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Abstract

The non-Abelian QCD nature allows for pp collisions to contain gluon emissions off
quarks as well as gluon branchings into further gluons — a structure that can be described
by the parton shower model. In this project we present the results of the impact the shower
has on the reconstruction of the W -boson and top quark masses using Pythia, the Lund
Monte Carlo event generator. As a warm-up, the importance of showers and of multiparton
interactions, as well as the value of the strong coupling constant, is investigated. We further
study the results from different parton shower implementations by comparing the data of
the default Pythia shower with the one from three other algorithms — the initial-state
dipole recoil in Pythia, the dipole-like Dire and the antenna-based Vincia showers.
Comparisons on reconstructed top masses are presented both for a common default αS

value and for one roughly tuned to give the same jet profile for all models. Unexpectedly
large differences have been observed, amounting to ±0.5 GeV in some cases. More detailed
research could either reveal the origin of these discrepancies, or conclude that there is still
a long way to go until the value of the top mass can be safely extracted from data.



Populärvetenskaplig sammanfattning

Partikelfysikens standardmodell har framg̊angsrikt förutsagt de nu kända elementära
partiklarna och deras växelverkningar. Liksom varje fysikmodell har den ett giltighet-
somr̊ade. Det okända som kan tänkas inträffa utanför detta omr̊ade kallas fysik bortom
standardmodellen. Nya fenomen kan förväntas uppträda vid extremt höga energier, bor-
tom de tillgängliga vid dagens kolliderare. En av de aspekter vi hoppas att en ny teori
skulle ge oss först̊aelse för är topkvarkens extremt tunga massa. Denna massa svarar mot
att Yukawakopplingen mellan top och Higgs är nära ett, och en s̊a stor koppling spelar en
betydelsefull roll i fr̊agan om det elektrosvaga vacuumets stabilitet.

Studier av detta slag kräver hög experimentell precision vid mätning av topkvarkens
massa. Olyckligtvis inneh̊aller de händelser där top–antitop par bildas ocks̊a mycket annan
aktivitet som inte direkt är relaterat till den intressanta processen. Ett viktigt exempel
är att kvarkar kan emittera gluoner som i sin tur kan splittras vidare, n̊agot som kan
beskrivas i termer av s.k. partonkaskader. En annan sv̊arighet är att kvarkar bär stark-
växelverkan-färg och därför inte kan observeras direkt. Istället producerar de kollimerade
partikelskurar, jets, som kan observeras i en detektor. Men man kan aldrig med säkerhet
ange en individuell partikels ursprung. Det är därför viktigt att först̊a hur dessa jets
uppför sig, och för detta är experimentalister mycket beroende av händelsegeneratorer, där
denna fysik modelleras. Ett s̊adant program, som användes i denna studie, är Pythia
som huvudsakligen är skrivet av Lundafysiker.

Simuleringen av protonkrockar styrs enligt specifika modeller och algoritmer, som i sig
inneh̊aller ett mått av osäkerhet. I fokus av det nuvarande arbetet ligger en jämförelse mel-
lan tre olika skuralgoritmer, nämligen Pythia, Dire och Vincia, varav de tv̊a sistnämnda
kan användas inuti Pythia. Detta görs genom att generera semirealistiska proton-proton-
kollisioner som sedan analyseras p̊a ett sätt som rimligt nära anknyter till vad som kan
göras experimentellt. I analysen av tophändelser hittas jettarna och kombineras för att
försöka rekonstruera W -bosonens och topkvarkens massor.

V̊ara första studier visar att bägge de rekonstruerade massorna varierar som väntat
när den starka kopplingens värde varieras, eller när inga partonkaskader till̊ates, eller när
kollisioner mellan ytterliggare partonpar i de inkommande protonerna inte tas med. Re-
sultaten fr̊an de centrala studierna i detta arbete, med tre olika partonkaskader, var inte
entydiga. De tydde änd̊a p̊a att det — i brist p̊a bättre först̊aelse av och kontroll över
kaskaderna — finns en osäkerhet p̊a ungefär ±0.5 GeV i topkvarkens massa, jämförbar
med den totala osäkerhet som ofta citeras vid LHC. Naturligtvis är v̊ar studie fortfarande
en förenklad version av den fulla experimentella, och i synnerhet har Dire och Vincia
inte än utnyttjats till sin fulla potential.

Om vi summerar s̊a är det imponerande att det faktiskt g̊ar att bestämma topmassan
med s̊a god precision, vilket visar p̊a de stora framsteg som gjorts i v̊ar först̊aelese av
högenergikollisioner. Men det visar ocks̊a p̊a att v̊ar först̊aelse har brister, att vi måste
fortsätta sträva mot högsta möjliga precision. Man skall aldrig vara helt nöjd; det kommer
alltid att finnas många fler vetenskapliga g̊ator i behov av att redas ut.
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1 Introduction

Figure 1: An example of the hard
process of a pp event. The incom-
ing qq̄ pair can be substituted with
a pair of gluons. The hadronic and
leptonic decays of the two bosons
can be interchanged. The Feyn-
man diagrams are created using the
feynMP package [1] in LATEX.

One of the most recent major successes in the
field of particle physics came with the discovery of
the Higgs boson at the Large Hadron Collider in
2012. This event marked the point at which all par-
ticles, that the Standard Model (SM) describes the-
oretically, are also confirmed experimentally. Ever
since, physics beyond the SM (BSM) has been sought
for. It has been argued [2] that, as of today, the
only quantity that can give a sign about where the
scale of new physics lies, is the top Yukawa cou-
pling. With its extraordinarily heavy mass of ap-
proximately 173 GeV, the top quark couples the
strongest to the Higgs boson compared to the rest of
the fundamental particles, with a coupling approxi-
mately equal to unity. In higher order (HO) correc-
tions, the large coupling contributes to the effective
Higgs potential and thereby plays a significant role
in the theory of vacuum stability. As of our current
understanding, the borders between the meta-stable
Universe we presumably live in, an absolute stable
and an unstable one are extremely close. Therefore
the top mass value influences the constraints on some
scenarios of BSM physics, and a precise determina-
tion in turn requires a deep understanding of the
perturbative and non-perturbative effects in a collision.

The mass of the top quark has been measured with great accuracy and scientists keep
striving for better results. It is determined up to less than a GeV, which, given its value,
makes it the most precisely measured quark mass in terms of relative error. The task
of performing such studies, however, is far from trivial. Color confinement allows us to
observe only the color neutral products of a color triplet quark. Therefore, no one-to-one
association of the original top quark and the final-state hadrons can be made. Experi-
mentally, the “interesting” events, that have the signature of top–antitop production, need
to be extracted out of millions of proton–proton collisions per second. Several different
physics mechanisms disturb the simple picture of top production and decay, illustrated in
Fig. 1, and to complicate background rejection.

A standard way to study the individual effects is with the help of event generators.
These are tools which, using Monte Carlo methods [3], simulate the random nature of
the microscopic world by generating a process given its quantum mechanical probability to
occur. A large event sample needs to be generated in order to give the complete probability
distribution of nontrivial observables. In a Monte Carlo generator, hadron collisions are
calculated with leading order (LO) matrix element (ME), or potentially with higher orders.
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The latter type of calculations increase rapidly in complexity, however. This points towards
the need for an approximate perturbative model, e.g. in the form of parton showers. Since
perturbation theory breaks down for large values of the coupling constant, hadronization
cannot be calculated explicitly and needs to be modelled instead, together with other
processes such as multi-parton interactions (MPI).

