for i in range(198):
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plt.plot(range(2000), dat[’Y’][i])
#maxy.append(max(datY[i]))
#miny.append(min(datY[i]))

plt.title(’Y’)
plt.figure(3)
for i in range(198):

plt.plot(dat[’X’][i],dat[’Y’][i], ’.’)
plt.title(’All data’)
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Appendix C: Plotter/Linearization

import time
import matplotlib.pyplot as plt
import numpy
import pylab
import os
numpy.set_printoptions(threshold=numpy.nan)
from PyNAFF import *
from fractions import gcd
import scipy.io

dat1=numpy.load(r’DATA’)
dat=numpy.load(r’DATA’)
datM=numpy.load(r’DATA’)

#xfreql=dat1[’xfreql’]
#yfreql=dat1[’yfreql’]
xfreqt=[]
yfreqt=[]
xfreql1=[]
yfreql1=[]
difft=[]
meanr3X=-45446.057000000001
meanr3Y=31835.623
mean00X=84874.739000000001
mean00Y=-22624.964
meanr1X=538854.13800000004
meanr1Y=-139346.432

def curver():
return plt.scatter(datM[’Maxx’][20], datM[’Maxy’][20], c=dat[’diff’])

def updateOrder(lines,leftY,rightY,order,label):
if (leftY in lines):

if (rightY in lines[leftY]) and (lines[leftY][rightY]["order"]<order):
lines[leftY][rightY]={"order":order, "label":label}

else:
lines[leftY][rightY]={"order":order, "label":label}

else:
lines[leftY]={}
lines[leftY][rightY]={"order":order, "label":label}

def plotTuneDiagram(maxOrder,xlim=[0,1],ylim=[0,1],
tickOrders=False,tuneLineColor="black"):

ylim=numpy.array(ylim)
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xlim=numpy.array(xlim)
lines={}
vlines={}
for a in numpy.arange(-maxOrder,maxOrder,dtype="float"):

for b in numpy.arange(-maxOrder,maxOrder,dtype="float"):
for n in numpy.arange(-maxOrder,maxOrder,dtype="float"):

order=abs(a)+abs(b)
if order <= maxOrder:

if b != 0:
leftY = (n - a*xlim[0]) / b
rightY = (n - a*xlim[1]) / b
if (ylim[0] <= leftY and ylim[1] >= rightY)or\

(ylim[1] >= leftY and ylim[0] <= rightY):
divisor=gcd(abs(n),abs(b))
updateOrder(lines,leftY,rightY,order,
"$\\frac{%d}{%d}$" % (abs(n/divisor),abs(b/divisor)))

elif b==0 and a!=0:
if xlim[0]<=(1.*n/a)<=xlim[1]:

divisor=gcd(abs(n),abs(a))
if (1.*n/a) in vlines:

if vlines[1.*n/a]["order"]>order:
vlines[1.*n/a]={"order":max(vlines[1.*n/a]
["order"],order),"label":"$\\frac{%d}{%d}$" %
(n/divisor,a/divisor)}

else:
vlines[1.*n/a]={"order":order,"label":"$\\frac{%d}
{%d}$" % (abs(n/divisor),abs(a/divisor))}

y2ticks=[]
y2labels=[]
for leftY in lines:

for rightY in lines[leftY]:
pylab.plot(xlim,[leftY,rightY],linewidth=5./lines[leftY][rightY]["order"]
,color=tuneLineColor)
if rightY==leftY:

y2ticks.append(rightY)
y2labels.append(lines[leftY][rightY]["label"])

x2ticks=[]
x2labels=[]
for fraction in vlines:

pylab.axvline(fraction,linewidth=5./vlines’
[fraction]["order"],color=tuneLineColor)
x2ticks.append(fraction)
x2labels.append(vlines[fraction]["label"])

if tickOrders:
pylab.xticks(x2ticks,x2labels)
pylab.yticks(y2ticks,y2labels)

pylab.xlim(xlim)
pylab.ylim(ylim)
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def truemapper():
for i in range(len(xfreql)):

xfreql1.append(xfreql[i][0][1])
yfreql1.append(yfreql[i][0][1])
#if yfreql[i][0][1]>0.2 or yfreql[i][0][1]<0.25:
# continue
xfreqt.append(xfreql[i][0][1])
yfreqt.append(yfreql[i][0][1])
#difft.append(dat[’diff’][i])

