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Abstract

Knowledge about thermal properties of nanoscale graphite is essential in order to re-
alize the many promising applications of carbon based nanomaterials. This thesis re-
ports how samples of thin graphite films on nickel substrates were investigated us-
ing time-resolved X-ray diffraction (TRXD) at the FemtoMAX beamline at the MAX
IV facility. Through these investigations the thermal conductivity of the thin graphite
films were determined by modeling the system using a one dimensional heat-diffusion
model which was fitted to the data. Through investigation of the dynamics in the solid,
it was determined that the thermal conductivity of graphite decreases with thinner
graphite films as well as increased deposited energy.
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1 Introduction

1.1 Motivation

Nanoscale carbon-based materials have interesting properties that make them suited
for a large range of potential applications. In order to utilize these materials all these
properties must be known. One interesting property of nanoscale graphite is the ther-
mal conductivity which has been shown to be significantly lower than that of bulk
graphite. [1]

It can be difficult to determine the properties because of the small dimensions of nano-
materials. However, there are techniques through which one can investigate these ma-
terials. One of the methods used to determine the properties of ultra-thin materials is
time-resolved X-ray diffraction (TRXD).

TRXD is a powerful tool, which like most time-resolved experiments is conducted
by utilizing the “pump-probe” method. This technique is comprised of first exciting
the system using a pump pulse to cause a dynamic reaction. Then the system is inves-
tigated by using a probe pulse which measures the dynamical response. In the case of
TRXD the probe pulse consists of X-rays, which are diffracted onto the sample. The
resultant diffraction patterns carries information about the structure of the material
such as the distance between the atomic planes. Since the technique is time-resolved
it can be used to determine the dynamics of the structure.

In this project the thermal conductivity along the c-axis (orthogonally to the planes)
of thin graphite films on nickel substrates was investigated using TRXD. The experi-
ments were conducted at the FemtoMAX beamline at the MAX IV facility. The sample
was heated by a laser pulse resulting in thermal expansion of the graphite film. Prob-
ing as the system returned to equilibrium provided information about the change in
the interatomic distance between the graphite layers i.e. the changes in strain.

In order to determine the thermal conductivity, the system was modelled using a one-
dimensional heat diffusion model, connecting the heat transport in the sample to the
strain. The model was fitted to the experimental data in order to determine the value
of the thermal conductivity.

Investigations such as these are important as they allow for better understanding of
the properties of carbon nanomaterials. This is important for the understanding of
how heat transfers in nanostructures and for the many possible applications. Such ap-
plications of nano-carbon includes improvements in solar cells, electrical components
and medicine to mention a few.
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1.2 Background

1.2.1 Thermal expansion

Figure 1: Illustration of the different lengths in a comparison between expanded and
unexpanded material.

The samples were heated with a laser resulting in thermal expansion. Thermal expan-
sion is proportional to the temperature in the material and is calculated using equation
eq. (1), ∆B, B, α, ∆T and S denotes the length of the expansion, original length of the
material, the thermal expansion coefficient, temperature difference and the strain (the
thermal expansion in fraction) respectively [3]. ∆B and B are illustrated in fig. 1.

∆B
B

= α∆T ⇐⇒ S = α∆T (1)

The expanded interplanar distance is described in eq. (2), where d is the interplanar
distance and d0 is the unexcited interplanar distance.

d = d0(1 + S) (2)

Materials expand with the speed of sound in that material. This means that if one
knows the expansion time one can calculate the thickness of a material as seen in
eq. (3), b, texp and vsos denote the material thickness, the expansion time and the speed
of sound in the material respectively.

b = texpvsos (3)

1.2.2 Diffraction

The crystal structure of a graphite plane is that of a hexagonal (honeycomb like) ar-
rangement. These planes are stacked on top of each other with a interplanar distance
of d.

In order to measure the interplanar distance the system was probed using X-ray diffrac-
tion, which is described by Bragg’s condition, given in eq. (4), θ, n and λ denotes the
scattering angle (from the surface), interference order and wavelength of the incident
X-rays respectively. If the condition is fulfilled it results in strong peaks called Bragg
peaks. [2]
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2d sin θ = nλ (4)

The Bragg angle of interest is that of the (002) plane which is 27◦. As the system is
thermally expanded, the interplanar distance is increased. Thus, the Bragg angle is
changed in accordance with eq. (4). This shifts the position of the Bragg peaks.