In the current simulations, an event begins with the collision of two protons at a center-
of-mass energy of 8 TeV. One of the effects that gives rise to uncertainties in the top mass
reconstruction, and the one we studied in this project, is gluon radiation off partons before
and after the proton collision, namely initial- (ISR) and final-state radiation (FSR). Such a
process can be described approximately by parton showers. As shown in the diagram, a qq̄
or a gg pair collision produces a gluon, which then splits into a top and an antitop quark.
Undesirable, yet unavoidable, is the effect of MPI — the possible interaction between
other proton constituents within the event, which might produce additional particles, not
related to the top quark production. Its impact will be briefly discussed. Some other
sources of uncertainties, which will not be covered in the project, are pile-up events and
color reconnection [4]. The first effect is the presence of particles belonging to other events
than the top production one and is a result of the high luminosity that colliders obtain.
The second one, constituting 20% to 40% of the uncertainty [4], occurs towards the end
of an event, during hadronization, and is a consequence of the combined effects of parton
showers and MPI. Colored qq̄ and gg pairs form color dipoles, whose overlap creates a
nontrivial and fairly complicated behaviour [5, 6]. This list of possible uncertainty sources
is, of course, far from complete. Scientists continue to improve, test and create models in
order to arrive at the best possible picture describing all processes that can occur in an
event of this nature.

The present thesis is concentrated on the effects that parton showers have on the
precision of top quark mass measurements. Events are reconstructed using the Pythia
8.2 event generator [7, 3]. Nowadays parton showers are normally described in terms of
dipole showers, but especially when ISR is involved the choice is not trivial. Two different
Pythia dipole-recoil options are therefore compared [8]. The default Pythia parton
showering is juxtaposed with two more modern dipole-shower algorithms, namely Dire
2.003 [9, 10, 11] and Vincia 2.3 [12].

The report is organized as follows. A brief discussion regarding MEs is given in Sec. 2.1.
The following Sec. 2.2 introduces the idea of parton and dipole showers, as well as the
different types of gluon emission. In Sec. 3 a summary of the jet algorithm, used in the
project, is given. The three top decay channels are discussed in Sec. 4. The flow of
the program leading to reconstruction of W and top masses, together with the simulation
results are thoroughly discussed in Sec. 5. Final remarks and ideas for further improvements
in Sec. 6 conclude the thesis.

Throughout the report we will be using the natural units, where the fundamental
constants c and h̄ are set to unity.
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2 Physics Overview

2.1 Matrix Elements

Hadron–hadron collisions are Quantum Chromodynamics (QCD)-dominated events rich
in activity and complexity. Describing them requires the introduction of various concepts
and models, and leads to lengthy equations even for LO calculations. Nevertheless, better
theoretical precision is needed and obtained by calculating HO corrections in perturbation
theory. Unfortunately, this description is not applicable to the complete momentum range
of an event. In contrast with Quantum Electrodynamics (QED), the strong coupling con-
stant of QCD increases rapidly at low momentum transfer scales. This makes perturbation
theory break down in that region and approximate solutions become necessary.

As a starting point for fixed-order calculations, let us firstly present the parton distri-
bution/density function (PDF). It is written in the form fA

a (x,Q2), which, at LO, gives
the probability of finding a parton of type a inside a proton A, carrying a fraction x of
the proton momentum, probed at a (space-like virtuality) scale Q2. A cross-section of the
parton–parton interaction is then obtained by the convolution of the PDFs of both in-
coming protons, A and B, and the differential cross-section of the hard-scattering between
partons a and b:

σ =
∑
a,b

∫∫∫
dx1 dx2 dΩ fA

a (x1, Q
2) fB

b (x2, Q
2)

dσ̂ab
dΩ

, (1)

where Ω is the phase space of the process and σ̂ab is a function of the kinematics variables.
The latter is proportional to the squared ME, |Ma+b→N |2, where N is the final parton
multiplicity.

Computing the MEs is certainly the correct approach to evaluate the perturbative as-
pects of an event. The complexity of the method sets limitations to how precise calculations
can be, however. In the cases of real corrections, which result in high final parton mul-
tiplicities, setting up the MEs is a tedious, yet straightforward task. The limiting factor
is that each HO requires ever further increased computer capacity. In the cases of virtual
(HO loop) corrections, on the other hand, the MEs are extremely challenging to set up
since it requires calculations in non-integer dimensions to isolate and cancel unphysical
divergences. Processes of the type qq̄ → tt̄ + X, qg → tt̄ + X and gg → tt̄ + X have
been calculated up to NNLO [13, 14, 15]. We can therefore conclude that, given a 2→ N
process, the ME approach can be applied only for small values of N .

2.2 Parton Showers

2.2.1 Description

The difficulties arising when using MEs have inspired people to search for perturba-
tive approximate solutions to HO Feynman diagrams. This type of solutions have been
developed in the form of parton showers. Instead of computing all MEs involved in a
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single event, different kinds of branchings are generated recursively, one additional parton
at a time, according to their probabilities to occur [16]. Despite the approximate shower
nature, the results turn out to be surprisingly accurate. They cannot be applied to non-
perturbative regions, however, such as hadronization — a process which takes over once a
minimal cutoff around the value of 1 GeV2 is reached [3].

An important concept in our discussion here is the notion of virtuality. As we know
from basic kinematics, the squared four-momentum of a particle amounts to the square of
its rest mass:

p2 = E2 − p2 = m2
0. (2)

This is not necessarily true, however, especially in the case of highly energetic collisions.
A good definition of virtuality would give an intuitive measure of how hard a process is
and one such definition is given by the difference in the two above mentioned quantities
[16, 17]:

Q2 = p2 −m2
0. (3)

The hard process in Fig. 1 (which should be defined as the hardest one in the whole
event) is evaluated by fixed-order perturbative calculations. The parton shower method
is thereafter used when estimating the probabilities for further parton emissions primarily
in the collinear and soft regions. These are situations of small virtuality (in the former
region), or small energy of the emitted gluon (in the latter one). Therefore, the ME and
shower approaches ought to be combined in order to produce the complete event. We
can safely make the approximation of firstly isolating the hard process from the parton
branchings and then, for virtuality scales below those covered by the MEs, gradually add
parton showers to the event [17].

Parton showers are conveniently split into two types: ISR (space-like showers, where
Q2 < 0) and FSR (time-like showers, Q2 > 0). As the names suggest, the former/latter
type occurs before/after the hard process. An event described by Fig. 1 can contain both
initial and final QCD radiation, both of which obey Heisenberg’s uncertainty principle:

∆E∆t ∼ h̄

2
, (4)

where ∆E is the energy scale at which the radiation is probed and ∆t is the time interval
between the hard collision and the radiation. We can interpret ∆E as related to the
virtuality scale which, for comparable emission energies, is related proportionally to the
emission angles. This results in gluons radiated at wide angles closely before/after (for
ISR/FSR) the hard process has occurred. Conversely, the longer the time interval, the
more low-angle the radiated gluons are.

