
BIST Implementation Access through A
Reconfigurable Network

YAOJIE LU
MASTER´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2019

YA
O

JIE LU
B

IST
 Im

plem
entation A

ccess through A
 R

econfigurable N
etw

ork
LU

N
D

 2019

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2019-722
http://www.eit.lth.se



BIST Implementation Access through A
Reconfigurable Network

Yaojie Lu
ya0117lu-s@student.lu.se

Department of Electrical and Information Technology
Lund University

Supervisor:
Erik Larsson

erik.larsson@eit.lth.se
Hemanth Prabhu

hemanth@xenergic.com

Examiner:
Pietro Andreani

pietro.andreani@eit.lth.se

September 3, 2019



c© 2019
Printed in Sweden
Tryckeriet i E-huset, Lund



Acknowledgements

First, I would like to thank my supervisor Prof. Erik Larsson(Lund Univer-
sity) and Hemanth Prabhu (Xenergic AB) for their continuous help and precious
support through this project. I would like to express my gratitude to Xenergic
for offering this great opportunity to me and also to my colleagues at Xenerigc
for sharing their experience with me. At last but not least, I want to thank my
family and friends. Without their love and support I am not able to overcome all
the difficulties.

i



ii



Abstract

SRAM is becoming one of the most dominant contributors to the power and
area of nowadays SoC. Recent surveys show that on average around 70% of area
budget of nowadays SoCs are occupied by SRAMs, with the size of these SRAMs
ranging from a few kilo-bits to 10s of mega-bits [1]. One critical issue is to check
for functionality of the memories in silicon both during the manufacturing (tester)
stage and in-the-field (run time) stage. A well-known approach is to use a dedi-
cated test logic to validate memory functionality, known as BIST.

The Memory Built-in Self-test method has become a mainstream test method
with its unique advantages: good test defect coverage; strong operability and low
dependence on testing equipment. Memory testing is often not done individually.
It is also difficult to measure multiple different sizes of memories simultaneously
using one BIST. The existing test interface usually lacks flexibility and scalability.
Connecting multiple BISTs requires a highly flexible network which can easily ac-
cess different BIST processors.

This project introduces two embedded memory BIST implementations: one
programmable BIST and one hardcoded BIST. In addition, An IEEE Std.1687
IJTAG based network has been integrated and modified, in which TAP and the
associated controller has been replaced by a UART port interface. This interface
is a functional port to program BIST and to read error information out from the
BIST. The system simply needs two pins to read and write data. Besides, it is
flexible and scalable for scheduling access to multiple BISTs. In this project, RTL
files are written in VHDL, whereas an instruction converting tool and a re-targeting
tool are designed in Python.

iii



iv



Popular Science Summary

With the development and advancement of technology, people’s dependence
on electronic products continuously grow. Embedded memories play a crucial role
in electronic devices. According to Moore’s Law, the number of transistors on a
chip roughly doubles every two years, which will lead to decreasing of the memory
cell area, increasing of density [2]. However, as the density of memory cell increases,
faults in memory will also increasingly sensitive and failures of chips will be more
complex. The consequence is increasing cost and time of the test to detect these
failures. Due to these existing factors, test cost cannot decrease with declining in
the price of memory. The way to deduct the test cost on premises but ensuring test
efficiency is the main point during the development of a new-generation integrated
circuit. For memory tests, three main test methods commonly used are direct
access test, embedded CPU test, and Memory Built-in Self-test. Built-in self-test
can more effectively tackle the SoC test problem.

This master thesis introduces two BIST implementations: a hardcoded BIST
and a programmable BIST which can handle common types of memory faults.
Theoretically, one BIST can only test one size of memory. One SoC could contain
many different sizes of memories, meaning that a number of BISTs is needed. This
is problematic because the SoC will need a lot of pins. One solution is using an
network to connect theses BISTs which saves pins and configures multiple BISTs.
This thesis also introduces an IEEE Std.1687 IJTAG based network which has
flexibility and scalability that allows configurations to multiple BISTs.

v



vi



Arconyms

BIST Built-in self-test

SRAM Static Random Access Memory

SoC System on a chip

MBIST Memory Built-in self-test

DFT Design for testing

RAM Random Access Memory

DRAM Dynamic Random Access Memory

AF Address-Decoder Fault

SAF Stuck-At Fault

TF Transition Fault

CF Coupling Fault

ATE Automated Test Equipment

FSM Finite State Machine

SIB Segment Insection Bit

MSB Most Significant Bit

LSB Least Significant Bit

SPI Serial Peripheral Interface

JTAG Joint Test Action Group

UART Universal Asynchronous Transmitter Receiver

TAP Test Access Port

HIP Hierarchical Interface Interface

OAT Overall Access Time

vii



viii



Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Thesis Specification . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Thesis organization . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Thesis Background 5
2.1 Static Random-Access Memory . . . . . . . . . . . . . . . . . . . . 5
2.2 Memory Faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Built-In Self-Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 March Test Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 BIST Implementation 11
3.1 Programmable BIST . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Hardcoded BIST . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Reconfigurable Access Network and UART Interface 21
4.1 Existing Methods For DFT . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 IEEE Std P1687 IJTAG And Related Concept . . . . . . . . . . . . . 24
4.3 Main Challenge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.4 Hardware architecture . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.5 HDL Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5 Verification And Results 35
5.1 Verification of BIST . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2 UART and Network Functionality Verification . . . . . . . . . . . . . 37
5.3 Synthesis Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6 Conclusions 41

7 Further Work 43

Bibliography 45

ix



x



List of Figures

1.1 System level view of BIST processor. . . . . . . . . . . . . . . . . . 2

2.1 A conventional 6T single port SRAM . . . . . . . . . . . . . . . . . 5
2.2 Basic SRAM Architecture . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 General BIST Architecture. . . . . . . . . . . . . . . . . . . . . . . . 8

3.1 Programmable BIST Top Level Block Diagram. . . . . . . . . . . . . 12
3.2 Harcoded BIST Top Level Block Diagram. . . . . . . . . . . . . . . 18
3.3 Input Instruction of BIST. . . . . . . . . . . . . . . . . . . . . . . . 19
3.4 State Diagram of March C- algorithm. . . . . . . . . . . . . . . . . . 19

4.1 SPI with multiple slaves. . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2 UART Transmission. . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3 TAP State Machine . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.4 Simplified view of the SIB component . . . . . . . . . . . . . . . . . 25
4.5 Flat Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.6 Hierarchical Architecture . . . . . . . . . . . . . . . . . . . . . . . . 26
4.7 Flat Network With BISTs Architecture . . . . . . . . . . . . . . . . 27
4.8 Hierarchical Network With BISTs Architecture . . . . . . . . . . . . 27
4.9 Hierarchical Network With BISTs Architecture . . . . . . . . . . . . 28
4.10 Top-level diagram of BIST . . . . . . . . . . . . . . . . . . . . . . . 29
4.11 Bit-wise description of PDL instruction . . . . . . . . . . . . . . . . 30
4.12 ASMD Diagram Of Main FSM Of Master Controller . . . . . . . . . 33

5.1 Error Detection Waveform of Hardcoded BIST 1. . . . . . . . . . . . 36
5.2 Error Detection Waveform of Hardcoded BIST 2. . . . . . . . . . . . 36
5.3 Error Detection Waveform 1. . . . . . . . . . . . . . . . . . . . . . . 37
5.4 Error Detection Waveform 2. . . . . . . . . . . . . . . . . . . . . . . 37
5.5 UART Transceiver waveform. . . . . . . . . . . . . . . . . . . . . . 38
5.6 Error Detection Waveform 2. . . . . . . . . . . . . . . . . . . . . . . 38
5.7 Error Detection Waveform 2. . . . . . . . . . . . . . . . . . . . . . . 38
5.8 Gate area distribution of hardcoded BIST with 8 algorithms . . . . . 39
5.9 Gate area distribution of programmable BIST with 1 algorithm . . . 40

xi



xii



List of Tables

2.1 March-based Algorithms. . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Fault coverage and operation count of different March-based algorithms. 9

