
MASTER’S THESIS 2019

Test Case Prioritization Using
AHP and Customer Usage
Profiles for Regression Testing
Mattias Karlsson

ISSN 1650-2884
LU-CS-EX 2019-06

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY

EXAMENSARBETE
Datavetenskap

LU-CS-EX: 2019-06

Test Case Prioritization Using AHP and
Customer Usage Profiles for Regression

Testing

Mattias Karlsson

Test Case Prioritization Using AHP and
Customer Usage Profiles for Regression

Testing

(A Mixed Methods Study at ASSA ABLOY Global Solutions)

Mattias Karlsson
Elt14mka@student.lu.se

June 17, 2019

Master’s thesis work carried out at

the Department of Computer Science, Lund University.

Supervisors: Per Nordbeck, per.nordbeck@assaabloy.com
Markus Borg, markus.borg@cs.lth.se

Sahar Tahvili, Ericsson AB, sahar.tahvili@ericsson.com

Examiner: Per Runeson, per.runeson@cs.lth.se

mailto:Elt14mka@student.lu.se
mailto:per.nordbeck@assaabloy.com
mailto:markus.borg@cs.lth.se
mailto:sahar.tahvili@ericsson.com
mailto:per.runeson@cs.lth.se

Abstract

In rapidly changing markets, there is a need to be able to quickly adapt to the
changes and continuously release new software updates. This puts a high focus
on reducing the time needed to ensure the correctness of the previously tested
functionality, while still maintaining a high level of quality. In this thesis, we con-
ducted mixed method research to develop and evaluate a tool and a process to
reduce the amount of time spent on regression testing at ASSA ABLOY Global
Solutions. This was accomplished by employing the Analytic Hierarchy Process
(AHP) in combination with fuzzy values for the evaluation of test cases, where
one of the main criteria employed is code coverage in combination with cus-
tomer usage information. Our approach reduced the number of test cases needed
to reach 90% of the total decision coverage of the product source code from 258
to 63 (75.6%), corresponding to a reduction of test execution time by 54%. Fur-
thermore, when instead measuring decision coverage of the source code actually
executed in a solution deployed at a customer, we obtained a 94.6% reduction of
test cases needed to reach 90% of the total decision coverage. We were also able
to discover possible redundancy in the testing and the need for additional test
cases to cover untested code. This resulted in the creation of a maintenance pro-
cess based on the information found from our tool. We believe that our work on
using advanced test prioritization in combination with code instrumentation is
a first important step toward more e�cient software testing at ASSA ABLOY.

Keywords: Test Case Prioritization (TCP), Code Coverage, Fuzzy Analytical Hierarchi-
cal Process (FAHP), Regression Testing, Multi-Criteria Decision Making (MCDM)

2

Acknowledgements

Special thanks to my three supervisors, Per Nordbeck at ASSA ABLOY Global Solutions for
all the support and for inspiring me to always strive for more. Markus Borg from LTH/RISE
for the invaluable and continuous support throughout the duration of this thesis, for always
being there for discussions and feedback. Sahar Tahvili from Ericsson AB, for also supporting
me along the way and always being there for all my doubts and questions, as well giving
invaluable feedback on my work.
I would like to extend an extra thanks to all my colleagues at ASSAABLOYGlobal Solutions
for all the help I received along the way and always being there to discuss di�erent problems,
solutions and thoughts I had along the way.

3

4

Contents

1 Introduction 7
1.1 Background . 7
1.2 Case Description . 8
1.3 Purpose . 9
1.4 Contributions . 9
1.5 Outline . 10

2 Background 11
2.1 Agile Software development . 11
2.2 Code Coverage . 12
2.3 Code instrumentation . 13
2.4 Regression Testing . 13
2.5 Regression Test Selection (RTS) . 14
2.6 Test Case Prioritization (TCP) . 14
2.7 Hybrid Approach . 14
2.8 Analytic Hierarchy Process . 15
2.9 Fuzzy Values . 16
2.10 Related Work . 17

3 Research Method 21
3.1 Ex-ante: Case Study Research (CSR) . 22

3.1.1 Definition . 23
3.1.2 Interviews . 25
3.1.3 Document analysis . 25
3.1.4 Survey . 26

3.2 Design Science Research (DSR) . 26
3.2.1 Build . 28
3.2.2 Evaluate . 29

3.3 Ex-Post: Static validation . 31

5

CONTENTS

4 Ex-ante: Case study results 33
4.1 Interviews . 33

4.1.1 Observations . 33
4.1.2 Conclusions . 35
4.1.3 Limitations . 35

4.2 Document analysis . 36
4.3 Questionnaire . 36
4.4 Synthesis . 37
4.5 Objective for the design science phase . 38

5 Design science outcome 39
5.1 Build activity . 39

5.1.1 Data extraction . 40
5.1.2 Test Case Code Coverage . 41
5.1.3 Test case evaluation . 42

5.2 Evaluate activity . 44
5.2.1 Performance evaluation . 44
5.2.2 Focus group meeting . 48
5.2.3 Conclusions . 50

6 Ex-post: Results from static validation 53
6.1 Process evaluation meeting . 53

6.1.1 Participants . 53
6.1.2 Results . 54

6.2 Survey . 54
6.2.1 Participants . 54
6.2.2 Survey Results . 55

7 Discussion 57
7.1 DSS for regression test prioritization at AAGS 57
7.2 Threats to validity . 58
7.3 Future Work . 59

8 Conclusion 61

Appendix A Interview guide 65

Appendix B Questionnaire 67

Bibliography 69

6

Chapter 1

Introduction

1.1 Background
Software development is a very competitive business where there is a need to be able to
quickly adapt to the changing circumstances in the market. To enable this, a lot of the soft-
ware development that is conducted today is done with an agile approach, developing the
products in shorter iterations with continuous interaction with the customers during devel-
opment. This makes it easier to adapt to the changing needs of the customers and reduces
the time needed to release products to the market.

One of the key components when performing iterative development is to integrate the
changes made to the code as soon as they are tested, i.e. Continuous Integration (CI). CI is
a development practice that requires integration of the code into a shared repository as soon
as possible [30]. CI is commonly used in practice to handle rapid software changes. When
changes are made to projects an automated regression testing suite is run to check that no
new faults are introduced to the code [18]. In a survey on 442 developers, 70% found that
employing CI helped them find bugs earlier and made them less worried about breaking the
build [18].

For every increment of new functionality or alterations of previous functionality added
to the existing system, there is a risk of introducing regressions in the previously tested code.
In order to deal mitigate this, companies do not only test the new additions to the code but
also test previously tested functionality to ensure the correctness of said functionality. This
is done to make sure that the addition or alteration to the code did not introduce new faults
to the system. The practice of retesting code to ensure the correctness of previously tested
functionality is called regression testing and is a vital phase of software development to build
trust in that the software works as expected [5].

In addition to running the automated test suites for each commit, it is common to employ
further testing before the release of new software. Some of the tests involved in release testing
might not be possible to automate and as such must be done manually.

7

1. Introduction

As the employed test suites grow they tend to increase in complexity and could consume
excessive amounts of time and resources for execution and maintenance of the test suite
[6][34]. This could nullify the benefits of reusing old test suites instead of creating new ones.
Rerunning all test cases could become infeasible as it may consume excessive amounts of time
due to the increasing complexity of a growing test suite. Thus it would be beneficial to be
able to select a subset of test cases and/or re-prioritize the execution order to quickly detect
possible faults in the code [18]. The problem at hand is to decide which test cases to run, and
in what order they should be executed, such that we can still ensure the correctness of the
functionality and as quick as possible detect possible faults.

There are numerous ways and metrics aimed to measure the adequacy of a test suite. A
common metric is the number of requirements covered by the test cases in the test suite.
Another one is the structural coverage, i.e the amount of code covered by the testing suite
[7] [19] [12]. A way to test the quality of a test case is with mutation testing, where faults are
introduced into the source code to see if the test cases are able to catch them.

