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Abstract

In this thesis we apply deep reinforcement learning to the problem of recom-
mending music. A content-based approach is taken, and features from music
is extracted with a pretrained deep learning music-tagger. For training, user-
interactions are simulated.
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1 Introduction

1.1 Motivation

Music is all around us and an important aspect in the life of many people. The
last 20 years the music industry have changed massively. Twenty years ago
consumers usually bought CDs in a store, but with time downloading became
more common, and finally, music streaming applications such as Spotify became
popular. Today thousands or even millions of songs can be accessed with a few
clicks on a computer. With so much music to choose from, users benefit from
receiving recommendations for music they may like.

An example of an intelligent service for recommendations is the dicover
weekly functionality of Spotify. Every week a new set of songs is published
tailored to the specific user. This functionality helps the user explore new
songs, often from artists that are unknown to the user. Other recommendation
functionalities could be recommending music based on mood or activity. Many
of these systems are based on machine learning, and requiring the training of
parameters to produce accurate recommendations.

Traditional recommendation systems often focused on what other users lis-
tened to, and less on the content. If nobody previously listened to a song, that
soung would not be recommended to users at all. For music recommendations,
the content is the music itself. Modern approaches can use both content and
user data to make recommendations. When the focus is on the content instead
of what other users listen to, artists that are unknown but produce quality music
benefits since they have a higher chance of being recommended.

In this thesis we assume that no previous user data exist, which is the case
for many companies in the beginning. If no user data exists, assumptions of
user behaviour could be made together with using the content of the music to
make recommendations.

Following in this Section we present the aim, an overview of recommenda-
tions and how they apply to music.

In Section 2 information in music and how to extract the information is firstly
described. Secondly, relevant literature from audio music similarity retrieval
and playlist generation is presented. In the end, we draw conclusions which the
solution presented is based upon.

In Section 3, the problem aimed to solve is narrowed down and an overview
to the proposed solution is presented.

Theory of reinforcement learning is explained the beginning of Section 4.
Following the theory, details on the training environment, implementation and
experiments is presented.

In Section 5 features are extracted with deep learning. Finally, in Section 6,
the recommendation system is put together, and evaluated on a dataset.
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1.2 Aim

The thesis aims to improve recommendations for music based on content, when
no previous user data is available. A system is designed and implemented that
can make music recommendations based on content and by simulating user
interactions.

1.3 Background - Recommending music

Recommender systems have existed for a long time, and people are interacting
with them every day. There are many ways to make recommendations, and
below three conventional approaches of making recommendations are described.

Collaborative filtering

Collaborative filtering is probably the most popular type of recommendation
system. The idea is to recommend songs to a user which similar users preferred
in some way. Collaborative filtering has, however, two well-known issues. One
is the cold start problem, which means that if there is no or very little user data,
accurate recommendations is not possible. The second issue is popularity bias,
which means that popular items have a very high chance of being recommended
and new unknown items have a slim chance of being recommended.

Content-based filtering

In content-based recommendation systems, songs are recommended based on
the content. In music, this means recommending items based on the audio
content, often by recommending similar songs. First, audio has to preprocessed
and then features extracted from the preprocessed audio. An issue with this
approach, is that music needs to be accurately represented in a vector space. If
the music is not accurately represented, then songs that sound dissimlar could
be seen as similar by the system.

What information in music is, and how to extract features is described in
Section 2.

Hybrid-based filtering

Hybrid systems can use several sources of information for recommendations. It
could be a combination of collaborative filtering and content for example. A
simple example would be a recommendation system that now and then recom-
mends an unknown song to a user based on the content of the song. It could
be a song that is similar in content to other songs the user previously rated
high. If the user likes the recommended song, similar users could receive the
same recommendation. While hybrid-based approaches can experience the same
issues as the collaborative based and content based approaches, hybrid-based
approaches can also overcome them by combining the approaches efficiently.
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Music recommendations in this thesis

In music we want to find similar songs to users prefered songs. Thus, it is
possible to divide the problem into two parts. The first part would be finding
songs the user enjoys, and the second part recommending similar songs.

With no previous information about the user, the first thing is to find out
which preference of music the user has, which for instance could be done by
exploring different songs. This can be done by playlist generation(PG) where
the goal is to create a playlist of songs a user enjoys. A part of creating a
playlist, is to find songs the user enjoys.

At a specific point in time the user tend to listen to similar music depending
on mood, activity, time of day, etc. Users also have different kind of taste. Some
enjoy Jazz, while others like rock and so on. Recommending songs that are
similar based on the content one listens to, should therefore, in theory produce
good recommendations.

Recommending similar songs basically means, recommending songs that
have been calculated to have a small distance between so called features of
the song. This puts us in the field of Audio Music Similarity Retrieval(AMSR)
since we are retrieving songs similar to a query song and its respective features,
Section 2.4.

2 Background

2.1 Information in music

Domain knowledge is often important in machine learning. Without it, it is
hard to know what is informative in the data and what is not. In this section
we will go through what information in music is, how it can be extracted and
how it relates to machine learning. First in 2.1.1 we go through aspects of music,
and in the following subsections describe how features can be extracted from
the audio signal.

2.1.1 Elements, aspects, of music

A common way to describe sound1 is to divide it into the six categories pitch,
duration, loudness, timbre, texture and spatial location. Other important as-
pects of music are tempo, melody, harmony, rhythm and beat. For simplicity
all of these are mentioned as different aspects of music in the rest of thesis.

Some aspects such as pitch are dependent on the frequency of the notes
played, while others such as rhythm are temporal aspects.

Pitch The perceptual property of sounds that allows the ordering on a frequency-
related scale. Pitch is basically the frequency of sound that is perceived
as the height of a tone. A higher frequency corresponds to a higher tone.2

1https://en.wikipedia.org/wiki/Elements_of_music
2https://en.wikipedia.org/wiki/Pitch_(music)
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Loudness The attribute of auditory sensation in terms of which sounds can be
ordered on a scale extending from quiet to loud. 3

Timbre Timbre distinguishes the sound between different types of sound pro-
duction, e.g choir voices and different musical instruments. Given two
instruments playing at the same pitch and loudness, timbre is what makes
a particular musical sound have a different sound from another. 4

Duration The amount of time a tone, pitch, is played.5.

Texture How the tempo, melodic and harmonic materials are combined in a
composition.6

Melody A linear succession of musical tones that the listener perceives as a
single entity. A combination of pitch and rhythm.7

Harmony How the composition of individual sounds, or superpositions of
sounds, is analysed by hearing e.g simultaneously occurring frequencies,
pitches or chords.

Rhythm The placements of sounds in time, or an ordered alternation of con-
trasting elements.8

Beat The basic unit of time in music. Oftened defined as the rhythm of a
person listening to music would tap their toes.9.

Tempo The speed or pace of a given piece and is usually measured in beats
per minute10

These aspects exist in every song, but are not of equal importance. When
dancing beat becomes a very important aspect while others less. For human
perception of similarity in music, timbre is known to be the most important as-
pect, in most cases. Likely because of its ability distinguish instruments playing
at the same pitch.

2.2 Frame level features

Frame level features are low-level features and can be considered to be ”basic”,
or simple features. Different frame level features exist, which captures different
aspects of music.

3American National Standards Institute, ”American national psychoacoustical terminol-
ogy” S3.20, 1973, American Standards Association.

4https://en.wikipedia.org/wiki/Timbre
5https://en.wikipedia.org/wiki/Duration_(music)
6https://en.wikipedia.org/wiki/Texture_(music)
7https://en.wikipedia.org/wiki/Melody
8https://www.britannica.com/art/rhythm-music
9https://en.wikipedia.org/wiki/Beat_(music)

10https://en.wikipedia.org/wiki/Tempo
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Mel frequency cepstral coeffiecents (MFCC) is known to represent the timbre
aspect of music. Another example of frame level features is the Chroma features,
but since Chroma features is known to represent pitch it is of less importance
in this thesis. As mentioned previously, timbre is an aspect when comparing
human perception of similarity between music.

When computing the MFCC features other representations are created that
also often are used for various applications. Therefore, we divide the creation
of MFCC into three parts. First, the computation of the spectrogram, which is
presented in Section 2.2.1. Secondly, the spectrogram is transformed to repre-
sent human perception of sound. This representation is called Mel-spectrogram
and is presented in Section 2.2.2 At last, dimensionality reduction is applied to
the Mel-spectrogram yielding MFCC features as show in Section 2.2.3.

