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Abstract

In regions where illiteracy is widespread, it can be a challenge to keep protocol
over the nutritional intake of subjects during long term dietary studies. People
who take part in the studies can often not make records of their meals in a con-
sistent manner, which can complicate data collection. One method used, which
mitigates this problem, have the subjects of the studies take photographs of the
meals. The images are then compared to already existing images of food, a photo
atlas, where the weight is known, to yield a weight estimation.

In this thesis, the possibility to use such a photo atlas for machine learning al-
gorithms to classify and segment the meal components was examined. To esti-
mate weight of food from an image, a method was assessed where the amount of
pixels of the segmented meal component was compared to a marker of known
area. Mathematical transformations were used to correct for projective distor-
tions a�ecting the marker area. To reduce color variations which can occur due
to variations of lighting, methods of color correction were also examined as an
aid in the classi�cation.

The area of the ROC-curves (AROC) produced for each method were used to as-
sess the classi�cationmethods. An example was a Random Forest algorithm used
to classify pixels individually. To improve performance, the set of pixel features
used to train the algorithm were chosen from pixels found to be especially hard
to classify. In the thesis, the use of a Bag-of-Visual-Words approach produced the
best results, where the found values for each meal component were above 0.90
in AROC. Using methods for color correction used yielded better results when
implemented on images used in a convolutional neural network. An increase in
AROC from 0.84, using original images, to 0.90, when using color corrected
images was yielded.

Keywords: Random Forest, Bag-of-Visual-Words, U-net, X-rite, Color Correction, Per-
spective Correction
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Chapter 1

Introduction

In regions where illiteracy is widespread, it can be a challenge to keep protocol over the nutri-
tional intake of subjects during long term dietary studies. People who take part in the studies
can often not make records of their meals in a consistent manner, which can complicate data
collection. This problem can today be partly overcome using photo atlases, containing pho-
tographs of meal components of different weights. The subjects of the studies take photographs
of their meals and later have the size compared to corresponding meals in a photo atlas, in or-
der to make an assessment of the nutritional intake over a period of time. This is referred to by
Lazarte et al. as the food photography 24-h recall method [1].

Instead of manually making estimates based on images, the meal components can be clas-
sified automatically, and the size of each component can be used for estimation of weight, by
extracting the necessary information from the images. From this information the nutritional
value can be taken out using existing tables conveying nutritional data. This could have an ad-
vantage over manual assessment in both speed and accuracy, and for the alleviation of workload
of the personnel conducting the studies and of the subjects of the dietary evaluation. A method
for automatic assessment of food should be implemented in a way that minimises responsibility
of the subjects taking part in the study, i.e. such a method should be developed as to not burden
the subjects more than in the existing 24-h recall method. The reason for this is mostly in order
to motivate participation in a study and increase the compliance with data collection.

The problem of classifying food from images using machine learning is inherently a difficult
one to solve. Machine learning algorithms (discussed in section 3.3) have, over the years, found
to be helpful in recognising various objects from images. Though some objects, or images
thereof, are easier to classify than others. Take for instance airplanes. They may differ in size
and appearance, but will have basically the same set of features, i.e. wings, oblong shape etc.
The outcome can be quite different concerning images of food. There may be such a variance
within the same class of a meal. This variance is hard for algorithms to capture; even with the
same ingredients, an image of a salad may differ much in appearance from another. Still, much
research is being made based on the recognition of food and the quantity present in an image.
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1.1 Earlier work

The thesis will be based on the ideas presented by Lazarte et al. [1], where participants in
dietary studies estimate the amount of meals by manually assessing photographs taken of them.
A method that mimics the human perception of food quantities is therefore to be taken forward.
The mobile app ’Foodvisor’ has gained popularity over Europe the last year as a food classifier
based on convolutional neural networks [2]. These networks usually require vast amounts of
data to work adequately, and for that end uses the images taken by its users to improve the
network. The automatic assessment of weight does also seem to be prone to error, and requires
correction and input by the user to work as intended [2].

Bossard et al. [3] concluded results of classification of food images, creating the food im-
age set "Food-101", an image set of 101 food categories, with 101, 000 images. They used a
method of partitioning the images in that image set by using the SLIC algorithm, further ex-
plained in section 3.1.4, to label the images of food as a whole, without segmentation of the
meals. Similarly, a deep learning approach, see section 3.3.6, was used by Mezgec Seljak
[4], with more than an 80% accuracy for all methods tried, but without semantic segmentation.
With the rise of deep learning algorithms in the beginning of the decade, the accuracy of clas-
sification of images have skyrocketed. In recent years, segmentation algorithms have emerged
with great accuracy, where fully connected convolutional networks, which are explained further
in section 3.3.6, are considered state-of-the-art methods for that end. Aguilar et al. proposed
using a fully connected neural network for semantic segmentation, finding bounding boxes of
the meal components [5], and with keen results. The application of using bounding boxes is
not desirable in the scope of this thesis, as the boundaries of meal components are needed for
quantity assessment.

Assessment of weights of food objects from images have been approached in different ways.
One approach have been using stereo images with a reference object present in the images, such
as Dehais et al. [6], with an average error of less than 10%. Zhu et al. were also able to achieve
an error of less than 6% by fitting segmented food to geometrical models, cylindrical or prism-
like, using single view images of food objects [7]. Liang et li [8] used a yuan coin, whose
diameter is known, as a reference for size in every image, and having the food objects assigned
one of three standard shapes: columnar, ellipsoid or irregular. This was in order to map the
information from the 2D images to 3D information.

1.2 Outline and Delimitation of the Thesis

1.2.1 Image Acquisition

To lessen the workload of image acquisition on the authors part, only five different food classes
were used. A first assessment of segmentation methods was made on meal components that
were separated from each other. Had the results been more successful, and time had permitted,
the methods would have been continued on images where meal components would have been
adjacent to each other.
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1.2.2 Segmentation
The first and most crucial part of the thesis project is the semantic segmentation, finding meth-
ods that not only classifies the meal components present in an image, but also provides a spatial
labelling of them.

Classification of images has in recent years seen great results when done by convolutional
neural networks (CNN), the theory of which is presented in section 3.3.6. This method requires
large amount of images to amount to adequate results. In the scope of this thesis it does not
seem reasonable to achieve such a large set of images. Instead, methods which do not require
quite as much information will be used to perform classification, one of which is a CNN of a
novel architecture, see section 3.3.6. The author expects that the standardised background used
when photographing food should mitigate errors in classification, that are otherwise prone to
occur due to variations in the training data images. The composition of the images is explained
in section 2.

1.2.3 Weight Estimation
Quantity estimation of the food will be made using different approaches. Firstly, simply mim-
icking the approach of human visual assessment, comparing sizes in images to the size of meal
components of a known weight. By doing this, the size reference used must be corrected for
perspective errors, the theory of which is explained in section 3.2.2, as a marker in an image
will have distorted shape depending on the position of the camera.

1.3 Aim of the Thesis
The aim of this thesis was to perform classification of meal components present on a plate
and also provide an estimate for weight, given a pair of images of the same meal components at
different viewpoints. For this end, a suitable machine learning algorithm that performs semantic
segmentation was assessed. The segmented regions were then be used to aid in the final weight
assessment. The highest goal set was to find an assessment method that can yield a nutritional
estimate that does not differ more than 5% from the actual nutritional value.
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Chapter 2
Photo Atlas

A photo atlas can be seen simply as a catalogue of images of different meal components, of
varying weights. The photo atlas is used to assess the weight of meal components in other
photographs by comparison. Five meal components were photographed and added to the photo
atlas used in this thesis: rice, potatoes, sausage, broccoli and haricots verts.

All images of meal components were taken in pairs on the same white plate, placed on a
tartan patterned table cloth. For the images used in this thesis, a marker of known size was
added, a variant of a checkerboard.

Figure 2.1: Examples of all the different meal components of different
weights in the atlas, with a black and white marker. All images were
photographed in top view.

Each of the five meal components in the atlas has been photographed for equal range in
weight, 50g-250g in steps of 25g, taken at two different angles, top view and (approx.) 60

degrees from the plate. The photo atlas consists of 90 images in total. The images were taken
so that the table cloth covers the image space. The camera used was an iPhone 5s camera,
taking images at 2448⇥3264 pixels. The focal length of the camera was kept the same between
images from different views of the same object. Examples of the photographs that the photo
atlas in this thesis contains, taken from top view, can be seen in figure 2.1. Each image contains
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a marker of known size, either of the appearance as shown in figure 2.2a or as in figure 2.2b.
Some extra images of hot dogs on a plate were also made, but were only used when assessing
color correction methods, as discussed in section 3.1.2.

2.1 The Markers
The markers used in the thesis are variants of checkerboards, where the tiles are of known size.
Checkerboard markers are commonly used in images as a mean of camera calibration, which
is explained in section 3.2.1, as well as a size reference. Two markers were used: one in black
and white, and one where a color chart has been integrated with the tiles. A common feature
between the markers that were used is that the utmost dark tiles have rounded edges (against
white background) such that the corners would not blend in with the background and cause
difficulties when assessing the position of the corners. The colored marker adds reference
points for known instances of colors, which were to be used for color correction, which is
discussed in section 3.1.2.

2.1.1 Black & White Marker
One of the markers is a 3⇥ 3 checker board, of which 5 tiles are dark and 4 are white. Each tile
is a square with a side of 16 mm. This marker can be seen in figure 2.2a.

2.1.2 X-rite Colorchecker Marker
A marker of 24 square tiles of sidelength 12 mm, arranged in 4 ⇥ 6 grid, equally divided into
dark and white tiles. Each tile contains a colored disk, all in all 19 unique colors, as one row
contain disks of differing grayscale intensities. Each separate tile of the marker corresponded
to colors as detailed in [9].

Having the color values in each pixel compared to the pixel values in the color marker,
calibration of color can be made in the photograph. The color variation between images of the
same object should then be reduced, which in turn should simplify classification of the images.

This marker can be seen in figure 2.2b.

(a) The black and white marker
used for size reference in im-
ages.

(b) The checkerboard marker, where each tile con-
tains a color comparable to a tile in a X-rite color
checker. Used for size reference, as well as color
correction in images.

Figure 2.2: Variants of markers used in the thesis.
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Chapter 3

Theory

3.1 Image Analysis

For the automatic classification of images, one needs to first extract information from them in
a consistent manner by using image analysis.

In this section, feature representation of colors and the correction of such are discussed,
as well as a common feature representation of texture, using Speeded-up Robust Features. A
method for partitioning an image in subsections of similar, neighboring pixels is also discussed
at the end of this section.

3.1.1 Color Representation

To humans, colors are a visually striking feature of food and, as such, there is reason to believe
that the information held within color features can be of use in machine learning algorithms.
Color is not an inherent feature of objects though, but is all due to the perception of the beholder.
A human perceives color in, the visible range of wavelength of light, 380 � 700 nm. The
perception of color in the human eye is determined by three colorsensitive light receptors which
each can perceive a certain range of wavelength of red, green and blue colors. The combination
of the stimuli which light creates then yields the perception of color.