3.1 Register view of BIST processor. . . . . . . . . . . . . . . . . . . . . 13
3.2 Instruction Fetch Related Register. . . . . . . . . . . . . . . . . . . 14
3.3 Single cycle instruction set for BIST processor. . . . . . . . . . . . . 16
3.4 Multi cycle instruction set for BIST processor. . . . . . . . . . . . . 17
3.5 Pre-defined Pattern to load read and write pattern register. . . . . . 17

5.1 Syhtnesis area report. . . . . . . . . . . . . . . . . . . . . . . . . . . 39

xiii



xiv



Chapter 1
Introduction

In nowadays system on chip (SoC) designs, it is widespread to embed a large
number of static memories into the chip. According to statistics, the area of
memories accounts for over 50% to 60% of the total area of the chip [3]. The
size of on-chip memory can be in the range of few kilobits to megabits (e.g. L2
cache). Large memory sizes with increasing density of memory cells (e.g. pushed
rules in bit cells), can affect failure rate or yield severely. This makes failure
detection, testing, and repair of SRAMs very critical. The testing process is time-
consuming, which means it is essential to minimize test application time. However,
costs as silicon area, equipment and interfaces need to be co-optimized with test
application time [4]. There are three main methods for memory testing [5]: direct
access test, embedded CPU test, and memory BIST. Among the three methods,
MBIST is becoming a prevalent method to perform SRAM testing. The basic idea
is to generate the test vector by the BIST instead of using specified external test
circuit, and it relies on its own logic to determine if the test results obtained are
correct, thus significantly reducing the requirement for test equipment, MBIST
also lowers the number of pins and allow for high speed. Due to these advantages,
the MBIST method is widely used [6].

1.1 Motivation

MBIST can be broadly classified into two types, one is hardcoded BIST,
which generally hardwired with pre-defined algorithms. The advantage of this
BIST is evident that it saves area. And it also need less test time since the test
algorithms are in-built. However, it also has a bottleneck that lacks flexibility. An-
other MBIST is programmable BIST, which can encode basic memory operations
provides more flexibility but with a higher area cost.

In this thesis, we attempt to design two different MBIST and find an interface
with fewer pins and highly dynamic re-configurable.

1



2 Introduction

1.2 Thesis Specification

The aim of the thesis is to design a system which is shown in Figure 1.1. The
idea is to select and send instructions through a functional port interface to dif-
ferent BIST processor. Multiple instances of BIST processor which can be either
hardcoded or programmable. A memory wrapper which contains multiple memo-
ries under test will connect with BIST, after writing and reading from memories,
the BIST will send error data out from the system.

Interface
BIST

Processor

BIST
Processor

BIST
Processor

Mem 0 Mem 1 Mem 2

Figure 1.1: System level view of BIST processor.

1.3 Thesis organization

The thesis is organized in following manner:

• Chapter 2: Background for SRAM and basic concept for BIST with rele-
vant March based algorithms

• Chapter 3: Implementation of a programmable BIST with instruction sets
and a hardcoded BIST with 8 pre-defined algorithms

• Chapter 4: Introduction for existing protocol for DFT and interface be
used in this project



Introduction 3

• Chapter 5: Verification of the system and comparison of programmable
BIST and hardcoded BIST

• Chapter 6: Conclusions of the report

• Chapter 7: Future work for optimizing the whole system and integrating
programmable BIST into the interface



4 Introduction



Chapter 2
Thesis Background

2.1 Static Random-Access Memory

SRAM is widely used as embedded memory (e.g. L1 and L2 caches in proces-
sors and data buffers in various DSP chips) since RAM can stores data bits in its
memory when power is being supplied. Unlike DRAM, which stores bits in cells
consisting of a capacitor and a transistor, SRAM does not have to be periodically
refreshed [7].

Figure 2.1: A conventional 6T single port SRAM [8].

Figure 2.1 shows a 6T SRAM cell consists of two cross-coupled CMOS in-
verters and two transistors. P1, P2, N1, N2, which are responsible for storing the

5



6 Thesis Background

data, as long as the memory is powered. The other 2 transistors, Q5 and Q6 serve
as gateways for bidirectional access between stored data and the Bit Lines. These
access transistors are controlled with the word line.

A basic SRAM memory structure is shown in Figure 2.2, each one of the
memory cells have a unique memory address; these show where the cell is. The
total memory address is the sum of the number of bits of the row address and the
number of bits of the column address. These addresses must be sent to the row and
column decoders for selecting a memory cell. However, the decoders will not be
the focus of this post because each row and column will be accessed individually,
for testing purposes [9].

R
ow

 D
ec

od
er

Bit Line

Storage
Cell

Word Line

Sense Amplifier

Column Decoder

Figure 2.2: Basic SRAM Architecture [8].



Thesis Background 7

2.2 Memory Faults

With the increasing density of the memory cell, the memory becomes more
sensitive. Meanwhile, the risk of memory fault increase. In this section, some
major functional fault will be introduced [10].

• Address-Decoder Fault (AF): Any fault that affects address decoder can
be considered as AF(e.g.With a certain address, no cell will be accessed)

• Stuck-At Fault (SAF): The SAF considers that the logic value of a cell
or line is always 0(stuck-at 0 or SA0) or always 1(stuck-at 1 or SA1)

• Transition Fault (TF):The TF is a special case of the SAF. A cell or line
that fails to undergo a 0 to 1 transition after a write operation is said to
contain an up transition fault. Similarly, a down transition fault indicates
the failure of making a 1 to 0 transition.

• Coupling Fault (CF):A write operation to one cell changes the content
of a second cell.

2.3 Built-In Self-Test

BIST is a technique which integrated additional functional block into the
circuit to allow them to perform self-testing, so it can reduce dependence on an
external ATE. As shown Figure 2.3, a general BIST architecture usually consists
of four logic blocks. Test controller responsible for controlling the BIST system.
Test generator which generates address sequences and writes a pattern to the
CUT. Response verification works as a comparator which read the data out from
CUT and makes comparisons with expected data. CUT, in this case, is mainly
the memory under test.



8 Thesis Background

Test
Generator

Circuit Under
Test

(CUT)

Response
Verification

Test
Controoler

Figure 2.3: General BIST Architecture.

2.4 March Test Algorithms

March based test algorithms are the most commonly used memory testing
methods because they are all simple and possess good fault coverage. These algo-
rithms consist of finite operation sequences which given read and write an order
to the memory. For example:

{ �(w0); ↑(r0, w1); ↑(r1, w0); ↓(r0, w1); ↓(r1, w0); �(r0)}

The sequence shown above is a typical March C- algorithm. w0 represent write
a 0 to the memory location, r0 represent read a 0 from the memory location, w1
represents write a 1 to the memory location, r1 represent read a 1 from the mem-
ory location. (↑) Means increasing memory address order, (↓) means decreasing
memory address order. This process of reading and write operations for the test-
ing of memory was developed by Suk and Reddy [11]. Each March element will
be applied to each cell in memory before proceeding to the next March element,
which means if a w0 is applied to one cell, then it must be applied to all cells.

Table 2.1 list some common March-based algorithms [12]. Each algorithm
consists of a specific read or writes operations that go through all memory locations
in either an increasing or decreasing address order.



Thesis Background 9

Table 2.1: March-based Algorithms.

