
Arbitrary Decimation for High Sample Rates,
Algorithm Design and FPGA implementation

FREDRIK PETERSON
MASTER´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2019

FR
ED

R
IK

 PETER
SO

N
A

rbitrary D
ecim

ation for H
igh Sam

ple R
ates, A

lgorithm
 D

esign and FP
G

A
 im

plem
entation.

LU
N

D
 2019

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2019-719
http://www.eit.lth.se

Arbitrary Decimation for High Sample Rates,
Algorithm Design and FPGA implementation.

Fredrik Peterson
elt14fpe@student.lu.se

Department of Electrical and Information Technology
Lund University

Supervisor: Assoc. prof. Liang Liu

Examiner: Prof. Erik Larsson

August 21, 2019

c© 2019
Printed in Sweden
Tryckeriet i E-huset, Lund

Abstract

This master thesis investigates how to perform irrational decimation, the process of
reducing the sample rate of a signal, for high throughput systems. The thesis work
consists both an algorithmic part and an implementation part. In the algorithmic
part, an algorithm that could cope with the requirements is found, and investigated
due to different aspects. A group of filters that are investigated further are different
version of the so called farrow structure. The farrow structure can be used in a
lot of different applications but the interesting thing here is that decimation can
be made, quite arbitrary, while all parameters of the structure are kept static,
aside from one control parameter that must be recalculated for every sample. The
result of the algorithm investigation is an algorithm that consists of a transposed
farrow filter in series with a fixed halfband filter. The series connection of the two
different filters were found to be necessary to cope with the given requirements
of the project. Especially the requirements on the stopband attenuation (80 dB)
and passband ripple (0.02 db) in combination with the bandwidth (80%), mad it
impossible to use just a farrow filter without using too high filter orders. Both
the transposed farrow structure and the halfband filter can be implemented, using
high levels of parallelization, which was necessary in the implementation phase, to
be able to match the high throughput demands.

During the implementation part, the algorithm is implemented onto a FPGA,
a Xilinx Virtex Ultrascale. The implementation aims towards proving that the
algorithm could be used for high throughput applications and is implemented in 8
parallel at a clock speed of 312.5 MHz. The parallelization in combination with the
clock speed gives the implementation a capacity of decimating an incoming signal
at a sample rate of 2.5 GSa/s. To solve the problem of the multiple data rates
within the implementation, a shift register is used to only execute the main parts
of the implementation when all parallelization branches have valid data at their
inputs. This transforms almost all the problem with the multirate system to a
much simpler data driven implementation. The decimation factor can be selected
from 2 and upwards with a certain resolution. The resolution is higher for smaller
decimation factors than for larger ones.

i

ii

Acknowledgements

I would like to thank Teledyne SP Devices for the opportunity of doing my master
thesis work in collaboration with the company and all employees at he company
for their help, kindness and all interesting discussions. Especially, I would like
to thank Mikael Gustavsson for always taking time to answering my questions
and discuss difficult problems or suggestions. I would also like to thank Jens
Månsson and Martin Olsson for sharing their knowledge within the area of FPGA
implementations.

From Lund University, I would like to thank the supervisor of the master thesis
Liang Liu as well as the examiner Erik Larsson.

Finally, I would like to express my gratitude towards all friends and family
who have been supportive throughout the whole process and helped me to keep
the spirit up when the work has been demanding.

Fredrik Peterson

iii

iv

Popular Science Summary

Today more and more electronic things work of digital signals in-
stead of analog signals. Digital signals have a lot of favorable prop-
erties over analog signals and the development, with faster electronics
and computers makes it possible to perform more and more advanced
stuff with the signals. In this master thesis, a way that might make the
digital signals easier to work with, is presented.

There are two types of signals, ana-
log and digital. An analog signal is con-
tinuous, which means that it has a value
at any given time. A digital signal is not
continuous but instead discrete, which
means that it only have values at spe-
cific time points. One can convert an
analog signal to a digital signal by sav-
ing values of the analog signal at specific
times. The process of saving the values
of the analog signal, making it digital,
is called sampling. How often the sig-
nal is sampled is called the sample rate
of the signal. The time period between
the times, where the data is saved, are
always equal. As an example one can
save the value of the analog signal at
every second, giving the signal a sam-
ple rate of 1 sample per second (Sa/s).
Depending on what one wants to make
with the digital signal one might want
to have signal, that is not sampled ev-
ery second but where the time points are
separated by a larger time, as an exam-
ple instead every minute. To obtain the
values of a digital signal that is samples
every minute instead of every second,
the signal must be processed through a

so called decimation algorithm. A dec-
imation algorithm can calculate what
the values should have been if the ana-
log signal, already from the beginning,
would have been sampled at these longer
times instead of the old short ones. This
thesis work is about how to perform this
change, between a higher sample rate
and a lower one.

There exist many ways to perform
decimation, but the special thing about
the work of this master thesis is that
we want to be able to change the sam-
ple rate between one static value (a fast
one) and any lower one. For example
if we have the signal that had a sam-
ple rate of 1 sample per second (Sa/s),
we want to be able to convert it to 1/60
Sa/s, or 1/1000 Sa/s or even 1/2.5472
Sa/s. This makes the whole thing a lot
more difficult. In addition to this the
actual sample rate of the signal is not 1
Sa/s but for example 5 GSa/s, that’s 5
billion samples per second. This is very
fast, and the method must then be able
to calculate 5 billion values every sec-
ond, this is very fast and it is not easy!

v

vi

Table of Contents

1 Introduction 1
1.1 Background . 1
1.2 Issue and Requirements . 3
1.3 Outline . 4

2 Theory 5
2.1 Decimation . 5
2.2 Hybrid analog model . 6
2.3 Farrow Structure . 6
2.4 Transposed Farrow Structure . 9
2.5 Halfband filters . 11
2.6 Cascaded structures . 11
2.7 Polyphase Representation . 12

3 Methodology 15
3.1 Algorithm development . 15
3.2 Implementation . 16

4 Results 19
4.1 Filter design . 19
4.2 Simulations . 24
4.3 Implementation . 30

5 Conclusion 43
5.1 Summary . 43
5.2 Future Work . 44

References 47

vii

viii

List of Figures

1.1 (a) a sampled signal. (b) the same signal decimated by a factor R = 2.5. 2

2.1 (a) The spectrum of a digital signal. (b) The same spectrum but the
signal is decimated by a factor of 2. 5

2.2 The hybrid analog model. 6
2.3 The farrow structure. 7
2.4 The basis functions up to order 3, for m = 0 to 3 (a to d). 8
2.5 The transposed modified farrow structure. 10
2.6 Block schematic of the accumulator_top module, showing it’s sub-

modules and their connections. 11
2.7 An example of a cascaded decimation structure. 12
2.8 Multiplication and decimation can be in any order and are independent

of branching. 12
2.9 Decimation and filtering can switch places if taps of the filter are

adjusted. 12
2.10 Decimation and filtering can switch places if taps of the filter are

adjusted. 13

3.1 Truncation always make the resulting value smaller. 17
3.2 Rounding, rounds the number to the closest integer with 0.5 rounded

upwards. 18

4.1 The frequency response of the transposed farrow filter with 6 subfilters
of order 21, and designed with relbw = 0.8. 21

4.2 The frequency response of the transposed farrow filter with 6 subfilters
of order 7, together with the halfband filter and the sum of both. No
co-optimization. 22

4.3 The frequency response of the transposed farrow filter with 6 subfilters
of order 7, together with the halfband filter and the sum of both. With
co-optimization. 23

4.4 The passband of the frequency response of the transposed farrow filter
with 6 subfilters of order 7, together with the halfband filter and the
sum of both. With co-optimization. 24

4.5 SNR of floating point model simulation. R = 2.3. 25

ix

4.6 SFDR of floating point model simulation. R = 2.3. 25
4.7 Amplitude of floating point model simulation. R = 2.3. 27
4.8 SNR of floating point model simulation. 27
4.9 SFDR of floating point model simulation. 28
4.10 Frequency response of the transposed farrow filter, the halfband filter

and the sum of those. All filters use the fixed point coefficients. . . . 29
4.11 The passband of the frequency response of the transposed farrow filter,

the halfband filter and the sum of those. All filters use the fixed point
coefficients. 29

4.12 Block schematic of the top modules of the implemented design. . . . 30
4.13 Block schematic of the accumulator_top module, showing it’s sub-

modules and their connections. 31
4.14 Block schematic of the farrow_top module, showing it’s submodules

and their connections. 36
4.15 Block schematic of the scale_data module. 38
4.16 Block schematic of the halfband_top module, showing it’s submodule

and their connections. 38
4.17 (a) Truncation, (b) Rounding. 41

x

List of Tables

1.1 Requirements of the decimator. 3

4.1 The frequency vector used in the filter simulations. 20
4.2 Filter orders needed to fulfill the project requirements for different

numbers of subfilters, in the case of only the transposed farrow filter. 20
4.3 Filter orders needed to fulfill the project requirements for different

numbers of subfilters in the case of cascaded structure without co-
optimization. 22

4.4 Filter orders needed to fulfilled the requirements for different numbers
of subfilters in the case of cascaded structure with co-optimization. . 23

4.5 Coefficients of the transposed farrow filter co-optimized with the half-
band filter. 26

4.6 Coefficients of the halfband filter co-optimized with the transposed
farrow filter. 26

4.7 Decimation factors used for the test cases. 40
4.8 Resulting SNR and ENOB of the verified implementations. 40
4.9 Resulting mean and max error of the implementations. 40
4.10 Resource usage of the FPGA implementation. 41

xi

xii

Terminology

ADC - Analog-to-Digital Converter

DAC - Digital-to-Analog Converter

ENOB - Effective Number Of Bits

Fir - Finite impulse response

FPGA - Field Programmable Gate Array

Fs - Sample frequency

H(f) - Frequency response

h(t) - Impulse response

Lsb - Least Significant Bit

M - Number of branches of a farrow filter

Msb - Most Significant Bit

N - Length of each branch in a farrow filter

R - Decimation factor

S - Scale Factor

Sa - Samples

SNR - Signal to Noise Ratio

SFDR - Spurious-Free Dynamic Range

Tin - Sampling time of the input signal

Tout - Sampling time of the output signal

VLSI - Very Large Scale Integration

µ - Control parameter

xiii

xiv

Chapter1
Introduction

This master thesis has been carried out as a project at Teledyne SP Devices, a
company that develops digitizers. The problem investigated was sample rate con-
version and more specific decimation. In a digitizer the analog to digital converter
(ADC) generally works at a fixed sample rate but the system would be more flex-
ible if the output sample rate could be varied (decreased) and this master thesis
investigates how to achieve this in a manner that could be efficiently implemented.