1.2.3 Absorption of light

The absorption of light (e.g. from a laser) in matter is described by Beer–Lamberts
law given in eq. (5), I, z, I0 and δ denotes the intensity, the depth into the material,
the intensity of the incident laser and the optical absorption depth of the material
respectively. [4]

I(z) = I0 exp
(
−z

δ

)
(5)

1.3 Modeling heat transfer

(a) initial heat distribution as temperature
difference against depth into the sample.
The different materials are labeled

(b) Strain as a function of time in the
graphite film.

Figure 2: Images which illustrate different parts of the temperature model.

1.3.1 Temperature model

The system was modeled using a one dimensional heat diffusion equation [1] seen in
eq. (6). In eq. (6), ρ, t and k denotes the the density, the time and the thermal conduc-
tivity respectively. The indexes denote whether the term concerns the graphite film or
the nickel substrate.

ρiCi
∂T
∂t

=
∂

∂z
ki

∂T
∂z
⇔ ∂T

∂t
=

ki

ρiCi

∂2T
∂z2 (6)
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The heat equation was rewritten in a numerical form as a Crank-Nicolson expression.
The Crank-Nicolson formulation was chosen as it does not have any stability require-
ment [8]. This does not put any requirement on the step sizes in time or space allowing
them to be set to reasonable values, which in turn allows one to complete the calcula-
tions with reasonable computational times. The Crank-Nicolson scheme for the heat
diffusion equation in eq. (6) can be seen in eq. (7), a, h and NBk are the step size in
space, the step size in time and the number of adjacent Neumann boundaries, A and
B are matrices containing the coefficients of the T variables which are combined into
the Tn+1 and Tn vectors. The scripts n and k denote the step in time and position
respectively. The constants are combined as r = hki

a2ρiCi
.

Tn+1
k − Tn

k
h

=
ki

ρiCi

1
2

(
Tn+1

k+1 + Tn+1
k−1 − 2Tn+1

k
a2 +

Tn
k+1 + Tn

k−1 − 2Tn
k

a2

)
⇔ (2 + 2r)Tn+1

k − rTn+1
k+1 − rTn+1

k−1 = (2− 2r)Tn
k + rTn

k+1 + rTn
k−1

⇔ ATn+1 = BTn

(7)

1.3.2 Modeled system

Figure 3: Illustration of the modeled system (not to scale).

The system was modeled as a graphite film on a nickel substrate as seen in fig. 3. The
model extended from the vacuum-graphite interface to 70 times the thickness of the
graphite film into the nickel so that the heat had enough space to diffuse. The vacuum-
graphite boundary was modeled as a Neumann boundary (a boundary over which the
derivative is zero to ensure that no heat transfers over the boundary). This is because
no significant heat should transfer from the material into the vacuum. The graphite-
nickel and nickel-nickel boundaries were modeled to allow for temperature transfer.
The temperature difference value for the nickel-nickel boundary was put to zero for
all times

1.3.3 Initial heat profile

Using eq. (5) the initial temperature profile (the initial condition at time zero) in the
sample after laser excitation can be calculated. This is described in eq. (8), T, F, C, b
and a denotes the temperature, the laser fluence i.e. the energy per unit area, the heat
capacity, the thickness of the graphite film and a free fit factor respectively [1]. The
free fit factor is used to match the calculated and experimentally determined temper-
atures. The subscripts 1 and 2 denote whether it is the property of graphite or nickel
respectively.
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T(t = 0) =

{
aF

δ1C1
exp(−z/δ1), for the graphite film: 0 ≤ z ≤ b

aF
δ2C2

exp(−b/δ1)exp(−(z− b)/δ2), for the nickel substrate: b ≤ z
(8)

The initial heat profile from the pump laser was calculated as described in eq. (8). The
initial heat distribution can be seen in fig. 2a.

Using the expression in eq. (7) with the spacial and temporal boundary conditions de-
scribed in section 1.3.2 and section 1.3.3 respectively the temperatures were updated
by solving for Tn+1. The temperature for all points in the graphite film was averaged
and plotted against the respective time delay in order to give one curve. The modeled
temperature curve was converted to strain using eq. (1) by multiplying the temper-
ature difference with the thermal expansion coefficient of graphite. The strain in the
graphite over time can be seen in fig. 2b.
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2 Method

2.1 Principle of the experiment

The experiment was conducted at the FemtoMAX beamline at the MAX IV facility.