’’’
if len(xfreql[i])==3:

xfreqt.append(xfreql[i][2][1])
if len(xfreql[i])==2:

xfreqt.append(xfreql[i][1][1])
if len(xfreql[i])==1:

xfreqt.append(xfreql[i][0][1])
if len(yfreql[i])==3:

yfreqt.append(yfreql[i][2][1])
if len(yfreql[i])==2:

yfreqt.append(yfreql[i][1][1])
if len(yfreql[i])==1:

yfreqt.append(yfreql[i][0][1])
’’’
plt.figure(1)
plt.scatter(xfreql1, yfreql1, c=dat[’diff’])
#plt.ylim(0.260,0.292)
#plt.xlim(0.187,0.201)
plt.title(’Tune Map R1’)
plt.xlabel(’Q_x’)
plt.ylabel(’Q_y’)
plt.colorbar()

plt.figure(2)
plotTuneDiagram(5)
plt.scatter(xfreqt, yfreqt, c=dat[’diff’])
plt.title(’Tune Map R3 Delivery’)
plt.xlabel(’Q_x/a.u.’)
plt.ylabel(’Q_y/a.u.’)
cb=plt.colorbar()
cb.set_label(’D/a.u.’, rotation=270)
#plt.ylim(0.26,0.292)
#plt.xlim(0.187,0.201)

def linearizationr1(bpm, flank):
x=datM[’Maxx’][bpm]
y=datM[’Maxy’][bpm]
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lp_central=scipy.io.loadmat(r’linearizationPolynomscentre.mat’)
lp_flanking=scipy.io.loadmat(r’linearizationPolynomsflanking.mat’)

k_x13 = 6.753561
k_y13 = 18.959501

k_x2 = 12.146387
k_y2 = 12.595727

xn=[]
yn=[]
X=[]
Y=[]
for i in range(len(x)):

if flank==1:
xn.append((x[i]-meanr1X)/k_x13*10**(-6))
yn.append((y[i]-meanr1Y)/k_y13*10**(-6))
X1=0
Y1=0
for j in range(136):

X1+=lp_flanking[’xp’][0][0][1][0][j]*xn[i]**lp_flanking[’xp’]
[0][0][0][j][0]*yn[i]**lp_flanking[’xp’][0][0][0][j][1]
Y1+=lp_flanking[’yp’][0][0][1][0][j]*xn[i]**lp_flanking[’yp’]
[0][0][0][j][0]*yn[i]**lp_flanking[’yp’][0][0][0][j][1]

X.append(X1)
Y.append(Y1)

if flank==0:
xn.append((x[i]-meanr1X)/k_x2*10**(-6))
yn.append((y[i]-meanr1Y)/k_y2*10**(-6))
X1=0
Y1=0
for j in range(136):

X1+=lp_central[’xp’][0][0][1][0][j]*xn[i]**lp_central[’xp’]
[0][0][0][j][0]*yn[i]**lp_central[’xp’][0][0][0][j][1]
Y1+=lp_central[’yp’][0][0][1][0][j]*xn[i]**lp_central[’yp’]
[0][0][0][j][0]*yn[i]**lp_central[’yp’][0][0][0][j][1]

X.append(X1)
Y.append(Y1)

return plt.scatter(X, Y, c=dat[’diff’]), X, Y

def linearizationr3(bpm):
x=datM[’Maxx’][bpm]
y=datM[’Maxy’][bpm]

lp=scipy.io.loadmat(r’linearizationPolynoms.mat’)
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k = 0.8671522000*1e1

xn=[]
yn=[]
X=[]
Y=[]
for i in range(len(x)):

xn.append((x[i]-meanr3X)/k*10**(-6))
yn.append((y[i]-meanr3Y)/k*10**(-6))

for i in range(len(x)):
X1=0
Y1=0
for j in range(136):

X1+=lp[’xp’][0][0][1][0][j]*xn[i]**lp[’xp’][0][0][0][j][0]*yn
[i]**lp[’xp’][0][0][0][j][1]
Y1+=lp[’yp’][0][0][1][0][j]*xn[i]**lp[’yp’][0][0][0][j][0]*yn
[i]**lp[’yp’][0][0][0][j][1]

X.append(X1)
Y.append(Y1)
’’’
X.append(numpy.polynomial.polynomial.polyval2d(xn[i],yn[i],
lp[’xp’][0][0][1][0]))
Y.append(numpy.polynomial.polynomial.polyval2d(xn[i],yn[i],
lp[’yp’][0][0][1][0]))

#X.append(numpy.polyval(lp[’xp’][0][0][1][0],xn[i]))#[xn[i],yn[
i]]))
#Y.append(numpy.polyval(lp[’yp’][0][0][1][0],yn[i]))
#[xn[i],yn[i]]))

linearizationr1(7,0)
plt.xlabel(’X/mm’)
plt.ylabel(’Y/mm’)
plt.title(’Positional Map R1’)
cb=plt.colorbar()
cb.set_label(’D/a.u.’, rotation=270)

’’’
return plt.scatter(X, Y, c=dat[’diff’])
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