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Abstract

Designing for the best combination of channel codes and the decoding algorithm
has always been a popular topic in channel coding. As a decoding algorithm for
convolutional codes, Viterbi algorithm provides the most reliable performance with
high complexity. List Viterbi algorithm(LVA) is an alternative solution to provide
a good tradeoff between performance and complexity, and is widely used for high
memory convolutional codes.

In this thesis, a coding scheme for combining LVA and CRC will be introduced,
and the implementation of CRC aided list decoding will be explained. This thesis
compares the complexity and performance of this proposed decoding algorithm
with Viterbi algorithm and list decoding. Simulations show that the proposed
CRC aided list decoding can beat a traditional list decoding, and that there are
several parameters that will influence the performance. Furthermore, the thesis
investigates the performance of the decoder with different implementations under
this coding scheme, and analyses the error probability by analysing the simulations.
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Popular Science Summary

Communication involves transferring data from one place to another. In the
transmitter, the transmitted message is converted in a suitable form before going
through the channel. At the receiver, the signal is estimated and reconstructed to
match the transmitted signal. Digital communication is a mode of communication
where the date source is converted in discrete format before modulated as analog
waves and transferring to the receiver. One advantage of digital information is that
it tends to be far more resistant to errors due to interference, noise and channel
fading than information symbolized in an analog medium. Digital communication
systems are becoming the most common communication solutions all around us.

Channel coding is a technique of detecting and correcting bit errors in digital
communication systems. In transmitter, the information sequence is encoded,
where some redundant information are added to form a codeword. In receiver, by
analysing the received codeword, the decoder can detect and correct the bit error.
There are different coding methods developed for different situations.

Polar codes received lots of research attention since introduced in a publication
in 2008 by Erdal Arikan[1]. They can achieve Shannon’s capacity at infinite block
length with low complexity decoding due to their simple structure. So polar codes
with long block length have both advantages of having good performance and low
complexity. However, polar codes do not provide good performance at short block
length. A lot of researches focus on finding methods to improve polar codes. List
decoding of polar codes with cyclic redundancy check(CRC) is one of them.

There are several researches revealing that the combination of listing decoding
with CRC is able to improve the performance of short polar codes. List decoding
builds a set of possible codewords, and the CRC is used at the last step to eliminate
those paths that don’t satisfy CRC check from the list. With this combination,
short polar codes are greatly improved from performing relatively bad to having
the start-of-the-art performance among all other codes such as LDPC and turbo
codes. It is interesting to see, in this thesis, that if the combination of list decoding
and CRC can also be used to improve the performance of traditional convolutional
codes.
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Chapter 1
Introduction

Communication plays an important role in our daily life nowadays. During the
transmission, the quality of the channel will influence the information accuracy. If
the signal to noise ratio(SNR) is low, errors will occur frequently. To reduce the
number of errors due to the channel, i.e., improve the transmission accuracy, chan-
nel coding is widely used in communication systems as a mechanism to enhance
the reliability of the transmission.

Polar codes have been receiving lots of attention in the last decade and now
become standard code in control channel of 5G systems. However, the asymp-
totic result of achieving the channel capacity with successive cancellation decoder
for polar codes does not warrant a good performance in the short block length,
especially in the region of low error rate. In fact, 5G system uses a successive can-
cellation list(SCL) decoding, and combine it with CRC code. The SCL decoder
generates a list of most possible codewords during decoding, and CRC helps to
check and eliminate the incorrect codewords in the final decoding step. With this
combination, polar codes in short block can have a significant improvement.

Convolutional codes are the used in the thesis. The main feature of convo-
lutional codes is that each output coded block does not only depend on current
input block, but also on previous input block. It is a type of well-researched codes,
and always used as a benchmark when decoded by Viterbi algorithm, which gives
maximum likelihood performance.

List decoding is a sub-optimal decoding method compared to Viterbi algo-
rithm. Instead of calculating all candidates and storing all of them, list decoding
only focuses on a subset of candidates, so it can achieve low complexity even for
decoding a high memory code. To improve a sub-optimal list decoding is always
a popular topic in channel coding field. Inspired by the CRC aided SCL, it is also
interesting to see that what may happen when combining CRC with list decoding.
In CRC aided SCL decoding, the CRC check is the final step in the decoding.
What would happen if we divide CRC bits into several parts, and spread them in
between the codewords? Will it improve the performance? This thesis will aim at
solving these questions, showing the realization of CRC aided list decoding, and
introducing some parameters and different implementations that will affect the
performance.

1
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2 Introduction

1.1 Goal of the Project

In the thesis, the performance of convolutional codes with short block length will
be investigated. First, there will be a description about list decoding and a com-
parison of list decoding and Viterbi decoding to understand some basic concept
in coding theory, and then CRC will be introduced to the code. A CRC aided
list decoder will be shown and simulated. There will also be an explanation of
why CRC aided decoder could have a better performance and how to optimize it.
Some comparisons will be made to find a better implementation of the decoder for
improving the performance.

The goal of the project is to construct a CRC aided list decoder, understand
why it improves code performance, and possibly find some combinations to improve
it.

1.2 Related Work

The interest of this project grows from research on polar codes. Tal and Vardy
first proposed the use of CRC aided list decoding on polar codes[2]. In their
article, they demonstrate that polar codes of block length 2048-bit can have a
better performance than LDPC codes of length 2304 and rate 0.5. There is also
an improved combination showing that short block length polar codes with 128
bits and bit rate 0.5 can achieve a block error rate down to 10−6, outperforming
LDPC and turbo code with the same block length and code rate.

Johansson[3] introduced that by dividing CRC into several shorter CRCs
spreading out over the polar code, the performance of CRC aided polar code can
be improved. Inspired by the research, this thesis discuss about spreading CRC
check bits encoded in between the sub-blocks of information bits before feeding
them into the convolutional code encoder.