Throughout the discussion so far, it has been hinted that events are not described in
terms of their evolution with time, but with their evolution in hardness instead. However,
this choice of evolution variable is not necessarily obvious. Different Monte Carlo generators
have taken different approaches, each having its pros and cons. In the latest Pythia
versions, this parameter approximately corresponds to the transverse momentum, p⊥, of
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the particle [18], given by:

p2
⊥ = z (1− z)Q2 for FSR, (5)

p2
⊥ = (1− z)

∣∣Q2
∣∣ for ISR, (6)

where the energy-sharing z parameter will be defined in the upcoming section. For ISR,
the quarks are considered massless, therefore the term m2

0 in eq. (3) is omitted. It is clear
that we cannot make this approximation for FSR due to the non-negligible masses of the
top and the bottom quarks.

2.2.2 Final-State Radiation

Let us first study the more intuitive approach used in FSR calculations, whereby the
hard process sets the beginning of the evolution. This method is called a forward evolution
since the radiation is studied forward in time and the energy of a parton decreases with
each emission.

Consider a branching of the form a→ bc, which can occur in either of the three forms
(Fig. 2):

q → qg g → gg g → qq̄. (7)

The virtuality of the cascade initiator a is given as Q2. For the time being, we further
assume that the final partons of the branching are massless (which should, in general, be
corrected for) and on-shell. A variable z is then defined as the fraction of the initial parton
energy that b carries:

z =
Eb

Ea

1− z =
Ec

Ea

. (8)

Figure 2: The three types of QCD branching processes.

In the heart of the parton shower technique is the probability for a certain branching to
take place. The three types of branchings from eq. (7) are described by the Altarelli-Parisi
splitting functions (or splitting kernels) [19]:

P̂q→qg(z) = CF
1 + z2

1− z
(9)

P̂g→gg(z) = CA

[
1− z
z

+
z

1− z
+ z (1− z)

]
(10)

P̂g→qq̄(z) = TR
[
z2 + (1− z)2] , (11)
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where the three constant color factors are

CF =
4

3
CA = 3 TR =

1

2
(12)

and eq. (9) bears the same form if the quarks are replaced by antiquarks. These equations
are related to the probability for parton a to branch into two other, b and c, given the
energy share z. Showers are evaluated at LO, for which the expressions bear the same
form for both FSR and ISR. The (näıve) probability expression is then proportional to the
kernels [17, 16]:

dPnäıve
a→bc =

αS

2π

dQ2

Q2
P̂a→bc(z)dz. (13)

The term
1

Q2
is referred to as the collinear/mass singularity and

1

1− z
is called the soft-

gluon/IR singularity (which is symmetric to the
1

z
singularity). The relation gives the

probability for a branching (the one described by the splitting function) to occur between
virtualities Q2 + dQ2 and Q2. We can read from eq. (13) that, as the event evolves to-
wards lower virtuality, the splitting probability becomes larger and the parton multiplicity
increases more rapidly.

2.2.3 The Sudakov Form Factor

The discussion so far faces an unpleasant problem. The probability from eq. (13) is
prone to give results exceeding unity when integrated over large Q2 regions. What has
been falsely allowed is that, after the decay of parton a in the form a→ bc, it can yet again
decay to, say, a → de. This requires the introduction of an additional term, which gives
the probability expression a physical meaning. A process that encompasses the same issue
is nuclear decay, where a given nucleus should be allowed to decay only once (a thorough
discussion is given in [17]).

A solution comes in the form of the Sudakov (form) factor, which, for FSR, is defined
by the following, seemingly complicated, expression:

∆FSR(Q2) ≡ exp

(
−
∑
b,c

∫ Q2
max

Q2

dQ′2

Q′2

∫ zmax(Q′2)

zmin(Q′2)

αS

2π
P̂a→bc(z

′) dz′

)
= (14)

= exp

(
−
∑
b,c

∫
dPnäıve

a→bc

)
. (15)

Here, we have primed the quantities under the integral, so that they are distinguished as
integration variables. The limits of the second integral are determined by the kinematics of
the specific branching [16]. This definition gives the probability for a branching, described
by the splitting kernel, not to take place between Q2

max and Q2. It is constructed as the
exponential function of the probability for the branching to occur. The negative sign in
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front then sets the ∆FSR function to run between 0 and 1. The näıve probability from
eq. (13) is then combined with the Sudakov factor from eq. (15) to give the physical
branching probability:

dPa→bc = dPnäıve
a→bc exp

(
−
∑
b,c

∫
dPnäıve

a→bc

)
. (16)

Expressed in a more explicit form, the equation reads:

dPa→bc =
αS

2π

dQ2

Q2
P̂a→bc(z) dz∆FSR(Q2). (17)

It is now easy to see that the total branching probability can never exceed unity. Further-
more, if Q2

max � Q2 then ∆(Q2)→ 0, which is reasonable, since it becomes more and more
unlikely for a branching not to take place in a broader and broader region [20].

While, this way, the emission rate of a is restricted, it should be remembered that, once
a has branched, the partons b and c created in the process are allowed to branch in their
turn, from the scale of the a→ bc downwards. Hence an ordered cascade may develop.

2.2.4 Initial-State Radiation

The effect of ISR is a bit more tricky to tackle, given the complicated structure of a
proton as a ”cloud of quasireal partons” [21]. The hard process in the event is a result of
the collision between two partons, each originating from its corresponding incoming proton.
Various issues arise when trying to describe ISR using the forwards-in-time evolution from
FSR. Problematic is the fact that it cannot be predicted, from the beginning, which one
of the proton constituents will participate in the collision, unless numerous trial-and-error
procedures are executed, which becomes highly inefficient [21, 16]. A good approach is
instead to start our ISR study from the desired hard process, and then evolve backwards
in time, calculating the probability for a given parton to have originated from a particular
branching [21]. This technique turns out to be a successful one and results in faster
algorithms.

In order to describe the content of the hadrons, we recall the PDF functions given in
Sec. 2.1. The quantity fb(x,Q

2) dx then provides the number of partons of species b with
momentum fraction between x and dx, probed at a virtuality scale Q2 [16]. The function
fb(x,Q

2) cannot be determined theoretically, however its virtuality evolution is calculated
perturbatively through the DGLAP equation:

dfb(x,Q
2) =

αS

2π

dQ2

Q2

∑
a

∫ 1

x

dx′

x′
P̂a→bc

(
z =

x

x′

)
fa(x

′, Q2) (18)

The probability evolution equation for this process looks slightly differently from what we
have encountered in eq. (13):

dPnäıve
a→bc =

dfb(x,Q
2)

fb(x,Q2)
(19)

7



What eq. (18) tells us is, knowing the distribution of the mother parton a at a given
virtuality scale Q2, how the distribution of the daughter parton b changes from Q2 to
Q2 + dQ2. As usual, the process is described by the splitting function P̂a→bc. The energy
fraction z is defined as the momentum x that parton b carries over the momentum x′ of
particle a, where the latter runs between the integration limits x and 1. The expression
from eq. (19) then gives a conditional probability : given a parton b at a virtuality scale
Q2 +dQ2, what the probability is that it was created by the branching a→ bc in the range
between Q2 and Q2 + dQ2 [17]. The equation is modified by a Sudakov factor, related to
the above branching rate, in the spirit of eq. (16).

2.3 Dipole Showers in Pythia, Dire and Vincia

So far, we have been discussing 1 → 2 gluon emissions and branchings. Another
approach has also been formulated in the form of the 2 → 3 gluon emissions off color
dipoles [22, 23]. It can be understood by considering a pair of color–anticolor quarks, in
the NC →∞ limit [24], forming a color dipole/antenna. In this configuration, the emission
of a gluon is viewed as the joint action of the quark and antiquark. As a simplification,
used in some dipole algorithms but not in all, one of the two is designated as the radiator
and the other as recoiler, where the former then is more strongly affected by the emission
than the latter.

