
August 2019

Attempts at using Bayesian neural networks
for uncertainty assessments of temperature forecasts

Joel Lundqvist

Department of Physics, Division of Combustion Physics, Lund University

Bachelor thesis supervised by Fredrik Karlsson and Elna Heimdal Nilsson

(This page is intentionally left blank)

Abstract

This thesis describes attempts at estimating the uncertainty of the 2-metre temperature
forecast error from a probabilistic point of view, utilizing Bayesian neural networks.
Bayesian neural networks are a type of machine-learning algorithms used to find
patterns in data and make probabilistic predictions. Multiple fields of output data
from the ECMWF IFS global model, along with temperature measurements from
two meteorological observation stations for a period of six years are used for training
of the networks. Attempts are made to assess probability distributions for the error
as a continuous variable and through approaching the task as a binary classification
problem. None of the attempts described were successful in terms of producing useful
predictions, but may serve as a starting point for further investigations.

Contents
1 Introduction 1

2 Background 2
2.1 Numerical weather prediction . 2

2.1.1 Historical background . 2
2.1.2 Primitive equations . 3
2.1.3 Discretization and parametrization 4

2.2 Artificial neural networks . 5
2.2.1 Bayesian neural networks . 7
2.2.2 Two probability distributions . 8

3 Method 9
3.1 Data . 9
3.2 Regression . 12

3.2.1 Fixed standard deviation . 13
3.2.2 Simultaneous determination of standard deviation and mean value . 13

3.3 Binary classification . 13
3.3.1 Error size . 14
3.3.2 Absolute temperature . 14

4 Results and discussion 15
4.1 Regression . 15

4.1.1 Fixed standard deviation . 15
4.1.2 Simultaneous determination of standard deviation and mean value . 17

4.2 Binary classification . 17
4.2.1 Error size . 17
4.2.2 Absolute temperature . 19

5 Conclusions and outlook 20

References 21

Acknowledgements 23

A Code excerpts 24
A.1 Code common to all programs . 24
A.2 Code for regression with fixed standard deviation 26
A.3 Code for determining both bias and standard deviation 29
A.4 Code for binary classification of error size 30
A.5 Code for binary classification of absolute temperature 33

B Additional figures 35

1 Introduction
Modern weather forecasting relies on numerical weather prediction (NWP), which is
computer simulations of the atmosphere. They build upon differential equations whose
boundary conditions are determined through observation, and then integrated forwards
in time. Weather forecasts are of importance for many branches of society. The 2 metre
temperature, that is, the temperature measured two metres above the ground, is a weather
model output parameter to which most of us ground dwelling creatures have an everyday
relationship. Small differences in this variable may result in vastly different outcomes.
For example, when the temperature is close to 0 ◦C, it can be a matter of fractions of
degrees that determine whether or not ice forms on roads, which may pose a major traffic
hazard. Weather forecasts are however always, to some extent, uncertain. Some of the
sources of uncertainty include measurement errors when specifying initial conditions for
the differential equations, and errors introduced as the equations are discretized to the
finite resolution of the models. To improve the accuracy, the models are continuously
being updated, increasing spatial and temporal resolution as computer power becomes
cheaper. But as the atmosphere is a non-linear system, a perfect forecast will never be made.

The error may be dealt with in various ways. A direct method is through improving
the forecasts of a certain parameter at a specific site using Kalman-filters, a statistical
method for improvement of predictions using previous observations and forecasts of that
parameter. The full uncertainty can be assessed through the use of ensemble methods,
where multiple models are run with deliberately introduced small observation errors. The
simulations will diverge from one another, and their spread may be taken as an indication
of the uncertainty of the current weather situation. Some problems with quantifying the
uncertainty using the ensemble methods for early time-steps in the simulations is that the
variation among its members has not yet grown enough to describe the variation of possible
outcomes, and that they are computationally heavy and takes a long time before they are
available to forecasters.

Artificial neural networks are a group of machine-learning algorithms that has been applied
in numerous fields where great amounts of data are available, such as speech and image
recognition and machine translation (Vasilev et al., 2019). Bayesian neural networks are a
subgroup of these algorithms that can be used to make probabilistic predictions.

The aim of this thesis is to construct Bayesian neural networks that can give estimates
of probability distributions for the error in the 2 metre temperature forecast. To achieve
this, output data for a selection of parameters from a global NWP-model, along with
observations of the 2 metre temperature from two meteorological stations will be processed
by the networks. If relations between the output data and the observed errors can be
identified by the networks it may provide a useful complement to the forecast of the 2 metre
temperature for that specific location.

1

2 Background

2.1 Numerical weather prediction
2.1.1 Historical background

The idea of treating weather prediction as an initial value problem of atmospheric physics
dates back to the early 20th century (Bauer et al., 2015). At that time, routine observations
were sparse and no computers existed. But as of today this approach forms the basis of
weather prediction. Attempts of solving the governing equations by hand to produce a
so called hindcast were conducted in the 1920s (Inness & Dorling, 2013). A hindcast is a
method of testing a weather model where historical data is used to initialize the model and
then compare the solutions with observations. The calculations took a very long time and
went horrifically wrong, forecasting a pressure drop of 145 hPa during six hours (Lynch,
2008). For comparison, very rapidly deepening low-pressure systems are referred to as
cyclone bombs if their central pressure sinks by 1 hPa/h during a 24 hour period (Ahrens
& Henson, 2013). At that time the error was blamed on poor observations, but more
important was actually the lack of filtering which left computationally unstable solutions
possible, allowing waves that propagate faster than over one grid length per time-step
(Holton & Hakim, 2013). After the second world war, with the advent of early computers
and the newly developed equations of the quasi-geostrophic approximation which filtered
out too quickly propagating waves, the first successful hindcasts were made (Charney, 1948;
Lynch, 2008). Modern forecasting centers have been able to go back to the full set of
equations tried in twenties, as computational power has become cheaper (Kalnay, 2003).
These equations are introduced and briefly described in section 2.1.2.

But no matter how well the models describe the physics, eventually the path predicted
by a model will deviate from that of reality (Lorenz, 1963). As the atmosphere is a non-
linear system, any perturbations to initial conditions will eventually grow through feedback
mechanisms, and cause a completely different evolution of the system. The sensitivity
to perturbations are much smaller than the accuracy of the instruments used to make
observations (Inness & Dorling, 2013). However, as the sensitivity to perturbations varies
from one situation to another, the resulting uncertainty is difficult to assess directly. Today,
and since the 1990s, the main method for quantification of the uncertainty are through the
method of ensembles. The idea is quite simple. Instead of running only one simulation of
the atmosphere, many models are run in parallel, but with slightly different perturbations
added to their initial conditions. The resulting spread may taken as possible outcomes.
This is useful when looking at large scale phenomena, like prediction of storm tracks. But
as it takes time before the non-linear effects dominate the evolution of the simulations, the
uncertainty regarding early time-steps are not always well caught by this method.

2

2.1.2 Primitive equations

Equations (1) to (4) are defined as in An Introduction to Dynamic Meteorology (Holton &
Hakim, 2013), and Eq. (5) as in Atmospheric modeling, data assimilation and predictibility
(Kalnay, 2003).