Name March Elements
MATS {�(w0); �(r0, w1); �(r1)}
MATS++ {�(w0); ↑(r0, w1); ↓(r1, w0, r0)}
March X {�(w0); ↑(r0, w1); ↓(r1, w0); �(r0)}
March C- {�(w0); ↑(r0, w1); ↑(r1, w0); ↓(r0, w1); ↓(r1,

w0); �(r0)}
March A {�(w0); ↑(r0, w1, w0, w1); ↑(r1, w0, w1); ↓(r1,

w0, w1, w0); ↓(r0,w1, w0)}
March B {�(w0); ↑(r0, w1, r1); ↓(r1, w0, r0); �(r0)}
March LR {�(w0); ↑(r0, w1); ↑(r1, w0, r0, w1); ↑(r1, w0);

↑(r0, w1, r1, w0); �(r0)}
March Y {�(w0); ↑(r0, w1, r1, w0, r0, w1); ↑(r1, w0, w1);

↓(r1, w0, w1, w0);↓(r0, w1, w0)}

Different combination of March elements will lead to different fault coverage.
It is obvious that more complex algorithm gives better fault coverage. Table 2.2
shows the fault coverage of listing algorithms in Table 2.1.

Table 2.2: Fault coverage and operation count of different March-
based algorithms.

Fault Coverage Operation Count
SAF AF TF CF

MATS ALL SOME 4.n
MATS++ ALL ALL 6.n
March X ALL ALL ALL SOME 6.n
March C- ALL ALL ALL ALL 10.n
March A ALL ALL ALL SOME 15.n
March B ALL ALL ALL SOME 8.n
March LR ALL ALL ALL SOME 14.n
March Y ALL ALL ALL SOME 17.n



10 Thesis Background



Chapter 3
BIST Implementation

This chapter will introduce two BIST implementation. Programmable BIST
is a microcode-based BIST which can program different algorithms and select
memory address location with predefined instruction sets. Hardcoded BIST is an
FSM-based memory BIST which can run a selected memory test algorithms. In
this design, the user has eight different algorithms to choose from.

3.1 Programmable BIST

3.1.1 Programmable BIST Architecture

The Programmable BIST processor has very minimalistic custom instructions
and a mechanism for logging the faults in the memory. Based on the instruction
set, end-users can also write their own algorithms for advanced debugging.

The processor comes with an assembler to translate to processor binary code.
Also, during the translation, a linker is invoked to handle all the labeling, loops
and address calculations. Figure 3.1 shows the top-level block diagram of the
BIST processor. The BIST processor requires a very minimal interface connection
to start the processor (fetch, start, etc.). Also, a standard interface is used to
program the processor, i.e. SPI, JTAG or UART. The memory transactor pins
are the ones which are connected to the memory under test. This can be either a
direct connection to the memory or to a sub-system with corresponding address
mapping.

Most of the modules in the BIST processor is typical to a standard RISC
processor. However, memory transactor and error checker modules are very specific
to testing. The memory transactor is responsible for initiating memory read/write
for testing. The error checker module is used to compare the memory functionality.
As of now the processor is designed only for a single clock read/write latency.

11



12 BIST Implementation

Instruction
Decoder

Instruction
Fetch

In
st

ru
ct

io
n

 
R

O
M

Arithmetic
logic unit

Register
Bank

Memory
Transactor

Error
Handler

Error
Logger

Serial
Interface

Figure 3.1: Programmable BIST Top Level Block Diagram.

3.1.2 Instruction Converting Tool

In this section, an instruction converting tool which transferred assembly to
binary code will be explained in detail. A user can use this tool to generate a
specific testing algorithm.

1. mv ls, #start

2. mv le, #end

3. mv lc, #constant

4. mv wptr, all zero

5. mv wp, all zero

6. #start

7. wr++

8. #end

Here we use incremental write 0 as an example: First, we need to move the loop
start register to a pc location, then the loop end register moves to the pc where
to the loop end. In step 3, the loop number can be assigned. After setting the
register associated with a loop, we need to set the write pointer and write pattern



BIST Implementation 13

value. Because the instruction is an incremental write 0, so the write pointer
should start from address 0, and the write pattern value selects all 0. The start
and end labels here indicate the starting and ending positions of the loop start,
wr++ is the incremental write operation which will be repeated until the number
of times set in the loop count is reached. The instruction converting tool which
is written in Python will convert these assembly commands into binary code and
automatically generate a VHDL file.

3.1.3 Register View

This section provides details of the instruction set for the programmable BIST
processor. The key idea with the processor instruction set is to make it as compact
as possible to optimize for the program memory. Furthermore, to lower area cost,
the processor is designed by avoiding expensive general-purpose register decoders.
Instead, there are a bunch of dedicated registers. (e.g. loop registers, read/write
pointers, etc).

Table 3.1: Register view of BIST processor.

Register
Name Symbol Width Description

Read
Pointer rptr addr_width Pointer to read from a

memory location
Write
Pointer wptr addr_width Pointer to write to a

memory location
Read Pat-
tern rp data_width Read value to the mem-

ory
Write Pat-
tren wp data_width Write value to the mem-

ory
Max Size mms mem_size Maximum value or size

of memory under test
End Of Pro-
gram eop inst_width Value in the register in-

dicates the end of rou-
tine

Control cr inst_width Set the default limita-
tion of numbers of errors

Overall the instructions are divided into two parts: single-cycle and multi-
cycle instructions. Single-cycle instructions are of 4-bits wide and are executed in
one cycle. Multi-cycle instructions opcode is also 4-bits, however, it is followed by
the immediate operand. The immediate operand can vary from 4 bits to 36 bits.



14 BIST Implementation

Next section provides a brief description of the registers, which is followed by the
list of instructions.

Table 3.1 provides a list of dedicated registers. The read and write pointers
are used by the memory transactor to generate read/write address. The write
pattern register is used by the memory transactor to generate write data for the
memory under test. During the read operation, the data from the memory is
compared with the value in the read pattern register. Based on the control register
flags the read checker module will perform validation of the memory. Max size
register is used to set the size of the memory under test. End of Program register is
used to identify when a program or algorithm has completed. When the program
counter of the processor is the same as the EOP register the processor halts and
asserts the bist_done signal.

Register
Name Symbol Width Description

Program
Counter PC 16 Standard program counter of

a processor.
Loop Start LS 16 Indicates the starting location

of the loop in the program
memory.

Loop End LE 16 Indicates the ending location
of the loop in the program
memory.

Loop Count LC 16 Indicates the number of re-
maining iterations in a loop.

Table 3.2: Instruction Fetch Related Register.

Table 3.2 provides a list of instruction fetch related registers. The program
counter is typical to a processor, indicating the current location of the instruction
fetch. The width of the program counter depends on the size of the program
memory. To avoid losing cycles during a loop, the BIST processor uses a zero
delay loop. To perform zero-delay loops, three registers are used: LC, LS, LE. A
loop is defined as the set of instructions which are between LS and LE. The LC
keeps a count on the remaining iterations, and when PC reaches LE it is updated
to LS. When the LC value is zero, the processor will continue to fetch the next
instruction after LE.

3.1.4 Instruction Set

The registers listed in the previous section are dedicated and have specific in-
structions which can be used to access them as is shown in Table 3.3 and Table 3.4.



BIST Implementation 15

The read/write pointer registers can be updated with either zero or the max size of
the memory. During the generation of memory transactions, these pointers have
to either decrement or increment. Note that all the pointer register operations
are the single cycle. This is because the inner loops of the BIST algorithms are
dominated by these instructions. To support high flexibility the BIST processor
supports the update of selected registers by immediate values. To perform move
immediate takes multiple cycles. The reasoning behind this is that the instruction
width is 4-bit and the immediate data can be bigger. Table 3.5 shows a set of
pre-defined patterns are supported by the processor. These patterns are used for
performing read/write to the memories under test. The pattern operation is of 4
cycles. As with a processor a jump instruction is supported. This is important
to perform jumps to sub-routine. To keep the processor hardware cost low, the
jump is an instruction which updates the PC value with an immediate value. The
immediate value requires multiple cycles depending on the address range of the
instruction ROM.