The most common representation of colors in modern devices are the various RGB color
spaces [10]. The CIE LAB color space is a representation of color which more closely corre-
sponds to how the human eye perceives color, as well as having a device independent repre-
sentation in contrast to RGB, which is device dependent, and therefore the coordinates in the
colorspace may shift between devices [10].
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CIE RGB Color Space
Most modern devices are using pixels consisting of three different diodes, each emitting light
at narrow band of wavelength corresponding to how humans perceive red, green and blue light.
For the CIE RGB color space, taken forward by the Commission Internationale de l’Eclairage
in 1931, the LEDs emit light at mean wavelengths of about 700 nm, 566.1 nm and 435.8 nm,
respectively [10].

Each of the three diodes that make up a pixel can be assigned a value between 0 � 255.
0 being the diode turned off and 255 corresponding to the highest light intensity it can emit.
It was shown in the nineteenth century that a combination of light from red, green and blue
lamps can be become indistinguishable from another colored lamp [11]. In the same sense,
this is carried out today on modern displays. Combining each diode with their own individual
brightness value allows the perception of essentially any color.

CIE LAB Color Space
The LAB representation is a three dimensional color space which more closely relates to how
humans perceive color, in the way that equal changes in the quantitative vectors values result in
an equal change in perception of the color [12]. It is also device independent, and will therefore
carry the same vector representation for any color between devices, i.e. monitors or the like.

The color space is represented by a color plane, comprised of two (a, b) vectors, each of the
two values ranging between (�127, 128). The L-coordinate shows the brightness of the color
in a scale 0 � 100, where 100 is the brightest [12].

3.1.2 Color Correction
The images used in the segmentation and classification of food objects are prone to be affected
by different kinds of lighting, and hence distortion in color is bound to take place. To keep the
color features invariant of light exposure or shading, the colors in the image may be mapped to
a groundtruth colorchecker, the X-rite marker described in section 3.1.2. Finlayson et al. [13]
describes a few methods for color correction in images using an X-rite color checker, some of
which are described below.

Linear Mapping
Assuming a RGB-color space, a linear mapping is found through the equation system;

M⇢ = x, (3.1)

where M are the weights which maps the color vectors ⇢ to the ground truth colors x, and ⇢
and x are vectors of size 3 ⇥ N , N being the number of corresponding color vectors between
the marker colors, which means that N = 24 when using the X-rite colorchecker. The weights
are represented by the 3 ⇥ 3 matrix M which minimises the least square error:

min

M
kM⇢ � xk. (3.2)
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The least square solution is found using the Moore-Penrose pseudoinverse for solving the
equation system:

M = x⇢T

(⇢⇢T

)

�1. (3.3)

The found mapping can then be applied to all color vectors in the image to perform the
linear color correction.

Polynomial Mapping

Below are vectors whose elements are polynomials whose factors are coordinates in the color
space, up to the fourth degree. It can be shown that any polynomial with factors made up from
each vector channel are linearly independent from any other such polynomial [13]. Adding
elements of polynomials of higher degrees to the vector will therefore add further information
and improve the color correction by capturing nonlinear behavior found in the image.

P(1) = (R,G, B)

P(2) = (R,G, B,RG,RB, BG,R2,G2, B2

)

P(3) = (R,G, B,RG,RB, BG,RGB,R2

G,R2

B,
G

2

R,G2

B, B2

G, B2

R,R3,G3, B3

)

P(4) = (R,G, B,RG,RB, BG,RGB,R2

G,R2

B,G2

R,G2

B,
B

2

G, B2

R,R3,G3, B3,R2

G

2,R2

B

2,G2

B

2,R3

G,R3

B,
G

3

R,G3

B, B3

G,R2

GB, B2

RG,G2

RB,R4,G4, B4

)

here the polynomial vectors can be seen up to the fourth degree, where R,G and B are the
intensity values corresponding to each device pixel LED, as described in section 3.1.1. The
polynomial mapping then can be found by starting from the expression

MP

(k) = X, (3.4)

where P(k) is a polynomial vector of the k:th degree. M is a matrix containing the weights
assigned each of the polynomial vector elements, which maps P(k) to X, the new color space.
Expression (3.4) can therefore be written as:

2
666666664

wT

R

wT

G

wT

B

3
777777775P

(k) =

2
666666664

R

0

G

0

B

0

3
777777775 . (3.5)

Here w
R

,w
G

,w
B

are vectors mapping a polynomial vector to an element of a coordinate in
the ground truth color space. The prime signs on the coordinate on the RHS denotes the new
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color space to which the image is mapped. The below expression can be used to calculate the
weights.

2
666666666666666666666666666666664

(P(k)

1

)

T

0 0

0 (P(k)

1

)

T

0

0 0 (P(k)

1

)

T

...
...

...
(P(k)

n

)

T

0 0

0 (P(k)

n

)

T

0

0 0 (P(k)

n

)

T

3
777777777777777777777777777777775

2
666666664

w
R

w
G

w
B

3
777777775 =

2
6666666666666666666666666666664

R

0
1

G

0
1

B

0
1

...
R

0
n

G

0
n

B

0
n

3
7777777777777777777777777777775

.

The subscripts denotes the n corresponding coordinates in the different color spaces that are
to be mapped to each other. The weights can, similarly to the linear mapping in the above
section 3.1.2, be found using the pseudoinverse to solve the equation system. While polynomial
color correction can be used to find better results than a linear mapping, the effects of noise
are increased. Also, Finlayson et al. have stated that polynomial mapping using an X-rite
colorchecker is not enough to perform sufficient color correction [13].

Root Polynomial Mapping
The mapping between color spaces using root polynomials is essentially the same as in section
3.1.2, but using vectors where the k:th root are taken on the monomial elements of the k:th
degree, seen below.

The root polynomial vectors can be seen to hold fewer elements than the polynomial vec-
tors of the same order, as seen in section 3.1.2. This gives an an advantage over polynomial
mappings, in the sense that a mapping found using root polynomial vectors still can capture
nonlinear color distribution, but requires less information to do so. [13].

⇢(2) = (R,G, B,
p

RG,
p

RB,
p

BG)
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p
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2

GB,
4

p
B

2

RG,
4

p
G

2

RB).
Using the above vectors in expression (3.4), yields the weights for the root polynomial

mapping.

3.1.3 Speeded-up Robust Features
Finding distinguishable features in an image is of the essence when using machine learning
systems. The significance of color as a feature has been mentioned. Speeded up robust-features
(SURF) are designed to be robust descriptors of image texture, using grayscale images as input.
More in-depth details about SURF can be found in the original paper by Bay et al. [14].
The features extracted from an image point, a pixel, are based on the intensity found in the
neighborhood found around that specific image point. Around the point of interest, a descriptor
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point, a circular area is taken out. By sliding a circular segment of angle ⇡
3

, the orientation
of the descriptor point is found by finding which placement of the circle segment that yields
the highest value of Haar wavelet response. This is visualised in figure 3.1a, [14]. This yields
the dominant direction, denoted by a red arrow in figure 3.1a and as a brown arrow in figure
3.1b. Around the interest point, a square area is placed and positioned in the direction of the
found dominant orientation, as seen in figure figure 3.1b. The area is divided into a 4 ⇥ 4 grid,
which in turn is also divided into a 4⇥ 4 grid. For each of these smaller gridded areas, the Haar
wavelet response is made at 25 equally spaced sample points. The wavelet response in the
vertical and horizontal direction, compared to the found point orientation, is called d

x

and d

y

,
respectively. For each of the 16 subregions, the sum of each wavelet response is found resulting
in a 4-dimensional feature vector for each subregion, v = (

P
d

x

,
P |d

x

|,P d

y

,
P |d

y

|), [14]. The
full descriptor feature vector is therefore 64-dimensional for each chosen point of interest in an
image. These features are invariant of scale and rotation of the image. Normalising the feature
vectors further make them invariant to contrast as well.

(a) Visualisation of the orientation found
for each point of interest. The blue
points correspond to Haar wavelet re-
sponses, and the gray area the circle seg-
ment where the wavelet responses are the
most prevalent.

(b) Visualisation of SURF features extracted. The
vectors d

x

and d

y

are the horizontal and vertical
components, respectively, of the Haar wavelet re-
sponse for points found in the subregions of the grid.

Figure 3.1: Figures visualising the extraction of a SURF vector from
an interest point. Using the dominant orientation found in figure 3.1a,
denoted by a red arrow, a (SURF) vector representation of the descrip-
tor point can be found, as seen in figure 3.1b. [14]

3.1.4 Simple Linear Iterative Clustering
The simple linear iterative clustering (SLIC) algorithm, as described Achanta et al. [15], parti-
tions an image into a specified amount of regions in which the pixels are similar to each other.
These regions will be referred to as ’superpixels’. For specific objects in an image, superpixels
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usually conforms to the boundaries of discernible regions, making it a helpful tool in segmen-
tation algorithms. The procedure is reminiscent of k-means clustering, but works considerably
faster as the algorithm only ever acts on a small area of the total data. A point grid is initialised
by setting the variable k, which is to be the number of desired superpixels, which are roughly
the same in area. The distance between the points are then set to be S =

q
N

K

, where N is the
number of pixels in the image. At each point in the grid, a cluster center, C

k

, is initialised,
around which a superpixel is meant to be placed. It is assumed that a pixel belonging to a
certain cluster center is within an area of size 2S ⇥ 2S around the center. To find the pixels that
will adhere to region boundaries present in an image, a balance should be found between color
values of the pixels and their distance from the cluster center. The 3 ⇥ 3 pixel neighborhood
around the cluster center is searched to find the point of lowest gradient values of the image,
and the center of the clusters are moved there from the original grid points, to move them
away from image edges and away from pixels whose data have been corrupted. The gradient
calculated uses intensity and color plane of the CIELAB representation when calculating the
gradient G(x, y) of an image point, in the below manner [15]:

G(x, y) = k I(x + 1, y) � I(x � 1, y) k2 + k I(x, y + 1) � I(x, y � 1) k2, (3.6)

where I(x, y) is the LAB vector values [l, a, b], as explained in section 3.1.1, for a pixel at
position (x, y) in an image.

A pixel is labeled to belong to whatever cluster center is closest to it and k · k corresponds
to the L

2

-norm. The process is iterated and cluster centers are assigned new positions based on
the neighbouring gradient vectors until convergence is found. To fix for any segments which
are not connected to their specified cluster, such segments are made to belong to the largest
cluster of pixels. An overview of the SLIC algorithm is described as algorithm 1.