1.3 Contributions

Previous researches on polar codes have demonstrated that with CRC aided, short
block length polar code can reach a better performance. The thesis further inves-
tigates that the performance of CRC aided list decoding of convolutional codes.
In the thesis, firstly, we have a comparison of Viterbi algorithm versus list Viterbi
algorithm. Simulation shows that list Viterbi algorithm can outperform Viterbi al-
gorithm given the same complexity. Then, we design a CRC aided decoder, which
uses CRC to eliminate paths that don’t satisfy CRC check. Puncturing is used
to reduce some redundancy to maintain the code rate. Simulation result shows
that the CRC aided decoding can achieve a better performance than list decoding
for convolutional codes. We also make a comparison of different schemes of CRC
aided list decoding, and analyze how they affect the performance. We also describe
the situation where the decoder fails to decode the codeword. In order to solve
this problem, we introduce two different implementations, and make comparison
between them. After that, there will be an error analysis showing how CRC helps
list decoding to achieve better performance.
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All the investigations in the thesis are performed with simulations from code
written in Matlab.

1.4 Thesis Outline

The thesis outline is as follows.
Chapter 2 introduces the basic concepts of coding theory, including block

codes, convolutional codes, state transition diagram and trellis, Viterbi decoding,
as well as a brief explanation of CRC. Then, Chapter 3 gives a more detailed
explanation of list decoding, introduces the relevant decoding algorithm, as well as
compares list decoding with Viterbi decoding in both complexity and performance.
Puncturing is used to maintain the code rate. After that, Chapter 4 adds CRCs
to the list decoding. Depending on the positions of CRCs within a codeword,
different schemes of CRC aided list decoding are introduced. Two implementations
on proposed decoding scheme is discussed to reduce errors that may happen during
the decoding process. Finally, Chapter 5 shows all the simulation results based
on Chapter 4, compare different decoding schemes, parameters and error types.
Conclusion and future work are discussed in Chapter 6.
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Chapter 2
Background

Error control coding is a well-known technique that increases the reliability in
digital communication systems, where extra bits are added to the data at the
transmitter to detect and correct error at the receiver. Convolutional codes were
introduced in 1950s by Peter Elias and have been widely used in many systems[4].
They are one kind of error control codes where parity bits at any given time are
generated based on input bits both at that time and also at previous times.

The Viterbi algorithm, which is a decoding method for convolutional codes
that allows soft input, can achieve the optimal maximum likelihood decoding per-
formance. Therefore, it is the most powerful decoding algorithm when the system
can afford the complexity, but it will have rather high complexity when the en-
coder constraint length (the number of bits that need to be stored for encoding)
is big.

When using stronger codes, other decoding methods such as list decoding
can be more efficient. List decoding of convolutional codes corrects errors by
extending a reduced set of most promising subpaths. It is an efficient technique
that can achieve high coding gain with relatively low complexity compared to
Viterbi algorithm. In other words, the list decoder can potentially have a better
performance than the Viterbi algorithm when decoding the same convolutional
codes at around same complexity.

2.1 Channel Coding

Communication is a fundamental need in our modern lives. We communicate over
a variety of channels daily. Bit error can occur whenever a message is transferred
in a channel. However, if the message is encoded properly, the receiver can detect
and correct the error caused by noisy channel. The process of encoding, detecting
and correcting bit errors in digital communication systems is called channel coding.
It is a process of constructing code in encoder and detecting bit errors in decoder
in digital communication systems.

Channel coding is also called error-control coding, since it controls the occur-
rences of errors so that the receiver can recover the original information if parts
of it are corrupted. The basic idea is to judiciously introduce redundancy so that
the original information can be recovered even when parts of the data have been
corrupted.

5
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6 Background

Channel coding is performed both at the transmitter and at the receiver. At
the transmitter side, the encoder maps incoming data sequence into a channel
input sequence. Extra bits are added with the raw data before modulation. At
the receiver side, channel coding enables decoder to recover the channel output
sequence into an output data sequence. In this process, overall effect of the channel
noise should be minimized.

A coding gain is expected to be achieved with properly coding. With coding,
the energy per information bit change to Eb = 1

REs > Es, where R is the code
rate and always smaller than 1. The coding gain is defined to be the overall gain
Eb/N0 of a coded system compared to an uncoded system. A big coding gain
represents an increased coding efficiency.

A block diagram of a typical channel coding model is shown in Figure 2.1.

Figure 2.1: Block diagram of channel coding model

2.2 Block Codes

Block code is introduced by Richard Hamming in 1950. It is one type of error
control codes in which a fixed number of bits, k, are taken into the encoder, and
then the codeword consisting of a larger number n of bits is generated as output.

A length n block code C over a field F is a set of code words v ∈ Fn. A linear
code consists of codewords such that

v1,v2 ∈ C⇒ αv1 + βv2 ∈ C, α, β ∈ F.

The encoding of a linear code can be described by a k × n generator matrix G:

v = uG,G ∈ Fk·n.

In a linear block code, any set of k linearly independent codewords in C can be
used as rows of G.

2.3 Channel Models

To present the effects of a communication channel mathematically and analyse
transmit error properly, channel model is introduced to channel coding field. A
channel model is an essential piece of the physical layer communication simulation.
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Figure 2.2: BSC channel model

Assume for a binary channel, the input bit is x and output bit is y, and the
transmission probability is p(y|x).

Some typical channel definitions are explained as follows:
Binary symmetric channel(BSC): Transmitter sends a bit and receiver receives

a bit. In the channel, the bit is flipped when error occurs in a probability pe. The
channel is symmetric, so error probability p(0|1) = p(1|0) = pe, and the probability
of a correct transfer p(0|0) = p(1|1) = 1− pe. Figure 2.2 is a model of BSC.

Binary erasure channel(BEC): A binary channel where transmitter sends a bit
and receiver receives a bit. The receiver either receives the bit or it receives a
message that the bit is not received ("erased"). When the receiver gets a bit, it
can be certain whether the bit is received or erased. If it is received, it is sure that
the bit is received correctly. This simplified channel is often used for analyzing
code performance.

Additive white Gaussian noise(AWGN): A widely used channel model to mimic
the effect of many random processes that occur in nature. The word "white"
refers to that it has uniform power across the frequency band for the information
system. The Gaussian noise used in the channel has a normal distribution in the
time domain with an average value of zero.