The momentum equation that describes the three-dimensional acceleration for a parcel of
air in a rotating coordinate-system can be expressed as

DU

Dt
= −α∇p+ g + F F − 2Ω×U , (1)

where U ≡ (u, v, w) is the three-dimensional velocity (where in turn u, v and w are the
zonal, meridional and vertical velocities, respectively), α is the specific volume (α ≡ 1

ρ
), p

is pressure, g ≡ (0, 0,−g∗) is the gravitational acceleration (where in turn g∗ is referred
to as the effective gravitational acceleration, and is the sum of the gravitational and the
opposing centrifugal acceleration due to the Earth’s rotation), FF is the friction acting
on the parcel and −2Ω×U is referred to as the coriolis acceleration, which is due to an
apparent deflecting force imposed by the Earth’s rotation at an angular velocity of Ω.

The continuity equation expresses conservation of mass for an air parcel, and may be
written as

1
ρ

Dρ

Dt
+∇ ·U = 0. (2)

∇ ·U is the divergence of the wind field.

The equation of state for the dry atmosphere relates the pressure, density and temperature
as

p = ρRT (3)

where R is the gas constant for dry air.

The first law of thermodynamics is a conservation law for energy, which states that

J = cv
DT

Dt
+ p

Dα

Dt
, (4)

where J is the rate of heating per unit mass and cv is the specific heat at constant volume.

3

Any change in the local water vapour content must be due to either evaporation (E, a
source term), condensation (C, a sink) or transport of water vapour by the wind. This can
be expressed mathematically as:

∂q

∂t
= − (U · ∇) q + E − C, (5)

where (U · ∇) is the advection operator.

The European Center for Medium-range Weather Forecasting (ECMWF), that runs the
global model used in this thesis, make use of the hydrostatic approximation (ECMWF,
2018). The hydrostatic approximation assumes hydrostatic equilibrium, an exact balance
between the vertical component of the pressure gradient force and gravity, so that that the
vertical acceleration is always zero. The vertical component of Eq. (1) then simplifies to

0 = −α∂p
∂z
− g =⇒ ∂p

∂z
= ρg. (6)

This assumption is valid for large scale processes, as these two forces are orders of magnitude
stronger than the other forces acting along the vertical axis, but not always for smaller
scale systems, such as convective clouds (Holton & Hakim, 2013).

Equations (1) to (5) form an (almost) closed set of differential equations. If bound-
ary conditions are specified from observations, they may be integrated forwards in time
and describe the future evolution of the atmosphere.

2.1.3 Discretization and parametrization

In order for numerical methods to be applied to the equations, the continuous fields of the
atmosphere must be discretized, both spatially and temporally. In the ECMWF global
model, these fields are represented in a three-dimensional grid. Transformations into a
spectral space are used for some computations (ECMWF, 2018).

As the resolution on which the equations are resolved is finite, and some important
processes are not even described, the method of parametrization is used. Some examples
among these processes are radiative heating, latent heat release and turbulence. The
processes are simplified, their effects are approximately quantified, and added as sources or
sinks to the set of equations described in the previous section. The 2 metre temperature is
sensitive to many of these processes, and the accuracy of the prognosis consequently also
influenced. Also, even if some parametrization works well accounting for the influence of
some process on the larger scale, it might not be locally accurate.

4

2.2 Artificial neural networks
Artificial neural networks are algorithms for data-processing. They are used for generation
of models that can link observations X to outcomes y, and make predictions ỹ given new
observations (Dreyfus, 2005). Initially, inspiration may have been taken from how biological
brains once were thought to function, but the field has since then developed independently
of neurology (Vasilev et al., 2019). To explain the functioning of an artificial network it
may be easiest to begin with describing the basic building block of which they consist, the
neuron. A neuron is a function that takes vector input and produces a single scalar output.
For an input vector X, a neuron generates output ỹ as

ỹ = f(W ·X + b), (7)

where f is referred to as its activation function, the elements of W as its weights and b as
its bias. These neurons may then be connected in networks, through having the outputs of
some neurons be the input of others. A network that only lets information travel in one
direction is called a feedforward network, and is the only type of network applied in this
thesis. An example of the structure of such a network is shown in Fig. 1

Figure 1: An example of a feedforward neural network structure. Each circle represents a
neuron, where the activation function acts on the sum of the bias and the dot product of
its weights and input values, see Eq. (7). A column of neurons is referred to as a layer,
those not directly connected to input or output are called ”hidden” layers. The number of
neurons in a layer is referred to as its width.

It can be shown, by universal approximation theorems, that feedforward networks with only
one hidden layer can model any continuous non-linear function, with arbitrary accuracy,

5

given that the activation functions used in the neurons are bounded, continuous and
non-constant (Hornik, 1991), or rectified linear unit functions (Lu et al., 2017), given that
the modelled functions are within the range of the activation functions. If the modelled
function is beyond the range of the activation functions a linear layer may be added as
the last layer of the network, but it should be noted that it is not a bounded function and
cannot be used as the only activation function in a network (Dreyfus, 2005). Even though
the universal approximation theorems state that any continuous function may be modelled,
it should be noted that they do not state that the performance of the networks, in terms
of computational efficiency, are independent of the choice of activation functions (Hornik,
1991). In Table 1, some common activation functions applied in this thesis are presented.

Table 1: Activation functions used in the neural networks of this thesis.

Name Definition Range
Linear/direct/identity f(x) = x (−∞,∞)

Rectified linear unit (ReLU) f(x) = max(0, x) [0,∞)
Softplus f(x) = ln(1 + ex) [0,∞)

Hyperbolic tangent (tanh) f(x) = ex−e−x

ex+e−x (-1,1)
Sigmoid f(x) = 1

1+e−x (0,1)

After being set up, the structure of a network is static in terms of how the neurons are
connected and their activation functions. In order to find the desired mapping between the
input vector X and the output y, the values of its parameters (the weights and biases) are
adjusted.

The process of adjusting the weights and biases of the neurons to reach the desired
output is called training, and the most commonly used method is called backpropagation
(Vasilev et al., 2019). To evaluate how well a network performs, some cost function is used.
One of the most common cost functions is the mean squared error function (Dreyfus, 2005),
which is defined as:

MSE = 1
n

n∑
i=1

(yi − ỹi)2 . (8)

When doing backpropagation, one tries to approximate the mean-squared-error as a function
of the parameters of the network. Then its gradient is approximated as well, and is then
used to update the weights and biases in the direction of the cost function’s minimum. The
sources of the errors are traced back to their origins in the parameters of the network. It
should be noted though, that the cost functions are typically not smooth and continuous,
and several local minima may exist. Updating the parameters using the gradient is thus
not a trivial task. For each iteration of the updating process the value of the cost function
is saved. During the first cycles, the value of the cost function usually varies quite a lot due
to being poorly approximated. Eventually though, if the approximation does get better,
the network starts producing more consistent predictions. The fluctuations in the cost
function’s value between iterations are reduced in magnitude, and in addition to this, the

6

value shows an overall decreasing tendency. After even more iterations the predictions
typically plateau, where further iterations do not improve the fit anymore. This is called
convergence, and it is an important sign of a successful network. A network that does not
stabilize in this way does not produce consistent predictions, and needs to be redefined in
some way before its output is analyzed.

