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Abstract 

In wireless communication, resources like bandwidth and energy are 

scarce and extremely valuable, any system should serve as many users as 

possible while preserving high Quality of Service (QoS) for the best user 

experience. Accordingly, the Base Station (BS) has the responsibility to 

optimally schedule its resources to the users based on the available 

information. Consequently, the whole process of scheduling is truly 

demanding and requires high complex calculations from the overall system. 

Hence, the request of more sophisticated and effective methods is substantial 

in order to minimize the challenges of scheduling.  

This master’s thesis focuses on the Modulation and Coding Scheme 

(MCS) selection in a Time Division Duplex (TDD) based mobile network. 

The main objective is the simplification and optimization of the downlink 

process at the base station by predicting the MCS index for a single User 

Equipment (UE), using Machine Learning (ML). The developed machine 

learning algorithms is in accordance with the LTE-Advanced Pro (release 12, 

13,14) lookup tables and is based on similar parameters. For a given frame, 

this thesis targets predicting the MCS index of future subframes. Thus, the 

resource allocation process for independent users is becoming quicker and 

easier for the BS. The results are based on laboratory measurements at 

Ericsson, where the collection of data logs for several stationary UEs, 

occurred on a network testing environment and their different cell 

characteristics investigated thoroughly.  

Concluding, the accuracy level which the ML classification algorithm 

achieved was approximately 50 percent. Therefore, the prediction accuracy 

can be described as sufficient for the BS to decrease the computation 

complexity and energy consumption during the downlink process. The data 

logs that the project took into account cannot be generalized for real-time 

scenarios as it is explained in detail finally. 
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Popular Science Summary 

Machine Learning (ML), as part of Artificial Intelligence (AI), is the 

most promising candidate to improve to a whole new perspective our modern 

world. Hundreds million of dollars are being invested worldwide on this 

technology, either by private companies or even by entire nations, to make all 

the existing systems smarter, more efficient and low-cost. An expected 

economic growth of approximately $40 billion by 2025, from $1.29 billion in 

2016, is anticipated by the global ML market [1]. 

The best way to define ML is given by Arthur Samuel in 1959 and is 

the ability that computers learn without being explicitly programmed [2]. 

Nowadays, the majority of Internet users are handling and operating, in one 

way or another, several ML algorithms, and possibly most of them without 

being experts in the subject. Google, Netflix and YouTube are some examples 

of well-known technology giants that are deploying ML methods on their 

platforms, and we are using them in our everyday life. Whenever someone is 

typing for a new TV show or a song in a search engine, an ML algorithm is 

performing a historical exploration in the vast databases in order to, either 

suggest or find the matching word of the user’s wish. Moreover, ML methods 

are expanded and deployed by various industries, as the vehicular, medical, 

retail, marketing etc. Therefore, ML is going to upgrade the lives of people 

in a easier, and more beneficial way than it used to be. 

In this thesis, the focus is on integrating this technology in 

telecommunication, specifically at the Base Station (BS), to decrease the 

scheduling process and increase the quality of service for the users. Based on 

the users’ behavior, the BS will be able to allocate its resource in an efficient 

way. Hence, under ML usage, complexity and energy consumption are 

decreased, while still providing the users with their required resources. 
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1. Introduction 

Nowadays, mobile communication networks are evolving in a 

tremendous way, constantly increasing their supported bit rates but also the 

complexity of the network in each upgraded version. A suitable example is 

the recent Massive Multiple-Input-Multiple-Output (MIMO) technology, 

which is boosting capacity and throughput in significant rates, while raising 

the BS processing complexity. Consequently, the need for more intelligent 

processing in the base station is essential and necessary. An efficient way to 

approach this problem would be the addition of the capability to predict, in a 

precise way, the optimal throughput at the Evolved Node B (eNodeB). This 

tactic would make the scheduling for a single or group of user equipment 

much more efficient in time and energy perspective. 

The scheduler, located at the BS, is responsible for resource allocation in 

the downlink. Based on the received information from each UE in the uplink, 

the Channel Quality Indicator (CQI) is used to determine the user’s downlink 

Modulation Coding Scheme (MCS) using a lookup table. With the continuous 

advance in technology, both at the user and base station sides, the modulation 

schemes are increasing and the MCS table is growing, reaching 31 distinctive 

settings in Long Term Evolution (LTE), compared to 15 in Wideband Code 

Division Multiple Access (WCDMA). Furthermore, with the increasing 

number of UEs, especially in 5G where the estimated number is expected to 

be up to 1 billion subscriptions reaching 2023 [3], a base station will have to 

serve multiple mobile terminals simultaneously and accurately. 

The current scheduler, using the MCS lookup table, is relatively accurate 

but it only gives the MCS for the next subframe, given information at each 

frame and subframe. Therefore, to decrease the load on the scheduler, 

Machine Learning (ML) can potentially improve the performance of the 

scheduler by estimating and predicting the future MCS while taking into 

consideration the same user’s information. Hence, ML algorithms, applied at 

the eNodeB, can achieve the prediction capability which we are looking for, 

while focusing on decreasing the complexity level. 
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1.1. Background and Motivation 

The property of channel reciprocity can be used for time division duplex 

(TDD) based systems using channel state information (CSI). However, the 

computational complexity can increase in 5G with the expected use of 

massive MIMO, and some previous works suggest CSI based beamforming 

to improve the signal transmissions and energy efficiency of the system. 

To predict the MCS, ML can be used at the base station and the training 

and uplink data can be used to simplify the process for the scheduler 

remarkably. Resulting this way, in faster and more accurate predictions of 

MCS.  

Moreover, an optimal MCS improves the throughput and can be used by 

the content provider to dynamically adjust the quality of service. Firstly, this 

feature can improve the efficiency of the base station, and subsequently, the 

scheduling of the various users which are operating inside the cell controlled 

by the BS.  

In addition, the motivational reason of using ML techniques in our work 

is not only because of its rapid growth in usage perspective by the researching 

community, but rather by cause of the increasing capabilities and the potential 

of implementing different ways of learning into various situations. 

1.2. Purpose and Aims 

This Master’s thesis is focusing on the MCS selection in a cellular system. 

The main aim is to simplify and optimize the downlink process at the BS for 

a single UE. Moreover, ML will be used to predict the optimal MCS for this 

user. The model will take into consideration the training data and the 

continuous flow of uplink data aiming to determine the channel parameters 

for the UE. More specifically, our project investigates the capability of 

predicting an accurate MCS index for independent users while the base 

station is receiving the uplink feedback from the different UEs across its cell 

territory. The accuracy of this MCS selection has to be high enough, so the 

resource allocation can be improved and the overall scheduling process at the 

BS enhances in energy and speed perspective.  

The topic of this thesis has not been found in other works in the 

engineering community, although similar works tried to explore the 

advantages of machine learning in mobile communication networks, as in [4]-

[8]. Furthermore, those works are using different methods of ML, 

implementing various algorithms like Support Vector Machines (SVM), k-
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Nearest Neighbors (k-NN), or even Principal Component Analysis (PCA) and 

Reinforcement Learning (RL) which are unsupervised methods, in contrast 

to our approach of examining the case MCS selection in LTE systems. Thus, 

our thesis, can be characterized as the continuation that [8] is proposing as we 

are targeting equivalent objectives, even though multiclass Neural Network 

learning is being implemented instead of Reinforcement Learning.  