There are various methods and algorithms to employ for the prioritization of test cases
based on either a single or multiple criteria. In more complex scenarios it could be hard
to properly judge the relative priority of a test case based on a single criterion, and these
algorithms are generally used to only maximize the structural coverage. Many legacy systems
tend to contain a considerably large amount of code that is rarely or never executed during
usage of the system. This means that it is hard to really gauge which test cases are actually
exercising something that is used.

In this thesis, we explore using aMulti-Criteria Decision-Making(MCDM)Decision Sup-
port System (DSS) for the prioritization of test cases in regression testing. One criterion we
explore in the MCDM is usage data from instrumented code deployed at a customer site,
i.e., data on which parts of the source code actually is executing in the field. Our goal is to
increase the e�ciency of the regression testing practices at ASSA ABLOY Global Solutions.

1.2 Case Description

This thesis was conducted at ASSA ABLOY Global Solutions (AAGS), which is the global
leader in door opening solutions. AAGS was founded in 1974 and has been an industry
pioneer and world leading brand since then, AAGS develops security solutions for a wide
range of scenarios, e.g. hotels, cruise ships, elderly care, and student housing [3].

AAGS needs to be able to quickly respond to changes in the market or based on the needs
of their customers, and for this agile development methods are employed in the development
at AAGS. AAGS also employs CI in their development, such that they could quickly detect
possible faults and adapt to possible changes. In accordance with CI, AAGS employs auto-
mated regression testing for each commit to the shared repository during development. The
release process at AAGS also includes manual testing as well as running beta tests at chosen
beta test sites.

8

1.3 Purpose

1.3 Purpose
The purpose of this master thesis is twofold, first to develop a new tool for prioritization
of test cases, based on acquired usage data. And secondly a process tailored for regression
testing at AAGS. The intermediary goals for achieving this are listed below:

• G1 Examine current regression testing processes

– How is regression testing performed?

– Is there any prior work done for optimization of regression testing activities?

• G2 Collect Test Case information

– Collect coverage statistics of both manual and automated test cases

– Collect test case execution time and current priority

– Collect customer code usage

• G3 Prioritize test cases

– Find out how the collected data could be used in prioritization of test cases

– Find which criteria are best suited for the prioritization of test cases at AAGS

– Find out how data regarding existing hardware- and software configurations can
be used in combination with data regarding what is really used, to prioritize what
to test and in which order.

• G4 Implement G3 in the CI pipeline

– Develop a tool that extracts this data and sets the priority of test cases.

– Suggest how this information could be integrated and used in existing processes.

1.4 Contributions
This thesis contributes to AAGS by reducing the amount of time taken for regression test-
ing, which in turn will save both money and resources when developing new features, fixing
bugs or adding functionality to existing systems. In addition to reducing the amount of time
needed for the regression testing practices, this thesis also serves as a way to assert and en-
hance the quality of the testing activities at AAGS. This is done by proposing a process of
how the results of this thesis could be used to review the existing test cases and find out
what is missing when testing. A tool for the prioritization of test cases was developed during
this thesis and the information from the tool could be used when evaluating the test suite to
increase the quality and e�ciency of the testing. The results of this thesis are not tailored
specifically to AAGS but can serve as a general purposemethod for automating prioritization
of test cases when performing regression testing. The thesis also serves as a basis for further
research into regression test optimization, automation of test case prioritization and the use
of user data to correlate which parts of the system that should have higher priority.

9

1. Introduction

1.5 Outline
The rest of the thesis is structured as follows, Chapter 2 contains the background to the
problemwhere we go through all the topics that are important for this thesis. Andwe present
work that is related to the work presented in this thesis, chapter 3 contains the research
methodology used for this thesis. In chapter 4 we present the results of the case study, chapter
5 contains the design science outcome and in chapter 6 we present the results from the static
validation of our proposed solution. Chapter 7 consists of the discussions, threats to validity
and future work, chapter 8 concludes the thesis.

10

Chapter 2

Background

In this chapter, we elucidate the topics central to understanding the work presented in this
master thesis. The chapter also serves as the foundation for the development of methods
employed in his thesis.

2.1 Agile Software development
The Agile Alliance defines the agile methodology as [1]:

The ability to create and respond to change. It is a way of dealing with, and ultimately
succeeding in, an uncertain and turbulent environment.

IEEE defines agile in software development as [21]:

Software development approach based on iterative development, frequent inspection,
and adaptation, and incremental deliveries, in which requirements and solutions evolve
through collaboration in cross-functional teams and through continuous stakeholder
feedback.

As one of the core principles in agile software development is to be able to as quickly as
possible deliver a working solution, adaptability is considered a vital concept. To achieve this,
agile software development premiers being able to respond to changes over creating detailed
and long term plans. In addition, agile software development prioritizes having working
solutions over comprehensive documentation. This is coupled with a close connection to
customers and focusing on individuals and interactions over processes and tools [1][4].

In conventional development, regression testing is performed at the end, which allows
for more time to perform testing. In agile software development, regression testing takes
another form; it is performed at the end of each increment of the project. This means it is
crucial that it does not delay the next increment too much, as it would counteract some of
the benefits of employing agile methods [41]. When working with rapid releases, there is a

11

2. Background

need to narrow the testing scope and focus on the test cases that are most important due to
time constraints [31].

To mitigate the threat of delaying the release of a product or increment, regression test-
ing in agile development is often automated to an as high degree as possible [41]. However,
there are some scenarios that need to be manually tested due to various reasons e.g. it could
be infeasible to automate some tests, and safety-critical functionality may need to be ensured
manually [24]. Due to the time-consuming nature of manual testing, there is a risk of delaying
increments if the testing is ine�cient. Therefore the regression test suites need to be main-
tained such that they are kept up to date and not clogged with test cases that are considered
redundant and new additions to the code are covered.

2.2 Code Coverage
Code coverage is a white-box testing1 measurement of the degree to which the code has been
exercised during run-time, and is often used as an adequacy measurement, where companies
do not release software which has not been tested until they have reached a certain degree of
code covered. There are numerous applications of code coverage, e.g. finding out if you have
tested enough, testing what you intended to test and debug purposes.

Coverage based metrics are some of the more common metrics used when measuring the
adequacy of a test suite [19]. A program or procedurewith a high coverage percentage signifies
that it has had more of its source code exercised during testing. Which in turn implies that
is has a lower chance of containing undetected software bugs compared to a program or
procedure with a lower test coverage percentage.

There are several types of code coverage, Figure 2.1 depicts the main coverage criteria
employed when evaluating to which degree a test or test suite has exercised the source code
[30].

Statement Coverage

Code Coverage
Types

Function Coverage Edge Coverage Condition/Decision
Coverage

Figure 2.1: Code Coverage types

The Function coverage criterion controls if all functions or routines in the code have been
executed, Statement coverage assesses if all statements have been executed, Edge coverage is
about the path taken during execution, checks if every edge in the control flow graph has been
evaluated. Condition-Decision coverage appraises if every branch of the control structures
such as Boolean expressions have been evaluated, i.e. to true and false [19] [16] [30].

1white-box testing is a software testing method in which the internal structure/design/implementation of
the item being tested is known to the tester. (see Glenford [30])

12

2.3 Code instrumentation

The most commonly used metric is statement coverage even though it is usually consid-
ered to be the least e�ective in finding faults, edge/branch coverage is considered to subsume
statement coverage as it also covers all the branches of the program. AndCondition-Decision
Coverage subsumes edge/branch coverage as it also covers each sub-condition [19] [30].

When employing code coverage as a way to measure the adequacy of a test suite, caution
must be taken as code coverage is naive. Code coverage only shows that the region of the code
have been visited, not how and in what way. A high level of code coverage does not equal a
high test quality, thus code coverage should be used in combination with other methods [13].