But just because a network seems to have minimized the error as much as possible, it
is not for certain that such a network can produce meaningful predictions. When fitting
a model to data there is a risk for overfitting. This occurs when the model fits too well
to the data trained upon, but fails to generalize on the patterns and produce reasonable
predictions when encountering new data. To make investigation of whether or not this is
the case possible, the data one wishes to model can be split into training and validation
datasets. The training dataset is then used for the process of minimizing the cost-function.
The performance can the be evaluated through running the validation dataset through the
network without adjusting its parameters. If the performance differs significantly between
the training and evaluation datasets, the case might be that the network is overfitted.

2.2.1 Bayesian neural networks

Bayesian neural networks are a subgroup of artificial neural networks that make use of
Bayesian inference. This in turns builds upon Bayes theorem, which provides a way to
relate the probability of an outcome to other related events (Kruschke, 2015). Most people
are intuitively able to apply some basic principles of Bayesian inference, even if they do not
formulate it in mathematical terms. To stay within the topic of meteorology, let us make an
informal weather-related example of how the basic principles can be applied. For a location
where it on average rains every other day, we may make a guess that the probability of
rain for any given day is about one half. If we are also given the information that on this
particular day, the sky is cloudy, any person who knows that rain falls from clouds will
update their belief in the probability of rain for that particular day to a larger value.

Put in mathematical terms, for two discrete variables A and B representing two events,
we have their respective probabilities denoted p(A) and p(B). The intersection probability,
the probability that the events both occur, are denoted p(A ∩ B). These can be used to
calculate the conditional probability

p(A|B) = p(A ∩B)
p(B) , (9)

which is interpreted as ”the probability of A given that B has been observed”. By symmetry,

p(B|A) = p(B ∩ A)
p(A) (10)

must hold too. As p(A ∩ B) = p(B ∩ A), by definition, equations (9) and (10) combined
give Bayes theorem:

p(A|B) = p(B|A)p(A)
p(B) . (11)

7

It can be applied to relate probabilities for both discrete and continuous variables.

Bayesian neural networks may be structured as feedforward networks, as illustrated in
Fig. 1. The weights and biases used here are not scalars, instead they are described by
probability distributions. Probability distributions are propagated through the networks,
and the uncertainties related to the predictions are quantified. Training such networks is
done using either sampling algorithms or variational inference. Most common in Bayesian
inference contexts is to use some Markov-chain Monte Carlo method (MCMC), which is
a group of sampling algorithms. However, that kind of algorithms become very compu-
tationally heavy when doing inference with many parameters. In this thesis, automatic
differentiation variational inference (ADVI) is applied. With this method the probability
distributions are analytically approximated instead of generated through sampling. This is
more computationally efficient, but gained on the cost of accuracy (Kucukelbir et al., 2017).

2.2.2 Two probability distributions

The normal probability distribution will be used for prediction of continuous variables. It
is defined as

f(x) = 1
σ
√

2π
exp

(
−1

2

[
x− µ
σ

]2
)
, (12)

where µ determines the position of the distribution along the x-axis, and σ is the standard
deviation, and describes the variation around µ.

Figure 2: Example of normal distribution. Here µ = 0.5 and σ = 1.

For binary classification into categories γ ∈ {0, 1}, the Bernouilli distribution can be used.
It is defined as

p(γ|θ) = θγ(1− θ)(1−γ), (13)

where θ is the probability of γ = 1.

8

3 Method

3.1 Data
The programming language Python was used for all data processing throughout the project.
The data used for training the networks was provided by SMHI, the Swedish Meteorological
and Hydrological Institute. The data consists of observations of the 2 metre temperature
from two meteorological stations, Östersund-Frösön and Nordkoster, along with output
data of the ECMWF Integrated Forecasting System global model for the grid-point nearest
to each station, during a period of six years, 2010-2015. The forecasts used are issued 12
hours before their valid time, and the forecast for the 2 metre temperature is compared to
the observed value on two occasions each day, 00 and 12 UTC.

Figure 3: Map of Sweden showing the locations of the measurement stations, where
Östersund-Frösön is at the northernmost pin symbol and Nordkoster is at the southernmost
one. The map was created using tools provided by the OpenStreetMap project under the
CC-BY-SA license (OpenStreetMap contributors, 2017).

The choice of analyzing observations from specifically Östersund-Frösön and Nordkoster
was based upon that they differ from one another in various ways, both in terms of their
different climatological conditions and how the observations relate to the forecasts. The
Östersund-Frösön station is located in inland Sweden, in a mountainous region, in the
vicinity of Storsjön, a large lake. The Nordkoster station is at a maritime location on

9

an island outside the Swedish west coast, in the Skagerrak strait. Defining the error as
the difference between the 2 metre temperature, Tobs, observed at the station, and the
forecasted value, Tfc, at its nearest grid-point, as

Error ≡ Tobs − Tfc, (14)

one finds that the error observed at Östersund-Frösön is generally greater than that for
Nordkoster. The mean and median values of the error (0.8 ◦C and 0.7 ◦C, respectively) for
Östersund-Frösön also indicates that there is a bias for the forecasted temperature to be
lower than the observed temperature. The error distribution for Nordkoster is centered
closer to zero, with mean and median values of 0.08 ◦C and −0.04 ◦C. The errors for
Östersund-Frösön being larger might be due to more complex orographic features and the
nearby water-surfaces of sub-grid size, that are taken into account through parametrizations
rather than being explicitly resolved. The thermal inertia of the ocean probably stabilizes
the temperature for the Nordkoster station.

(a) (b)

Figure 4: Observations, forecasts and errors of the 2 metre temperature for Östersund-
Frösön. (a) shows observed temperatures Tobs against forecasted temperature Tfc. (b) shows
the normed error distribution.

10

(a) (b)

Figure 5: Observations, forecasts and errors of the 2 metre temperature for Nordkoster.
(a) shows observed temperatures Tobs against forecasted temperature Tfc. (b) shows the
normed error distribution.

For Östersund-Frösön, at 19 occasions observations of the 2 metre temperature were missing.
As this is such a small fraction of the total number of observations these were simply
removed from the dataset. There were no missing observations in Nordkoster. The data
were split into training and validation data sets. Data from five years, 2010 - 2014, were used
for training the networks, and the data for 2015 were saved for validation. The following
output fields from the weather model was chosen as input parameters for the networks:

• 2 metre temperature

• Solar elevation

• Surface pressure

• Temperature 850 hPa

• Total cloud cover

• 10 metre u-wind component

• 10 metre v-wind component

Before feeding this data into the networks, the fields in the training dataset were normalized
to zero-centered distributions with standard deviations of unity. The same transformations
were applied to the fields of the validation dataset.

11

A similar structure was used for all networks regardless of task: seven input nodes (one for
each input field), two hidden layers with 100 and 50 nodes, respectively, and a single output
node. The distributions for the weights and biases were also similarly intitialized for all
networks. As nothing was known in prior of which distributions for the parameters would
produce desired output, the generic choice of using zero-centered normal distributions in all
nodes was made. In the nodes of the input and first and second hidden layer all parameters
were assigned standard deviations of unity, and the parameters of the output layer were
assigned wider standard deviations of ten, to possibly enable greater flexibility for the
parameters of that last node. Analysis of output data from any network was not conducted
unless convergence was reached.