The main questions which this thesis is going to research thoroughly and 

try to answer in the best possible way are:  

1. How to predict an MCS index for future transmission? 

2. How accurate is the prediction of the MCS index selection of our ML 

algorithm?  

3. What is the future work that could be done to upgrade this ML 

model? 

 

However, implementing machine learning at the base station will be the 

main challenge as no similar work was done before. This includes continuous 

data training and a relatively accurate MCS index prediction. Therefore, 

another challenge will be minimizing the complexity of the system while 

getting accurate results. Optimization will be based on some available models 

already in use, and if necessary, some new ones. The number of users will 

increase gradually, according to the accuracy of the results. 

1.3. Approach and Methodology 

This section describes the methods that the thesis will be based on, firstly 

the generation and after that the capturing of several training sequences using 

a network testing environment so that we can use these sequences as input to 

the simulation model. Additionally, the input of the data sequences in 

combination with the ML algorithm will produce the MCS selection decision 

for the specific user that it is required. Afterwards, the decision output of the 

model will be repeatedly fed at the training database in a closed loop form 

process.   Accordingly, MATLAB and Python are going to be our main tools 

for simulating and testing the ML algorithms and channel conditions. Also, a 

professional network simulator, provided by the company is used for the 

previous mentioned generation and capturing of the data sequences. 

Simplifying our main goal, a single MCS selection must be estimated 

successfully.  Furthermore, for the training of machine learning model, 

Python will be used, providing it in this way with necessary parameters which 

will be used at the decision unit and are explained in more detail later on the 
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section 5.2. Various simulations for testing and measuring the accuracy of the 

model for the user equipment were done in a network simulation laboratory.  

  

The overall system model which will be used in our project and will be 

explained in detail piece by piece on the following sections is depicted in Fig. 

1.  

 
Fig. 1. Generic block diagram of the machine learning model. 

 

1.4. Previous Work 

In our master’s thesis, the main goal is to investigate the prediction 

accuracy of our ML algorithm. Related work to our goal, has been done by 

other researchers in [4]-[8]. Although, all the authors chose different 

approaches and ML algorithms for their independent problems that had to 

examine. 

In [4][5], the authors are using SVM algorithms to explore the 

capabilities of them in several scenarios and various alternative parameters to 

consider. The channel and modulation selection are implemented by the SVM 

method for cognitive radio [4], and an online Adaptive Modulation and 

Coding (AMC) scheme that operates in realistic conditions for different 

channel parameters [5] is further inspected. In [6] [7] the authors are 

questioning the usage of machine learning in MIMO-OFDM systems and 

how useful they can become for increasing SNR ordering and average 

throughput. The methods of k-NN, and a hybrid model of Deep Neural 

Network with Principal Component Analysis (PCA) are used in [6] and [7], 

respectively. Finally, in [8] the creators are investigating the AMC selection 

in LTE systems with purpose to show how inaccurate are the feedbacks and 

the MCS selection on channel qualities when they are implemented under a 

real-time model. Moreover, Reinforcement Learning (RL) is applied under 
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the Markov Decision Process (MDP) method, aiming to decrease the channel 

prediction errors of link adaptation performance. 

Consequently, in our project we are trying to explore different channel 

parameters to successfully predict the MCS index in the future framework 

using a multi-class NN algorithm. A target which has not been examined by 

other researchers, but it has been proposed in some extend in [8]. 

1.5. Limitations 

The focus of this project is providing a more efficient algorithmic method 

for MCS selection than the existing one in LTE. Besides, there are many 

limitations on the overall system that must be considered before a final 

decision is made. This thesis is restricted by the nature of the data logs for the 

training of the model, because of the unavailability of real-time data logs. 

Thus, our work is limited and cannot be expanded on many realistic scenarios 

as the data comes from network testing environment of the laboratory. 

Another limitation that was critically influencing the scope of our work was 

the stationary position of the simulated UEs inside the laboratory 

environment. This immobile behavior of the users restricted the overall 

results of the thesis, as moving scenarios were excluded from the project by 

cause of insufficient data measurements. Moreover, a significant challenge 

which we had to face was the time extend of our research which restricted the 

thesis investigation to the case of Neural Network Multi-Class algorithm 

exclusively. 
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2. Technical Background 

Some concepts of wireless communication systems used in this thesis 

will be explained in this section. They are also applied in cellular network 

systems, as LTE and NR, to transmit data between the eNodeB and UE. 

Firstly, the fundamental components which have been used, will be further 

explained in the following sections. 

2.1. Resource Block 

 In LTE, the shared frequency and time resources are combined to form 

the resource element (RE) and resource block (RB), as shown in Fig. 2. 

 

 
Fig. 2.  Time and frequency resources in one resource block. 

One RB is spread over 1 slot of 6 or 7 OFDM symbols in time according to 

their cyclic prefix, as shown in the following section, and 12 subcarriers in 

frequency domain. Thus, it is 180 kHz wide in frequency and 0.5 ms long in 

time [9]. 

For a UE to send or receive data, it should be allocated in one or more physical 

RBs. This process is called scheduling, which will be explained in section 

4.2. 
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2.2. Duplex Tranmission 

In mobile communication systems, the UE and BS exchange information 

using duplex transmission. Duplexing refers to data transmission in both 

directions, from the BS to the UE and vice versa. Two types of duplex 

transmission are available: Half Duplex (HD) and Full Duplex (FD). 

FD enables both sides to transmit simultaneously using the same link, while 

in HD, transmission is only in one direction at a time. Both types are used in 

several applications, but HD is less complicated and requires less resources, 

as the same resource can be used in both directions while switching between 

the transmitter and receiver at given periods. 

Time Division Duplex (TDD) and Frequency Division Duplex (FDD) are two 

duplexing methods used in cellular networks. TDD is HD based as the time 

domain is shared, but with small time intervals it can emulate FD. However, 

FDD is always FD given that at the equipment, BS or user side, the uplink 

and downlink frequencies are predefined. Chapter 4 gives additional 

information about both methods.  

In LTE, channel information at both the UE and the BS is essential 

to establish a good communication channel and to use the resource blocks 

effectively. A brief explanation of the two links is available in the following 

subsections, as the work in this thesis was limited to the CQI only.  

CQI, as its name implies, indicates if the channel has a good or bad quality 

based on the SINR. For a high CQI, a good channel is available and more 

RBs can be used, when compared to low CQI. More details can be found in 

section 4.3.   

2.2.1. Uplink 

The transmission from the UE to the BS is called uplink (UL). The 

data sent from each UE includes information about the channel condition and 

status of the received data. In addition to the essential CQI report, the UE 

sends reference signals to help the BS estimate the channel state. 

Furthermore, in the case of an erroneous packet, the UE can request 

retransmission from the BS. Finally, the UE can request RB allocation from 

the BS for UL and/or DL transmissions. 
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2.2.2. Downlink 

Downlink (DL) is the transmission from the BS to one or more UEs. 

