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Abstract

Given a pollen data set from Europe over a time period, the aim is
to reconstruct the past land cover by interpolating from the pollen data
values to a continuous map. The data is on compositional form with
three vegetation categories; coniferous forest, broadleaved forest and open
land. Reconstruction will be based on a Gaussian Markov random field
with separable spatio-temporal structure for the covariance matrix. The
spatio-temporal covariance matrix is constructed by Kronecker products
which simplifies many matrix computations. The field and parameters for
the model are estimated by Markov Chain Monte Carlo, with a Crank
Nicolson Langevin proposal to estimate the spatio-temporal field. Crank
Nicolson Langevin method works well, although implementation could be
technical with a lot of details. Convergence for some of the model param-
eters is slow with bad mixing. The average compositional distance for the
reconstruction and the validation set was 0.71. The model was better at
finding temporal structure rather than spatial. Reconstructions from this
model could be used as input to other models such as (Strandberg et al.
2014) to investigate how anthropogenic deforestation, and other changes
in nature, impacts climate change.

Keywords: Pollen data, compositional data, Dirichlet distribution, spatio-temporal
reconstruction, Kronecker product, Gaussian Markov random field (GMRF),
Markov Chain Monte Carlo (MCMC), Metropolis Hastings (MH), Metropolis
adjusted Langevin algorithm (MALA).





Nyframtagen pollendata används för att återskapa skogslandskap i
Europa fr̊an senaste istiden fram till modern tid.

Ny pollendata1 har blivit tillgänglig för
att analysera skogslandskap i Europa fr̊an
istid fram till modern tid. Med da-
tamängder som blir allt större, ställs det
krav p̊a tekniken att f̊a fram modeller
som kan hantera dem p̊a ett effektivt sätt.
Man har nu med stor framg̊ang lyckats
återskapa skogslandskap över hela Europa
fr̊an de senaste 10 000 åren.

Pollendatan kommer fr̊an sjöar och v̊atmarker
runt om Europa. Datan har blivit viktad med
hänsyn till pollenpartiklars fallhastighet och pro-
duktions niv̊a. Därefter har datan delats in i
tre katrgorier; barrskog, lövskog och öppet land-
skap2. Varje datapunkt är kopplad till en latitud-
longitud-ruta samt en tidpunkt. Problemet är
att datan endast finns i omkring 15 % av alla
latitud-longitud-rutor som utgör Europa, se fi-
gur 1. Utmaningen blir d̊a att, baserat p̊a datan,
utvidga perspektivet till att ge en kontinuerlig
bild av växtligheten över hela Europa. Vi förfinar
ocks̊a tidsintervallet genom att skatta vegetatio-
nen mellan de redan givna tidsnedslagen, se fi-
gur 2. Fullständiga skogslandskapsrekonstruktio-
ner kan användas i andra arbeten, till exempel
undersökningar om hur mänsklig avskogning och
andra landskapsförändringar har p̊averkat kli-
matet3. I Figur 1 syns pollendatan till vänster
som enstaka pixlar p̊a en karta. Rekonstruktio-
nen av skogslandskapet syns till höger. Här visas
mängden lövskog som en procentsats av totalen,
det vill säga, barrskog, lövskog och öppet land-
skap sammanlagt. Denna skogs̊aterskapning är
gjord i mer än hundra tidspunkter, där pollen-
datan är given i endast 25 tidspunkter, se figur 2.
I figur 2 syns tidsskalan för en utvald pixel över
hela tidsaxeln, där b̊ade pollendatan och rekon-
struktion är markerade.

Figur 1: Pollendata (till vänster) och rekonstruk-
tion (till höger), av lövskog fr̊an året markerad
med röd streckad linje i figur 2. Den röda cirkeln
markerar den pixel som beskrivs i figur 2.

Figur 2: Stjärnorna (och cirklarna) represente-
rar modell- (och validerings-) pollendata för den
inringade pixeln i figur 1, över tid. Linjerna re-
presenterar rekonstruktionen, där svart linje är
öppet landskap, grön linje är lövskog och bl̊a lin-
je är barrskog. Tidsaxeln börjar i modern tid,
1950 v.t., och g̊ar bak̊at i tiden. Den röda strec-
kade linjen markerar året för tidsfönstret i figur
1.

Tid-rums fältet som utgör växtlighetsskattningarna,
är modellerat med ett s̊a kallat GMRF-fält
där beroendestrukturen för tid och rum är
separabla. Fältet har sedan skattats med
MCMC, med en uppdateringsregel kallad Crank-
Nicolson-Langevin. Mer om metoden hittas i den
fullständiga rapporten4.

Skriven av: Lovisa Svensson.

1Projekt Landclim II, finansierat av SRC och publicerat i databasen PANGEA.
2Trondman, A. K. et al. (2015), ‘Pollen-based quantitative reconstructions of holocene regional vegetation cover

(plant-functional types and land-cover types) in Europe suitable for climate modelling’
3Strandberg, G, et al. (2014), ‘Regional climate model simulations for europe at 6 and 0.2 k bp: sensitivity to

changes in anthropogenic deforestation’
4Svensson, L. (2019) ‘Reconstruction of past European land cover from pollen data: using spatial statistics and

Crank-Nicolson Monte Carlo’.
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1 Introduction

1.1 Background

Based on pollen data, this thesis aims to reconstruct European land cover for
the time period from the last Ice Age up to modern time. The pollen data
comes from lakes and bogs and have then been analysed and categorised into
three vegetation groups; coniferous forest, broadleaved forest and open land
(Trondman et al. 2015). The data is on compositional form, i.e., each vegetation
category is represented with a percentage.

Imagine a fine grided map over Europe for a specific year or time window,
the given pollen data exist only in some of the grid cells. The intention is
to interpolate over all grid cells given the grid cells with known values. The
reconstruction will then be visualised with a heat map for the three vegetation
fields. In this project we will extend the reconstruction (Pirzamanbein et al.
2018) from estimating only one time window to estimate many time windows
simultaneously, over the given time era. Dependence structures in the estimation
will be defined in both space and time, we call it spatio-temporal dependence
(Blangiardo & Cameletti 2015). Such interpolation can be performed with a
spatio-temportal Guassian Markov random field. Parameter estimation will
be performed with Markov chain Monte Carlo (Metropolis et al. 1953), where
methods as Crank Nicolson Langevin will be used (Cotter et al. 2013, Beskos
et al. 2008).

Land cover reconstructions are needed in works such as (Strandberg et al. 2014),
which investigate how anthropogenic deforestation impacts climate change. Thus,
complete data regarding regional vegetation is needed. Spatial interpolation
with compositional data has been done before (e.g. Paciorek & McLachlan
2009, Billheimer et al. 2001, Tjelmeland & Lund 2003). In particular, a model
with similar pollen data was implemented by Pirzamanbein et al. (2018). This
model will serve as a foundation for the model developed in this thesis.

1.2 Aim and limitations

The main goal of this project is to, with spatial statistics and the Crank Nicolson
Langevin method, reconstruct land cover in Europe from a given pollen data set.
With a proper model we want to present a final reconstruction of the land cover
and evaluate the model. We want to extend the previous model (Pirzamanbein
et al. 2018) by

• considering temporal and spatial data simultaneously and

• implementing a Crank Nicolson Langevin method to estimate the spatio-
temporal structure.
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The aim of this thesis is practical rather than theoretical. The purpose here is
not to mathematically prove any methods, the reader will find such results in
the references.

1.3 The data set

The project will be based on a pollen data set from Landclim II.1 The pollen
data was gathered from lakes and bogs around Europe. Corrections for some
biases caused by e.g. different fall speeds and production rates of pollen, have
been performed by (Trondman et al. 2015).

The data spans from present time, 1950 CE, until the most recent Ice Age,
roughly 11700 years ago. The data is given at 25 intervals during this time
period. The midpoint of each time interval is used as time indexing for the
modelling. Hence we use time points with start at year 50 until year 11500
before present time. The time steps are irregular. Time steps closest to modern
time are smallest at 175 years, then they are increasing in length up to 500
years, for the earliest time steps.