1.1 Background

Because of easier configuration and a larger flexibility more and more functionality
of modern electronics systems and signal processing are moved from hardware
to software or programmable hardware. This migration is made possible of the
development of faster and more energy efficient digital components, which includes
DSP processors and FPGAs. A trend within communication systems as well as
other high data rate systems in need of signal processing is to move the converter
(analog to digital or digital to analog) closer to the antenna and make as much as
the signal processing as possible in the digital domain using digital components
instead of processing the analog signal using analog components.

The digitizers developed by Teledyne SP Devices include firmware which parts
of is running on a field programmable gate array (FPGA) board included at the
digitizer’s printed circuit board (PCB). The analog to digital converter (ADC)
generally have a fixed sample rate but there are applications which would gain of
a more flexible sample rate, in this case lower than the sample rate of the ADC.
The intended applications of the implementation will be mainly within the RF
field, where a signal often has a high carrier frequency but the signal content is in
comparison to that frequency narrow band.

1.1.1 Decimation

Decimation is the process of reducing the sample rate of a signal. It could be
said that there are two categories with several subcategories of decimators. The
two main categories are programmable and fixed, and the category refers to the
flexibility of the decimator. A fixed decimator always decimate by the same factor
where a fully programmable decimator could be set to different factors. Both of

1

2 Introduction

these categories could also be divided further into integer, rational and irrational
converters. An integer decimator could decimate by an integer factor. A rational
decimator can decimate by a factor D/I where I and D are integers and D are
greater than I for decimation. Almost all numbers could be described as rationals
but the limitations of a rational decimator lays in the fact of how the rational
decimation is achieved. The most common way of achieving rational decimation
is to first interpolate by I and then decimate by D. This leads to a really high
data rate if I is large. An irrational decimator could potentially decimate by any
factor. The scope of this thesis is within the last case, an irrational or arbitrary
decimator.

There are several reasons for decimating a signal but a key to able to do this
is that the signal is oversampled or that the interesting content of the signal can
be fitted into the maximum bandwidth of the new sample rate, otherwise some
of the content of the signal will be lost or damaged. Two reasons for decimation
are to save resources, by either the data reduction or complexity reduction of the
algorithm, or to match the sample rate of a connected system or algorithm.

0 2 4 6 8 10
(a)

−0.5

0.0

0.5

0 2 4 6 8 10
(b)

−0.5

0.0

0.5

Figure 1.1: (a) a sampled signal. (b) the same signal decimated by
a factor R = 2.5.

Resources can be saved because of that operations on fewer samples generally
requires less computations than more samples. Resources could in this case be
memory size, energy consumed when an algorithm is ran or area consumed by the
implementation of the algorithm on a chip or FPGA. Energy could be saved both
because that less computations are needed but might be even further reduced if
the clock speed or supply voltage could be reduced.

One example algorithm is fast Fourier transform (FFT) which uses N/2log(N)
complex multiplications [1]. If N is halved in this case the reduction in computa-
tions is more than halved.

A reduction of sample rate makes the design of components working on the
signal with lower sample rates easier and less complex. As examples the degree of

Introduction 3

parallelisation may be reduced or filters could use fewer coefficients due to lower
demands.

In the case of sample rate matching it could be that an algorithm is imple-
mented for a certain sample rate and to be able to connect several systems the
sample rate need to be converted between them. In this case the sample rate
conversion could be both downwards (decimation) or upwards (interpolation).

1.2 Issue and Requirements

Decimation is common in modern electronics systems and the absolute majority of
these implementations are of the fixed decimation type. The scope of this master
thesis is to investigate ways to make an as arbitrary decimator as possible. The
decimator should be possible to implement in an efficient way at a FPGA and an
implementation, as a proof of concept, is also to be made. There are some specified
requirements, seen in table 1.1, that the implementation should try to cope with.
In general it could be said that all of these requirements are rather strict and
that high precision algorithms will have to be used to match the requirements.
The bandwidth, stopband attenuation, and passband ripple demands will lead to
high order filters. The sample rate demands are really high and high levels of
parallelization of the algorithm will be needed for the implementation.

Requirement Value
Bandwidth 80 % of Fs/2
Stopband attenuation - 80 dB
Passband Ripple ± 0.008 dB
Maximum input sample rate 1 x 5 GSa/s or 2 x 2.5 GSa/s

Table 1.1: Requirements of the decimator.

Throughout the project several difficulties will have to be addressed. The first
one is to find a good balance between performance and FPGA resource usage.
One of the keys here is to succeed to give a good estimate of the resource usage,
prior to the implementation to be able to choose the best algorithm. Another
difficulty is that 2.5 GSa/s or 5 GSa/s are a really high sample rates which make
the implementation more difficult. A high degree of parallelization will be needed
to cope with this demand and the algorithm must be implementable with this
high degree of parallelization. One last difficulty is that algorithm’s purpose is
to change the sample rate. This means that somewhere within the steps of the
algorithm the sample rate will change and the FPGA implementation must be able
to handle this rate change, which in this case not will be known beforehand. The
main difficulties that will need to be resolved during the project are as follows:

• Find a good balance between performance and resource usage.

• Make an implementation that can handle really high sample rates.

• Find a way to cope with the sample rate change at the FPGA.

4 Introduction

1.3 Outline

In the first chapter of the report the topic of the master thesis was introduced
and the task of the work presented. The second chapter gives some of the theory
needed to understand the topic, such as further details about decimation and
different structures to use for decimation. In the third chapter the methodology of
the work is presented. The fourth chapter present the result of the work. In this
chapter the suggested algorithm are presented as well as a proof of concept FPGA
implementation. The last chapter summarizes the work and gives suggestion for
future work on the topic.

Chapter2
Theory

2.1 Decimation

Decimation is the process of reducing the sample rate of a digital signal. Depending
on the signal and the requirements of the output signal, this process might be more
or less complicated. A trivial case is decimation by an integer factor, R, in cases
when neither aliasing nor imaging occurs. In these cases it just a matter of keeping
every I:th sample and disregard the others. In non trivial cases a lowpass filter is
needed to attenuate parts of the signal [2].

2.1.1 Spectrum

When a signal is decimated the spectrum is changed. To avoid aliasing the signal
must be bandlimited to Fs/2R, where R is the decimation factor. This also means
that the signal content could only be fully preserved, in the case of decimation,
if the signal is bandlimited so that aliasing does not occur, otherwise information
will be lost. The spectrum of a decimated signal is seen in fig. 2.1.

0 π 2π 3π−π−2π−3π

(a)

0 2π 4π 6π−2π−4π−6π

(b)

Figure 2.1: (a) The spectrum of a digital signal. (b) The same
spectrum but the signal is decimated by a factor of 2.

5

6 Theory

2.2 Hybrid analog model

When working with decimation, or interpolation, structures one convenient why
to model the system is the "hybrid analog model" [4], [5]. This model allows
the lowpass filter to be designed in the frequency domain which is necessary to
handle the behavior of the filter for frequencies above Fs. The model transforms
the problem of designing the filter from the time domain to the frequency domain
[7]. The model can be seen in Fig. 2.2 and it consists of an ideal digital-to-analog
converter (DAC) followed by the lowpass filter and a resampling step that converts
the signal back to digital with the new sampling frequency.

x(n)
DAC ha(t)

y(l)

Sample at T (l) = Ts ·R

Figure 2.2: The hybrid analog model.

2.3 Farrow Structure

The farrow structure, fig. 2.3, was originally suggested as a continuously variable
digital delay filter which was primary targeted as a part of a system for echo can-
cellation [3]. The structure consists of M parallel finite impulse response (FIR)
filters of order N. A single control parameter, µ, sets the delay of the filter while all
other parameters remain static. This fact makes it suitable for a Very-large-scale
integration (VLSI) implementation. Depending on the choice of the control pa-
rameter, together with the coefficients, the structure can perform different tasks.
The farrow structure is also mentioned as a polynomial filter since the filter, in a
mathematical sense, can be seen as piece-wise defined polynomials where the con-
trol parameter change the variable part of the polynomial and the filter coefficients
set the coefficients.

A small note about the notation, m denotes one of the branches 0, . . . , M − 1
and n denotes one coefficient number 0, . . . , N in one of the branches.

2.3.1 Modified Farrow Structure

A small modification of the farrow structure has to be made to be able to design the
filters in the frequency domain, which is a necessity to be able to reach the specified
requirements, section 2.3.5. The modification is that instead of multiplying the
input with µm, (2µ−1)m is used [6]. This modification is from this point assumed
in all cases if not otherwise noted.

This modification leads to a change of the basis functions which are described
in section 2.3.2 and are simple, yet crucial for the ability to design the filters.

2.3.2 Basis functions

The farrow structure, as earlier, mentioned consists of piece-wise defined polyno-
mials. These polynomial can be described by a coefficient together with a basis

Theory 7

Figure 2.3: The farrow structure.

function [6]. The equation for the basis function can be seen in eq. 2.1. It can be
seen that for example m = 0 gives a zero order function and that m = 1 gives a
linear function, and so on. The four first orders of the basis function are plotted
in Fig. 2.4.

fm(t) =

{(
2t
Ts
− 1
)m

0 ≤ t < Ts

0 otherwise
(2.1)

2.3.3 Impulse response

Together with coefficients the basis functions describes the polynomials of the
farrow structures and these builds the impulse response of the whole filter. The
impulse response is a summation over all the coefficients and corresponding basis
functions as seen in eq. 2.2.

h(t) =

N/2−1∑
n=−N/2

M∑
m=0

cm(n)fm(t− nTs) (2.2)

A symmetric FIR filter has linear phase which is a desirable property of the
farrow structure when used for decimation. If all the sub filters are symmetric (or
anti-symmetric) the whole structure will have a symmetric impulse response and
gain the benefits from a linear phase behavior. A symmetric filter also requires
just half the number of unique coefficients which is a good point when it comes to
implementation of the filter. Using the symmetric (and anti-symmetric) property
the coefficients can be described by cm(−n) = cm(n−1) for m even and cm(−n) =

8 Theory

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(a)

0.0 0.2 0.4 0.6 0.8 1.0

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

(b)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(c)

0.0 0.2 0.4 0.6 0.8 1.0

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

(d)

Figure 2.4: The basis functions up to order 3, for m = 0 to 3 (a to
d).