In addition to the information gathered from the user’s UL, the BS sends 

reference signals to provide the connected UEs with channel conditions. Also, 

the base station sends control signals to provide specified UL slots for each 

of the UEs. Further technical details and explanation can be found in [10] and 

[11]. 

2.3. Coding Scheme 

In wireless communications, several methods are used to increase the 

robustness of the signal, channel coding is one of these methods. Turbo codes 

and convolutional codes are some popular channel code examples used in 

wireless systems. 

 

An important factor which has to be explained is Shannon’s limit in capacity, 

that cannot be surpassed as it is a natural barrier. Although with creative and 

inventive coding methods, the bandwidth efficiency of some schemes came 

closer to this limit, as shown in Fig. 3. 

Fig. 3. Comparison of bandwidth efficiency ρ and SNR Eb/N0 [12]. 
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Where the Signal to Noise Ratio is denoted as Eb/N0, C/W is the 

maximum possible bandwidth efficiency for any scheme, and QAM, PAM, 

PSK, FSK are modulation schemes that are defined at the list of acronyms, 

page viii. Moreover, coding is the most efficient way to detect and/or correct 

various bit errors which were transmitted through a wireless communication 

channel. Accordingly, the error detection and correction are performed by the 

decoder in the receiver stage. On the transmitter side, the modulated signal 

constellation points will increase their spatial distance from each other 

helping thusly, the receiver into distinguishing them easier than without the 

coding part. [13] Additionally, the code rate is defined as the proportion of 

the data stream which is useful (non-redundant), in other words, the code rate 

shows the ratio of the number of input information bits to the overall number 

of transmitted code symbols [14].  

 

2.4. Modulation Scheme 

Modulation is the process of mapping digital data to analog signals, and 

it is done at the transmitter. At the receiver, demodulation follows the reverse 

route by extracting the digital data from the analog signals. 

To transmit the coded symbols, output of section 2.1, the sequence of 

symbols is transformed into a complex one based on the modulation scheme 

[12], [13]. For LTE downlink, the supported modulation schemes are QPSK, 

16QAM and 64 QAM, representing two, four and six bits per symbol 

respectively. Fig. 4 depict the constellation points for the LTE modulation 

schemes [11]. 

 

 
Fig. 4. Constellation diagrams of QPSK, 16QAM and 64QAM for LTE 

modulation schemes. 

Increasing the modulation order results in a higher data rate, as more bits are 

transmitted. However, the distance between the constellation points gets 

smaller and the error rate will increase if the signal strength is not good 

enough [12]. 
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In release 12 [15], 256QAM support was added for small-cell 

environments and it is not used in this thesis. This modulation scheme doubles 

the bit rate of 16QAM but is vulnerable to propagation loss and should be 

used for small distances only [11]. 

2.5. LTE Transmitter and Receiver 

This thesis targets specific parts of LTE transmitter and receiver, while 

further explanation can be found in [16], [17]. 

The block diagram in Fig. 5 shows an overview of the system used 

in both UL and DL, where the coding, modulation and RB mapping blocks 

were introduced in section 2.3, 2.4, and 2.1 respectively.  

 

 

Fig. 5. Block diagram of LTE Transmitter and Receiver 

To transmit data to or from the UE, the transmitted bits should be processed 

first as follows [10] [11]: 

1. The sequence of bits will be coded to increase its robustness using a 

coding sequence. 

2. Modulation is then used to map the coded bits to complex symbols 

and transform the data from digital to analog signal. 

3. The number of resource blocks is assigned by the scheduler, and the 

analog signal is mapped to the allocated resources. The main focus 

of this thesis is this part of the transmitter, called scheduling. 

4. In LTE, an OFDM transmitter is used, where orthogonal carrier 

frequencies are used for transmission. One of the main advantages of 

OFDM is spectral efficiency, as more symbols can be sent on a given 

bandwidth when compared to other techniques. This main block 

combines several sub-blocks like Precoding and Antenna Mapping 

that deals with transmission using the antennas, and frequency 

conversion which up-converts the frequency of the signal to the 

frequencies used in LTE [11]. 

Coding Modulation
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After transmitting the signal over the wireless channel, introduced in section 

2.6, the receiver processes the received signal using the reversed path of the 

transmitter. Using Fig. 5, the steps are as follows [10] [11]: 

1. The OFDM receiver is used to down-convert the frequency of the 

signal and detect the information symbols of different carrier 

frequencies. 

2. The wireless channel has a big effect on the signal that cannot be 

ignored for correct detection. Therefore, the variations in amplitude, 

phase and/or frequency caused by the channel are estimated and 

included in the demodulation. 

3. Demodulation converts the received analog signal, including the 

channel estimation, and maps the detected symbols to the 

constellation diagram to extract the sequence of received coded bits. 

4. The transmitter’s coding sequence is used at the receiver to decode 

the received coded bits. Several error correction codes, as Turbo 

code, enable the receiver to find errors and correct them. 

After transmitting a signal, the BS waits for a feedback from the UE included 

in the Hybrid Automatic Repeat Request (HARQ). The HARQ signal is sent 

in the UL, and it can either be [11]: 

1. Acknowledgment (ACK), when the signal is correctly decoded. This 

indicates that the packet is received, and the next packet can be sent. 

2. Negative acknowledgment (NACK), when signal is incorrectly 

decoded due to a high number of errors. A retransmission of the same 

packet is then requested by the UE. 

2.6. Wireless Channel 

The medium connecting the transmitter to the receiver in a wireless 

communication system is called wireless channel. The properties of this 

channel directly affect the propagating signal and should be taken into 

consideration at both the BS and UE to improve the transmission. These 

properties include, but are not limited to, noise level and interference level 

[13][18]. 

Many wireless systems, including LTE, require a high signal strength over 

noise and interference to provide a good reception quality. This factor is 

called Signal to Interference and Noise Ratio (SINR) and is directly related 

to the following factors: 
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1. The signal strength is related to transmission power allocated by the 

BS or UE. Some gains and losses are added at the transmitter due to 

the properties of the blocks, as the antenna gain and the filter loss. 

2. The noise level is modelled as an Additive White Gaussian Noise, as 

it includes the random processes which are occurring naturally. 

3. The interference level is caused by the neighboring BSs and UEs. 

The level varies in different scenarios as the number of close UEs 

and the strength of close BSs increases the interference on the 

received signal. 

Moreover, the distance separating the UE from the BS, as well as the mobility 

of the UE in cellular systems, cause variation in the propagation mechanisms. 

Some propagation mechanisms are explained below, and they increase 

interference and loss in received signal strength [18]: 

1. A signal propagating loses strength over distance due to its physical 

properties. This mechanism is called fading. When the UE and BS 

have a line of sight, the distance separating them will be the main loss 

factor, especially when the distance exceeds a certain range. 

2. Multipath propagation is caused by surrounding interfering objects. 

Reflection, diffraction and scattering are the effects of this 

mechanism, and they result in time delays, frequency shifts, changing 

of the direction and creating multiple copies of the signal at different 

phases.  