2.2.1 Spectrogram

As mentioned, the first thing necessary is to transform the raw audio signal
from the time domain to the frequency domain. For digital signals, this is
computed with the Discrete Fourier Transform(DFT) and generally calculated
with the Fast Fourier Transform(FFT). A sliding window is applied, with a
defined hop length. For every position the sliding window takes, a window
function is applied. Generally, the Hanning window is chosen. DFT is then
calculated on the output of the window function. The mathematical formula
for the Hanning window[18], is,

w(n) = 0.5(1− cos(2π(n− 1)

N
)), 0 ≤ n < N

where N is the length of the array, of the digital audio signal.
Figure 2 shows the corresponding signals from Figure 1 in the frequency-

plane. In Figure 2 the x-axis is time while the y-axis contains the frequency.
The color corresponds to the energy or amplitude for the frequency. As is

visible most of the energy is distributed in the lower frequencies. By comparing
the spectrogram to the waveform of the audio, Figure 1, it becomes clear that
more information is present in the spectrogram.

In contrast to Figure 1, Figure 2 also contains clear information concerning
the pitch, and the strength the notes that are played. The pitch is visualized by
the frequency, y-axis, and the strength is represented by the colors, which are
mapped to values on the right side of the Figure 2, a and b.
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(a) Parts of the song, seconds 0:10.
The song is a classical piece with
clear tones of piano playing the
melody with accompanying back-
ground.

(b) Parts of the song, seconds
15:25. The song is labeled as Al-
ternative & Punk. The first five
seconds contains intro where a gui-
tar plays the melody. Between sec-
onds 5 and 6 vocals start as can be
seen as the amplitude of the wave
increases.

Figure 1: Audio waveforms of types of music.

(a) (b)

Figure 2: Linear-frequency power spectrum extracted from the audio in Figure
1.

2.2.2 Mel-spectrogram

Human perception of sound is not linear, but logarithmic. As frequency in-
creases humans it becomes harder to hear the difference between different tones.
Different auditory scales exists in order to model this with examples being the
Mel-Scale, Bark-Scale, ERB-Scale and the Cent-Scale. All of these scales have
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their own mathematical formula, but share the same concept, they try to model
human perception in different ways. The most commonly used is the Mel-Scale
and this is probably because it is used to calculate MFCC features.

The output of transforming the spectrogram with the Mel-Scale is called
a Mel-spectrogram. The formula for transforming frequencies to Mel-Scale is,
fmel = 2595log10( fHz700 + 1).

After applying the Mel-Scale to the spectrogram frequencies are grouped,
and often around 128 groups are used. The output is called the Mel-spectrogram
and is visualized in Figure 3. The smallest unit of time on the temporal axis is
called a frame, and that is also why these kinds of features are called frame-level
features.

(a) (b)

Figure 3: Mel-spectrogram with logarithmic amplitude extracted from the audio
in Figure 1.

2.2.3 Mel Frequency Cepstral Coeffiecents

The Mel-spectrogram contains much data. If a song would have 10 frames per
second, 128 bins and a duration of 3 minutes, there would be 10 ∗ 128 ∗ 3 ∗ 60 =
230400 floats of data. The frames are heavily correlated, leading to redundant
information, and not a very compressed representation. To cope with the large
amount of data dimensionality reduction is used, and for the creation of MFCC
features the discrete cosine transform(DCT) is applied to the Mel-spectrogram

The reason for applying DCT is that it approximates the principal compo-
nent analysis(PCA) for music signals which optimally decorrelates the data[15].
The DCT is computationally more efficient than the PCA transform.
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(a) (b)

Figure 4: MFCC features extracted from the audio in Figure 1.

2.3 Higher level features

While frame level features are in some cases used as they are, an issue is the
sheer amount of frames. Also, each frame only represents a small unit of time
and, therefore, aspects that can only be perceived with a larger time scale are
either missed or requires several frames to be represented.

Features that are created from several frame level features are here defined
as higher level features since they represent a higher abstraction of music.

Evaluation of features is often a part of Audio Music Similarity Retrieval(AMSR)
which is further disscused in Section 2.4, where features are used to find songs
that are similar to one another. For accurate recommendations based on con-
tent, the feature space needs to represent the human perception of sound as
closely as possible.

In this subsection, we present two types of high level features. The first
presented is handcrafted features, which are created by researchers trying to
represent some aspect of music, and the second is features extracted with deep
learning techniques.

2.3.1 Handcrafted features

Handcrafted features have been specifically created to represent some aspect of
music.

Examples of handcrafted features could be correlations to find reoccurring
rhythm patterns, or variance to capture changes in the song. In Figure 5 on-
sets, which are the beginnings of musical notes, extracted from a spectrogram
are visualized. From the onsets and their strength, beat per minute can be ex-
tracted. Many more handcrafted features exist and depending on the objective
some might be more interesting than others. For more in-depth information,
we recommend reading Seyerlehner’s dissertation paper, [18]. Music is packed
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with information in the frequency domain and the temporal domain. Some fea-
tures might be possible to find with a short time scale. Other aspects such as
structure could require a much larger time scale to represent accurately.

Figure 5: In the upper image the spectrogram of an audio signal is shown.
Below are extracted onsets together with the strength of the onset.11

2.3.2 Deep Learning for music features

Deep learning methods have improved a lot over the last few years, and in many
fields, they are state of the art. In many image classification problems, models
based on convolutional neural networks(CNN’s) are state of the art. In natural
language understanding, models based on recurrent neural networks(RNN), e.g
long short-term memory(LSTM) or gated reccurent unit(GRU) cells, are state
of the art models for many tasks due to their ability to represent history. Since
music can be represented as 2D images, techniques from image recognition field
are of interest. To keep in mind though is that images are in a spatial space,
while in music is in the time-frequency space when using the spectrogram as
features. Given the progress in image recognition and natural language un-
derstanding, it makes sense that the techniques from these fields could also be

11https://librosa.github.io/librosa/_images/librosa-onset-onset_detect-1.png
11http://lantana.tenet.res.in/music/mridangam
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applied to music.
Already in 2011, neural network(NN) and deep neural network(DNN) ap-

proaches was becoming more and more popular for MIR. Since the content of
music is complex to work with even though patterns exist, it makes it an attrac-
tive target for deep learning. While the handcrafted features mentioned tries to
capture different aspects of music, the signal and the information content is so
complicated that it can be hard to represent accurately. As the DNN architec-
ture is hierarchical, the use of deep learning techniques seems to be the perfect
fit for many MIR applications. While higher layers would be able to find more
local patterns, deeper layers should be able to find higher level patterns.

It is clear that DNN is a good fit for this type of data. For feature extraction,
we look at DNN from two perspectives:

Unsupervised learning: The idea is to compress the data and then recreate
it. Training is conducted by comparing the input with the output, which
ideally should be the same. The reduced dimensions, embedding, from
within the network, can be extracted and can be used as features.

Supervised learning: Using features such as MFCC, or the Mel-spectrogram,
a deep learning model can be trained to classify objectives such as genre
or tag classification. Features from different layers in the DNN can be
extracted and used as features.

For both of these cases, finding labels is not an issue. In the case of genre
classification, music is often already classified, and several datasets exist. In
the other case of unsupervised learning, we are merely trying to recreate the
original features and therefore, do not need a label.

For the supervised learning approach lots of literature exists[4-5][14-16][25].
The features used often differ and also the datasets. The most common feature
used, and especially lately, is the Mel-spectrogram, but features such as the
spectrogram occur as well.

These models could be considered solving the problem of genre classification
and often scores above 90% accuracy in genre classification. These models also
score well on tag classification.

There is one paper, that even if it is not only a content-based approach that
is worth mentioning. In [20], latent factors(embeddings) of music are created by
collaborative filtering. Using audio, these latent factors are predicted. In Figure
6 an embedding space is visualized by predicting latent factors from audio and
then using t-SNE for dimensionality reduction. Some genres are possible to
discern, and this is only with 2 dimensions. With 3 or 4 dimensions it should be
possible to find better clusters for the genres. The data used is the MSD dataset
together with an extension containing user data in the form of how many times
they listened to specific songs. The authors of [20] were able to attain 29 second
clips of 99% of the songs in the dataset from a seperate website.
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Figure 6: Image of embedding space from the paper [20]. In the image red is
hiphop, rock is green, pop is yellow and electronic music is blue. Other genres
are not possible to discern.

The unsupervised learning approach is to our finding less popular, and the
only literature found on the subject is Schlüter’s work from 2011[15].

Something worth mentioning is that while handcrafted features often are
constructed with a musical aspect in mind, the unsupervised and supervised
approaches described here optimizes for a classification objective. It is unclear
how well the optimization and features constructed at different layers in DNN
represents human perception. It could well be that there is more to music than
what humans perceive, as discussed in [13].

2.4 Audio Music Similarity Retrieval

The information contained in the audio content needs to be represented ad-
equately to make suitable recommendations. In the previous Section 2.3 we
described two types of high level features, handcrafted features, and features
extracted with deep learning. These features represent a more compressed rep-
resentation of music and music from a higher abstraction than frame level fea-
tures. Therefore, high level features are commonly used for retrieval purposes
such as when retrieving similar songs.