For networks that did converge, the weights and biases were approximated through sampling
of 3000 values from their distributions. A histogram showing a sample distribution for
one of the weights after training is provided in appendix, section B, Fig. B.1. These
approximate distributions were then used to create ”mirrors” of the networks with the same
structure and activation functions. Instead of producing a single scalar output as described
in Eq. 7, each neuron now produces an array of 3000 scalars, one for each set of sample
values of its parameters. For each input vector, corresponding to the model output fields
at a specific time-step, one thus gets 3000 different predictions in the output that form
an approximation to a probability distribution. For analysis of the output distribution,
the 10th, 50th (the median value) and 90th percentiles are computed for each set of 3000
values.

The networks were all constructed and run using the library PyMC3 (Salvatier et al.,
2016) with Theano (Al-Rfou et al., 2016) as backend.

3.2 Regression
The aim is to make predictions in the form of probability distributions for the error as a
continuous variable, given values from the input parameters. This could give a very direct
assessment of the uncertainty of the forecast.

To make evaluations of the performance of these networks, the proportion of the ob-
served errors that fell within the 10th and 90th percentile of the probability distributions of
the predictions for each forecast in the validation dataset was calculated. If this proportion
is close to 0.8, the performance of the network is good. In a case where the proportion is
close to one, may be a signal of perfect fit, or that the probability distributions are too wide
to give meaningful information. Such cases should thus be carefully investigated before the
predictions are trusted. A proportion significantly lower than 0.8 means that the predictions
do not catch the observed error. To check for signals of overfitting, the performance by this
measure can also be evaluated for the predictions for the training dataset. If a significantly
higher proportion of the training dataset predictions catch the error, it can be taken as a
sign for overfitting.

12

3.2.1 Fixed standard deviation

Here, the aim is to find a normal distribution for the error through predictions only of
µ, while letting the standard deviation of the output probability distribution be fixed
to some value. The variation of the error may then be caught in the variation of the
predictions for µ. The hyperbolic tangent function was used as activation function for the
two first layers, and for the last layer the linear function was used. This setup of activation
functions produced converging networks for this task. Two attempts were made, with
different values for the fixed standard deviation. First, the standard deviation was fixed
to an unrealistically small value of 0.01. The second attempt was conducted by fixing the
standard deviation to the value of the standard deviation of the error in the training dataset.

For implementation of these attempts in code, see appendix, section A.2.

3.2.2 Simultaneous determination of standard deviation and mean value

The aim for this approach is also to generate normal distributions for the error, but now
through prediction of values for both mean and standard deviation simultaneously, using
parallel structures in the same network. Thus, the predictions have associated uncertainty
regarding both the mean and the standard deviation. However, constructing such a network
proved a challenge that was not overcome. As it was difficult to find a network that did
not give nan-errors, and the networks that were found stable in this sense did not converge,
all attempts were eventually abandoned. Several functions were tested in the output layer:
linear, softplus and exponential. With the linear function, the algorithm found only infinite
values in the cost function, and with the softplus and exponential function convergence was
never reached.

Some example code for implemenating a network that does not give infinity errors, but
neither shows convergence, is found in appendix, section A.3.

3.3 Binary classification
Instead of assessing the error as a continuous variable, a classification approach may be
taken. Here, two classification approaches to the problem of uncertainty are presented,
classification based on the absolute value of the error, or on the observed temperature
directly. The networks used for these tasks were similar in structure, only differing in the
data trained against. The ReLU function was used in the first two layers of the network.
For the output node, the sigmoid function was used. These activation functions produced
networks that could converge. I could not come up with any analogue to the performance
evaluation method used for the regression approach to make comparisons between different
networks used for binary classification.

13

3.3.1 Error size

The observed errors can be split into two categories γ defined as

γ =
{

0, if |Error| ≥ 2 ◦C
1, otherwise. (15)

The network then tries to make predictions for a value of θ, as defined in Eq. (13), that
maximizes the value of p(θ|X). So, if most predictions for θ are close to 1 the network
assigns the greatest probability for the error being of category γ = 0, and is thus an
indication of a highly uncertain forecast. Setting the limit to 2 ◦C agrees with what SMHI
consider an accurate prognosis for temperature (SMHI, 2017). For the Östersund-Frösön
validation dataset, this condition was fulfilled for 81 % of the forecasts. For Nordkoster,
91 % of the forecasts fulfilled the same condition.

The code used may be found in the appendix, section A.4.

3.3.2 Absolute temperature

Binary classification can also be used directly for absolute temperature, to predict the
likelihood for the observed temperature to exceed/subceed a certain value. The observations
were assigned to categories, γ, according to

γ =
{

0, if Tobs ≤ 0 ◦C
1, otherwise. (16)

Similarly to the other classification approach, the network strives towards maximizing
p(θ|X), where θ is defined as in Eq. (13).

Code can be found in the appendix, section A.5.

14

4 Results and discussion
All networks that did converge, were found to do so within 30000 iterations.

4.1 Regression
4.1.1 Fixed standard deviation

The results of the two approaches to fixing the standard deviation are here presented
separately. Fixing to the unrealistically small value is referred to as ”small”, fixing to the
value from the full error distribution is referred to as ”larger”.

Small standard deviation
The performance, in terms of catching the error, was found to be poor. For the Östersund-
Frösön validation dataset only ∼ 30 % of the observed errors were caught between the 10th
and 90th percentiles of the µ predictions. The poor performance is not due to overfitting on
the training dataset. The performance by the same measure, but applied to predictions on
the training dataset, is only marginally better: ∼ 35 %. Predictions for a short time-series
and a sample from that time-series is plotted in Fig. 6, where the observed error is also
included.

(a) (b)

Figure 6: Samples of error predictions for Östersund-Frösön. (a) shows a time series
with the observed error compared to the median value for the predictions of µ, along with
error bars corresponding to the 10th and 90th percentiles. (b) is a normed histogram of all
predictions of µ for Februrary 3rd, 2015 00 UTC.

The observed error shows larger variation than the predictions. The standard deviation
of the observed error in the validation dataset is 1.7 ◦C, which can be compared to the
standard deviation for the median prediction of 1.0 ◦C. As the error is approximately
normally distributed, there are much more observations of errors corresponding to the

15

neighbourhood of its mean and median values than for the larger errors. This might cause
the network to favour predictions closer to the median of the error than it should, as there
is not so much data pointing towards the greater errors. To check whether this might
be the case, the absolute value of the difference between the median of each prediction
and the median of the error was compared to the absolute value of the difference between
each observed error and the median of the error. Then these values were compared, and
the fraction of occasions where the median prediction was closer to the median of the er-
ror was computed. It was found to be true for 59 % of the occasions in the validation dataset.

Regarding the predictions for Nordkoster the performance, as evaluated in terms of observed
error caught between 10th and 90th percentile, was much better: ∼ 48 %. The better
performance is likely due to, at least to some extent, that the error is generally smaller for
this station. In Fig. 7, a plot of predictions valid for a sample time-series and a sample
from the time-series, along with the observed error, are shown.