2.3 Code instrumentation
In order to be able to measure the code coverage the information regarding what parts of
the code that is being exercised needs to be gathered. This could either be done manually
by analyzing the code and calculating the coverage, but it is more common to use tools that
does this automatically. These tools apply code instrumentation when evaluating the code
coverage of the system under test [32]. Code instrumentation is the practice of adding extra
instructions to the code for monitoring purposes. These instructions serves as measuring
probes which enable the collection of runtime information but do not a�ect the behavior of
the system other than the performance [20]. With code instrumentation, it is e.g. possible
to monitor a product’s performance, diagnose errors, write trace and coverage information
about the covered regions of the code. Instrumentation of the code could be performed on
either on source code or on byte code and could be performed either statically or dynamically
[32].

2.4 Regression Testing
Regression testing is a way to verify that previously existing functionality works as intended
and to elevate confidence in the correctness of the altered system. This is accomplished by
re-testing the previously tested functionality [2][34][36][11]. Furthermore ensuring that any
modification that is done to a certain part of the system should not result in the introduction
of new errors to the unaltered system. Some of the common goals of regression testing are
preventing fault slippage and ensuring the correctness of the previously tested code [29][33].

There could be a multitude of reasons to why performing regression testing is necessary,
we’ve listed some examples below [2] [33]:

• Changes made to requirements that result in the modification of the code.

• Additions to functionality.

• Changes to the environment e.g. changing database.

• When there is a performance issue fix.

• When there is a defect fix.

In conclusion, whenever there have been any changes to the environment or the system itself
there is a need to perform regression testing to build confidence in the correctness of the
functionality in the system.

13

2. Background

2.5 Regression Test Selection (RTS)
The intent of test case selection is when given a test suite T to find a subset T ′ which still
meets the requirements of that given test suite for the corresponding program P. Rothermel
et al. [33], defined the (RTS) problem accordingly:

Given: The original program P, the revised version of P, P’ and a test suite, T.
Task: Determine T ′ ⊆ T , for the modified version P’

Test case selection is divided into two di�erent directions, to either select all the available
test cases for the given system, i.e. the Re-Test all approach, or only select those that cover
sections that are a�ected to any degree by the changes made to the code [25]. Retesting all
test cases might not be an appropriate method when the system grows and the number of
functions and code expands, due to the increasing amount of resources spent during execu-
tion of the test suite [27].

2.6 Test Case Prioritization (TCP)
Test Case Prioritization serves as another method for increasing the e�ciency of a given
test suite. In contrast to Regression Test Selection, it does not run the risk of removing or
omitting important test cases. Instead, the intention of TCP is to schedule test cases such
that higher priority test cases are executed ahead of lower priority ones according to some
chosen criterion [11][34][5]. The purpose of applying TCP is to achieve a goal earlier in the
testing, e.g. a high of coverage as soon as possible or running previously failed test cases first
[11].

The test case prioritization problem was formally defined by Rothermel et al. [36] as:

Given: T, a test suite, PT, the set of permutations of T, and f, a function from PT to the
real numbers
Task: Determine T ′ ∈ PT such that (∀T ′′)(T ′′ ∈ PT)(T ′′ 6= T ′)[f (T ′) ≥ f (T ′′)]).

Where PT represents the set of all possible orderings of T, f is a function when applied
to any of the orderings yields an award value that one can utilize to select the most e�cient
ordering.

2.7 Hybrid Approach
To further increase the e�ciency of a test suite, a combination ofmethods could be employed.
A hybrid approach is a combination of both RTS and TCP in an e�ort to further improve
the e�ciency and to reduce the cost of the test suite. Several researchers are working on such
approaches and have proposed numerous algorithms for them [23] [36]. It still runs the risk
of omitting important test cases when selecting test cases, but if done properly the test suite
could gain a major increase in e�ciency compared to no prioritization or only using one of
the methods.

14

2.8 Analytic Hierarchy Process

2.8 Analytic Hierarchy Process
When considering test suite optimizations methods, it is important to establish the relative
worth of each test case based on what the goal of the optimization is. Depending on the
situation it could su�ce with employing a single criterion for the evaluation, but in more
complex scenarios it could be hard to properly judge the priority of a test case based solely
based on one criterion [40] [38] [15].

When applying more than one criterion for the evaluation of alternatives, the test suite
optimization problembecomes aMulti-CriteriaDecision-Making problem (MCDM). InMCDM
problems, one must first define the relative importance of the di�erent criteria used for the
comparison, such that one can properly weigh one attribute against another attribute for the
evaluation of test cases [38]. When dealing with MCDM, it is common to apply a Decision
Support System (DSS) to help with solving the MCDM problem [10].

The Analytic Hierarchy Process (AHP) is a DSS for MCDM problems, where AHP de-
composes the decision-making problem into a hierarchy such that the decision-maker can
focus on a limited number of items at a time [22] [38]. AHP is considered a powerful tool
for calculating weights to solve an MCDM problem, and is especially well suited for complex
decisions that involve the comparison of decision elements which are di�cult to quantify
[40] [22].

Goal

Criteria 1 Criteria 2 Criteria 3 Criteria 4

Alternative 1 Alternative 2 Alternative 3

Figure 2.2: Structure of AHP

As can be seen in Figure 2.2, the AHP hierarchy consists of three levels, i.e. the goal,
criteria and alternatives. The levels of AHP could be regarded as phases:

1. Goal identification

2. Criteria identification and assessment of found criteria

3. Alternative assessment and application of found weights

Phase 1 consists of deciding on what the general goal is, the decision to be made. In phase
2, one must identify which criteria are important for the comparison of alternatives, and
decide the relative worth of each criterion compared to the rest. The output of phase 2 is a

15

2. Background

set of weights to be applied to the assessment of alternatives based on the di�erent criteria.
In phase 3, the order of importance is decided by first assessing each alternative based on
each criterion individually and then applying the found weights.

The calculation of the weights for the criteria is performed by developing a pairwise
comparison matrix for the criteria. In the matrix, the importance of each criterion is judged
in relation to every other criterion.

The pairwise evaluation is performed with the help of a 9-point scale, an example is
illustrated in table 2.1. The results of the pairwise comparison are stored in the comparison

Factor Factor weighting score Factor
More importance than Equal Less importance than

C1 9 8 7 6 5 4 3 2 1© 2 3 4 5 6 7 8 9 C2
C1 9 8 7 6 5© 4 3 2 1 2 3 4 5 6 7 8 9 C3
C2 9 8 7 6 5© 4 3 2 1 2 3 4 5 6 7 8 9 C3
C2 9 8 7 6 5 4 3 2 1 2 3 4 5© 6 7 8 9 C4
C3 9 8 7 6 5 4 3 2 1 2 3© 4 5 6 7 8 9 C4
C4 9 8 7 6 5 4 3 2 1 2 3© 4 5 6 7 8 9 C1
C.. C..

Table 2.1: Pairwise comparison

matrix as illustrated in table 2.2.

Factor C1 C2 C3 C4
C1 1 1 5 3
C2 1 1 5 3
C3 1/5 1/5 1 1/3
C4 1/3 1/3 3 1

Table 2.2: The resulting comparison matrix

Furthermore, tomake sure that the evaluation of the di�erent criteria does not contradict
each other, a consistency analysis is performed. This is done through first calculating the
Consistency Index (CI), which is the measurement of the degree of inconsistency. Where
CI = (λmax − n)(n − 1), λmax is the principal eigenvalue of the comparison matrix and n is
the number of elements.

2.9 Fuzzy Values
When making decisions in a complex environment it is often hard to put an exact number
on the relative importance of one alternative compared to the rest. A way to mitigate this is
by employing fuzzy sets instead of discrete values to make it easier for the decision maker to
judge the alternatives [22] [40]. This allows for more room for error when making compar-
isons and is better suited for when it is hard to set precise quantified values.