In this thesis, the UEs are considered stationary, and the wireless channel 

includes gaussian noise generated by Ericsson’s laboratory, interference from 

BSs and UEs, and fading caused by the distance between the BS and the 

nodes. 
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3. Machine Learning 

This chapter introduces the main concept behind machine learning, 

starting from a definition to how it operates. Also, some important algorithms 

will be introduced to highlight the differences between the different ML 

types. 

3.1. Concept 

Alan Turing, mathematician and computer scientist, wrote one of the 

most important papers in the computer science field: Computing Machinery 

and Intelligence. Written in 1950, this paper highlighted the potentials of the 

machine called computer and Artificial Intelligence (AI). With the huge 

advancement in technology and the integration of several inventions in the 

modern computer, AI can now mimic cognitive functions of human and 

became very broad while including different fields like medical research, 

mathematics, statistics and engineering [19]. 

Another interesting definition from an engineering perspective has been 

given to ML by Tom Mitchell in 1997 [20]: 

“A computer program is said to learn from experience E with respect to some 

task T and some performance measure P, if its performance on T, as measured 

by P, improves with experience E”. 

This software algorithm is mainly used to predict an outcome based 

on input data. It iteratively learns from the data and does not follow a set of 

rules for detection. Additionally, ML uses statistical methods to enable 

machines to learn with experience from different scenarios in a supervised or 

unsupervised way. Deep learning is a major subset of ML, where the 

algorithms can learn by experience without any external interaction, i.e. an 

unsupervised learning method which enables the computers to learn on their 

own. In opposite, a supervised learning method requires teaching the model 

with the usage of training data, called samples, from a labelled data set. The 

relation between AI, ML and deep learning is depicted in Fig. 6. 

In other words, under the supervised method, ML can be used to predict future 

events based on the set of data collected in real-time. An overview of the ML 

process is shown in Fig. 7 [21]. 
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Fig. 6. Relation between AI, ML and Deep learning, from [21]. 

 

 
Fig. 7. Process of selection and evaluation of ML algorithms. 

ML requires significant amount of collected data, preferably without 

noise, stored in a dataset that has a label for each column. The labels used to 

make the prediction are chosen in the Feature Selection, as every application 

requires different suitable attributes. To finalize the model, the algorithm is 

chosen so the parameters can be modified, as some algorithms require a 

specific set of parameters. 

For the training procedure, the same dataset can be used to train and predict 

the result. This is done by splitting the dataset into two parts based on the size 

of the training set, as shown in Fig. 8. 

The test size is an important parameter for every ML algorithm as 

well as it is controlling which samples are meant to be used for training and 

testing. Aiming to compensate in the best way the effects of overfitting and 

out-of-sample accuracies. 
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Fig. 8. Process of dataset splitting into training and testing sets. 

This approach is realistic in real-world models, where no knowledge of the 

results increases the out of sample accuracy, which represent the prediction 

for an observation that it was not part of the testing data set. Also, the test set 

is highly dependent on the training set, so the test part should be added to the 

training part again to increase accuracy in a beneficial way. 

In the evaluation phase, the predicted values coming from the output of the 

algorithm are compared to the test set equivalent, resulting in two parameters: 

● The training accuracy is the percentage of correct assumption using 

the same dataset, and a high training accuracy results in an over-fit 

model, which does not correspond to general conditions. 

● The out of sample accuracy rate is the percentage of correct 

prediction from outside the dataset. This rate should be high enough 

to generalize the model for real-time scenarios. 
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3.2. Algorithms 

3.2.1. Supervise Learning 

Several algorithms for different applications are available in the 

libraries of ML, accordingly the algorithms should be chosen carefully to get 

the finest results with minimum complexity. Commonly used algorithms 

include: 

3.2.1.1. Regression 

This supervised algorithm predicts continuous values based on the 

historical dataset by fitting the dataset into a curve with two sets of variables: 

the dependent and independent variables. 

Based on the relation between the two sets, the regression type is chosen. 

Simple regression is based on one linear or non-linear variable and its 

predicted dependent variable by the independent one. While multiple 

regression is the extension of the simple type and is based on multiple 

variables, where the capability of the algorithm is increasing proportionally 

with the complexity of the model. 

Simple regression is a fast and simple algorithm and can be used to predict 

continuous outputs based on a two-dimensional curve, although with several 

values, regression will become complicated, specifically with a multi-

dimensional curve. 

Moreover, the regression models are divided at two major subcategories in 

relation with their linearity: 

 
Fig. 9. Linear (first two) and non-linear fit of samples, from [21]. 

Linear regression is when the dependency of the output-input relation can be 

defined by a linear function. On the other hand, non-linear regression is 

defined by non-linear functions as exponentials, polynomials and quadratics. 
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3.2.1.2. Classification 

 In machine learning, the classification method is another supervised 

learning approach, which can be characterized as a means of categorizing, i.e. 

classifying, some unknown variables into a discrete set of classes. 

Classification attempts to learn the relationship between a set of feature 

variables and a target variable of interest [22]. 

In a classification problem, there exist two major constraints, which the 

fulfillment of both is sometimes unrealistic. At first, the set of classes are 

covering the whole possible output space, and secondly, the most important 

point about this set of ML algorithms is that the output value is discrete, with 

each example corresponding to precisely one class. There are occasions 

which examples might correspond to different classes or alternatively, 

examples that could not be classified in a particular input value, problem that 

the “fuzzy” classifiers are trying to solve. [21] [23] 

Data classification has several applications in the modern industrial 

categories. Most importantly, many of the problems that developers are trying 

to solve can be expressed as association of a feature and a target variable. 

Moreover, this relation provides and extends the applicability for 

classification in a vast range of different scenarios. The most commonly used 

types of classifications algorithms in machine learning are: [24] 

·         Naïve Bayes: ML algorithms which take into consideration the 

principle of Maximum A Posteriori (MAP) for the classification of 

their problem. 

·         Decision trees: approach that splits the training set into distinct nodes, 

where one node can include one, most of or all of the different 

categories that the database can be divided. 

·         k-Nearest Neighbors (k-NN): a non-parametric classification 

algorithm that measures the distance of the unknown input from 

every other training example. [6] 

·         Logistic regression: a statistical ML technique which classifies the 

dataset records, based on the values of the input fields. 

·         Support Vector Machines (SVM): are among the most robust 

algorithms which are based in the maximization of the minimum 

distance from the decision line, i.e. separator, to the nearest example. 
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·         Neural Networks (NN): are based upon the log likelihood function 

with respect to the network parameters, extending to the multiclass 

problem and ensuing as output a binary or N-ary result. 

Less popular algorithms, as Extreme Learning Machines (ELM) and Linear 

Discriminant Analysis (LDA) are showing poor capabilities in evaluation 

[25], and high rate of misjudgment [26], respectively. 

3.2.2. Unsupervised Learning 

The most important difference between supervised and unsupervised 

learning is that the training data is unlabeled in a way that the algorithm does 

not have any specific information about the nature or the class of the inputs. 

The aim of this method focuses into finding clusters or similar inputs in the 

data, and consequently categorizing the unlabeled values in related groups. 

Moreover, the unsupervised approach is looking to determine the distribution 

of data within the input space, known as density estimation, or to project the 

data from a high-dimensional space down to lower and much simplistic 

systems for visualization. [22] Some of the most important ML unsupervised 

algorithms are shown in table 1 and in fig. 10 [23]. 