As an example, let us consider the branching qr → qb + grb̄ (with r and b denoting the
colors), which takes the form qr + qr̄ → qb + qr̄ + grb̄ in the color dipole shower formalism.
We call the two partons to the left of the arrow pre-branching, while the three ones to
the right are post-branching. Initially, the formation of a color dipole requires an antired
antiquark. After the emission of the gluon, color strings are stretched between the antired–
red and antiblue–blue colors. Now the system therefore consists of two dipoles, each of
which can radiate further in the next step. Dipoles can be formed in the initial (II) and
final (FF) states separately. Dipoles can also be created between a particle in the initial
and a particle in the final state (IF or FI, depending on which is the radiator and which
the recoiler) [18].

The first shower to adopt this idea is the Ariadne Monte Carlo [23, 25]. Ever since,
different dipole shower algorithms have been implemented, each following a unique phi-
losophy. In this project, three algorithms based on color dipoles are studied, namely the
one in Pythia, the dipole-like Dire and the antenna-based Vincia. The main distinc-
tions between the showers consist of the different definitions of kinematics, splitting and
evolution variables, as well as splitting kernels.

In the default Pythia algorithm, the approach is to evolve events in transverse momen-
tum using eq. (6). The ISR is handled via the global recoil scheme, where only II dipoles
are created and the recoil is taken by the non-emitting parton in the initial state. The
invariant mass of the system remains unchanged and thus the whole final state is boosted
in the transverse direction [16]. The splitting variable z is defined as the energy sharing
in the rest frame of the process, more specifically the ratio between the squared invariant
masses of the daughter+recoiler and mother+recoiler. Shower evolution is strictly ordered,
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starting from the highest p⊥ and evolving backwards, thereby preventing double-counting
a hard emission. This leads to some potential problems, however, such as leaving a “dead
zone”, where the phase space for high p⊥ emissions is not populated. One solution is
introducing the so-called “smooth ordering” applied in Vincia [12].

This global recoil model is compared with a second Pythia algorithm, namely the
dipole recoil (“DR = on”) one. The difference is that IF color dipoles can form (depending
on the process), where only one color-matched final-state parton takes the recoil of an ISR
emission.

In contrast, the two other algorithms we will be working with consider pre-branching
partons as a single color dipole object. Once an emission occurs, no distinction is made
between a radiator and a recoiler in Vincia, and only a modest such in Dire. This “demo-
cratic” approach is achieved by introducing a modification of the p⊥ evolution compared to
the one mentioned above. In Dire, it is given by the “soft” transverse momentum, defined
as the p⊥ of the two final dipoles in the center-of-mass frame of the decaying dipole. What
makes the variable so attractive to use that it allows for filling the entire final-state phase
space [9]. This change in evolution results in modified splitting kernels. The approach is
then to keep the kernels fixed for II, FF, FI, IF at the expense of changing the energy shar-
ing variable. Another Dire specific component is the introduction of analytical weights
[26]. Their construction is based on the Sudakov veto algorithm [27, 28] by defining an
additional overestimate. The weight can then be calculated analytically rather than using
the hit-or-miss method. The price to pay is that events come with variable weights, and
even with negative-sign ones, requiring more careful bookkeeping.

In Vincia there are two cases considered. By plugging eqs. (9), (10) and (11) into
the probability from eq. (13) and taking the limit z → 1, we note the following. The
singularities in the first two cases restore the evolution variables from eqs. (5) and (6),
whereas the only singularity in the third case is the virtuality of the emission. Therefore,
branchings of the form q → qg and g → gg evolve inversely proportional to the leading
poles, while g → qq̄ evolves in virtuality. The Vincia algorithm is constructed in the
following way. For each of the three cases, II, FF and IF+FI, a different splitting kernel
(antenna function) is defined, whereas the definition of the integration variables (singular
limits) in the evolution equations is kept the same. In this respect, Vincia distinguishes
between “global” and “sector” antennae [29], where the former is applied in the version of
the algorithm used for this study. The events in the Vincia shower always come with a
weight of unity. As a final remark, it should be noted that both Dire and Vincia obey
the well-known DGLAP equations in the collinear limit.

2.4 Multi-Parton Interaction

Another process of interest, occurring during the collision, is multi-parton interaction,
referred also as multiple interaction/scattering. This effect is a consequence of the rich
internal structure of protons, namely three valence quarks, plus many sea quarks and
gluons. As we discussed in Sec. 1, the production of a tt̄ pair is obtained through the
collision of a gluon or a qq̄ pair. However, other parton pairs can also happen to interact,
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giving rise to additional soft (or hard) QCD interactions. These interactions can affect
the color flow and subsequently the final-state multiplicity in the event [30]. We will later
show what consequences this effect has on the reconstructed top mass.

2.5 Hadronization

The final process of hadronization, that we will discuss briefly in this section, occurs
towards the end of an event, at energies below the IR cutoff scale of ∼ 1 GeV2 where
perturbation theory can no longer describe the behaviour of the partons. It consists of the
formation of color-neutral final-state observable hadrons, which comes as a consequence of
the color confinement in the theory of QCD. Several models have been proposed throughout
the years, the most well-known of which are the cluster [31] and the string fragmentation
models, where the second one has been described by the notable Lund string model [32,
33, 34, 35], which is at the core of the Pythia implementation.

The simplest example of a string is the one stretched between an original quark and
antiquark on their way apart from each other, and can be viewed as a non-perturbative
analogoue of the perturbative dipole already discussed. The tension in the string is con-
stant, 1 GeV/fm, meaning its energy is proportional to its length. There comes a point
when the energy stored in the string is sufficient for the spontaneous production of another
qq̄ pair. This breaks the original string into two lower-mass subsystems, which may break
further to ultimately produce the primary hadrons, some of which are unstable and decay
further. In the case of strings stretched between q − g − q̄, similarly to the color dipoles
we discussed in Sec. 2.3 where the gluon enters as a kink in the string, the force on the
gluon doubles compared to the simple qq̄ picture due to the presence of two, instead of
one, strings attached to it. This implies a higher hadron production rate in the region
close to the direction of the gluon, compared to the case of only two quarks present. The
model can be described using the idea of infinitely many colors in QCD, borrowing the
colors already assigned to the partons during the FSR to define how string pieces will be
stretched between the outgoing partons.

3 Jet Finding

The following section is greatly inspired by Refs. [36] and [37], where different types of
jet algorithms, as well as their shortcomings, are described. The authors also examine jets
closely and provide a description of their properties.

As mentioned before, due to color confinement, the quarks from a hadron–hadron
collision cannot be observed independently. They instead hadronize to produce ”collimated
sprays of energetic hadrons”, given the name jets. An essential factor for obtaining accurate
results is the use of a reliable jet algorithm. What here is meant by reliable, are the following
aspects [38]:

1. collinear safe — the collinear splitting of a parton should not alter the number of jets
in an event;
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2. IR safe — the emission of a soft parton should not act as a new seed for the formation
of a stable jet;

3. facilitating experimental corrections for ”noise”, such as MPI and pile-up events;

4. small computing time, which requires efficient algorithms.