Algorithm 1: Simple Linear Iterative Clustering, as described by Achanta et al. [15]
Initialize K cluster centers C

j

= [l

j

a

j

b

j

x

j

y

j

]

T , 1  j  K

by sampling pixels at regular grid steps S =
q

N

K

,
where N is the number of pixels in the image.
Move cluster centers to the lowest gradient position in a 3 ⇥ 3 neighborhood.
Set label l(i) = �1 for each pixel i.
Set distance d(i) = 1 for each pixel i.
repeat

for Each cluster center C

k

do
for Each pixel i in a 2S ⇥ 2S region around C

k

do
Compute the distance D between i and C

k

.
end
if D < d(i) then

set d(i) = D

set l(i) = k

end
Compute new cluster centers
Compute residual error E

end
until E  threshold;
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3.2 Computer Vision
Assessing information from images in a way that mimics human understanding of visual im-
pressions is a core concept in the field of computer vision. In this section, a common mathemat-
ical model of a camera, the pinhole camera model, is explained, as well as how this model can
be used to form a two-dimensional projection from three dimensional space. Using the same
camera, in the mathematical sense, means that homographies between images of the same ob-
ject can be found. These homographies map the projections to each other.

3.2.1 Pinhole Camera Model

Pro jection Object

Figure 3.2: Shematic image of pinhole camera.

The pinhole camera is a rudimentary camera. It has no lens and gets its name from the small
opening in which light enters. In computer vision, modern cameras are often modelled as an
ideal pinhole camera [16]. The pinhole camera can simply be seen as a box, and when light
from an object enters the pinhole entrance, an upside down projection is formed at the back
wall of the box, see figure 3.2.

Assume a coordinate system, x
c

= [x

c

, y
c

, z
c

], in which the camera shutter, the pinhole, is
defined at the point of origin, denoted by F

c

in figure 3.3. Further assume that the plane in
which projections are formed, normal to the viewing direction (denoted by z

c

) of the camera,
in a point z

c

= z

0. This is the image plane, spanned by the image coordinate vectors u and v,
depicted in grey in figure 3.3, whose middle point is called the principal point. Here is also an
example of a 3D-point, in the world coordinate system X = [X,Y,Z], to be projected on the
image plane, P = [X

p

,Y
p

,Z
p

], depicted.
For the same camera but moved another point in space, a new camera coordinate system,

x0 = [x

0, y0, z0] is formed by a transformation by rotation and translation. A translation vector
and rotation matrix will map the different coordinate systems, x

c

and x0, to each other in such
a way that

x0 = Rx
c

+ t. (3.7)

A translation vector t, of size 3 (given the 3-dimensional space), is a vector whose elements are
added to a coordinate, effectively shifting the position of an object at a specific coordinate, i.e.
performs a transformation R

3 ! R

3.
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P = (X

p

,Y
p

,Z
p

)

F

c

z

c

y

c

x

c

Y

X

v

u

principal

point

Viewing

direction

Figure 3.3: Example of coordinate system of a camera. The image
plane is seen as the gray plane spanned by u and v, whose middle point
is called the principal point.[17]

A rotation matrix also transforms a point to the same space. In three dimensional space a
rotation matrix have the form of R = R

x

R
y

R
z

:

R
x

=

2
666666664

1 0 0

cos(✓
x

) 0 �sin(✓
x

)

sin(✓
x

) 0 cos(✓
x

)

3
777777775 , R

y

=

2
666666664

cos(✓
y

) 0 sin(✓
y

)

0 1 0

�sin(✓
y

) 0 cos(✓
y

)

3
777777775 , R

z

=

2
666666664

cos(✓
z

) �sin(✓
z

) 0

sin(✓
z

) cos(✓
z

) 0

0 0 1

3
777777775 .

Here, ✓
x

, ✓
y

and ✓
z

are the rotation angles around the x�, y� and z�axis, respectively. The
elements of a translation vector, t = [x

t

y

t

z

t

]

T , are the values by which each coordinate vector
value is translated in space.

Expression (3.7) can be further compressed by adding an element to the coordinate vector
such that x = [x y z 1]

T , for which the projection can be written as:

h
R t
i
2
66666666666664

x

y

z

1

3
77777777777775
=

2
666666664

x

0

y

0

z

0

3
777777775 . (3.8)

This will yield the mapping between the different coordinate systems belonging to each
camera, and in effect, a mapping between the projections. The mapping from real world to
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image matrices is found by using the inner parameters of the camera: skew, aspect ratio and
focal length, as well as the principal point. The K-matrix, as seen below, maps, or corrects, the
image plane to fit a photography:

K =

2
666666664

� f s f x

0

0 f y

0

0 0 1

3
777777775 . (3.9)

The skew factor s corrects the the skewness found in the projection, making distorted pixels
rectangular and placed accordingly in an image grid. The aspect ratio, � is used to rescale the
axis of rectangular pixels so that the sides of the pixels become of square shape. The focal
length is used to fit the projected points to pixels in an image, and the principal point is the
coordinate of the image where the center point of the projection plane is mapped to, see figure
3.3.

Knowing the rotation and translation mapping the coordinate system of a camera to a refer-
ence system, as well as the inner parameters of the cameras used, each camera can be assigned
its own specific camera matrix A:

A = K
h
R t
i
. (3.10)

If the inner parameters are unknown, they can be estimated using a photographed object of
known size. Finding the inner parameters is known as camera calibration [18].

The camera matrix A is then a mapping between a point in three dimensional space X and
its corresponding point in the image plane, x, up to a certain scale, denoted by the constant �.

�x = AX. (3.11)

Considering the projection of 3D-points all belonging to the same plane, a coordinate sys-
tem can be chosen such that z = 0 for all points in space that are to be projected onto the image
plane. This simplifies the calculations from expression (3.8) by replacing the rotation matrix
R with

h
r

1

r
2

r
3

i
, where each element is a column of the rotation matrix R, as described by

Zhang [19].

K
h
r

1

r
2

r
3

t
i
2
66666666666664

x

y

0

1

3
77777777777775
= K
h
r

1

r
2

t
i
2
666666664

x

y

1

3
777777775 = �

2
666666664

x

0

y

0

1

3
777777775 . (3.12)

Here, the matrix H = K
h
r

1

r
2

t
i

is the mapping which relates a planar object to its
projection. Matrices which map different projections to each other instead, and not the depicted
3D object. These mappings then performs a projective transformation of one image to the other.

3.2.2 Projective Transformation
Since a mapping between an object and its projection can be established, a mapping can also
be calculated between different projections by having two (or more) images of the same object,
made from the same camera. Having the same inner parameters, as discussed above, a mapping
may be found which relates those images, or more specifically, relates the points x

k

= [x

k

, y
k

, 1]
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H

Figure 3.4: A planar object (left) subjected to a projective transforma-
tion, performed by the matrix H (right). [20]

in one image plane to the y
k

= [x

0
k

, y0
k

, 1] in another image plane. This is known as a homog-
raphy mapping, a projective transformation of an image. The homography mapping is here
assumed to be of a planar object, such as the object being mapped in figure 3.4.

c

k

x
k

= Hy
k

, k = 1 . . . n, (3.13)

where H is the 3 ⇥ 3 homography matrix, n is the number of corresponding points. The ho-
mography matrix is normalised in such a way that the H

33

= 1. As such, the homography
matrix contains 8 unknown values to be determined, and additionally one unknown value for
each point correspondence, c

k

. For each k there are three equations, and therefore the least
number of points correspondances should be n = 4, as 3n � 8 + n. From these four (or more)
corresponding points, a mapping H can be found, [21].

3.3 Machine Learning
Machine learning is a collective term for computational methods that can be used to perform
tasks which traditionally have required human intelligence. All algorithms have in common
that they recognise patterns in a given sequence of data. Common usages of machine learn-
ing methods are regression analysis, to predict an outcome given precedent events, as well as
classification of data, which is the end for which machine learning is used in this thesis.

Commonly in machine learning, the algorithm is handed an amount of data which it tries
to find a suitable pattern for. This is called training data, and the features of the training data
should closely resemble the test data, for which the algorithm is meant to act on. The per-
formance of a method is assessed by the correspondence in prediction of data and the label
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(a) Example of an underfitting
classifier.

(b) Example of an overfitting
classifier.

(c) Example of an classifier of
with reasonable accuracy.

Figure 3.5: Examples of results using classification algorithms which
either underfit (a) or overfit (b) or finds a balance in the bias-variance
trade off (c).

which denotes the ground truth correspondence of that data. Commonly used algorithms are
the support vector machine algorithm, see section 3.3.2, as well as decision tree algorithm,
discussed in section 3.3.3. Most notable has been the advent of neural networks this past
decades, see section 3.3.6, and in the form of convolutional neural networks for machine learn-
ing applied on images, see section 3.3.6. These networks usually require large image sets to
be used as training, the stage where the algorithms seeds out the patterns in the data. For some
methods, the discriminant features need not be denoted by labels, but instead the algorithm
itself finds patterns to distinguish the data into categories. In many applications though, the
data used in the pattern recognition algorithms must first be chosen (wisely). This is the dif-
ference between supervised and unsupervised learning. Many algorithms face the problem of
overfitting to training data, performing so well on the training data that the learned pattern per-
forms poorly on any other data, and underfitting, where the algorithm finds no pattern at all.
Overfitting is associated with showing large variance in the classification, performing too well
on training data, and poorly on test data. Biased fitting performs poorly on both training and
test data, as it finds no pattern in the data set. An example of this is shown in figure 3.5, where
a machine learning method is to form a decision boundary in a two-dimensional feature space.

3.3.1 Accuracy Measurements

Confusion Matrix

A common way of estimating the accuracy of a classification algorithm is to use a confusion
matrix, which gives information not only on accurately classified data, but also provides infor-
mation on the ratio of data which is misclassified as belonging to another group. When binary
classification is used, the labels of the two classes are often termed as positive or negative, for
example: ’Food is present in this image’ would be a positive outcome for a certain image, and
the opposite, ’Food is not present in this image’, would be deemed a negative outcome. In table
3.1 below, the accuracy of classification of class 1 and class 2 can be visualised. The number
TP and TN both represent the amount of data that has been classified correctly, and stand for
True Positive values and True Negative values, while FP and FN represent the amount of data
that are misclassifed as belonging to the other class, standing for False Positive values and
False Negative values. N = TP + TN + FP + FN is the total number of data points classified.
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Actual class
Class 1 Class 2 Total

Predicted class Class 1 TP FP TP + FP

Class 2 FN TN FP + TN

Total TP + FN FP + TN N

Table 3.1: Example of confusion matrix concerning two classes. TP

(true positive) represents the amount of positive incidents which were
classified as such. In the same manner TN (true negatives) represents
the quantity of correctly classified negative incidents. FP and FN

corresponds to the quantity of negative and positive outcomes, respec-
tively, falsely classified to belong to the other class. [22]

Classifying data into n classes yields a confusion matrix C of size n ⇥ n. Each entry in the
diagonal elements of the matrix then corresponds to the amount of data which were correctly
classified to the individual class. An off diagonal entry in element C

i j

, i, j  n, i 6= j, then
correspond to the amount of data which were classified to belong to class i, but actually belong
to class j, [23].

ROC-Curves
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Figure 3.6: Example of ROC-curve. Points on the ROC-curve which
coincide with the dashed linear curve mean that that particular classi-
fication have an equal chance of belonging to each of the two classes,
and is therefore undesirable. [24]

Receiver operating characteristics (ROC) are a way to visualise the outcome of a classification
algorithm. Using the concepts explained above for the binary classification matrix, the true
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positive rate (TPR), TPR = TP

TP+FN

are plotted against the false positive rate (FPR), FPR =
FP

FP+TN

. In that sense, a single (binary) confusion matrix can be said represent a point on the
ROC-curve, corresponding to a certain parameters used in classification.