−cm(n − 1) for m odd [6]. The summation in the impulse response, eq. 2.3 can
then be summed just over half the number of the coefficients using a modification
of the basis function equation 2.4.

h(t) =

N/2−1∑
n=0

M∑
m=0

cm(n)gm(n, Ts, t) (2.3)

gm(n, Ts, t) = fm(t− nTs) + (−1)mf(t+ (n+ 1)Ts)

=


(

2(t−nTs)
Ts

− 1
)m

nTs ≤ t < (n+ 1)Ts

(−1)m
(

2(t+(n+1)Ts)
Ts

− 1
)m

−(n+ 1)Ts ≤ t < −nTs
0 otherwise

(2.4)

2.3.4 Frequency response

The frequency response of the farrow structure can be obtained as the Fourier
transform of the impulse response from eq. 2.3 [5].

Ha(f) =

N/2−1∑
n=0

M∑
m=0

cm(n)G(n,m, Ts, f) (2.5)

The function G, eq. 2.6, is again the Fourier transform of the modified basis
function from eq. 2.4 and eq. 2.7 is just used to make the equation easier to read.

Theory 9

Gm(n, T, f) =

{
2cos(2πf(n+ 1

2)T)((−1)m/2m!Φ(m,T, f) + sinc(πfT)) m even

2(−1)
m+1
2 Tm!sin(2πf(n+ 1

2)T)Φ(m,T, f) m odd

(2.6)

Φ(m,T, f) =

b(m−1)/2c∑
k=0

(πfT)2k−1
(−1)k

(2k)!

(
sinc(πfT)− cos(πfT)

2k + 1

)
(2.7)

2.3.5 Filter Design

Time domain design

When designing farrow filters in the time domain, classical interpolation techniques
are used. Two examples are Lagrange interpolation and B-Splines [7]. The time
domain design is easy but suffers from problem with the performance of the filters.
This fact limits the usage of the time domain design approach to systems which
not require sharp filters or filters with high attenuation in the stopband.

Frequency domain design

When the farrow filters are designed in the frequency domain the principle is to
minimize the difference between the frequency response, eq. 2.5, and the desired
frequency response D(f) [6]. The desired response is 1 in the passband and 0
in the stopband. The region between the passband and the stopband, called the
transition band, has no requirements. A weighting function, W (f) can be used to
add different weighting for different parts of the frequency response for example the
passband versus the stopband. One can choose different functions to minimize for
example summed least squares or minmax. In the case of summed least squares,
the function to minimize is the sum of all errors (the error at each frequency point)
squared. The square is used to get rid of the problem with negative errors. In
the minmax case, which is used throughout this project, one want to minimize the
maximum error shown in eq. 2.8. The minimization can be made using different
minimization algorithms.

ε = max
f
{W (f)(H(f)−D(f)} (2.8)

2.4 Transposed Farrow Structure

Both the original farrow structure and the modified version perform poorly when
it comes to decimation, especially regarding their anti-aliasing ability [8]. To solve
this problem the whole structure is transposed and the length of the polynomials,
e.g the basis functions, are selected to be Tout. Effectively this results in that the
farrow filter can be designed in relation to the output signal’s sample rate and
requirements. An overview of the transposed farrow structure can be seen in Fig.
2.5.

10 Theory

In contrary to the non-transposed farrow structure the transposed farrow struc-
ture does not conserve the energy of the signal. To conserve the energy the output
from the structure has to be divided by the decimation factor, R.

Figure 2.5: The transposed modified farrow structure.

In the case of the transposed farrow structure µ is the relative distance between
the input sample and the latest output sample, which is described by fig. 2.6. The
distance is normalized by the output sample interval, Tout. Because of this, the
following condition must always be satisfied, 0 ≤ µ < 0. µ can be calculated
iteratively as described by eq. 2.9.

µk+1 = µk + 1/R− bµk + 1/Rc (2.9)

In the transposed farrow structure a number of input samples might be ac-
cumulated after multiplication by 2µ − 1. The number of accumulated samples
is easily understood as the number of input samples in the interval between two
output samples. In the case of no decimation, i.e R = 1, this number is always
equals to one. But in other cases the number will vary between bRc and bRc+ 1,
if R is not an integer. In the integer case the number will not vary but always be
equal to R. The number can also be calculated using eq. 2.9, every time µk + 1/R

Theory 11

µk+1

x(n)

y(l)

k − 2 k − 1 k k + 1 k + 2 k + 3

l l + 1l − 1

Tin

Tout

µk−1

µk
µk+2

Figure 2.6: Block schematic of the accumulator_top module, show-
ing it’s submodules and their connections.

is bigger than one, the current accumulator value should be dumped and a new
accumulation should begin from zero.

2.5 Halfband filters

A halfband filter is a L:th band FIR filter where L = 2 and they are widely used
for decimation [10]. The halfband filter is a filter that decimates by a factor of
2 and it’s frequency response is "anti-symmetric" around fs/4. The symmetry
means that the ripple in the passband is of the same order as the attenuation in
the stopband. When the number of taps are odd the filter has the special property
that every other filter coefficient is 0 and that the filter is symmetric. These facts
can be used to make efficient implementations.

2.6 Cascaded structures

A cascaded structure is a structure where one of the farrow structures are used in
series with some other structure for decimation or interpolation, an example is seen
in Fig. 2.7. The purpose of using a cascaded structure is to relax the requirement
on the filters. Relaxed requirements results in that fewer coefficients are needed
and that the overall complexity of the system might be reduced [9]. There are a
lot of different cascaded structures but in this thesis work a combination of the
farrow structure and a halfband filter will be used. If the halfband filter is put
after the transposed farrow structure the requirement on the bandwidth of the
farrow structure will be halved. The frequency responses of the two structures can
also be co-optimized to further reduce the complexity.

12 Theory

Figure 2.7: An example of a cascaded decimation structure.

2.7 Polyphase Representation

When working with decimation or interpolation some tricks can be applied to
always use the filters at the lower sample rate which reduce the number of com-
putations needed, in this section some of these are presented.

To start with, two so called identities are presented, the first one can be seen
in Fig. 2.8 [2]. This identity describes the relationship between branching, mul-
tiplication and decimation. The decimators can be placed at all the branches or
just at the sum of the branches. The decimators can also be placed either before
or after multiplication without affecting the result.

Figure 2.8: Multiplication and decimation can be in any order and
are independent of branching.

The second identity presented can be seen in Fig. 2.9 [2]. From the figure
it is seen that decimation can be either before or after filtering, if the filter are
adjusted accordingly.

These to identities lay the foundation for the following so called polyphase
representation of a filter [2], [1]. A normal single branch FIR filter can be split
into multiple branches according to eq. 2.10. In the example seen in Fig. 2.10
the filter (H) is split into two branches denoted H0 and H1. In the next step,
the decimation is moved to in front of each filter, which reduces the sample rate
through the filters by a factor of 2. In the last step the decimators are replaced
by a switch that alters the sample between the two branches. This has effectively
changed a filter running at Fs to two half the length filters running at Fs/2.

H(z) =

N−1∑
k=0

z−kHk(zN) (2.10)

Figure 2.9: Decimation and filtering can switch places if taps of the
filter are adjusted.

Theory 13

(a)
(b)

(c) (d)

Figure 2.10: Decimation and filtering can switch places if taps of
the filter are adjusted.

14 Theory

Chapter3
Methodology

This master thesis consist of two major parts, namely a signal processing or al-
gorithm part and an implementation part. The steps within these two parts are
described in further detail in the following sections.

3.1 Algorithm development

The first step of the work is to try to find an algorithm that could fulfill the
requirements. The algorithm must both be able to give good enough performance
but also be implementable in an efficient way. When an algorithm has been chosen
it must be tested, through simulations, before implementation. Two different types
of simulations were used. The two version were a floating point python simulation
and a fixed point simulation also built using python in combination with LTSpice.

3.1.1 Literature studies

To find algorithms that could be used to pass the requirements of the project lit-
erature studies are made. These studies aims toward finding different algorithms
for decimation that could suit the requirements of the project. Important param-
eters to look for, when the studies are being made, are the arbitrariness of the
decimation and that efficient implementations are possible.

3.1.2 Floating point simulations

The floating point model implements the equation describing the filter structure.
The first step was to find the number of coefficients needed. This was an itera-
tive process where different numbers where tried out and the resulting frequency
response was compared to the requirements of the structure. The optimal values
of the coefficients were found using minimization algorithms.

When a filter structure that fulfilled the requirements was found the behaviour
of the structure was investigated by passing signals with different frequencies
through the filters and setting different decimation factors.

15

16 Methodology

3.1.3 Fixed point simulation

The problem with taking a floating point model and implementing it on a FPGA
using fewer bits is that the behavior will change, the question is just how much.
The fixed point simulation aims towards answering this question and to fine tune
the parameters for best suiting the implementation. Fewer bits will lead to larger
rounding of the coefficients and the products and sums in the filter. This rounding
both change the frequency response of the filter and generates some rounding noise.

Teledyne SP Devices has developed python packages that converts the normal
floating point behavior of python into fixed point numbers using a specified number
of bits and location of the decimal point. Using this tool a fixed point model was
generated. By rerunning the earlier simulations the behavior could be compared
and analyzed.

3.2 Implementation

The biggest change from the previous models and the implementation is that
parallel processing will be needed to be able to run the algorithm in real time at
the FPGA. The implementation could be split into two parts, filters and a parallel
processing part which aims to get the samples to the correct location in the filters.
The HDL development, simulation and synthesis is carried out using the Xilinx
Vivado tools.

3.2.1 Filter implementation

The filters are implemented by a python script that generates the verilog code
of the filter. The purpose of doing it this way is to keep the flexibility to easily
change the numbers of filters or the the orders of the filters if later needed.

3.2.2 Parallel processing

The clock of the FPGA is throughout the scope of this master thesis work static
and set to 312.5 MHz. The fact that the implemented algorithm should ran at 5
GSa/s or 2x2.5 GSa/s make it necessary to implement it in parallel. Parallelization
means that several input samples will be handled in each clock cycle and that
several output samples might be produced (depends on the decimation factor).
The parallelization of the algorithm complicates the implementation since it is not
only to implement several instances of the algorithm. The difficulty lays in that
all instances are dependent on each other and that the samples need to be directed
to the correct instance. One additional thing that complicates the parallelization
in this case is that the data rate in the structure not will be fixed but depend on
the decimation factor.

In the case of an input sample rate of 5 GSa/s, 16 parallel instances will be
needed and in the case of 2.5 GSa/s, 8 instances are needed.