In the space-plane, the data is divided into 1◦×1◦ longitude/latitude grid cells.
A space plane at one time point will be called a time window. There are almost
400 unique (1◦ × 1◦)-grid cells containing pollen data. However, each grid cell
does not always have values for every time window. In total there are 7663 data
points or observations in the time- space plane.

In figure 1, one pixel for all time windows is visible, the red circles in figure 2
specifies which pixel. Note how the time line in figure 1 is reversed, i.e., starts
at present time and goes backwards in time. Here we see how there are more
time points closer to modern time. One can also see that this time series is not
complete since there is one sample missing at 8500 years before present. The
observations are on compositional form i.e., the three vegetation categories in
each pixel are represented by a value in the interval (0, 1) and the three values
sum up to one. All observations in the time window specified with the dashed
red line in figure 1, are illustrated in figure 2.

1Landclim project, funded by SRC and published in the PANGEA database.
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Figure 1: The time series of the three vegetation values for the circled pixel in
figure 2. Note that the time line on the x-axis is reversed, i.e., starts at present
time and ends in the earliest time era at 11500 years before present time. The
dashed red line marks the time window shown in figure 2.

Figure 2: An illustration of pollen data from the time window represented with
the dashed red line in figure 1. The three vegetation categories have values on
compositional form. The red circles indicate the pixel illustrated in figure 1.
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2 Model

We are going to set up a statistical model to estimate a reconstruction, η, of the
land cover. To measure how good the estimated reconstruction is, a probabilistic
comparison will be done with the given observations, y, of the pollen data set,
see Section 2.3.

The reconstruction η, discussed more in Section 2.4, consists of an abstract
x-field with spatio-temporal structure and mean value coefficients β which will
be discussed in Sections 2.5 and 2.7 respectively. Additional parameters needed
for the reconstruction will be presented along the way. For the abstract x-
field, there will be a detailed description of its covariance matrix, wherein the
spatio-temporal structure lies, as accounted for in Section 2.6.

The focus throughout Section 2 will both be on explaining the role of each
parameter of the model but also to present their parameter distributions, which
will be of importance in Section 3, where the estimation of the parameters will
be described.

2.1 Compositional data

There are Nobs number of observations in y, which each have D = 3 different
vegetation categories. The observations, y, will consequently be of size (Nobs ×
D). One observation will represent one pixel having two space coordinates and
one time coordinate.

The observation values for the vegetation categories are on a compositional
form. Hence, the value that represents each class lies in the interval (0, 1) and
the three class values for each pixel sum up to one. If ys = (ys,1, ys,2, ..., ys,D),
where s = 1, ..., Nobs indicates the site, then

ys,k ∈ (0, 1) and

D∑
k=1

ys,k = 1.

2.2 The link function as the additive log-ratio transform
(ALR)

When we do estimations for the reconstruction, η, we do not want to have any
limitation on η such as those caused by the compositional data. Instead we
want ηi ∈ R. Since the D number of compositional fields sum up to one, it is
sufficient to only estimate d = D − 1 fields. To go from the reconstruction, η,
with d fields, to a reconstruction, z, on compositional form with D fields, we
have a link function

f(η1, ..., ηd) = z1, ..., zd, zD, f : Rd 7→ [0, 1]D.

5



There are many options for this link function. Here we follow Pirzamanbein
et al. (2018) and use the additive log-ratio transform

zi = f(η) =


exp ηi

1+
∑d
i exp ηi

for i = 1, ..., d

1
1+

∑d
i exp ηi

for i = D
, and (1)

ηi = f−1(z) = log
zi
zD

for i = 1, ..., d. (2)

2.3 Dirichlet distribution

It will be crucial to have a measure of how good the reconstruction, z, is, i.e.,
how well it matches the observations, y. This measure will be a probability. We
will assume the observations y, to be independent draws from a multivariate
Dirichlet distribution (Pirzamanbein et al. 2018), conditioned on the latent field
z. Hence y|z, α ∼ Dir(αz), where α is a Dirichlet scale parameter. The
Dirichlet probability density function for a single observation is given by

p(ys|α, zs) =
Γ(α)∏D

k=1 Γ(αzs,k)

D∏
k=1

y
αzs,k−1
s,k , α > 0. (3)

The assumption that each observation is independent, conditioned on the latent
field z, gives the following total probability for all of the observations

p(y|α,z) =

Nobs∏
s=1

p(ys|α, zs). (4)

The scale parameter α, acts as an inverse variance parameter, V (y) ≈ 1/α, with
a low value of α indicating more uncertainty in the observations. We assume a
gamma prior for α to get a Bayesian hierarchical model. Hence the parameter
can be drawn from

α ∼ Γ(aα, bα). (5)

Due to lack of intuition for α, the priors will be set to uninformative values;
aα = 1.5, bα = 0.1 (Pirzamanbein et al. 2018).

2.4 The reconstruction, η

The reconstructed field, ηall, will consist of two main parts; the spatiotemporal
structure, x, and a mean parameter, Bβ. We have the complete estimated field
as

ηall = x+Bβ. (6)
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If N is the total number of pixels to be estimated, the components ηall, x and
Bβ will be of size (Nd× 1). Figure 3 shows how all pixels in x are stored and
sorted after spatial, temporal and vegetation category indexing. Both x and
Bβ will be further discussed in Sections 2.5 and 2.7.

The number of observed pixels, Nobs, is smaller than the total number of pixels,
i.e., Nobs ≤ N . Whenever we have a full reconstructed field ηall, we need to
extract only the observed pixels from it, in order to measure how good the
estimation is. We extract the observed pixels in the reconstruction with an
observation matrix A, as follows

ηobs = Aηall,

where A is a Nobsd×Nd sparse matrix with ones on the places where we have
observations. How to construct A is discussed in Appendix D. The reconstruc-
tion, ηobs, can be transformed to compositional form by z = f(ηobs), which will
be the conditioned latent field for the observations in the Dirichlet distribution
(3).

Figure 3: A diagram over the structure of x. The vegetation fields, d, is the
outer structure. The shortest horizontal lines in the cell t = 1 represent the
spatial field for the first vegetation layer in the first time window, followed by
the spatial field for the second time window, t = 2, etc.

2.5 Gaussian Markov random field, x

The reconstruction (6) has one term, x, representing the spatio-temporal struc-
ture. The structure will be modelled as a Gaussian Markov random field
(GMRF). Thus, the field, x, will be seen as draws from an underlying Gaussian
Random field where the dependence between pixels is based on a certain neigh-
bourhood structure including a Markov property, stored in an inverse covariance
matrix Q. We get the following prior model for x,

x ∼ N (0,Q−1), (7)

where Q−1 is the covariance matrix (Rue & Held 2005). It follows that the
probability density function for x will be p(x) ∝ exp(− 1

2x
TQx), and will later

on serve as a prior for the conditioned draws x|y.
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2.6 The precision matrix, Q

The covariance matrix, Q−1, in (7), or inverse covariance (precision) matrix,
Q, will consist of three parts; spatial structure, temporal structure and the de-
pendence between the fields describing different vegetation components. The
field dependence will be a d×d covariance matrix called ρx, which captures de-
pendency among and within the different fields. We denote the spatio-temporal
covariance Q−1

s,t . We assume the same dependence for all components and with

the Kronecker product we get Q−1 = ρx ⊗ Q
−1
s,t , or as a precision matrix,

Q = ρ−1
x ⊗ Qs,t (Pirzamanbein et al. 2018). Further, we assume a separable

spatio-temporal dependence in Qs,t. Hence, the precision matrix, Qs,t, can be
decomposed with a Kronecker product between two other precision matrices,
one consisting purely of spatial structure, Qs, and one of temporal structure,
Qt. The Kronecker product gives the full spatio-temporal precision matrix,
Qs,t = Qt ⊗ Qs (Blangiardo & Cameletti 2015). The full precision matrix,
including field dependence, then become

Q = ρ−1
x ⊗Qt ⊗Qs. (8)

We will in Sections 2.6.1 and 2.6.4 discuss construction of Qs and Qt and impor-
tant calculation rules that apply to the Kronecker product. Firstly, we declare
which prior assumptions are needed for the covariance matrix, ρx. The In-
verse Wishart distribution is a commonly used as conjugate prior for covariance
matrices and will hence serve as prior distribution for ρx. We draw

ρx ∼ IW (aρ, bρId×d), (9)

where Id×d is the d×d identity matrix. The parameters of the prior, aρ and bρ,
will be chosen as aρ = 1 and bρ = 10 (Pirzamanbein et al. 2018).