For instance, one may move the threshold in probability for which a classification algorithm
should exceed, to classify data as a positive outcome. A low threshold meaning that data is
classified to belong to a certain class even though the calculated probability of it doing so is
very low. The ROC-curve can then be used for assessment of the classification algorithm,
finding the threshold which yields a high TPR while also keeping the FPR low. This is usually
found by maximising the area under the ROC-curve, although sometimes it is not applicable,
for instance when a high FPR is acceptable, as long as a high TPR is also obtained.

The area under the ROC-curve (AROC) yields a quantitative measurement of the perfor-
mance of the algorithm used. The worst value of AROC conceivable is 0.5, corresponding
to a curve close to the dashed line seen in figure 3.6, meaning that algorithm always perform
guesswork, while a value of 1.0 means it performs classification with complete accuracy.

3.3.2 Support Vector Machine

y

x

w

T

· x
+

b

0

=
0

Figure 3.7: Example of a support vector machine in a two-dimensional
feature space. The support vectors, annotated with blue color, are found
at the edge of the decision margin, annotated by dashed lines. [25]

When differentiating between data in an n-dimensional space, one would like to find a function
f : R

n ! [�1, 1], a positive or negative outcome so to speak, as described by [26]. Support
vector machine (SVM) is an algorithm used to find a decision boundary, a hyperplane separat-
ing data points into either of two classes in an n-dimensional space [27]. The support vectors
are the data points that lie closest to the decision boundary, depicted in blue in figure 3.7 and
as such are the hardest to classify. The goal of training a support vector machine is not only to
find a hyperplane that separates the classes, but finding the optimal decision boundary which
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yields the greatest margin between the support vectors, and in effect, the classes as a whole.
That margin is the distance between the support vectors, which are used in the training to find
the hyperplane defined below:

wT x + b
0

= 0, (3.14)

where w is a weight vector for the input vector x and b
0

is the bias. For a binary classification
problem, the data subsets said to belong to either of the classes, c

1

and c
2

, should be separated
in a way that expression (3.14) becomes positive for x 2 c

1

, and negative for x 2 c
2

.
The SVM described above can only distinguish between linearly separable classes. If a data

space is found not to be linearly separable, one can perform a fitting transformation of the data
space in order to achieve a new linearly separable data set, or find the hyperplane that minimise
the amount of data that is misclassified. More in-depth information about SVMs can be found
in literature such as Friedmans et al. work on the subject [28].

3.3.3 Decision Trees
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Cond.2
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Cond.4

Cond.1 not fulfilled

Cond.3 not fulfilled

Cond.7 not fulfilled

Cond.9 not fulfilled

Cond.9 fulfilled

Cond.7 fulfilled

Cond.3 fulfilled

Cond.6 not fulfilled

Cond.6 fulfilled

Cond.1 fulfilled

Cond.2 not fulfilled

Cond.5 not fulfilled

Cond. 8 not fulfilled

Cond. 8 fulfilled

Cond.5 fulfilled

Cond.2 fulfilled

Cond.4 not fulfilled

Cond.4 fulfilled

INPUT DATA

Outcome 10

Outcome 9

Outcome 8

Outcome 7

Outcome 6

Outcome 5

Outcome 4

Outcome 3

Outcome 2

Outcome 1

Figure 3.8: Schematic image of an example of a decision tree. Deci-
sion nodes are denoted by gray, and contain a condition which decides
the next condition by which the data is subjected to. Given a certain
input data, the information from it traverses through the branches until
a final leaf is found, making the prediction of the outcome.[29]
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The decision tree is a series of branching decision nodes, for which an example is schematically
depicted in figure 3.8. Starting from the ’root’ node of the tree, a decision is made based on
the information provided from the feature set of given data. At each node, the features are
evaluated and if a criteria is met, a certain branch from the node is chosen. This branch leads
to another decision node, where another branch is chosen depending on that nodes criteria and
so on. Each node divides the data by a hyperplane in the data space, as explained by Rokach
et al. [30], which can result in a more complex decision boundary than can be achieved by an
SVM. This continues until the last node, a ’leaf’, is reached and the data is classified according
to what class that particular leaf is associated with. Decision trees are inherently prone to
overfitting, and there are several ways to mitigate this problem. One method is the so called
’pruning’ method, removing decision nodes to some extent. A large tree, i.e. a tree containing
many different decision nodes, is usually overfitted. Pruning reduces the number of nodes and
decision branches, and the nodes removed are chosen in a way so that the ability to capture the
general behavior of the data is not lost, as suggested by Breiman et al., cited by Rokach et al.
[30].

Another method to avoid overfitting in a decision tree is to make a conclusion based on the
results of several trees, fittingly called a forest. Each decision tree in the forest is ’grown’ using
smaller samples that are taken out of the data. The smaller samples taken out to grow a tree
are not removed from the original data set, so that every tree has the same data set to randomly
extract samples from. The ensemble of decision trees then finally votes on the outcome, as
Breiman puts it [31], which mitigates the overfitting nature of a single decision tree in that the
patterns found by the most amount of trees is probably the best assessment for a classification
algorithm.

3.3.4 K-means Clustering

K-means clustering is an unsupervised machine learning algorithm meant to partition data in an
n-dimensional space into a chosen number of groups of similar data points. If the total data set is
x = (x

1

, x
2

, ..., x
n

), we want to divide these data points into k subsets, k  n, S = (S
1

,S
2

, ...,S
k

).
The sought after set of clusters S are found by minimising the sum of the Euclidean squared
distances between data points and the centroid of each points assigned cluster, as described by
Overgaard [32]:

arg min

S

kX

i=1

X

x2S
i

kx � µ
i

k2. (3.15)

Here, µ
i

is the centroid of S
i

. Centroids are initialised by extracting k samples from the
existing data set, x, randomly. A new centroid is assigned by computing the middle point
of the found clusters. This procedure is iterated until the assigned centroids no longer move
considerably. These centroids are then the set µ, whose corresponding cluster are found in S,
to which the data x is to be assigned to according to expression (3.15). An example of k-means
clustering for k = 2 can be seen in figure 3.9, and a common algorithm for the k-means method,
Lloyds algorithm, is presented as Algorithm 2.

23



1 2 3 4 5 6 7 8 9

10

20

30

40

50

60

70

80

µ
1

µ
2

Figure 3.9: Example of k-means clustering between two classes. µ
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denote the cluster centroids. [33]

Algorithm 2: Lloyds algorithm, as presented by N.C. Overgaard [32]
Initialize cluster centers µ

1

, µ
2

, ..., µ
k

, from random points from the data set.
repeat

Assign class labels to data points S

i

= { x = x
i

| µ
i

, the closest centroid to x
i

}
Update centroids µ

i

= 1

|S
i

|
P

x2S
i

x
until Convergence is found;

3.3.5 Bag-of-Visual-Words Model

Figure 3.10: A simple schematic image of the procedure of the bag-
of-visual-words method.
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The bag-of-word model encodes the quantitative features of the data before classification. It
gets its name from its use in language processing, where encoded feature vectors are extracted
by counting the occurrence of words in a text, disregarding other information provided, such as
grammar, placement of a specific word in relation to other words, etc. The analogy of a bag is
then clear as we ’fill’ it with the encoded features, the count of the words, found in an arbitrary
text. That ’filled bag’, a histogram, in vector representation can then be used as a feature vector
for that particular text for use in machine learning algorithms.

The analogy can be transferred to images, making it a bag-of-visual-words. Using extracted
feature vectors of length n from the training images, K-means clustering can be used in the
n-dimensional feature space. The centroids found for each cluster will then be used for the
encoding of the features. For each feature, the closest cluster centroid, in Euclidian distance,
is found. A feature vector therefore adds a count to a stack in a histogram, where each stack
corresponds to a certain centroid. A simple visualisation of the procedure can be seen in figure
3.10.

Using the above procedure, subsets of an image can be encoded into vectors which effec-
tively describes the frequency of certain types of features inside that subset. Using the encoded
vectors, the whole image can then be classified using common machine learning algorithms,
such as SVM or random forest, as discussed by Coates et al. [34].

Spatial Pyramid Model
In order to capture spatial properties of an image, a so called spatial pyramid can be used. For
a (rectangular) image of interest, we form a pyramid of p levels. Each level is the image, (with
the original image being ’the ground floor’, so to speak) divided into a grid of 2

p equally large
regions. Each region is now treated as its own image, to be classified. The features found in the
subregions are weighted according to which level in the pyramid it stems from. Features found
from smaller regions are valued higher than features extracted from a coarser grid. [35]

3.3.6 Artificial Neural Networks
Artificial neural networks (ANN) are machine learning algorithms, of varying schematic ap-
pearance, which are modelled to resemble animal brain cells in how they interact in order to
learn and store knowledge. In essence, a neural network is a nonlinear function which maps an
n-dimensional data vector to a corresponding output, i.e. a class. Nodes in the network, denoted
by circles in figures 3.11, 3.12 or 3.14., are structured in layers, and each node correspond to a
value. The first layer, the input layer, is where the raw data that is to be mapped to the output
nodes is entered. If there are layers in between the input and output nodes, these are called hid-
den layers. The connection between nodes between neighboring layers correspond to a weight,
denoted in the figures in this section as !, a value which the node is multiplied with before
reaching the connecting node.

The nodes of the hidden layers receive this weighted data and use it as the argument to its
specific activation function, �(k)

n

(for the n:th node in the k:th layer), which is explained later
in this section. The output of that function, h

(k)

n

, is in turn weighted and used as input to the
connected nodes in the next layers. This process is iterated until the data reaches the output
layer. The weighted outputs from the last hidden layer becomes the argument in the output
activation function, �

o

, which performs the final classification.
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Figure 3.11: Example of an ANN, a multilayer perceptron (MLP). The
columns of nodes from left to right are, in order, called the input layer,
hidden layer and lastly the output layer. This network contains one hid-
den layer, but an ANN can contain several or none such layers. An
ANN will always have at least one input node and one output node.
Further details concerning the MLP and notations in the figure are ex-
plained in section 3.3.6. [36]

The input layer and the hidden layers all have a bias node, non-dependent on the input data
used, which also have weights ascribed to them. The bias nodes are usually set to be unitary, and
the contribution from the bias nodes are thus completely dependent on their assigned weights.
When training an ANN, the weights are constantly updated until the network capture the sought
after patterns in the input data set. This is done by comparing the results found in the output
layer with ground truth data, and determining an error, or loss, using the difference of these
using an algorithm called backpropagation, which will be explained later in this section. Much
of what will be discussed in this section, and section 3.3.6, are based on notes from lectures
given by Mattias Ohlsson [37].

The most simple form of an ANN is the one which only has one output node and no hidden
layers, namely the perceptron.