3.2.3. Semi Supervise Learning 

Semi supervised learning, as the title describes, is the mixed version of 

the two different methods previously presented in sections 3.2.1 and 3.2.2. 

These algorithms can operate with partially labeled data and the rest of its 

data, the majority in most of the cases, with unlabeled ones. A good example 

of semi supervised algorithms is the reinforcement learning, which is a 

method called an agent in this context [23] and it observes the environment, 

selecting its best action according to a policy defined by previous situations. 

These actions are resulting to rewards or penalties, whether there is a positive 

or negative outcome, respectively. In [7] [8], semi supervised techniques are 

used to explore the capability of implementing ML in the mobile network of 

LTE systems. 
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Table 1. ML unsupervised algorithms categorized.   

Clustering Visualization and dimensionality 

reduction 

Association 

rule learning 

o   k-Means 

o   Hierarchical 

Cluster Analysis 

(HCA) 

o   Expectation 

Maximization 

o   Principal Component Analysis 

(PCA) 

o   Kernel PCA 

o   Locally-Linear Embedding (LLE) 

o   t-distributed Stochastic Neighbor 

Embedding (t-SNE) 

o   Apriori 

o   Eclat 

 

 

 
Fig. 10.  Comparison between supervised and unsupervised learning [27]. 

  

Supervised Learning Unsupervised Learning

Classification Regression Clustering
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3.3. Restraints and Drawbacks 

As useful and more efficient ML is becoming in our lives, as dangerous it 

is if the drawbacks of this method are not taken into consideration. 

Following, the most significant restraints are presented and briefly 

explained. [21][23] 

1. Massive Data Acquisition:   

ML algorithms require enormous amounts of data for training to 

perform their complex tasks that the developers designed them for. 

Also, a good quality restriction must be designated to get the best 

results. 

2. Resources:  
Need of extended resources in time for the algorithm training to fulfill 

the high standards of accuracy and relevancy. Computational power 

for the operation of these large amount of data must be considered 

likewise.  

3. Result Comprehension:   
The understanding of the ML outcomes can be tricky. Accordingly, 

the selection of the right algorithm should be done carefully to 

optimally interpret these results. 

4. Error Sensitive:   
ML is hypersensitive to errors, for this reason, the training sets have 

to secure that the samples are unbiased and exclusive. However, it is 

difficult to achieve a good result and even more complicated to 

recognize the issue and correct it if the dataset includes a big amount 

of erroneous data.  
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4. Dynamic Resource Allocation 

Mobile communication systems exhibit significant variation in the 

number of UEs in a given cell, and in their time-varying channel conditions. 

Moreover, with the expansion of mobile applications, different UE have 

different requirements. Thus, resource allocation became more complex as 

flexibility and dynamicity is required, while maintaining a resource and 

energy efficient system. This is done using the scheduler, implemented in the 

eNodeB in LTE, which allocates the available resource blocks according to 

the UE’s need and condition. [10] [11] [13] 

This chapter introduces the frame structure behind scheduling, and how 

the current scheduler manages the resources between all active users. Finally, 

MCS selection in LTE/NR 3GPP is explained in detail. 

4.1. Frame Structure 

In LTE, like several communication systems, data is exchanged in frames. 

A radio frame, depicted in Fig. 11, is composed of 10 subframes each of 1 

ms. This composition enables the synchronization of data between the 

eNodeB and the UE, where each transmitted packet contains the frame and 

subframe number. 

 

Fig. 11. Radio frame structure. 

The fundamental transmission schemes are the same for DL and UL in LTE, 

given that OFDM is used in the DL and SC-FDMA in the UL, with 15 kHz 

subcarrier separation in both links. 

Although both FDD and TDD operations are supported in LTE, two 

frame structures, with the same frame length, are available due to the 

differences between the TDD and FDD versions. 

Frame 1 Frame 2 Frame 3Frame 1

Subframe 1 Subframe 2 Subframe 3 Subframe 10

10 ms

1 ms
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4.1.1. Type 1: FDD Version 

 In FDD, DL and UL uses different carrier frequencies, so a device that 

supports HD-FDD must switch between the links for transmission and 

reception, while another device can use both links simultaneously if it 

supports FD-FDD. 

Every subframe in type 1 has 2 slots with 6 or 7 OFDM each, depending on 

the cyclic prefix. Fig. 12 shows an overview of the frame structure, where 

each OFDM symbol is used as reference or transmission signal, throughout 

the UL or DL transmission, like synchronization, broadcast, reference, 

control, ARQ, etc. [10] [11] 

 

Fig. 12. Frame Structure in LTE - FDD [11]. 

4.1.2. Type 2: TDD Version 

In TDD, the DL and UL transmission uses the same subcarrier frequency, 

so like HD-FDD, a switch between the links is required for reception and 

transmission. This is done in type 2 using special subframes, as depicted in 

Fig. 13. 

The TDD version uses two types of subframes: normal and special, where 

special subframes replace subframes 2 and 6 [11]. 

A normal subframe is used either for DL or UL. While a special subframe is 

composed as follows: Downlink Time Slot, Guard Period and Uplink Time 

Slot. It provides a dynamic structure for changes from DL to UL using the 

GP.  

The possible DL-UL configurations are cell specific as shown in the Table 2 

[9]. 
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Fig. 13.  Frame Structure in LTE - TDD [11]. 

 

Even though LTE devices can support any combination of the duplex modes 

while increasing both complexity and performance, type 2 frame structure 

has several advantages over type 1, and one of the them is the dynamic switch 

between DL and UL provided by the special subframe structure using the 

same carrier frequency. Based on the previous section, one RB is part of a 

frame, and the dynamic resource allocation per subframe per user is done in 

the scheduling part at the eNodeB, as follows [10] [11]. 
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Table 2. UL-DL configuration for LTE-TDD. 

UL – DL 

Configuration 

Subframe Number 

0 1 2 3 4 5 6 7 8 9 

0 DL S UL UL UL DL S UL UL UL 

1 DL S UL UL DL DL S UL UL DL 

2 DL S UL DL DL DL S UL DL DL 

3 DL S UL UL UL DL DL DL DL DL 

4 DL S UL UL DL DL DL DL DL DL 

5 DL S UL DL DL DL DL DL DL DL 

6 DL S UL UL UL DL S UL UL DL 

  

4.2. Scheduler 

With the increasing number of active UEs, scheduling plays an essential 

role in the system, more specifically in the eNodeB, by allocating the 

available yet limited RBs to the correct UEs, thus increasing the efficiency of 

the system. Although the scheduling strategy is not standardized, different 

strategies are used by different vendors to provide the required QoS for the 

UEs. [11] 

When compared to older allocation methods like round robin or proportional 

queuing, the scheduler significantly increases the throughput inside the cell, 

even though it adds complexity and doesn’t has a big advantage at the cell’s 

edges. [10]  
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In each eNodeB, there is a DL and an UL scheduler to schedule both 

transmissions separately. Both schedulers are responsible for dynamically 

controlling the UEs in their respective transmissions, and their tasks are as 

follows: 

1. Downlink Scheduler: 

The DL scheduler uses CSI for channel dependent scheduling, and its task is 

to determine the UE(s) to transmit to and the set of RBs for each of these UEs. 

