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Abstract

In this study, the efficiency of various pruning algorithms were investigated,
with an emphasis on regularization methods. Pruning is a method which
aims to remove excess objects from a neural network. In particular, this in-
cluded the LASSO (Least Asbolute Shrinkage and Selection Operator) and
the extensions derived from it, which were compared with other methods,
including optimal brain damage and the elastic net. Initially, this was imple-
mented for MLPs, but the same methods were extended to CNNs with some
alterations for increased computational efficiency. Pruning was then imple-
mented on the level of weights, neurons as well as filters. It was concluded
that the LASSO tends to yield a superior sparsity on the level of weights, but
the group LASSO’s ability to select variables simultaneously is a worthwhile
addition. Also, optimal results can be obtained by combining both while
regularizing the cost function.



Populärvetenskaplig sammanfattning

I m̊anga däggdjurs hjärnor p̊ag̊ar en process som kallas ”synaptic pruning”,
som g̊ar ut p̊a att göra sig av med hjärnans mindre använda kopplingar. Likt
detta kallar man processer för ta bort överflödiga objekt fr̊an neuronnätverk
för ”pruning”. Ett av de ursprungliga sätten att åstadkomma detta var
det s̊a kallade ”optimal brain damage”, som definierade ett sätt att sortera
parametrar s̊a att prestationen p̊averkades s̊a lite som möjligt. Man vill
allts̊a ha svaret p̊a hur mycket man kan skada nätverket, men fortfarande
l̊ata det bearbeta information p̊a ett lika effektivt sätt. Det här genomförs
eftersom att moderna nätverk, till exempel de som används för bildanalys
eller röstigenkänning, ofta blir stora och oerhört komplexa. Genom pruning
kan storleken minskas och hastigheten ökas, vilket är särskilt viktigt för min-
dre kraftfulla mobila apparater. Många andra metoder för pruning kretsar
kring regularisering, vilket innebär att man p̊a n̊agot sätt justerar nätverkets
förlust för att f̊a ett fördelaktigt beteende. En av de viktigaste kallas för
LASSO (Least Absolute Shrinkage and Selection Operator). I den här stu-
dien testas LASSO som ett verktyg för pruning, och jämförs med många
andra metoder, för olika typer av nätverk.
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1 Introduction

Within machine learning, there has been an increasing interest in solving
various processing tasks using ANNs (Artifical Neural Networks). While
the original perceptrons only included up to a few hidden layers, modern
deep learning networks may include several thousand, and there is hardly an
upper bound for how complex such a network can become [1]. Accordingly,
the task of finding optimal architectures and hyperparameters becomes all
the more daunting. Furthermore, as applications increasingly need to run on
portable devices with less powerful CPUs, more efficient network structures
are needed, without compromising the accuracy of the task. With that, the
importance of pruning methods has resurfaced. While a certain architecture
can be suggested during training in a form of trial and error procedure,
pruning offers the opportunity to remove excess objects from a network.
Here, the objective becomes to sparsify the network of neurons, weights, or
in some rare cases, biases. For instance, it is often the case that the majority
of connections can be removed without greater consequence in terms of error
[1][2][9].

While pruning for weights, one of the original benchmarks was studying the
behavior of the second derivative of the loss function while searching for
a pruning criterion. This idea was introduced with OBD (Optimal Brain
Damage) [3]. These methods may be compared with the ones accomplished
through regularization, as the task of increasing sparsity, speed and perfor-
mance of an ANN is somewhat intertwined with the reduction of overtraining.
A large amount of parameters in a network with complex connections will
naturally result in overfitting of the data, and develop false dependencies.
Another key objective then becomes to find a network with enough connec-
tions as to not significantly impact the test error, but which is still sparse
enough to generalize well. In regularization, we adjust the loss function by
adding a regularizer, which aims to give supplementary information as to
improve the solution. The methods used here will be based on weights de-
cay, which uses the l2 norm to regularize, and the LASSO (Least Absolute
Shrinkage and Selection Operator), which uses the l1 norm [4].