Perceptron

The perceptron, see figure 3.12, maps the input data directly by the summation of all the
weighted input and a bias term, x

0

= 1 in figure 3.12. This activation is used as input for
the activation function �

o

(x). When classifying input data, the output y should correspond to
the class label, which is binary in the case of the perceptron. A simple example of an activation
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Figure 3.12: Example of an ANN, the simple perceptron. Bias node
is set to x

0

= 1. The notations of a weight !
n

, mean that they weight
input from the n:th input node to the output node. �

o

is the activation
function of the output node. [36]

function would be the McCulloch-Pitts function:

�
o

(a) =

(�1, a  0

1, a > 0

. (3.16)

If the input, the activation, is positive, then the output of the activation function is positive,
1, denoting correspondence to one of the binary classes. Otherwise the result is �1, denoting
correspondence to the other class. Using expression (3.16), the weights are used to form a
decision plane. Using the perceptron in figure 3.12 with n = 2, the activation, a, becomes
a = !

0

+!
1

x

1

+!
2

x

2

. The decision hyperplane takes the form of a function!
0

+!
1

x

1

+!
2

x

2

= 0

in the (x

1

, x
2

)-plane as a line, and the labels of the data at either side of the line is assigned by
the activation function according to expression (3.16).

Activation Function
The McCulloch-Pitts function captures the idea of activation functions in general, to make a
decision if data belongs to a certain output label. As will be discussed in section 3.3.6, a
differentiable function should be used, and usually of sigmoid appearance, in order to mimic
the behavior of the McCulloch-Pitts function. Such a function can be seen plotted in figure
3.13a, namely the hyperbolic function, �(x) = tanh(x).

Similar to (3.16), the step function can also be used to find a decision boundary. A differ-
ential function which mimics this is the logistic function �(a) = 1

1+e

�a

, as seen in figure 3.13b.
When using classification algorithms which differentiate between more than two classes, a gen-
eralisation of the logistic function can be used, namely the softmax function, which calculates
a probability distribution over all the possible outcomes in the classification:

�(a) =
e

a

i

P
n

j=1

e

a

j

. (3.17)

Here, a

i

is the activation in the i:th node of a certain layer of n nodes. The rectifier linear
function (ReLU) is also a popular choice for neural networks, and is simply �(a) = max(0, a).
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Figure 3.13: Examples of commonly used activation functions (con-
tinuous) and the non-differential functions (dashed) related to them.

A differentiable function which corresponds to the ReLU function is the so called softplus
function, �(a) = log(1 + e

a

), and is depicted in figure 3.13c. The derivative of the softplus
function is the logistic function, as seen in figure 3.13b.

All nodes in an ANN, except for the input layer, holds an activation function. To achieve
non-linear mapping of a data, non-linear activation functions are needed. Using linear functions
can only ever yield linear transformations of the data to the output, for which a multilayered
network would not be needed in the first place, only a perceptron. For multilayered networks,
the logistic function and the hyperbolic tangent function are often used, but the linear rectifier
function is the most used for convolutional ANNs, which are described in section 3.3.6.

As previously stated, the activation function yields an output based on the weighted input
from the nodes of previous layers. The performance of an ANN is therefore largely dependent
on the weights assigned to each node connection. The output of the activation function is used
to achieve better performance by updating the weights, by using backpropagation.

Backpropagation

Backpropagation is the algorithm from which a neural network gains knowledge. The weights
of the nodes in a neural network are usually initialised randomly within a certain range of given
values. Backpropagation updates the weights, which is usually referred to as ’training’ of the
network. The idea is to find an estimate of how much the output classification of known data,
as performed by the network, corresponds to the actual class the data belongs to. This estimate
is called the loss function. From Bayes rule, the probability that vector x, weighted by a set of
weights w is classified to belong to one of two classes K

i

, i = {1, 2}, is calculated by the below
expression:

P(K

i

|x,w) =
P(K

i

)P(x,w|K
i

)

P(x,w)

,

(P
i

P(K

i

|x,w) = 1

P
i

P(K

i

) = 1.
(3.18)

Given binary classification, one may describe the two probability function P(K

1

|x) and
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P(K

2

|x) by using a function y(x):
(

P(K

1

|x) = y(x,w)

P(K

2

|x) = 1 � y(x,w).
(3.19)

Using labels d

n

, n = {0, 1} to differentiate between the classes, the probabilty that x belong
to either of the two classes can be expressed as below:

P(d

n

|x,w) = y(x,w)

d

n

(1 � y(x,w))

(1�d

n

). (3.20)

The probability P(d

n

|x
n

,w), where x
n

is known to belong to class n, should be maximised by
changing the variable weight set w accordingly. Instead of maximising the above expression,
the negative logarithm can be minimised, meaning that the optimal set of weights, w

opt

, is found
in the following way:

w
opt

= arg min

w

✓
�

NX

n=1

(d

n

log( y(x
n

,w)) + (1 � d

n

) log(1 � y(x
n

,w)))

◆
, (3.21)

This is known as the cross entropy error for binary classes. When there are more than two
classes to choose between, another error function may be found, using the same reasoning as
for finding expression (3.21):

w
opt

= arg min

w

✓
�

NX

n=1

CX

k=1

(d

nk

log y

k

(x
n

,w)

◆
, d

nk

=

(
1, x

n

2 K

k

0, x
n

/2 K

k

(3.22)

where the expression within the larger brackets is called the loss function (or error function).
It is a measure of difference in prediction of the network and ground truth value. To find
the optimal set, gradient descent learning is used, which seeks to find a minimum in the loss
function.

Algorithm 3: Stochastic gradient descent with momentum, as described by Olsson [37]
Initialize weights w(0)

i j

set iteration index k = 1

set learning rate ⌘ appropriately
set momentum term ↵ appropriately
repeat

for Each data sample x

k

do
w

(k)

i j

= w

(k�1)

i j

� ⌘�E(w)

w

(k�1)

i j

+ ↵�w

(k�1)

i j

k = k + 1

D = |w(k)

i j

� w

(k�1)

i j

|
end

until D does not change considerably;

The loss function is the essential tool in supervised learning as it yields a quantitative mea-
sure of error dependent on the weights in the network. From the activation in the n:th node of
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the output layer and the activation function�, the cross-entropy error function is then calculated
using the ground truth labels d

n

:

E(w) = �
NX

n=1

(d

n

log(x
n

) + (1 � d

n

)log(1 � y(x
n

))), (3.23)

For the network to improve, the error function should be assessed in order to update the
assigned weights for the network to perform better. The weights should be chosen in a way
that puts the error closer to a minimum, which can be achieved by updating the weights in the
negative gradient direction such that w

k

= w

k�1

� ⌘�E( w )

w

k

, where ⌘ is the learning rate, i.e. the
step size. The learning rate is a parameter to be set to individaul situations. Choosing ⌘ to large
might result in that the minimum of the function is stepped over, while choosing ⌘ to be small
means that it might never reach the minimum of (3.23) in a reasonable amount of time.

In order to decrease the computations needed, stochastic gradient descent learning is
often used, where the the weight updates are based on a subset of input data, chosen at ran-
dom instead of performing calculations using all data at hand, which is less computationally
expensive.

To further speed up the search for minima in (3.23), a momentum term can be added when
updating the weights, w

(k)

i j

= w

(k�1)

i j

� ⌘�E(w)

w

(k�1)

i j

+ ↵�w

(k�1)

i j

, where the superscript denotes the

iteration order of the updates. This means that the learning rate increases with ↵ in the same
direction as the previous step took, and will therefore ’gain momentum’ as it continues to step in
the same direction, and ’decelerate’ if the step direction is changed. The process of calculating
the stochastic gradient descent with momentum is presented in algorithm 3.

Deep learning
While the perceptron can capture linearly separable data, it can never fit a decision plane satis-
fyingly to other kinds of distributed data. Deep learning takes the perceptron further by adding
one, or several, hidden layers between the input layer and output layer. This mapping of data be-
tween layers become increasingly complex as data moves through the network. As the method
is computationally expensive, it is only in the last decade there have been outstanding results
from neural networks for classification and prediction. While the multiple layered perceptron is
an example of deep learning, convolutional neural networks takes this further by using images
directly as input data and finding patterns for those.

Multilayer Perceptron
The figure 3.14 shows an example of a multilayer perceptron (MLP), where a hidden layer has
been added in the architecture of the ordinary perceptron. Each input vector is subject to a
non linear activation function for each layer it moves through. Adding layers will result in the
network being able to capture increasingly complicated patterns in the data, at computational
expense. While a perceptron can only form one hyperplane as a decision boundary, each node
in an added hidden layer makes it possible to add several hyperplanes, which may classify data
that is not linearly separable. Three nodes in a hidden layer, for example, makes it possible to
enclose data points in a two-dimensional feature space, as each node correspond to a hyper-
plane. Convolutional neural networks also contain layers between input and output layers, but
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Figure 3.14: A schematic image of a general, fully connected, mul-
tilayer perceptron with one output node. Nodes whose subscript are
denoted by zero are bias nodes, and are set to x

0

= h

(m)

0

= 1. The nota-
tions of a weight !(k)

i j

, mean that they weight input from the j:th node
of the k:th layer, to the i:th node of the k + 1:th layer. In a general net-
work, h

(m)

n

denotes the output of the activation function in the n:th node
of the m:th hidden layer. m = 1 for the above network. The activation
function of the output node is denoted by �

o

. [36]

these are all two-dimensional.

Convolutional Neural Networks
Convolutional neural networks (CNN) are a variant of ANNs whose architecture allows it to
perform mapping based on an input of images. In the earlier presented neural networks, the in-
put was presented as a one-dimensional vector x = (x

1

, x
2

, ..., x
n

). For a convolutional network,
the input of images is treated as a two-dimensional input vector, a matrix, X = (X

11

, ..., X
nn

). As
the name suggests, the mathematical operation convolution is central to the learning process of
a CNN. Convolution ’filters’, so to speak, an input matrix, I, with a kernel K. The discrete case
of filtering is considered when working with CNNs and the operation is written out below:

S

i j

= (I

i j

⇤ K

i j

) =
X

m

X

n

I

i�m,i�n

K

m,n. (3.24)

As can be seen in figure 3.15, the resulting image S is of smaller size than I . Filtering an
image often results in the downsampling of it, mapping the information from one matrix to a
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smaller one. Usually, a parameter called ’stride’ is defined and describes how a kernel shifts
when filtering a matrix, as it transverses from the left to right, and top to bottom of the input
matrix. Each tile in such a matrix can be said to correspond to an image pixel. In figure 3.15
the stride s is set as s = 1. In figure 3.16 and the max pooling kernel has a stride s = 2.
Usually, if a chosen stride results in the kernel stepping ’out of bounds’, i.e. goes outside the
limits of the matrix I, that matrix is enlarged by adding a rim of zeros around I, referred to as
’zero-padding’.

7 9 3 5

0 7 0 0

5 0 9 3

9 2 9 6

0 -1 0

-1 5 -1

0 -1 0

26 -19

-23 33⇤ =

I K

S

Figure 3.15: A visualised example of expression ((3.24)), with convo-
lution on image I using a 3 ⇥ 3 kernel K. Here the stride is set to be
s = 1. [38]

Max Pooling

Max pooling is a commonly used type of filtering in which the largest element in a specified
part of a matrix of size is taken out, as is visualised in figure 3.16, where a max pooling kernel
of size 2 ⇥ 2 is used on a 4 ⇥ 4 image matrix, using a stride of s = 2.