A triangular fuzzy number (TFN) can be defined as a triplet of values, M=(l,m,u) where
l,m,u are real numbers and l indicates low bound, m is modal and u represents a high bound
[40].

16

2.10 Related Work

Fuzzy number Description Triangular fuzzy scale Domain mA(x)
9 Very High (7,9,9) 7 ≤ x ≤ 9 (x - 7)/(9 - 7)

7 High (5,7,9)
7 ≤ x ≤ 9
5 ≤ x ≤ 7

(9 - x)/(9 - 7)
(x - 5)/(7 - 5)

5 Medium (3,5,7)
5 ≤ x ≤ 7
3 ≤ x ≤ 5

(7 - x)/(7 - 5)
(x - 3)/(5 - 3)

3 Low (1,3,5)
3 ≤ x ≤ 5
1 ≤ x ≤ 3

(5 - x)/(5 - 3)
(x - 1)/(3 - 1)

1 Very Low (1,1,3) 1 ≤ x ≤ 3 (3 - x)/(3 - 1)

Table 2.3: The Fuzzy Scale of Importance

Using table 2.3, we can translate the linguistic values used to evaluate the alternatives to
triangular fuzzy numbers (TFN).

2.10 Related Work
We identified the following areas to hold the highest relevance to the work presented in this
thesis:

• Code coverage based test case selection and/or prioritization

• Decision support systems for test case evaluation

• Multi-Criteria Decision-Making

The purpose of TCP is to order test cases in an order that would satiate the goal of the
prioritization with least amount of cost, commonly done by weighing di�erent costs against
values. However, it is common to first select a subset of the test cases for the prioritization.

There are several studies on how to increase the e�ciency of a test suite by selecting
and/or prioritizing test cases. A lot of these involve techniques that are based on applying
a single criterion for the evaluation, but more and more techniques are based on multiple
criteria instead [15].

Li et al. performed an empirical comparison of five di�erent metaheuristics algorithms
for test case prioritization based on code coverage [28]. Beena and Sarala [5] proposed a
technique for combining TCSwith TCP based on code coverage, where they first select which
tests to keep and then in which order the selected test cases should be executed. The proposed
approach was deemed very e�ective in reducing the cost and time spent on regression testing.

Wong et al. identified TCP as a single objective optimization problem [45]. They ranked
test cases based on their increasing cost versus additional coverage. Ahlam et al. performed
test case prioritization for regression testing based on Ant Colony Optimization [2]. Beszdes
et al. performed code coverage-based regression test selection and prioritization in WebKit,
where they applied a change based selection of test cases and then prioritized them for further

17

2. Background

minimization [6]. Through various studies where code coverage has been used as a single
criterion for prioritization of test cases, Rothermel et al. [36] [35] and Elbaum et al. [11],
identified branch coverage as the most critical coverage criterion.

When testing large and complex systems, it could be hard to correctly estimate the im-
portance of a test case based on a single criterion, as there could be multiple factors a�ecting
the e�ciency [40]. When considering the cost and value for a test case, there could be dif-
ferent views of what is considered as costs or value [15]. Examples of costs could be, e.g. test
execution time, test setup time or simulation costs, examples of values could be, e.g. code
based coverage or non-code based coverage such as requirement coverage [15].

Multi Objective Regression Test Optimization (MORTO) is considered more suitable
for complex scenarios as it considers multiple criteria for the evaluation of test cases [15].
However, adding multiple criteria for the evaluation of test cases adds another problem for
the evaluation. In order to apply these criteria, one must first judge the relative importance
of each criterion compared to the rest.

When facing MCDM problems, it is common to apply a DSS for the evaluation of dif-
ferent alternatives as judging the alternatives based on multiple criteria could become rather
complex [10]. Wang et al. performed test case selection usingmulti-criteria optimization; one
of the criteria employed was statement coverage, where they proposed a greedy algorithm to
solve the multi-criteria optimization problem [44]. Walcott et al. proposed a time-aware test
case prioritization where they balance time and code coverage [43]. Zhang et al. presented
a similar approach to the test case prioritization problem [46]. Kabir et al. compared the
DSS AHP to FAHP [22], where they found that the application of fuzzy values proved to be
convenient when making decisions in a fuzzy environment where there could be deviations
in the decisions of the decision makers. This makes it better suited in environments where it
is hard to apply crisp values for the decisions.

Tahvilli et al. proposed a Multi-Criteria Decision Making(MCDM) approach to the pri-
oritization of test cases, where they chose to apply FAHP as a DSS for the evaluation of test
cases [40]. Their work established that it is viable to apply FAHP for the prioritization of
test cases and found that:

Our approach enables to rank test cases based on a set of criteria and is particularly nec-
essary when there is a limitation (due to resource constraints) in selection and execution
of test cases for a system and it is not possible to run all the test cases.

They also found that the approach is not limited to any specific set of criteria:

In di�erent systems and contexts users can have their own set of key test case properties
based on which prioritization is performed.

Tahvili et al. performed an industrial case study where they selected test cases based on
test case dependencies, they then prioritized the selected test cases based onmultiple criteria.
Their chosen method for the prioritization of test cases was based on using FAHP as a DSS
[39].

The work presented in this report is based on the solution proposed by Tahvili et al.
[40], where we employ FAHP as a DSS for the prioritization of test cases. However, whereas
Tahvili et al. employed requirement coverage as one of themain criteria for the evaluation, we
instead focus on the amount of code that is covered by each test case. Our approach also takes
the information regarding what parts of the source code that is executed by the customer.

18

2.10 Related Work

And uses the found information for the code coverage evaluation of the test cases, to increase
the priority of the test cases that are covering something that is used by the customers.

19

2. Background

20

Chapter 3

Research Method

Problem, Motivation &
Objectives

Validation

Ex-ante stage
Approach:

Literature review
Interviews
Document analysis
Survey

Ex-post stage
Goal:

Evaluate proposed solution
Gather feedback
Communicate results

Approach:

Focus group

Artifact Design &
Development

Design Science

Build

Evaluate

Case Description Artifact Report

Figure 3.1: Overview of the researchmethodology used for this thesis

The overall structure of the work in this thesis is based on the model created by Costa et
al. [8], where the method is comprised of three stages, see Figure 3.1.

Each stage in the chosen model produces some results, the ex-ante stage produces a case
study report; this is where we prepare for the design science stage by reviewing literature,
what kind of information that is available at AAGS and gather information from the testing
department. In the finishing steps of the case study, we propose a possible solution based on

21

3. Research Method

the found information. The design science stage is the main stage for the development, the
results of this stage are the artifacts that will be used by AAGS when they perform regres-
sion testing. In the final stage, the ex-post stage, we perform a static validation of what was
produced in the design stage, both as a way to evaluate our work as well as the feasibility to
employ the artifacts in the daily work of AAGS testing department.

An overview of the work conducted for the development of the tool and proposed pro-
cess can be seen in Figure 3.2, where the case study covers the initial study and information
gathering which is then used for the development of a tool and a process in the design science
stage. The implementation of the tool and process and continuous evaluation of said tool and
process belongs to the design science stage, and the evaluation of the work conducted for this
thesis is done in the ex-post stage, see Figure 3.1.

Tool
implementation

Tool
implementation

Action

Focus group

4Evaluation

Process
implementation

Process design

Evaluation

Initial study

Artifact analysis

Survey

Interviews

Literature study

Information
gathering

Evaluation &
Application

Ex-Ante Design Science Ex-Post

Figure 3.2: Overview of the work conducted

3.1 Ex-ante: Case Study Research (CSR)
CSR is considered as a suitable research methodology for software engineering research as it
studies contemporary phenomena in its natural context. But even though CSR is considered
flexible, good planning is crucial for its success [37].