After features are extracted, another problem exists. It is far from trivial
to evaluate how good they describe the music, at least from human perception.
In the Audio Music Similarity competition, a part of MIREX12, test-users rank

12http://www.music-ir.org/mirex/wiki/MIREX_HOME
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songs in order of similarity to a query song. The ordering of the test users is
compared to the ranking of contesting algorithms. Unfortunaly, none of this
data is publicly available, and gathering this kind of data is time-consuming.

The similarity in music is also complicated because people have a different
perception of similarity. It could be cultural, depend on what type of music
being consumed or other reasons[7]. To add to the problems in the field, music
is often not publicly available. Since most music is not publicly available, the
number of datasets available is limited. Some researchers also evaluate their
models with music they are not allowed to redistribute.

Some publicly available datasets exist but are often limited from a few hun-
dred to a few thousand songs together with the genre. The kinds of music in
the datasets also varies. Examples of datasets are GTZAN, ISMIR 2004, 1517-
Artists and Ballroom. MagnaTagATune[10] contains tags instead of genre labels
gathered by real users. Examples of tags can be guitar, rock, slow or fast. The
MillionSongDataset(MSD)[1] is another well known dataset containing around
one million songs. The audio is not available for the dataset, but features such
as beat and features similar to MFCC exist for each song. For the MSD dataset,
there also exist other data that extends the dataset for a subset of the songs,
or all of them. An example of an extension is the Taste Profile Subset contain-
ing users and counts of the songs they listened to. Another contains tags from
Last.fm.

Because of the mentioned problems, evaluation is often done against the
genre. If the objective is to find similar songs, the genre of query song is com-
pared to the genre of the songs with the highest similarity. Sometimes genre
prediction accuracy is also used, by training a model to predict the genre of
songs. If the accuracy is high, features are believed to be suitable for similar-
ity tasks. The motivation for using genre is that it resembles a coarse human
perception of similarity.

2.4.1 Playlist Generation

In AMSR a query song is required to make recommendations. Since a query
song is required, either the user has to provide it, or a song suitable for querying
needs to be found.

Another important subfield, for this thesis, is playlist generation(PG). In
general playlist generation is about recommending a list of songs, the consumer
enjoys. The focus could be everything from finding good candidates, to focusing
on transitions between the songs in the playlist. PG can be based on information
gathered from users, from the content or a mix. In this thesis, we are not
interested in the sequencing but more the recommendation part and therefore,
we focus on finding the candidate songs. In recent literature, the problem is
often solved by applying reinforcement learning.

In [11] an interesting algorithm is described. The algorithm retrieves both
candidate songs and how the songs should be ordered. It is modeled as a rein-
forcement learning problem. For candidates songs to recommend, it learns what
features of music the user prefers and adjusts weights to increase the probabil-
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ity of songs with similar features to be chosen as candidates. From the MSD
dataset, 34 features are used and each of the features is digitized into 10 val-
ues. In feature space, each song becomes a binary sparse vector with 1’s at the
entries the song populates and 0’s everywhere else. A weight matrix for each
user exists of the same size, which gives an indication of what features the user
enjoys.

For sequencing, a reward function is maximized by tree search. Depending
on user preferences, a subset of songs are selected. From the subset, songs
are randomly chosen and sequenced, creating a trajectory. Several of these
trajectories are gathered, and the selected trajectory, recommended to the user
is the trajectory with the highest calculated reward.

In [3], the author uses Q-Learning, a type of reinforcement learning(RL), for
recommending music based on the emotion of the song. Songs are categorized
into four different classes. To tune the parameters of the model, they simulate
users having three possible actions: skip, repeat, and rate. It is a rather simple
problem compared to many others, but simulating users for parameter setting
is exciting and potentially useful.

In [2], the authors have data from a music streaming application available.
They create a graph connecting users to songs and songs to playlists. From the
graph, they create embeddings. In a second paper, [19], the embeddings are
utilized together with deep reinforcement learning for PG. The model they use
is based on an attention-RNN language model where every action represents a
song.

2.5 Conclusions

At the beginning of this section, we mentioned the aspects of music. Many ex-
ist, but the single most crucial aspect is timbre when comparing similar songs.
To represent music by features, we described how the frame level MFCC fea-
tures are created by converting the audio to the spectrogram, and then to Mel-
spectrogram, and lastly transformed with DCT. How high level features, hand-
crafted and extracted by deep learning, can be created was after that briefly
presented. Lastly, the subfields AMSR and PG were described, and relevant
literature presented.

Information in music is complex, and when using traditional techniques such
as handcrafted features, domain knowledge is essential. If the objective would
be to make a recommendation on a specific type of music, that is distinguished
by e,g the rhythm, then perhaps a handcrafted feature that is constructed to
represent rhythm would be the right choice. In this thesis, we want to recom-
mend music more generally, and therefore, several handcrafted features could be
required. Also, many of the handcrafted features would need to be implemented.

Extracting features with deep learning, on the other hand, is relatively sim-
ple. The network creates features of their own, through optimization. The ques-
tion then is if these features can resemble the human perception of sound[13].
By looking at Figure 6, it is evident that even in 2D, one can discern some
genres. To be able to discern genre from each other with just two dimensions
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is powerful. In higher dimensions, it should be even easier to discern them.
If a similar embedding space could be extracted from a deep learning genre
or tag classifier that could potentially be appropriate features. It is worth an
evaluation.

From PG, a few ideas are interesting. The idea of simulating users as in
[3] is interesting if you cannot interact with users or have a dataset containing
interactions. Finding what features of music a user prefers, as in [11], would be
easy to simulate and is an exciting way of looking at the problem. If features
preferred are found, then it should be possible to recommend songs that have
similar features, the retrieval problem. Although recommendations can never
become better than the features describing the music if the recommendations
are made on content.

The last few years deep reinforcement learning(DRL) have gained widespread
attention because its performance in a wide set of RL problems such as Atari
games, but recommendation problems have also been explored. In [19] a DRL
approach is used, but unfortunatly they are using music features extracted from
a user-song-playlist graph. Although, they mention that also using content could
be beneficial. In the paper, [19] every song is an action. If the song database is
large, this clearly becomes an issue. With the approach from [11] songs with the
same combination of features can be mapped to the same bin representing the
combination of features. The bin representing a combination of features could
then be sampled then. If no song exist in the bin, a nearest neighbour approach
could be taken, and another bin could be sampled from.

Ideas from the three papers, [3], [11] and [19] could be combined with an
approach without user data, by simulating users with individual music prefer-
ences. To optimize the recommendation and find the combination of features
the user prefers, the DRL provides an exciting approach.

3 Problem definition and overview of solution

As described in Section 1 the problem of recommending music can be divided
into two problems. The first problem is finding a song that the user enjoys, and
the second problem is to retrieve similar songs.

In this thesis, the first problem is narrowed down to finding a preferred set
of features the user enjoys in music, which will be done by user-interactions.
The system stores no previous interactions and has to explore combinations
of features, to find the users preferred settings. Once the preferred setting is
found, recommendations from that setting can be made. An assumption is made
that features represent music perfectly. Users are simulated and their feedback
follows a hardcoded set of rules. Recommendations are optimized with a DRL
approach. In Section 4 relevant theory of RL, and DRL is presented and then
the environment that agents interact with. Finally, models are trained and
evaluated that solves for the first problem.

The second problem is to retrieve similar songs. By doing so, the feature
space has to represent the human perception of similarity accurately. Therefore
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the second problem equals to extracting and evaluating these features. Features
are extracted from a deep learning music-tagger.

In Section 5 features for a dataset is extracted from a different layer of the
deep learning model. Features are compared qualitatively.

Lastly, the two parts are put together, forming the music recommendation
system, that is quantitatively and qualitatively evaluated in Section 6.

4 Reinforcement learning

In this section we look at first part of the problem, which is to find prefered
setting of features the user enjoys. First in this section reinforcement learning,
and deep reinforcement learning theory is presented. Secondly, the environment
used for training model is explained. Implementation details are then presented,
and finally experiments are conducted and presented.

4.1 Theory

Reinforcement learning can be explained as an add-on to supervised learning.
In supervised learning, and in the case of classification, the input is transformed
into a probability for each of the different classes. When training, labels exist
and it is possible to say directly what is right and what is wrong. In reinforce-
ment learning classes are defined as actions instead. What action is good or
bad is often unknown at the given time. Instead, it will be found out in the
future if the action taken led to what is called a reward, r. For a self-driving
car staying on the road for a longer time would typically produce a high reward,
while crashing into a ditch would result in a low reward(hopefully). It can take
several actions before success or failure is known.

Every time an action is taken, an observation or state, s, is returned. In
many cases, observations and state differ, but in the context of this thesis, they
become the same. The observation, or state, is used as input for the action taken
at the next step. A model thus chooses actions depending on the observations.