The capacity of AWGN channel can be represented by

C = W log2(1 +
S

N0W
)bits/sec.

This is called Shannon limit or Shannon capacity stated by Claude Shannon in
1948. C is channel capcity, W is the bandwidth, and N0 is noise density. It
shows the theoretical maximum information transfer rate of the channel, if given a
particular noise level. In other words, it is possible to transmit information nearly
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Figure 2.3: BEC channel model

without error at any rate below a limiting rate C. If a code is close to Shannon
limit, then it can be indicated that it is a strong code.

All the channels used in the thesis are AWGN channels, which means noise is
generated across all the frequency band.

2.4 Convolutional Codes

Convolutional codes have a different structure compared to block codes[5]. During
each unit of time, the input of convolutional code encoder can be considered to
be k-bit message blocks, and the corresponding output can also be considered as
n-bit message blocks. The main difference between convolutional codes and block
codes is that each coded n-bit output block depends not only the corresponding
k-bit input message at the same time, but also on the m previous message blocks.

2.4.1 Introduction to Convolutional Codes

The fundamental idea of convolutional codes is to express each code block vt as a
function of both present and previous m input blocks, i.e.,

vt = f(ut,ut−1, ....,ut−m),

where m is called memory of the code, it defines the number of previous input
blocks used to generate the current block.

2.4.2 Encoding

In the convolutional code encoder, each information sequence is encoded into a
code sequence. All possible code sequences produced by the encoder are called
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codewords of an (n, k,m) convolutional code. The parameter m is called the
memory of the code. The ratio R = k/n is called the code rate. The redundancy
bits in each code block is small. However, more redundancy bits are added by
increasing the memory m of the code while k and n remain fixed. The encoding
can be described by

v = uG,

where u is input sequence and v is output sequence. G is called generator matrix.
Typically a generator matrix for a convolutional has the structure:

G =

G0 G1 ... Gm

G0 G1 ... Gm

. . . . . .

 ,Gi ∈ Fk·n
2 .

The output v(j)t , j = 1, ..., n can be written as:

v
(j)
t =

k∑
i=1

m∑
l=0

u
(i)
t−lg

j
i,l.

As described on the equation, the output v(j)t is related to each input u(i) by a
convolution with the corresponding generator g(j)i . The code is specified by a set
of generator sequences of length m+ 1,

g(n) = (g
(n)
0 , g

(n)
1 , g

(n)
2 , ..., g(n)m ).

The encoder is actually a discrete linear system.

2.4.3 State and Trellis Diagram

Since the encoder is a linear sequential circuit, a state diagram can be used to de-
scribe its behaviour. The encoder executes a state transition when the information
bit is shifted into the encoder register. The current state is

sl = (cl−1, cl−2, ..., cl−m),

and when the next bit cl is shifted into the encoder, it moves to the next state

sl+1 = (cl, cl−1, ..., cl−m+1).

An example of state diagram of a (2, 1, 2) code is shown in Figure 2.4. There
are 22 = 4 states, and one bit input will result in two bits output. Every input
sequence u = (u0, u1, ...) defines a path in the state trellis in the encoder.

By expanding the state diagram along the time, it results in an encoder trellis.
Figure 2.5 is a trellis of a (2,1,2) code based on the disgram.

After the entire sequence is coded, the encoder must return to its starting
state. This is called the termination of the trellis. It is done by appending m zeros
to the message sequence.
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Figure 2.4: State diagram of a (2, 1, 2) code
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Figure 2.5: Trellis of a (2, 1, 2) code

When the first "0" is shifted into the encoder register, the state turns to

(0, cl−1, cl−2, ..., cl−m+1).

When all m zeros are shifted into the register, the encoder is back to all zero state.
During the termination process, the number of states is reduced by half in each
step.

The polynomial to generate the codeword for convolutional code is picked from
the optimum code table shown in Table 2.1 to achieve better efficiency.

Based on the optimum codes, the polynomial used to generate convolutional
code in encoder is shown in Table 2.2 and Table 2.3.

2.4.4 Minimum Distance

The minimum free distance dfree of a convolutional code is the minimum Hamming
distance between any two code sequences. It is also the minimum weight of all the
code sequences.

Suppose Ql is a set of paths in the trellis at time l that diverges from all-zero
path and re-merge to all-zero path later. Let z to be a path in Ql. Then the
minimum distance can be computed by the equation:

dfree = min
l>m
{minw(z) : z ∈ Ql}.

The minimum distance of the (2,1,2) convolutional code shown as an example
above is dfree = 5.
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m g(0) g(1) dfree
1 3 1 3
2 5 7 5
3 13 17 6
4 27 31 7
5 53 75 8
6 117 155 10
7 247 371 10
8 561 753 12
9 1131 1537 12
10 2473 3217 14
11 4325 6747 15
12 10627 16765 16

Table 2.1: Optimum rate R = 1/2 convolutional codes.

m P (0)(x) P (1)(x)

2 101 111
3 001011 001111
4 010111 011001
5 101011 111101
6 001001111 001101101
7 010100111 011111001
8 101110001 111101011
10 010100111011 011010001111
12 001000110010111 001110111110101

Table 2.2: Binary polynomial used for R = 1/2 convolutional
codes.
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v P (0) P (1)

2 1 +D2 1 +D +D2

3 1 +D2 +D3 1 +D +D2 +D3

4 1 +D2 +D3 +D4 1 +D +D4

5 1 +D2 +D4 +D5 1 +D +D2 +D3 +D5

6 1 +D3 +D4 +D5 +D6 1 +D +D3 +D4 +D6

7 1 +D2 +D5 +D6 +D7 1 +D +D2 +D3 +D4+
D7

8 1 +D2 +D3 +D4 +D8 1 +D +D2 +D3 +D5+
D7 +D8

10 1 +D2 +D5 +D6 +D7+
D9 +D10

1 +D +D3 +D7 +D8+
D9 +D10

12 1 +D4 +D5 +D8 +D10+
D11 +D12

1 +D +D2 +D4 +D5+
D6 +D7 +D8 +D10 +D12

Table 2.3: Polynomial used for R = 1/2 convolutional codes.