A plan for CSR should contain the following elements [37]:

• Objective - what to achieve?

• The case - what is studied?

• Theory - frame of reference

• Research questions - what to know?

• Methods - how to collect data?

22

3.1 Ex-ante: Case Study Research (CSR)

• Selection strategy - where to seek data?

We started by examining previous studies on regression testing to get a better under-
standing of the problems and challenges related to regression testing, as well as possible cri-
teria that could be employed when evaluating the test cases, test processes and selection of
test cases. However, there is no guarantee that the found information is directly applicable
for AAGS, to ensure the problem relevance and applicability of the found information for
AAGS specific needs. We need to dive into the specific situation at AAGS, to find the prob-
lems and challenges of AAGS regarding regression testing, and information that could be
used when evaluating the testing e�orts of AAGS, as well as understanding the overall idea
and thoughts on the currently employed strategy for regression testing.

For this, we conducted interviews to gather information from the testing department
regarding the current strategy, perceived problems and challenges related to regression test-
ing. After the interviews, we analyzed the artifacts from previous test runs as well as other
information pertaining to the testing e�orts of AAGS to find out what information could
be found and used for the development of a new process. This was then followed by survey-
ing the testers with a questionnaire regarding the performance of test cases based on specific
criteria.

3.1.1 Definition
The main objectives of this case study were to examine the current prioritization strategy
of AAGS, gather information regarding the regression testing practices and gather the in-
formation that could be used when designing a solution for increasing the e�ciency of the
regression testing at AAGS. This was done as a preparatory step such that we could develop
a tool that sets the priority to the test cases based on the available information.

Development process at the company
The main focus for the work done during this thesis is AAGS software system Visionline
along with the components in that ecosystem, the Visionline system was created under an-
other name DC-One in 1997 and got its current name in 2006. As the system has evolved
over time, more and more functionality has been added, and with this, new test cases have
been added to cover the new functionality. The creation of test cases is based on the view
of every major component of the system, which means that there are several test cases that
probably cover the same parts of the system. As there are several parts of the system, AAGS
has developed a test suite for each of the major components, and even though they serve dif-
ferent purposes they are still a part of the same system and are tested with a similar approach
but with di�erent acceptance criteria. Another problem when testing for AAGS, is that it
has become harder to actually know what is used by the customers, and as such knowing
what should have a higher priority when testing. In order to increase the probability to find
potential issues that would a�ect the larger portion of customers, there is a need to know
what is actually used and what is more commonly used.

AAGS employs an agile methodology in their development and has three major releases
planned for each year, as well as a possible minor release if the need should arise. For each
release of the software, the previously tested functionality needs to be retested such that no

23

3. Research Method

regressions are introduced into the system. When performing regression testing AAGS use
unit tests, automated tests with robots and manual testing. The bottleneck for AAGS when
performing regression testing is manual testing, which is deemed as time consuming.

Ideally, AAGS would like to rerun all test cases to ensure the correctness of the system,
but rerunning the whole regression testing suite has become too time consuming and thus
costly. Rerunning all test cases in AAGS test suite would consume four weeks of work for one
tester, thus AAGS either needs to wait for four weeks or allocate more resources to shorten
the amount of time needed. In addition to possibly delaying a release, this also a�ects the
feedback loop for the developers as it takes more time to find possible faults, fix them and
rerun the failing test cases again.

Research questions
The research questions for this exploratory case study were:

RQ1 How is regression testing done at AAGS? What are the perceived prob-
lems/challenges?

In order to get a clear view and a deeper understanding of the regression testing practices
at AAGS as well as perceived problems and challenges, we need to find out how and by
whom regression testing is performed today. This serves as a base for understanding the
prioritization needs of AAGS in addition to finding out the problems related to regression
testing at AAGS.

RQ2What is the current regression testing strategy?

To understand how we could increase the e�ciency of AAGS regression testing activities,
we need to investigate how AAGS currently works with regression testing.

RQ3What kind of test case information is available? How can the found infor-
mation be used for the evaluation of test cases?

In order to be able to prioritize test cases according to some criterion, we need to investigate
what kind of data are available and what data we could use for the evaluation.

Unit of analysis
The unit of analysis is the regression testing activities in an agile, incremental development
process for complex legacy system software development. The unit of analysis in the study is
specifically regression testing performed by one function group at AAGS.

Methods and selection strategy
We chose to gather information from multiple sources, and as such, we employed three dif-
ferent methods for the collection of data. This was done in order to limit the e�ects of one
interpretation of one single data source, and possibly strengthen the validity of our findings
if the same interpretation could be drawn from multiple sources [37].

We first employed interviews to gather information regarding the current regression test-
ing practices of AAGS, their prioritization strategy, and perceived problems and challenges

24

3.1 Ex-ante: Case Study Research (CSR)

related to regression testing. We then analyzed the documents related to the testing practices
of AAGS in order to collect data regarding what could be used when evaluating the testing
e�orts of AAGS as well as individual test cases. We finished the collection of data with a
questionnaire regarding the evaluation of test cases based on the found data and possible
criteria that could be employed for the evaluation of test cases.

3.1.2 Interviews
The interviews were designed with a semi-structured approach, to allow for flexibility and
possibility to add questions based on the answers from the interviewees [37]. The reason for
conducting these interviews was to determine how regression testing is currently performed,
what the current strategy is based on andmap out possible challenges and problems perceived
by the testers.

The structure of the interview guide consisted of background information about the in-
terviewee, overall testing approach, views, and understanding of the current strategy. Possi-
ble challenges and problems related to regression testing and overall thoughts on the regres-
sion testing practices at AAGS, the questions used during the interview series can be found
in Appendix A.

When selecting participants for the interviews we chose to focus our e�orts on the per-
sons involved in testing at AAGS, such as testers, test developers and test managers. In order
to find out if there were any general methods employed for the regression testing practices
at AAGS, we also chose to interview two testers that were involved with another product.

The process of conducting the interview consisted of the following steps [37]:

1. Create a consent form and interview guide

2. Conduct interviews and record the discussion

3. Transcribe the recording

4. Analyze the results and draw conclusions

As transcribing is a time consuming process, we decided to limit the interviews to 15minutes,
leaving one and a half minute per question. Which should be long enough to answer the
questions without superfluous details and discussions regarding the questions.

3.1.3 Document analysis
We analyzed various documents related to the regression testing practices of AAGS to find
what kind of data that were available and what could be used when evaluating test cases.

When selecting which documents to analyze, we chose to focus our e�orts on documents
relating to the test cases used in the regression testing, as well as any document detailing the
regression testing practices at AAGS. The primary documents chosen for the analysis were
the test case specifications and test case tracking tables, where all information regarding the
test cases and historical outcome of the test cases were kept.

We analyzed the documents with a combination of the hypothesis-generating approach
and hypothesis-confirming approach [37], where we had some hypothesis from the interviews

25

3. Research Method

and literature which we wanted to confirm as well as possibly creating new hypotheses based
on the found data.

3.1.4 Survey
After reviewing the literature, relatedwork andwhat kind of data that could be found regard-
ing the test cases, we chose to employ a survey as a method of gathering subjective evaluation
of the performance of the test cases based on the expertise of the testers. The criteria chosen
for the evaluation were based on findings from previous work done by Tahvili et al. [39].
These criteria have shown good results when employed for increasing the e�ciency of the
testing at Bombardier tech. We employed the survey as a way to gather further information
regarding the performance of the test cases based on the expertise of the testers. Each tester
evaluated each test case based on the found criteria. The evaluations was done with the help
of linguistic values instead of numbers. This was done in order tomake it easier for the testers
to evaluate the test cases, as it could be hard to put exact values on the performance based
on the chosen criteria. The evaluation of the test cases was based on the five point scale of
fuzzy values detailed in section 2.9, an example of the questionnaire can be seen in table 3.1.