16 BIST Implementation

Instruction Opcode Description Syntax
Single Cycle
Read Increment 0000 Generate a read to memory and

auto increment the rptr.
rd++

Read Decrement 0001 Generate a read to memory and
auto decrement the rptr

rd- -

Read 0010 Generate a read to memory
without update rptr

rd

Complementary
Read Increment

0011 Generate a complementary
read to memory and auto
increment the rptr.

rdc++

Complementary
Read Decrement

0100 Generate a complementary
read to memory and auto
decrement the rptr.

rdc- -

Complementary
Read

0101 Generate a complementary
read to memory without
update rptr.

rdc

Write Increment 0110 Generate a write to memory
and auto increment the wptr.

wr++

Write Decre-
ment

0111 Generate a write to memory
and auto decrement the wptr.

wr- -

Write 1000 Generate a write to memory
without update wptr.

wr

Complementary
Write Increment

1001 Generate a complementary
write to memory and auto
increment the wptr.

wrc++

Complementary
Write Decre-
ment

1010 Generate a complementary
write to memory and auto
decrement the wptr.

wrc- -

Complementary
Write

1011 Generate a complementary
write to memory without
update wptr.

wrc

Move To Multi
Cycle

1100 Move to multi cycle instruction
following with immediate data.

mv

Branch Return 1101 Move back to the program
count where branch start.

brret

Table 3.3: Single cycle instruction set for BIST processor.



BIST Implementation 17

Instruction Opcode Description Syntax
Multi Cycle:
Read pointer 0000 Point out the read location from

a memory.
rptr

Write Pointer 0001 Point out the read location from
a memory.

wptr

Read Pattern 0010 Performing read to the memories
under test.

rp

Write Pattern 0011 Performing read to the memories
under test.

wp

Max Size 0100 Move to maximum value of mem-
ory under test.

mms

Error Limita-
tion Control

0101 Set the limitation of expected er-
ror numbers.

cr

End Of Pro-
gram

0110 Update eop register. eop

Loop Start 0111 Update loop start register. ls
Loop End 1000 Update loop end register. le
Loop Count 1001 Update loop count register. lc
Read Pattern
Immediate

1010 Performing read to the memories
under test immediately.

rpi

Write Pattern
Immediate

1011 Performing write to the memories
under test immediately.

wpi

Jump 1100 Jump to the PC provided by im-
mediate vaule.

branch

Table 3.4: Multi cycle instruction set for BIST processor.

Pattern Opcode Value
all_zero 0000 All zeros
all_one 0001 All ones
max_num 0010 Max size register value
al_01 0011 Alternate zero and one
al_10 0100 Alternate one and zero
al_b_01 0101 Alternate byte zero and one
al_b_10 0110 Alternate byte one and zero

Table 3.5: Pre-defined Pattern to load read and write pattern reg-
ister.



18 BIST Implementation

3.2 Hardcoded BIST

3.2.1 Hardcoded BIST Architecture

The hardcoded BIST has eight pre-defined March algorithms for choose and
can store 10 bits error information.

Figure 3.2 shows the top-level block diagram of the hardcoded BIST proces-
sor. This processor has a SIB decoder to decode data from a standard interface
(i.e. SPI, JTAG or UART), which will be introduced in the next chapter. Then
it follows with an FSM multiplexer and eight different March algorithms FSM:
MATS, MATS++, March A, March B, March C, March LR, March X, March Y.
The user can choose one of the algorithms by sending instructions through an in-
terface. SRAM drive is the one which connected to the memory under test. In this
design, it is possible to communicate with multiple same size memories since there
is a pin reserved for choosing memory. Read data checker is a comparator which
used to compare read data with expected data, error detected by the comparator
will be stored in error logger, if the numbers of errors exceed default limitation,
FSM controller will stop the algorithms immediately.

SIB decoder

March
FSM

March
FSM

F
S

M
 M

U
X

SRAM DRIVE

FSM Controller

SRAM

Read Data
Checker

Error Logger

Figure 3.2: Harcoded BIST Top Level Block Diagram.

3.2.2 HDL Implementation

Figure 3.3 shows input instruction(32 bits) for control the BIST processor.
The MSB is use to active BIST processor, the following 3 bits indicate which



BIST Implementation 19

algorithm will be applied, the rest bits is reversed for memory choose and other
function.

31 30 to 28 28 to 0

test_start algorithm_sel memory_sel

Figure 3.3: Input Instruction of BIST.

In order to cover all kinds of memory faults more comprehensively, this hard-
coded BIST inset 8 March algorithms. Figure 3.4 shows the state diagram of
March C- algorithm as an example to explain FSM block. WR_DATA_NUM is
a generic signal which indicates a specific address location. March C- have 6 steps:

test_start = '1'
IDLE

w0_p_cnt1 = WR_DATA_NUM

W0_P

r0w1_p_cnt1 = WR_DATA_NUM

R0W1_P

r1w0_p_cnt1 = WR_DATA_NUM

R1W0_P

r0w1_n_cnt1 = WR_DATA_NUM
R0W1_N

r1w0_n_cnt1 = WR_DATA_NUM

R1W0_N

r0_n_cnt1 = WR_DATA_NUM

R0_N

FINISH

Figure 3.4: State Diagram of March C- algorithm.

1. �(w0): Write 0s in any order.
2. ↑(r0,w1): Read (excepted value is 0) from lowest address then write a 1 at this
address and move up to next address and repeat until highest address location.
3. ↑(r1,w0): Read (excepted value is 1) from lowest address then write a 0 at this
address and move up to next address and repeat until highest address location.
4. ↓(r0,w1): Read (excepted value is 0) from highest address then write a 1 at this



20 BIST Implementation

address and move down to next address and repeat until lowest address location.
5. ↓(r1,w0): Read (excepted value is 1) from highest address then write a 0 at this
address and move down to next address and repeat until lowest address location.
6. �(r0): Read (excepted value is 0) from address in any order.

The read data checker module in this design can store a 10 bits data of error
information, it can indicate the address of errors and how many bits have faults
in this address. It can be expended to 16 bits to meet other requirements. The
error logger block is a RAM which can store 20 error data if the error exceeds 20,
then the controller will stop the process immediately.



Chapter 4
Reconfigurable Access Network and UART

Interface

BIST can be considered as an on-chip testing instrument. Due to this rea-
son, a sufficient and scalable testing interface is very essential. In this chapter,
some commonly used interface will be first introduced and discussed. Then we
will elaborate on IEEE Std 1687 (IJTAG) and related concepts such as SIB and
description language. In the end, the hardware architecture used in this design
will be explained.

4.1 Existing Methods For DFT

4.1.1 SPI Interface

SPI is a standard serial four-wire synchronous bus commonly used for sending
data between a microcontroller, sensors, shift registers, SRAM and more. The
SPI Interface was developed by Motorola to provide full-duplex synchronous serial
communication between master and slave devices. It uses separate clock and data
lines, along with a select signal to choose which slave you want to communicate
with [13].

Figure 4.1 shows a typical 4 wire SPI configuration with multiple slaves.
The device which generates the clock signal is called the master. SPI works in
asynchronous mode, which means data transmitted between the master and the
slave is synchronized to the clock generated by the master. MOSI and MISO
are the data lines which are responsible for transmitting data from the master to
slaves and back. SS signal is used to select slaves. SPI have many advantages
like complete flexibility for the bits transferred, i.e. not limited to 8 bit, sample
hardware connection, high speed. But one drawback of SPI is that each slave
needs an individual select signal from the master. For hardware constraints, it is
expensive for a dedicated testing port with at least 4 pins.