(a) (b)

Figure 3: Event with four reconstructed jets. In (a), the jets are plotted on the 2D y − φ
plane. The jet constituents are colored in blue. The red dots among them show the location
of the b-hadrons. The circles have radius 0.4 and each is centered at the hardest particle
in the cluster. In (b), the figure from (a) is extended to a 3D view, where the height of
the bars represents the particle transverse momentum and the color-code is kept the same.
The light blue bars are the two leptons originating from the W , where the higher one
designates the neutrino. The green bars show all final-state particles in the event. The
plots are created using the matplotlib package [39] in Python.

For the ”k⊥ family” of jet algorithms, a jet cone radius R is chosen, where a typical
choice would be 0.4 [40]. Below 0.4, the jets would include too few particles and the mass of
the top quark would be underestimated. On the contrary, a jet with a larger radius suffers
from enclosing particles that do not necessarily belong to the hadronization process of the
top and would result in an overestimation. Although this is a safe choice when simulating
events, the reasons for the small radius value are mainly experimental since high lumi-
nosity collisions suffer from higher production of pile-up events. Two counterarguments
can enter here. The first one is that we have not accounted for this effect in the current
simulations. Secondly, for R = 0.5 and 0.6, the number of events that contribute to the
reconstruction of the top mass is higher than that for R = 0.4 and are seemingly a better
choice. Nevertheless, the radius chosen is the one most frequently used in this type of top
experiments using this particular jet algorithm.
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Let us look more closely into how the algorithm is constructed. The radial separation
between two particles (or pseudojets) i and j is determined in two dimensions, the variables
being the difference in their rapidity, ∆yij, and the difference in their azimuthal angle, ∆φij:

∆R2
ij = ∆y2

ij + ∆φ2
ij (20)

Next, the distance between i and j, having transverse momenta k⊥i and k⊥j, is defined as:

dij = min
(
k2p
⊥i, k

2p
⊥j
) ∆R2

ij

R2
(21)

One more quantity is introduced further, namely the distance between i and the beams B:

diB = k2p
⊥i. (22)

Three types of algorithms have been developed depending on the value of p in eq. (21)
and (22). The one used in this study is the anti-k⊥ jet clustering algorithm, which is
obtained by setting p = −1. Since we take the reciprocal of k2

⊥i (assuming k2
⊥i > k2

⊥j), the
distance between two particles is determined by the square inverse of the higher transverse
momentum. The algorithm then returns smaller distances between a hard and a soft
particle (or larger distances between two soft particles), favoring clustering around hard
particles and minimizing the impact of soft QCD radiation. The clustering is performed
iteratively, in each step joining the two objects with lowest d and thereby reducing their
number by one. If diB < dij, then i is accepted as a jet (if its k⊥ is above some threshold)
and removed from further clustering. An example of jet reconstruction is shown on Fig. 3.

4 Top Quark Decay

Referring back to Fig. 1, the top quark decays weakly into a W+ boson and (almost
always) a b quark (and correspondingly for antiparticles). The values of the top–down and
top–strange transitions in the Cabibbo-Kobayashi-Maskawa (CKM) matrix, being 3 orders
of magnitude smaller than that for the the top–bottom decays, can be safely neglected.
The decay width for this process and the lifetime of the top are given by [41]:

Γt(t→ bW+) =
GF m

3
t

8
√

2π

(
1− m2

W

m2
t

)2(
1 +

2m2
W

m2
t

)
(23)

where GF is the Fermi constant, mt ≈ 173 GeV is the top mass and mW ≈ 80.4 GeV is
the mass of the W [42]. Given those values, the width of the process is estimated to be
Γt ∼ 1.5 GeV. The lifetime of the quark (τt = 1/Γt) amounts to τt ∼ 4× 10−25s (∼ 0.1 fm)
— too short-lived to form bound states.

The decay possibilities for the W -boson are either qq̄ pair, or a `ν̄` pair from the first
two families1. The partial decay width of either process is given by:

ΓW =
α2mW

12
, (24)

1The τ lepton is omitted from the analysis as it raises further complications. It might decay to another
lepton and two neutrinos, or a pion and a neutrino, which further increases the missing momentum in the
event.
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where α2 is a coupling constant. Seemingly, the decay rate to quarks and leptons is the
same. However, each qq̄ pair can come in three different colors. Thus, the probability of
decaying into quarks grows noticeably. Taking all these facts into account, let us look at
the three different top decay channels.

Firstly, we will discuss the hadronic channel, where both W s produce a qq̄ pair. Fol-
lowing the above discussion, the channel has the highest branching ratio compared to the
other two. What is more, all four-momenta is present since there are no neutrinos among
the decay products. The channel has also some disadvantages, however, which cannot be
neglected. In the ideal unrealistic situation of no ISR, FSR and MPI, we expect to find
six jets at the end of the event, without any gluon emissions disturbing the measurements.
Going back to reality, the aforementioned effects can give rise to additional jets and smear
the properties of the ones from the bottom and W decay. A serious experimental issue
is combinatorial background. Jets which do not belong to the top event of interest might
be mistakenly taken into account. Therefore, numerous jet combinations should be tested,
which further increases the task and the final errors. Moreover, without the advantage of a
lepton (and neutrino) signal, top events will also be more difficult to distinguish from the
background of QCD multijet events. These arguments restrain us from using the channel
for our study.

The leptonic channel, as the name suggests, is the one where the W -bosons decay into a
`−ν̄` and a `+ν` pair. Here two jets are expected, coming from the b and the b̄ quarks. Due
to the large mass of the top quark, the outgoing leptons are highly energetic and stand out
in the energy deposition of the detector. What is more, the two neutrinos, invisible for the
detector, give rise to a missing transverse momentum. These two facts make the signature
of the event easily recognizable but also explain the problem with using this decay channel:
due to the missing momentum, we cannot determine the mass of the W accurately, and
subsequently, also not the mass of the top.

Finally, in the semi-leptonic type of decay, one of the W -bosons produces a qq̄ pair,
whereas the other one gives a `ν` pair. In the final state, we should observe a highly
energetic lepton, a missing neutrino transverse momentum, as well as four jets (in most
of the cases), coming from the bb̄ and qq̄. This is the most appropriate channel to use
in our study, as it combines one top decay that stands out with one that allows mass
reconstruction.

5 Results and Discussion

The following section is dedicated to giving a step-by-step description of how the W
and top mass reconstruction has been performed and presenting the analysis. We will
study what differences occur when the value of the strong coupling value is varied, how
ISR, FSR and MPI affect the final results, and finally, the behaviour of different shower
algorithms.
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5.1 Program Flow

The analysis begins by running Pythia with the default shower options using three
different αS values for the time-like and space-like showers — 0.1365 (the default one),
0.1200 and 0.1500. The statistics is based on 2 million initial events, where half of them
are generated with a hadronic W+ decay and the other half with a hadronic W− decay.
The methodology is greatly inspired by Ref. [4].

• Transverse momentum of the lepton (all events)

As mentioned in Sec. 4, the big mass of the top results, in most of the cases, in
a highly energetic isolated lepton. The event is discarded if it happens to be one
of the rare cases where the lepton transverse momentum p⊥ is below 25 GeV. The
plot on Fig. 4a shows the normalized p⊥ distribution for the three αS cases. It
comes as no surprise that the curves overlap almost perfectly, since this parameter is
barely affected by the strength of the strong coupling. The dashed line separates the
surviving events from the removed ones. In this case, the events considered further
are to the right of the line.