2.4.5 Maximum Likelihood Decoding

For an (n, k,m) convolutional code, each code sequence is considered to be a path
in the code trellis. For an information sequence c consisting of L message blocks,

c = (c0, c1, ..., cl, ..., cL−1).

After encoding, each coded sequence v is a path of L + m branches long in the
trellis

v = (v0,v1, ...,vl, ...,vL+m−1),

Suppose that after the channel, the received sequences becomes

r = (r0, r1, ..., rl, ..., rL+m−1),

and the l-th received block is

rl = (r1l , r
2
l , ..., r

n
l ).

The maximum likelihood decoding finds the path v in all the paths so that the
correct transmission probability p(r|v) is the largest.

For a binary code, a Q-ary output discrete memory-less channel(DMC), and a
binary sequence v, the conditional probability p(r|v) can be calculated as follows[6]:

p(r|v) =

L+m−1∏
l=0

p(rl|vl), (2.1)

where p(rl|vl) is branch condition probability. It can be calculated by:

p(rl|vl) =

n∏
i=1

p(r
(i)
l |v

(i)
l ), (2.2)
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where p(r(i)l |v
(i)
l ) is channel transition probability.

Define the log-likelihood function of path v:

M(r|v) , log p(r|v), (2.3)

which is also called the metric of path v.
Based on (2.2) and (2.3), we have

M(rl|vl) = log p(rl|vl), (2.4)

which is called branch metric. If combined with (2.2), we can have

M(rl|vl) =

n∑
i=1

p(r
(i)
l |v

(i)
l ), (2.5)

which is called bit metric.
For a binary systemic channel, the log-likelihood function turns into:

log(p(r|v)) = d(r|v) log(
p

1− p
) + (L+m)n log(1− p), (2.6)

where d(r|v) is the Hamming distance between r and v. If d(r|v) is minimized,
log(p(r|v)) is maximized. That’s the main idea of the maximum likelihood decod-
ing.

2.5 Viterbi Algorithm

First introduced by Viterbi in 1967 and recognized by Forney in 1973, Vitrebi al-
gorithm is an implementation of maximum likelihood function. Viterbi algorithm
is well-known in coding theory as an optimal algorithm that maximizes the per-
formance for a long time. It is used for finding the most likely sequence of hidden
states.

Viterbi algorithm acts like a sequence matcher, it exhaustively searches the
possible sequence by using trellis to find the closest sequence with respect to the
received sequence. In Viterbi algorithm, the decoder goes through the trellis level
by level, and computes the metrics of all partial paths. Then, it compares all met-
rics entering into the same node, stores the path with largest metric and eliminates
others paths. That path stored by this step is called survivor. At each level of the
code trellis, there are 2km nodes, and also 2km survivors. When the code begins
to terminate, the number of survivors will reduce. The last survivor at the end
will be the maximum likelihood path for the algorithm to choose.

Viterbi algorithm can be roughly described with three steps:
Step 1. Starting at level l = m in the trellis. The decoder computes the partial

metric of the paths entering into the l-th order node. Store the survivor and metric
for each node.

Step 2. Increasing l by 1. Compute partial metric for all paths entering a
(l + 1)-th order node. Add the branch metric to the metric of previous l-th order
node where the survivor comes from. Store the metric for the largest metric for
each (l + 1)-th node, and eliminate all the other paths.
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Step 3. If l < L+m, repeat Step 2. Otherwise, stop.
Viterbi algorithm stores the path with maximum probability in each node,

and also stores back pointers to recover the optimal path. An implementation of
Viterbi algorithm and a comparison with list decoding will be presented later.

2.6 Cyclic Redundancy Check

Cyclic redundancy check (CRC) is an error-detecting code commonly used in dig-
ital communication areas such as IEEE 802.1 and storage devices in order to
ensure the correctness of transmission. Generally, CRC is classified into CRC4,
CRC16, CRC32, CRC64 according to CRC length[7]. Among them, CRC32c is
a well-known code that applies to lots of communication systems, such as iSCI.
CRC has been widely used on many communication protocols, including Ethernet,
asynchronous transfer mode, and fiber distributed data interface.

Typically for a CRC detecting process, when an error is detected, the receiver
usually sends a "negative acknowledgment" back to the transmitter, and the trans-
mitter sends the message again. But CRC technique only detects error, it doesn’t
help to correct errors.

A polynomial is required to calculate CRC, since it is a polynomial based
technique. Assume a polynomial in GF(2)(Galois field of two elements), it is a
polynomial in which the coefficient x is either 0 or 1. Assume the length of the
CRC bits is nc. To calculate the CRC bits, the message polynomial, m(x), is
first right padded by nc zeros, and then divided by the generator polynomial p(x).
For example, the information bits are 110101, they correspond to the polynomial
m(x) = x5 +x4 +x2 +1. If the CRC generator polynomial p(x) = x3 +x2 +1, then
the polynomial division is r(x) = (x5+x4+x2+1)×x3

x3+x2+1 , which will be treated as CRC
polynomial. The remainder is appended to the message to form the new message.
The new message will have the structure:

m′ = [m r],

where m′ is the generated new sequence with CRC appended.
Since all the operations are in GF(2), if the new message m′ is transmitted

correctly, it should be dividable by the generator p(x). If the receiver finds that
m′ is not dividable by p(x), which means that the reminder of the polynomial
division is not zero, then it means error occurs during the transmission. This is a
brief explanation of how CRC detects error.

2.6.1 Serial CRC Encoder

Assume the generator polynomial has the form

p(x) = p0 + p1x+ ...+ pnx
n,

where n is the number of CRC bits. In a GF(2) field, the parameter pn is either
0 or 1, which decides the connection or disconnection between the XOR gate and
the feedback path in structure Figure 2.6. The state of each flip flop is represented
by ci(i = 0, 1, 2, ..., n). In serial CRC encoder, the data stream must be bit-serial,
so the CRC bits are generated step by step with time[8].
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m(x)
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2p 1np −

0c
1c 2c nc

Figure 2.6: Serial CRC encoder

2.6.2 Parallel CRC Encoder

Different from serial CRC encoder, a parallel CRC encoder can calculate multi-
ple CRC bits in one clock cycle, thus make the process more efficient, and the
throughout is improved.