2.1.1 FemtoMAX setup

The FemtoMAX beamline is supplied with 3 GeV electrons directly from the linear ac-
celerator (LINAC). The LINAC uses radio frequency cavities which are synchronized
to accelerate the electrons as they pass through them. The LINAC is a stable source
of accelerated electron bunches. The accelerated electrons travel in vacuum tubes to
avoid collisions with molecules. [5]

Photons are created when electrical charges are accelerated. This is utilized to cre-
ate the X-rays used in the FemtoMAX experiments from the 3 GeV electrons by using
undulators. A undulator is constructed of many dipole magnets in alternating direc-
tions. This creates a magnetic field which accelerates the electrons back and forth in
the transverse direction, which creates photons. In the FemtoMAX beamline there are
two undulators, which can create X-ray pulses in the energy range of 1.85-20 keV and
a pulse length of around 100 fs. Using a dipole dump magnet the electrons are directed
away from the target and into a beam stop to ensure that they do not interfere with the
experiments as well as to reduce the generated radiation for safety reasons. [5]

Figure 4: Illustration of a monochromator where φ is the Bragg angle.

The undulators create photons in a energy range which is a few percent of the selected
energy. To select the desired wavelength a monochromator is used. An illustration of
a monochromator can be seen in fig. 4. In a monochromator the incoming radiation
(blue) is diffracted on crystal plates. The pulse is only correctly directed towards the
sample if it has the correct Bragg angle (φ in fig. 4) and therefore as seen in eq. (4) the
correct wavelength. The angle and distance between the plates can be varied to select
which wavelength is directed towards the sample. Focusing mirrors are utilized to
focus the radiation onto the sample. [5]

The pump pulse is created by an ultrafast laser system. The laser pulse is generated
in a laser laboratory above the beamline, sent through the floor and directed into the
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(a) Picture of the experimental setup with la-
bels detailing objects of interest.

(b) Illustration of the setup inside the sam-
ple chamber with visualized laser and X-ray
pulses. (Not to scale).

Figure 5: Illustrations of the setup.

sample chamber. fig. 5a shows the sample chamber, the laser module, the X-ray beam-
line and the detector. An illustration of the setup inside the chamber with visualized
X-ray and laser pulses impinging on the sample can be seen in fig. 5b. The detector
was rotated 30◦ from the vertical plane and the sample was rotated 27◦ from to the
horizontal plane and incoming X-ray pulse as illustrated in fig. 5b. During the exper-
iments the X-ray beam had a 2 Hz repetition rate. The repetition rate of the laser was
matched with this. The pulse duration of the laser was 50 fs. [5]

A camera views the sample through a 30◦ titled camera port in fig. 5a, an image of
the sample from this camera can be seen in fig. 6.

Figure 6: Picture of the sample in the sample chamber taken by the camera through
the camera port.
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The delay between these pulses is measured by the beam arrival monitor (BAM). The
delay is calculated by taking two signals, one from the laser and one from the X-rays.
Part of the laser is split of from the beam and sent into a laser diode to create the first
signal. The other signal comes from a beam position monitor (BPM) which is trig-
gered by the electron bunches. The BPM is located after the undulators. Because of
the relativistic velocities, the Coulomb field of the electrons extends orthogonally to
the direction of its movement. The BPM detects this field as the beam passes. The
delay between these signals can not be determined directly as the oscilloscope sam-
ple rate is not fast enough to measure it accurately. Instead these two signals are sent
through a band pass filter which creates two ringing signals. These signals are sam-
pled and cross correlated, which creates a additional ringing signal. The phase of this
signal provides information about the time delay. [6]

The X-rays are diffracted off the sample onto a window-less CCD detector where they
are detected as intensity against pixel position creating an image (a two dimensional
array with intensities) [5]. The detector was rotated slightly so that the diffraction
images were recorded at an angle. The distance between the pixels is known. The
measured data is thus recorded in the form of images of diffraction patterns with a
corresponding BAM delay value.

2.1.2 Conducting the experiment

Figure 7: Laser profile.

In order to measure the laser fluence, the laser was directed onto the phosphor situ-
ated next to the sample (see fig. 6). The resultant fluorescent light was measured using
the camera which is viewing through the camera port in fig. 5a. This results in the
laser profile in fig. 7. The fluence was calculated as incoming laser energy which was
known divided by the area of the spot which was measured using the camera.