• Pseudorapidity of the lepton (p⊥ > 25 GeV)

In the relativistic limits, the values of the rapidity, y, and pseudorapidity, η, are
sufficiently close:

y =
1

2
ln

(
E + pz
E − pz

)
η = − ln

(
tan

θ

2

)
(25)

The latter is preferred by experimental physicists due to its dependence on the angle
θ between the beam axis and the emitted lepton. It is a more easily measurable
quantity than the energy and momentum present in the rapidity equation.

In an experimental environment, decay products emitted very close to the beam
axis will not be caught by the detector. A maximal rapidity value should then be
introduced, which we have chosen to be |η| = 2.5. This would mean that an event
will be discarded if a lepton is emitted at an angle below ≈ 10◦.

The histograms on Fig. 4b are constructed with the events satisfying the condition
of the preceding section. We notice again the overlap of the curves and the great
number of surviving events to the left of the dashed line.

The algorithm needs to prevent the formation of a false jet around the particle. The
lepton is therefore removed from consideration in the following steps.

• Jet multiplicity (p⊥ > 25 GeV, |η| < 2.5)

With the surviving set of events, jets are reconstructed using the anti-k⊥ jet algorithm
described in Sec. 3. The criteria by which jets are formed are listed below.

1. Jet cone radius: R = 0.4;
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2. Jet transverse momentum: p⊥jet > 25 GeV;

3. Detector pseudorapidity coverage: |η|jet < 2.5;

4. Only visible final-state particles are considered, thus excluding neutrinos and
other particles without strong or electromagnetic interaction;

5. The decay products of an event consist mainly of pions and photons. What
is more, a detector is very often blind to the type of hadrons that have been
produced. Therefore, in order for our model to be as close to an experimental
environment as possible, a reasonable approximation is to set the mass of the
neutral particles to be zero and the mass of the charged ones to the π± meson
mass.

There are a couple of interesting conclusions that can be extracted from Fig. 4c. A
higher αS implies a higher rate of ISR/FSR and a larger final-state particle mul-
tiplicity. Therefore, we notice an increase in the five-, six- and seven-jet cases at
the expense of lower multiplicities for the highest coupling value. Nevertheless, the
events with exactly four jets have the highest rate for all three couplings.

Events with jet multiplicity bigger than or equal to 4 (to the right of the line) are
considered further in the analysis, but only the first four hardest ones are used for
the reconstruction of the W and top masses.

• b-jet multiplicity (p⊥ > 25 GeV, |η| < 2.5, njet ≥ 4)

Next, we find the number of the most common b-hadrons that each event contains:
B0, B±, B0

s and Λ0
b . Their rapidity and azimuthal angle is retrieved. These parame-

ters are plugged into eq. (20) in order to find which jets (called the b-jets) the hadrons
belong to. As we discussed before, theoretically the event is expected to have exactly
two b-jets. If any of the hadrons are found to belong to softer jets, then they are not
considered as b-jets and will not contribute to the top mass reconstruction.

The results can be seen on Fig. 4d. As predicted, most of the events fall into the
category of having two hard b-jets. It should be noticed, however, that there are quite
a few single b-jet events and more precisely, they become more as the strong coupling
increases. A possibility of why this happens is the effect of ISR. The probability for
the hard process initiators to radiate a gluon becomes larger for higher couplings. A
highly energetic parton, that has been emitted right before the collision, might enter
the event and create a jet of its own. If it happens to be more energetic than any
of the b-jets, then the latter might end up in the ”soft jets” category. This effect
distorts the precision of the top mass reconstruction.

• Reconstructed W mass (p⊥ > 25 GeV, |η| < 2.5, njet ≥ 4, nb = 2)

So far, what is left to work with are the four hardest jets in the event — two b-jets
from the decay of the bottom quark and two non-b-jets from the hadronic decay of
one of the W -bosons. For the reconstruction of the W mass, the following is done:
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1. the four-momentum sum, p, of the constituents of the two non-b-jets is calcu-
lated;

2. the invariant mass is obtained by:

mW =
√
p2 =

√
E2 − |p|2. (26)

The familiar Breit-Wigner shape can be seen on Fig. 4e. Nearly half of the events
are lost once we introduce the constraint of allowed W mass between 60 and 90 GeV
(Table 1, rows 6 and 7). From the figure, it is seen that there is a positive shift
(towards higher values) for smaller coupling constants (an effect that is also observed
for the top mass distribution and will be discussed below). However, the first values
in Table 2 show exactly the opposite type of behaviour, which might stem from
the broad limits of plot. The values in the second row differ significantly from the
previous one, this time following the decrease in mass with the increase in coupling.

A final observation, that will be encountered again when reconstructing the top mass
and when plotting jet profiles, is the significantly larger number of surviving events
for αS = 0.1200 compared to αS = 0.1500. That is, of course, entirely reasonable
since, as we shall see later, ISR and FSR effects create a significant background noise.
Thus, the lower the value of the coupling is, the closer we get to the perfect situation
of no extra radiation, as in Fig. 1.

• Reconstructed top quark mass (p⊥ > 25 GeV, |η| < 2.5, njet ≥ 4, nb = 2,
60 GeV ≤ mW ≤ 90 GeV)

The mass of the top quark is reconstructed with the successful events, which are
estimated to be approximately 11% of the initial ones. The invariant mass of the W
is added to the invariant mass of one of the b-jets. The problem is, however, that
we do not know which is the b-jet that originated from the same top quark as the
hadronically decayed boson. To solve this, the four-momentum of the W is added to
both b-jets. The value that is closer to the true top mass (the default Pythia value,
mt = 171.00 GeV) is considered the correct mass.

Three different limits have been set (Fig. 4f, 4g and 4h), where the first one is the
broadest and includes the tails of the distribution. With the second limitation, the
plot is cut almost symmetrically, having the peaks in the center, whereas the last cut
is the most fine and precise one. Top quark masses obtained from these three sets of
histograms are shown in the last three rows of Table 1. Just as for the W mass, the
numbers in the table show a negative shift (towards lower values) as we increase the
coupling constant. The effect is rather small and this conclusion cannot be deduced
by simply looking at the histograms. As before, we also note the difference in the
area of the three histograms.
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Table 1: The number of surviving events after each cut for the three different αS values,
where the second coupling is Pythia’s default value. The last row shows what percentage
of the total number of events has survived the very last cut.

Cuts
αS αS = 0.1200 αS = 0.1365 αS = 0.1500

1. Start 2,000,000 2,000,000 2,000,000
2. Lepton p⊥ > 25 GeV 1,500,453 1,498,850 1,498,972
3. Lepton η < 2.5 1,447,017 1,445,355 1,446,117
4. Jet Multiplicity ≥ 4 820,518 835,143 842,725
5. b-Jet Multiplicity = 2 527,930 517,608 507,120
6. 0 GeV ≤ mW ≤ 160 GeV 418,354 403,935 390,732
7. 60 GeV ≤ mW ≤ 90 GeV 248,760 228,147 213,100
8. 100 GeV ≤ mt ≤ 300 GeV 247,528 226,810 211,644
9. 130 GeV ≤ mt ≤ 200 GeV 230,602 209,164 193,985
10. 150 GeV ≤ mt ≤ 180 GeV 174,660 153,605 139,049
11. 8.73% 7.68% 6.95%

Table 2: For the imposed cuts in rows from 6. to 10. in Table 1, the mean values of the
masses of the W -boson and the top quark are given in GeV. The large difference in values
from the respective cuts is owed to the asymmetric nature of the smeared Breit-Wigners
and of the cuts, as can be seen on Figs. 4e and 4f. The final cuts are chosen such that the
peaks of the histograms lie approximately at the center of the chosen region.