2.6.1 The precision matrices Qs and Qt

For a GMRF field defined on a regular grid, the precision matrix

Q =
1

κ2ν
(
κ4I + 2κ2G+GG

)
, (10)

approximates fields with stationary Matérn covariance function, r(h), where h
is all relative positions of two locations (Lindgren et al. 2011). Here, I is the
identity matrix, κ, ν some constants and G is a finite difference approximation
of the negative Laplacian (Lindgren et al. 2011). With one Qs for the spatial
structure and another Qt for the temporal structure we will have different con-
stants and matrices κs, κt, νs, νt, Gs and Gt for the two precision matrices. The
constant, ν, is given by ν = 2 − dκ/2 where dκ is dimension of the coordinate
space on which the GMRF is defined, e.g., dκ = 2 for space and dκ = 1 for time.
The interpretation of κ as range, and how to estimate the parameter, are given
in Section 2.6.3.
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2.6.2 The matrices Gs and Gt

The finite difference approximation of the negative Laplacian, G, represent the
spatial or temporal structure. Its size will equal the number of pixels to estimate;
henceGt is of size nt×nt andGs of size ns×ns. It will have number of neighbours
for each pixel at the diagonal and −1 at the locations where each pixel has its
neighbours. Hence the matrix will be symmetric and each row and column will
sum to zero. The positive parameter, κ2 > 0, guaranties that Q is a positive
definite matrix. The Gt matrix will have the following structure

Gt =



1 −1 0 . . . 0 0
−1 2 −1

0 −1 2
. . .

...
. . .

. . .

0 2 −1
0 −1 1


. (11)

The shape of Gs will be the same as for Qs, shown in figure 4 and will mainly
have fours on the diagonal since almost all pixels have four neighbours. To
create both Gt and Gs there are pre-written Matlab functions that we will use,
as is further described in Section 4.2.

2.6.3 Prior distribution for the scaling parameter κ

The scaling parameter, κ, decides how strong dependence there is between each
pixel and its neighbours. Low values of κ increases the dependence among
neighbours. For estimation of κ, we will use the following scaled exponential
probability density function as a prior

fκ(κ;λ) =

(
1

κ

)dκ/2−1

exp(−λκdκ/2), (12)

with dκ = 2 for the two dimensional spatial case and dκ = 1 for the one dimen-
sional temporal case, as suggested by Fuglstad et al. (2018). We have that λ is
a constant decided by

λ = − log(α0) ·
(

ρ0√
8ν

)dκ/2
,

where α0 = 0.01, ν = 2 − dκ/2. The range, ρ0, will be set to ρ0,s = 5 for the
spatial case and ρ0,t = 10 for the temporal case, in our model. The constant
λ is determined by considering how unlikely short ranges are i.e., the prior
probability of ranges less than ρ0 is α0 (Fuglstad et al. 2018).
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2.6.4 The Kronecker product

Taking the Kronecker product of two matrices A and B, of sizes mA × nA and
mB×nB , gives a mAmB×nAnB matrix. The product is performed as; if

A =

(
a b
c d

)
, then A⊗B =

(
aB bB
cB dB

)
. (13)

for any matrix B (Blangiardo & Cameletti 2015, Fernandes & Plateau 1998). It
follows that if A and B are symmetric, then A ⊗ B is symmetric. Some of the
properties which apply for the Kronecker product is the associative law and the
compatibility with ordinary matrix inversion and transpose

A⊗ (B ⊗ C) = (A⊗B)⊗ C,
(A⊗B)−1 = A−1 ⊗B−1, (14)

(A⊗B)T = AT ⊗BT .

A Choleskey factor, RA, of the Hermitian positive definite matrix, A, is a de-
composition on the form A = RTARA. If A is a Kronecker product A = B ⊗ C,
then

RA = RB ⊗RC , (15)

where the choleskey factors, RB and RC , can be calculated e.g. with the Matlab
function chol.m. Further, the determinant for two square matrices on Kronecker
form is given by

det(A⊗B) = det(A)nB det(B)nA . (16)

where nA and nB are the sizes of A and B.

Solving matrix equations including a Kronecker product in the matrix, can be
done without computing the full Kronecker product as in (13). Assume now
matrices A, B, and X of sizes mA × nA, mB × nB , and nB × nA. The solution
is then given by

(A⊗B) · vec(X) = vec(BXAT ), (17)

where vec(X) is a column stacked vector of the matrix X. The solution BXAT

will be of size mB ×mA, but column stacked, i.e., vec(BXAT ), which implies a
vector mBmA× 1. If A and B are quadratic, we can, using (14) and (17), solve
the following equation

(A⊗B)−1 · vec(X) = (A−1 ⊗B−1) · vec(X) = vec(B−1XA−T ). (18)

There exist algorithms (e.g. Fernandes & Plateau 1998), that solves (17)
and (18) for Kronecker products containing more then two matrices. The
Matlab functions kronmult.m and kronsolve.m, written by Matthias Kredler,
solves equation (17) and (18) based on algorithms from Fernandes & Plateau
(1998).
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2.6.5 Approximate minimum degree permutation, (AMD)

Before doing a Choleskey factorisation of a sparse matrix, it is very wise to do
an Approximate minimum degree of permutation (AMD). The AMD, permutes
rows and columns of the matrix in a beneficial way, which makes the calculations
for the Choleskey factorisation faster. The Matlab function amd.m, written by
Timothy A. Davis and others, could be used to extract a vector, p, indicating
how the matrix should be permuted. In this project, we will perform AMD on
the biggest and least sparse matrix GsGs. The index vector will be used to
reorder Gs, GsGs, and the observation matrix A, see more in Sections 4 and
4.3 how AMD is used in the model. In figure 4 we see the effects of reordering
Qs with help of the Matlab function amd.m. The number of elements in the
Choleskey factorisation with reordered Qs is reduced by a factor of ten.

Figure 4: The symmetric sparse matrix Qs (to the upper left) and its Choleskey
decomposition (to the upper right). Reordered Qs and Choleskey decomposed
Qs, according to the index vector p = chol(Qs), are given in the second row.

2.7 The mean coefficient Bβ

The parameter β, will be a mean value for each spatial field and represent the
regression component for the reconstruction (6). Since we have nt different
temporal fields and each field has d vegetation fields, there will be a total of
ntd, β coefficients, hence β will be of size ntd× 1. We will assume a Gaussian
distribution as a prior model for β,

β ∼ N (0,ρβ ⊗GtGt). (19)

11



Here we use ρβ , distinct from ρx, since we allow for different correlations in the
spatio-temporal field, x, and the mean regression coefficient, β. The covariance
matrix, ρβ , will be drawn in the same way as ρx, given in (9). The matrix
GtGt in (19) is equivalent with Qt(κt = 0), where κ = 0 corresponds to smooth-
ing of the β, essentially an assumption of a slowly varying average vegetation
composition.

The parameter β is of size (ntd× 1) whilst η and x is of size (Nd× 1). The B
matrix in (6) duplicates and maps the right βk to every xk in the reconstruction
(6). Hence B will be of size (Nd× dnt) and is created as

B = Intd×ntd ⊗ 1ns ,

where ns is the number of spatial pixels in one time window, Intd×ntd is an
identity matrix of size ntd × ntd, and 1ns is a column vector of ones of length
ns. An illustration of B is given in figure 5. The B matrix is a block diagonal
matrix with column vectors of ones on the ”diagonal” and zeros at the off-
diagonals.

Figure 5: The B matrix is a diagonal matrix with column vectors of ones at the
”diagonal” and zeros at all other places. Here the vertical lines at the diagonal
of B represent column vectors of ones. Each column of ones at the diagonal
maps one βk to one time window stored in x.