(a) (b)

Figure 7: Samples of error predictions for Nordkoster. (a) shows a time series with the
observed error compared to the median value for the predictions of µ, along with error bars
corresponding to the 10th and 90th percentiles. (b) is a normed histogram of all predictions
of µ for 00 UTC, Februrary 3rd, 2015.

Comparing standard deviations for median prediction and observed error shows a similar
relation as for Östersund-Frösön, with a ratio of 1.7. The preference of the network for
values closer to the median value than the observed value were stronger than for the
Östersund-Frösön network, and was found to be true at 68 % of the cases.

16

Larger standard deviation
The performance of these network turned out to be worse. For Östersund-Frösön, the
drop was not a significant though, ∼ 28 % of the errors were caught. For Nordkoster on
the other hand, the performance dropped to ∼ 36 %, which is clearly lower than for the
fixed standard deviation. It does not seem like fixing the standard deviation to a larger
value causes greater variation in the predictions of µ. Rather, the opposite occurs and the
predictions showed less variation. It might be that if the value for µ is less restricted, more
predictions close to zero (for which many more observations exist) are also allowed.

4.1.2 Simultaneous determination of standard deviation and mean value

As no network was found to converge, no analysis of output data was conducted. It is
probably a too complicated task for the algorithms available in the program to automatically
optimize the fit with two free parameters.

4.2 Binary classification
4.2.1 Error size

The predictions produced by the networks trained towards classification of the error size are
not particularly useful for any of the stations. Fig. 8 shows the median predictions of θ for
Nordkoster. A similar plot for Östersund-Frösön can be found in the appendix, section B.

Figure 8: A scatter plot of all predictions for classification of error size, Nordkoster. The
colour of the dots represent the standard deviation of the predictions, which corresponds to
their uncertainty.

Almost all predictions for θ are confined to a very narrow range of values between 0.88 and 1,
instead of spanning the full range between 0 and 1. In the validation dataset for Nordkoster,
no predictions where the median was assigned values very close to 1 where found to be
wrongly classified (if the median were to be trusted completely on its own, which of course

17

never was the intention). For the Östersund-Frösön validation dataset however, the median
predictions of values close to 1 do occur also for observations corresponding to the category
of larger errors. Thus, the predictions belonging to the upper part of the span can not
be trusted, despite being correct for all observations in the Nordkoster validation dataset.
The median predictions belonging to the lower part of the span are made for observations
belonging to both classes, and thus say nothing of the error. Furthermore, the standard
deviation, indicated by colour in the figure, does not seem to be a strong indicator of a poor
median prediction. If they would have been, the median predictions for wrong category
would be coloured red. Fig. 9 shows two samples of full predictions, one for each class of
observations. Despite corresponding to very different observations, the predictions are quite
similar.

(a) 12 UTC, 5th of July, 2015 (b) 00 UTC, 4th of January, 2015

Figure 9: Two sample predictions for Nordkoster. (a) shows an occasion where the error
observed is relatively large. (b) shows an occasion for a smaller observed error. Note that
both (a) and (b) has a peak in the probability density around 0.9, which corresponds to
the proportion of the errors belonging to class γ = 1, as defined in Eq. (15).

An attempt at improving the narrow span of the predictions were made through adjusting
the critical absolute error down to 1 ◦C. For Östersund-Frösön this classification splits
the dataset into two more equally sized categories, with 43 % of the absolute errors being
smaller than 1 ◦C.

Again, the span of the median predictions were narrow, but now even more so. They
were centered around 0.43, which corresponds to the amount of observations of errors in
the new accurate forecasts class. The standard deviations of the predictions do not seem
to give any indication of there being any information in the network of the predictions
being poor. It seems to be that the network is underfitted, and have simply identified the
proportion of observations belonging to the class, and more or less assigns each observation
that probability.

18

4.2.2 Absolute temperature

The networks for classification of absolute temperature do work more accurately, in some
sense. As the correlation between forecast and observations is very strong (see Figures 4a
and 5a), anything else should come as a surprise. The predictions for the Östersund-Frösön
validation dataset are plotted in Fig. 10, along with full predictions for a sample occasion.

(a) (b)

Figure 10: (a) is scatter plot of all predictions for classification absolute temperature,
Östersund-Frösön. The colour of the dots represent the standard deviation of the predictions,
which corresponds to their uncertainty. (b) shows a plotted sample for 00 UTC, 20th of
February, 2015.

Fig. 10a shows that observations of temperatures far from 0 ◦C are correctly predicted by
the median values, along with low standard deviations that express high degrees of certainty.
When the observed temperature gets within about 5 ◦C from zero, the predictions are much
more uncertain. The median of the predictions seems to take on almost any value between
0 and 1. But as the corresponding standard deviation also gets larger for these predictions,
it seems as the associated uncertainty is caught by the network. That the predictions are so
uncertain for observed temperatures around zero, which is the only situation where it could
have been of any use, makes it quite useless for uncertainty assessments though. Other
attempts were made for classification with other temperatures, but the results were very
similar and they do not add any additional information. Training a network towards a
specific temperature is difficult for stations in mid-latitudes, such as Östersund-Frösön and
Nordkoster, where the temperature shows great seasonal variation. Thus, there may not be
as many observations of the temperature trained against to identify the forecasts that are
more likely to be erroneous.

19

5 Conclusions and outlook
The goal of estimating the probability distribution for the temperature error was not
achieved using the methods described in this thesis. Treating the error as a continuous
parameter would be the most useful approach, if it had been successful. It would not only
point out that the forecast is uncertain, but also provide additional information on the
probable sign. But the best network I constructed still seems to be underfitted and not able
to identify uncertain forecasts to a significant degree. Inability to identify uncertain forecasts
applies to the attempts for binary classification of error size too. The issue is propably,
again, underfitting. The absolute temperature classification predictions did show some
resemblance to observations. However, at such a coarse level no meaningful information is
added to the forecast. There is simply no use of a tool that tells a forecaster that there is a
high probability of a temperature above 0 ◦C, when the model forecast for the area is at 15 ◦C.

Regarding predictions of the error as a continuous parameter, further investigations could
be conducted using longer records of data to see if more accurate predictions are reached.
An issue with using longer records is that consistent patterns for the error may not exist,
due to models continuously being updated. Yet another way of getting more relevant data
could be through taking output field from other nearby grid-points too.

For further investigation of the binary classification approach, a measure of how well
the networks perform on such tasks needs to be defined. Then, improvements of the
predictions can be sought by similar strategies as for the continuous case described above.

In this thesis, no evaluation of how the networks architecture affects the accuracy of
the prediction. A systematic approach to the question of structure would be interesting to
make, where different depths and/or widths for the layers are tested and their performance
are compared to one another. A more systematic approach to the choice of output fields of
the models would also be relevant.

20

References
Ahrens, D., & Henson, R. (2013). Meteorology today (11th ed.). Cengage learning.
Al-Rfou, R., Alain, G., Almahairi, A., Angermueller, C., Bahdanau, D., Ballas, N., . . .