All of these methods introduced may yield a weight-level type sparsity, with
fewer connections. In some instances, there may also be interest to accom-
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plish node-level sparsity, where entire neurons are removed. This gives rise to
the Group LASSO, a modified LASSO operator which can take into account
several objects simultaneously. Here, we may for instance define all outgoing
weights from a node as a group, and with the right solution set, we may then
remove the entire node [5].

Lastly, as an increasing majority of today’s online information tends to be
visual, there has also arisen a need to handle such information efficiently,
which tends to be achieved through CNNs (Convolutional Neural Networks).
Pruning CNNs is generally a more difficult and computationally expensive
task. However, it can still often be possible to use analogous methods to
the ones used for MLPs. To be investigated here is firstly a variation of
OBD applied to kernel weights, as well as a group LASSO which aims to
prune for entire filters. This concludes the main aim of the project, which
is to investigate and compare brain damage methods with different types
of regularization for pruning both MLPs and CNNs for different levels of
sparsity.

2 Background

2.1 Optimal Brain Damage

For the rest of this section, we fix a training data set {xi, yi}, and let
L(yi, f(xi)) be a generic loss function. Furthermore, we let the induced local
field with weights wij be denoted ai =

∑
j wijxj where, for this task, we are

not interested in pruning bias weights. While pruning weights, we naturally
aim to find those which affect the error the least during training. One of the
most intuitive ways the accomplish this would be through magnitude based
pruning, where one penalizes weights of larger size though each iteration of
training, and introduces a cutoff where one decides to remove a weight com-
pletely. However, if we set this cutoff high enough to reach the sought after
sparsity, it will most likely impact the test error more than desired.

In the introduction it was stated that the order in which weights could be
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removed from the network can be decided through the second derivative
behavior of the loss function. The rationale is that, once the network is
trained to a local minimum, the weight influence on the loss function is
dominated by the second order terms i a Taylor expansion. To avoid of
the full Hessian matrix, it is possible to focus on the diagonal terms. This
is a standard approximation while implementing OBD, originally from [3].
Through standard backpropagation, the diagonal second order derivatives
can be calculated as

∂2L

∂ω2
ij

=
∂2L

∂a2i
x2j . (1)

The second order derivative aims to give information on the importance of
a weight, and is then used as the pruning criterion for deciding which to
discard from the network. In [3], the importance of the weight as determined
by the second derivative is referred to as the saliency of the weight.

2.2 The Weight Decay and the LASSO

As stated, the relation between overtraining and pruning gives the impression
that regularization techniques may successfully yield effective pruning crite-
ria. Firstly, we have l2 regularization, which is also known as weight decay.
This has a similar effect to the simplest instance of magnitude based pruning,
where large weights are successively penalized in their impact. Weight decay
is implemented by adjusting the loss function by restricting the weights in
accordance with the l2 norm. We define the l2 norm regularization acting
on the weights as:

Rl2 =
1

2

∑
i

w2
i = ||w||2 (2)

With N being the size of the training data, we can then formulate our regu-
larization, or pruning, problem as:

w∗ = argmin

(
1

N

N∑
i=1

L(yi, f(xi)) + λRl2

)
(3)
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where λ is a regularization parameter. This is unique to each network, and
in the case of layer-wise pruning, also unique to the layer.