Methodology 17

3.2.3 Binary Multiplication

Another area that potentially can cause trouble is in all the multiplication through-
out the algorithm. In general, multiplying two binary numbers with N and M
number of bits will result in a product of N + M bits. Throughout this thesis
work the input data is a two’s complement number of 16 bits in total, 1 sign bit
and 15 fractional bits, and the output data should have the same format. Within
the steps of the algorithm the number of bits are limited to 27, where multipli-
cations are made because this is the maximum input size that one DSP-element
can handle at the larger of the two ports. To solve this problem, either trun-
cation or rounding must be made at several locations within the algorithm. In
this thesis work, three slightly different implementations were made with slightly
different approaches to the rounding/truncation. The problems with truncation
an/or roudning are explained in the following sections.

Truncation

The simplest way to deal with the excess bits is to use truncation. Truncation
means that the excess bits are disregarded and only the number of wanted bits are
considered. The problem with using this method is that it will introduce truncation
error which, depending on the application, might or might not be acceptable.
When the excess bits are disregarded the remaining bits will always be interpreted
as a number that is smaller than or equal to the full bit number. This fact will
introduce a bias resulting in an offset [1]. Depending on how many truncations
that are made and how many bits that are truncated the overall truncation error
can be large. In fig. 3.1 the process of truncation, in the case where the binary
numbers are integers, are showed. The truncation process works in the same way
when fractional binary numbers are used, but instead of truncation to the closest
integer, the value are truncated to the closest value that can be represented by the
current number of bits.

0.4 0.5 0.6 0.7 0.8 0.9 1.00.1 0.2 0.30.0 1.4 1.5 1.6 1.7 1.8 1.9 2.01.1 1.2 1.3-0.3 -0.2 -0.1-1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4

Figure 3.1: Truncation always make the resulting value smaller.

Rounding

If truncation is not giving a small enough error some other method to deal with
he excess bits must be used. The problem with he truncation was mainly the
introduction of the bias when the resulting value always was smaller than or equal
to the real value. The introduced bias can be reduced by using a rounding scheme
instead [1]. There exists a lot of different methods for rounding [13], but the
method used in this thesis is the simplest possible, where a number equal to
or greater than 0.5 are rounded upwards values smaller than 0.5 are rounded
downwards. This method still introduce a bias, because of that the range of
numbers rounded upwards are slightly larger than the range of number rounded

18 Methodology

downwards. However this bias is much smaller than in the case of truncation.
In fig. 3.2 the process of rounding, in the case where the binary numbers are
integers, are showed. The principle of the rounding process is the same even
for fractional binary numbers, but instead of rounding to the closest integer the
number is rounded to the closest number that could be represented by the current
number of bits.

0.4 0.5 0.6 0.7 0.8 0.9 1.00.1 0.2 0.30.0 1.4 1.5 1.6 1.7 1.8 1.9 2.01.1 1.2 1.3-0.3 -0.2 -0.1-1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4

Figure 3.2: Rounding, rounds the number to the closest integer with
0.5 rounded upwards.

This rounding method can easily be implemented by adding a 1 to the binary
number, with the wanted number of bits, plus one excess bit and then using the
sum without the excess lsb in the sum as the rounded value [13].

3.2.4 Behavioral simulations

To investigate if the behaviour of the implemented filters are correct simulations
are needed. Testvectors were generated using the floating point model. These
vectors were then compared to the output from the different implementations.
This way, the function of the implementations could be verified.

Chapter4
Results

4.1 Filter design

The requirements of the decimation structure is seen in table 1.1. The filter must
be designed to cope with the requirements when it comes to passband ripple,
stopband attenuation and relative bandwidth. The filters are designed in the
frequency domain, by minimizing eq. 2.8, according to the hybrid analog model,
section 2.2. The result of the minimization, together with different parameter
values are presented below. The parameters that could be changed, of a farrow
structure, are the number of subfilters, the order of the subfilters, the weight
function and the frequency vector over which the minimization is made. In addition
to these parameters the farrow filter can also be combined in series with other
filters. In the following sections the transposed farrow structure is used, either
alone or in series with a halfband filter.

Frequency Vector

The frequency vector used in the following minimizations has been iteratively
found and the same vector is used for all the following results. The distance
between the frequency points in the vector must be small enough to avoid peaks
in the frequency response between them, but more points than needed make the
optimization unnecessarily slow. In addition to the distance between the frequency
point the start and endpoint must also be found. It has showed that starting from
frequency 0 is not a good choice since the equation for the frequency response,
eq. 2.5, is not accurate close to 0. A good starting frequency has been found to
be 0.02Fs. The trend of the frequency response is that the attenuation increases
with higher frequencies, but the end frequency must be set high enough to make
the peaks after this point smaller than the attenuation in the optimized frequency
band. A higher frequency than needed, again, leads to either more points to
optimize or a less dense vector. A good end frequency has been found to be 6.5Fs.
The frequency vector is linearly spaced with 100 points in the passband 0.02Fs to
(0.5relbw)Fs, and 451 point in the stopband (1 − (0.5relbw))Fs to 6.5Fs. relbw
is 0.8 in the case of just the transposed farrow structure and 0.4 in the case of
the cascaded structure where the transposed farrow structure is in series with a
halfband filter. The frequency vector has no frequency points in the transition

19

20 Results

band, since folding into this band is allowed. The parameters of the frequency
vector are seen in table 4.1.

Frequency vector Start (Fs) Stop Fs Points Weight
Passband frequencies 0.02 0.5relbw 100 0.1
Stopband frequencies 1-(0.5relbw) 6.5 451 1

Table 4.1: The frequency vector used in the filter simulations.

Weight Vector

According to the requirements of the design, the attenuation should be one or-
der higher than the maximal allowed passband ripple. This makes the choice of
weight vector quite obvious. The weight vector used throughout the following fil-
ter optimizations is 0.1 for the frequency points within the passband and 1 for the
points in the stopband. This weight vector means that the maximum error in the
passband can be 10 times larger than the maximum error in the stopband.

4.1.1 Transposed Farrow Structure

In this section results from minimization attempts, when only the transposed
farrow structure was considered, are presented. In table 4.2 the required orders
of the subfilters, to fulfill the 80 dB attenuation, for different numbers of parallel
filters are presented. The resulting number of coefficients and the maximum error
according to eq. 2.8 are included as well.

Nfilt ford max error # coefficients (unique)
4 > 100 - -
6 21 5.21 · 10−5 66
8 21 5.09 · 10−5 88
10 21 5.04 · 10−5 110
12 19 9.95 · 10−5 114

Table 4.2: Filter orders needed to fulfill the project requirements for
different numbers of subfilters, in the case of only the trans-
posed farrow filter.

The best alternative, of the ones presented in table 4.2, would be the one with
the fewest unique coefficients. In this case, this is the alternative using 6 subfilters
of order 21. The frequency response of this filter is seen in fig. 4.1.

4.1.2 Halfband filter

The coefficients of the halfband filter was found using the Scipy implementation
of the Remez algorithm [15]. The frequency response of the halfband filter must,

Results 21

0 2 4 6 8 10
Out frequency [Fout]

−140

−120

−100

−80

−60

−40

−20

0

Am
pl

ifi
ca

tio
n

[d
B]

Figure 4.1: The frequency response of the transposed farrow filter
with 6 subfilters of order 21, and designed with relbw = 0.8.

when summed with the frequency response of the transposed farrow filter, cope
with the requirements of the project. Since the passband ripple and attenuation of
the halfband filter directly corresponds, the one with the highest demands will set
the required length of the filter. The toughest requirement should in this case be
the total attenuation but since the attenuation of both the filters will be summed
the ripple in the passband will instead be limiting factor. The coefficients of the
resulting filter is seen in table 4.6.

4.1.3 Cascaded structure

The cascaded structure consists of the transposed farrow structure in series with
a halfband filter, as seen in fig 2.7. By using the filters in series, the bandwidth
requirement on the transposed farrow structure are relaxed from 0.8Fout to 0.4Fout
which means that fewer coefficients are needed to fulfill the requirements. In
additional to the bandwidth relaxation the filters could also be co-optimized which
might further reduce the number of coefficients needed or give a smaller maximum
error of the overall design. The main drawback of the cascaded structure is that
the minimal decimation is increased from 1, which is the case when decimation
is made only the transposed farrow structure, to 2. This is because the halfband
filter always performs a decimation by 2.

Without co-optimization

When the transposed farrow filter and the halfband filter are designed without
co-optimization they are designed separately. The overall frequency response of
the structure is then obtained as the sum (in log-scale) of both the frequency
responses. The lowest order of the subfilters, still fulfilling the requirements for

22 Results

different number of subfilters are presented in table 4.3.

Nfilt ford max error # coefficients (unique)
4 > 100 - -
6 7 3.53 · 10−5 24 + 13
8 7 3.36 · 10−5 32 + 13
10 7 3.31 · 10−5 40 + 13
12 7 3.26 · 10−5 48 + 13

Table 4.3: Filter orders needed to fulfill the project requirements for
different numbers of subfilters in the case of cascaded structure
without co-optimization.

According to table 4.3 the best alternative of the suggested structures would
be the one where the transposed farrow structure consists of 6 subfilters of order
7. The halfband filter is designed such that the minimum number of coefficients
still fulfilling the requirements are used. The frequency response of this transposed
farrow filter, together with the halfband filter and the sum of both the frequency
responses are seen in fig. 4.2.

0 2 4 6 8 10
Out f equency [Fout]

−200

−175

−150

−125

−100

−75

−50

−25

0

Am
pl

ifi
ca

tio
n

[d
B]

T ansposed fa ow
Halfband
Sum

Figure 4.2: The frequency response of the transposed farrow filter
with 6 subfilters of order 7, together with the halfband filter
and the sum of both. No co-optimization.

With co-optimization

When utilizing co-optimization the halfband filter is first generated. The frequency
response of the halfband filter is then used as a weight in the optimization of the
transposed farrow filter. The results for the minimal order filters, still fulfilling

Results 23

the requirements, are seen in table 4.4. Comparing these results, with the ones
obtained from the filter design without co-optimization, seen in table 4.3, it is seen
that the order cannot be reduced but the maximal error is significantly reduced.

The alternative with fewest coefficients, still fulfilling the requirements is the
one with 6 subfilters of order 7. The, overall, resulting frequency response of this
alternative can be seen in fig. 4.3. As seen in the figure the co-optimization allows
the frequency response of the transposed farrow filter to peak at points where the
halfband filter has a high attenuation. This lead to a smaller maximum error than
in the design without the co-optimization.