Zhang, Y. (2016). Theano: A Python framework for fast computation of mathematical
expressions. arXiv e-prints, abs/1605.02688 . Retrieved from http://arxiv.org/
abs/1605.02688

Bauer, P., Thorpe, A., & Brunet, G. (2015). The quiet revolution of numerical weather
prediction. Nature, 525 (7567), 47 - 55.

Charney, J. G. (1948). On the scale of atmospheric motions. Oslo: Grøndahl & søns boktr.,
i kommission hos Cammermeyer.

Dreyfus, G. (2005). Neural networks. methodology and applications. New York: Springer.
ECMWF. (2018). Part III: Dynamics and numerical procedures. In IFS Documentation

CY45R1. Retrieved 2019-08-14, from https://www.ecmwf.int/node/18713
Holton, J., & Hakim, G. (2013). An Introduction to Dynamic Meteorology (Fifth ed.).

Amsterdam: Elsevier Science.
Hornik, K. (1991). Approximation capabilities of multilayer feedforward networks. Neural

Networks, 4 (2), 251.
Inness, P., & Dorling, S. (2013). Operational weather forecasting. Chichester, West Sussex,

UK: Wiley-Blackwell.
Kalnay, E. (2003). Atmospheric modeling, data assimilation and predictability. Cambridge

University Press.
Kruschke, J. K. (2015). Doing bayesian data analysis: a tutorial with r, jags, and stan.

Amsterdam : Academic Press, cop. 2015.
Kucukelbir, A., Tran, D., Ranganath, R., Gelman, A., & Blei, D. M. (2017). Automatic

differentiation variational inference. Journal of Machine Learning Research, 18 (9-17),
1 - 45.

Lorenz, E. N. (1963). Deterministic nonperiodic flow. Journal of the Atmospheric Sciences,
20 (2), 130–141.

Lu, Z., Pu, H., Wang, F., Hu, Z., & Wang, L. (2017). The expressive power of neural
networks: A view from the width. In I. Guyon et al. (Eds.), Advances in neural
information processing systems 30 (pp. 6231–6239). Curran Associates, Inc.

Lynch, P. (2008). The origins of computer weather prediction and climate modeling. Journal
of Computational Physics, 227 (Predicting weather, climate and extreme events), 3431
- 3444.

OpenStreetMap contributors. (2017). Planet dump retrieved 2019-08-05, from https: / /
planet .osm .org .

Salvatier, J., Wiecki, T. V., & Fonnesbeck, C. (2016). Probabilistic programming in Python
using PyMC3. PeerJ Computer Science. doi: 10.7287/PEERJ.PREPRINTS.1686V1

SMHI. (2017). Hur mäts prognosers träffsäkerhet? [How is accuracy of forecasts measured?].
Retrieved 2019-08-21, from https://www.smhi.se/kunskapsbanken/meteorologi/
hur-mats-prognosers-traffsakerhet-1.17383

21

http://arxiv.org/abs/1605.02688
http://arxiv.org/abs/1605.02688
https://www.ecmwf.int/node/18713
https://planet.osm.org
https://planet.osm.org
https://www.smhi.se/kunskapsbanken/meteorologi/hur-mats-prognosers-traffsakerhet-1.17383
https://www.smhi.se/kunskapsbanken/meteorologi/hur-mats-prognosers-traffsakerhet-1.17383

Vasilev, I., Slater, D., Spacagna, G., Roelants, P., & Zocca, V. (2019). Python Deep
Learning: Exploring deep learning techniques and neural network architectures with
Pytorch, Keras, and TensorFlow (Second ed.). Birmingham: Packt Publishing.

22

Acknowledgements
First and foremost I want to thank my supervisors, Fredrik Karlsson at SMHI and Elna
Heimdal-Nilsson at Lund University for supervising this thesis.

I want to thank Tove Fast as well, for all the good stötande and blötande of difficult
concepts throughout our studies.

I am also grateful to all my friends and family for emotional support and encourage-
ment during the course of this project.

23

A Code excerpts

A.1 Code common to all programs
Importing libraries and data, splitting training and validation datasets and deciding input
parameters:

1 import pandas as pd
2 import numpy as np
3 import matplotlib.pyplot as plt
4 import pymc3 as pm
5 import theano
6 import theano.tensor as T
7 from sklearn.preprocessing import StandardScaler
8 from sklearn.utils import shuffle as shfl
9

10

11 osd = pd.read_csv(’ostersund_froson.csv’,sep=’;’,
12 parse_dates=[’validDateTime’])
13 osd = osd.dropna()
14 osd[’Error’] = osd[’stn t2m’] - osd[’2 metre temperature’]
15 osd_valid = osd[osd.validDateTime.dt.year == 2015]
16 osd = osd[osd.validDateTime.dt.year < 2015]
17

18

19 nkr = pd.read_csv(’nordkoster.csv’,sep=’;’,
20 parse_dates=[’validDateTime’])
21 nkr = nkr.dropna()
22 nkr[’Error’] = nkr[’stn t2m’] - nkr[’2 metre temperature’]
23 nkr_valid = nkr[nkr.validDateTime.dt.year == 2015]
24 nkr = nkr[nkr.validDateTime.dt.year < 2015]
25

26

27 parameters = ([’2 metre temperature’,
28 ’Solar elevation’,
29 ’Surface pressure’,
30 ’Temperature 850 hPa’,
31 ’Total cloud cover’,
32 ’10 metre U wind component’,
33 ’10 metre V wind component’])

24

For a succesful network, the weigths may be saved for future predictions, without having to
go through the process of training the network again. This code snippet saves and reloads
weights traced from the network.

1 qW_0S = trace[’W_0’]
2 qb_0S = trace[’b_0’]
3

4 qW_1S = trace[’W_1’]
5 qb_1S =trace[’b_1’]
6

7 qW_2S = trace[’W_2’]
8 qb_2S = trace[’b_2’]
9

10 np.savez(’weights.npz’,
11 qW_0S = qW_0S, qb_0S = qb_0S,
12 qW_1S = qW_1S, qb_1S = qb_1S,
13 qW_2S = qW_2S, qb_2S = qb_2S)
14

15 weights = np.load(’weights.npz’)
16

17 qW_0S = weights[’qW_0S’]
18 qb_0S = weights[’qb_0S’]
19

20 qW_1S = weights[’qW_1S’]
21 qb_1S = weights[’qb_1S’]
22

23 qW_2S = weights[’qW_2S’]
24 qb_2S = weights[’qb_2S’]

25

A.2 Code for regression with fixed standard deviation
This code snippet makes arrays for input and output data, scales the input, makes the
arrays accessible for Theano, builds the neural network, and then samples weights and
biases from it. It then defines a numpy function that contains the weights and biases from
the network to be able to make predictions. Predictions are made on scaled parameter
values from the validation dataset and the function for performance evaluation is defined.