Notably, the solution to the regularization problem provided by weight decay
yields quite unsatisfactory results in terms of sparsity. While weights dimin-
ish by a value proportional to their magnitudes, this will never be identically
zero. The value by which the weight decreases will become smaller as the
weight becomes smaller, and the weight could thus only ever asymptotically
approach zero. In other words, the step size becomes increasingly smaller,
and always smaller than the magnitude of the weight itself. Again, we could
introduce some type of cutoff for removing weights, but the same issues
remain. Instead, we intuitively want a function whose sharpness allows for
direct contact with the loss function and decision boundary, and thus provide
null solutions. In the LASSO framework, we have a regularization operator
of the form:

Rl1 =
∑
i

|wi| = ||w||1 (4)

The absolute value allows for weights to be compressed to zero and thus
removed from the network. While generally simple to implement, it is notable
that the loss function under the LASSO will be non-differentiable at the
origin. Instead, one normally sets the gradient to

R′l1 = sign(wi) (5)

Effectively, a constant value is subtracted from the weights, now independent
of the weight, rather than one which is proportional to the weights itself,
and we can theoretically obtain a zero value for some weights, as opposed to
weight decay.

Further, in the case where we would like to have small weights, but still
maintain sparsity, the norms can be directly added to create what is known
as the elastic net regularizer [6]. This would then simply be of the form:

Rel = Rl1 +Rl2 (6)
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2.3 The Group LASSO

So far we have introduced OBD, weight decay, and the LASSO as tentative
pruning algorithms on a weight-level. Although they all have associated
advantages, none manage to accomplish pruning at a higher level, which
may result in preferable density structure. The formulation of the group
LASSO allows us to define what may constitute a suitable group. If we wish
to prune for entire nodes, we may define all outgoing weights of a given node
as a group. In the case where all the weights are found to be zero, the node is
effectively removed from the network. If we let Wl denote the weight vector
of a given group, let pl be its size, and include

√
pl since groups may be of

varying sizes, we may modify the LASSO norm such that

Rg = λ
∑
l

√
pl||Wl||1 (7)

where the 1-norm would now indicate taking the square root of the squared
sum of all weights involved, rather than doing it separately. Performing
pruning on node-level is somewhat similar to feature selection. Although not
the main task, we may remove entire features by letting the group LASSO
work on the input nodes, instead of the hidden layer nodes.

Now, since a group of weights is either completely zero or non-zero, there
is an issue of some individual weights in non-zero groups possibly being in-
significant enough such that they also could be removed. In statistics, this
would be referred to as ”within group-wise sparsity”, which would here con-
stitute the weights. This issue can simply be ameliorated by, similarly to
what is accomplished by the elastic net, combining it with the l1 norm as a
measure to achieve both effects to a certain extent. This is normally labeled
the sparse group LASSO (SGL) [7], and would be of the form:

RSGL = Rg +Rl1 (8)
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2.4 The Convolutional Network

Due to the importance of visual processing tasks, many of the modern imple-
mentations of pruning are done on Convolutional Neural Networks (CNNs).
Even though MLPs may be used efficiently for plenty of classication problems,
when considering image processing, far too many nodes would be required
in order to implement training. This is so even when pruning is taken into
account, as one needs to consider every individual pixel. This complexity is-
sue may be solved by introducing convolutional layers instead of having fully
connected layers, which, together with the activation functions in between,
can make up image structure. These can through convolutional operations
analyze inputs of higher dimensionality with much greater detail. While per-
forming these operations, we also define the filter matrix, a structure within
each convolutional layer, which includes the weights and represents some fea-
ture. Each filter generally has the task of recognizing one feature within the
input image, which becomes more complex deeper in the network. This is
clearly a larger structure than the node, and a number of nodes is generally
incorporated into a single filter. The generation of a convolutional layer is
shown in Figure 1.

Figure 1: Illustrates the generation of a convolutional layer, including the
neurons and the receptive field [8]

.

As previously mentioned, pruning of convolutional layers will be investigated
using similar methods to the those of the MLP such that a definitive com-
parison can be made. Firstly, as a preliminary, the equivalent to magnitude
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based pruning here would be to calculate the absolute sum of some set kernel
weights

∑
l |Wl|, and sort the filters accordingly. For a pruning effect, this

would then be similar to using the l2 norm to regularize within the kernels,
and establish a cut-off, with the same possible disadvantages as earlier.