0 2 4 6 8 10
Out f equency [Fout]

−200

−175

−150

−125

−100

−75

−50

−25

0

Am
pl

ifi
ca

tio
n

[d
B]

T ansposed fa ow
Halfband
Sum

Figure 4.3: The frequency response of the transposed farrow filter
with 6 subfilters of order 7, together with the halfband filter
and the sum of both. With co-optimization.

subfilter ford max error # coefficients (unique)
4 > 100 - -
6 7 1.76 · 10−5 24 + 13
8 7 1.68 · 10−5 32 + 13
10 7 1.65 · 10−5 40 + 13
12 7 1.60 · 10−5 48 + 13

Table 4.4: Filter orders needed to fulfilled the requirements for dif-
ferent numbers of subfilters in the case of cascaded structure
with co-optimization.

24 Results

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Out frequency [Fou]

−0.0020

−0.0015

−0.0010

−0.0005

0.0000

0.0005

0.0010

0.0015

0.0020

Am
pl

ifi
ca

 io
n

[d
B]

Transposed farrow
Halfband
Sum

Figure 4.4: The passband of the frequency response of the trans-
posed farrow filter with 6 subfilters of order 7, together with
the halfband filter and the sum of both. With co-optimization.

4.2 Simulations

Two different models were used for the simulations, a floating point model and a
fixed point model. The floating point model is used to estimate the performance
of the algorithm and to get a more accurate estimate the fixed point model is
used. The following sections include results from the simulations, describing the
performance for different cases.

4.2.1 Python model simulations

First an example where a decimation factor of 2.3 is presented. Sinusoidals with an
amplitude of 1 and varying frequency has been passed through the filter structure.
The frequency was swept from a point close to DC to 0.4 Fout which is the upper
bandwidth requirement from table 1.1.

In fig. 4.5, the signal to noise ratio (SNR) is plotted. To fulfill the requirements
the attenuation should be at least 80 dB, and from the plot minimal SNR around
88 dB is seen. According to the figure the attenuation seams to be high enough
for the specific case to fulfill the requirement.

Spurious-free dynamic range (SFDR) is the difference, in dB, between the
signal tone and the strongest non-wanted noise tone. In addition to fulfilling the
requirements the SFDR should reflect the attenuation from the frequency response
to verify the function of the system. The minimal attenuation of the filters used
is about 95 dB and inspecting fig. 4.6 the worst SFDR is about 93 dB which in
this case is rather close to the expected result.

The signal, out from the system, should conserve the energy of the input signal
within the variation allowed by the requirement on the passband ripple, which is

Results 25

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Out frequency [Fout]

88

90

92

94

96

SN
R,

 [d
B]

Figure 4.5: SNR of floating point model simulation. R = 2.3.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Out fre uency [Fout]

−99

−98

−97

−96

−95

−94

SF
DR

, [
dB

]

Figure 4.6: SFDR of floating point model simulation. R = 2.3.

26 Results

n
m 0 1 2 3 4 5

0 -0.00454 -0.00139 0.00602 0.00287 -0.00072 0.00073
1 0.03280 0.00974 -0.03946 -0.01770 0.00436 -0.00102
2 -0.13387 -0.05168 0.1461 0.07166 -0.00919 -0.00042
3 0.60564 0.61577 -0.11260 -0.14634 0.00550 0.00252
4 0.60564 -0.61577 -0.11260 0.14634 0.00550 -0.00252
5 -0.13387 0.05168 0.1461 -0.07166 -0.00919 0.00042
6 0.03280 -0.00974 -0.03946 0.01770 0.00436 0.00102
7 -0.00454 0.00139 0.00602 -0.00287 -0.00072 -0.00073

Table 4.5: Coefficients of the transposed farrow filter co-optimized
with the halfband filter.

0.0 -0.000198 0.0 0.0005768 0.0 -0.0013522
0.0 0.0027292 0.0 -0.0049882 0.0 0.0084995
0.0 -0.0137886 0.0 0.0217132 0.0 -0.03398
0.0 0.0549449 0.0 -0.1006574 0.0 0.3164574
0.5 0.3164574 0.0 -0.1006574 0.0 0.0549449
0.0 -0.03398 0.0 0.0217132 0.0 -0.0137886
0.0 0.0084995 0.0 -0.0049882 0.0 0.0027292
0.0 -0.0013522 0.0 0.0005768 0.0 -0.000198
0.0

Table 4.6: Coefficients of the halfband filter co-optimized with the
transposed farrow filter.

0.02 dB. In fig. 4.7, the amplitude change compared to the input amplitude is
plotted. The result from this example is within the 0.02 dB requirement. The
amplitude of the signal also seams to follow the pattern of the frequency response
plot of the passband, seen in fig. 4.4, which is an expected result.

The model most be verified for a lot of different decimator factors and a lot
of different signal frequencies. This is a time consuming task and in fig. 4.8 and
fig. 4.9 the result from an attempt of verification is plotted. From the plots two
general trends can be seen. The first one is that both the SNR and the SFDR is
better with higher decimation factors where the big change is within the span of
factors up to 50. The second trend seen is that almost all the values are within
the requirements and those which don’t all have one thing in common. The values
that shows a really bad SFDR and or SNR is at 1/3 or 1/4 of Fout. The result is
unwanted but hard to fix, the cause is that at these frequencies a lot of signals are
folded on top of each other. This is a common problem within the area of signal
processing.

Results 27

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Out freq ency [Fo t]

−0.0015

−0.0010

−0.0005

0.0000

0.0005

0.0010

0.0015

Si
gn

al
 a
m
pl
it

de
, [
dB

]

Figure 4.7: Amplitude of floating point model simulation. R = 2.3.

Frequency, [Fout]

0.00
0.05

0.10
0.15

0.20
0.25

0.30
0.35

0.40 Decimation factor
0 25 50 75 100 125 150 175 200

SN
R,
 [d

B]

20

40

60

80

100

Figure 4.8: SNR of floating point model simulation.

28 Results

Freque
ncy, [F

out]

0.000.050.100.150.200.250.300.350.40Decimation factor

0 25 50 75 100 125 150 175 200

SFDR, [dB]

−120

−100

−80

−60

−40

−20

0

Figure 4.9: SFDR of floating point model simulation.

4.2.2 Fixed point model simulations

The main intention of the fixed point model simulations was to use it to verify
that a fixed point implementation should work at all. After this the model was
also intended to be used to investigate the number of bits needed in each part
of the design. It turned out that this was much more difficult to achieve than
expected. The main source of difficulty was to handle truncation and/or rounding
correctly throughout the design when a fractional binary representation was used.
The model worked quite well for signals without the fractional representation (all
signals and coefficients were considered to be integers, by moving the decimal point
to "infinity").

The results from a working model could also has been used as ground truth for
the implementation. But since the produced results from the simulations did not
achieve the expectations they could not be used for this. The only functions of the
results was that they have been used during certain parts of the implementations
phase to verify the data flow in the implementation. This works when both the
models are fed with integer values as describe above.

The last purpose of the fixed point model was to show that the filter responses
did not change to much when the filter coefficients used are rounded, due to a
limited number of bits. The floating point coefficients, seen in tables 4.5 and
4.6, were rounded to a 16 bit binary number (1 sign, 15 fractional), the resulting
frequency response are seen in fig. 4.10 and fig. 4.11. The results show that the
frequency response of the fixed point coefficients still fulfilled the requirements.

Results 29

0 2 4 6 8 10
Out fre uency [Fout]

−200

−175

−150

−125

−100

−75

−50

−25

0

Am
pl
ifi
ca
tio

n
[d
B]

Transposed farrow
Halfband
Sum

Figure 4.10: Frequency response of the transposed farrow filter, the
halfband filter and the sum of those. All filters use the fixed
point coefficients.

0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Out frequency [Fout]

−0.0020

−0.0015

−0.0010

−0.0005

0.0000

0.0005

0.0010

0.0015

0.0020

Am
pl
ifi
ca

tio
n
[d
B]

Tran po ed farrow
Halfband
Sum

Figure 4.11: The passband of the frequency response of the trans-
posed farrow filter, the halfband filter and the sum of those. All
filters use the fixed point coefficients.

30 Results

4.3 Implementation

In the following sections the FPGA implementation of the decimation algorithm
will be described. The implementation is made in a 8-parallel manner and is, at
the current FPGA chip, running with a clock speed set to 312.5 MHz. This means
that the implementation can decimate a signal with an input sample rate of 2.5
GSa/s. The implemented algorithm consists of a transposed farrow structure with
6 subfilters of order 7 in series with a halfband filter with 48 coefficients. The
decimation factor can, in the implementation, be selected from 2 and upwards.

One advantage of the transposed farrow structure is that the sample rate is
lowered already after integrate and dump step. This means that if the minimum
decimation factor would be increased, the degree of parallelization after this step
can be reduced. This could be used to lower the resource usage. However, this
is not used in the current implementation since it should be able to decimate as
arbitrary as possible. In the description of the implementation, the decimation
factor, R, is used for the decimation in the transposed farrow structure. The total
decimation will be 2R, after the decimation by 2 in the halfband filter.

The implementation is split into four different Verilog modules which are,
accumulate_top, farrow_top, scale_data, and halfband_top, as seen in fig. 4.12.
The different parts directly corresponds to the different parts of the algorithm.

In all the following figures, the thicker double lines arrows corresponds to 8-
parallel data paths. The thinner, single lined, arrows corresponds to control signals
or data paths that not are in parallel.

Decimation

signal[0:7]

shift

r_inverse

scale_factor

ac
k_

va
lid

v_
0[

0:
7]

v_
1[

0:
7]

v_
2[

0:
7]

v_
3[

0:
7]

v_
4[

0:
7]

v_
5[

0:
7]

ack_top

farrow_valid

out_farrow[0:7]

farrow_top

sc
al

ed
_v

al
id

ou
t_

sc
al

ed
[0

:7
]

scale_data

data_out[0:3]

halfband

Figure 4.12: Block schematic of the top modules of the implemented
design.

4.3.1 accumulate_top

An overview of the accumulate_top module is seen in fig. 4.13. The functions of
this module are to accumulate the incoming samples a variable number of times,

Results 31

after multiplication with the factor 2µ− 1, as well as iteratively calculating the µ.
It is also in this module that the first data rate change is performed, by the factor
R. It should also be said that this part is the only part of the whole design that
must be able to handle a variable data rate. This is true because after this step
all parallelization branches always will be filled but not executed at every clock
cycle. The problem of the variable sample rate are transformed to a data driven
design.

accumulate_top

r_inverse

m
u[

0:
7]

mu_calc

u_
1[

0:
7]

u_
2[

0:
7]

u_
3[

0:
7]

u_
4[

0:
7]

u_
5[

0:
7]

u_calc_top

v_0_u[0:7]i_d_0

v_1_u[0:7]i_d_1

v_2_u[0:7]i_d_2

v_3_u[0:7]i_d_3

v_4_u[0:7]i_d_4

v_5_u[0:7]i_d_5

acc_valid
v_0[0:7]

v_1[0:7]

select_1

v_2[0:7]
select_2

v_3[0:7]

select_3
v_4[0:7]

select_4

v_5[0:7]

select_5

select_valid
overflow_sorted[0:7]

select[0:7]

sort_samples

signal[0:7]

12D

overflow[0:7]

sh
ift

D

7D

11D

select_0

Figure 4.13: Block schematic of the accumulator_top module,
showing it’s submodules and their connections.