Test Case
ID

Time
e�ciency

Cost
e�ciency

Fault detection
probability

Requirements
Covered

T10001 Medium Medium Medium 1
T10002 Low Medium Medium 1
T10003 Low Low Low 1
T10004 Low High Medium 1
T10005 Medium High High 1
T10006 Medium Low Medium 1
T10007 Very high High Low 1
T10008 Low Low Low 1
T10009 Medium Medium High 1
T10010 High High Low 1

Table 3.1: Questionnaire for evaluation of test cases

3.2 Design Science Research (DSR)
Design science creates and evaluates artifacts intended to solve identified organizational
problems, where the artifacts created when employing design science can vary depending
on the problem. Design science is done with an iterative approach, continuously building
and evaluating the artifacts until it satisfies the requirements and constraints of the problem
it was intended to solve, see Figure 3.3 [17].

The design science research methodology of this thesis is primarily based on Hevner’s
guidelines regarding design science in information system research, see table 3.2 [17].

To properly explore the problem relevance, see guideline 2 in table 3.2, we conducted
an exploratory case study in the ex-ante stage of this thesis as shown in Figure 3.1. The ex-
ploratory case study also served as a way to find out what could be used for the design and

26

3.2 Design Science Research (DSR)

Build

Evaluate

Figure 3.3: Design science development cycle

Guideline Description

1: Design as an Artifact
Design-science research must produce a viable artifact in the
form of a construct, a model, a method, or an instantiation.

2: Problem Relevance
The objective of design-science research is to develop
technology-based solutions to important and relevant
business problems.

3: Design Evaluation
The utility, quality, and e�cacy of a design artifact must be
rigorously demonstrated via well-executed evaluation
methods.

4: Research Contributions
E�ective design-science research must provide clear and
verifiable contributions in the areas of the design artifact,
design foundations, and/or design methodologies.

5: Research Rigor
Design-science research relies upon the application of
rigorous methods in both the construction and evaluation of
the design artifact.

6: Design as a Search Process
The search for an e�ective artifact requires utilizing available
means to reach desired ends while satisfying laws in the
problem environment.

7: Communication of Research
Design-science research must be presented e�ectively both
to technology-oriented as well as management-oriented
audiences.

Table 3.2: Hevner’s guidelines for design science.

implementation of a tool that could prioritize test cases based on the found data. In addition
to finding out what was available, we also gathered additional data from the testing depart-
ment of AAGS based on the information found from the literature study. In accordance
with guideline 3, we continuously evaluate the proposed tool and process, by employing fo-
cus group meetings and having frequent interactions with the testing department of AAGS.
When performing DSR, the research contributions must be clear and verifiable, see guideline
4 in table 3.2, which is done by thoroughly presenting the research approach and results. We
meet guidelines 5 and 6 through the exploratory case study, where we study previous work
as well as analyze the available data for the proposed solution.

When employing design science as a methodology, the work needs to produce a viable
artifact in some form as well as be communicated e�ectively, see table 3.2 guidelines 1 and

27

3. Research Method

7. The work presented in this thesis resulted in the creation of a process for automating
the evaluation and prioritization of test cases when performing regression testing. For the
evaluation and prioritization of test cases, an implementation of the proposed solution was
created. The design of the resulting process and implementation of the tool were based on
the exploration of the problem areas as well as previous work done in the field of regression
testing.

The artifact consists of two parts, the main part is an implementation of a tool that could
evaluate test cases based on several aspects and artifacts. The second part is the process of
employing the tool, how they can utilize the findings of this thesis in the daily work of testing
as a way of increasing the e�ciency of testing e�orts.

3.2.1 Build
All information gathering and examination of the current regression testing practices were
done in the exploratory case study, and a possible solution was constructed based on the
found information.

In the design science stage we focus on building a DSS tool for the evaluation of test cases
based on the data gathered in the exploratory case study. The information gathered in the
exploratory case study mainly relates to the testing practices of AAGS, test case performance
as well as information regarding previous test runs. In addition to the evaluation of the test
cases done by the testers in the case study, we also need to gather information about what
parts of the software is used by the customers and what parts of the code that is covered when
testing, i.e., structural coverage.

When correlating the testing done at AAGS with what is actually used by customers we
can find out which test cases that hold a higher priority when testing, as they are covering
something that is being used by the customers. As AAGS employs automated testing, we
also need to examine what is covered by the automated tests, such that we do not elevate the
priority of a test case based on howmuch it covers only, but instead howmuch new code that
is covered. As shown in Figure 3.4, we want to find the test cases with the highest amount
code that is being used by the customers but has not already been covered by automated test
e�orts.

The proposed solution can be summarized by the following steps:

1. Gather code coverage data from the testing environment and customers, then analyze
the correlation between test case code coverage and user code coverage

2. Create a DSS tool based on FAHP for the prioritization of test cases

3. Create a process for how the DSS tool can be used at AAGS

In the first step, we need to gather code coverage data from each individual test case
involved in the regression testing at AAGS in addition to the automated test coverage. To
find out how the testing of AAGS compares to the usage of the users we also need to gather
information regarding what parts of the code that is actually executed in the field.

In order to collect information regarding what is exercised in the code, we need to employ
code instrumentation to the source code, such that we can find out what is actually exercised.
After collecting code coverage from testing and usage from the customers we need to analyze

28

3.2 Design Science Research (DSR)

Customer Code usage

Highest priority manual
test cases

Automated Test Coverage

Redundant
Manual

Test Cases

Usage Not Covered by
any test

Redundant
Automated
Test Cases

Manual Test Coverage

Figure 3.4: Code Coverage of the System Under Test

the found information and determine how much of the system each test case covers and how
much of the usage they cover. This could be summarized by the following steps:

1. Collect the information regarding what has been executed during run time

2. Find out which parts of the source code that has been executed during run time

3. Extract the information and store it for further analysis.

The extracted data can then be used to compare the customer usage of the system with
the test coverage, such that we can find how much code each test casea covers that is also
used by the customers.

In the second step, we develop a tool where we apply AHP as the DSS to solve theMCDM
problemwhen evaluating the test cases, that combines the information found in the first step
with the information from the document analysis for the prioritization of test cases. In the
final step, we create a process of how the tool could be used by the testing department of
AAGS to increase the e�ciency of their testing e�orts. The final step is performed through
a focus group meeting, where we discuss how the tool can be used together with the testing
department of AAGS.

3.2.2 Evaluate
When employing design science, the problem relevance and design of the artifact need to be
continuously evaluated, as stated in the guidelines in Table 3.2 [17].

29

3. Research Method

We chose to evaluate the process based on the performance of the proposed solution as
well as how it was perceived by the testing department, thus incorporating both an analytical
dynamic analysis and an analytical static analysis [17]. This was done in order to get a more
complete view of the performance as well as the feasibility to employ the proposed solution
in the existing processes at AAGS. In addition to this, we worked in close contact with the
testing department such that we could adapt the solution based on their feedback.

Performance comparison
The analytical dynamic analysis is done by comparing the proposed solution to the current
strategy of AAGS as well as random order prioritization as a point of reference. The com-
parison is compromised of two parts, first the amount of code covered per test case and the
amount of code covered per time unit.

In order to properly gauge the e�ciency of each method, we accumulate the amount of
code covered based on time and amount of test cases needed. This is done such that each
test case in the given order only adds the amount of code that is not covered by previous test
cases or automated e�orts. In addition to this, we compare the methods both with respect
to the system wide testing as well as the customer usage of the system.

Focus group meeting
The analytical static analysis was performed by conducting a focus group meeting, where the
testers could evaluate the preliminary results as well as the feasibility to use and maintain the
proposed solution. This was done in order to get feedback from the practitioners to further
improve the proposed solution, as to involve the testers that will be using the tool as early on
as possible [14].