We can extend the tools previously used for pruning, namely the group
LASSO and OBD, for usage on convolutional layers, with some modifications
to be clarified in the method section. Analogously to before, we can also de-
cide to prune on different levels of the network for different effects. Now, we
can say that we want sparsity on a filter-level, or similarly on a kernel-level.
Alternatively, we can obtain a form of sparsity on weights within the filter,
which is similar to the weight-level sparsity of the MLPs. As will be seen,
we can use a variation of the group LASSO and its combination with the l1
norm to prune filters, and OBD for ways to prune weights within.

2.5 Some Implementation Background

While optimizing the network, a form of stochastic gradient descent known
as Adam was chosen. Apart from being computationally efficient, this has
benefits when working with sparsity, by continuously adjusting the learning
rate. It takes four parameters: α, which represents the learning rate, β1, β2
which represent decay rates, and ε, which is just used to avoid division by
zero [10].

Another aspect to consider is the computational efficiency when generating
convolutional layers, and it can be advantageous to attempt to alter the
expression. There are methods that can reduce convolutions to ordinary
matrix multiplication, making it more similar to what is implemented in the
MLP. As is described in [13], the general convolution process can be reduced
to a matrix multiplication, thus significantly reducing memory requirements.

Regarding the architecture of CNNs, the LeNet was used. This was thought
to be a reasonable choice as the LeNet 5 is one of the simpler varieties of
CNNs with only one fully connected layer, and three convolutional layers.
It is also computationally efficient in that not all features used in the fully
connected layers are used in the convolutional layers [11]. This can then make
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the task of pruning these layers less daunting, and more focused. Naturally,
architectures such as the AlexNet could also have been used, but were not
deemed worthwhile for data sets used.

3 Method

3.1 Choice of architectures

The overall architectures of the MLPs used in experiments will generally be
in agreement with the following pattern. Concerning activation functions,
the ReLu(Rectified Linear Unit), was typically used for all hidden layers.
This was due to its superior efficiency in gradient descent which is of great
use in OBD, as well as the fact that it has a sparse activation [9]. This is
particularly useful in cases where the network is deep enough to where the
standard sigmoid functions start to become obsolete. The ReLu is simply of
the form g(x) = max(0, x). In the case of classification, a softmax function

of the form g(xi) = exp(xi)∑
j exp(xj)

was used on the output layer, since it provides

a form of probability distribution. In addition, for classification, a cross-
entropy loss function of the general form L(y, f(x)) = −

∑
i yi log(f(xi)) is

also used, as it pairs well with this framework. In contrast, for problems of
a regression type, a mean-squared error of the form L = 1

N

∑N
i−1(yi− f(xi))

2

was used. In the case of CNNs, a LeNet 5 architecture was used, with the
same activation and loss functions as for classification with MLPs.

When pruning a network, weights are first sorted according to some ”signif-
icance” criterion. For OBD, it is the saliency derived from the second order
derivative information, for Lasso-based methods we used the conventional
magnitude based measure, ω. Then, a cut-off is used to remove the least
significant weights. Thus, the final pruning will depend on such a pruning
cut-off, as well as any regularization parameter λ. To compare different prun-
ing methods, we first determined a reasonable value of λ for each method,
and then varied the pruning cutoff for that λ to see how different levels of
pruning affected accuracy.
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Like other hyperparameters, there exists no unassailable method to deter-
mine the regularization parameter λ, but there is typically a preferable order
of magnitude. To find it, we first trained an initial network with λ = 0 to
determine a base-line accuracy. With a fixed, bench-mark pruning cutoff
value, which was 10−4 for saliency and for magnitude based pruning in dif-
ferent LASSO versions, λ was incrementally increased. When accuracy was
seen to drop significantly, becoming about 3 percentage points lower than
the base-line, the increase of λ was stopped, and the previously tested λ was
selected as the ”optimal” value.