12



3 Estimating parameters with MCMC

In Section 2 we introduced all model components, including the parameters
x, β, α, κs, κt,ρx,ρβ , and y, and their probability distributions. Bayes theorem
will be used as a link between all of the parameters and stating their dependence
of each other. To get a good estimation of these parameters we will sample
them many times from their distributions, we use Markov chain Monte Carlo
(MCMC) with Metropolis Hasting proposals (Metropolis et al. 1953, Hastings
1970).

Section 3.1 gives a brief explanation regarding the principles of Markov Chain
Monte Carlo. It is followed by Section 3.2 where the target density for the
complete chain is described. In Section 3.3 with subsections, necessary theory
for the sampling is presented. The theory will be essential when designing
algorithms of how to update the parameters.

3.1 Markov Chain Monte Carlo, (MCMC)

The principle of Markov Chain Monte Carlo (MCMC) is to approximate a dis-
tribution by sampling many times from it. Each sample, uk, for an arbitrarily
parameter, is drawn from the assumed stationary distribution π(uk+1 ∈ A|uk).
Together, all samples for one parameter create a Markov chain {un}. Reversibil-
ity in the chain implies stationarity. Stationarity together with ergodicity im-
plies convergence for the mean of the chain. After convergence, the law of large
numbers guarantees that the mean of the chain goes towards the true value.
Hence the mean of the converged part of the chain, will be used as an estima-
tion for a parameter.

We will sample from a target density, for which we can not directly guarantee
stationarity. With a transition density for the Markov chain, we can make the
target density match the stationary distribution.

3.2 The target density for the Markov chain

The target distribution, π, for the MCMC estimation in our model, is the com-
plicated posterior distribution for all parameters given the observations, i.e.,
π(x, β, α, κ,ρ|y) = p(x, β, α, κ,ρ|y). With Bayes theorem, the target distribu-
tion can be written as

p(x, β, α,κ,ρ|y) ∝ p(y|x, β, α) · p(x, β, α,κ,ρ)

∝ p(y|x, β, α) · p(x, β|κ,ρ) · p(α,κ,ρ)

∝ p(y|x, β, α) · p(x|κs, κt,ρx) · p(β|ρβ) · p(α) · p(κs)p(κt)p(ρx)p(ρβ).
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Applying Gibbs sampling (Geman & Geman 1984), we divide the target density
into three main blocks, in order to sample each block separately. The main
blocks are

1. π(x) ∝ π(x, β, α, κ,ρ|y) ∝ p(x|κ,ρx) · p(y|x, β, α)

2. π(α,β) ∝ π(x, β, α, κ,ρ|y) ∝ p(β|ρβ) · p(α) · p(y|x, β, α)

3. π(κ, ρ) ∝ π(x, β, α, κ,ρ|y) ∝ p(x|κ,ρx) · p(β|ρβ) · p(κs)p(κt)p(ρx)p(ρβ).

All three blocks will be sampled with the Metropolis-Hastings algorithm but
with different kinds of proposals.

3.3 Metropolis-Hastings, (MH)

Markov chain Monte Carlo is a collection name for a set of different algorithms.
One very commonly used MCMC algorithm is the Metropolis-Hasting (MH).
The basic idea behind the Metropolis-Hastings (MH) algorithm is to generate
a proposal, x̂, given the previous sample xt, and then either accept or reject
the proposal with a certain probability αacc. The new sample, xt+1, thus be-
come

xt+1 =

{
x̂ with probability αacc

xt otherwise
.

The proposal is generated from your choice of transition density q(x̂|xt). Tran-
sition densities could be chosen in many ways. It is however important that
the function αacc is chosen such that the Markov chain, {x1, ..., xt, xt+1}, is re-
versible with respect to the target density π. A reversible chain implies that the
target density is stationary (Rosenthal 2010). The Markov chain must also be
ergodic to ensure convergence. The transition density together with the target
density π, creates the acceptance probability αacc according to

αacc(x̂|xt) = min

(
π(x̂)q(xt|x̂)

π(xt)q(x̂|xt)
, 1

)
. (20)

3.3.1 Transition density for a random walk

A standard proposal when doing MH is to use your previous sample plus some
noise, i.e., x̂ = xt + ξ, where ξ ∼ N (0, σ2) (Roberts et al. 1997). This is also
called a random walk. The transition density becomes

q(x̂|xt) ∝ exp

(
−1

2σ2
(x̂− xt)2

)
. (21)

For a random walk, it follows that the transition density becomes symmetric,
i.e., q(x̂|xt) = q(xt|x̂). A symmetric proposal implies that the acceptance rate
reduces to

αacc(x̂|xt) = min

(
π(x̂)

π(x)
, 1

)
. (22)
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It is important to find a good scaling for the proposal. A rule of thumb is to
scale the proposal variance σ2 in (21) so that the average acceptance rate is
around 1/4 (Gelman et al. 1996, Roberts et al. 1997). With a too low variance,
the chain converges and mixes slowly whilst a large variance leads to a high
proportion of the proposed moves being rejected.

3.3.2 Langevin diffusion

When considering other proposals than random walk for MH, the optimal pro-
posal scaling can be increased. With Langevin diffusion in the proposal, the
optimal asymptotic acceptance rate proved to be 0.57 (Roberts & Rosenthal
1998). The following stochastic partial differential equation (SPDE) defines a
diffusion with π as stationary density

dx = K∇ log π(x) +
√

2Kξ, (23)

where K is a symmetric positive definite matrix and ξ is Brownian white noise
i.e., ξ ∼ N (0, 1) (Roberts & Rosenthal 1998, Roberts & Stramer 2002, Rosenthal
2010). The SPDE is known to be reversible with respect to π and is further
more assumed to be ergodic (Beskos et al. 2008). More about conditions for
ergodicity of (23) is discussed in Roberts & Stramer (2002).

3.3.3 Metropolis adjusted Langevin algorithm, (MALA)

A common way of discretising differential equations is to use the forward Euler
step

dx

dt
≈ xt+1 − xt

h
= f(xt), (24)

where h is the step size and f is the diffusion to be discretised. Discretising
(23) with a forward Euler step, where we use the shorter notations x̂ = xt+1

and x = xt, gives
x̂− x
h

= K∇ log π(x) +
√

2Kξ. (25)

We set the step size to h = δ2/2, and rearrange the terms, which gives the
Metropolis adjusted Langevin algorithm (MALA)

x̂ = x+
δ2

2
K∇ log π(x) + δ

√
Kξ. (26)

The step size, δ2/2, in the last term, was evolved to its squared root, δ/
√

2, in
order to be on right scale for the variance of the proposal. The proposal is then
given by

x̂|x ∼ N (x+
δ2

2
K∇ log π(x), δ2K) (27)
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The preconditioner, K, can be chosen as any positive definite matrix. Common
choices are either the identity matrix or some approximation of the curvature in
log π, e.g. the expected Fisher information, which gives K−1 = −E(4 log π(x))
(Pirzamanbein et al. 2018). In Appendix A, you can read more about how the
acceptance rate is derived. One can also see how the preconditioner for MALA
becomes computational heavy when x is big. The MALA proposal will be used
as the update rule for parameters, α and β, corresponding the second block of
the stationary distribution in Section 3.2. In Section 3.4 we explain further the
specific proposal and acceptance rate for this.