The structure of parallel CRC encoder is shown in Figure 2.7. The 64-bit data
are divided into 4 16-bit blocks, and the CRC bits are generated and then added
to the final CRC[8]. Four execution units are used to calculate the polynomial
division.
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Chapter 3
List Decoding of Convolutional Codes

Since Viterbi algorithm becomes popular, researches have introduced various gen-
eralizations of it, and list decoding is one of them. List decoding, introduced
by Elias in the 1950s[4], is an alternative method of decoding for error control
code. Instead of keeping all the candidates and calculating all the possible paths
in each step, list decoding allows the decoder to choose and store certain number
of paths from all the candidates in each step. Calculations are also limited into
a certain number that only depends on the list size. Typically, list decoding is a
sub-optional decoding compared to Viterbi decoding, but since it takes less storage
and has much lower complexity, list decoding is more suitable for higher-memory
codes. The complexity of list decoding and the comparison of performance of list
decoder and Viterbi decoder with different memory will be described separately
later in the thesis.

In the sections below, we will discuss more about list Viterbi decoding algo-
rithm.

3.1 Summary of Viterbi Algorithm

As explained before, Viterbi algorithm searches the best sequence by using trellis
to find the closest sequence from the received sequence from the channel. Let m
be the memory of the convolutional code, then the number of states is 2m. Let N
be the total number of trellis sections, a typical Viterbi trellis is shown in Figure
3.1.

Let the minimum cost to reach state j at time t from the starting state to be
Φt(j), and the cost from state i to state j be ct(j, i). Let the history of the best
path to be stored in array At(j). Thus the Viterbi algorithm recursion step can
be described as[9]:

φt(i) = min
1≤j≤2m

[φt−1(j) + ct(j, i)],

At(i) = arg min
1≤j≤2m

[φt−1(j) + ct(i, j)],

1 ≤ i ≤ 2m, 1 < t < N.

Before we introduce the list decoding algorithm which the thesis uses, there will
be some demonstration of other list decoding algorithms.

19
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Figure 3.1: Trellis with 2m states in Viterbi algorithm

3.2 Different List Decoding Algorithms

3.2.1 Parallel List Decoding

By computing l best paths into each state, the parallel list decoding finds l best
paths simultaneously. In each state at each time, the algorithm compute 2ml costs
and store l paths with larger metric. It requires a matrix with 2ml × N to store
the history for each time instant[9].

3.2.2 Serial List Decoding

The serial list decoding algorithm finds l most likely paths once in a time. The
main advantage of the algorithm is that k-th best candidate is only computed if
the previous k − 1 candidates are determined to be erroneous. By avoiding a lot
of unexpected calculations, the complexity is reduced significantly[9].

3.2.3 The M-Algorithm

The M-algorithm is a breadth-first sorting algorithm. It only keeps a fixed number
l paths, and deletes all other paths according to the criterion. Assume one state in
the trellis extends to two paths in each step. M-algorithm proceeds by extending
the l paths into 2l new paths. Then a metric comparison is performed to find
the best l paths out of all new paths. l paths are remained, all other l paths are
deleted before moving to next step.

To sum up, the basic idea of M-algorithm is to extend two paths form each
remaining path, order the list to findM best paths, and delete the rest of paths[10].

3.3 List Decoding in the Thesis

The list decoding algorithm used in the thesis is similar to M-algorithm. But in
order to fit CRC to the list decoding, some changes have been made. The number
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of states that remain in the list per step is called list size l. Like M-algorithm,
each state in the list extends to two new paths, resulting in totally 2l paths. After
calculating the metric, the algorithm then sorts and compares all the paths. Then,
instead of selecting best paths, it selects l best states. If k-th path and (k + 1)-th
best paths are expanded from the same state, then both paths history are stored for
backtracking afterwords, but the state only takes one candidate place. As a result,
the list with l states can contain lm paths(l ≤ lm ≤ 2l). This is because after CRC
is introduced, we want to have more candidates in the list, and CRC detecting is
more suitable for a state-based algorithm. The algorithm can be summarized as
follows:

Step 1. Initialization:
Define a matrix with size l×N to store calculated metrics. l is list size, and N

corresponds to the the length of the received sequence. Then define a matrix with
the same size to store the previous state of a chosen path for backtrack, which is
called backtrack matrix.

Define an arrays of size 2l to store the best 2l states in each step. The arrays
will be updated at each loop.

Step 2. Recursion:
At time t < N−2m, calculates metric ct(j, i) and add to the previous calculated

metric. Let φt(i, k) to be the k-th previous calculated metric where 1 < k < l. We
have:

φt(i, k) = min
1≤j≤2m

[φt−1(j, k∗) + ct(j, i)], (3.1)

where k∗ is the previous state of the k-th best path.
Step 3. Termination:
At time t = N − 2m, all the information bits have been processed and the

remaining are termination bits with length m. At the end of the termination bits,
only one candidate is supposed to survive, and the list size at time t = 2m is 1.
At N − 2m < t < N , the list length lt will reduce to lt = dl × 0.5t−N+2me.

Step 4. Backtracking:
If the i-th path is selected to be the best path, then a backtrack is performed

by selecting i-th row and 2m-th column in the backtracking matrix. The previous
state is stored in the matrix. Take the value as new row and move back to (2m−1)-
th column. Loop back until it returns to column 1.

List size is an essential factor for list decoder. With a small list size, a list
decoder can avoid calculating large number of states in each step even if memory
is large, thus reducing decoding complexity significantly. But as a price, the prob-
ability that the proper decoding path eliminated during the decoding process and
not included in the list will be increased. If the proper path is not able to survive
in the list in one step, there will be no chance to get a correct decoding result
for the entire package. So a good balance between complexity and performance is
required for a list decoder.