For a network trained with the optimal λ, the bench-mark cutoff was then
ignored, and the weights and/or nodes were removed in order of their sig-
nificance quantity, thus systematically increasing ”sparsity”, meaning the
fraction of removed relevant quantities. The accuracy as function of sparsity
could then be determined, and different pruning methods was compared, as
shown in several plots in the result section.

During this process, samples were split into training, validation and test sets
according to the percentages 70-20-10, where random selections of date were
chosen for validation and testing in each separate run. For each investigated
λ, cross validation was used to determine hyperparameters such as learning
rate, and with the resulting choices a network was trained on the combined
training+validation data, and applied to the test set to get an unbiased
measure of accuracy.

The experiments were all implemented in Python using the Tensorflow, Keras,
Numpy and Sklearn libraries. All networks were optimized using the Adam
algorithm. The Adam parameters were set as α = 0.001, β1 = 0.9, β2 = 0.999
and ε = 10−8.
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3.2 Extension to CNNs

3.2.1 OBD

Since part of the comparison of MLPs was between OBD and the LASSO,
it can be considered worthwhile to extend this comparison to convolutional
layers, and investigate if conclusions can be similarly drawn. However, even
with the diagonal approximation in effect, this is very computationally ex-
pensive for most data sets. Here, a more efficient method was to alter the
pruning criterion in direct implementation of OBD. Instead of looking at
second order terms in the Taylor expansion, it is possible to instead look at
first order terms. While the loss function is assumed to be in a local mini-
mum such that this will be zero, with a large enough sample size it can we
worthwhile to instead study the variances of the gradient, which will be a
non-zero quantity [12].

3.2.2 The LASSO

While previous methods can be efficient, there is still a variety ways to employ
regularization for sparsifying CNNs. As is the case for feedforward networks,
some of these still revolve around the LASSO and, here in particular, the
group LASSO, with some variations to be taken into account. Looking at
the Wl factor from the original group LASSO estimator, we still keep it as a
general expression for all weights, and modify our group LASSO term to a
more general general expression. This is done similarly to what is expressed
in [13]. If 1 ≤ l ≤ L, l being a specific layer, and letting N be the number
of groups and g = 1, ..., N a specific set of weights within one filter, we can
express the regularization term as:

Rg = λ
L∑
1

N∑
g=1

||Wlg|| (9)
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3.3 Data sets

One of the major goals of this work will be to draw conclusions on the
functionality of pruning for different varieties of data sets with a different
number of parameters. When necessary, all data sets were preprocessed
through normalization, and given a zero mean.

As a small and common data set for implementation of early experiments, the
Iris data set was used. Generally, this results in a rather simple classification
problem for a non-complex MLP, but can still be of interest to prune. It has
three classes of iris plants, all with 50 samples.

Next, pruning was performed on a generating function with six features,
which had the form: y = 2x0 + x1x

2
2 + exp(x3) + 5x0x1 + 3 sin(2πx1) This

consisted of 10,000 samples.

Finally, for all CNN experiments, the MNIST data set was used. This consists
of around 70,000 handwritten digits. Since this is a problem which may also
be solved using MLPs, it provided a good comparison.

4 Results

Whether the implementation is on weights, neurons or filters, what consti-
tutes a successful pruning method will be the relationship between sparsity
and test error. Normally, the test error will not be smaller as a consequence
of pruning, but rather strive to be as similar as possible to that achieved in
the original architecture, such that it can act as a sparser replacement. As
defined in section 3.1, a value of optimal sparsity is sought after. At some
subsequent point, the network will carry so little information such that it
will cease to be practical. This will be explored for each method on each of
the data sets.
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4.1 OBD

We begin by presenting results for optimal brain damage, or pruning with
the saliency criterion. This can in a natural way be compared with another
criterion, which was labeled the simplest method: the magnitude based prun-
ing (MBD), which as stated merely sorts and removes weights in terms of
their magnitudes.