7 9 3 5

0 7 0 0

5 0 9 3

9 2 9 6

2 ⇥ 2 Max pooling

9 5

9 9
2

2

Figure 3.16: Example of max pooling kernel, with stride s = 2. [38]
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Drop Out Method
The drop out method is used to avoid overfitting, which is essential when the training data set
is small. It has shown great regularization properties when implemented in ANNs. In an MLP,
the idea is that nodes, with an probability p, do not yield an activation in the network, and
can therefore be seen as if ’dropped out’ from the network. In CNNs, a dropout layer works
similarly, in that the activation from a preceeding layer is set to zero with a certain probability
p. The weights which are still tied to the nodes that are not dropped out during backpropagation
are then updated by averaging over the found weights over several training sessions where drop
out has been used.

Data Augmentation
The performance of any machine learning method is dependent on the amount of data that is
used in training, especially in algorithms concerning convolotional neural networks. This kind
of training data is not always available and therefore data augmentation is used to add more
information to the methods using the original data without causing over-fitting. The idea is
to change the original data images in a way that is perceived by the network as new data. A
simple example is to rotate or mirror the images, and also using specific parts of an image
or simply translating the image in different directions can substantially increase performance.
Another way to increase the data set is to perform an elastic deformation to the images, as
Ronneberger et al. did in their original implementation of the network [39]. This method of
creating ’new’ information from the existing training data also result in a more robust classifier,
as the algorithm learns to be invariant of the orientations in the images, and therefore being
robust to rotations, translation and deformations that might occur in unknown data that is to be
classified.

U-Net
U-net is a fully connected CNN used for semantic segmentation of images. It have shown con-
siderably good results in the field of segmentation using small training sets [39]. Ronneberger
et al. reports satisfying results on segmentation of cells using image sets of only 30 pictures.
This miniscule amount of training data makes the system heavily reliable on the use of exten-
sive data augmentation (the process of increasing the amount of data in a set by modifying the
data in the available image set, explained later in this section). The name, U-net, stems from
the schematic image of the network, see figure 3.17, which resembles an U, which corresponds
to the network firstly downsampling the image in several steps and later upsample it. Each step
involves a downsampling from half of the former size, by using a series of convolutional filter
followed by a ReLU filter (where each input value is used as an argument in the rectifier linear
function, �(a) = max(0, a)), and downsampled by a 2 ⇥ 2 max pooling filter. Before down-
sampling by max pooling, the convolved image in each step is cropped and used in conjunction
with a later upsampled image, in order to effectively use the information gained at each down-
sampling step. Drop out filters are also used, where data from a previous layer is set to zero
at random before being used as input in the following layer. The last layer which performs the
classification is a softmax layer, see expression (3.17).

The ’encoder depth’ D is a parameter which decides the factor that the image is down-
sampled to, i.e. the number of steps before the upsampling begins, where the image has been
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Figure 3.17: A schematic image of the encoder-decoder CNN that is
U-net. Each vertical arrow represent a downsampling using convolu-
tional layers, and each horizontal line corresponds to a concatenation,
denoted by the circles, of an image to an upsampled image. The final
layer in the top right corner is a layer which has the softmax function
as activation function. [40]

downsized by a factor of 2

�D. In figure 3.17, a schematic image of a U-net with encoder depth
of D = 4 is depicted.
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Chapter 4

Methodology

4.1 Color Correction
To perform the color correction, the colors in the X-rite marker in an image must be mapped to
a ground truth color value, as described in section 3.1.2. Using the checkerboard cornerpoints
in the marker, whose coordinates were provided by supervisor Mikael Nilsson, a projective
mapping could be found to the cornerpoints in the groundtruth marker. This was done with
MATLABs function ’estimateGeometricTransform’ [41], which finds a mapping between im-
ages taken with the same camera, as discussed in section 3.2.2. Using the found mapping, the
coordinates of the colored disks in the ground truth were then mapped to corresponding color
markers, so that the corresponding color vectors are found between the same marker points in
the images. From this mapping, a new image set of color corrected images could be found.

An alternative image set was also made by first performing a linear mapping, as described
in section 3.1.2, between the marker in the image and the groundtruth marker. This linear
mapping was made for each of the three RGB-channels and an average of the mapping for
each channel was used on the color vector in each of the colors in the colorchecker. This
mapping was performed in an attempt to even out the distribution of light on the marker, before
performing the root polynomial mapping.

4.2 Weight Estimation
Weight estimation was to be performed by comparison of the known weights of each training
image. This approach was meant to mimic the method used in [1], where visual assessment of
food classes was used to estimate weights of food. The correspondence between the amount of
food pixels to the reference object, of known size, was assessed.
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4.2.1 Perspective Correction
Assuming a successful segmentation of food components, the ratio between the pixel size of
food components and marker tile were then compared to the areas of foods found in the photo
atlas. The factor which then came into play here was that the images were not taken at the exact
same height or angle, which can cause distortions in the results. This because the photographed
marker would not have a consistent area throughout an image set. To mitigate this, a square
area, spanned by four checkerboard cornerpoints on the marker (of equal length between neigh-
boring points), were considered. From the top view, the sidelengths of the square were taken
out, from which a mean length of the chosen square area was calculated. Starting from the top
left corner of the square, a new square was placed perpendicular to the edges of the image, with
the above mentioned mean sidelength. To this newly formed square, a projective mapping, as
described in section 3.2.2, was then calculated from each of the two images, taken at top view
and side view. This was meant to result in a consistency between images, as the marker area
would remain the same, and could therefore be compared to the segmented area of the meal
component for an estimation of the area. A visualised example of the method described above
can be seen in figure 4.1.

4.3 Segmentation

4.3.1 Support Vector Machine
A support vector machine approach was first used in order to separate the foreground from the
background. The SVM was trained on the training images using the RGB-values in each pixel
as features.

Sliding Window Approach
Instead of training on single pixel one at a time, a sliding window approach was also used.
Here the classification was based on the features of patches in 9⇥9 pixels. The training images
where cropped so that the image rows and columns became divisible by the window size in
order to utilise this technique.

4.3.2 Decision Tree - Hard Mining Approach
Hard mining is a method to increase performance in machine learning. One would want to
avoid the learning algorithm to excessively train on easily distinguishable training data, as the
method is not expected to improve from training on data whose patterns it has already learned.
Hard mining mitigates this problem by drawing training data, iteratively, from already classified
data, but only choosing data that the algorithm was particularly indecisive with.

Using a set of 17 atlas images for each of the five food classes, the hard mining approach
was initialised by taking out a random sample of 100 pixels of foreground, and 100 pixels of
background. This sample was used to train a random forest algorithm, using the three LAB-
values in combination with SURF-vectors from each pixel as feature vectors of length 67. The
acquired data was in turn used to classify the next image in the image set. From this newly
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classified image, the probabilities of each pixel belonging to a certain class were taken out,
so that only pixels classified below a certain probability were sampled from. This probabil-
ity threshold was chosen to be 0.7. This means that if a pixel was classified to belong to a
certain class with a probability of 0.8, it would not be part of the set used for future training.
From these samples, which proved harder than others to classify, training data of foreground
and background, 100 pixels respectively, were extracted. Taking training data from an earlier
classified image to classify the next image was performed in a loop of seventeen images for
each of the five food classes, and the final trained decision tree was used to classify an image
which was not used in training procedure. This was done by plotting a ROC-curve, where each
unique classification probability was used as a threshold for classification, in order to assess the
confidence value which yields the optimal AROC during classification.

4.3.3 Bag-of-Visual-Words Method
In the acquisition of features, 10 training images (rescaled to 1

25

of the original size) were used.
For each pixel, a SURF feature vector (64 values for each pixel) was taken out as well as a
LAB color vector (3 values for each pixel). Using Matlabs implementation of SLIC [42], the
training images could be partitioned into a chosen number of superpixels. Using the feature
vectors extracted in this manner, MATLABs implementation of the k-means method, the func-
tion ’knnsearch’ [43], was used to find cluster centroids of the features in the 67-dimensional
feature space.

A vocabulary was then made using these centroids. Any features taken out in the testing
phase were compared to this vocabulary, and each instance of a superpixel was said to belong
to the same class as the cluster centroid it was closest to (in Euclidean distance). This adds to
a stack in a histogram, in which each stack corresponds to a centroid. This histogram is then
normed and used as encoded feature vectors for training in a random forest algorithm.

Each training image was divided into a certain number of superpixels, each compared to the
groundtruth mask. If 70% or more area of a superpixel contained foreground pixels, then the
area of the superpixel was labeled to contain food, otherwise background. For this label, the
features to be encoded were taken from the bounding box containing the current superpixel.

A spatial pyramid of three layers was also applied on each superpixel bounding box, as a
means for acquiring spatial information from the surroundings of each superpixel. The bound-
ing box was divided into 2 ⇥ 2 tiles at one level of the pyramid, and 4 ⇥ 4 at the top of the
pyramid. Encoded feature histograms were found for each tile at each level and the average
was taken out for the whole level, as well as weighted average, depending on how many tiles
were used at that particular level. This simply means that features found at levels with a finer
grid were weighted to be more important. The average top level histogram was weighted by a
factor of 4, the middle layer average histogram is weighted by a factor of 2, and the histogram
of the original bounding box was weighted by a factor of 1. Each of these histograms were
added and normed to form a feature vector for the superpixels.

An ablation test was performed, where three different parameters were changed between
sessions: The number of feature clusters, the number of superpixels (which the images was to
be partioned into), as well as the probability threshold. This threshold decided what probability,
for a superpixel to belong to a certain class, must be exceeded to be classified as such. The
number of clusters for each class were made to range between 8 � 24, in steps of 8. The
number of superpixels ranged between 150 � 550, in steps of 100. The confidence threshold,
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for which the probability of a superpixel belonging to each of the different classes, ranged
between 0.4�0.9, in steps of 0.1. As such, the process was iterated 75 times. For each of these,
a ROC-curve and AROC value for each of the five food classes used could be taken forward
for assessment. The set of parameters which yielded the five AROC values which together
yielded the highest L

2

-norm value, was deemed the optimal set of parameters, of those used in
the ablation test.

4.3.4 U-net
The practicalities concerning training the CNN used are presented below. The computational
ability of the computer used gives an indication on the speed of training a network. The dataset
used is important for the performance, and can be enhanced using data augmentation.

Software and Hardware
A computer with a single CPU, Intel Core i5-4278U, was used for training the network. MAT-
LAB Rb2019 implementation of U-net architecture was used [44], based on the work by Ron-
nerberger et al. [39].