The experiments were conducted utilizing the “pump-probe” method. This technique
is comprised of first exciting the system using a pump pulse to cause a dynamic reac-
tion. This reaction is investigated by using a probe pulse which documents the dynam-
ical response [7]. In this experiment the pump pulse was a laser pulse which thermally
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excited the sample and the probe pulse was the X-ray pulse which was diffracted onto
the sample. The sample was mosaic meaning that it can reflect at all angles but only
the angles which fulfill the Bragg condition gives rise to a diffraction spot. The sam-
ple was positioned so that a Bragg peak was created on the detector when the system
was in equilibrium. As the system was excited by the laser pulse the Bragg angle
shifted as described in the theory. This shift in the Bragg angle shifted the Bragg peak
and through it the diffraction pattern. The time delay between these two pulses was
scanned and from this a sequence of diffraction patterns were measured.

An illustration of the pump-probe method used can be seen in fig. 8, τ, θ and θ0 are
the time delay between pump and probe pulse (a positive time delay means that the
pump pulse arrives before the probe pulse), the Bragg angle and the unexcited Bragg
angle respectively.

Figure 8: Illustration of the pump probe method

These measurements were done for three samples named the "10 minute", the "20
minute" and the "ESRF" sample. The ESRF sample is the same sample used in [1].
The minutes refer to the amount of time the graphite was deposited onto the nickel
substrate. Each sample measurement was done for three different laser fluences. The
same sample and fluence was measured several times to collect more data in order to
reduce the statistical variation.

2.2 Analysis

2.2.1 Compiling the measured data

As mentioned in section 2.1.1 the measured diffraction patterns came in the form of
images. Since the detection screen was rotated slightly, so was the diffraction patterns.
To compensate for this, the rotated angle was estimated and the image was rotated
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back. The background noise was removed by defining an intensity threshold and set-
ting all pixel intensities under said threshold to zero. As the expansion of the material
should only shift the diffraction pattern along one dimension the rotation limited the
diffraction pattern to shift vertically. The center of gravity of each of the diffraction
images was calculated. In fig. 9 two of these diffraction patterns are compared. The
pattern to the left corresponds to a negative time delay and therefore a unexpanded
sample, the pattern to the right corresponds to a positive time delay. Note that the
center of the pattern, denoted by the black cross, has shifted as predicted in the theory,
i.e. a larger interplanar distance results in a smaller Bragg angle.

Figure 9: comparison of two diffraction patterns measured for negative time delay
(left) and positive time delay (right). The black cross denotes the center of the diffrac-
tion patterns.

The vertical component of the center of gravity was plotted as a function of time delay
between the two pulses. To limit the statistical variations, several measurements were
combined. The time delays were divided into bins and all position values in a bin
were averaged and plotted against the corresponding bin delay.

The time delay was shifted so that time zero was defined as just before the rise in
position caused by the excitation of the laser. The position was shifted to be zero for
negative time delays by offsetting the data by the average value of the positions for
the negative times. Since it is the relaxation of the system which is of interest all values
before zero were removed.

2.2.2 Converting to strain

To convert the measured data to strain, the setup must be considered. It can be seen in
fig. 10. The position of the sample and detector corresponds to those in section 2.1.1.
The incident angle of the X-rays with respect to the sample surface was 27◦, which
full-fills the Bragg condition when the material is unexpanded. This is defined in
eq. (9) where θ is the reflection angle and the subscript 0 denotes that it concerns the
unexpanded material.

θ0 = θ(∆T = 0) = θin (9)
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Figure 10: Illustration of the X-ray beam being reflected off of the sample and im-
pinging on the detector. The Reflection off the unexcited material (blue full line) is
compared to the reflection of the excited material (red broken line).

An expression for the strain can be obtained by reformulating eq. (4) and using the
relation d = d0(1+ S) as illustrated in eq. (10) in which κ is a combination of constants.

sin(θ) =
nλ

2d
=

κ

d
⇒ sin(θ0)

sin(θ)
=

κ

d0

d
κ
=

d
d0

⇒ S =
sin(θ0)

sin(θ)
− 1 (10)

Introducing the new angle θ′ seen in fig. 10, where φ is the angle of the detector.