There are different types of reinforcement learning algorithms such as policy
gradients, value-based, and actor-critic. In literature, policy gradients and no-
tably actor-critic algorithm have shown promising results and is, therefore, the
focus.

The type of algorithms used in this thesis is actor-critic, but actor-critic
are often grouped into a policy gradient type of algorithm. Since policy gradi-
ent algorithms give an excellent introduction to actor-critic algorithms, policy
gradient is first explained in Section 4.1.1 and in Section 4.1.2 we extend to
actor-critic algorithms and the main algorithm used in this thesis.
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4.1.1 Policy gradients

The objective function for policy gradients can be defined as,

J(θ) = Eτ∼πθ(τ)[
∑
t

(r(st, at)]

where r(st, at) is the reward for taking action at in state st at time t, and τ is a
trajectory sampled by running the model πθ with parameters θ. The objective
function, θ∗ = argmaxθEτ∼πθ(τ)[

∑
t r(st, at)], is to be maximized on θ.

The reward given is dependent on the state and the action together. The
model samples actions depending on the state, πθ(at|st). The objective function
can be approximated J(θ) by running the agent in the environment,

J(θ) ≈
∑
i

∑
t

r(si,t, ai,t)

where i stands for trajectory i.
In words, we want to maximize the expected total reward for trajectories by

changing the θ parameter. In simple policy gradient, this equals to changing
the model and as can be understood by the name policy gradient, this is done
by taking steps in the gradient direction. The model can be called many things
and often it is referred to as actor, agent, policy model or simply model but in
the terms of policy gradient, these are all the same. A simple policy gradient
algorithm can be defined as the following:

1. Run the policy to generate a trajectory.

2. Estimate the rewards/returns.

3. Compute the gradient.

4. Alter the policy by taking a step in the gradient direction.

5. Loop over step 1-4.

A known issue with policy gradient methods is the high variance of the gra-
dient. The variance makes convergence hard and may require many trajectories.
Different ways to cope with this have been suggested, and in [16] the authors
list a few versions of the gradient which all takes the form,

∇θJ(θ) = E[
∑
t

Ψt∇θlogπθ(at|st)] (1)

where Ψ could be one of the following:

1.
∑∞
t=0 rt: The total reward of the trajectory.

2.
∑∞
t′=t r

′
t: Reward following action at.

3.
∑∞
t′=t rt′ − b(st): Baselined version of 2.
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In practice, the baseline b(st) is often implemented as just being the average
of rewards. The main difference between 1 and 2, is that in 2, rewards in the
future, following t, is summed up(casualty). This is sometimes called, ”reward-
to-go” or Q-function, which is described further in Subsection 4.1.2. Rewards
in the past should not affect the rewards in the future, and by summing over
fewer, the variance is reduced.

Two other ways of reducing the variance are by using discount-factors and
n-step returns:

1.
∑∞
t′=t γ

t′−tr′t: Discount factors. 0 < γ ≤ 1. Having rewards earlier, rather
than later is better.

2.
∑t+n
t′=t r

′
t: N-step returns. We only look n-steps into the future.

Discount factors and n-step returns can be combined. The idea behind these
two techniques is that further ahead, more actions will have been taken. In some
cases, different actions are taken from the same state, and this causes trajectories
starting from the same state to diverge. With more actions taken, trajectories
will likely diverge more and thus increasing the variance of the returned rewards.
By using techniques such as discount factors and n-step returns, it is possible
to control the variance to some extent. Decreasing the variance can be useful
if the variance is too high for the model to learn efficiently. Variance is often a
problem in reinforcement learning.

4.1.2 Actor-critic

Policy gradients are closely related to actor-critic methods, and in some litera-
ture, they are listed under the same type of reinforcement learning.

The main difference is that instead of just using a model for the policy, a
value function is learned to approximate future rewards. In actor-critic two
models exists, actor and critic. The model taking actions in policy-gradient is
often referred to as the actor, and sometimes also the agent. The value function
that approximates future rewards is often referred to as the critic.

In Figure 7 more notations can be found. Depending on the literature, nota-
tions differ and here we follow the notations from the Berkley deep reinforcement
learning course of 201713 closely.

In Subsection 4.1.1, equation 1, a few options for replacing Ψ were listed.
Another option of replacing Ψ us by the advantage function A(st, at).

From Figure 7, the only thing needed to approximate the advantage function
is the value function. In actor-critic methods, the critic approximates the value
function. Using the advantage function, together with the critic, greatly reduces
the variance of the gradient. Comparisons can be made with the baseline b(st)
from policy gradient.

13http://rail.eecs.berkeley.edu/deeprlcourse-fa17/f17docs/

21

http://rail.eecs.berkeley.edu/deeprlcourse-fa17/f17docs/


Notation Definition
T The total amount of steps in the

trajectory. For a trajectory with
inifinite amount of steps T =∞.

Qπ(st, at) =
∑T
t′=tEπθ [r(s

′
t, a
′
t)|st, at] Q-function. The total reward from

taking at in st.
V π(st) = Eat∼πθ(at|st)[Q

π(st, at)] Value function. Total reward from
st.

Aπ(st, at) = Qπ(st, at)− V π(st) ≈ r(st, at) + V π(st+1)− V π(st) Advantage function. How much
better is action at.

Figure 7: Notations and definitions for actor-critic.

The pseudocode for a simple actor-critic algorithm can be outlined as follows:

1. Sample a trajectory by running the actor.

2. Fit the value function to the sampled reward sums.

3. Evaluate the advantage function.

4. Compute the gradient.

5. Take a step in the gradient direction.

6. Loop over 1-5.

4.1.3 A2C

The paper [12] outlines, among others, an asynchronous actor-critic algorithm,
called A3C. In A3C processes are spawned and run in parallel. Each process
generates trajectories and in a hogwild fashion[14], update the model. The
parameters for the model is thus shared across the processes.

The difference between A2C and A3C is that A2C is synchronous. In A2C
many processes also run in parallel, but trajectories from the process are syn-
chronized and put in a batch together on a single process. On this single process,
the model updates, allowing for fast batch updates using GPU.

OpenAI has an implementation for A2C implemented in tensorflow, and Ilya
Kostrikov [9] one implemented in pytorch.

We have found no good pseudocode for the A2C algorithm, and therefore
the pseudocode for A3C is presented in Figure 8, although the algorithm used
in the thesis is A2C.
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Figure 8: Pseudocode for the A3C algorithm taken from the paper[12].

4.2 Environments

An environment is what an agent is interacting with. When an environment
is reset, it returns a starting observation. The observation is used as input
to the agent, which returns an action used as input to the environment. The
environment takes a step with the action and returns a new observation together
with a reward. Keep in mind that state and observations are the same things
in this thesis.

For our environment, we have set a maximum number of steps that can be
taken, 21. The number was greedily chosen, with the motivation that it should
be possible to find the preferred setting within 21 steps. The amount of steps
needed, does, of course, depend on the amonut of combination of features, or
as we could call it, the number of positions available, but should be enough in
the setting presented. After 21 steps have been taken, the environment is reset
again, and the agents start from the beginning again. When the environment is
reset a new preferred setting is chosen. Examples of what an environment can
look like can be found on OpenAI website14. For simplicity, we try to use the
same vocabulary as OpenAI.

The observation space contains a reward function, user and feedback func-
tion, and observation representation.

14https://gym.openai.com/envs/
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4.2.1 Action space

In this thesis, the action space is the positions, or settings, the agent can take and
is discrete. The action space is simple, but with many features or dimensions,
which is the same thing, the size of the action space becomes enormous.

As the number of dimensions and with the number of levels per dimension.
The size of the action space becomes n levelsd with d being the number of
dimensions and n levels the number of levels per dimension.

4.2.2 Observation space

With inspiration from [11] we consider the goal to find a target. A target is the
preferred feature setting or combination that a user prefers. This idea is based
on the assumption that music can be represented by a combination of features
values. Songs with similar features should sound similar. For every feature, the
user prefers a specific level, valued 0 to 4.

The goal of the agent is to explore the positions and find the target as quickly
as possible. Depending on the feedback function, the target can be one position
or several positions that are close to each other.

Following is defined how users are simulated, how feedback is produced, and
how the rewards are computed.

User and feedback function

As mentioned above, the goal is to find the target, defined by a combination of
feature levels. Each simulated user has their own uniformly randomized target,
and an example of a target is visualized in Figure 9. When exploring the actor
selects an action corresponding to a position, which is a combination of feature
levels just as the target. The simulated user evaluates the combination of feature
levels.

The simulated user returns two feedback values. One if the current posi-
tion has a lower distance, manhattan(absolute) distance, to the target than the
previous position. This feedback is referred to as closer feedback. The second
value is the rating feedback that can take 5 values, {0, 1, 2, 3, 4}. The higher
the rating, the closer the position is to the target, and if rating 4 is returned
the target has been found. In this thesis, every simulated user is deterministic,
meaning they will always follow a set of rules for producing feedback that is
non-random.