3.3.4 Crank Nicolson Langevin, (CNL)

An alternative to the Metropolis adjusted Langevin algorithm, MALA, is instead
the Crank Nicolson Langevin (CNL) algorithm. For CNL, we need a specific
assumption for the stationary density, log π, in (23). We will work specifically
with the first block for the target density in Section 3.2,

π(x) = p(x|y) ∝ p(y|x)p(x), (28)

where the prior p(x) is recognised from Section 2.5 to be p(x) ∝ exp(− 1
2x

TQx)
and the likelihood p(y|x) is the Dirichlet distribution in (4). We will introduce
the following expression for p(y|x),

p(y|x) ∝ exp(−Φ(x)), (29)

where Φ(x) can be seen as a potential (Cotter et al. 2013, Beskos et al. 2008).
The posterior in (28) can then be written as

p(x|y) ∝ exp(−Φ(x)− 1

2
xTQx). (30)

We let p(x|y) in (30) be the stationary density, π, in (23). We derive ∇ log π =
Qx+∇Φ(x) and get the following SPDE for CNL

dx = −K(Qx+∇Φ(x)) +
√

2Kξ. (31)

In the same way as for MALA, the Crank Nicolson Langevin method (CNL)
aims to find a good Metropolis Hasting proposal by discretisation of a SPDE.
This time we discretise (31) but with a Crank Nicolson step. A Crank Nicolson
step takes an Euler’s half forward and half backward step i.e.,

dx

dt
≈ x̂− x

h
=

1

2
[f(x) + f(x̂)],

with the the shorter notations x = xt and x̂ = xt+1 (Crank & Nicolson
1947). Discretising only the linear part, Qx, in (31) with a Crank Nicolson
step gives

x̂− x
h

= −K
(
Q

1

2
(x+ x̂) +∇Φ(x)

)
+
√

2Kξ,
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whereas for the non linear part, ∇Φ(x), we used the Euler forward step (Cotter
et al. 2013, Beskos et al. 2008). Rearranging of the terms gives

x̂ = x+ h

(
−K

(
Q

1

2
(x+ x̂) +∇Φ(x)

))
+
√

2hKξ,

where the step size, h, in the last term, was evolved to its squared root in order
to be on right scale for the proposal variance. Rearranging the terms again
gives

(I +
h

2
KQ)x̂ = (I − h

2
KQ)x− hK∇Φ(x) +

√
2hKξ. (32)

For the preconditioner, K, in (32), we consider either K = I or K = Q−1.
The first choice will be referred to as Crank Nicolson Langevin (CNL), and
the other as preconditioned Crank Nicolson Langevin (pCNL). With CNL, the
Kronecker form of big matrices cease due to the (I + h

2Q)-term, hence pCNL is
a better choice where the Kronecker form of the big matrices in preserved, see
Appendix B.1. Therefore we will continue deriving the transition density only
for pCNL. With K = Q−1 we derive (32) in Appendix B.2 and get the following
proposal

x̂|x ∼ N (ζx− (1− ζ)Q−1∇Φ(x), ω2Q−1), (33)

where

ω =
2
√

2h

2 + h
, ζ =

√
1− ω2.

The acceptance rate for the pCNL proposal (33), is derived in Appendix B.3
and the gradient, ∇Φ(x), is derived in Appendix B.4. The pCNL proposal with
corresponding acceptance rate, will be the update rule for the spatio-temporal
field x.

3.3.5 Step size for proposals

In the MALA and CNL proposal, there are discrete time steps, δ and h, that
must be defined. The step length scales the proposal in a desired way. With
a too small step the chain converges slowly whilst a large step leads to a high
proportion of proposed moves being rejected. The step length is adjusted to
obtain the target acceptance rate, which for MALA and CNL is α∗ = 0.57. A
reasonable step length is received with the following adaptive MCMC update
rule (Pirzamanbein et al. 2018)

ht+1 = ht +
1

t1/2
(αacc − α∗) (34)

where t is the index of which iteration we are at and αacc is the acceptance
probability at the current step.
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3.4 Update of β and α with MALA

We will use MH sampling with a MALA proposal to update α and β. Hence
the second block in section 3.2,

π(β, α) ∝ p(β|ρβ) · p(α) · p(y|x, β, α), (35)

will serve as target distribution for the MALA proposal. The MALA be-
comes

θ̂|y ∼ N
(
θT +

δ2

2
K(θ)∇ log π(β, α), δ2K(θ)

)
,

where θT = [βT α] is a vector. The three priors in (35) are recognised as (19), (5)
and (3). The gradient ∇ log π(β, α) and preconditioner, K(θ), as the expected
fisher information, were computed by Pirzamanbein et al. (2018). The step
length, δ, is updated as in (34). Acceptance rate is accounted for in Appendix
A, where we also discuss why MALA not is a good choice for updating of the
x-field in our model.

3.5 Update of parameters κs, κt,ρx and ρβ

The last block to update from Section 3.2 is

3. π(κ, ρ) ∝ p(x|κs, κt,ρx) · p(β|ρβ) · p(κs)p(κt)p(ρx)p(ρβ). (36)

This block can be divided into three smaller blocks

3. (a) π(κs,ρx) ∝ p(x|κs, κt,ρx) · p(κs)p(ρx)

(b) π(κt,ρx) ∝ p(x|κs, κt,ρx) · p(κt)p(ρx)

(c) π(ρβ) ∝ p(β|ρβ) · p(ρβ).

Block 3.a and 3.b, will be updated with the same Metropolis Hastings random
walk proposal, described in Section 3.5.1. The target density, π(ρβ), in block
3.c will be updated at every iteration with draws from its posterior distribution,
which is stated in Appendix C.1

3.5.1 Proposal for κ,ρx

We will work with the two posteriors p(κ|x) ∝ (x|κ,ρx)p(κ) and p(ρx|x) ∝
(x|κ,ρx)p(ρx). In Appendix C we see how we can marginalise over ρx by
p(κ|x) ∝

∫
(x|κ,ρx) ·p(κ)p(ρx)dρx. Therefore only p(κ|x) will be sampled with

a Metropolis-Hastings random walk, whilst p(ρx|x, κ) will be updated each time
κ gets updated. We use a MH random walk in log-scale which gives the following
proposal for κ

log κ̂ = log κi + h (37)
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where h ∼ N (0, σ2
κ). The variance, σ2

κ, is updated in a similar way as in
(34) and with target acceptance rate α∗ = 0.4 (Pirzamanbein et al. 2018).
The acceptance rate for the proposal can be found in Appendix C. If κ̂ gets
accepted, we update ρx by a drawing from the inverse Wishart distribution
given in Appendix C, equation (52).
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4 Implementations of the pollen data model with
parameter estimation

In this section we provide the reader with more practical details concerning how
the model was implemented. Below follows a list representing the implementa-
tion of the complete model with parameter estimation

1. Divide data into model and validation set.

2. Create Gs and Gt based on grids to which pollen data should be imple-
mented.

3. Create A based on model data, see Appendix D.

4. Reorder Gs, GsGs and A based on the vector p = amd(GsGs).

5. Initialise priors and parameters

6. Perform MCMC for M iterations. Here M = 106.

(a) Save desired parameters. Here every 1000th sample was saved due
to memory management.

(b) Iteratively calculate mean and variance of desired parameters.

(c) Calculate Q as in equation (8) and calculate R by equation (15).

(d) With CNL, update x.

(e) With MALA, update α and β.

(f) With MH-random walk, update κs.

(g) With MH-random walk, update κt and ρx.

(h) Update ρβ .

7. Undo reorder of x̄

8. Create the final reconstruction ηall = x̄ +Bβ̄ and transform the recon-
struction to compositional form z = f(ηall) by equation (1).

9. Plot and validate the result.

Some of the steps in the list will be explained further in sections that follows.
For the initialisation in step 4, the x-field and the β parameters were initialised
as draws from N (0, 0.1), remaining parameters were initialised with some ar-
bitrarily but reasonable values. Details for the implementation of step 5.d will
be accounted for in Section 4.5. Steps 5.e-5.h were implemented according to
algorithms described in Section 3.4 and 3.5
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4.1 Validation

In order to measure how well the model performs, the data set was divided
into model data and validation data. To measure the difference in temporal
and spatial estimation, two complete time windows and 19 complete time series
were picked out for validation. Out of the 25 time windows, the 7th and 18th
time window were picked out for validation. The 19 time series were picked at
random. In total, 12.78 % of all pollen data was used for validation.

After estimations based only on the model data, the validation data set was
used for comparison. The comparison was done by computing the average com-
positional distances (ACD). The ACD, for each location is given by

ACD(η, u) =
(
(η − u)TJ−1(η − u)

)1/2
where η is the reconstruction, u is the additive log-ratio transform of the valida-
tion observation, u = f−1(yval) and J is a d× d matrix with 2 on the diagonal
and 1 on the off-diagonals (Pirzamanbein et al. 2018). The ACD was then
averaged over all locations.