When multiple UEs are to be scheduled, the DL scheduler controls the 

instantaneous bit rate of each UE, multiplexing of channels for simultaneous 

transmission, and MCS selection. Moreover, the interference from 

neighboring cells can affect the transmission power on specific RBs, thus the 

coordination between different BS can increase the efficiency for UEs at cell 

edges. [11]  

2. Uplink Scheduler: 

The UL scheduler is similar to the DL one as it determines which UE(s) can 

transmit UL information on each subframe, also called scheduling grant. The 

main task of this scheduler is to ensure the transmission of UL information 

from different UE on a subframe basis. Channel information and inter-cell 

interference coordination are also exploited in the UL scheduler, similarly to 

the DL one. [11] 

A key requirement for scheduling at the eNodeB is the instantaneous DL 

channel knowledge gathered in the CSI report. Every active UE is then 

allocated RBs on a subframe basis using specific parameters such as SINR, 

HARQ, etc. [13] 

Fig. 14 depicts the work done by the scheduler in the eNodeB. By taking 

several parameters into consideration, RBs can be allocated to provide the 

best QoS based on the UE’s need and link condition, with the help of MCS 

as explained in the following section. 
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Fig. 14. Scheduler in eNodeB of LTE. 

Thus, improving the scheduler can lead to simpler yet more effective method 

to improve the link between the eNodeB and the UE, and this can be done 

using machine learning. 

4.3. Modulation and Coding Scheme 

Other than RBs allocation, the scheduler uses the available information to 

choose the UE’s MCS, which directly affects the QoS. MCS is an index based 

on the channel quality indicator (CQI) sent by the UE. The UE’s UL report is 

used at subframe N to determine the MCS index for subframe N+2 using a 

lookup table.  

Over the different LTE releases, the lookup tables for MCS selection have 

been upgraded for different modulation schemes. The number of MCS 

indexes was 15 at first, as shown in table 3 [15], and it reached 31 in the 

current version in table 4. 

Using several parameters like CQI, HARQ and User’s data size, the MCS is 

chosen, and thus, the modulation scheme and coding rate are determined. This 

process should be accurate and fast, as an inaccurate MCS can result in a 

retransmission in case of bad channel condition, or inefficiency in case of 

good channel condition. Also, the MCS selection is done between subframes, 

so the decision should be fast, especially if several UEs are connected to the 

eNodeB. 
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Table 3.  3GPP CQI lookup table [28]. 

CQI index Modulation Code Rate x1024 Efficiency 

(bits/s)/Hz 

0 Out of range 

1 QPSK 78 0.1523 

2 QPSK 193 0.377 

3 QPSK 449 0.877 

4 16QAM 378 1.4766 

5 16QAM 490 1.9141 

6 16QAM 616 2.4063 

7 64QAM 466 2.7305 

8 64QAM 567 3.3223 

9 64QAM 666 3.9023 

10 64QAM 772 4.5234 

11 64QAM 873 5.1152 

12 256QAM 711 5.5547 

13 256QAM 797 6.2266 

14 256QAM 885 6.9141 

15 256QAM 948 7.4063 
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Table 4. 3GPP MCS lookup table [28]. 

MCS 

Index 

Modulation 

Order 

MCS Index Modulation 

Order 

0 2 16 4 

1 2 17 6 

2 2 18 6 

3 2 19 6 

4 2 20 6 

5 2 21 6 

6 2 22 6 

7 2 23 6 

8 2 24 6 

9 2 25 6 

10 4 26 6 

11 4 27 6 

12 4 28 6 

13 4 29 2 

14 4 30 4 

15 4 31 6 
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4.4. Scheduling Strategies 

Based on section 4.3, the MCS is selected based on the UE’s CQI report, 

which is directly related to SINR and link quality. The scheduler chooses the 

UE’s MCS by comparing the UE’s CQI to the lookup tables 3 and 4. 

However, as mentioned in 4.2, the scheduling strategy is not standardized and 

some of strategies used by the vendors are as follows: 

1. Normal Strategy: 

Using the estimated CQI, the MCS is selected based on the table’s CQI equal 

to the estimated one. This strategy follows the lookup table and the MCS 

index is increased when an ACK is received from the UE, while it’s decreased 

when a NACK is received. 

2. Conservative Strategy: 

The conservative strategy targets a correct reception of the transmitted data 

even if the efficiency is decreased. This strategy selects a lower MCS index 

than the estimated one, until it reaches the maximum value in the lookup 

table. When a NACK is received, the index is decreased. However, even if an 

ACK is received, an increase in the MCS index is done when the CQI 

increases by two indexes. 

3. Aggressive Strategy: 

Opposite to the conservative strategy, the aggressive strategy targets a higher 

efficiency in terms of bit rate over the possibility of incorrect reception. The 

selected MCS is higher than the estimated one until the SINR reaches its 

minimum values, where MCS = {0}. When an ACK is received, the index is 

increased, and the MCS index decreases only when a NACK is received and 

the CQI index drops by two indexes. 

Based on the vendor and the applications used the UEs, the MCS strategy is 

selected to either increase the data rate by compromising a higher error rate, 

decrease the error rate by compromising a higher efficiency, or choose a 

balanced mix between of both efficiency and correct reception.  

In this thesis, the normal strategy is used as the MCS indexes are selected 

using the CQI report and the lookup tables in section 4.3. 
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5. Model Design 

 The current scheduler, implemented in LTE/NR 3GPP, selects the MCS 

per subframe per user using the CQI provided in the uplink by the UE, as 

explained in chapter 3. [15][28] 

However, the current scheduling process has the following limitations: 

● MCS selection is limited for the next subframe for a given user. 

Entering to 5G NR, the processing complexity will increase, and the 

resources can become very limited. Hence, it is always a significant 

advantage for the resource planning of the independent UEs to have 

the expected MCS which will be used for the future subframes. 

 

● The MCS selection becomes very complicated in the MU-MIMO 

case as the MCS for the user cannot only depend on the CQI, but also 

depends on the other UEs in the MU-MIMO group (group of users 

scheduled at the same time-frequency resource). The spatial relation 

between all the users in the group needs to be analyzed and this takes 

lots of critical processing resources, resulting in a bottleneck for the 

NR. 

To take care of the aforementioned limitations, we propose the usage of ML 

at the BS aiming to predict future MCS. In summary, we propose the 

following: 

● MCS prediction for the future subframes/slots using ML. 

● Extend the MCS prediction for the candidate users of MU-MIMO. 

To diminish the process at the scheduler, one can provide it with information 

for future subframes using ML. Based on chapter 4, ML can provide a good 

accuracy given the constant flow of data from the UE to the scheduler. 

Therefore, given the decision is an integer between 0 to 31, for the LTE-

advanced Pro (Release 14) [28], classification algorithm is to be used instead 

of regression for the following reasons: 

● Output is an integer with predefined number of classes and 

neighbors. 