21



22 Reconfigurable Access Network and UART Interface

SCK SCK

SCK

SCK

MOSI

MISO

SS1

MASTER SLAVE 1

SLAVE 3

SLAVE 2

MOSI

MOSI

MOSI

MISO

MISO

CS

CS

CS

MISO

SS2

SS3

Figure 4.1: SPI with multiple slaves.

4.1.2 UART Interface

UART is an asynchronous serial communication protocol for transmit data.
Figure 4.2 shows a trasmission of UART.

Tx

RxRx

Tx

START

start bit
(logic 0)

5 to 9 data bits PARITY STOP

data
parity bit
(optional)

stop bit
(logic 1)

Figure 4.2: UART Transmission.

Data will be transferred into parallel form then transmits into UART. After



Reconfigurable Access Network and UART Interface 23

the UART gets the parallel data, it adds a start bit, a stop bit and a parity bit,
creating the data packet then send out the data bit by bit at the Tx pin. The
receiving UART reads the data packet bit by bit at its Rx pin. The receiving
UART then converts the data back into parallel form and removes the start bit,
parity bit, and stop bits. Finally, the receiving UART transfers the data packet
in parallel to the data bus on the receiving end. The advantage of UART is that
it only needs 2 signal to transmits data.

4.1.3 IEEE Std 1149.1 JTAG

JTAG is the name of the group that defined the IEEE 1149.1 standard. This
standard defines the TAP controller logic used in processors with JTAG interface
which is commonly used as an interface for debugging, testing and programming.
The hardware interface to the JTAG port usually consists of four main pins: TCK
test clock, TMS test mode select, TDI input, TDO output.

Figure 4.3: TAP State Machine [14].

Figure 4.3 shows a 16-state finite state machine TAP controller which re-
sponds to changes at the TMS and TCK signals of the TAP and controls the



24 Reconfigurable Access Network and UART Interface

sequence of operations. It also controls the scanning of data into the various reg-
isters of the JTAG architecture. Two state transition paths are used to capture or
update data by scanning through the instruction register (IR) or a data register
(DR). All state transitions of the TAP controller shall occur based on the value
of TMS at the time of a rising edge of TCK. Actions of the test logic shall occur
on either the rising or the falling edge of TCK in each controller state. JTAG has
many advantages, but its lacks flexibility of hardware and absence of a language
to program an instrument independently of its position or configuration [15].

4.2 IEEE Std P1687 IJTAG And Related Concept

IEEE P1687 (IJTAG) standard defines an embedded Instrumentation to the
JTAG with efficient, flexible and unified standardized instrument interface and
variable scan chain path. The scan path changes in the scan chain insertion node-
of SIB, making the system have flexible and variable characteristics. Access for
embedded devices based on the access operations needs to choose the path of the
scan chain to remove unnecessary scan chain, thereby reducing the length of the
scan chain shift operation in the testing process to save the testing clock and
improve efficient access [16].

Due to these advantages, IJTAG is a good choice for test systems that need to
be built by multiple BISTs. In this project, we try to connect multiple hardcoded
BISTs with an IJTAG based dynamic re-configurable network with UART interface
which proposed in Gani and Prathamesh’s thesis [17].

4.2.1 Segment Insertion Bit

A new class shift register device, the SIB, is defined in the IEEE P1687
standard. The SIB is a key part of constructing the IEEE P1687 scan chain path.
The SIB is equivalent to a shift register with status bits. In addition to the ScanIn
(TDI ) and ScanOut (TDO) ports used to connect to the main scan chain, the
SIB also has one for connecting to the next layer (which can be an embedded
instrument or Other SIB) Hierarchical Interface Interface (HIP). HIP has a total
of 3 ports: HIP-ToScanIn (WSIO), HIP-FromScanOut (WSOI ) and HIP-ToSel
(Seli). The SIB has two states like a switch circuit when it is selected. When it is
on (as shown in Figure 4.4b), the SIB connects ScanIn (TDI ) with HIP-ToScanIn
(WSIO), ScanOut (TDO) Connect to HIP-FromScanOut (WSOI ) to connect the
device or network connected to the HIP to the scan chain. When the SIB is
off (e.g. Figure 4.4c shows that ScanIn (TDI ) is directly connected to ScanOut
(TDO), skipping the device connected to the HIP. By using the switching function
of multiple SIBs, the shift registers of many embedded instruments in the chip can
be connected to the network or shielded, so that SIB can be added to the key
nodes in the scan chain, and the scan chain can be completed by the serial scan
chain. Flexible configuration and change [18].



Reconfigurable Access Network and UART Interface 25

SIB

ScanIn ScanOut

HIP-
ToScanIn

HIP-
ToScanOut

HIP-
ToSel

�a).SIB port

ScanIn
ScanOut

HIP-
ToScanIn

HIP-FromScan

1

State
Register

�b).Open SIB

ScanIn ScanOut0

State
Register

�c).Closed SIB

Figure 4.4: Simplified view of the SIB component [19]

4.2.2 Description Languages

The IEEE P1687 standard defines two new description languages, one for
describing the architecture and the other for describing processes and operations
(test vectors).

• 1. Instrument connection language ICL:
The Instrument Connectivity Language (ICL) describes the various scan
paths that may exist on the chip. It provides a mapping for the location
of the SIBs in the IEEE P1687 network. Re-targeting tool can utilize the
architecture described by the ICL mapping to activate the networks and
instruments in the scan path. By activating any of these paths, a specific
set of test vectors (e.g. data length and position) can be applied to some
instruments.

• 2. Procedural Description Language PDL:
Procedural Description Language (PDL), which represents the test vector or
operational process applied to an IEEE P1687 embedded instrument. These
languages simplify the use and portability of embedded instruments. Once
the scan path of the IEEE P1687 network is determined, the test vectors
defined by the PDL language can be transferred to one or more embedded
instruments on the activated segment of the scan path [19].

With these two languages, the user can program the instrument in a network, but
they do not generate the input vectors that need to be shifted into the network to
configure the instruments. BIST need instructions to select algorithm and memory,
so a tool which can generate input vector need to be created. This tool will be
introduced in the following section.



26 Reconfigurable Access Network and UART Interface

4.3 Main Challenge

There are many different IEEE Std 1687 network architectures such as a flat
network (see Figure 4.5), hierarchical network (see Figure 4.6), multiple networks
and daisy-chained network [20]. Since we try to integrate multiple BISTs in the
design, a simple and generic network which can easily add or remove BISTs from
the scan chain should be discussed.

SIB1 SIB3SIB2

INST1 INST3INST2

TDI TDO

Figure 4.5: Flat Architecture

SIB1

SIB2

SIB5

SIB4INST1

SIB3

INST3

INST2

TDI TDO

Figure 4.6: Hierarchical Architec-
ture

Another problem is how to read error information from the BIST. UART
is slow, and the error information may miss before the SIB receives the capture
command from the controller. Also, BISTs may detect many errors from memory,
so changing the controller to do multiple captures and getting the error information
at the correct time would be a challenge.

4.4 Hardware architecture

In this design, each BIST can connect multiple memory through the memory
wrapper. To save area, only 3 hardcoded BISTs are integrated into the network.
However, due to the flexibility of the IEEE Std 1687 network, BISTs can be added
at any time to meet new test requirements. Programmable BIST is flexible but it
will not integrate into the network because of the area overhead of programmable
BIST is several times of hardcoded BIST.

Figure 4.7 shows a flat network architecture of SIB network. As we see, each
BIST connects with two SIBs. According to the selected BIST, one of SIB1, SIB3,
SIB5 will be activated and sending instructions to BIST through sib_in signal.
When a read error command is sent, one of SIB2, SIB4, SIB6 will be activated
and capturing the error information out from the BIST through error_out signal.
The hardware overhead is minimal with a flat network, but since SIBs are always
on the scan path, it may lead to a higher time overhead.