θ′ = θ − (φ− θin) (11)

The position on the detector is described in eq. (12) where l, D, L and ∆L is the position,
the distance from the detector, the original diffraction position and the position shift
described in fig. 10 respectively. Note that ∆L is the quantity which is measured in the
experiment.

l = D sin
(
θ′
)
= L− ∆L = D sin

(
θ′0
)
− ∆L (12)

The Bragg angle resulting from the of the excited sample is then described as seen in
eq. (13).

θ′ = arcsin
(

l
D

)
= arcsin

(
D sin(θ0)− ∆L

D

)
= arcsin

(
sin θ0 −

∆L
D

)
(13)
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Combining eq. (13) with eq. (10) and going back to the original angle using eq. (11) the
conversion from position to strain (in fraction) is achieved using eq. (14).

S =
sin(θ0)

sin
(

arcsin (sin(θ0)− ∆L
D ) + (φ− θin)

) − 1 (14)

Hence, the position (∆L) was converted to strain (S). By multiplying the right hand
side of eq. (14) with 100 the strain in percent is derived.

An example of the resultant data from the compiling and converting is seen in fig. 11.

Figure 11: Plot showing an example of the compiled data from the experiment.

2.2.3 Estimating the thickness of the graphite films

The thicknesses of the graphite films of the different samples, needed in the modeling
of the system, were unknown. This was calculated using eq. (3) by determining the
expansion time of the sample as illustrated in fig. 12 where the difference in x value
between the two points is the expansion time texp. The mean thickness of the different
graphite films are documented in table 1. These were the thicknesses used in the fitting
of the model to the measured values.

Table 1: Mean thickness of the different graphite films for different fluences.

Sample Graphite thickness (nm)
ESRF 28
10 minutes 30
20 minutes 36
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Figure 12: Illustrates the determination of the rise time for the 10 minutes sample at
the 20 mJ(cm)−2 fluence.

2.2.4 Fitting data to model

Figure 13: The fitted data of the ESRF sample for the fluence of 30 mJ(cm)
2
. Shows

measured data (blue dots) and fitted curve (yellow line) as strain against time.

The modeled strain curve (see fig. 2b) was fitted to the converted measured curve (see
fig. 11). The thermal conductivity was determined by modeling it as a fitting param-
eter. The amplitude fit factor (seen in eq. (8) was also utilized in order to account for
effects such as laser reflection off of the the sample resulting in less deposited laser
energy. The temperature model fitted to the data can be seen in fig. 13. The parameter
values used in the modeling can be seen in table 2.
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The step sizes were increased after a number of steps to decrease the computational
times without affecting the results. For the first time steps the differences in tempera-
ture between adjacent positions in the graphite nickel interface is large as can be seen
in fig. 2a. After a number of time steps the heat distribution has smoothed out allow-
ing for larger time steps to be used. This was also implemented in the space steps
utilizing small steps from the graphite surface and well into the nickel and then suc-
cessively increasing the space step size. The smallest step sizes were 1 nm in space
and 0.1 ps in time.

Table 2: Parameter values used in the modeling.

Material Parameter Value Source
Graphite Volumetric heat capacity 1.42·106 JK−1m−3 [9]
Graphite Optical absorbation depth 140 nm [10]
Graphite Thicknesses see table 1 Estimated see section 2.2.3
Graphite Thermal expansion coefficient 2.7·10−5 K−1 [11]
Graphite Speed of sound 4140 ms−1 [12]
Nickel Volumetric heat capacity 3.96·106 JK−1m−3 [9]
Nickel Thermal conductivity 91 Wm−1K−1 [9]
Nickel Optical absorbation depth 15 nm [13]

Fluence 200 and 300 Jm−2 Measured
Bragg angle 27◦ Measured
Detector angle 30◦ Estimated
Sample detector distance 0.15 m Estimated
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3 Results and discussion

To illustrate the results, the arrived at values for two fluences 20 and 30 mJ(cm)−2 is
presented for each sample. Four different results are presented, which differ in the
assumptions made in the modeling. For each result thermal conductivity k depending
on sample, fluence F and graphite film thickness b are presented. The fitted data for
result A is presented in fig. 13 and for results B and C it is presented in Appendix B.

3.1 Result A

These results, presented in table 3, were obtained as described in section 2 using the
values presented in table 2.