Figure 2: The two simplest pruning algorithms compared on the MNIST data
set. In pruning, the region where the test error starts to rapidly increase was
searched for, at which point once could no longer safely remove weights. For
MBD, this decay clearly begins quite early, making it an inefficient pruning
tool. For OBD, even for a large dataset like MNIST, more than half the
weights could safely be removed.

As would have been expected, the saliency criterion appears much more
effective in terms of sparsity than the magnitude variant, as can be seen
from Figure 2. Still, it is not entirely satisfactory. The saliency criterion
relies on the diagonal as well as the quadratic approximations, and appears
to generally function well for slightly above half of the network weights.

The results for the rest of the datasets are shown in Table 1, which gives
the sparsity of all weights as well as optimal test accuracy. When looking at
the different datasets, the error at a certain sparsity level also appears to be
proportional to the number of layers, as well as the number of weights per
layer, in the network. For instance, in the iris case, four inputs and three
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outputs were used, as well as only one hidden layer, for a total 15 neurons.
Here, around four fifths of the weights can quite safely be removed. In the
MNIST case, the MLP is more complicated, and the result will be later
improved upon using CNNs, as is natural for such a large classification data
set.

Table 1: Shows the result for optimal weight sparsity for each of the datasets,
as well as the accuracy on the test set. The higher sparsity values show that
OBD is the higher performer, proving quite effective for the small Iris dataset.

Dataset Quantity OBD MBD

Iris
Weight Spars. 0.76 0.41

Accuracy 0.98 0.98

Gen. Set
Weight Spars. 0.68 0.38

Accuracy 0.97 0.97

MNIST
Weight Spars. 0.58 0.29

Accuracy 0.97 0.98

4.2 The LASSO

Now, as a continuation of previous methods, we investigate what is theo-
retically a powerful tool for obtaining sparse networks: the LASSO. As ex-
plained, the loss function is adjusted with the l1 norm, and an overly small
λ is chosen, typically of the order of 10−4, and continuously increased until
some degree of sparsity is observed, as is demonstrated in Figure 3 for the
generated dataset. There is no exact method for obtaining a satisfactory
value, but one needs to look at the corresponding test error, and choose a λ
where sparsity no longer increases, but test error does. This value appeared
to be somewhat related to the size of the dataset. For instance, for Iris, it
was chosen to be 10−2, for the generated set 5 · 10−2, and for MNIST 10−4.

Similarly to the magnitude based preliminary of OBD, it can be useful to
observe how the weight decay contrasts the LASSO. In agreement with what
was put forth in the theory section, this does not yield sparsity in the manner
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Figure 3: Shows the choice behind one regularization parameter for the gen-
erated set. As the parameter is increased, the sparsity clearly follows. This
is the case up to a certain point, where the trade-off of greater test error no
longer becomes worthwhile.

of the LASSO. While it can be a useful tool when it comes to things like
overfitting, we can see from Figure 4 that it here fails, just like magnitude
based pruning, when the main success criterion is sparsity. The rest of the
LASSO results are summarized in Table 2. For each dataset and method, it
shows the found optimal regularization parameter, sparsity percentage, and
test accuracy. As we can see by comparing Table 2 and Table 1, on all of the
datasets, the LASSO appears to consistently outperform OBD.

Figure 4: Demonstrates weight pruning using the LASSO and the weight
decay on MNIST.
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Table 2: Shows the result for optimal weight sparsity for each of the datasets.

Dataset Quantity LASSO Weight Decay

Iris
λ 0.01 0.01

Weight Spars. 0.84 0.39
Accuracy 0.98 0.98

Gen. Set
λ 0.05 0.05

Weight Spars. 0.81 0.32
Accuracy 0.96 0.97

MNIST
λ 10−4 10−4

Weight Spars. 0.83 0.24
Accuracy 0.97 0.98

4.3 The Group LASSO

One of the main downsides of the conventional LASSO is that it has a form of
early selection saturation point. This means that, correlated variables, which
one would normally categorize in a group, are typically not selected together
while performing the regularization [4][6]. The extension of the LASSO to
the group LASSO described earlier aims to ameliorate this issue, and appears
to accomplish it rather well. Mainly, the group LASSO will be implemented
on hidden layers, and it is here the sparsity quantity will be defined; not on
the inputs. In Figure 5, we see the comparison in the removal of these nodes
accomplished by the group LASSO as opposed to the regular LASSO, and
how it may impact the test error. Complete results are shown in Table 3.