Figure 4.8 shows a hierarchical architecture of SIB network. This idea is
mainly achieved by separating error logger block from the BIST and connect it



Reconfigurable Access Network and UART Interface 27

SIB4 SIB5 SIB6SIB3SIB2SIB1

BIST1 BIST2 BIST3

sib_in error_out

TDI TDO

Figure 4.7: Flat Network With BISTs Architecture

with a SIB. In this architecture, when the user needs to read the error information
from the error logger when the BIST is finished executing the program, the cor-
responding shift-registers and dedicated SIBs of BIST will not be activated. This
hierarchical architecture approach will reduce the OAT by excluding the SIBs
themselves from the scan chain. But it will lead to a high area overhead since the
extra signal will be added from BIST to error logger, and also the error logger size
will be quiet big to store all the error information of BISTs.

SIB1

SIB2

SIB5

SIB3

error_logger

TDI TDO

SIB2

BIST1 BIST2 BIST3

Figure 4.8: Hierarchical Network With BISTs Architecture

The flat network architecture has been chosen for application because the flat
network has low area overhead. BIST is an on-chip testing module, so area cost is
more important here. The complete hardware architecture is shown in Figure 4.9.
The TAP controller is replaced by a UART protocol in this project [17], the master
controller block is responsible for control the network. There are two components



28 Reconfigurable Access Network and UART Interface

that are called SIB Control Register (SCR) and Instrument Length Memory (ILM)
in this controller block. When instructions transferred in, the SCR will store data
that indicate which SIB is part of the active scan path and what operation is to
be executed on it. The ILM holds information about the instrument data lengths
of the instrument in the network and the address of each instrument. The values
in the SCR and ILM are transmitted by the software re-targeting tool through the
UART channel [17].

UART transciever

Master controller

SIB2 SIB3 SIB4 SIB5

Hardcoded BIST 3

SIB1 SIB6

Hardcoded BIST 2Hardcoded BIST 1

RX TX

UART_IN[7:0] UART_OUT[7:0]

TDI TDO

shift_en

update_en

capture_en

sib_in1
[31:0]

error_out1[9:0]

sib_in2[31:0]

error_out1
[9:0]

error_out2[9:0]

sib_in2[31:0]

Figure 4.9: Hierarchical Network With BISTs Architecture

The first version of the whole system has one network which contains 6 SIB
components. Although the network is flexible, it is hard to wrap. So here we
separate the entire network block into 3 individual blocks which are modularizing
the entire network with BIST and the memories under test. With this architecture,
the user can easily add or decrease the number of BIST modules. The final Top-
level diagram is shown in Figure 4.10.

4.5 HDL Implementation

There are two levels of PDL language. Level 0 PDL allows for static pro-
gramming, which means no loops, branch condition and the interactive command
will be executed. Level 1 PDL has all the features of a fully mature programming
language [21]. Since BIST only need read and write operation, so here level 0
PDL is applied. Level 0 PDL has two types of command: iWrite and iRead are
setup command, iApply is the action command. The setup commands only take



Reconfigurable Access Network and UART Interface 29

BI
ST

 T
O

P 
IO

 H
an

dl
er UART

UART to iJTAG controller

TAP 
FSM

SIB 
N/W

UART
FSM

SIB

SIB
SRAM Wrapper

S2
P BIST

March Error 
log

Read/Write

TDO TDI

SIB

SIB
SRAM Wrapper

S2
P BIST

March Error 
log

Read/Write

TDI

TD
O

-0

TD
I-0

TD
O

-1

TD
I-1

TD
O

-2

TD
I-2

Bypass 
iJTAG

Direct IO
BIST

testmode

bypass_en

start_bist
done_bist
error_bist

start_bist/TDI

done_bist/TDO

error_bist

TDO

TDI

bypass error_bist
testmode

SIB

SIB
SRAM Wrapper

S2
P BIST

March Error 
log

Read/Write

TDO TDI

SIB

SIB
SRAM Wrapper

S2
P BIST

March Error 
log

Read/Write

TDI bypass error_bist
testmode

SIB

SIB
SRAM Wrapper

S2
P BIST

March Error 
log

Read/Write

TDO TDI

SIB

SIB
SRAM Wrapper

S2
P BIST

March Error 
log

Read/Write

TDI bypass error_bist
testmode

Figure 4.10: Top-level diagram of BIST

effect when a action command has been executed. The PDL and ICL describe
the instruments in a network and commands to be executed on them. However,
they do not generate the input vectors that need to be shifted into the network to
configure the instruments. A instruction re-targeting tool has been designed that
it based on SIB control register configuration in master controller [17].

Figure 4.11 shows a complete sequence of PDL instructions to activate hard-
coded BIST1 and send error information out. Next, I will elaborate on the meaning
of each byte.

• Byte 1-2: The two MSB bits of byte 1 indicates the iWrite command. The
remaining part of byte 1 and byte 2 indicates the SIB address, which means
that which SIB in the scan chain needs to be activated. In this case, the
LSB of byte 2 is 0, so SIB0 is activated.

• Byte 3-4: The ’10’ in byte 3 is the iApply command, and the rest bits in
byte 3 and byte 4 state how many bits of data will be sent to the network.
As we mentioned in the previous chapter, hardcoded BIST has a 32 bits
input to run the program, so it means 4 bytes of data need to transfer to
BIST (’00000100’ in binary notation).

• Byte 5-8: These 4 bytes are the instructions for the hardcoded BIST.

• Byte 9-10: The two MSB bits of byte 9 indicate the iRead command. The
remaining part of byte 9 and byte 10 indicates the SIB address, which means



30 Reconfigurable Access Network and UART Interface

that which SIB in the scan chain needs to be activated. In this case, the
LSB of byte 10 is 1, so SIB1 is activated.

• Byte 11-12: ’10’ in byte 11 indicates iApply command, here no data will be
shifted into the network, so the rest of byte 11 and 12 is all 0.

12 0 0 0 0 0 0 0 0

11 1 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 1

9 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0

5 1 0 1 0 0 0 0 0

4 0 0 0 0 0 1 0 0

3 1 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0

Setup command: iWrite

SIB address bits

0 1

1 0

Action command: iApply

Data size bits

BIST instruction bits

SIB address bits

Data size bits

0 0

Setup command: iRead

1 0

Action command: iApply

Figure 4.11: Bit-wise description of PDL instruction

This entire 12-byte instruction is a complete read and write operation to
hardcoded BIST1. This seemingly complex instruction becomes very easy to im-
plement with a PDL compiler written in Python (see listing 1).

After explaining the PDL re-targeting tool, the main FSM features in the
master controller will be discussed (see Figure 4.12). There are 3 control states:
SHIFT, UPDATE, and CAPTURE, which are used to control SIBs in the network.
During the SHIFT state, the parallel data from UART will transfer into serial bit
sequence and shift into the network, and then the FSM moves to the UPDATE
state. In this state, it updates the required SIB and pulls the associated shift
register into the valid scan path. When FSM moves to the CAPTURE state, the
error information data which stored in the BIST will be shifted out if it following
with a iRead command.