Cuts
αS αS = 0.1200 αS = 0.1365 αS = 0.1500

0 GeV ≤ mW ≤ 160 GeV 83.56 ± 0.04 83.90 ± 0.04 83.97 ± 0.05
60 GeV ≤ mW ≤ 90 GeV 75.88 ± 0.01 75.48 ± 0.01 75.14 ± 0.02
100 GeV ≤ mt ≤ 300 GeV 163.83 ± 0.04 163.67 ± 0.04 163.69 ± 0.05
130 GeV ≤ mt ≤ 200 GeV 162.65 ± 0.03 162.33 ± 0.03 162.15 ± 0.03
150 GeV ≤ mt ≤ 180 GeV 164.22 ± 0.02 164.00 ± 0.02 163.79 ± 0.02
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4: The plots representing the flow of the program. A magenta dashed line indi-
cates the border between events that survive the respective cut and the ones that are not
considered further.
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5.2 Jet Profiles

The mass of the top is reconstructed by taking the four-momentum sum of three selected
jets in an event. We shall therefore study the dynamics within these jets in order to evaluate
the impact that parton showers have on them. As discussed in [4], the shift in the top
mass can originate either from changes in the four-momentum, or changes in the radial
separation between jets. In this project it is concentrated on the former issue, which is
studied with the help of jet profile plots. They are produced for all hard 2 → 2 QCD
processes and the results for the three αS values are superimposed. To have overall p⊥
scales comparable with top events, a p⊥ > 200 GeV is imposed. The differential jet shape
is of the form:

ρ(r) =
1

Njets

∑
j∈jets

∑
i∈finalState p⊥i(ri)

p⊥j
(27)

The transverse momentum of a single jet, p⊥j, is calculated as the sum of the transverse
momenta of all particles that constitute the jet. Then, the p⊥ of all final-state particles
inside the jet (or the whole event) are divided by the aforementioned momentum. This is
summed over all jets in all events and finally normalized by their number. The quantity
ρ(r) then gives us the transverse momentum distribution over a distance r.

In order to study the relative difference between the various algorithms, we choose
one according to which the rest of the alternatives are tuned — in this case, the default
Pythia shower. Ideally, one would of course use experimental data. For comparison with
the tuned data, all showers are also run with the default strong coupling, αS = 0.1365.
The list below describes each of the studied jet profile plots on Fig. 5.

a) The first jet profile considers the p⊥ of all jet constituents. Below the graph, the
difference between the non-default histograms and the default Pythia one is plotted,
following the same color-coding for the respective values. Since the radius of the jet
cone is R = 0.4, there is no momentum distributed at distances larger than this
value. An expected result (also described in [4]) is the difference in jet broadening
for the three strong coupling values. We see that for αS = 0.1200, the concentration
of high momentum in the center of the jet is bigger, whereas it spreads more and
more as the parameter is increased. The stronger radiation results in the possible
spread of decay products outside the radius of the jet cone. As a consequence, the
reconstructed top mass for αS = 0.1500 is slightly less (almost half a GeV) than that
for αS = 0.1200, as we have seen.

b) The two following graphs study the constituents of the jet, as in a). However, jets
are considered separately depending on their transverse momentum. It is clearly seen
how much narrower the high-p⊥ jet profile is, compared with the low-p⊥ one.

c) The last distribution is the normalized jet multiplicity of the events. As discussed
previously, larger coupling values favour the production of more jets.

For the rest of the studies in Secs. 5.4, 5.5 and 5.6, we will only show the plots described
in a) and c).

19



(a) (b)

(c) (d)

Figure 5: Jet profile of hard QCD events using Pythia. The plots are done for three
different αS values. The lower part of each plot gives the difference between the histograms
of the alternatives and the histogram of the default Pythia value (green line), keeping the
corresponding colors.

5.3 FSR, ISR and MPI Studies in Pythia

It is interesting to compare the behaviour of the events once either both ISR and FSR
are completely switched off, or MPI is turned off, or neither of the three effects is present.
This is done only for the case where αS takes its default value of 0.1365 and the results
are presented in Table 3 and Fig. 6.

The most noticeable difference is the area below the curves. The absence of ISR and
FSR plays a significant role in the number of events that satisfy all cuts. Also MPI has a
noticeable impact, but not as big. We can also notice the negative shift in the histograms
when MPI is turned off. This is due to the fact that collisions between other proton con-
stituents are then not taken into consideration. This results in a lower underlying-event
particle multiplicity, and consequently fewer particles contribute to the mass reconstruc-
tion. From the table it is seen that the sharper peaks also lead to much smaller error in
the results.
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(a) (b)

Figure 6: The reconstructed W and top masses for the default Pythia αS value where all
effects are present (green line), where MPI is turned off (blue line), where ISR and FSR are
turned off (red line) and where both radiation and MPI are off (black line). The magenta
dashed line indicates the border between events that survive the respective cut and the
ones that are not considered further.

Table 3: The reconstructed masses of the W -boson and the top quark are given in the
cases where all effects are present, only ISR and FSR radiation is on, only MPI is on and
finally, where no radiation and MPI affects the results.

Cuts
Mode

All = on MPI = off ISR, FSR = off All = off

0 GeV ≤ mW ≤ 160 GeV 83.90 ± 0.04 82.94± 0.05 79.14± 0.01 78.21± 0.01
100 GeV ≤ mt ≤ 300 GeV 163.67 ± 0.04 162.38± 0.04 164.63± 0.02 163.37± 0.02
130 GeV ≤ mt ≤ 200 GeV 162.33± 0.03 161.07± 0.03 164.67± 0.01 163.43± 0.01
150 GeV ≤ mt ≤ 180 GeV 164.00± 0.02 162.94± 0.02 165.89± 0.01 164.78± 0.01

5.4 Dipole Recoil Effects in Pythia

The results are shown in Table 4 and Figs. 7, 8a, 8b. Here we study the dipole recoil
algorithm option implemented in Pythia for ISR, where a single colour-connected final-
state parton can take the recoil of an ISR emission. We notice that the two histograms
with default strong coupling overlap almost perfectly. Nevertheless, this method slightly
underestimates the masses of the W and the top in both cases with respect to the default
Pythia shower. Resulting from the higher value of the coupling, the tuned αS gives a
lower number of surviving events.
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(a) (b)

(c) (d)

Figure 7: The reconstructed W and top masses for the default Pythia αS value (green
line), the default value with dipole recoil (DR) on (red line) and the tuned value with DR
on (blue line). The magenta dashed line indicates the border between events that survive
the respective cut and the ones that are not considered further.

Table 4: For the imposed cuts in rows from 6. to 10. in Table 1, the mean values of the
masses of the W -boson and the top quark are given in GeV. As well as for the default
Pythia settings, they are also evaluated when dipole recoil (DR) is turned on.