4.2 Creating Gs and Gt

Two separated grids were created, one two-dimensional spatial grid and another
one-dimensional temporal grid. The size of the spatial grid was created out of
the minimum and maximum longitude and latitude in the pollen data set. We
got the sizes

ns1 = maxlat −minlat + 1 = 70.5− 35.5 + 1 = 36

ns2 = maxlong −minlong + 1 = 47.5− (−10.5) + 1 = 59

ns = ns1 ∗ ns2 = 36 ∗ 59 = 2124.

A rectangular grid was created out of the two vectors (1, 2, . . . , ns1) and (1, 2, . . . , ns2).
The coordinates of this grid were then extracted by a Matlab function ndgrid.m,
to create the ns × ns Matérn precision matrix Gs, with help of another pre-
written Matlab function matern_prec_matrices.m created by Johan Lindström.
The pollen data span over the time maxtime = 11500 and mintime = 50, which
is given in years before present time 1950 CE. For the temporal grid, we chose
a time step of 100 years. The total number of time windows to estimate be-
came

nt = maxtime/100 + 1. (38)

The nt×nt matrix Gt is then created by pre-written Matlab function createG.m

by Johan Lindström.
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4.3 Reordering of matrices Gs, GsGs and A

As shown in Section 2.6.5, the AMD permutation speeds up the complete model
estimations by about ten times, which is why this is something important to
include in the implementation. AMD permutation was performed on the matrix
GsGs of size ns × ns. With the index vector, p = amd(GsGs), we rearranged
the matrices as Gs(p, p) and GsGs(p, p). The observation matrix A, also needed
to be reordered, is however of size Nobsd×Nd. Hence the vector p of length ns
needs to be extended, which was done in the following way

1. p = amd(GtGt)

2. pt,s = p

3. Loop nt − 1 times:

(a) pt,s = [pt,s p+ length(pt,s)]

4. pt,s,d = [pt,s pt,s + length(pt,s)]

The columns of A was then reordered with this new indexing. After the MCMC
estimation, the field x was reordered back to normal order.

4.4 Iterative update of mean and variance

Estimation with MCMC of fields and parameters, were done 106 times, hence
it became impossible to store all samples. We implemented an iterative update
of mean and variance for the parameters in following way

x̄t+1 = x̄t + (xt+1 − x̄t)/t,
σ2
t+1 = σ2

t +
(
(xt+1 − x̄t) ∗ (xt+1 − x̄t+1)− σ2

t

)
/t,

with t being iteration after burn-in.
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4.5 Implementing CNL-function

All necessary calculations for the CNL proposal for the x-field have been given
in previous sections. However, a summary below of the necessary steps in the
CNL algorithm will be presented. At one iteration for the MCMC, the CNL
function consist of the following steps

1. Calculate ηobs = A(x+Bβ).

2. Calculate z = f(ηobs) by equation (1).

3. Calculate Φ(x) = − log p(y|z(x), α) by equation (4) and ∇Φ(x) as in
Appendix B.4.

4. Draw ξ ∼ N (0, 1)

5. Calculate x̂ by (44) in Appendix B.2.

6. Calculate η̂obs = A(x̂+Bβ).

7. Calculate ẑ = f(η̂obs) by (1).

8. Calculate Φ(x̂) by (4) and ∇Φ(x̂) as in Appendix B.4.

9. Calculate αacc as described in Section B.3.

10. Update hi+1 according to (34) for the next iteration.

11. Return x̂ with αacc probability, else return x.
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5 Result

Because of poor convergence of the parameters κs, κt and α, three different
model versions were tried

• Model A: All parameters were estimated

• Model B: Parameter α was fixed.

• Model C: Parameters κs and α were fixed.

When fixating parameters, we used results from Pirzamanbein et al. (2018);
κs = 0.22 and α = 10.22. In section 5.1, convergence plots for all parameters
are presented. In Section 5.2 the reconstructions of all models are illustrated
and in Section 5.3, model validation is discussed. Since Model A had the best
ADC, the focus will lie on that model.

5.1 Parameters

In figure 6, the convergence of the three parameters κs, κt and α, for the three
models A, B and C are shown. For Model A, the parameter α, initially reaches
a high magnitude before decreasing again. The α-parameter shows good mixing
even though convergence is slow. Both κ parameters show poor mixing and
poor convergence. The parameter κs increases to a value, > 1, whilst κt goes
towards something closer to 0.

Because of the high α-value in Model A, Model B were designed with fixed
α = 10.22. Another model, Model C, was then designed to try the model with
κs fixed at a relatively low value κs = 0.22, here α was kept fixated at α = 10.22.
For Model B, the parameter, κs, gets smaller but is still around 1, whilst κt gets
to an even lower value than for Model A. For Model C, we succeed in raising
the κt-value. No parameters manage to converge for any of the models.

Figure 7 shows the convergence and mixing for ρx, ρβ , one x-pixel, and one
β-value, for Model A. There is good mixing in both x and β. The covariance
matrix, ρx, reaches a peak relatively fast but is then sinking some. This could
be a consequence of the non convergence of the parameters κs and κt, which ρx
is conditioned on. The covariance matrix, ρβ , only conditioned on β, converges
immediately. In the plot for ρβ , the first iteration is cut out. In figure 8,
adaptive step lengths for CNL and MALA and the proposal variance for κs and
κt are illustrated.

The mean of the parameters and 95 % confidence interval (CI) is shown in table
1 for Model A. To illustrate how strong the spatial and temporal dependence
become for Model A, one can study figure 9, where the spatial and temporal
dependence for the middle pixel and the middle time window are given.
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Figure 6: Parameter estimation for the three models A, B and C.

Figure 7: Parameter estimation for every 1000th sample for Model A. In the
plots for ρx and ρβ , the diagonal elements are shown with blue and yellow
colour and the off-diagonal element is shown in red.
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Figure 8: Adaptive step sizes for proposals in Model A.

Table 1: Parameter estimation for Model A; mean and 95 % confidence interval.
Parameter mean (CI)

α 199 (145, 253)
κs 1.46 (1.29, 1.64)
κt 0.17 (0.15, 0.19)
ρx 91.2 36.3 (85.2, 97.3) (33.3, 39.3)

36.3 96.3 (33.3, 39.3) (91.8,1 00.9)
ρβ 3.38 · 10−2 3.47 · 10−4 (1.61, 5.18) · 10−2 (−1.22, 1.28) · 10−2

3.47 · 10−4 3.45 · 10−2 (−1.22, 1.28) · 10−2 (1.62, 5.26) · 10−2

Figure 9: Covariance for time (to the left) and space (to the right) for Model
A.
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5.2 Reconstruction

Figure 10 shows the reconstruction of one time window for Model A, together
with the model data. The high value of α implies low uncertainty in the ob-
servations. This, together with low spatial dependence due to high value of κs,
causes little smoothness in the fields. In figure 11 and 12 the corresponding
reconstructions for model B and C are shown for comparison.

Figure 10: The reconstruction, z, in one time window for Model A together
with the model data.

Figure 11: The reconstruction, z, in one time window for Model B.
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Figure 12: The reconstruction, z, in one time window for Model C

In figure 13 one can see the time series for the z-reconstruction in one pixel
for Model A. The high value of α implying high certainty in the observations,
together with high temporal dependence due to the low value of κt, are causing
good smoothness in the reconstruction where the curve hits almost every obser-
vation. The reconstruction comes close to the two validation data points marked
as circles in the plots. In figure 14 and 15 the corresponding reconstructions for
model B and C are shown for comparison.

Figure 13: The reconstruction, z, in a time series for one pixel for Model A.

Figure 14: The reconstruction, z, in a time series for one pixel for Model B.
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Figure 15: The reconstruction, z, in a time series for one pixel for Model C.

In figure 16, one can see the mean parameter β, in the reconstruction z, for
Model A. In figure 17, the variance for the x-fields in one time window is visible.
Figure 17 shows lower variance in the observed pixels and higher variance in the
pixels at the edges, which is reasonable.