The FSM then returns to the IDLE state and waits for the data byte sent
by the re-targeting tool. When the iWrite command is received, the following 4
bytes BIST instruction is moved to the network. When an iRead command has



Reconfigurable Access Network and UART Interface 31

Algorithm 1: PseudoCode of Re-targeting Tool
Result: Generate BIST instruction data
1: function iWrite(bist = ’ ’)
2: write_cmd = (write command + Which BIST)
3: return write_cmd
4: end function
5:
6: function iRead(bist = ’ ’)
7: write_cmd = (write command + Which BIST)
8: return write_cmd
9: end function

10:
11: function iApply(mode)
12: apply_cmd = (write or read mode)
13: return write_cmd
14: end function
15:
16: function hardcoded_bist(start,algorithm_sel,memory_sel)
17: algorithm = {"MARCH_A":’000’,
18: "MARCH_B":’001’,
19: "MARCH_C":’010’,
20: "MARCH_LR":’011’,
21: "MARCH_MATS":’100’,
22: "MARCH_MATS+":’101’,
23: "MARCH_X":’110’,
24: "MARCH_Y":’111’}
25: hd_instruction = (start+algorithm_sel+memory_sel)
26: return hd_instruction
27: end function
28:
29: iWrite(bist = 1)
30: iApply(’w’)
31: hardcoded_bist(start=1, algorithm_sel= "MARCH_C",

memory_sel=1)
32: iRead(bist = 1)
33: iApply(’r’)



32 Reconfigurable Access Network and UART Interface

been applied, a series of dummy bits are shifted into the scan chain to shift the
error information data out. When the BIST instruction arrives, a bit sequence is
created to move data or dummy bits into the correct SIBs.

When it comes to data phase, first the FSM will move to DATA_SHIFT state.
In DATA_SHIFT state, the BIST instruction or dummy bits will be shifted in the
network. In order to shift the data a HOLD state is added after DATA_SHIFT
state. Then the FSM transitions to the DATA_UPDATE state and loads data
from the shift register into the hardcoded BIST in parallel.

The resting state is for capturing error information out from the network.
After DATA_UPDATE state the FSM will move to COMMAND_CHECK state.
In this state, the FSM will check if a iRead command has been received. If this
command is not received, the FSM will move to the RESET_STATE state and
reset all counters and states of other FSM. If the iRead command is received, the
FSM will come to the POLL_ERROR state. According to the preset numbers,
the FSM goes to CAPTURE state and repeat capture operation until reach the
predefined capture error numbers. After all, it will back to RESET_STATE state
and wait for another iteration.

As mentioned in the previous section, the essence of BIST is the constant
reading and writing of memory. When BIST detects an error, the error message
is quickly stored in the error logger module. For different sizes of memory and
different algorithms applied, the time to perform a test is also different. However,
the UART is relatively slow, and the UART speed is limited by the baud rate.
The common baud rates are 2400, 4800, 9600, 19200, and 115200 BPS. However,
even with the highest baud rate, the UART still misses some useful data when
the measured memory size is small, or the measured address range is short. The
main idea to solve this problem is to display the error information after the BIST
is completed, and because the UART read rate is relatively slow, each error infor-
mation will display for 2ms, and when the FSM enters the POLL_ERROR state
and the error count smaller than preset value, it will move to the CAPTURE state
and repeat to perform a capture operation every 2ms.



Reconfigurable Access Network and UART Interface 33

shift_en <= '0'
capture_en <= '0'

update <= '0'

data_op = '1' control_op = '1'

shift_en <= '1'

T

cont < num_of_sib - 1

update_en <= '1'

capture_en = '1'

shift_en <= '1'

shift_en <= '1'

IDLE

SHIFT

UPDATE

CAPTURE

F

cont = num_of_sib - 1

F

cont = num_of_sib - 1 AND
data_byte = 0

T

cont < num_of_sib - 1

DATA_SHIFT

F

T

T

F

T

HOLD T

update_en <= '1'

DATA_UPDATE

T
F

read_BIST = '0'

finish = '1'

COMMAND_CHECK

RESET_STATE

F

error_count < num_of_error

F

T

BIST_count = 10000

T

POLL_ERROR

Figure 4.12: ASMD Diagram Of Main FSM Of Master Controller



34 Reconfigurable Access Network and UART Interface



Chapter 5
Verification And Results

In this chapter, the verification of the hardcoded BIST, the programmable
BIST and the network will be discussed first. After that, some synthesis report of
the system will be listed.

5.1 Verification of BIST

5.1.1 Hardcoded BIST

The verification is based on Xenergic memory model. Here a 2048*32 SRAM
model is been chosen for testing. The address width of this memory model is
11 bits and the data width is 32 bits. March C- algorithm has been applied in
this test since it can cover SAF fault. Some SAF errors which been added before
testing are:

• Stuck at 1: Address location:3, Bit location:2

• Stuck at 1: Address location:3, Bit location:4

• Stuck at 0: Address location:1, Bit location:1

Figure 5.1 shows the simulation waveform result of the detection of stuck at
1 error. From the picture, we can observe that the c_s signal which indicates the
FSM state is 2. As we mentioned in chapter 2, the second state of March C- is ↑(r0,
w1), so now the BIST is doing an incremental read 0 and write 1 operation. The
wr_data_i signal and wr_data_en_i signal are responsible for write operation.
Here it writes 0xffffffff (0b11111111111111111111111111111111 in binary notation)
to every address location. When it comes to reading phase, we can see rd_data_i
is always 0 except when at address location 3. 0x00000014 (0b10100 in binary
notation) indicates in bit 2 and bit 4 is 1 in address location 3 which match the
fault we preset in memory. After read this value, the error_cnt signal increase to
1 and the error_inf signal storing the error information. The read data checker

35



36 Verification And Results

module in this design can store a 10 bits data of error information which indicates
the address of errors (4 down to 0) and how many bits have a fault in this address
(9 down to 5). So 0x042 (0b0001000010 in binary notation) is the correct error
information data which error logger will store.

Figure 5.1: Error Detection Waveform of Hardcoded BIST 1.

Figure 5.2 shows the detection waveform of stuck at 0 fault. Here the c_s
signal is 3 which means the FSM is in ↑(r1, w0) step and the read data value should
be all 1. From the picture we can see when reading at address 1, the rd_data_i is
0xfffffffd (0b11111111111111111111111111111101 in binary notation) which means
the first bit of address 1 is stuck at 0. This data confirms the fault we set earlier.
Also the error_cnt signal increase to 2 after detect this error and the error_inf
signal storing 0x021 (0b0000100001 in binary notation) into error logger block.

Figure 5.2: Error Detection Waveform of Hardcoded BIST 2.

5.1.2 Programmable BIST

The programmable BIST has been connected to the same memory model as
in hardcoded one. The main idea of programmable error detection is that the
error handler block will compare the reading data with the read pattern data, if



Verification And Results 37

there is a mismatch then it means there is an error. The error information which
programmable BIST stored is the same as hardcoded BIST. From figure 5.3 we
can see the read_pattern signal is the pattern generate by register bank, and the
tb_mem_datain is the reading data. It shows a data mismatch at address location
3. After capturing this mismatch, the error_inf signal capture this error and store
it in error logger.

Figure 5.3: Error Detection Waveform 1.

In this test, we use the assembly2binary tool which writes in Python to gener-
ate the instructions (a March C- algorithm) to instruction rom first. Since the same
memory model and the same algorithm have been applied, so the error information
which programmable BIST stored should be the same as shown in hardcoded one.
(see figure 5.3 and figure 5.4)

Figure 5.4: Error Detection Waveform 2.

5.2 UART and Network Functionality Verification

In this section, the functionality of the UART protocol and IJTAG based
network will be verified. First we use the re-targeting tool to send an instruction
which active hardcoded BIST 2 with a March C- algorithm and then read the error
information out.

From figure 5.5 we can see that the entire system is running correctly. The
rx signal is the input interface of the UART. In the figure, we can see that, as
mentioned before, if the measured memory is small or the selected measurement
address interval is small, the BIST is completed before the UART instruction is
completely delivered. This may result in the system not being able to capture
some errors. However, since the FSM has added the corresponding state and the
error logger module, the error information will be displayed every 2ms after SIB



38 Verification And Results

captures the test end signal, and the controller block enters the POLL_ERROR
state to capture the error message at the synchronous rate.