Table 3: Calculated values of the thermal conductivity of the graphite flakes depending
on sample and fluences for the assumptions presented in section 2

Sample F (mJ(cm)−2) b (nm) k (Wm−1K−1)
ESRF 20 28 18
10 minutes 20 30 24
20 minutes 20 36 37
ESRF 30 28 13
10 minutes 30 30 19
20 minutes 30 36 28

The attained results can be compared to the results determined in previous investiga-
tions of how the thermal conductivity depends on the thickness of the graphite films
in [1, 15]. These results are presented in as thermal conductivity against film thickness
in fig. 14.

Figure 14: Results of thermal conductivity against film thickness from [15].
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It is clear that the results in this work divert heavily from the values arrived at in [1, 15]
as the thermal conductivity values are significantly larger than the values in fig. 14.

The thermal conductivity relations between the different samples seem to be in line
with [15] since the thermal conductivity is increasing with the thickness of the film.
From the results a connection between film thickness and thermal conductivity can be
observed.

A trend that can be seen is that the data measured for higher laser fluences result in
lower thermal conductivity. This shows a connection between deposited energy and
thermal conductivity.

3.2 Result B

These results, presented in table 4, differ from Result A in that the thickness of all films
were modeled as 80 nm in order to see how the modeled thickness affects the results.
This is the thickness found for the 10 minute sample with ion beam milling [14].

Table 4: Calculated values of the thermal conductivity of the graphite flakes depending
on sample and fluences with the thickness of all films put to 80 nm.

Sample F (mJ(cm)−2) b (nm) k (Wm−1K−1)
ESRF 20 80 54
10 minutes 20 80 64
20 minutes 20 80 78
ESRF 30 80 33
10 minutes 30 80 52
20 minutes 30 80 65

The assumption of thicker graphite films results in increased thermal conductivity.

A connection between thermal conductivity and film thickness is also seen in this re-
sult. This connection can therefore be seen to not only be an effect of the modeling as
it is also true in the case where the thicknesses were set to the same value.

3.3 Result C

In these results, presented in table 5, the ESRF sample was modeled with a film thick-
ness of 35 nm in order to be compared to [1] in which the same sample was used and
the thickness of the film was determined to be 35 nm. In [1] a fluence of 25 (mJ(cm)−2)
was utilized, which resulted in a thermal conductivity of 0.7 Wm−1K−1.

Table 5: Calculated values of the thermal conductivity of the graphite flakes depending
on sample and fluences for the ESRF sample with film thickness 35 nm.

Sample F (mJ(cm)−2) b (nm) k (Wm−1K−1)
ESRF 20 35 24
ESRF 30 35 18
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As seen in table 5 the obtained results unfortunately diverge heavily from the deter-
mined values in [1].

3.4 Error sources

It seems reasonable to assume that there is some software problems in the modeled
system which affects the results. This is clear as the results of [1] could not be recre-
ated even though the same sample was used. Also the calculated thermal conductivity
was larger than that of bulk graphite which contradicts the results in both [1, 15]. If
there would have been more time available this would have been investigated and the
software problems would have been corrected.

Other error sources include uncertainty in the thickness of the films. It is uncertain
if the method for approximating the thickness of the graphite films was accurate. As
discussed the thickness of the 10 minutes sample was measured to be approximately
80 nm. The ESRF sample which was determined to be 35 nm thick in [1] was esti-
mated to be around 30 nm using the method in section 2.2.3. This could mean that
the estimations of the film thickness yields values that are too small. This does not
however account for the discrepancies with [1, 15] as it has been shown through com-
paring results A and B that increasing the thickness in the model increases the thermal
conductivity.

Other error sources include ambiguity in the rotation of the detector. The rotation
of the detector was determined by rotating an overnight diffraction image (an image
which contains all diffraction points from X-ray shots taken over night on an unex-
panded sample) and determining at which angle the diffraction pattern was correctly
aligned by eye. This can give a error in rotation angle of some degrees. Whilst this
would have an impact on the data it should only result in a scaling effect and thus not
affect the thermal conductivity.

The distances between the sample and the detector was estimated but not measured
meaning the uncertainty in the value is large. This should however only affect the con-
verting of the measured data to strain which only scales the values. Thus this should
not affect the thermal conductivity and should be accounted for by the amplitude fit
factor.