The meeting started with a presentation of the proposed solution, preliminary results
and what was required to be able to use and maintain the proposed solution. Before the
meeting we sent material to the elicited participants such as they could contemplate on their
own before the meeting. This was done to increase the e�ciency of the meeting as well as
possibly get more input from the participants. The format of the meeting was a mix of direct
questions to be discussed first in smaller groups and then in the larger group followed by an
open discussion regarding the process of employing the proposed solution. The execution of
the focus group consisted of the following steps [37]:

1. Prepare the material and gather the preliminary results

2. Send out the material to the elicited participants before the meeting

3. Conduct the focus group meeting and record the discussion

4. Transcribe the recording

5. Analyze the results and draw conclusions

30

3.3 Ex-Post: Static validation

3.3 Ex-Post: Static validation
As proposed byGorschek et al. [14], we conducted an evaluationmeeting as a static evaluation
of the resulting tool and process. The intention with the static validation was to find out how
the proposed process could be integrated into the release process at AAGS in addition to
getting feedback on the proposed process itself. As an extension of how to use the proposed
process, we also wanted to figure out howAAGS could use the found information to increase
the e�ciency of the testing e�orts.

The elicited participants for the focus group meeting held various positions at AAGS.
The format of the meeting was a directed discussion around the main points of interest
followed by open discussions regarding the proposed process and integration into existing
processes.

We initiated the focus group meeting with a presentation of the proposed process based
on the findings from the previous meeting. The execution of the focus group consisted of the
following steps [37]:

1. Prepare the material and results

2. Conduct the focus group meeting and record the discussion

3. Transcribe the recording

4. Analyze the results and draw conclusions

31

3. Research Method

32

Chapter 4

Ex-ante: Case study results

In this chapter, we present the results from the exploratory case study that was conducted
at AAGS. The purpose of the case study was to explore the problem relevance and find out
what kind of information that was available for the evaluation of test cases. The outcome
from the case study forms the foundation for the design science stage, and thus we gather
as much information as possible regarding the performance of the test cases. Such that we
know what could be used when prioritizing test cases for regression testing at AAGS.

4.1 Interviews
The purpose of the interview series was to establish how regression testing is performed
at AAGS and gain insight into the possibly perceived problems and challenges related to
regression testing.

We interviewed eight persons that are involved with testing at AAGS, the interviewees
hold di�erent positions but all have some relation to the testing practices at AAGS. The
persons interviewed formed a nonuniform group in regards to positions at AAGS, academic
background, amount of time at AAGS and work experience, see table 4.1. Due to the high
variance in the background, better coverage of the company practice could be drawn from
the interviews [9].

4.1.1 Observations
There are several actors involved in the testing at AAGS, and the testing is done at di�erent
levels and with di�erent methods. The main body of testing performed at AAGS is either
manual testing, unit tests or automated tests done with the help of robots. In addition to
the methods mentioned above, AAGS also employs exploratory testing as much as possible
to detect faults that might slip through the main body of tests when regression testing. Af-

33

4. Ex-ante: Case study results

Interviewee Role Experience / Years
1 Test manager 8-9
2 Test tools development lead 10+
3 Test consultant 4-5
4 Test consultant 6-7
5 QA tester 10+
6 Test developer 10+
7 Test leader 10+
8 Test developer 10+

Table 4.1: Interviewees

Priority When Description/Comments

1 Every release
Main/Central/Core functionality,

Showstoppers

2 Most releases
Not the same showstopping e�ect as in priority one,

Secondary functionality

3 Major releases
Less common functionality, Test all functions,

"Cool to have" functionality

4 Major releases/If there is an issue
Corner cases, Custom tailored solutions,

Exhaustive testing,

Table 4.2: The current testing strategy

ter performing regression testing in-house with passing results, AAGS sends their release
candidate to a select group of customers for beta testing before the o�cial release.

The most prominent problem according to the testers was coupled with the manual test-
ing, where the main issue is that the manual testing is considered ine�cient and time con-
suming. In addition to being time consuming, the test suite was considered old and possibly
outdated, and the testers feel that a lot of test cases might be testing the same thing. The test
cases in the test suite were created with a component based perspective from the beginning,
where all the original test cases were created to test some functionality of the lock case com-
ponent of the system. As time went on, the di�erent components of the system got their own
test suite based on their perspective of the system, even though a lot of test cases could be
testing the same thing. The sentiment of the test manager, who created the test suite was that
it should have been constructed the other way around, seen from a system wide perspective
instead of a component perspective.

One of the issues involved was the strategy behind the current prioritization (RQ2). We
have summarized the answers related to this question in table 4.2. The strategy pertains
specifically to the manual regression testing performed at AAGS, as the automated tests are
run each time before a commit to the shared repository.

We have summarized some of the perceived challenges/problems with the current regres-

34

4.1 Interviews

sion testing at AAGS in the following list:

• Knowing if tested enough

• Manual testing consumes too much time

• Knowing if a test case is redundant

• Knowing if we are testing what customers actually use

• What is worth automating?

• Are some of the manual test e�orts already covered by automated testing?

One of the problems that were deemed as extra important was knowing the quality of the
testing, and if they are testing enough. This has been hard to properly gauge as they do not
know what is actually exercised during testing, and what is actually used by the users. The
consensus of the interview series was that the current way of testing is considered ine�cient,
as they feel that a lot of test cases might be testing the same or similar things.

4.1.2 Conclusions
The answer toRQ1 is that there are several parties involved in the regression testing atAAGS,
it is done both with automated tests and manually, with the addition of exploratory testing
as much as time allows for. The most prominent problem found was the currently employed
strategy is considered ine�cient, and that the manual testing consumes too much time. The
answer to RQ2 can be seen in table 4.2, where the test cases are divided into four categories
based onwhat kind of functionality they are testing andwhat priority it holds. The consensus
of the interviewees was that the idea behind the current strategy for prioritization of test case
was perceived as outdated and ine�cient. The interviewees felt that there was a lot of similar
test cases and that some even might be completely redundant. For this, there is some ongoing
work to increase the e�ciency of the test suite by revising the test cases involved as well as
trying to figure out which ones that can be a part of the automated e�orts. However, the
problem when revising test cases, figuring out what is already automated, and what can be
automated, is the knowledge about what is actually covered by each test case. The value of
automating a test case is based on if something is gained by automating it, as there is no reason
to just add test cases if they do the same thing or test something that is not important. If its
already covered by other automated tests or if it does not cover anything that is actually used
by the customers, then there is little value in automating it. Testing what their customers
actually use was deemed as important, but right now there is no way to actually know what
is being used other than asking the customers what they are using and how.

4.1.3 Limitations
As we were not allowed to record all interviews, we wrote down the answers of the intervie-
wees that did not want to be recorded directly, the rest of the interviews were recorded and
then transcribed for further analysis. After transcribing the interviews we gave the intervie-
wees an extra chance to reflect upon their answers and add or detract something if there were

35

4. Ex-ante: Case study results

any misconceptions. This was done in order to collect data from as many as possible as not
all were comfortable with being recorded, and the extra chance to reflect upon their answers
often led to added reflections.

4.2 Document analysis
When performing the document analysis we found that there was no document that explic-
itly detailed the current prioritization strategy for the unit under analysis. We discovered
di�erent documents with information pertaining to the test cases, how they were built and
what they are testing. One of the documents contained test case tracking tables, which con-
sisted of the priority of each test case, estimated execution time, results from previous runs,
test identification, names, and overall comments. Another document contained test case
specifications, which detailed preconditions, how to set up a test case, test instructions, the
priority, test case id, name, acceptance criteria, and expected results as well as postconditions
and purpose. This document also detailed the information regarding the format of the test
cases, naming rules, requirements, and test objectives as well as overall purpose.