For the rating, we decided to give a percentage of all settings to be of a spe-
cific rating. For each target, distances to all positions become calculated. A rat-
ing is given accordingly to a distance interval that is calculated with percentiles.
Two settings for the percentiles was experimented with named TopTarget and
WiderTopTarget. For TopTarget the percentiles used was [0, 0.01, 15, 30, 50, 100]
and for WiderToptarget, [0, 5, 15, 30, 50, 100].

If the distance from a position to the target falls in between the distances
corresponding to the percentiles of indices 0 and 1, then the rating produced
is 4. If the distance falls in between the distances corresponding to 1 and 2, a
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rating of 3 is produced and so on. The difference between the two settings is
minor. In TopTarget only the target will have rating 4, and for WiderTopTarget
5% of the positions will have rating 4.

Figure 9: The x-axis contains features, and the y-axis contains feature levels.
Each cross stands for the feature level the simulated user find ideal, for the
specific feature. Together the crosses become the target. The circles are the
start position. Every time the observation restarts the start position becomes
the position.

Reward functions

Two different reward functions were implemented and tested. Both the reward
functions compute the reward based on the rating provided by the user. The
reward functions were named Bullseye and Rating. For Bullseye rewards, only
a rating of 4 produces a reward which was arbitrarily set to 10. For Rating re-
wards, the rating of the user is squared and returned as the reward. The reasons
for squaring the reward was only to increase the intervals between the ratings,
to make the effort of exploring and finding a higher rating more rewarding.

At the beginning of training, finding the target could be hard, resulting in
the agent very sparsely receive the non-zero reward in the case of Bullseye. In
DRL it is essential that the agent sees a mix of good and bad trajectories. The
implication could be that the agent would require more training for converging
and finding the patterns to find the rewards. With the Rating reward, non-zero
rewards are given much more often, and being closer to the target is rewarded.
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Observation representation

The observations become the input to the model. Therefore, it needs to contain
enough information in a format the model can reason about. Two different
representation of observations were tested, GridObs and BoardObs.

GridObs contains the current position together with the feedback provided
by the user. The size of this representing becomes the number of features plus
the number feedback values, d+ 2 with 2 being the number of feedback values.
Unfortunately, this representation does not contain any information about the
history which is necessary to reason about exploration.

BoardObs contains more information than GridObs. The observations are
an array of the same size as the action space, n levelsd. Each entry in the array
resembles a position and is initiated with -1 for all entries. After the agent visits
a position, the entry corresponding to that position is replaced with the rating
from the user feedback. While this representation contains information about
the history, it does so at the expense of not being a compressed representation,
which can be an issue because of the exponential increase of the size with the
number of features.

4.3 Implementation

For implementation Ilya Kostrikov’s repository[9] was forked.
The repository contains a well implemented A2C algorithm and other DRL

algorithms such as ACKTR[21] and PPO[17]. In the repository OpenAI’s base
class for environments were extended by the environments described in 4.2. The
repository has been evaluated in many environments from OpenAI, Mujoco, and
others. Reproducing results is not trivial in DRL, and there is often lots of vari-
ance in success between training runs[8]. In order to get deterministic behavior,
there are many seeds to define. For example, when the model is initiated in
Pytorch weights are by default, randomized with some distribution. There are
also other non-deterministic parts of the algorithm, such as the sampling of
actions, which exist for exploration purposes. In the experiments, the targets
were also randomized. If the training is not robust, a poorly sampled trajectory
can cause a decrease in performance.

There is also the matter of where to store the data, CPU or GPU, how and
when to transfer data between the devices. The storing is done very efficiently
in the repository of Ilya Kostrikov by keeping the model at all time on the GPU.
Environments are run in parallel on the CPU and the returned values are trans-
ferred to GPU for updating the model. The repository uses many functionalities
such as the multiprocessing from the OpenAI baseline repository[5].

Some changes were made though, but no changes altered the DRL algo-
rithms. Changes implemented included saving, logging, arguments, and our
environments. A script for evaluation of models was also implemented.
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4.3.1 Model

While observations from BoardObs contains information of history, GridObs
does not. In some way, historical positions need to be represented for the agent
to reason efficiently, at least for the actor. Because the reward function computes
the rewards directly from the rating provided by the user, the critic should be
able to make rather good predictions without any historical information.

One way to represent history could be by concatenating previous observa-
tions with the current observation into a 1D tensor and feed it into a neural
network. A second option would be to sequentially input observations into an
RNN. In the repository, GRU cells are used. However, RNN’s such as GRU
or LSTM are known to be hard to train. Without altering the code, RNN
was the only possible option of the two. The output of the RNN is fed into a
three-layered neural network(linear layers). The output of the neural network
are logits with the number of actions as the size, and softmax is applied to the
logits to transform them to probabilities. In training, actions are sampled from
the probabilities outputted by the softmax function, in comparisons to when
evaluating when the action of the highest probability is taken.

Hyperparameters for the model

In DL, many hyperparameters are interacting. We use the default hyperpa-
rameters from the repository in most cases. Some experiments with the hyper-
parameters was done, but as they hardly had any effect on results, we do not
report them.

For every sequence that is fed into the GRU, a hidden state is outputted.
For the next input of the sequence, the hidden state from the previous sequence
is also used as input to the GRU cell. Sometimes the hidden state is also called
the context vector and contains a representation of the history. In many cases,
the hidden state from the last is fed into linear layers for classification purposes.
Hyperparameters for the GRU are hidden size and num layers. The hidden
size controls the dimensionality of the hidden state and thus the number of
parameters. Num layers is the amount of stacked layers as in a neural network
or other machine learning techniques. The output from the first GRU layer goes
into the second layer and so on. The output of the GRU, hidden state, goes
into a neural network which outputs logits for each of the actions available.

For num layers the default value of 3 was used and for the hidden size the
default value of 64.

The RMSProp optimizer was used to optimize the model, with hyperparam-
eters β and epsilon set to 0.99 and 10−5 respectively. The learning rate was by
default 7 ∗ 10−4.

4.3.2 Algorithmic hyperparameters

The algorithm also has some hyperparameters that affect the results.
The reward discount factor, γ, was set to a value of 0.99.

27



The loss function of A2C contains a value-loss coefficient that controls how
fast the critic learns in comparison to the actor. The value-loss coefficient re-
ceived a value of 0.5, which was the default value from the repository.

An entropy coefficient controls how much the entropy of actions should con-
tribute to the policy loss function of the A2C algorithm. In the A3C paper, this
is motivated as having a positive impact of not getting stuck in sub-optimal
policies(local minima). The default value of the repository, 0.01, was used.

The last hyperparameter is the number of processes that run in parallel. It
also controls the batch size of the updates made by the GPU. Usually, this is
set to the number of cores on the CPU, and in our case, it was set to 16 since
the machine used had 16 cores.

4.4 Experiments

There are many combinations to try and therefore have to be both greedy and
smart in experimenting and choosing hyperparameters. There is a considerable
risk of changing hyperparameters that are being bottlenecked by other hyper-
parameters. Another problem is the instability with DRL algorithms, as shown
in [8]. To get reliable results, the same experiments would ideally run several
times. Unfortunately, training can be time-consuming. Every combination or
configuration was only run once here.

For deciding what parameters to use, or at least understand how they affect
learning, we did experiments in 2D, with 5 levels per dimension. With 2D and
5 levels per dimensions, gave 52 = 25 positions in total. Much experimentation
was made by trial and error by changing hyperparameters, environment func-
tions, and interpreting the results. In most cases, performance stayed the same,
and we decide only to report those experiments which we deem interesting.

First experiments are made in 2D and the results discussed. Following ex-
periments are made in 3D and 4D with using one of the promising configurations
found from 2D. Since more dimensions means larger action space, more possible
observations and more positions it is a harder problem.

4.4.1 Experiments in 2D

The reward function is an essential aspect the observation space. After all, the
agent will be optimized to maximize the reward. If it is hard for the agent to find
the target, it could lead to sub-optimal policies or high variance, which could
cause problems when training. For example, if a rating of 3 is received, then
9 is given as the reward, in case of the rating reward. To increase the reward,
the agent needs to explore, which could lead to receiving a lower reward while
searching for a position with rating 4. This could lead to a suboptimal-policy
where it is safer to stay in the same position. The risk might not be worth the
potential reward.

The robustness of the training is another critical aspect. With more actions,
the variance will increase. Large action spaces is a known issue with DRL.
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With more features and levels, the information in music can be more accurately
described.