Data Augmentation
Each image was rotated 90

�, 180

� and 270

�, and, in addition to the set, were mirrored horizon-
tally. This increased the data set fourfold. These augmentations were also applied to images
where the meal components had been zoomed in, in such a way that the foreground take up
roughly 75% of the area of the image. This resulted in a sixteenfold increase of the training
set. This increase was further doubled, in accordance to [39], by performing a random elas-
tic deformation of each image. These above mentioned examples are visualised in figures 4.2
and 4.3. The elastic deformation was performed by applying a vector field on the image to
cause apparent displacement using the MATLAB implementation of which was taken forward
by Franco [45].

Training
Due to the limitations in memory and performance in the software used, the image sets were
resized to 256⇥256 pixels RGB-images. The minibatch size was set to 16, and the learning rate
to ⌘ = 10

�4. The number of epochs were set to 20, but the training could be cancelled before
that if the accuracy on a validation data set, images which were not part of the training, stayed
roughly the same during the last occurring epochs. For the results shown in section 5.2.4, the
network was trained for 20 epochs, 3440 iterations for the network using images corrected for
color, and 3346 iterations for the original images. Only binary classification was assessed,
using ’Food’ and ’Background’ as labels.
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Figure 4.1: An example of how projective correction can be per-
formed. The two columns are photos of the same plate with a meal
component taken at different angles, the bottom row showing the orig-
inal images. The perspective correction, as described in section 4.2.1,
of the images and their corresponding ground truth mask, are shown in
the middle row and top row images, respectively.
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Figure 4.2: Example of data augmentation, where an image has been
rotated as well as mirrored, increasing the data set eightfold.

Figure 4.3: Example of data augmentation, where an image has been
subject to an elastic deformation (top row), as well as its corresponding
ground truth mask (bottom row). It can be seen that the images differs
slightly from each other in shape.
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Chapter 5

Results

5.1 Color Correction

In this section, the results concerning the work of color correction in this thesis are presented,
according to the theory presented in section 3.1.2, will be presented. Visual assessment was
made to evaluate the performance of the methods used. Figure 5.1 shows the color correction
using linear mapping, while figure 5.2 shows an example of color correction by using root
polynomial mapping. Both can be seen to brighten the image in a way that is expected, but it
can be seen in figure 5.1 that the white cloth is given a blue shade, while figure 5.2 seems more
true to the original white color. Another example of using the root polynomial mapping on a
rice dish can be seen in figure 5.3, where the correction has resulted in brightening the image
too much, possibly because of the shading on the X-rite marker. Since the correction brightens
the shaded marker up to a ground truth value, everything outside will appear much brighter
than desired. The same rice dish can be seen subjected to a color correction method meant to
mitigate this problem, described in section 4.1, in figure 5.4. In this figure, the color correction
seems brighter than desired at certain spots in the image, but overall seems to show positive
results. The rice dish appears as white instead of slightly yellow, and the cloth is also closer to
the original white color when corrected, than the shade which can be seen on the cloth before
color correction.
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Figure 5.1: Example of color correction as made by linear mapping.
The image to the left is the original captured image, and the right is
corrected using the colorchecker as color reference.

Figure 5.2: Example of color correction as made by root polynomial
mapping, of the fourth order. The image to the left is the original cap-
tured image, and the right is corrected using the colorchecker as color
reference.
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Figure 5.3: Example of an attempted color correction as made by
root polynomial mapping, of the fourth order. The image to the left
is the original captured image, and the right is corrected using the col-
orchecker as color reference. The colorchecker can be seen as partially
shaded by the edge of the plate.
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Figure 5.4: Example of color correction method. The image to the left
is the original captured image, and the right is corrected using the col-
orchecker as color reference. The correction was made by first finding
a linear mapping between colorchecker and ground truth values. These
found values were then subjected to a root polynomial mapping, of the
fourth order.

5.2 Segmentation
In this section, the results of the methods for semantic segmentation explained in section 4.3
are presented. Example images used throughout the chapter are of a rice dish and a plate of
haricots verts, both meal components of weight 250 g. Using only two dishes was partly not to
fill this section with images when the ROC-curves presented showcases the quantitative results
for test images of the dishes used, i.e. that were not part of the training of the machine learning
algorithm.

5.2.1 Support Vector Machine

No quantitative results were extracted when using the support vector machines as a classifier,
the images which were produced showed large portions of background being classified as food,
and as such the results were visually assessed to be too poor to continue working with SVMs.
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5.2.2 Random Forest: Hard mining
Figure 5.5 displays the ROC-curves found when using the hard mining approach. Here the
same classifier was used for each test image, which deemed a pixel to belong to a certain
class if the probability of it doing so was above 50%, otherwise the pixel was classified as
background. Disregarding the results achieved when classifying sausage (which is most likely
due to some error in the implementation), it can be seen that rice is the hardest of the meal
components to classify. As it is a white dish against a white plate, it is expected to also be
harder to distinguish the food from the background. Examples of classification can be seen by
the hard mining approach in figures 5.6 and 5.7, where only the pixels that were classified as
haricots verts and rice, respectively, are seen on the right as a yellow mask, exemplifying the
performance of the classifiers. In the figures 5.8 and 5.9, all pixels are denoted for what class
they were found by the trained classifier to belong to. It can be seen in figure 5.8 that many
pixel of the haricots verts dish was mistakingly classified as broccoli. In figure 5.9, the low
performance of rice, as seen in figure 5.5, is further visualised as a large portion of the dish can
be seen wrongly classified as background.

Figure 5.5: ROC-curves achieved using hard mining approach, binary
classification between food and background. The threshold for sam-
pling of pixles were at pixels with a probability of 0.7 or less to be clas-
sified correctly. Area under ROC-curve is 0.9760 for broccoli, 0.9699

for haricots verts, 0.5496 for sausage, 0.9767 for potatoes and 0.8387

for rice.
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Figure 5.6: Example of dish being classified using hard mining ap-
proach. Only pixels that were classified to be haricots verts are seen
(in yellow) in the right image. The pixels that were not classified as
haricots verts, as well as pixels that were classified as background, can
be seen in dark blue.

Figure 5.7: Example of dish being classified using hard mining ap-
proach. Only pixels that were classified to be rice are seen (in yellow)
in the right image. The pixels that were not classified as rice, as well as
pixels that were classified as background, can be seen in dark blue.
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Figure 5.8: Example of dish, haricots verts being classified using hard
mining approach. The different colors correspond to a certain food
class that the pixels were classified to belong to.

Figure 5.9: An image of classified pixels for a rice dish using hard
mining approach. The classified pixels are denoted by colors which are
explained by the legend in the figure.
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5.2.3 Bag of Visual Words

For the bag-of-visual-words methods, the ROC-curves can be found in figure 5.10, where the
AROC can be seen to be higher than that achieved using hard mining (as seen in figure 5.5).
Figures 5.11 and 5.12 display examples of the classification of meals using the bag-of-visual-
words approach. As when using hard mining, the haricots verts can be seen being misclassified
as broccoli in figure 5.11, and also background. Also similarily, in figure 5.12, the erroneous
classification can be seen to be between rice and background.

Figure 5.10: ROC-curves achieved using the bag-of-visual-words ap-
proach. Area under ROC-curve is 0.9859 for broccoli, 0.9730 for hari-
cots verts,0.9402 for sausage, 0.9147 for potatoes and 0.9635 for rice.
These values were overall the best achieved in the ablation test, and
correspond to using 16 clusters for each class in the feature space, 150

superpixels, and a 0.7 confidence threshold.
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Figure 5.11: Visualisation of the bag of visual words method for clas-
sification, performed on haricots verts. Here, 8 clusters were used in the
feature space, with about 100 super pixels, and a confidence threshold
of 0.5.

Figure 5.12: Visualisation of the bag of visual words method for clas-
sification, performed on a rice dish. Here, 8 clusters were used in the
feature space, with about 100 super pixels, and a confidence threshold
of 0.5.

5.2.4 U-net
Concerning the results of U-net, two ROC-curves were yielded, where the classifier only dif-
ferentiated between food and background. Figure 5.13 shows the ROC-curve for a network
that has been trained and tested on images which have not been color corrected, while figure
5.14 show the resulting ROC-curve when having used color correction on the photo atlas. Even
when only differentiating between two classes, the AROC values achieved are worse than ex-
pected, and certainly worse than any of the AROC values when using the bag-of-visual-words
model for distinguishing between six classes, as seen in figure 5.10. Examples of the binary
classification using U-net can be seen in figures 5.15 and 5.16, when training the U-net on
images without using color corrected images, and figures 5.17 and 5.18, when using images
which had be color corrected. As can be recognized from the other methods used, the figures
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5.15 and 5.17 containg haricots verts are easier to segment, albeit poorly, than images of rice,
seen in figures 5.16 and 5.18.

Figure 5.13: ROC-curve achieved classifying images with a U-net,
using binary labels (’food’, ’background’) on images which were not
color corrected. Area under ROC-curve is 0.8386.
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Figure 5.14: ROC-curve achieved classifying images with a U-net,
using binary labels (’food’, ’background’) on images which were color
corrected. Area under ROC-curve is 0.8971.

Figure 5.15: Example of food segmentation using U-net on haricots
verts. For the training and validation of the network, images that were
not color corrected were used.
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Figure 5.16: Example of food segmentation using U-net on rice. For
the training and validation of the network, images that were not color
corrected were used.

Figure 5.17: Example of food segmentation using U-net on haricots
verts. For the training and validation of the network, images that had
been color corrected were used.

52



Figure 5.18: Example of food segmentation using U-net on rice. For
the training and validation of the network, images that had been color
corrected were used.

5.3 Weight Estimation
Using the images in the photo atlas, corrected for perspective as discussed in section 4.2, a
correspondence between weight and area could be found, as presented in figures 5.19 and 5.20
for top view images and side view images, respectively. A linear regression curve was chosen
as visual assessment of the data which indicates a linear relation between area and weight. Not
surprisingly, it can be seen that meal components with a firm structure, such as potatoes or
sausage, more closely follow the linear regression line than meal components which are more
prone to deformations, such as rice.
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Figure 5.19: The area of the food in the photo atlas, as a function of
measured weight. The area is calculated by comparison of a marker
of known size after perspective correction. The regression function is
found by using the MATLAB function ’polyfit’ [46].
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Figure 5.20: The area of the food in the photo atlas, as a function of
measured weight. The area is calculated by comparison of a marker
of known size after perspective correction. The regression function is
found by using the MATLAB function ’polyfit’ [46].
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Chapter 6
Discussion

6.1 Choice of Food Classes
Sausage, potatoes and broccoli were chosen because they differ in color and texture from each
other, and should make a sharp region boundary between themself and the white plate used.
This would, presumably, simplify classification of these components. Rice would, with the
same reasoning, be difficult to find a boundary for, and would therefore be used as an example
of a hard classification problem. In the same manner, haricots verts resembles broccoli in color,
but maybe not as much in texture. As such it would also serve as an indication as for how well
a classification algorithm fared when using food classes of similar appearance.

6.2 Color Correction
Only visual assessment was used when evaluating the performance of the color correction al-
gorithm. One way to make the assessment more quantitative could have been placing another
X-rite colorchecker on a plate, where food was usually placed, and perform a color correction
on that. In such a way, the error between the ground truth value and the found values on the
other X-rite chart could be used to assess the method more thoroughly.