Cuts
αS αS = 0.1365 αS = 0.1365

(DR = on)
αS = 0.1390
(DR = on, tuned)

0 GeV ≤ mW ≤ 160 GeV 83.90 ± 0.04 83.41 ± 0.04 83.46 ± 0.04
60 GeV ≤ mW ≤ 90 GeV 75.48 ± 0.01 75.36 ± 0.01 75.28 ± 0.01
100 GeV ≤ mt ≤ 300 GeV 163.67 ± 0.04 163.36 ± 0.04 163.25 ± 0.04
130 GeV ≤ mt ≤ 200 GeV 162.33 ± 0.03 162.11 ± 0.03 162.04 ± 0.03
150 GeV ≤ mt ≤ 180 GeV 164.00 ± 0.02 163.85 ± 0.02 163.76 ± 0.02
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Table 5: For the imposed cuts in rows from 6. to 10. in Table 1, the mean values of the
masses of the W -boson and the top quark are given in GeV. The default Pythia αS value
has been used in Dire (2nd column with results) and the masses from the tuned value are
given in column 3.

Cuts
αS αS = 0.1365 αS = 0.1365

(Dire)
αS = 0.1240
(Dire, tuned)

0 GeV ≤ mW ≤ 160 GeV 83.90 ± 0.04 76.57 ± 0.03 77.15 ± 0.03
60 GeV ≤ mW ≤ 90 GeV 75.48 ± 0.01 74.92 ± 0.01 75.55 ± 0.01
100 GeV ≤ mt ≤ 300 GeV 163.67 ± 0.04 163.78 ± 0.03 164.12 ± 0.03
130 GeV ≤ mt ≤ 200 GeV 162.33 ± 0.03 163.31 ± 0.02 163.65 ± 0.02
150 GeV ≤ mt ≤ 180 GeV 164.00 ± 0.02 164.82 ± 0.01 165.08 ± 0.01

Table 6: For the imposed cuts in rows from 6. to 10. in Table 1, the mean values of the
masses of the W -boson and the top quark are given in GeV. The default Pythia αS value
has been used in Vincia (2nd column with results) and the masses from the tuned value
are given in column 3.

Cuts
αS αS = 0.1365 αS = 0.1365

(Vincia)
αS = 0.1300
(Vincia, tuned)

0 GeV ≤ mW ≤ 160 GeV 83.90 ± 0.04 84.35 ± 0.05 84.21 ± 0.05
60 GeV ≤ mW ≤ 90 GeV 75.48 ± 0.01 75.70 ± 0.02 75.86 ± 0.01
100 GeV ≤ mt ≤ 300 GeV 163.67 ± 0.04 165.23 ± 0.05 165.14 ± 0.04
130 GeV ≤ mt ≤ 200 GeV 162.33 ± 0.03 163.09 ± 0.03 163.11 ± 0.03
150 GeV ≤ mt ≤ 180 GeV 164.00 ± 0.02 164.36 ± 0.02 164.43 ± 0.02

5.5 Pythia and Dire Showers

Results from the comparison between the Pythia and Dire showers is given in Table 5
and Figs. 9, 8c, 8d. Since the events in Dire usually have a weight different from unity, we
have provided two plots of the weight distribution histogram, differing in their boundaries.

We can notice the different behaviour of the Dire shower with respect to Pythia.
Difference is noticed as early as the jet formation, where Dire favours three-jet recon-
struction. Therefore, only as many as 43% survive the njet ≥ 4 cut compared to 57%
in Pythia (for αS = 0.1365). This is greatly compensated for with the next cut, where
≈ 83% of the surviving events in Dire have a b-jet multiplicity of 2 in comparison with
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(a) (b)

(c) (d)

(e) (f)

Figure 8: Jet profiles and jet multiplicities for hard 2 → 2 QCD events comparing the
default Pythia shower with the dipole recoil (DR) option for ISR (a and b), with the
dipole-like Dire algorithm (c and d) and the antenna-based Vincia algorithm (e and f).

62% in Pythia. From there, the reconstruction of the W and top masses results in a
larger number of surviving events. In addition to the much sharper and higher mass peaks
it is noticeable that Dire gives about a GeV higher average top mass.

As seen on Figs. 9e and 9f, event weights come with different signs. Additional care
should then be taken when estimating error bars. More specifically, one could have split
the run into multiple subruns, and made use of the spread of top masses between them.
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Unfortunately, the long runs and the short project time did not permit to conduct such
thorough estimations. Therefore, the usual method of uncertainty measures has been
applied and presented in Table 5, namely take the ratio between the root-mean-square
width of the data and the square root of the number of events that enter, but be cautioned
that this is likely to be an underestimate by some factor.

5.6 Pythia and Vincia Showers

Lastly, we compare the reconstructed masses from Pythia and Vincia. The results
are shown in Table 6 and Figs.10, 8e, 8f. The surviving events from the latter are slightly
less than the Pythia ones when run with αS = 0.1365. The tuned Vincia shower overlaps
almost perfectly with the default Pythia shower, having a slight positive shift of roughly
0.4 GeV higher top mass. The smaller (tuned) coupling value expectedly results in more
surviving events. It should be noted that Vincia rejected 7 and 4 bad events, respectively,
out of 2 million ones in the normal and tuned runs. Nevertheless, the events surviving
the last cut are 144, 132 and 151, 586 for the two runs, respectively, which is well below
153, 605 for the Pythia run (Table 1, row 10). The Vincia CMW option [43] has been
turned off for both the default and the tuned couplings. In these two cases, the running
order of the coupling has been set to 1-loop, where the default option of the algorithm is
2-loop order corrections.

6 Conclusion

This report has given a brief introduction of the theory behind Monte Carlo event gen-
erators. Three different shower algorithms were used in our study, namely Pythia, Dire
and Vincia. The reconstruction of the W -boson and top quark masses was performed
with all three showers, thereby comparing their behaviour. What was eventually found
in the study is a somewhat troublesome spread of results, amounting to approximately
±0.5 GeV — a number that has been cited as the total uncertainty in the top mass by
experimental collaborators.

A couple of important notes should be added. Firstly, the Dire and Vincia algorithms
offer many more sophisticated treatments not taken into account in the runs. Secondly, the
number of events surviving the very last cut differ for the three cases. The most significant
difference compared to the rest of the showers was observed in Dire, which predicted a
much higher top mass peak. Moreover, a thorough study of the rest of the processes for all
algorithms should be made, especially jet formation and b-jet behaviour, where significant
differences in multiplicities have been observed.

As a final word, the findings from the thesis can be summed up in the following way.
The experimental extraction of the top mass relies heavily on Monte Carlo event generators.
Therefore, various shower algorithms are implemented in the attempt to asses theoretical
uncertainties. It is important that the differences in their results are within the limits
of the total experimental uncertainty — a requirement that was not confirmed by the
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simulations. This points towards the need for more detailed and sophisticated studies,
where event generation includes many other processes occurring in a collision, as well as
use the algorithms up to their full potential.

(a) (b)

(c) (d)

(e) (f)

Figure 9: The reconstructed W and top masses for the default Pythia αS value (green
line), the default Dire value (red line) and the tuned Dire value (blue line). The magenta
dashed line indicates the border between events that survive the respective cut and the
ones that are not considered further. The two final subfigures give the weight distribution
of the events.
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(a) (b)

(c) (d)

Figure 10: The reconstructed W and top masses for the default Pythia αS value (green
line), the default Vincia value (red line) and the tuned Vincia value (blue line). The
magenta dashed line indicates the border between events that survive the respective cut
and the ones that are not considered further.
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