From these results, mainly the weight sparsity we can observe the group
LASSO still generates a more densely connected network than that of the
LASSO. However, as will be seen in the next sections, the unique effect of
node removal of the group LASSO still has a role to play in inducing sparsity.
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Figure 5: Demonstrates node pruning using the LASSO and the group
LASSO on MNIST. Similarly to before, we search for an optimal sparsity
level before test error significantly increases.

Table 3: Summarizes node pruning for all the datasets.

Dataset Quantity LASSO Group LASSO

Iris

λ 0.01 0.01
Weight Spars. 0.84 0.57
Node Spars. 0.53 0.84

Accuracy 0.98 0.98

Gen. Set

λ 0.05 0.05
Weight Spars. 0.81 0.52
Node Spars. 0.50 0.83

Accuracy 0.96 0.96

MNIST

λ 10−4 10−4

Weight Spars. 0.83 0.57
Node Spars. 0.47 0.83

Accuracy 0.97 0.97

4.4 Combinations of Norms

It is the purpose of the elastic net and the SGL to achieve a combined reg-
ularization effect by simply adding the respective norms involved. This was
investigated, and found to have a certain degree of success.
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(a) Weight pruning (b) Node pruning

Figure 6: Pruning using combinations of norms on MNIST.

As can be observed in Figure 6a) for weights and 6b) for nodes, the elastic
net demonstrates a certain degree of node and weight sparsity. Since the
l2 regularization has a theoretically greater grouping effect as compared to
l1, it was considered worthwhile to be investigated. However, in comparison
with other methods, it did not prove to be particularly useful as a pruning
tool, as can be seen for all datasets in Table 4. Also, here one regulariza-
tion parameter is required for each term, making the fine-tuning a bit more
difficult.

The next step will be to examine the combination of the ordinary LASSO
and the group LASSO, and see if this combination of sparsity and grouping
is of greater success than the elastic net. While of similar motivations, this
appears to yield the most effective sparsity of all the regularization methods,
as again demonstrated in Figure 6a) and b) as well as Table 4. It can also be
implemented using only one regularization parameter, despite the two terms.
In terms of weights, it is on par with the regular LASSO. However, in terms
of nodes, it even slightly outperforms the group LASSO.

4.5 Extension to CNNs

Finally, we will examine whether similar conclusions to those drawn above
can be applied to the convolutional layers, with the addition of pruning for
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Table 4: Summarizes norm combination for all the datasets.

Dataset Quantity El. Net SGL

Iris

λ 0.01/0.01 0.01
Spars. (Weights) 0.35 0.84
Spars. (Nodes) 0.33 0.86

Accuracy 0.98 0.98

Gen. Set

λ 0.04/0.07 0.04
Spars. (Weights) 0.33 0.82
Spars. (Nodes) 0.30 0.85

Accuracy 0.96 0.96

MNIST

λ 10−4/10−4 10−4

Spars. (Weights) 0.33 0.82
Spars. (Nodes) 0.29 0.85

Accuracy 0.97 0.97

filters.

Concerning OBD, we see from Figure 7 a somewhat greater success from
altering the pruning criterion, as compared to the second derivative infor-
mation, in addition to now being more computationally efficient with the
absence of Hessians. For weight sparsity, it here even appears to be slightly
more efficient than the LASSO, which makes it possible to question the use-
fulness of second derivative methods altogether.