As it stands, the linear method of color correction, exemplified in figure 5.1, is, by visual
assessment, less correct than the root polynomial color correction method, as seen in figure 5.2.
The linear method seems to portray the white cloth in a shade of blue, and altogether give a
more ’cold’ appearance to the image.

A factor of error found, when using the X-rite color marker, was unsatisfactory illumination
of the marker, i.e. failing in keeping the amount of light exposure on the marker the same as
on the object that was to be color corrected. Many images were taken with the marker partially
shaded, resulting in skewed results. Objects in the image that are not shaded are subjected to a
transform which exaggerates the color mapping, resulting in images that seem overexposed in
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light, as figure 5.3 is an example of. This was not an uncommon result when performing color
correction throughout the image sets. Indeed, the succesful result of root polynomial color
correction, seen in figure 5.2, seems to be an outlier when directly performing the correction.
Figures 5.2 and 5.3 show the general behavior found in the image sets after root polynomial
color correction, with or without averaging the lighting over the marker.

The method which was used to mitigate the effects of shading on the marker, linear aver-
aging of the shading, is hard to motivate. It removes the initial point of having a robust set
of reference colors present in the image. The colors acting as references changed depending
on the distribution of shade which was partially cast on it. Averaging the distribution of that
shade is essentially the same as using a different reference marker for each image. However,
for the purpose of which the method is taken forward, parameters such as lighting and shading
will always be subclinical, as to not put too much workload on the participants in a dietary
study. As can be seen in figure 5.4, the result of the proposed method is, at least by visual
assessment, on par with the results in figure 5.2, the successful root polynomial mapping. The
rice in the image is corrected from having a yellow sheen (possibly from lighting of a nearby
lamp) to become clearly white, as one expects rice to be. Despite the apparent faults, the author
would like to argue that all images were subjected to the same transform, and in that sense are
only dependent on lighting as an outside parameter, which is no worse than the images were
without an attempted color correction. Even so, the somewhat better results seen in figure 5.14
in comparison to those in figure 5.13 are an indication that the proposed color correction does
improve classification. The implementation of color correction was attempted at a late stage in
the work of the thesis, and as such, it was only used when assessing the change in performance
of U-net when using the different image sets.

6.3 Weight estimation

The perspective correction used in the scope of this thesis did not account for the actual three-
dimensional structure of the meal components. Instead it is assumed the objects in the images
are planar, which is not the case for any of the food objects, but as can be seen from the figures
5.19 and 5.20, the areas found after perspective correction, as visualised in figure 4.1, the same
meal components taken at different angles closely correspond to each other. This indicates a
robustness of the method, at least concerning the five different classes of food used in the scope
of this thesis. Because of the assumption of the meals being in the plane, the error is expected
to be very much dependent on the distribution of a meal component, and as such, the ’flatter’
the meals placed on the plate, the more accurate should the size estimation be. Conversely,
the more meal components do not adhere to the same plane as the marker in the image, the
results are expected to be more faulty. Since no segmentation method with satisfactory results
were found, no conclusive tests were performed to evaluate the performance of the weight
estimation.

The fitted polynomials fitted to the measured area of the meal components in figures 5.19
and 5.20 are of the first order. One might consider polynomials of higher orders, but having a
linear regression was decided to be the most natural choice, given the apparent linear behavior
of the data points extracted, overall.
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6.4 Segmentation

6.4.1 Support Vectors Machines
It was clear that in its implementation during this thesis, the support vector machine was not
suitable for the features chosen, RGB-values of pixels. The data presented in the images was
probably not linearly separable, and as such the SVM was deemed to be unfavorable for the
task at hand. Methods to linearise the features of the image for better classification were con-
sidered, but not implemented in favor of using more suitable machine learning algorithms for
classification of multiple classes, such as decision trees.

6.4.2 Hard Mining - Random Forest
The author is stumped at the results of classification of sausage in figure 5.5, as the ROC-curve
corresponding to it characterises complete guesswork. This erroneous result is possibly due
to a fault in the implementation that the author is yet to make sense of. One would expect
sausage to at least show better results than rice in classification, which it does not. The results
for rice were in comparison to other classes (not taking the results for sausage into account)
unsatisfying, as it does only yield its highest TPR while attaining a relatively high FPR as well,
as is visualised in figure 5.7. These results were expected however, as the color, and perhaps
the texture also to some extent, of rice is similar to other pixels in the image, such as the white
plate or the white patches on the table cloth used. In the same manner, figure 5.6 shows the
visual classification of haricots verts, which seems to hold true mostly, in accordance to the
ROC-curve corresponding to haricots verts in figure 5.5.

In figures 5.8 and 5.9, all pixels are shown in a color corresponding to the class they were
classified to be. In figure 5.8 it can be seen that many of the haricots verts pixels are wrongly
classified as broccoli. This was not unexpected as the appearance, especially the color, is
similar. In figure 5.9 it can be seen that many pixels belonging to rice are misclassified as
background (plate, cloth, etc.), and vice versa. This is also not unexpected, because of the
similarities in color.

6.4.3 Bag of visual words
The bag-of-visual-words approach have the advantage of classifying images in chunks of pix-
els, and not each pixel individually. This advantage is due to the SLIC algorithm which per-
forms part of the segmentation, as discussed in section 3.1.4, as the partitioned superpixels
follow the boundaries of the meal components fairly well. This can be seen in figures 5.11 and
5.12.

In figure 5.11, the same misclassification that occurred when using hard mining exist here
also, that haricots verts is classified as broccoli (and also background). In the same way, figure
5.12 shows that much more rice is correctly classified in comparison than when using the
hard mining method (figure 5.7). At the same time there can still be seen in figure 5.12 that
misclassification between rice and background still occur.

The ROC-curves seen in figure 5.10, and in effect the corresponding AROC values, show
an overall improvement to the pixelwise classification used in hard mining, whose ROC-curves
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can be seen in figure 5.5.
The ablation test discussed in 4.3.3 resulted, over two tests made, that using 100 superpixels

and a confidence threshold of 0.5 yielded the best results over both tests. The number of
clusters in the feature space did not seem to matter as much for the results, but were among
the lower values of the three alternatives. This number varied from 8 to 16 between the tests,
and indicates maybe that the data in the feature space overlaps in such a way that using many
centroids distorts the information yielded.

The author was surprised by the low classification rate of sausage, which have, seemingly,
much more striking features than, for instance, rice. This might be mitigated by choosing a
higher number of superpixel which the image is to be partitioned into, although the results in
the ablation test, as discussed in section 4.3.3, speak against a higher number of superpixels.
The choice of using a spatial pyramid approach for extraction of features might not haven been
the best. The features used in the classification are dependent on the shape of the superpixel,
whose corresponding bounding box might overlap to much with the background. This probably
leads the algorithm to classify a superpixel as background as a whole, which might especially
affect food of oblong and thin shape.

The method of using Bag-of-visual-words is rudimentary, but the standardised background
of the images seem to improve the accuracy of the method. A shifting background might yield
very different feature values for the same label, ’background’ and cause inconclusive results.

As can be seen from figure 5.11, the faulty classification that occurs was usually not be-
tween meal components, except in the case between haricot verts and broccoli, but often things
were mistakenly classified as background, or background was wrongly classified as meals. One
explanation for this is that there was such a large amount of data related to background, that it
might often overlap with other data points in the feature space, making it hard to find separate
centroids which obscures the encoding of features. This could probably have been mitigated
by reducing the number of background data when performing the method, so that the features
corresponding to background are no more prevalent than that of the food classes.

6.4.4 U-net
It is worth noting that the number of epochs used in the training of the neural network, from
which the results in section 5.2.4 stems, were considerably low, only 20 epochs. Accuracy
might have increased with longer training sessions, although the assessment of the author was
that the results were not expected to improve, as validation accuracy on the networks had been
essentially the same over the last five to ten epochs.

It was attempted to achieve a segmentation which could differentiate between food classes,
instead of just being able to locate pixels belonging to food. Since there were no conclusive
results, those were omitted in this report.

Although one interesting results was that the area under the ROC-curves corresponding to a
binary U-net classification was increased somewhat when training and testing on images which
had been corrected by color, as is seen in figures 5.13 and 5.14. This strengthens the assumption
that color correction, even when using suboptimal lighting conditions, can be used to achieve a
better accuracy. Even with the slight increase in AROC value, the resulting images, altogether
yielded by U-net, seem much poorer in classification performance than other methods assessed
in this thesis, as seen in figures 5.15, 5.16, 5.17, 5.18.
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For the results presented in section 5.2.4, no pretrained networks were used. The network
used in the original paper [39] were not implemented. Even if that network had been used
on medical images, it was still trained for semantic segmentation, and as such could have
improved results. Using a pretrained network would have been particularly useful given the
limited amount of training data present in the photo atlas. As such, the method was perhaps not
given all the prerequisites to reach its full potential, as it has achieved before [39].
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Chapter 7
Conclusion

One important objective of the thesis was to find suitable machine learning algorithms that can
perform semantic segmentation of images based on small amounts of training data, for images
of meals on a standardised background. From the acquired segmentation a quantity estimation
could be yielded by comparison by a marker of known size, present in all images, and corrected
for projective distortions.

A common factor for all the machine learning algorithms were chosen for their apparent
characteristic of being able to achieve adequate results without excessive amounts of training
data.

The ROC-curves and AROC values corresponding to the Bag-of-Visual-Words method
show surprisingly decent results, as seen in figure 5.10, with high AROC-values for all food
classes, even for rice, which was expected to be especially hard to classify. The author sees
these results as an indication that superpixels can be used as an aid in algorithms for food clas-
sification. As it stands, the method is still prone to error, but probably performs well because
of the standardised background in the images. It seems that the initial partitioning of an image
into superpixels is helpful in the classification, as a mean of preprocessing, helping the seman-
tic segmentation adhere to visible boundaries of meal components. Using a more sophisticated
encoding method of the features from a superpixel, such as a neural network, might yield better
results in future work.

Using neural networks to find a classification network took an substantially longer time
to train than the other two methods evaluated. The results were with apparent flaws when
performing classification between the multiple classes. The results achieved when training it
for binary classification were still below what was achieved by other assessed methods. This
was probably due to the implementation and further research on the subject might yield better
results.

The images which had been color corrected, in accordance to section 3.1.2, were also used
when training a U-net to see if a difference in classification accuracy could be found. As
it stands, a slight increase in accuracy occurred when using images which had been color cor-
rected, as seen in figures 5.13 and 5.14, where the area under the ROC-curves went from 0.8386
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to 0.8971.
The author believes that even though the weight estimation treats all meal objects as two-

dimensional, a quantitative measure is still found, and can supplement or confirm the results
yielded in the 24h recall method, had a robust method for semantic segmentation been found
in the thesis.

The results in this thesis show an indication that color corrected images, as presented in
the report, can be used to improve results in classification, and that the use of superpixels can
be used to simplify classification using machine learning algorithms on food, especially in the
case of meal components adjacent to eachother. This could be a future project were some of
the conclusions presented in the thesis could be of use.
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