Figure 16: The mean, β, in the reconstruction z for Model A.

Figure 17: Variance for the x-fields in one time window for Model A.
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5.3 Validation

In table 2, validation for the three models are shown. Model A has the best
total ACD for the validation data, 0.71. The ACD = 1.04 for the validation
data in the 19 time series, is much higher than the ACD = 0.51 for the 2 time
windows. This can be explained by the model finding it easier to adjust to the
temporal structure. Hence all validation data having neighbours in the time
domain will be better estimated. The low ACD for the model data for Model
A, confirms that the model has very little uncertainty in the observations, hence
coming close to the observation values, but still performs well out of sample,
showing good ability to generalise.

Table 2: ACD of the reconstructions for the three models.
Model A Model B Model C

ACD for validation data in the 19 time series 1.04 1.05 1.01
ACD for validation data in the 2 time windows 0.51 0.79 1.20
ACD for all validation data 0.71 0.89 1.13
ACD for the model data 0.16 0.73 0.77

Figure 18 and 19 shows the reconstruction z, for one time window and one time
series with validation data for Model A.

Figure 18: The reconstruction, z, in one time window for Model A, together
with validation data.
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Figure 19: The reconstruction, z, in a time series for one pixel for Model A
together with validation data.
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6 Discussion and conclusions

6.1 Crank Nicolson Langevin method

The Crank Nicolson Langevin method works well for big data problems, such
as the spatio-temporal data set in this project. The preconditioned Crank Ni-
cololson Langevin proposal makes it possible to work with covariance matrices
on Kronecker form which simplifies many matrix computations. The x-fields
show a good mixing during the estimation and the fields adopt to what ever
parameters the model proposes, as seen in the different reconstructions made
by model A, B, and C.

One disadvantage with the Crank Nicolson Langevin method is that it is some-
how complicated to derive and implement. There is a lot of details in the
derivations of the acceptance rate and the smallest mistake will be devastating
when implementing the model. For example, an error in signs for the acceptance
rate did not have any particular effect for only temporal modelling but when
expanding the model to spatial domain or spatio-temporal domain, this error
caused big issues and was hard to recognise.

6.2 Convergence of parameters κs, κt and α

The three parameters κs, κt and α, show poor mixing and converge very slowly
or not at all. Some actions were taken to improve the convergence. The variance
separation, 1/κ2ν , for Q and the more precise prior, λ, for the drawings of κ,
are two examples. It did improve the convergence for κs and κt a little. The
problem was also tried to be avoided by fixating those parameters with bad
convergence, as was done in Model B and C. However, those models did not
give any better results.

6.3 The average compositional distance

The reconstruction and the validation data had an average compositional dis-
tance of 0.71. When splitting the validation data into the two groups, time
windows and time series, the two ACD:s became 0.51 and 1.04 respectively.
This is a noticeable difference. The model tends to choose either strong de-
pendence in the spatial or the temporal domain, when it estimates parameters.
Here it chooses the temporal domain primarily for parameter estimation. Since
there is a clear structure in the data, with the data coming in time windows,
one might suspect that this could influence the estimations. We tried to loosen
up the structure by removing 50 % of the observations at random. This gave
no particular effect on the result.
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6.4 Further extensions of the model

One challenge for future work is of course to find better methods of estimating
the parameters κs, κt and α. The parameter α which became very large, could
e.g. imply that the assumption of Dirichlet observations is bad. Except from
improving convergence of κs, κt and α, there are other things one also might
think of as possible extensions for this model. That could be adding some
covariates, e.g. elevation, to the model. The model could also be extended to
have more vegetation categories. Then one might want to consider another link
function than the additive log-ratio, which does not allow for zero-values in any
of the vegetation groups. Zero-values would also be a problem for the Dirichlet
distribution.
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A Acceptance rate for MALA

With the notations K = I−1 = I−1/2I−1/2 for the preconditioner, we rewrite
the MALA proposal in (26) as

x̂ = x+ δI(x)−1/2

(
δ

2
I(x)−1/2∇ log π(x) + ξ

)
. (39)

For the acceptance rate αacc = π(x̂)q(x|x̂)
π(x)q(x̂|x) we identify

q(x|x̂)

q(x̂|x)
=

|I(x̂)|1/2 exp
(
− 1

2δ2 [x− µ(x̂)]TI(x̂)[x− µ̂(x)]
)

|I(x)|1/2 exp
(
− 1

2δ2 [x̂− µ(x)]TI(x)[x̂− µ(x)]
) (40)

where µ(x̂) = x + δ2

2 I(x)−1∇ log π(x). Hence computations of the following
quantities are needed

I(x), |I(x)|1/2, I(x)−1/2, I(x̂), |I(x̂)|1/2. (41)

As mentioned before, we use the expected Fisher information as a precondi-
tioner. With π(x) = p(x|y) ∝ p(x)p(y|x), the Fisher information will be on
the form I = −4 log p(x)p(y|x) = Q +4 log p(y|x). This will be computa-
tional heavy when x, hence I is big, since all matrices and determinants in (41)
must be computed. The computations becomes even more heavy when I does
not have a Kronecker structure since the Kronecker form of Q ceases with the
addition I(x) = Q+4 log p(y|x).

B More about Crank Nicolson Langevin

B.1 Why pCNL instead of CNL

For CNL with preconditioner K = I, we get from (32) the CNL proposal

(I +
h

2
Q)x̂ = (I − h

2
Q)x− h∇Φ(x) +

√
2hξ. (42)

where ξ ∼ N (0, 1). This proposal implies that we have to solve the equation

system Q̃
−1
x, where Q̃ = (I + h

2Q), does not have the Kronecker structure.
Hence we cannot take advantage of the solutions for the matrix equations with
Kronecker product in (17) and (18). With pCNL we will see how the Kronecker
formation in Q does not get disrupted by any additions.

B.2 Calculations for pCNL proposal

With K = Q−1, equation (32) is written as

2 + h

2
x̂ =

2− h
2

x− hQ−1∇Φ(x) +

√
2hQ−1ξ,
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which then can be rewritten as

x̂ =
2− h
2 + h

x− 2h

2 + h
Q−1∇Φ(x) +

2
√

2hQ−1

2 + h
ξ. (43)

For further calculations we find help in the following shorter notations

ω =
2
√

2h

2 + h
, ω2 =

8h

(2 + h)2
, ζ =

√
1− ω2 =

2− h
2 + h

.

With the shorter notations above, equation (43) is

x̂ = ζx− (1− ζ)Q−1∇Φ(x) + ω

√
Q−1ξ,

alternatively, using the Choleskey factorisation Q−1 = R−1R−T ,

x̂ = ζx+R−1
(
−(1− ζ)R−T∇Φ(x) + ωξ

)
. (44)

The proposal for pCNL becomes

x̂|x ∼ N (ζx− (1− ζ)Q−1∇Φ(x), ω2Q−1), (45)

where all computations can utilise the Kronecker structure of Q.

B.3 Acceptance rate for pCNL

To be able to calculate the acceptance rate αacc = π(x̂)q(x|x̂)
π(x)q(x̂|x) . Due to symmetry

in the transition density we have

x|x̂ ∼ N (ζx̂− (1− ζ)Q−1∇Φ(x̂), ω2Q−1). (46)

The form of a multivariate normal distribution is

fX(x) ∝ exp

(
1

2
(x− µ)TΣ−1(x− µ)

)
,

where µ is the mean and Σ the covariance matrix. With µ and Σ as in (46) we
get

Σ−1 =
1

ω2
Q

and
(x− µ) = x− ζx̂+ (1− ζ)Q−1∇Φ(x̂)

The transition density thus becomes

q(x|x̂) ∝ exp

(
− 1

2ω2
[x− ζx̂+ (1− ζ)Q−1∇Φ(x̂)]TQ[(x− ζx̂+ (1− ζ)Q−1∇Φ(x̂)]

)
,
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We will continue working with the log scaled density, log q(x|x̂), since this is
more convenient. Before we continue, we remind ourselves thatQ is a symmetric
matrix, thusQ = QT , and x̂TQx is a scalar, thus x̂TQx = (x̂TQx)T = xTQx̂.
Continuing the derivation of log q(x|x̂) we get

log q(x|x̂) ∝ − 1

2ω2

(
(x− ζx̂)TQ(x− ζx̂)

+ 2(1− ζ)(x− ζx̂)TQ
(
Q−1∇Φ(x̂)

)
+ (1− ζ)2

(
Q−1∇Φ(x̂)

)T
Q
(
Q−1∇Φ(x̂)

))
.