1 def arrays_regression(df,parameters):
2 """
3 make training data for regression, return tuple containing two numpy
4 arrays where index [0] of return tuple is the input to the neural net,
5 index [1] is the observations to which the network is fitted
6

7 df is a the dataframe containing the observations and forecasts for the
8 station
9

10 parameters is a list of parameters to be included in the input training
11 data
12 """
13

14 df = shfl(df)
15

16 y = np.array(df[’Error’])
17 y = np.transpose(y.reshape(1,-1))
18

19 df = df[parameters]
20 x = np.array(df)
21

22 return x, y
23

24

25 x_train, y_train = arrays_regression(station,parameters)
26

27

28 ss=StandardScaler()
29 ss.fit(x_train)
30 x_train=ss.transform(x_train)
31

32

33 ann_input = theano.shared(x_train)
34 ann_output = theano.shared(y_train)
35

36

26

37 Ni = np.shape(x_train)[1]
38 NL0 = 100
39 NL1 = 50
40 No = 1
41

42 with pm.Model() as nn:
43 W_0 = pm.Normal(’W_0’, mu = 0.0, sigma = 1.0, shape = (Ni, NL0),
44 testval = np.random.randn(Ni,NL0))
45

46 W_1 = pm.Normal(’W_1’, mu = 0.0, sigma = 1.0,shape = (NL0, NL1),
47 testval= np.random.randn(NL0, NL1))
48

49

50 W_2 = pm.Normal(’W_2’, mu = 0.0, sigma = 10.0, shape = (NL1, No),
51 testval = np.random.randn(NL1, No))
52

53 b_0 = pm.Normal(’b_0’, mu = 0.0, sigma = 1.0, shape=(1,NL0),
54 testval = np.random.randn(1, NL0))
55

56 b_1 = pm.Normal(’b_1’, mu = 0.0, sigma = 1.0, shape = (1,NL1),
57 testval = np.random.randn(1, NL1))
58

59 b_2 = pm.Normal(’b_2’, mu = 0.0, sigma = 10.0, shape=(1,No),
60 testval = np.random.randn(1, No))
61

62 mu = pm.math.tanh(pm.math.dot(ann_input, W_0) + b_0)
63 mu = pm.math.tanh(pm.math.dot(mu, W_1) + b_1)
64 mu = pm.math.dot(mu, W_2) + b_2
65

66 Y = pm.Normal(’Y’,
67 mu = mu,
68 sigma = preset_value,
69 observed = ann_output,
70 total_size = y_train.shape[0])
71

72

73 with nn:
74 inference = pm.ADVI()
75 approx = pm.fit(n = 30000, method = inference)
76

77

78 Nsamp = 3000
79 trace = approx.sample(draws = Nsamp)

27

80

81 qW_0S = trace[’W_0’]
82 qb_0S = trace[’b_0’]
83

84 qW_1S = trace[’W_1’]
85 qb_1S = trace[’b_1’]
86

87 qW_2S = trace[’W_2’]
88 qb_2S = trace[’b_2’]
89

90

91 def np_nn(x, W_0, W_1, W_2, b_0, b_1, b_2):
92 """
93 make distribution of predictions for mu given parameter values x,
94 using weights W_0,1,2 and bias terms b_0,1,2 generated from network
95 """
96 mu = np.tanh(np.dot(x, W_0) + b_0)
97 mu = np.tanh(np.dot(mu, W_1) + b_1)
98 mu = np.dot(mu, W_2) + b_2
99 return mu

100

101

102 prediction_mu = np_nn(
103 x_valid, qW_0S[0], qW_1S[0], qW_2S[0], qb_0S[0], qb_1S[0], qb_2S[0])
104

105

106 for i in range(1,Nsamp):
107 prediction_mu = np.hstack((
108 prediction_mu,
109 np_nn(x_valid, qW_0S[i], qW_1S[i], qW_2S[i],
110 qb_0S[i], qb_1S[i], qb_2S[i])))
111

112

113 def performance_score():
114 p90 = np.percentile(prediction_mu, 90, axis=1)
115 p10 = np.percentile(prediction_mu, 10, axis=1)
116 a = np.zeros((len(p90), 1))
117

118 for i in range(len(p90)):
119 if p10[i] < y_valid[i][0] < p90[i]:
120 a[i][0] = 1
121

122 return np.mean(a)

28

Row 68 differs between the tiny standard deviation approach and the large standard deviation
approach, where preset value is either replaced with 0.01 for the small standard deviation
approach, or with the value of the standard deviation for the error of the station currently
being fitted to.

A.3 Code for determining both bias and standard deviation
The following code is an example of a network structure used for determining both bias
(mu) and standard deviation (sigma). As none of the networks converged, no code for
post-processing the predictions are supplied. The pre-processing of the data is similar to
the fixed-standard deviation regression attempts.

1 with pm.Model() as nn:
2 W_0 = pm.Normal(’W_0’, mu = 0.0, sigma = 1.0, shape=(Ni, NL0),
3 testval = np.random.randn(Ni, NL0))
4

5 Ws_0 = pm.Normal(’Ws_0’, mu = 0.0, sigma = 1.0, shape=(Ni, NL0),
6 testval = np.random.randn(Ni, NL0))
7

8 W_1 = pm.Normal(’W_1’, mu = 0.0, sigma = 1.0, shape=(NL0, NL1),
9 testval = np.random.randn(NL0, NL1))

10

11 Ws_1 = pm.Normal(’Ws_1’, mu = 0.0, sigma = 1.0, shape=(NL0, NL1),
12 testval = np.random.randn(NL0, NL1))
13

14 W_2 = pm.Normal(’W_2’, mu=0.0, sigma = 10.0, shape=(NL1, No),
15 testval = np.random.randn(NL1, No))
16

17 Ws_2 = pm.Normal(’Ws_2’, mu = 0.0, sigma = 10.0, shape=(NL1, No),
18 testval= np.random.randn(NL1, No))
19

20

21 b_0 = pm.Normal(’b_0’, mu = 0.0, sigma = 1.0, shape=(1, NL0),
22 testval = np.random.randn(1, NL0))
23

24 bs_0 = pm.Normal(’bs_0’, mu = 0.0, sigma = 1.0, shape=(1, NL0),
25 testval = np.random.randn(1, NL0))
26

27 b_1 = pm.Normal(’b_1’, mu = 0.0, sigma = 1.0, shape=(1, NL1),
28 testval = np.random.randn(1, NL1))
29

30 bs_1 = pm.Normal(’bs_1’, mu = 0.0, sigma = 1.0, shape=(1, NL1),
31 testval = np.random.randn(1, NL1))

29

32

33 b_2 = pm.Normal(’b_2’, mu = 0.0, sigma = 10.0, shape=(1, No),
34 testval = np.random.randn(1, No))
35

36 bs_2 = pm.Normal(’bs_2’, mu = 0.0, sigma = 10.0, shape=(1, No),
37 testval = np.random.randn(1, No))
38

39 mu = pm.math.tanh(pm.math.dot(ann_input,W_0)+b_0)
40 mu = pm.math.tanh(pm.math.dot(mu,W_1)+b_1)
41 mu = pm.math.dot(mu,W_2)+b_2
42

43 sigma = pm.math.tanh(pm.math.dot(ann_input,Ws_0)+bs_0)
44 sigma = pm.math.tanh(pm.math.dot(sigma,Ws_1)+bs_1)
45 sigma = pm.math.dot(sigma,Ws_2)+bs_2
46 sigma = T.nnet.softplus(sigma)
47

48 Y = pm.Normal(’Y’,
49 mu = mu,
50 sigma = sigma,
51 observed = ann_output,
52 total_size=y_train.shape[0])

A.4 Code for binary classification of error size
This code snippet accomplishes almost the same things as the previous one, but differs at a
few important points:

• The output array consists of boolean elements

• Other activation functions are used in the network

• The target distribution in the output of the neural network is a Bernouilli distribution

• There is no function corresponding to the performance score-function for evaluating
the performance of the predictions.