The optical absorption depth of graphite used was experimentally determined and
not the tabled value which is smaller. This value was chosen as it was the same used
in [1] in order to reproduce the results arrived at in that article. The system was also
modeled using the tabled optical absorption depth and whilst the thermal conductiv-
ity was reduced slightly it was not enough to account for the discrepancies between
the results and [1, 15].
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4 Conclusion and outcome

In this thesis TRXD has been shown to be used to investigate the thermal properties
of nanomaterials. Whilst the results disagree with previews results it has been shown
that the thermal conductivity can be investigated and that it is reduced with the thick-
ness of the film. A connection between fluence (and through it deposited energy) and
thermal conductivity was also observed as higher fluence resulted in lower thermal
conductivity.

In order for the results to give useful information additional modeling needs to be
done, in order to determine the thermal properties with higher certainty. This work
is a first step towards such modeling and through it hopefully the effect due to the
thickness of the material, on the thermal properties can be better determined. This is
important both for the understanding of how heat transfers in nanomaterials as well
as for the many possible applications of nanoscale graphite.
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Appendices

A Code

Python code for modeling and fitting the heat equation.

from scipy import*
from pylab import*
from numpy import*
import matplotlib.pyplot as plt
import timeit
import scipy.optimize as opt

Files = [’Spectra10min20mJ_ny.txt’,’Spectra10min30mJ_ny.txt’,
’Spectra20min20mJ_ny.txt’ , ’Spectra20min30mJ_ny.txt’,
’SpectraESRF20mJ_nynyny.txt’,’SpectraESRF30mJ_nyny.txt’]

Flist = [ 200 , 300 , 200 , 300 , 200 , 300 ]
dlist = [ 30e-9 , 30e-9 , 36e-9 , 36e-9 , 28e-9 , 28e-9 ]

for iii in range(len(Files)):

#%% Loading the data, which is converted to strain
data = np.genfromtxt(Files[iii])
xdata = data[:, 0]
ydata = data[:, 1]

#%% Constants That I Define
start = timeit.default_timer()
# constants
C = [1.535e6,3.96e6] #volumetric heat capacity
delta = [140e-9,15e-9] #optical absorbation depth
F = Flist[iii] #incident fluence
Texp = 27e-6 #thermal expansion coefcient
knickel = 91

# fit parameters
kgraphite = 1 #thermal conductivity guess
aa = 1 #free fit paramater
offset = 0

d = dlist[iii] #graphite film thickness

#define z variable
a = [10e-10 , 30e-10 , 60e-10] #position step size
zsteps = [int(40 * d / a[0]) , int((20* d) / a[1]), int((0 * d) / a[2])]

#define t variable
h = [0.1e-12 , 50e-12] #time step
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tsteps= [200 , int((xdata[-1]-200*h[0])/h[1])]

#%% Constats That I Calculate
InterfaceIndex = int(d / a[0]) #graphite nickel interface index
z = concatenate((linspace(0, a[0] * zsteps[0], zsteps[0]) ,

linspace(a[0] * (zsteps[0]+1),a[0]*(zsteps[0]+1)+a[1]*zsteps[1],zsteps[1]),
linspace(a[0] * (zsteps[0]+1)+a[1] * (zsteps[1]+1),
a[0]*(zsteps[0]+1)+ a[1]*(zsteps[1]+1)+a[2]*zsteps[2],zsteps[2])))

zz=len(z)
time = concatenate((linspace(0,h[0] * tsteps[0],tsteps[0]) ,

linspace(h[0]*(tsteps[0]+1),h[0]*(tsteps[0]+1)+h[1]*tsteps[1],tsteps[1])))

p = [kgraphite, aa, offset]

#%% Defining functions

def T01(z, d, aa, F, delta, C ): #function to calculate time zero temperature
if z<=d:

T0=aa*F/(delta[0]*C[0])*exp(-z/delta[0])
else:

T0=aa*F/(delta[1]*C[1])*exp(-d/delta[0] - z/delta[1] + d/delta[1])
return T0

def CNdef(p,h,C,a,knickel,zz,InterfaceIndex,zsteps):
r1 = (p[0]/C[0])*h/a[0]**2 #Matrix coefficients
r2 = (knickel/C[1])*h/a[0]**2
r3 = (knickel/C[1])*h/a[1]**2
r4 = (knickel/C[1])*h/a[2]**2
A = np.zeros((zz,zz))
B = np.zeros((zz,zz))
for i in range(zz): #define matrices A (LHS), B (RHS)
if i==0:
A[i,:]=[2+1*r1 if j==0 else (-r1) if j==1 else 0 for j in range(zz)]
B[i,:]=[2-1*r1 if j==0 else r1 if j==1 else 0 for j in range(zz)]