All the submodules are described in more detail in the following sections but
in summary the modules function in the following way. r_inverse, which is 2/R,
is passed to the mu_calc module where it is iteratively added to find the µ corre-
sponding to each input sample. The µs are then multiplied by 2 and the product
is then subtracted by one, generating the control parameter 2µ − 1. Every time
the addition of r_inverse accumulates to a value greater than, or equal to, one
an overflow is generated. The 2µ − 1 values are forwarded to the u_calc module
where it is multiplied with the incoming signal, multiple times to generate the
u-signal. The u-signal is split into 6 parts, one for each branch of the farrow fil-
ter, and is passed to the different integrate_dump modules. In these modules the
u-samples are accumulated, the number of accumulated samples are controlled by
the earlier mentioned overflow signal. The output signals from integrate_dump
modules are unsorted and just some of the samples should be used. These samples
are sorted and chosen by the select_samples modules controlled by the signals
from the sort_samples module. When 8 valid samples are available at each of the
6 output branches a acc_valid is set high, indicating to the farrow_top module
that all it’s inputs are valid.

32 Results

mu_calc

The tasks of the mu_calc component are mainly to produce the 2µ − 1 factor,
which need to be calculated for every input sample, and to indicate how many
samples that should be accumulated in the integrate and dump step later. The
main difficulty of this module is in the nature of iterative calculation of µ, eq.
2.9. The iterative calculation means that the value before the wanted one must be
known, eg. µk−1 must be known to calculate µk. This fact would result in that a
chain of additions, of the length of the number of parallelization branches, must
be performed at each clock cycle to achieve the required throughput of 8 new µs
every clock cycle. Such a chain can not be implemented, since it is too long to meet
the timing requirements of the design. Instead some sort of trick must be used to
decrease the length of chain of consecutive logic elements. In this implementation
the solution to this issue is to use multiples of 1/R for the addition. The multiples
can be generated through simple shift operations, which are both fast, and lean.
To further increase the performance these multiples and the results of some of the
additions can be performed in the previous clock cycle, the con of doing this is
that it will slightly increase usage of logic elements. However, compared to the
overall design, this small increase is not noticeable.

The second task of this module is, as previously mentioned, to indicate how
many samples that should be added in the integrate and dump modules. This
feature is implemented in the way of letting the iterative additions overflow and
use the carry. As seen from eq. 2.9, only the decimal part of µ is interesting for
the later calculations. The number of bits for the sums are chosen such that there
are only fractional bits and an overflow bit. The overflow bit is then indicating
that the sum would have been greater than one, and this is the condition that
indicates that the integrate and dump module should dump it’s current value and
reset the accumulation to zero.

4.3.2 u_calc_top

The u_calc_top module includes 8 instances of a module called u_calculator.
Each of these submodules has a throughput of one sample per clock cycle, which
means that they all together achieve the necessary throughput of 8 samples per
clock cycle. The implemented farrow filter has 6 branches and each of this branches
are connected to a separate accumulator. Each of these accumulators have different
inputs according to x(2µ− 1)m, where x is the input sample and m is the branch
number, reaching from 0 to 5. This means that each input sample should be
multiplied with the corresponding mu-value 5 times, where the product after each
multiplication is the input to one of the accumulators. The input to the first
accumulator corresponds to x(2µ− 1)0 = x, which is simply the input sample.

Inside each of the 8 instances of u_calculator are 5 instances of a manually
instantiated DSP48 element [11]. The reason for this manual instantiation is that
the timing requirements not were met when the tool generated the implementation.
In addition there are several register to handle the pipelining of the module and to
achieve a synchronized output. By synchronized it is meant that all the outputs
that corresponds to the same input sample, but have been multiplied different
number of times by 2µ− 1, should be at the output simultaneously.

Results 33

integrate_dump

The 6 instances of the integrate_dump module implement the accumulators, lo-
cated before each branch of the transposed farrow filter. Each integrate_dump
module always output 8 samples, but depending on the decimation factor, between
0 and 8 of these are valid samples that should be passed to the transposed far-
row filter. The non valid samples are just intermediate products that later should
be disregarded. In short, each module instance sums the values from the u_calc
module until a 1, indicating overflow in the calculation of mu occurs. Then a new
accumulation from zero is started.

The accumulations of large numbers of samples could potentially lead to over-
flow in the accumulators if these do not have a sufficient number of bits. The
implementation aims toward being able to decimate the signal by the factors up
to several thousands. This would mean that the accumulators would need up to
somewhere around 15 extra bits to handle this accumulation. In addition to this,
it is not only the accumulators that would need an increased number of bits but
this would affect all the multipliers, registers, and adders in the farrow structure
as well. To solve this issue, without increasing the number of bits, all the values
that should be accumulated are divided by the closest two factor number greater
than the factor R. This ensures that the accumulated value never are greater than
1, at the cost of accuracy of the accumulations. The loss of accuracy will lead to
increased noise, but this noise will only correspond to the loss of one bit or 6 dB.
The division is implemented as a simple shift operation, and this operation will
lead to a division by factor D, eq. 4.1. An alternative approach to this problem
would have been to to implement an exact division by R, i.e multiplication by 1/R.
But to use that method would lead to a much higher resource usage, compared
to the chosen solution in combination with performing the exact scaling in a later
stage. The reason for this is that in this stage the data is split into 6 branches
compared to just one in the stage where the scaling is made in the current im-
plementation. One third alliterative is to put the scaling before the data is split
into 6 branches. But since this would mean that it must be performed before the
multiplication by 2µ − 1, but in this case the error will be amplified throughout
the multiplication stages and the whole swing wouldn’t in most cases be used since
the multiplication always make the product smaller than or equal to the input.

D = dlog2(R)e (4.1)

sort_samples

The task of the sort_samples module is to generate signals for the control of
the instances of the select_samples modules. As earlier mentioned in the inte-
grate_dump module description, all eight samples out from every integrate_dump
module are not valid, in most cases. The number of valid samples can be calcu-
lated by counting the number of ones in the overflow signal generated by u_calc.
The module generates three control signals with slightly different purposes. The
first one is a signal called select_valid, this signal is triggered when eight ones

34 Results

has been counted. When the signal goes high it indicates that the output from
the select_samples module will be valid. The second one is a signal called over-
flow_sorted and this signal is a shifted version of the input overflow signal. All
ones are shifted to the lowest position not already occupied by a one, beginning
from a counter value. The last control signal is simply called select and this sig-
nal indicates, for the select_samples modules, at which position there are valid
samples. The position is referenced as a three bit number 0-7. The only positions
cared about in the select signal is the ones that corresponds to the ones in the
sorted overflow signal, and the values at the other positions are irrelevant.

An example will be given to further illustrate the behavior of the control
signals. The example describes the control signals at three consecutive clock cycles.
overflow is the input overflow signal, counter is an internal signal to keep track of
the position to shift the values to and overflow_sorted is the output signal. Lastly
select is the select signal and in the example the values of this signal is written
using decimal numbers, corresponding to the indexes of the valid samples, and x
are don’t care. In the first clock cycle, 5 valid samples exist, 5 ones are shifted to
the five most lsb bits of overflow_sorted, and the counter counts up to 5. Since
less then 8 valid samples has occurred, select_valid will be 0. select is set to the
indexes of the valid samples at the positions of the ones in the overflow_sorted
signal. In the second clock cycle, 5 additional valid samples is indicated. 5 ones are
again shifted into overflow_sorted, but since the counter is at 5 at the beginning
of this clock cycle they are shifted to position starting at 5 (lsb position is indexed
0), and starting from zero again after the msb at position 7 have been given a one.
After this clock cycle more than 8 samples have passed and select_valid is set to
1. In the last clock cycle of the example, four new valid samples are indicated.
Four ones are shifted into overflow_sorted from position 2 and select valid are set
to zero, since 8 additional valid samples not have occurred.

counter = 0, overflow = [10101011] ⇒ overflow_sorted = [00011111], se-
lect_valid = 0, select = [xxx75310]

counter = 5, overflow = [11010101] ⇒ overflow_sorted = [11100011], se-
lect_valid = 1, select = [420xxx76]

counter = 2, overflow = [10101010] ⇒ overflow_sorted = [00111100], se-
lect_valid = 0, select = [xx7531xx]

select_samples

In the select_samples instances the valid samples from the integrate_dump in-
stances are sorted depending on the input control signals. The control signals are
generated by the sort_samples module and are described in the section describing
that module. The outputs from the select_samples module are a vector with a
width of 8 samples, called v_sorted and a valid_out signal. The v signal is the
input to the transposed farrow filter and valid_out indicates that the v signal is
valid. The samples in the v signal are sorted such that the first valid sample is
at position 0 and the preceding samples at the preceding indices. Each instance
of the select_samples module generates the samples for one of the six branches of
the farrow structure.

Results 35

The behavior is further illustrated using an example. In the example the input
samples, from an integrate and dump module, are denoted ucc,idx, where cc is the
clock cycle of the sample and idx the position of the samples in the 8 samples wide
input signal u.

overflow_sorted = [00011111], select_valid = 0, select = [xxx75310] ⇒
filled = [00011111], filled_next = [00000000], valid_out = 0,
v_sorted = [000u0,7u0,5u0,3u0,1u0,0], v_sorted_next = [00000000]

overflow_sorted = [11100011], select_valid = 1, select = [420xxx76] ⇒
filled = [11111111], filled_next = [00000011], valid_out = 1,
v_sorted = [u1,4u1,2u1,0u0,7u0,5u0,3u0,1u0,0],
v_sorted_next = [000000u1,7u1,6]

overflow_sorted = [00111100], select_valid = 0, select = [xx7531xx] ⇒
filled = [00111111], filled_next = [00000000], valid_out = 0,
v_sorted = [u1,4u1,2u1,0u0,7u0,5u0,3u0,1u0,0], v_sorted_next = [00000000]

4.3.3 farrow_top

An overview of the farrow_top module is seen in fig. 4.14. The filtering itself is
made within the 8 instances of the farrow module, and the main function of the
farrow_top module is to connect the outputs of these in the correct way. The
outputs from the filters are summed in an adder tree of total 7 additions in 3
steps with registers in between to avoid too long chains of logic. The registers are
data driven in the sense that they only are updated when acc_valid is set to high.
That acc_valid is set to high indicates that the input from the accumulator stage
is correct and that one cycle of the filtering should be executed. It should be noted
that if the decimation factor R is greater than one, filtering will not occur in every
clock cycle. For larger decimation factors the filtering operation will be executed
less frequent. This part of the module is thus working on the decimated sample
rate instead of, as the steps before, the input sample rate. But since the worst
case is when the decimation factor is 1, the implementation must be designed to
be able to handle this case.