1 def arrays_class(df,parameters,critical_error):
2 """
3 make training data for classification of error size, return tuple
4 containing two numpy arrays where index [0] of return tuple is the input
5 to the neural net, index [1] is the observations to which the network
6 is fitted
7

8 df is a dataframe containing the observations and forecasts for the

30

9 station
10

11 parameters is a list of parameters to be included in the input training
12 data
13

14 critical_error is the upper limit for the absolute error, in units of K, for which the the outcome of the forecast is to be considered True
15 """
16

17 df = shfl(df)
18

19 y_train = np.array(np.abs(df[’Error’]) < crit_error)
20 y_train = np.transpose(y_train.reshape(1,-1))
21

22 df = df[parameters]
23 x_train = np.array(df)
24

25 return x_train,y_train
26

27

28 parameters= (
29 [’2 metre temperature’,
30 ’Solar elevation’,
31 ’Surface pressure’,
32 ’Temperature 850 hPa’,
33 ’Total cloud cover’,
34 ’10 metre U wind component’,
35 ’10 metre V wind component’
36])
37

38

39 critical_error = 2.
40

41 x_train_class, y_train_class = arrays_class(
42 station,parameters,critical_error)
43

44

45 ss=StandardScaler()
46 ss.fit(x_train_class)
47 x_train_class=ss.transform(x_train_class)
48

49

50 Ni = np.shape(x_train_class)[1]
51 NL0 = 100

31

52 NL1 = 50
53 No = 1
54

55

56 nn_class_input = theano.shared(x_train_class)
57 nn_class_output = theano.shared(y_train_class)
58 with pm.Model() as nn_class:
59 W_0 = pm.Normal(’W_0’, mu = 0.0, sigma = 1.0,shape=(Ni, NL0),
60 testval = np.random.randn(Ni, NL0))
61

62 W_1 = pm.Normal(’W_1’, mu = 0.0, sigma = 1.0,shape=(NL0, NL1),
63 testval = np.random.randn(NL0, NL1))
64

65 W_2 = pm.Normal(’W_2’, mu = 0.0, sigma = 10.0, shape=(NL1, No),
66 testval = np.random.randn(NL1, No))
67

68

69 b_0 = pm.Normal(’b_0’, mu = 0.0, sigma = 1.0, shape=(1, NL0),
70 testval = np.random.randn(1, NL0))
71

72

73 b_1 = pm.Normal(’b_1’, mu = 0.0, sigma = 1.0, shape=(1, NL1),
74 testval = np.random.randn(1, NL1))
75

76

77 b_2 = pm.Normal(’b_2’, mu = 0.0, sigma = 10.0, shape=(1, No),
78 testval = np.random.randn(1, No))
79

80 act_1 = T.nnet.relu(pm.math.dot(nn_class_input, W_0) + b_0)
81 act_2 = T.nnet.relu(pm.math.dot(act_1, W_1) + b_1)
82 act_out = pm.math.sigmoid(pm.math.dot(act_2, W_2) + b_2)
83

84 Y = pm.Bernoulli(’Y’,
85 p = act_out,
86 observed = nn_class_output,
87 total_size = y_train_class.shape[0])

The inference, tracing and sampling is similar to the regression code. The mirror of the
network is adjusted to the proper activation functions, which can be defined using numpy.

32

1 def sigmoid(x):
2 """
3 sigmoid activation function
4 """
5 return 1/(1+np.exp(-1*x))
6

7

8

9

10 def relu(x):
11 """
12 rectified linear unit activation function
13 """
14 return np.maximum(x,0)
15

16 def np_nn_errorsize_class(x, W_0, W_1, W_2, b_0, b_1, b_2):
17 act_1 = relu(np.dot(x, W_0) + b_0)
18 act_2 = relu(np.dot(act_1, W_1) + b_1)
19 act_out = sigmoid(np.dot(act_2, W_2) + b_2)
20 return act_out

A.5 Code for binary classification of absolute temperature
The only difference between the absolute temperature classification and error size classifica-
tion code is in the creation of the boolean output array. Here, the truth value depends on
whether the observed temperature exceeds a critical temperature.

1 def arrays_class_temp(df,parameters,critical_temperature):
2 """
3 make training data for classification of absolute temperature, return
4 tuple containing two numpy arrays where index [0] of return tuple
5 is the input to the neural net, index [1] is the observations
6 to which the network is fitted
7

8 df is a dataframe containing the observations and forecasts for the station
9

10 parameters is a list of parameters to be included in the input training
11 data
12

13 critical_temperature is the lower limit for the absolute temperature, in
14 units of K, for which the the outcome of the forecast is labeled True
15 """
16

33

17 df = shfl(df)
18

19 y_train = np.array(np.abs(df[’stn t2m’]) > critical_temperature)
20 y_train = np.transpose(y_train.reshape(1,-1))
21

22 df = df[parameters]
23 x_train = np.array(df)
24

25 return x_train, y_train

34

B Additional figures

Figure B.1: An example distribution of samples from one of the weights in a network
after training.

Figure B.2: A scatter plot of all predictions for classification of error size, Östersund-
Frösön. The colour of the dots represent the standard deviation of the predictions, which
corresponds to their uncertainty.

35

(a) 00 UTC, 22nd of February (b) 12 UTC, 30th of May.

Figure B.3: Two samples of single time-step predictions for binary classification of error
size, Östersund-Frösön. (a) shows predictions for an occasion where the observed absolute
error was significantly greater than 2 ◦C. (b) shows predictions for a smaller observed error.

Figure B.4: A scatter plot of all predictions for classification of temperature, Nordkoster.
The colour of the dots represent the standard deviation of the predictions, which corresponds
to their uncertainty.

36

(a) 28 December, 00 UTC (b) 20th July, 00 UTC

Figure B.5: Sample predictions of temperature classification for Nordkoster. (a) shows a
highly uncertain prediction for a day where both the forecast and observed temperature
where close to 0 ◦C. (b) shows a prediction of high certainty that the temperature will
exceed 0 ◦C.

37

	Introduction
	Background
	Numerical weather prediction
	Historical background
	Primitive equations
	Discretization and parametrization

	Artificial neural networks
	Bayesian neural networks
	Two probability distributions

	Method
	Data
	Regression
	Fixed standard deviation
	Simultaneous determination of standard deviation and mean value

	Binary classification
	Error size
	Absolute temperature

	Results and discussion
	Regression
	Fixed standard deviation
	Simultaneous determination of standard deviation and mean value

	Binary classification
	Error size
	Absolute temperature

	Conclusions and outlook
	References
	Acknowledgements
	Code excerpts
	Code common to all programs
	Code for regression with fixed standard deviation
	Code for determining both bias and standard deviation
	Code for binary classification of error size
	Code for binary classification of absolute temperature

	Additional figures