In the following subsections, we alter some hyperparameters and test dif-
ferent observation representations, reward- and feedback functions. The plots
visualized of the training shows the average total reward for the last 10 sampled
trajectories. As will be seen in the plots, many configurations have a high vari-
ance in the average total reward. Ideally, the variance is low, and an example of
how it ideally could look can be visualized by smoothing one of the plots heavily
as shown in Figure 10. At the beginning of training, the variance is higher. This
is likely due to the distribution used for sampling an action being more uniform,
higher entropy. As training progresses the probability of sampling, the optimal
action should increase while the probability for sampling bad actions decrease.
In other words, there is more exploration in the beginning.

Figure 10: A smoothed version of a training plot. The stronger colored line is
the smoothed version and the weaker the real training.

If not else mentioned, default hyperparameters are used.

TopTarget in comparison to WiderTopTarget

The first experimentations were with the reward function. It was believed that
the reward function would have the most significant impact on performance.

In Figure 11 and 12 training is visualized from the two reward functions.
The environment used was GridObs. GridObs with TopTarget has surprisingly
less variance than WiderTopTarget. It was believed to be the other way around
since finding one position should be harder than finding one of several.

As can be seen from both Figure 11 and 12 is that trajectories with low
rewards tend to follow each other. Examples when this is visible is around
iteration 190k in Figure 11, and around iteration 170k in Figure 12. We interpret
this as if a bad trajectory is sampled, then there is an increased risk of the
optimizer to take a large step in a bad direction.

One of the reasons the WiderTopTarget’s performance is lower could be
because of non-consistency of the rating levels. When using percentiles with a
low amount of positions available, the number of positions with a rating will
differ in the target position. Since the reward is only non-zero at rating equals
4, this could be one of the many reasons.
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Figure 11: GridObs and TopTarget reward. After around 40k iterations the
model is trained.

Figure 12: GridObs and WiderTopTarget reward. While the model learns, the
variance is relatively high when comparing to Figure 11. After around 80k
iterations the model is trained.

N-step returns

As explained in the theory, Section 4.1, the n in n-step returns controls after
how many steps the model updates. To reduce variance we would like n to be
small, but large enough for the actor to find the taret. If the target is not found
within the n steps, then rewards with only 0 will be returned, in the case of
bullseye reward, which could cause problem with learning. To start with, n was
set to 5. While it should be possible for the actor to find the target within 5
steps it gives very little room for a bad action being sampled. Theory tells us
that increasing n should increase the variance because trajectories divert the
more in the future we look. Before we started altering this hyperparameter,
we, therefore, tried many other things such as increasing the hidden size of the
RNN, changed the number of layers without any success. Nothing seemed to
stabilize the learning and decrease variance. In Figure 13 we increased n to
10, and in Figure 14, to 20. The results are clear. Increasing n reduces the
variances.

A reason for the increased performance when increasing n could be that
when n is low, the target is not often found, and as n increases the chance of
finding the target increases, which could lead to a healthy mix of rewards.
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Figure 13: GridObs, WiderTopTarget and n = 10. After around 20k iterations
the model is trained.

Figure 14: GridObs, WiderTopTarget and n = 20. After around 14k iterations
the model is trained.

Learning rate

From experience, a too high learning rate can cause high variance in the learning.
Therefore, the learning rate was lowered to 7 ∗ 10−5 from the default value of
7 ∗ 10−4. The results are plotted in Figure 15. Lowering the learning did not
help as can be seen by the high variance in the average rewards, but with more
iterations, it is possible that it would converge.

Figure 15: Learning rate lr = 7 ∗ 10−5 and n = 10. After 120k iterations the
variance is still high.
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BoardObs

If observations are not informative, no agent would be able to reason about
the environment. The upper limit on what is possible to model is, in most
cases information content. GridObs is dependent on the RNN cells to represent
history. As previously mentioned, training can be hard. BoardObs does require
RNN to represent history. This allows for doing experiments without the RNN
and with only the linear layers. Since the ACKTR algorithm in the repository
does not have an RNN implementation, it could be used with BoardObs.

The ACKTR algorithm is known to have less variance than the A2C al-
gorithm. Less iteration is thus needed. Unfortunately, the tradeoff is compu-
tational cost. The tradeoff is, in many cases, beneficial when limited data is
available.

In Figure 16 we show training for BoardObs with RNN and A2C. It does
learn, and performs well. In Figure 17 we show training for BoardObs without
RNN and with the ACKTR algorithm. Performance is good and ACKTR learns
faster than the A2C algorithm.

Figure 16: BoardObs, n = 20, A2C and RNN. After around 14k iterations the
model is trained.

Figure 17: BoardObs, n = 20, ACKTR and without RNN. After around 10k
iterations the model is trained. ACKTR is known to require less iterations than
A2C for training.
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Rating rewards

Before increasing n in n-step returns the rating reward was tested. Unfortu-
nately, it was apparent that it got stuck in a sub-optimal policy. After increasing
n, experiments with the rating rewards were conducted again.

Figure 18 show the training with using GridObs and rating reward. The
average rewards cannot be compared to TopTarget or WiderTopTarget since
the magnitude of rewards is different.

In Figure 21 the training configuration is the same as in Figure 18, except
with BoardObs instead of GridObs. They perform similar in this case. Board-
Obs seems slightly more robust.

Figure 18: GridObs, n = 20, rating reward and WiderTopTarget. After around
11k iterations the model is trained. Some spikes with low average reward are
present.

Figure 19: BoardObs, n = 20, rating reward and WiderTopTarget. After around
20k iterations the model is trained. This training does not any large spikes with
low average reward.

The ACKTR algorithm was also tested and the results can be seen in Figure
20. The results show worse performance than the A2C variants using RNN’s.
For comparisons the A2C algorithm was run without using RNN, Figure 21. It
seems as if the RNN has a stabilizing effect on the learning. An interesting thing
to note is that in the previous experiments with the other reward functions, the
difference in performance was not found.

One reason for explaining the results could be that the rating function could
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be more complex to optimize. More parameters could thus be beneficial. An-
other reason could be that the context vector built up by the RNN efficiently
represents history.

Figure 20: ACKTR, BoardObs, n = 20, rating reward, WiderTopTarget and no
RNN. In this case the variance is high with few signs of decreasing after around
5k iterations.

Figure 21: A2C, BoardObs, n = 20, rating reward, WiderTopTarget and no
RNN. As in Figure 20 the variance is high with few signs of decreasing after 20k
iterations.

Metrics

Visualizing the total average reward over some trajectories shows much of the
information of interest, but not all. Also, in training, actions are sampled from
a distribution. When the model is used, actions are deterministically selected
by the action with the highest probability.

Metrics also allow for benchmarking. For benchmarking several models from
the same training, 5k iterations apart were loaded. For each model, total rewards
were calculated for every possible target position. From these numbers, the
standard deviation and average of all total rewards were calculated. Ideally,
the average reward should be high with a low standard deviation. As could be
expected, a higher standard deviation leads in most cases to a lower average
reward. The metrics for BullsEye rating can be found in Figure 22 and for
Rating reward in Figure ??. The results for the lowered learning rate is not
shown.
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Reward function Observation representation N-step returns Recurrent Algorithm Std Avg reward

TopTarget GridObs 5 True A2C 48 168
WiderTopTarget GridObs 5 True A2C 66 155
WiderTopTarget GridObs 10 True A2C 41 178
WiderTopTarget GridObs 20 True A2C 8 188
WiderTopTarget BoardObs 20 True A2C 11 192
WiderTopTarget BoardObs 20 True ACKTR 23 189

Figure 22: Metrics for TopTarget and WiderTopTarget reward functions

Reward function Observation representation N-step returns Recurrent Algorithm Std Avg reward

Rating GridObs 20 True A2C 33 300
Rating BoardObs 20 True A2C 19 305
Rating BoardObs 20 False A2C 70 253
Rating BoardObs 20 False ACKTR 59 280

Figure 23: Metrics for rating reward function

BoardObs have a slightly higher average reward, but the standard deviation
is larger.

Discussion

Experiments in 2D were done in order to identify essential hyperparameters and
to see how different observation representations, and reward functions impact.

The most critical hyperparameter that was found was n in n-step returns.
It is possible that increasing it above 20 would be even more beneficial

Representing observations as either GridObs or BoardObs did not make
much of a difference. GridObs show a lower standard deviation, while BoardObs
show a slightly higher average total reward. As the dimension increase, the
observation space of BoardObs exponentially increases, which is a huge flaw.

According to the experiments, the Bullseye reward functions make learning
easier than the Rating reward function. As discussed in 4.2.2 the reverse was
expected.

Amongst others, the experiments show how fragile the training is. Without
good hyperparameter selection, learning is not always possible as was the case
when n in n-step return was to low.

4.4.2 Experiments in higher dimensions

The goal of experimenting in 2D was to identify configurations of hyperparam-
eters and functions from the environment that work together. Following the
reasoning from Subsection 4.4.1, the Bullseye reward function is used. As the
dimensions increase, finding a single target becomes harder for better general-
ization WiderTopTarget is used.