The set_valid_out module indicates when the output of the farrow_top is
valid. The two submodules are described in more detail in the following sections.

farrow_filter

One instance of the farrow_filter module performs the filtering through one trans-
posed farrow filter. The 6 inputs to every branch is multiplied with the correspond-
ing coefficients and then the sum over the branches at every level is calculated in
two steps. This sum is then passed to the farrow_top module which combines the
outputs from the different instances of the farrow filters to a valid total output.
Just as in all components within the farrow_top the action is just performed when
a valid input is present, indicated by acc_valid.

36 Results

farrow_top

farrow_0 farrow_1 farrow_2 farrow_3 farrow_4 farrow_5 farrow_6 farrow_7

v_
0[

0:
7]

v_
1[

0:
7]

v_
2[

0:
7]

v_
3[

0:
7]

v_
4[

0:
7]

v_
5[

0:
7]

ac
c_

va
lid

D D D D D DD

fa
rro

w
_o

ut
_1

fa
rro

w
_o

ut
_2

fa
rro

w
_o

ut
_3

fa
rro

w
_o

ut
_4

fa
rro

w
_o

ut
_5

fa
rro

w
_o

ut
_6

fa
rro

w
_o

ut
_7

fa
rro

w
_o

ut
_0

fa
rro

w
_v

al
id

set_valid_out

reg

reg

Figure 4.14: Block schematic of the farrow_top module, showing
it’s submodules and their connections.

Results 37

set_valid_out

The function of the set_valid_out module is to indicate when the output of the
farrow_top module is valid. The output is valid every clock cycle after the input
is valid, after some initial latency of 6 valid input samples.

4.3.4 scale_data

As briefly mentioned in section 2.4 and further described in description of the
integrate_dump module, the transposed farrow structure does not conserve the
energy of the signal. The amplitude of the output signal is R times larger than the
amplitude of the input signal. To achieve an energy conservation the signal must
be scaled. This is accomplished by the scale_data module in combination with
the shifting in the integrate and dump stage. The shifting in the integrate_dump
stage performs a division by a factor D, according to eq. 4.1. The division by D in
combination with multiplication by the scale factor, S, should result in a division
by R. This is achieved by choosing the scale factor according to eq. 4.2

1

R
=
S

D
=

S

2dlog2(R)e ⇒ S =
2dlog2(R)e

R
, ∈ [1, 2) (4.2)

The function of the scale_data module, seen in fig. 4.15, is simply implemented
by 8 parallel multiplications by the scale factor. The scale factor is in the current
version calculated outside the FPGA.

4.3.5 halfband_top

The halfband_top module implements the function of the halfband. In this module
the second stage decimation, from R to 2R, is performed. The inputs to the module
are the 8 scaled data paths from the scale_data module and a valid signal. Since
the signal is decimated by two within this stage the output sample rate is just half
the input sample rate and thus only 4 output data paths are needed.

The design corresponds to a fir halfband filter that is polyphase decomposed
to reduce the complexity and the speed requirements of the implementation. One
of the polyphase branches corresponds to the filtering part of the decomposition
and the other by a delay implemented using a FIFO. The fir halfband branch
corresponds to the non zero taps (center tap excluded) of the halfband filter and
the delay branch corresponds to all the zeros and the center tap. These two
branches should later be added, after the delay branch is divided by 2 (corresponds
to the center tap of the filter) and delayed by the latency (19 clock cycles) of the
fir halfband implementation plus 3 clock cycles which corresponds to 12 zero taps
before the center tap of the halfband filter.

Fir halfband

The fir halfband module is generated using Xilinx Fir Compiler [12]. The instance
has four parallel data input and four parallel outputs. In addition to the data paths
the instance has scaled_valid as input to only make it active when the input data

38 Results

scale_data

ou
t_

fa
rro

w
_0

ou
t_

fa
rro

w
_1

ou
t_

fa
rro

w
_2

ou
t_

fa
rro

w
_3

ou
t_

fa
rro

w
_4

ou
t_

fa
rro

w
_5

ou
t_

fa
rro

w
_6

ou
t_

fa
rro

w
_7

fa
rro

w
_v

al
id

sc
al

ed
_d

at
a_

0

FF

sc
al

ed
_d

at
a_

1

FF
sc

al
ed

_d
at

a_
2

FF
sc

al
ed

_d
at

a_
3

FF

sc
al

ed
_d

at
a_

4

FF

sc
al

ed
_d

at
a_

5

FF

sc
al

ed
_d

at
a_

6

FF

sc
al

e_
fa

ct
or

sc
al

ed
_d

at
a_

7

FF

Figure 4.15: Block schematic of the scale_data module.

halfband_top

scaled_valid

scaled_data_7

scaled_data_6

scaled_data_5

scaled_data_4

scaled_data_3

scaled_data_2

scaled_data_1

scaled_data_0

FIFO

Fir-halfband

0.5

out_1
out_0

out_2
out_3

wr_en

0

rd_en

19D

counter

Figure 4.16: Block schematic of the halfband_top module, showing
it’s submodule and their connections.

Results 39

is valid. The coefficients for the fir filter are the non zero ones presented in table
4.6.

Counter

In fig. 4.16 a module called counter is seen. The name is a bit misleading but
the task of this module is to generate a control signal for a mux, which decides if
the write enable signal of the FIFO should be 0 or data_valid. The write enable
port should be tied to the data_valid signal after the three first data_valids have
occurred. This is the case since the 3 first outputs of the fir halfband module
should not be summed with the delayed signal, which is delayed 3 additional clock
cycles. The implementation is simply a counter which activates a valid signal after
3 data_valids.

FIFO

The fifo-memory is generated using Xilinx Fifo generator [14]. The memory is
configured to be a shift register with common clock for read and write. The data
width is 96 bits (4 times one input sample to the halfband filter) and the depth of
the fifo is 32. The task of the fifo is to match the delay branch with the latency of
the fir halfband filter after the initial 3 data_valids. This is achieved by data_valid
as both the read- and write enable signal but the read enable is delayed by the
latency of the fir halfband implementation. The maximum number of samples that
should be stored in the fifo are 23, the smallest two factor number greater than 23
is 32. The depth of the fifo is because of this set to 32.

4.3.6 Performance measure

To verify the function of the implementation, the results from the implementation
are compared to the results from the floating point python model. To do the
comparison, all filter coefficients, the input signal as well as the decimation factor
must be equal between both the models. This is achieved by rounding these
floating points signals to their fixed point equivalent and using these for both the
floating point model and the implementation. Some rounding and truncation in
the implementation will make the result differ a bit but the error should not be
larger than the value of half the lsb, in this case 2−15.

The verification was made using a few different decimation factors, seen in table
4.7. Since all values cannot be exactly expressed using the binary representation
some of the decimation factors are rounded to the closest possible decimation
factor.

Three slightly different implementations were used during the verification, one
where truncation was used throughout the whole design where necessary and a
second one using truncation everywhere but in the very last step, rounding was
used instead. The results, seen in table 4.8, of these two models are slightly
different, where in general the version using rounding performed better, which
was as expected. A third version was also verified where rounding replaced all
occurrences of truncation. This model produced almost exactly the same result
as the model, only using rounding in the last step. The reason for the this is

40 Results

R Rounded R
2.0 2.0
3.45 3.4499847
4.0 4.0
50 49.98932113
107.89 107.96705107
1035.02 1040.25396825

Table 4.7: Decimation factors used for the test cases.

probably that the last truncation/rounding reduces the number of bits a lot more
than any of the others. Simply, the rounding in the previous steps did not result
in changing any of the upper bits in the final output. The final output consists,
in both cases, of 16 bits and out of those 15 are fractional.

In table 4.9, the max errors between the floating point model and the different
implementations are shown. It can be seen that the max error in the truncation
case is double the error in the rounding cases

Dec.
Factor

Truncation model Rounding last Rounding all
SNR (dB) ENOB SNR (dB) ENOB SNR (dB) ENOB

2.0 92.41 15.06 92.24 15.03 92.25 15.03
3.45 90.23 14.7 90.07 14.67 90.06 14.67
4.0 92.81 15.13 92.46 15.07 92.46 15.07
49.99 92.61 15.09 92.75 15.11 92.75 15.11
107.97 92.65 15.1 92.77 15.12 92.77 15.12
1040.25 92.69 15.11 92.79 15.12 92.79 15.12

Table 4.8: Resulting SNR and ENOB of the verified implementa-
tions.

Dec.
Factor

Truncation model Rounding last Rounding all
mean err. max err. mean err. max err. mean err. max err.

2.0 -1.53e-05 3.05e-05 -7.51e-08 1.53e-05 -1.52e-08 1.52e-05
3.45 -1.50e-05 3.05e-05 -1.69e-07 1.53e-05 -1.09e-07 1.52e-05
4.0 -1.53e-05 3.05e-05 -3.16e-08 1.53e-05 2.83e-08 1.53e-05
49.99 -1.53e-05 3.06e-05 -1.98e-08 1.53e-05 -1.98e-08 1.53e-05
107.97 -1.53e-05 3.06e-05 -3.29e-07 1.53e-05 -2.69e-07 1.53e-05
1040.25 -1.52e-05 3.05e-05 -3.14e-08 1.52e-05 -6.17e-08 1.53e-05

Table 4.9: Resulting mean and max error of the implementations.

It is easily seen that the results, from table 4.8, are not much different between
the two models. The main difference is that the truncation introduces an small
offset error, this is easily seen when comparing the FFTs of the output signals of

Results 41

the two models. As seen in fig. 4.17, the DC component is significantly lower in
the Rounding case compared to the truncation case.

(a) (b)

Figure 4.17: (a) Truncation, (b) Rounding.