Developing the matrix multiplication in the first line and cancelling QQ−1 in
the second and third lines give

log q(x|x̂) ∝ − 1

2ω2

(
xTQx− 2ζxTQx̂+ ζ2x̂TQx̂

+ 2(1− ζ)(x− ζx̂)T∇Φ(x̂)

+ (1− ζ)2∇Φ(x̂)TQ−1∇Φ(x̂)
)
.

From symmetry in the proposals we have

log q(x̂|x) ∝ − 1

2ω2

(
x̂TQx̂− 2ζxTQx̂+ ζ2xTQx

+ 2(1− ζ)(x̂− ζx)T∇Φ(x)

+ (1− ζ)2∇Φ(x)TQ−1∇Φ(x)
)
.

Subtracting the two the log densities of the proposals gives

log q(x|x̂)− log q(x̂|x) = − 1

2ω2

(
(1− ζ2)xTQx+ (ζ2 − 1)x̂TQx̂

+ 2(1− ζ)[(x− ζx̂)T∇Φ(x̂)− (x̂− ζx)T∇Φ(x)]

+ (1− ζ)2[∇Φ(x̂)TQ−1∇Φ(x̂)−∇Φ(x)TQ−1∇Φ(x)]
)
.

Further simplifications can be done for the first line with 1−ζ2
ω2 = 1. For second

line we note that

1− ζ
ω2

=
1

2
+
h

4
,

ζ(1− ζ)

ω2
=

1

2
− h

4
, (47)

which we use to simplify it down (some computations steps are shortened out

from the text). In the third line we use (1−ζ)2
ω2 = h

2 , and with Q−1 = R−1R−T

we can rewrite several expressions using euclidean norms. With all this we
get

log q(x|x̂)− log q(x̂|x) = −1

2
xTQx+

1

2
x̂TQx̂

+
1

2
(x− x̂)T (∇Φ(x) +∇Φ(x̂)) +

h

4
(x̂+ x)T (∇Φ(x)−∇Φ(x̂))

− h

4
‖R−1∇Φ(x̂)‖22 +

h

4
‖R−1∇Φ(x)‖22.
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We notice that the first line corresponds to log p(x) − log p(x̂), which cancel
against the log p(x̂)/ log p(x) term in the acceptance rate, giving

log
p(x̂)q(x|x̂)

p(x)q(x̂|x)
=

1

2
(x− x̂)T (∇Φ(x) +∇Φ(x̂)) +

h

4
(x̂+ x)T (∇Φ(x)−∇Φ(x̂))

(48)

− h

4
‖Q−1/2∇Φ(x̂)‖22 +

h

4
‖Q−1/2∇Φ(x)‖22. (49)

The complete logged acceptance probability, with target density π(x) = p(x|y),
is given by

logαacc = log
p(x̂|y)q(x|x̂)

p(x|y)q(x̂|x)
= log

p(y|x̂)p(x̂)q(x|x̂)

p(y|x)p(x)q(x̂|x)
= log

p(y|x̂)

p(y|x)
+ log

p(x̂)q(x|x̂)

p(x)q(x̂|x)
,

where the first term is

log
p(y|x̂)

p(y|x)
= −Φ(x̂) + Φ(x),

and the second term is given in the two lines (48) and (49).

B.4 Gradient of Φ(x)

To derive ∇Φ(x), we start with clarifying how the log-density of a Dirichlet
distribution looks

−Φ(x) = log p(y|α,z(x)) = log

Nobs∏
s=1

(
Γ(α)∏D

k=1 Γ(αzs,k)

D∏
k=1

y
αzs,k−1
s,k

)

=

Nobs∑
s=1

log Γ(α)−
Nobs∑
s=1

D∑
k=1

log Γ(αzs,k) +

D∑
k=1

(αzs,k − 1) log ys,k.

The elements of the gradient with respect to η (Pirzamanbein et al. 2018)
are

∂ log p(y|f(η), α)

∂ηs,k
=

D∑
l=1

(−αψ(αzs,l) + α log ys,l)
∂zs,l
∂ηs,k

(50)

where ψ(z) is the digamma function ψ(z) = d
dz log Γ(z) and the derivative of

the ALR-transform is

∂zk
∂ηi

=

{
zk(1− zk) if k = i,

−zkzi k 6= i
. (51)
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C The joint posterior for κ,ρx

For the posterior p(ρx|x, κ), we have the conjugate prior for ρx as given in (9).
The posterior hence becomes

ρx|, κ,x ∝ IW (aρI + xTQs,tx, N + bρ), (52)

where x is reshaped on the form (N × d) and Qs,t = Qt ⊗ Qs (Pirzamanbein
et al. 2018). The conjugacy makes it possible to marginalize over the covariance
matrix ρx and integrate it out from the joint posterior p(κ,ρx|x) (Pirzamanbein
et al. 2018). In this manner the posterior for κ|x becomes

p(κ|x) ∝
∫

(x|κ,ρx) · p(κ)p(ρx)dρx ∝
a
d·bρ
2

ρ |Qs,t|
d
2

|aρI + xTQs,tx|
N+bρ

2

· p(κs), (53)

The determinant |Qs,t|, is according to (16), given by

det(Qt ⊗Qs) = det(Qt)
ns det(Qs)

nt ,

where ns and nt are the length of the square matricesQs andQt. The acceptance
rate for the joint transition density q(κ̂, ρ̂|κ,ρ) = p(ρ̂|x, κ̂) · q(κ̂|κ) is given
as

αacc = min

(
1,

p(ρ̂|x, κ̂) · p(κ̂|x)

p(ρ|x, κ) · p(κ|x)
· p(ρ|x, κ) · q(κ|κ̂)

p(ρ̂|x, κ̂) · q(κ̂|κ)

)
= min

(
1,

p(κ̂|x)

p(κ|x)
· κ̂
κ

)
,

where p(κ̂|x) is given in (53).

C.1 Posterior for ρβ

The posterior for ρβ will be similar to the posterior ρx given in (52). The prior
for β in (19) gives the posterior

ρβ |β ∝ IW (aρI + βTGTt Gtβ, N + bρ), (54)

where β is reshaped on the form (nt × d).

D Creating the observation matrix A

The observation matrix A is created based on the indexing of the model data.
Unlike Gs and Gt where spatial and temporal indexing are separated, the obser-
vation matrix A store all indexing together. The original indices for the pollen
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data concerning longitude, latitude and time window are stored in vectors we
call ilat, ilon and iyear. It is more convenient to use indexing that starts at 1.
For spatial indices we will use

irow = ilat −minlat + 1 and

icol = ilon −minlon + 1.

For the indexing in time we also adjust to the new step length of 100 years. It
gives the following new indexing for the time windows

itime = min(floor((iyear −mintime)/100) + 1, nt − 1) (55)

where floor.m is a Matlab function that rounds the elements to the nearest
integers towards minus infinity. The indexing for the Nobs × N observation
matrix, A, was then created as

iA = irow + (icol − 1) ∗ ns1 + itime ∗ ns

Then a Nobs ×N sparse matrix A can be created with the pre-written Matlab
function sparse.m, which takes the vector iA and the sizes Nobs and N as input
parameters. The extended observation matrix A for d number of fields is then
created as the Kronecker product

A = Id×d ⊗A

Another observation matrix Aval was created and used for plotting of the vali-
dation data.

42





Master’s Theses in Mathematical Sciences 2019:E56

ISSN 1404-6342

LUTFMS-3382-2019

Mathematical Statistics

Centre for Mathematical Sciences

Lund University

Box 118, SE-221 00 Lund, Sweden

http://www.maths.lth.se/