Next, we have the LASSO extensions applied to CNNs, with the goal of
reducing the number of filters. The effectiveness of the group LASSO and
the SGL are compared in Figure 8. Using both methods, and the two first
convolutional layers’ filters, significantly more than half of the filter could be
pruned. For larger networks, it can then even be feasible to remove entire
convolutional layers, when there are no more features. Similar methods can
also be used to prune for network channels. Again, we can observe how the
SGL provides the greatest pruning efficiency.
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Figure 7: The new OBD variation and the LASSO applied on weights of the
LeNet-5 with MNIST.

Figure 8: The Group LASSO and the SGL pruning filters of the two convo-
lutional layers of LeNet-5 with MNIST.

5 Discussion

5.1 Comparison of Pruning Results

As was expected by the general theory, and is quite evident from many of
the results, there is a certain order of effectiveness of the methods in terms
of pruning. While OBD is a powerful preliminary, often allowing for removal
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of more than half of a network’s connections, it is quite weak in comparison
to more modern methods. While it does yield much better weight sparsity
than MBD as well as the weight decay, it is consistently of worse performance
than the LASSO, as well as its extensions. A possibility could be that some
of the approximations, in particular the diagonal approximation which is not
theoretically motivated, are not particularly effective past a certain point.
As mentioned, the group LASSO, while it can be used for other things such
as feature selection, generally yields somewhat less weight sparsity than the
conventional l1 LASSO. This can be the case due to the possibility of there
being a multitude of individual superfluous weights not included in a any
particular group. However, the two combined was observed to be highest
performing type of pruning, with both nodes and individual weights being
able to be removed, for the most compressed, and seemingly effective, net-
work. The elastic net, while yielding some form of combination of smaller
weights and sparsity, could not be considered a particularly effective pruning
tool. The same thing can be concluded with node-level sparsity.

When it comes to the the convolutional networks, the new OBD criterion
made for consistently more successful accuracy while pruning. This leads
to the conclusion that this is a worthwhile substitution for a large enough
network, even for MLPs, since it even slightly outperformed the LASSO in
terms of weight sparsity in the LeNet CNN structure. Additionally, the
LASSO variations here appear about as efficient as for MLPs with the SGL
being able to prune for filters with rather good accuracy.

A last thing which could be of interest to investigate would be how, similarly
to how the OBD and regularization methods were extended to CNNs, to
see how they could be extended to RNNs, and if the SGL maintains similar
efficiency.

5.2 Further Methods For Sparsity

As was briefly touched upon in earlier sections, there are alternatives to
pruning for a more sparse, compact or simply faster and easier to understand
network. One of these would be parameter prediction, where, instead of
removing parameters and connections considered superfluous, one predicts
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which ones may be important, and then construct the network accordingly.
For instance, the model can learn a few weights corresponding to a certain
feature and then use it as a form of dictionary for the rest of the structure
[15].

Far from all variations of pruning were included in this project, with for
instance pruning using dropout being something which could have been in-
vestigated. This is one of the more common forms of regularization, which
makes it an obvious alternative to the LASSO variations. Here, nodes can be
assigned a certain probability of not being included in the learning process,
whose effect can subsequently lead to another form of pruning criterion [16].

Another compression technique is one which is generally referred to as quanti-
zation of neural networks. Here, one can for instance form clusters of param-
eters and use it to reconstruct the network in a way that saves computational
resources [17]. Alternatively, there is also the method of distillation, aiming
to directly transfer information from a more complex network, to one that is
less so. Essentially, rather than using the original dataset, the smaller net-
work is trained to replicate the performance of the larger as well as possible.
A variation of this would be in new methods such as MorphNet, taking the
larger network directly as input [18][19].

5.3 Conclusion

Based off our results, The LASSO’s sparsity property clearly yields optimal
weight sparsity results, rivaled only by the very efficient altered OBD condi-
tion used for CNNs. The group LASSO proved just as effective for pruning
nodes, and the combination of both can be concluded as the ideal pruning
tool out of those investigated.
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