Figure 3.2 shows an example of this list decoding algorithm. In the example,
code memory m = 2, code rate R = 1/2, and list size l = 2. In the 3rd step, two
states expand to 4 states, and each of the 8 branches are calculated. Then, instead
of storing all 4 states, the decoder only stores 2 states with highest metric. These
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2 states are considered to be survivors, and the rest of two states are discarded.
Then, in the 4th step, only 4 branches are expanded from the two survivors,
reaching 4 different states, and still two of them will be selected as survivors. It
proceeds until termination.

Simulations of list decoding algorithm with fixed list size and fixed memory
are shown in the Figure 3.3 and 3.4. In Figure 3.3, the list size is fixed to be 8,
and the performance of convolutional codes with different memory are compared.
As expected, with list size fixed, the performance of list decoder increases with
memory. In Figure 3.4, the memory of the codes are fixed to be 5, and different list
sizes are used for comparison. Simulation shows that the performance improves
with increasing list size.

3.4 Complexity

The complexity of list decoder is independent of the code memory. The decoder
only stores and calculates two times of the list size, so the memory is not affecting
the complexity for list decoding.

In Viterbi algorithm, for a rate R = 1/2 code, at each level in recursion step,
metric of all the 2m+1 branches are calculated, then all metric are added into
previous states. Considering two bits are taking into calculation at each level
for a binary channel, it takes 2× 2m+1 multiplications and 2m additions for each
level. Besides, because there are 2m states in the state diagram of the encoder, the
decoder must reserve 2m states to storage the survivor. Since the storage usage
goes exponentially with code memory m, it is not feasible to use codes with large
memory for Viterbi algorithm in practice.

In the list decoding algorithm, at each level, there are 2 × l branches being
calculated, and the metric are added to l previous states. It uses 2×2× l multipli-
cations and l additions for each level. Then, a sorting step is taken to sort l best
states out of 2l states candidates in the list. The typical complexity of sorting 2l
elements is 2l log(2l). But in the algorithm, there is no need to sort all elements
in an order, since it just requires to sort out top l best elements, so the sorting
complexity is reduced to l[10].

3.5 Comparison with Viterbi Decoding

With proper choice of list size, a list decoder can achieve similar performance as
Viterbi decoder with lower memory. Figure 3.5 compares the performance of list
decoders with fixed memory m = 10 but different list sizes with memory-5 and 10
Viterbi decoder. Memory m = 10 indicates that there are 1024 states in the trellis,
which is a pretty large number for Viterbi algorithom which requires calculating
all the states in each step, but since list decoding only processes those candidates
which exist in the list, the complexity doesn’t really increase with memory. In
this case, list decoding will save large amount of time during the simulation. For
comparison, the performance of Viterbi decoder with memory m = 5, 10 are also
shown in the figure.
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Figure 3.2: An example of list decoding algorithm with l = 2



“output” — 2019/9/6 — 12:54 — page 24 — #38

24 List Decoding of Convolutional Codes

0 1 2 3 4 5 6
10−5

10−4

10−3

10−2

10−1

100

Eb/N0

B
lo
ck

E
rr
or

R
at
e

m = 5 VA
m = 5 l = 8 LVA
m = 4 l = 8 LVA
m = 3 l = 8 LVA
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When list size increases, list decoder can have a significant improvement in
performance. With list size 16, a list decoder for a memory-10 convolutional code
has a better performance than a Viterbi decoder for a memory-5 convolutional
code. Also noticeable is the fact that a list decoder with list size 32 actually
calculates 2l = 64 paths per step, which is exactly the same number of paths as
a memory-5 Viterbi decoder will calculate in each step. So by choosing list size
and memory wisely, a list decoder can really over-perform a Viterbi decoder with
approximately the same complexity.

It is interesting to see that a balance between lower complexity and better
performance can be achieved with large memory and relatively small list size. In
order to reduce the possibility of losing correct path in the list and to achieve
better performance, CRC will be introduced, and CRC aided list decoder will be
fully explained in the following chapter.
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Chapter 4
CRC Aided List Decoding

In previous chapter, we have shown that for large memory codes with small list size,
list decoding can outperform Viterbi decoding with same complexity. This chapter
will focus on exploring the method to add CRC to the decoder, and explain the
factors that could possibly affect coding performance with the CRC added, such
as the position to insert CRC, and puncturing to remain the code rate. A CRC
aided decoding scheme can be described as follows:

Figure 4.1: CRC aided decoding scheme

In the CRC aided decoding scheme, parity bits are generated based on the
information bits u. These parity bits are attached to the information bits, before
processed by the encoder. The codeword v are generated and sent to the channel,
with noise added. The receiver then decodes the received codeword r, then sends
the most likely information û to CRC detector.

With CRC aided, whether or not the convolutional codes can get stronger,
and can correct the block errors caused by the sub-optimal list decoder, are the
main topics that the thesis is focusing on.

4.1 CRC Implementation

The project uses systematic cyclic redundancy check codes. The encoder creates
parity bits according to a specified generator polynomial and appends them to the
information bits, thus fixed-length check values are added to the information bits.

The main idea is to generate CRC based on the information bits of a convolu-
tional code in the encoder, and eliminate those paths that are not satisfying CRC
check on the decoder, and to choose the most likely path remaining in the list.

27
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Whenever a block error occurs in a list decoder, generally there are two kinds
of reasons. One is that the proper path is eliminated from the list, the other is
when choosing the best path at the final step, the decoder choose a wrong path
which has a better metric than the correct one. When the list size is small, the
first situation occurs frequently, and becomes the main reason of causing a block
error in list decoder. The error will be analysed later on the thesis. And when the
list size is large, the second reason becomes the dominating factor for block errors.

CRC can actually help reduce both errors, especially the error caused by losing
correct path in the list, if CRC bits are positioned separately in the code trellis.
Following are some more discussions about CRC positions.

4.2 CRC Inner Encoding

The code can have a different performance if CRC bits are added to different
positions in code trellis. A straightforward implementation is to add all CRC bits
at the end of the code. In this case, the decoder will function normally until
reaching the end of the information bit, and then perform CRC check to all the
candidates in the list. Those paths that not satisfying CRC will be eliminated.
The correct path can always survive CRC check, but other paths may not. For
nc CRC bits, the chance of a random path passing CRC check is 1/2nc . The
probability of block error caused by choosing a wrong path with a larger metric
than that of a true path can be reduced by adding CRC check in this way.