4.3.7 Resource usage

This section will present the FPGA resource usage of the implementation. Firstly,
the implementation has been aimed towards to function as a proof of concept for
the algorithm and is in no way optimally implemented. The only resource that have
been put in some effort to not overuse is the DSP-elements. The resource usage of
the implementation is seen in table 4.10. As seen from the resource usage details,
the implementation consumes quite a lot of resources, at this rather large FPGA
chip. Through optimization the resource usage should quite easily be reduced to
some extent, but the design will never be really small. By only considering the
amount of DSP-elements used, it can be seen that the use is minimized and that
the DSP-elements are only used where intended.

Module: acc_top farrow_top halfband scale_d. Total
DSP48E2 40 (1.5) 184 (6.7) 48 (1.7) 8 (0.3) 280 (10.1)
CLB LUT 13165 (4.9) 18344 (5.5) 806 (0.2) 2 (0.0) 32310 (9.7)
CLB Reg. 12689 (1.9) 43980 (6.6) 2977 (0.5) 194 (0.0) 59840 (9.0)
Carry 8 209 (0.5) 3448 (8.3) 24 (0.1) 0 (0.0) 3681 (8.9)
F7 Muxes 1296 (0.8) 0 (0.0) 0 (0.0) 0 (0.0) 1296 (0.8)
LUT Logic 11935 (3.6) 16808 (5.1) 180 (0.1) 2 (0.0) 28918 (8.7)
LUT Mem. 1230 (0.8) 1536 (1.1) 626 (0.4) 0 (0.0) 3392 (2.3)
LUT Pairs 7275 (2.2) 16465 (5.0) 71 (0.0) 1 (0.0) 23902 (7.2)

Table 4.10: Resource usage of the FPGA implementation.

As described earlier, the whole design does not work at the same actual speed
which potentially can be used to reduce the resource usage. The most resources,
at least when it comes to DSP-elements are used in the filters and both of the
filter structures are on the slower side of the design. The current implementation
is designed for the worst case scenario, which is decimation by 2. If the minimal

42 Results

decimation factor are increased the level of parallelization can be decreased. As an
example if the minimal decimation factor were to be 16, the level of parallelization
in all steps after the accumulators could be reduced to 1.

Chapter5
Conclusion

In this section a summary of the findings of the master thesis will be given as well
as some suggestions for future work on the same topic.

5.1 Summary

The result of this master thesis work is an algorithm for arbitrary decimation for
high throughput applications. The suggested algorithm consists of a transposed
farrow structure in series with a halfband filter. Together, the two steps can
decimate from a factor 2 and upwards. The transposed farrow structure works
as a variable decimation filter and can perform decimation from a factor 1 (no
decimation) and upwards. In the suggested design the farrow filter consists of 6
branches with transposed fir filters of order 7. This gives 48 coefficients in total,
but only 24 of those are unique. The halfband filter works as a fixed decimator
by a factor 2 (halves the sample rate) and consist of 49 taps. Out of these taps,
25 are non zero and out of this subset 13 are unique. The reason for having both
the filters working in series is that the transposed farrow structure alone, couldn’t
fulfill the attenuation requirements of the project without using an unreasonable
high number of coefficients.

The algorithm is also implemented onto a Xilinx Virtex Ultrascale FPGA. The
implementation of the algorithm works as a proof of concept rather than an optimal
implementation. To achieve a high throughput the algorithm is implemented in
8-parallel, but in a way that should be quite easy to extend to higher levels of
parallelization. The parallelization together with a clock speed of 312.5 MHz gives
a total throughput of the input signal of 2.5 GSa/s, corresponding to maximum
1.25 GSa/s at the output. The implementation is also verified to produce results
that corresponds to the result of the floating point model simulations for some
examples that is intended to test various functions of the implementation. The
optimization of the implementation is very limited, just a few things have been
made. Firstly, the symmetry of both the filters are utilized to reduce the number
of DSP-elements used and the halfband filter is also implemented in it’s polyphase
version to reduce the resource usage.

43

44 Conclusion

5.2 Future Work

In this section different areas that are not very well investigated in this thesis are
presented and improvement within these areas are suggested to be investigated in
the future.

5.2.1 Arbitrariness of the decimation

The aim of this thesis work was to suggest an algorithm for arbitrary decimation.
The level of arbitrariness is thus limited by some factors, which of the most im-
portant is the resolution of the inverse of 2/R, or the resolution of µ. Throughout
the work different ways to improve these limits have been thought about. The
first and most easy method is to just increase the numbers of bits where necessary,
and this would increase the arbitrariness to some extent. Another suggestion is
to use some other method to represent for example fractional numbers like 1/3
or to swap between slightly different decimation factors to get the wanted one as
the mean factor. Another method to increase the arbitrariness would be to put
another decimator in front of the suggested one, that for example can decimate
by factors of 2x. It would be interesting to further investigate this area of possible
improvement.

5.2.2 Optimization

The implementation, suggested in this master thesis, works as a proof of concept
but the design is in no way optimal. To reduce the resource usage of the imple-
mentation optimization is needed. Optimization can further be used already in
the algorithm design phase to for example reduce the number of unique coefficients
in the transposed farrow structure. In the implementation part optimization can
be made in several ways, both regarding the resource usage and the performance.
The resource usage can be minimized using existing optimization methods to try
to minimize the use of for example DSP-blocks and registers. The implementation
in this thesis work was made for a fixed clock speed of 312.5 MHz and the design
was adopted to this demand. If the clock speed could be higher, or maybe lower,
the performance can be optimized in different ways. A lower clock speed could
lead to less pipelining which would lower the resource usage. A higher clock speed
would probably require some more pipelining but instead the level of paralleliza-
tion might be reduced.

5.2.3 Alternatives to the halfband filter

The need for a fixed decimator in series with the transposed farrow structure
was obvious to not get a very large number of coefficients. But the choice of
the halfband filter are not very well investigated. A halfband filter is probably the
most common way of achieving a decimation by 2 and is a easily implementable. In
literature other, more complex methods, that aims towards reducing the resource
usage exists. The use of another, less common, method might result in a less
resource demanding implementation and this is an area where improvements might

Conclusion 45

be made. With that said, the halfband filter occupies quite few resources in
comparison with the transposed farrow structure.

5.2.4 Connection of the implementation

This thesis work has been focused on the algorithm itself and the implementation
of it. No efforts have been made to put the algorithm or the implementation into
context. The current function of the algorithm is to calculate the new sample
values and not to give a signal that works at the output sample rate. Depending
on the application it might be interesting to investigate how to actually recreate
the output signal, using also the correct time axis and not only the correct sample
values. Investigation of which connections to use to connect the algorithm to
other algorithms running at the same FPGA or interfaces to use for connection
with other components outside the FPGA could be interesting to look deeper into.

46 Conclusion

References

[1] J.G. Proakis, D.K. Manolakis, Digital Signal Processing 4e, Pearson 2014,
ISBN: 1-292-02573-5

[2] L. Wanhammar, H. Johansson, Digital Filters, Department of Electrical En-
gineering Linköping University 2002

[3] C. W. Farrow, A continuously variable digital delay element, IEEE Inter-
national Symposium on Circuits and Systems, Espoo, Finland, 1988, pp.
2641-2645 vol.3. doi: 10.1109/ISCAS.1988.15483

[4] T. Ramstad, Digital methods for conversion between arbitrary sampling fre-
quencies, IEEE Transactions on Acoustics, Speech, and Signal Processing,
vol. 32, no. 3, pp. 577-591, June 1984. doi: 10.1109/TASSP.1984.1164362

[5] J. Vesma, Optimization and application of polynomial-based interpolation fil-
ters, Doctoral Thesis, Tampere University of Technology, Publications 254,
1999.

[6] J. Vesma and T. Saramaki, Interpolation filters with arbitrary frequency re-
sponse for all-digital receivers, 1996 IEEE International Symposium on Cir-
cuits and Systems. Circuits and Systems Connecting the World. ISCAS 96,
Atlanta, GA, USA, 1996, pp. 568-571 vol.2. doi: 10.1109/ISCAS.1996.541788

[7] D. Babic, J. Vesma, T. Saramäki, V. Lehtinen, M. Renfors, Polynomial-based
interpolation filters for DSP applications, Design, Implementations, and ap-
plications, Tampere University of Technology, Finland, http://www.cs.tut.
fi/kurssit/TLT-5806/Interpol.pdf.

[8] D. Babic, J. Vesma, T. Saramaki and M. Renfors, Implementation of the
transposed Farrow structure, 2002 IEEE International Symposium on Cir-
cuits and Systems. Proceedings (Cat. No.02CH37353), Phoenix-Scottsdale,
AZ, USA, 2002, pp. IV-IV. doi: 10.1109/ISCAS.2002.1010374

[9] D. Babic, T. Saramäki, and M. Renfors, Sampling rate conversion between ar-
bitrary sampling rates using polynomail-based interpolation filter, The Second
International Workshop on Spectral Methods and Multirate Signal Processing
SMMSP 2002, Toulouse, France, September 2002, pp. 57-64.

[10] R. G. Lyons, Understanding Digital Signal Processing 3e, Pearson Education
International, USA, 2011. ISBN: 0-13-211937-4.

47

48 References

[11] UltraScale Architecture DSP Slice, User Guide v 1.8, Xilinx, May 14
2019. https://www.xilinx.com/support/documentation/user_guides/
ug579-ultrascale-dsp.pdf.

[12] FIR Compiler v7.2, LogiCORE IP Product Guide, Xilinx, November 18 2015.
https://www.xilinx.com/support/documentation/ip_documentation/
fir_compiler/v7_2/pg149-fir-compiler.pdf

[13] D. Gisselquist Rounding Numbers without Adding a Bias, Gisselquist Tech-
nology LLC, viewed June 5 2019, published July 7 2017. https://zipcpu.
com/dsp/2017/07/22/rounding.html

[14] FIFO Generator v13.1, LogiCORE IP Product Guide, Xilinx, April 5 2017.
https://www.xilinx.com/support/documentation/ip_documentation/
fifo_generator/v13_1/pg057-fifo-generator.pdf

[15] Scipy remez, User Guide. Viewed June 5 2019, Scipy version 1.2.1.
https://docs.scipy.org/doc/scipy/reference/generated/scipy.
signal.remez.html

Arbitrary Decimation for High Sample Rates,
Algorithm Design and FPGA implementation

FREDRIK PETERSON
MASTER´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2019

FR
ED

R
IK

 PETER
SO

N
A

rbitrary D
ecim

ation for H
igh Sam

ple R
ates, A

lgorithm
 D

esign and FP
G

A
 im

plem
entation.

LU
N

D
 2019

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2019-719
http://www.eit.lth.se