Figure 5.5: UART Transceiver waveform.

Tx_out is the UART output signal which is ’1’ when idle. Transmission
starts with a ’0’ and is followed by 8 bits data, then end up with an optional
parity and a stop bit, which is ’1’. Since the error information is a 10-bit data,
and the UART can only transmit 8 bits of data at a time, the error information
is split into two part and shift out of the system. Through the count1 signal, we
can more intuitively verify the correctness of the data transmitted by the UART.
The error_inf_out signal shows that the current error information is 0x042, so
the data read by Tx_out should be the same as 0x042. The first byte of Tx_out
is 0b00001000, and the second byte is 0b00000001. Since the data is transmitted
by the UART from the LSB, the data read should be the first byte plus the first
two bits of the second byte. Bit, which is 0b0001000010. This match the data
stores in the error logger.(see figure 5.6)

Figure 5.6: Error Detection Waveform 2.

Figure 5.7 shows another error information. After this verification, it proves
this re-configurable access network with a UART interface can be applied to the
BIST.

Figure 5.7: Error Detection Waveform 2.



Verification And Results 39

5.3 Synthesis Results

In this section, some synthesis results will be listed (see table 5.1). It shows
the gate area of the whole system which contains master_control block, 3 hard-
coded bist, 3 networks and 3 memory wrapper. The memory model uses in synthe-
sis is a Xenergic 2048*32 SRAM which has 32-bit data width and 11-bit address
width.

Table 5.1: Syhtnesis area report.

Gate area
bist_top 195755.47
master_control and network 17373.36
hardcoded bist 10069.96
sram_2048*32 48519.48

Figure 5.8 and figure 5.9 shows gate area distribution of two BIST imple-
mentations. The total gate area of hardcoded BIST is larger than programmable
BIST, but hardcoded BIST contains 8 algorithms FSM. The programmable BIST
only contains a March C- algorithm. If only choose March C- FSM, the total gate
area of the hardcoded BIST is 3862.66 and the total gate area of programmable
BIST is 8730.32.

Figure 5.8: Gate area distribution of hardcoded BIST with 8 algo-
rithms



40 Verification And Results

From the result, we can see that if we run the March C- algorithm, the size
of programmable BIST is 2.3 times larger than hardcoded BIST. This is due to
large area of the instruction rom block, instruction decode and register bank block
of the programmable BIST.

Figure 5.9: Gate area distribution of programmable BIST with 1
algorithm

Overall, hardcoded BIST can meet the requirement of testing a large number
of memories and give good fault coverage. The programmable is mainly for testing
specific type of memory faults, which user can create their own March based
algorithm.



Chapter 6
Conclusions

Multiple BISTs and a reconfigurable network with a UART interface as a
BIST system have been successfully built and verified. After the literature review
of SRAM fault types and BIST-related theories, I elaborated on the way to design
and implement two different BISTs, which includes BIST architectures and HDL
implementations. The drawbacks of existing test interfaces are analyzed and com-
pared with the IEEE Std.1687 IJTAG interface. Additionally, I introduced the
advantages of this network. In the final implementation phase, major challenges
are listed and analyzed. The pros and cons of the different network structures
were discussed. Afterwards, I modified the original network and connected it with
multiple BISTs. Moreover, an ASMD diagram was attached to explain how the
network works. In the end, I verified both BISTs and network and provided gate
area synthesis results of the BIST system.

41



42 Conclusions



Chapter 7
Further Work

In this project, only hardcoded BIST has been applied to the network because
of the large area cost of programmable BIST and the large instruction sets. There
is also a limitation on the amount of data bytes that the iApply command can send.
One solution is to modify the PDL re-targeting tool which enables the connection
of the programmable BIST to the network.

All embedded memory blocks, that are implemented as RAMs, support byte
enable signals. These byte enable signals mask the input data so that only specific
bytes or bits of data are written. The unwritten bytes or bits retain the previously
written values. In some cases, faults happen in a byte enable signal. An algorithm
which can detect the byte enable error and corresponding logic could be designed
in the future. For example:

{� w0} , {r0, w1be1} , {r1be1, w1} , {r1, w0be2} , {r0be2, w1} , {r1, w0be3} , {r0be3}

The above algorithm is a modified March C- algorithm which can detect the
byte enable errors. In step 2, after reading 0 from all address locations, BIST will
write 1 to a specific byte and then read 1 from that byte, and all the value in other
bytes will also be checked. If the value in one of the other bytes is not 0, an error
should be captured in error logger.

43



44 Further Work



Bibliography

[1] R. Ohlendorf, “A Network Processor Architecture with Application-
Optimized Reconfigurable Processing Paths (FlexPath NP),” Sep 2010.

[2] A. A. Chien and V. Karamcheti, Moore’s Law: The First Ending and a New
Beginning. Sec 2013.

[3] R. Rajsuman., System-On-A-Chip: Design and Test (Artech House Signal
Processing Library). Artech House, 2000.

[4] S. Luo., Digital Integrated System Chip (SoC) design. Beijing Hope Electronic
Press, 2002.

[5] A. L. Crouch, Design-for-test for Digital IC’s and Embedded Core Systems.
Prentice Hall PTR, 1999.

[6] L. Si’an, L. nian, S. Haibin, and Y. Xiaolang, “Principle and Implementation
of Embedded Memory Built-in Self-test,” Feb 2004.

[7] J. Soetemans, “Method and system for testing a random access memory
(RAM) device having an internal cache,” Apr 2009.

[8] K. Dalal and Rajni, “A Single Ended SRAM cell with reduced Average Power
and Delay,” Sep 2019.

[9] J. Duarte, “SRAM Memories,” Dec 2014.

[10] B. BAI HONG FANG, “Embedded memory bist for systems-on-a-chip,”
diploma thesis, Mcmaster University, Oct 2003.

[11] Suk and S. M. Reddy, “A March Test for Functional Faults in Semiconductor
Random Access Memories,” Dec 1981.

[12] A. J. van de Goor., Testing semiconductor memories: theory and practice. J.
Wiley & Sons, 1991, 2007.

[13] P. Dhaker, “Introduction to SPI Interface,” Sep 2018.

[14] S. Labs, “Programming Flash Through THE JTAG INTERFACE,”

45



46 Bibliography

[15] M. Portolan, S. Goyal, B. V. Treuren, C.-H. Chiang, T. Chakraborty, and
T. B. Cook, “A New Language Approach for IJTAG,” Dec 2008.

[16] K. Posse, A. Crouch, J. Rearick, B. Eklow, M. Laisne, B. Bennetts, J. Doege,
M. Ricchetti, and J. f Cote, “IEEE P1687: Toward Standardized Access of
Embedded Instrumentation,” 2006.

[17] K. Gani and M. Prathamesh, “Reconfigurable instrument access network with
a functional port interface,” diploma thesis, Lund University, May 2019.

[18] J. Rearick and A. Volz, “A Case Study of Using IEEE P1687 (IJTAG) for
High-Speed Serial I/O Characterization and Testing,” Oct 2006.

[19] E. Larsson and F. G. Zadegan, “Accessing Embedded DfT Instruments with
IEEE P1687,” 2012.

[20] F. G. Zadegan, E. Larsson, A. Jutman, A. Jutman, and R. Krenz-Baath,
“Design, Verification, and Application of IEEE 1687,” Nov 2014.

[21] A. Richardson, “Using Test Access Standards Across The Product Lifecycle,”
May 2016.



BIST Implementation Access through A
Reconfigurable Network

YAOJIE LU
MASTER´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2019

YA
O

JIE LU
B

IST
 Im

plem
entation A

ccess through A
 R

econfigurable N
etw

ork
LU

N
D

 2019

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2019-722
http://www.eit.lth.se