With more dimensions, music can be more accurately represented. Increas-
ing 2D to 3D means increasing the possible positions from 25 to 125. In 4D,
625 positions are available.
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In Figure 24 and 25 training with 3D respectively 4D is visualized. As can
be seen, the variance increases slightly in 3D, and in 4D, the variance increase
even more while still producing competitive results. The number of iterations
needed for training also increases. Since the number of positions is larger than
in 2D, it is natural that it takes a longer time to find the target, and therefore
the reward drops slightly in comparisons to 2D.

Figure 24: GridEnv, 3D, n = 20. After around 40k iterations the model is
trained. The variance is slightly higher than the training for the same config-
uration in 2D, Figure 14. Also, the average reward is lower which is expected
since more steps are required to find the target.

Figure 25: GridEnv, 4D, n = 20. After around 130k iterations the model is
trained. In comparison to the same configuration trained in 3D, Figure 24, the
variance is slightly higher. The average reward is also a little bit lower which is
expected.

5 Feature extraction

In Section 4.4, a deep reinforcement learning systems for automatically recom-
mending music was experimented with. For the system to recommend music,
the positions taken by the model needs to be mapped against features extracted
from songs in a database.

From the experiments, it is clear that a large action-space causes issues
when recommending, training time, and variance increase. One way of coping
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with this issue could be to implement techniques similar to what is proposed
in [6]. In the paper, a continuous action space is used, and with the nearest
neighbor approach, the continuous action is transformed into a discrete action.
Due to the limitations of this thesis, there is not enough time to implement
these techniques, and thus 4 features have to be enough to represent the music.

Following the conclusions in Section 2.5, we identified that the best solu-
tion would be to extract features from a genre or tag classifier. Conveniently,
pretrained genre and tag classifiers are available online. An example is the tag
classifier used in the paper [4]. The pretrained classifier can be found at github15

that takes Mel-spectrogram as input and outputs tag predictions in an interval.
The tagger is built on CNN’s, four convolutional layers with a dense layer in
the end for predictions, that takes Mel-spectrograms as input. Features from
all these different layers can be extracted to 50 dimensions. Layers closer to the
input are considered extracting lower level features. Features that resemble the
input more closely. As the data goes through the layers, it is transformed more
and more. Layers, in the end, are then said to resemble features with a higher
abstraction level.

The argument for using a tag classifier instead of a genre classifier was that
several tags can exist for one song, but only one genre exists per song. Therefore,
we argue that the feature representation from a tag classifier ought to be more
detailed when comparing songs. The 50 tags predicted by the CNN are the
following: rock, pop, alternative, indie, electronic, female vocalists, dance, 00s,
alternative rock, jazz, beautiful, metal, chillout, male vocalists, classic rock,
soul, indie rock, mellow, electronica, 80s, folk, 90s, chill, instrumental, punk,
oldies, blues, hard rock, ambient, acoustic, experimental, female vocalist, guitar,
hiphop, 70s, party, country, easy listening, sexy, catchy, funk, electro, heavy
metal, progressive rock, 60s, rnb, indie pop, sad, house, happy.

5.1 Implementation

The dataset chosen was GTZAN, which contains the 10 genres blues, classical,
country, disco, hiphop, jazz, metal, pop, reggae, and rock. Each genre con-
tains 100 songs, and each song contains 30 seconds of audio. The pretrained
music-tagger was downloaded and tags were extracted. The documentation
of the repository did not provide enough information on the versioning of the
frameworks, e.g tensorflow, used. The default versions acquired by installing
the packages did not work, and different older versions had to be tested until
suitable versions were found.

Features from the second, third and last layer was extracted, each containing
50 features. Since the 50 features is to many to work with the DRL recommen-
dation system, PCA was applied and the dimensionality reduced to 4D.

15https://github.com/keunwoochoi/music-auto_tagging-keras/tree/master/compact_

cnn
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5.2 Visualization of principal components in 2D and 3D

In Figure 26, 27, 28 plots of the 2 first PCs are visualized of the feature extracted
from the last, third and second layer. There is no clear clustering of the genres,
but some structure can be found. The embedding space is also different. This
can be noticed by e.g considering the position of classical pieces in comparison
to the other genres. In 3D it is possible to distinguish the different genres a bit
better, but some genres are still clustered together.

Looking at the nearest neighbors of songs indicates how the music will be
recommended. If the nearest neighbors to a song with features treated as the
target are similar, then recommendations should make sense. If not, there is
no way of making good recommendations with content. In many cases the
nearest neighbor is another song from the same genre, but in other cases a song
from another genre is. As can be seen in Figure 26, classical music inhibits the
central parts. Our perception is that classical music is very different from all
other music genres in the dataset. Therefore, it would have made sense that
classical music cluster together far away from other genres. Perhaps closer to
jazz or blues than other genres.

Figure 26: The 2 first PCs after PCA on the predicted tags. Features extracted
from the last layer.
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Figure 27: The 2 first PCs after PCA on the predicted tags. Features extracted
from the third layer.

Figure 28: The 2 first PCs after PCA on the predicted tags. Features extracted
from the second layer.
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5.3 Evaluation

In order to define what features are the best, we have to decide what is impor-
tant.

The embedding space needs to resemble the human perception of similarity
as close as possible. Panning around in 3D gives some information, but with
songs scattered other large spaces, and with many genres comparisons are hard.
To help average positions, or centers, for all genres, were calculated. From
these positions the distance to all the other genre centers was calculated, result-
ing in a so-called distance matrix. For visualization of the distance matrices,
heatmaps are used. The visualizations provide information as on average, what
the distance between the genres are. The lower the distance, the higher simi-
larity between the genres. From the heatmaps, we would like to compare if we
agree with the nearest neighbors genres and if the heatmaps resemble human
perception.

In Figure 29, 30 and 31 the heatmaps of the distance matrices are visualized.
Even if the representations are much more compact than a 3D plot of songs, it
is still hard to make decisions on what is a better embedding than another. It
is also a question that needs to be verified by human perception.

Looking at the heatmap for the last layer in Figure 29, classical music has
a relatively low distance to many other genres. We would say that this resem-
bles human perception poorly. On the other hand, the genres with the lowest
distance to jazz are blues and country, and metal has a large distance to most
genres except for rock which makes sense.

In the heatmap from the third layer in Figure 30, classical music have a large
distance to the other genres, and in the second layer, the distance of classical
music is even larger. Looking at the heatmaps, we believe the second and third
layer seem to resemble human perception better than the tags extracted from
the fourth layer. If one layer would be picked, the third layer looks better from
the heatmap point of view. However, distinguishing which one is the better is
to some extent a guess when deciding between layer 2 and 3.
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Figure 29: Heatmap of the distance matrix between the genres. Features ex-
tracted from the last, fourth, layer.
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Figure 30: Heatmap of the distance matrix between the genres. Features ex-
tracted from the third layer.
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Figure 31: Heatmap of the distance matrix between the genres. Features ex-
tracted from the second layer.

6 System evaluation

For evaluation, we choose a qualitative approach mixed with quantitative met-
rics. For every genre, 10 random songs were sampled, without replacement, and
used as the target. The complete system used from feature extraction and how
it is combined with the DRL system is visualized in Figure 32.

A real user(we) listened to the target song. A song sampled from the starting
position is then sampled and played for the real user. The starting position is
always the same, and is the center coordinate([2, 2, 2, 2]). As mentioned before,
when viewing the 3D plot, songs from the same genre are spread out over a
large space, and often colliding with clusters from other genres. The results
will, therefore, be very different depending on which song that is being sampled
as the target song. Therefore the more songs sampled per genre, the better the
evaluation should be. Unfortunately, this is a time-consuming task, and just
using ten songs per genre took roughly 4 hours. Only the first 8 seconds of the
clip is played. After every song is played, the real user rates the new song and
gives feedback if it was better or not than the previous song. The feedback is
stored and not fed into the DRL network. Since the network is explicitly trained
on simulated users that always acts deterministically it cannot work with real
user input.

43



The real user’s feedback is then compared to the feedback fed into the sys-
tem provided by an ideal user. In table 1 the mean absolute distance between
the rating feedback, provided by the real user, and the rating provided by the
ideal user, grouped by genre, is shown. From Section 4.4, we know that the
DRL solution does find the target within a reasonable amount of steps. The
evaluation, therefore, mostly evaluates how the ideal user compares to a real
user, and how similar the songs recommended are. After roughly three to six
steps, we have noticed that the systems find the target. To make sure that the
DRL system finds the target, the rewards given for the position were printed
after the real user-provided feedback for the played song. If the real user rates
differently than the ideal user, that is a sign that the human perception and the
system do not agree on the similarity. Also, since the DRL model should have
an exploration strategy that could favor some genres that could be explored at
an earlier step than others. As an example, some genres perhaps have more
songs close to the center, start position. If a rating of three is fed back from the
ideal user, the model knows that the target is close, which would make it easier
to find the song. Remember that only ten percent of the positions have a rating
of three. Another thing to note is that if the position chosen by the model does
not map to any songs, a song from the closest distance is sampled. This could
affect the human perception of similarity somewhat. In 4D there is 54 = 625
position available so hopefully, this does not affect the results too much.