Another implementation is to spread CRC bits into different parts of the trellis.
Whenever running into a CRC checking step, the decoder will perform a CRC
check to all the candidates in the list, and only keep those paths that can pass
CRC check. Typically the remaining paths are smaller than the list size, so next
few steps the branches will extend several times until the list is full again. By
performing separate CRCs along with the trellis, the correct path will be more
likely to survive and will have more chance to extend to following states, thus
reducing block error caused by losing correct path in the list.

The two implementations are shown in Figure 4.2. The first one is adding all
CRC bits after the information bits, the second one is to divide information bits
into different subsequences, and generate CRC for each subsequences.

Figure 4.2: Adding CRC into different position
(a) Scheme 1: Adding CRC to the end of the sequence
(b) Scheme 2: Spreading CRC between the sequences



“output” — 2019/9/6 — 12:54 — page 29 — #43

CRC Aided List Decoding 29

4.3 Puncturing of Convolutional Codes

In coding theory, puncturing is the process of removing some partiy bits after
encoding. It has the same effect as encoding with an error-correction code with a
higher rate, or less redundancy. In fact, the same Viterbi or list decoder can be
applied to the original trellis structure regardless of the number of bits that have
been punctured, as a consequence puncturing considerably increases the flexibility
of the system without significantly increasing its complexity.

In the simulation, information sequence of n = 96 bits are generated. Then
nc = 4 bits CRC are added in between the information bits, as shown in Figure
4.3. After that, the information sequence are encoded by the convolutional code
encoder. Then, termination bits are added at end of the message. For a (2, 1, 10)
convolutional code, there are 2m = 20 termination bits added. The total codeword
length is 220 bits in this example. The overall code rate R = n

(n+nc)/Rc+m/Rc
,

where Rc = 0.5 is rate of the convolutional code. If more CRC bits are added, the
overall code rate will decrease and it will influence the performance.

Figure 4.3: Sequence structure

Adding CRC changes code rate. In order to have a fair comparison between
different decoding methods, puncturing a limit number of bits is required to main-
tain the code rate.

Minimum distance is typically considered to be the minimum code weight for
which a corresponding path that returns to initial state in the fewest steps. That
path can always be found easily given a certain trellis. By puncturing out the zeros
in that certain path, the code weight is not affected, which means the minimum
free distance of the code is not reduced, but the code rate is actually increased.
The same method is also used in the project.

Figure 4.4 shows a path with minimum distance from a memory m = 10
convolutional code, as well as the bits to be punctured. The generator polynomial
is chosen from Table 2.3. The minimum distance dfree = 14, which is also equal
to the minimum code weight of all return-to-zero paths. Puncturing the zeros
from this path will not reduce the minimum distance. From this example, to
compensate the 4 CRC bits added on the information bits, it is appropriate to
choose and puncture 4 bits from the locations of those 8 zeros in the path with
minimum free distance.

4.4 Realization of CRC Aided List Decoding

As described before, when applying CRC check in the decoder, all the paths are
checked and those don’t satisfy CRC check will be eliminated. When realizing it
in program, there is one important issue to consider: the correct path might have
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Figure 4.4: Puncturing for an m = 10 convolutional code

lost before decoding process reaches CRC check step, and all the candidates in the
list are not satisfying CRC check. This situation can happen frequently at low
SNR range, so it is not trivial to consider how to realize CRC check properly to
avoid it. In the project, two methods are used to make sure that there are always
some paths in the list.

4.4.1 Increase List Size Before Reaching CRC States

The most straightforward method is to avoid the situation of losing correct path
before CRC check. This is a complex topic, since it is also the main cause of
frame error when list size is small. By just increasing list size for some certain
steps, the possibility of not losing the correct path will increase. The increase of
list size is only a few steps before reaching CRC state, otherwise it will be unfair
when comparing complexity. Generally, the list size only increases a few steps
before CRC check. It starts at ne steps before CRC check. At that step, 2l paths
are calculated, and instead of choosing l of them to remain in the list, they are
all kept. Next step, the list size increase to 2l , 4l candidates are calculated, and
still all stored in the list. Until the step before CRC check, the list contains 2ne l
candidates, where ne is the number of steps before CRC check when list size begins
to increase. By increasing list size in this way, although we can’t make sure that
the correct path is still in the list, but the chance that neither of the candidates
in the list satisfy CRC check is significantly reduced.

Figure 4.5 shows the performance of increasing list size different steps before
CRC check. Extending list size ne = 1 step before the CRC is significantly better
than the performance without extending, and extending more steps earlier would
make the performance better, but the gap between them decreases.

With increasing list size for a few steps, a real list size lr is calculated as an
average list size for each step. Given l = 16, m = 10 and that 8 bit CRC bits are
spread into 4 different locations between the 100 bit information sequence, Table



“output” — 2019/9/6 — 12:54 — page 31 — #45

CRC Aided List Decoding 31

4.1 shows lr of extending list size from different ne. From the table, when ne is
relatively small, we can still consider it having the same complexity with a normal
list decoder.

ne lr
0 16
2 16.697
3 18.782
4 20

Table 4.1: Average list size lr for different ne

4.4.2 Generate CRC in Decoder

There is another method to avoid the situation. Instead of applying a CRC check,
the decoder now generates CRC bits, making all survivors reach a certain state
based on the path corresponding to CRC bits.

An example is shown in Figure 4.6. Assume the information is divided into
parts, and CRC bits are generated at end of each subsequences. In the CRC check
step, a backtrack is made for each state surviving in the list, a most-likely infor-
mation sequence is decoded for each state. Afterwards, CRC bits are generated
according to the information sequences of each state using the same CRC generator
in the encoder. For the marked path, based on the detected information sequence
000100, two CRC bits 11 are generated, thus leading the state to transition from
current state 00 to state 01. The metric of this step is calculated normally and
added to the metric from previous step. Afterwards, the decoding process will
return to normal and then continue until the next CRC step.