● High complexity of regression as several parameters are taken. 
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5.1. Scheme 

First, every active UE sends its SINR value, which is included in the CSI 

report, at the start of each frame in the UL transmission. The CSI report is 

sent periodically at the start of each frame, so the information can be used 

over all subframes for the MCS selection.  

Meanwhile, many parameters; as HARQ feedback, current MCS and data 

size, can also be collected on a subframe basis from the UE and the eNodeB. 

The parameters used for the MCS prediction, over the course of one frame, 

are shown in Fig. 15. As mentioned above, the SINR is collected once every 

10ms while the rest of the parameters are constantly updated. 

 

Fig. 15. Parameters used for MCS prediction in a frame. 

The overall system model is depicted in the following block diagram of Fig. 

16. Based on section 5, scheduling is done at eNodeB using the UL 

information of the user. To increase the efficiency, ML will provide 

information as well to the scheduler based on a training database, as 

mentioned in section 4. Thus, the scheme includes three main parts: UE, 

Channel and Base Station. 

 

Fig. 16. Block diagram of the suggested system model. 
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5.2. Parameters 

To make the system practical, a set of the parameters used for current MCS 

selection, based on section 4.2.1, are also used in the ML prediction 

algorithm. It includes SINR, HARQ, current MCS (k) and data size. 

Moreover, to improve the accuracy of the ML algorithm, the training database 

includes new features: 

5.2.1. Current MCS Accuracy 

A flag indicating the accuracy of the MCS selected. In case of a 

retransmission at the next subframe, the MCS was not optimal and the flag 

will be indicated as zero. On the other hand, if the transmission was 

successful, then the flag will be marked as one. 

5.2.2. UE Scenarios 

The training dataset includes data collected from the laboratory logs, 

where several UEs, in different channel conditions were tested. To keep track 

of the different behaviors, each UE was assigned a UserID, which will be 

used in the ML prediction algorithm. The dataset includes UEs in alternative 

scenarios, and later a prediction is made for the current UE. Furthermore, it 

is useful to investigate the closest historical UE, so the algorithm can track 

the stored behavior and assign it to the current one. 
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6. Implementation 

Based on the suggested scheme in chapter 5, the prediction method used 

in this thesis can be implemented, with some add-ons, at the base station to 

increase the efficiency of the scheduler. These add-ons are the training 

database and the ML algorithm. 

In this chapter, a step-by-step overview of the work done will be presented in 

detail, from the selected programming language to the implementation of the 

ML algorithm. 

6.1. Programming Language 

Nowadays, several platforms and programming languages include AI and 

ML in their libraries like Microsoft, IBM, MATLAB, etc. In this thesis, 

Python was chosen for scripting and programming due to the free and open 

sourced extensive libraries [29]. 

Additionally, Python is a dynamic and adaptive programming language, 

and it can be used for several purposes as it is easy to implement. One of them 

is scripting, which is implemented in section 6.3 to gather useful data from 

large files [29]. 

Finally, since 2007, Python is continuously updating its ML libraries such 

as Tensor Flow, SciKit Learn, NumPy, etc. They were used to write the ML 

algorithm for MCS prediction in section 6.5. 

 

6.2. Trace Logs 

Trace logs were collected using Ericsson’s system and equipment. Using 

an eNodeB and several stationary UEs in the laboratory, various scenarios 

were created by adding intercell interference and by varying the BS’s 

transmission power. Data from several UE scenarios with very different 

channel conditions were included in the trace logs, and even though the UEs 

weren’t moving, the MCS is varying for different scenarios given the 

interference level from the neighboring cells. The trace logs collection was 

done as shown in the block diagram in Fig.17. 
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Fig. 17. Model used for trace logs collection. 

One of the scenarios used in the laboratory is shown in Fig. 18, where using 

two UEs connected to two different BSs, their positions were similar to create 

interference from both cells. Other scenarios included UEs close to the BS, at 

the edge and outside their cells. 

 

 
Fig. 18. One UE scenario used in the prediction. 

The main purpose of the UE scenarios is creating a variety of channel 

conditions, where for the same SINR, the MCS can vary due to the 

interference from neighboring cells and eNodeB. 

6.3. Data Collection 

After running the simulation in section 5.1, the trace logs need filtering to 

gather useful data for the ML algorithm. The parameters, listed in section 5.2, 

form the columns in the dataset, and the remaining data, after filtering, form 

the entries. Table 5 represents the useful parameters, including their types and 

description, collected from the trace logs. 

In section 5.1, it was mentioned that the SINR is updated every frame while 

the rest of parameters is updated every subframe. 
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Table 5. Parameters used in the training dataset   

Parameter Variable Type Description 

userID integer Indicates user’s scenario 

SINR double Included in the CQI report 

MCS integer MCS of current subframe 

AccMCS flag (Bool) Accuracy of the selected MCS 

next MCS integer MCS for the next subframe 

NDF flag (Bool) Based on HARQ feedback 

Bytes integer Data size to be transmitted 

 

To predict the future MCS, a sample must be included in the training dataset. 

This sample is “next MCS” and it was collected by processing the whole 

frame of each UE and appending the MCSs in one column. For example, the 

“next MCS” for subframe N is the actual “MCS” for subframe N+2.  

6.4. Assumption 

The data collected in section 6.3 created a large dataset, but it also includes 

a lot of erroneous entries where, for example, a high MCS is selected for a 

very low SINR. For simplicity and to increase accuracy, some assumptions 

were taken into consideration by adding some constraints to the dataset, 

● MCS range between 1 and 28 

Although the MCS indexes range between 0 and 31, the prediction will be 

limited to the transmission phase, with MCS between 1 and 28. First, MCS = 

{0} corresponds to no transmission either because no data is available, or the 

user is inactive, which can be predicted in the current algorithm. Second, 

MCS = {29, 30, 31} corresponds to re-transmission, which isn’t useful for 

the transmitter as it can’t be accurately predicted due to circumstances like 

UE’s inaccurate channel estimation, erroneous feedback, misdetection, etc. 
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● Laboratory Logs, not live logs 

Live logs were technically and logistically hard to collect, so lab logs were 

used to test the system. 

● SINR >= 0  

In the laboratory, the BS can always provide the UEs with positive SINR due 

to the small environment, for path loss, and limited to no interference inside. 

● Bytes > 0 

Back to the first assumption, if the data size = 0, it can result in MCS = {0}, 

which isn’t included in this prediction. Also, the UE is assumed to be active, 

so each UE has to be assigned data. 

● Stationary UE, Section 5.1 

6.5. ML Algorithm 

Following the steps in the previous sections, the final dataset was used to 

train and test the algorithm. In fig. 19, the training sequence and test data are 

both part of the collected data and they contribute together to the ML 

prediction, and they are divided based on the test size, according to fig. 8 in 

section 3.1. 

 
Fig. 19. ML algorithm training and testing  

In this thesis, the prediction was made using the neural network classification 

algorithm, presented in section 3.2.1.2. The main reason behind choosing 

classification is the integer output using multiple variables, and the neural 

network is in accord with the prediction steps, as shown in fig. 20. The 

accuracy of the prediction over the varying test size is being shown in chapter 

7. 

Collected

Data

Training

Set

Test

Set

Training

Model

Training

Database

Prediction Output

Machine Learning



 42 

 
Fig. 20. Neural network algorithm for MCS prediction. 