In Subsection 6.1 the quantitative results are shortly discussed and in Section
6.2 we discuss qualitative results in terms of how it was to interact with the
system and if the recommendations make sense.
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Figure 32: The combined system used for evaluation.

6.1 Quantitative results

The classical music was perceived as very different from the other genres. Even
if the target was a classical music song, other songs were played and given rating
4. If a song was not classical music when the target was, the rating was almost
always 0 except for some jazz and blues songs. This explains the large distance
between the real user and the ideal user on classical music. Hiphop had the
lowest distance between the real and ideal user. As with classical music, hiphop
has a distinct sound. Luckily when trying to find a hiphop target, often already
at the third step another hiphop song was recommended. After a hiphop song
was found, songs from other genres were very seldom recommended. Target
songs from other genres were often not found until the fourth to the sixth step.
Looking at the 3D plot, hiphop songs are all over the space so this was a surprise.
It could be that the 4th dimension adds information that distinguishes hiphop
songs from others, this could potentially be visualized for confirmation.
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6.2 Qualitative results

When listening to music recommended by the system, a few things were realized.
Firstly, rating deterministically is hard. The comparisons become both biased by
the user’s preference of music and also the last few songs that have been played.
The songs from the genres blues, rock and country were hard to distinguish.
In some cases, it felt like the genre was arbitrarily chosen. Two of the three
closest genres to rock is blues and country in the feature space used, visualized
by the heatmap. Classical music stood out as being completely different from
the other genres. The experience of listening to the songs recommended was
severely damaged when classical music was recommended while searching for a
target from another genre.

Rating songs with 0 felt wrong in many cases. In the setup, most of the
positions would have a rating of 0. Perhaps 1 should be the most common
followed by 2 and then 0.

Overall, the recommendations do make sense. A target song with more
instruments does generate songs with more instruments in most cases. The
same goes for vocals, and if a song is more or less quiet. Recommendations are
not ideal, but not randomized, either. Most of this information can be reasoned
from the 3D plots.

While listening, it is the recommendation often found a song and then played
it over and over again, even if it by a human is not similar. Looking at the
rewards, it turns out that the song receives the highest reward. One way of
coping with this would be to sample songs from an area close. Some difference in
the songs is likely a good idea. A reward function that rewards more exploration
could perhaps be used. Some of the songs in the area should be somewhat similar
to the target song.

Following this resoning, we realize that the features from the second layer
could have been the better choice. After listening and comparing so many songs,
some of the above points seem to fit better with the second layer than the third
layer by looking at the heatmap of the distance matrices. As an example,
classical music has a larger distance to all the other genres.

7 Conclusions and future work of the individual
parts

7.1 Reinforcement learning

7.1.1 Conclusions

In Section 4 we defined an environment suitable for the training with a DRL
algorithm and model. The idea of the environment is to find a preferred setting
of features, that a user prefers. Every feature, dimension, has 5 different levels.
This is done by user-interactions, and in the environment users are simulated.
To simulate users, heavy assumptions on behaviour was made. The algorithm
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Genre distance
blues 1.14
classical 2.12
country 1.49
disco 1.10
hiphop 0.80
jazz 1.60
metal 1.40
pop 1.43
reggae 1.24
rock 1.35

Table 1: Difference in the mean absolute distance between the real users and
the ideal users rating feedback grouped by the genre.

in [9] was forked and the environment implemented. The main algorithm evalu-
ated was A2C, but also experiments with ACKTR was conducted, with ACKTR
requiring less iterations of training for convergence with the tradeoff of compu-
tational cost. Experiments was first conducted in 2D, for faster training, to
identify important hyperparameters, and try different reward functions, feed-
back alternatives and different ways of representing observations. The single
most critical hyperparameter found was the n in n-step returns. Values of 5,
10, and 20 was tested, for n, with 10 performing better than 5, and 20 better
than 10. A configuration was selected and tested on 3D, and 4D with promising
performance. The required amount of iterations for convergence for the A2C
algorithm was around 12k in 2D, 40k in 3D and 130K in 4D. Unfortunatly,
bottlenecks of the implementation did not allow for testing higher dimensions.

We showed that depending on how reward is calculated, and how observa-
tions are represented learning training performance increase or decrease. Also,
using an RNN seem to stabilize the learning somewhat.

The simulated users are simplistic, but our model is complex. Even though
the model is complex, finding the right hyperparameters was not trivial, and
without the hyperparameters correctly set, the model did not perform well.
With simple simulated users, as in the case of this thesis, we believe a less
complex approach is to be recommended. A simpler approach, perhaps even
rule-based, could perform better although, simpler approaches might not be
adaptable to when increasing the complexity of the simulated users.

Another thing to highlight is the choice of extending the openAI environ-
ment. By extending the openAI environment, these environments can easily be
shared, and anyone could benchmark their algorithms on the environment.

7.1.2 Future work

The idea of using DRL to solve the problem was reasoned from that they could
perhaps be adaptable to complex user behavior. Unfortunately, we were not able
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to test complex user behavior within the scope of the thesis, but we at least
showed that with a deterministic simulated user providing user-interactions,
learning is possible. To conclude how appropriate these types of algorithms are
for this type of problem simulated-users needs to act more complex, and not
always deterministic. Examples of how to incorporate more complexity could
be that features are of unequal importance, users rate differently, or include
random feedback. If the simulated users act more complex, training would
require more iterations and it is likely that the variance would increase. Even
if experiments in 5D could have been made, large actions spaces is a known
problem for actor-critic algorithms. The approach from [6] could be applied to
train a DRL system with more dimensions. We believe however that the most
important thing would be to increase the complexity of the simulated user.

7.2 Feature extraction

7.2.1 Conclusion

In Section 5 the GTZAN dataset was selected, and for extraction of features
a deep learning music-tagger used. Features from three different layers were
extracted, and with PCA the dimensionality was reduced to 4D in order to fit
with the DRL system. A qualitative evaluation was done, which showed that
the resulting embedding space was different depending on what layer features
was extracted from. Out of the three extracted layers, the two earlier layers
provided an embedding space that was argued to be better than the features
extracted from the last layers. Although none of the features were perfect. In
many cases, nearest neighbor songs were from another genre. In some cases that
makes sense, but in other cases, it does not. For example, if the nearest neighbor
song of rock would be a classical piece. The features, therefore, bottlenecks the
recommendation system, since two songs that have low distance between the
features could be perceived as dissimilar as to the human perception of sound.

7.2.2 Future work

Music is complex, and even representing it accurately in 4D would have been
astonishing. With more PCs, the embedding space could perhaps be more
accurately represented. Simple quantitative metrics, such as measuring if the
nearest neighbors belong to the same genre, nearest neighbor accuracy, could
be used to compare if more dimensions would be helpful. Comparisons with
a genre classifier could also be of interest. A proper benchmarking dataset of
music, where users have rated similarities between songs would be of great value.
With such a dataset, any features could be extracted and be compared to see if
they agreed on the users’ perception of similarity.

7.3 The recommendation system

The features and the DRL system was implemented into a system and recom-
mendation qualitatively compared. As expected, the features bottlenecked the
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performance. Some genres were more easily found than others, indicating that
the DRL has an exploration strategy which explores some areas before others.
To improve, approximate matching could be done in 4D. Once a target song is
found, the k closest songs in 4D could be retrieved and then an exact matching
done in the 50 original dimensions.

8 Conclusions and future work

In this thesis, we divided up the problem of recommending music into two
problems.

In the first problem, which was to sequentially recommend music to find
a combination of feature levels the user enjoys, we used deep reinforcement
learning together with relatively simple simulated users. The results show that
the model learns, and we tested the system up to 4D where 625 actions are
possible. With users simulated as simple as now, our model is much more
complex than what should be needed.

The second problem, to retrieve similar music, finding a set of features to
explain songs in 4D became the main problem. When the two parts, DRL
and feature, were combined, it became apparent that the features used did not
explain the songs well enough, when transformed by PCA to 4D. Songs that in
the feature space was considered similar was not similar to human perception.

If unlimited time and computer resources were available, the next steps
would include increasing the complexity of the simulated users to make them
closer to how a real user behaves. Also, increasing the dimensionality from 4D
to 5D and above would help to represent the songs better. Finally, to cope with
the few dimensions required by the DRL system approximate matching could be
done in this lower dimensional space. Exact matching of the nearest neighbours
in the lower dimensional space could be done with the original 50 features.
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