The advantage of the method is that since CRC bits are generated based on
previous information subsequences decoded up to current state, it is not possible
to encounter the situation where a large number of survivors can not pass CRC
check.

A simulation is made to compare the block error rate of both methods. The
result is shown in Figure 4.6.
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Figure 4.5: The performance of increasing list size several steps
before CRC check
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Figure 4.6: CRC bits generation in decoder
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Chapter 5
Result and Analysis

The error probability achieved in the simulation depends on the code, the code
rate, its free distance, channel SNR, the signal quality, and so on. In the thesis,
the channel remains the same, information bits are generated randomly under the
same criterion.

5.1 Simulation Result

Figure 5.1 is a performance comparison with a convolutional code with m = 5
using Viterbi algorithm, an l = 16 list decoding algorithm, and an l = 16, nc = 4
CRC aided decoding algorithm, where nc is the length of the CRC bits. It uses
separate CRCs, which means the information is divided into two parts, and each
part has a 2-bit CRC for checking. It uses the first introduced method in Chapter
4, where the list size is increased before reaching CRC states. In Figure 5.1, the
dash lines are CRC-aided LVA, where CRC parity bits have length nc = 4 and
nc = 8, and are spread into different locations in the subsequence. It is clear that
a CRC aided list decoder has a better performance than a typical list decoder.
In other words, CRC helps to reduce the block error probability for convolutional
code.

After that, a few changes are made for comparison. All simulations below use
the samem = 10 convolutional code, and in the decoder, list size l is fixed to be 16.
Figure 5.2 shows the performance of adding all CRC bits in the end of the infor-
mation sequence(Scheme 1), as well as spreading them into the sequence(Scheme
2). In the figure, the length of CRC bits nc = 4, and in Scheme 1, the CRC bits
are separated into 2 sections. As is shown in the figure, Scheme 1 has a slightly
better performance than Scheme 2. Figure 5.3 is a slightly different comparison,
where nc = 8, and in Scheme 1, CRC bits are separated into 4 sections. The
improvement is more obvious in this figure.

Figure 5.4 shows the performance of the first implementation(referred to as
Im 1), which is extending list size before CRC check, and second implementa-
tion(referred to as Im 2), which is generating CRC bits in decoder to specify trellis
path. The length of CRC bits nc is fixed to be 4. Figure 5.5 is a similar figure,
where the length of CRC bits is set to 8.

From the simulation above, it can be analysed that Scheme 1 with separated
CRCs has a better performance than Scheme 2 that adds all CRC bits in the

35
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Figure 5.1: Comparison with LVA and CRC aided LVA
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Figure 5.2: Comparison of different CRC position with nc = 4
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Figure 5.3: Comparison of different CRC position with nc = 8
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Figure 5.4: Comparison of different CRC implementations, nc =
4
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Figure 5.5: Comparison of different CRC implementations, nc =
8



“output” — 2019/9/6 — 12:54 — page 39 — #53

Result and Analysis 39

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
10−5

10−4

10−3

10−2

10−1

100

Eb/N0

B
lo
ck

E
rr
or

R
at
e

m = 5 LVA
CRC aided LVA Pbler

CRC aided LVA Pmiss

Figure 5.6: Comparison of block error and Pmiss

end, especially for lower SNR. The second implementation with CRC generated
in decoder is a bit more better than the first implementation, and it is also more
efficient than increasing list size before CRC check.

5.2 Error probability Analysis

Block error probability can be divided into two parts. One is the probability
denoted by Pmiss, which is the probability that the correct path is lost from the
list. The other one Pr is the probability that the decoder chooses a wrong path
that has a better metric than a correct one. So block error probability can be
expressed as:

Pbler = Pmiss + (1− Pmiss)Pr (5.1)

Usually, for a convolutional code with small list size, Pmiss is larger than Pr, which
the main reason leading to the block error. Figure 5.6 shows that Pmiss is almost
identical to Pbler, proving that it is the main reason of the block error.

To be more specific, CRC does reduce both probabilities when is applied to a
list decoder.

A simulation is made to show the comparison. The maximum number of
errors is set to 10, meaning the simulation stops when the decoder detects 10
errors caused by one of each situation.

Figure 5.7 and Figure 5.8 are two figures showing the influences of CRC on
both Pmiss and Pr. The memory of the convolutional code used in the figure is 5.



“output” — 2019/9/6 — 12:54 — page 40 — #54

40 Result and Analysis

For the CRC aided list decoder, l = 8, and nc = 4. Both simulations use Scheme
2 and Implementation 1 introduced above.
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Figure 5.7: Pmiss Comparison
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Chapter 6
Conclusions and Future Work

6.1 Conclusions

Throughout this thesis we have studied an efficient realization of a sub-optimal list
decoding, how CRC helps to minimize error probability, and two implementations
of CRC aided list decoder. After that, a simulation is made to analysis error
probability.

6.2 Future Work

Applying CRC check to improve coding performance is a deep area, and there is
still a lot of work can be done to continue the research.

This thesis ran simulation mostly on an m = 10 convolutional code, and the
list decoding results is always compared with m = 5 and m = 10 Viterbi algo-
rithm. The simulation takes more time when simulating higher memory Viterbi
codes, which makes the result lack of comparison. Future research will make more
comparison with a larger variety on code memory.

Another potential extension is code rate. The thesis only uses a R = 0.5 rate
convolutional code, and when CRC is added, we apply puncturing to maintain the
code rate back to 0.5. It will also be interesting to see if we make some changes at
code rate, and how the resulting performance is compared with the one without
CRC but of the same code rate.

Also, the simulation of the two different errors Pmiss and Pr are only tested on
a few situations, since Pr is usually small and it takes a lot of time to get a smooth
figure out of it. If given more time, there might be some more improvement in
error probability analysis.

In short, there are still a lot things to be investigated and many tests with
different parameters should be simulated, to fully understand and find a better
way to optimize the performance when using the combination of convolutional
codes with list decoding and CRC.

43
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