elif i==zz:
A[i,:]=[-r4 if j==zz-2 else 2+2*r4 if j==zz else 0 for j in range(zz)]
B[i,:]=[r4 if j==zz-2 else 2-2*r4 if j==zz else 0 for j in range(zz)]

elif i <= InterfaceIndex:
A[i,:]=[-r1 if j==i-1 or j==i+1 else 2+2*r1 if j==i else 0 for j in range(zz)]
B[i,:]=[r1 if j==i-1 or j==i+1 else 2-2*r1 if j==i else 0 for j in range(zz)]

elif i <= zsteps[0] and i > InterfaceIndex:
A[i,:]=[-r2 if j==i-1 or j==i+1 else 2+2*r2 if j==i else 0 for j in range(zz)]
B[i,:]=[r2 if j==i-1 or j==i+1 else 2-2*r2 if j==i else 0 for j in range(zz)]

elif i <= zsteps[0] + zsteps[1] and i > zsteps[0]:
A[i,:]=[-r3 if j==i-1 or j==i+1 else 2+2*r3 if j==i else 0 for j in range(zz)]
B[i,:]=[r3 if j==i-1 or j==i+1 else 2-2*r3 if j==i else 0 for j in range(zz)]

else:
A[i,:]=[-r4 if j==i-1 or j==i+1 else 2+2*r4 if j==i else 0 for j in range(zz)]
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B[i,:]=[r4 if j==i-1 or j==i+1 else 2-2*r4 if j==i else 0 for j in range(zz)]
return A , B , r1

def CN(p,h,C,a,knickel,zz,InterfaceIndex,zsteps,z,d,F,delta,time,tsteps):

u = zeros(zz)
for i in range(len(u)):

u[i] = T01(z[i], d, p[1], F, delta, C )

umean = zeros(len(time))
for j in range(len(tsteps)):

A , B , r1 = CNdef(p,h[j],C,a,knickel,zz,InterfaceIndex,zsteps)
bb = B.dot(u)
for i in range(tsteps[j]):

umean[i+j*tsteps[0]] = mean(u[1: InterfaceIndex-3])
u[:] = np.linalg.solve(A,bb)
bb = B.dot(u)

Strain = umean * Texp * 100
InterestStrain = zeros(len(xdata))
for i in range(len(xdata)):

InterestStrain[i] = Strain[find_nearest(time, xdata[i])]
# InterestStrain[i] += p[2]

return InterestStrain

def find_nearest(array, value):
array = np.asarray(array)
idx = (np.abs(array - value)).argmin()
return idx

def residuals(p):
return ydata - CN(p,h,C,a,knickel,zz,InterfaceIndex,zsteps,z,d,F,

delta,time,tsteps)

CN(p,h,C,a,knickel,zz,InterfaceIndex,zsteps,z,d,F,delta,time,tsteps)

stop = timeit.default_timer()
print(’time test code: ’ , stop-start)

#%% fitting
popt, msg = opt.leastsq(residuals, p)
yfit = CN(popt,h,C,a,knickel,zz,InterfaceIndex,zsteps,z,d,F,delta,time,tsteps)

#%% Rescale X for ploting
Ptime = time*1e9
Pxdata = xdata*1e9
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#%% plotting
figure(6*iii,figsize=(15,15))
plot(Pxdata,ydata,’o’, label=’Data’)
plot(Pxdata,yfit , label=’Fit’)
tick_params(axis=’x’, labelsize=30)
tick_params(axis=’y’, labelsize=30)
plt.ylabel("Strain (%)", fontsize=30)
plt.xlabel("Time (ns)", fontsize=30)
plt.grid(False)
filename = ’111 Nya dirichlet final figurer’ + Files[iii] + ’.jpg’;
plt.savefig(filename)
plt.legend()
plt.show()

stop = timeit.default_timer()
print(’\nSpectra’ , Files[iii] ,

’\nThermal Conductivity’ , popt[0] ,
’\nAmplitude fit factor’ , popt[1] ,
’\nOffset’ , popt[2] ,
’\ntime whole code: ’ , stop-start)
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B Plots

(a) Result B

(b) Result C

Figure 15: The fitted data of the ESRF sample data for the fluence of 30 mJ(cm)−2.
Shows measured data (blue dots) and fitted curve (yellow line) as strain against time
for results B and C.
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