 

In details, the future MCS prediction, output, is as follows: 

● Predict the scenario (hidden node) based on the input data 
● Predict the MCS based on output of the hidden node 

By choosing the closest UE scenario from the training dataset, using the 

parameters mentioned in table 3 as inputs, the future MCS can be predicted 

as a smaller yet more accurate and relative dataset will be used.  

The flowchart in Fig. 21 shows the detailed steps taken to make an MCS 

prediction based on the input data from the UE. 
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Fig. 21. Flow chart of the MCS prediction. 

The UE training dataset is a sub-dataset of the main training dataset, and it 

is selected using the predicted UE scenario (hidden node in the neural 

network). The second prediction follows using the same input data and the 

selected sub-dataset, so no additional data is added to the overall prediction. 
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7. Results 

After implementing the designed system, based on chapters 5 and 6, 

several simulations were made to test the accuracy of the prediction. As 

neural network was used, the sub-predictions were also simulated separately 

to test the efficiency of all parts using 10% of the dataset as testing size. The 

overall dataset size of collected samples reached approximately the 400.000 

entries. 

The results, shown in this chapter, will be divided by prediction type, where 

the scenario and MCS predictions will be simulated separately, before 

simulating the whole algorithm. 

Moreover, as the k-NN is implemented in both cases, the number of neighbors 

will also be tested to find the highest accuracy. 

7.1. Accuracy 

The accuracy of an ML algorithm is the ratio of correct predictions over 

total number of predictions, and it ranges between 0 and 1: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 𝑚𝑎𝑑𝑒
 

As explained in section 3.1, in the test phase, the output of the algorithm is 

compared to the test set, which includes the correct data. For classification 

algorithms, a correct prediction is made when the output is the correct class.  

7.2. Application of the Assumptions 

To prove the usefulness of the assumptions made in section 6.4, the 

predictions made in the following sections will include the simulation results 

on datasets with and without the assumptions. 

7.3. Relation between MCS and SINR 

First, based on the assumptions made in chapter 6, the MCS distribution 

over the SINR range is shown in Fig. 22. This is due to the various scenarios 

taken into consideration while collecting the MCS indexes for all UEs. 
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Fig. 22. MCS over SINR plot for all UE. 

The MCS is distributed all over the SINR range. For high SINR, over 

25 dB, the MCS is relatively high as the channel condition is good enough to 

only use high modulation schemes. The following plots show the distribution 

of MCS over SINR for two different UEs. The first UE, on the left side, has 

an even distribution of low MCS indexes over the varying SINR. This is due 

to several reasons, one of them is the low data size used by this UE while, for 

example, making a phone call. On the other side, the second UE has high 

MCS indexes over the majority of SINRs for several reasons, mainly the high 

data size and low interference from other cells.  

 
Fig. 23. MCS over SINR plots for two different UEs 
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7.4. UE Scenario Prediction 

The UE scenario prediction accuracy is shown in fig. 24. The output results 

of the prediction, in the sub-dataset selection, used in section 7.3. Two curves 

are shown in the plot, where the blue and orange curves represent the datasets 

used with and without assumptions respectively. The assumptions are listed 

in section 6.4. 

 
Fig. 24. UE scenario prediction accuracy. 

Using the assumptions to make the UE scenario is accurate over the range of 

neighbors, and the highest accuracy is obtained using 23 neighbors. This 

result is in accordance with the available dataset, as 24 different scenarios 

were included. 
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7.5. MCS Prediction 

To show the accuracy of the MCS prediction, the datasets were used to 

predict the future MCS directly. The output of the predictions were plotted 

and shown in Fig. 25.  

 
Fig. 25. MCS prediction accuracy. 

For different neighbors, the accuracy of the prediction using the assumptions 

(blue curve) is better than without them (orange curve). This result is expected 

given that by deleting some less predictable results, like the MCS = {0, 29, 

30, 31} the output will be useful and more related to the provided dataset. 

 

  



 48 

7.6. Neural Network Prediction 

In section 6.5, it was mentioned that the final output is the combination of 

two predictions: predicting the MCS, example based on the sub-dataset 

related to the predicted UE scenario. Section 7.4 and 7.5 give respective 

examples using the full datasets. 

Fig. 26 shows the MCS prediction using single UE scenarios only, because 

of the scenario prediction in the first place. 

 
Fig. 26. MCS prediction accuracy for different UE scenarios. 

The variation in accuracy for different scenarios and different number of 

neighbors is due to several reasons:  

● The variation of the parameters in each scenario, and a bad channel 

condition can give erroneous MCS resulting in a less accurate 

prediction.  

● The variation of MCS in one scenario, where the indexes can be 

concentrated or diverse, as previously shown in fig. 23. The varying 

number of MCS indexes used in a scenario will change the peak 

accuracy according to the number of neighbors, and for each 

scenario, a specific number of neighbors should be taken to get the 

best possible prediction. 
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Moreover, Fig. 27 shows the average accuracy of the neural network 

compared to the direct MCS prediction in section 7.5. A prediction using the 

neural network algorithm is better for all number of neighbors with a margin 

of 5% (0.05 difference).  

 
Fig. 27. Neural network accuracy. 

This is due to the specific sub-datasets used in the neural network, where the 

prediction outputs are limited yet more relative to the input parameters. 
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8. Conclusion and Future Work 

8.1. Conclusion 

With the upcoming arrival of 5G and the essential adoption of MIMO 

technology which is included in it; complexity and energy consumption are 

increasing in a “worrying” way. To solve this problem, we propose a multi-

class ML model based on neural networks which is going to predict the MCS 

index for the expected subframe of an independent UE. By exploiting the 

classification learning, we can reduce the aforementioned “worrying” 

parameters and enhance the performance of link adaptation. However, some 

of the challenges that we faced restricted the results and the possible 

outcomes of our project, as most of our measurements, simulations and 

collected data are narrowed at the laboratory environment. The reasons for 

this were, primarily, the limited time of our research in comparison with the 

considerable capabilities of investigation on ML topic, and secondary, the 

lack of substantial real-time data logs which would expand the exploration of 

our thesis in realistic channel conditions. Furthermore, the prediction 

accuracy of the MCS index selection algorithm achieved its peak rate, which 

is fifty percent, giving thusly promising rates for further exploration. Hence, 

this prediction is aiming to benefit in an optimum way the BS, as it is always 

a significant advantage for the resource allocation if MCS for the users are 

already known for the future subframes.  

8.2. Future Work 

Even though the prior challenges were significant in many ways, future 

work and much more research can be done to expand, while reaching the true 

capabilities of machine learning and Massive MIMO technology which is 

expected world widely. A critical extension of this work concerns the 

investigation of the ML model for the MU-MIMO MCS prediction scenarios. 

This can be done by training the ML model for MU grouping, where a group 

could be defined as several users which are spatially separated; although they 

fall in similar average MCS regions. However, the previous extension 

requires the expansion of the training parameters and increasing even more 

the database and the training time of the ML algorithm. Thus, the proposed 

suggestion can develop greatly the scope of our thesis, while helping to reach 

the high requirements of 5G NR.   
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