As discovered during the interviews, the documents detailed that the priority of a test
case ranged from priority 1 through 4 and that each part of the system had its own set of
test cases. Reviewing the test case specifications, we discovered that the steps to execute the
test case were the same between several test cases, but the acceptance criterion pertained to
specific components and thus di�ered between the test cases.

The documents pertaining to test cases, i.e. the specifications and tracking tables, were
deemed useful for the creation of a tool, as they hold relevant data regarding the test cases.
We did not find any information pertaining to the performance of the test cases, except the
estimated time it takes to execute the test cases and the outcome history of the test cases.
As there were no specified high-level requirements for the test cases, the acceptance criteria
of the test cases are could be seen as the requirements instead, [26]. Each test case had one
acceptance criterion instead of multiple, which implies that it would not be beneficial to
employ the number of requirements covered as a criterion for ranking test cases.

4.3 Questionnaire
By studying literature we found that the following criteria have been shown to yield good
results when employed for the prioritization of test cases [40] [39] [36]:

• Requirement coverage (C1) constitutes the number of requirements covered by the test
case.

• Time e�ciency (C2) is used to represent the time spent for the execution of a test case,
a higher value means that the test case is less time-consuming.

• Cost e�ciency (C3) is used to evaluate the time and cost spent on implementing a test
case and setting up the test environment for the execution of said test case.

36

4.4 Synthesis

• Fault detection probability (C4) is used to specify the average probability of detecting a
fault by the test case and is based on the fault-proneness of the region of code exercised
by the test case.

• Code coverage (C5) constitutes the amount of code covered by each test case.

Participant Role Experience / Years
1 Test Consultant 4-5
2 Test Consultant 6-7

Table 4.3: Survey participants

The first four criteria founded the base for the survey used when evaluating the test cases,
an example of the survey can be found in appendix 3.1. Code coverage needs to be measured
and thus it is not included in the questionnaire. When compiling the results from the survey
we found that three out of the four criteria used in the questionnaire were found relevant
for AAGS as well, as the answers varied from test case to test case. But the fourth criterion
(C4), requirements coverage was not deemed relevant for AAGS, as it would not yield any
di�erence in the priority of a test case for AAGS. This confirmed our hypothesis from the
document analysis, that each test case was created to test a specific functionality or part of the
system, with only one acceptance criteria. Thus we decided to remove requirement coverage
as a criterion as it would not add anything to the evaluation of test cases and instead just add
unnecessary overhead.

We decided to employ the Condition/Decision Coverage criterion for the code coverage
evaluations and comparisons. When studying related work, we found the branch/decision
coverage criterion was identified to be the most important coverage criterion [36] [11] [45].
While theCondition/Decision coverage criterion ismore thorough as it also covers the boolean
sub-expressions [30]. When evaluating the coverage level, the evaluations could be based on
both correlations with customer usage and the amount of code that is not already covered
by automated testing. This is done to be able to maximize the e�ciency of the test suite de-
pending on the testing situation. This in turn means that the criterion could yield di�erent
results for the same test case depending on the scope of a specific test session.

4.4 Synthesis
The perceived problems with the current strategy for prioritization of test cases were nu-
merous, ranging from structural problems to test suite maintenance problems. One of the
most prominent problems perceived by the testing department was that the strategy was de-
veloped a long time ago and based on the perspective of the components instead of a system
wide perspective. This resulted in a set of test case sets, where each set of test cases only
considers their perspective of the system with no respect or regard to what is already tested
by the other test sets. This in combination with little to no review of older test cases when
adding on new ones or between releases has lead to an ine�cient testing of the system, where
the manual testing e�orts consume too much time. In addition to that the testing e�orts of
AAGS and what is used by the customers may no longer match.

37

4. Ex-ante: Case study results

To address research question RQ3, we performed the document analysis and surveyed
the testers regarding the performance of the test cases based on the identified criteria. In
the document analysis, we analyzed several documents pertaining to the performance and
historical outcome of the test cases, in addition to the test specifications detailing how and
why they are run. The document analysis yielded good results in terms of finding valuable
information and confirming the hypotheses from the interviews regarding the prioritization
and structuring och test cases.

From the literature study, we found a set of criteria for the evaluation of test cases [39],
but after reviewing the results from the survey we discovered that the requirement coverage
criterion was not suitable for AAGS. This is due to the fact that each test case that AAGS
employs for their regression testing only cover one criterion each. Thus it would not benefit
any prioritization scheme to involve this criterion for the evaluation. To conclude we propose
the following criteria to be used for the prioritization of test cases:

• Code coverage (C1)

• Time e�ciency (C2)

• Cost e�ciency (C3)

• Fault detection probability (C4)

4.5 Objective for the design science phase
AAGSwould like to reduce the amount of time needed to ensure the correctness of previously
tested functionality without increasing the risk for possible slippage when regression testing.
Rerunning all the current test cases each release consumes too much time, and as the system
under test is rather large and complex, it could be hard to evaluate the test cases based on a
single criterion. This means that the test cases need to be evaluated based onmultiple criteria
to properly judge the performance of the test cases. For this we have identified four criteria
to employ for the evaluation of test cases, creating an MCDM problem to solve evaluating
test cases based on multiple criteria.

The evaluation of test cases based on the answers from the survey and the document
analysis needs to be complemented with coverage data. For this, we need to collect coverage
information from both the testing e�orts at AAGS and information about the system usage
of the customers such that we can find out how much each test case covers that is also used
by the customers.

The main objective for the design science stage is to develop a DSS tool based on FAHP,
that can prioritize the test cases based on the data found during this case study and the
code coverage capabilities of the test cases. In addition to creating a DSS tool, a process of
employing the tool and incorporating it into the existing processes of AAGS needs to be
developed.

38

Chapter 5

Design science outcome

In this section, we detail the outcome of the design science stage. The chapter consists of a
build and an evaluate section, where we first describe how we developed and implemented
our solution and then the results from the continuous evaluation.

5.1 Build activity
Based on the findings from the exploratory case study, we decided to implement a DSS tool
based on FAHP for the MCDM problem presented when evaluating test cases based on mul-
tiple criteria.

The tool collects the test case names and test case performance from the test case tracking
tables found during the document analysis and the results of the questionnaire. In addition
to this, we combine customer usage data with test code coverage to find out which test cases
that cover the most of the customer usage. The code coverage criterion applied is the Con-
dition/Decision Criterion, where we compare the coverage of the test cases compared to the
customer usage and see how many of all the conditions, decisions and outcomes are covered.
The criteria identified during the exploratory case study, see section 4.4, are then used when
applying AHP for calculating weights which in turn yield the priority for the test cases when
ordered according to the found weights.

An overview of the code coverage extraction and evaluation process can be seen in Figure
5.1, where we collect information from both the testing e�orts of AAGS and the usage data
from the solution deployed at the customer site. Each test case is executed in isolation, such
that the relevant information could be extracted and stored test case by test case. Then the
information collected from the testing e�orts of AAGS is compared to the customer usage
to find out how much unique coverage each test case covers that also is covering something
that is used, see Figure 5.1.

39

5. Design science outcome

<<testCase>>
Test

<<testCase>>
Tests to run

CustomerAAGS

Figure 5.1: An overview of the code coverage extraction and evalua-
tion process

5.1.1 Data extraction
In order to collect code coverage information from the testing e�orts of AAGS and customer
usage, we used a code instrumentation tool called Bullseye. Bullseye is a code coverage ana-
lyzer tool that writes information about what is exercised during run-time to a coverage file
[42]. Bullseye is compiled with the source code during build time and then the special build
with Bullseye is installed where you want to monitor what parts of the software is used. To
gather information regarding what is used by the customers we deploy a version of the system
that was compiled with Bullseye and collect the results after four weeks, in order to reflect
the normal usage of the system.

When applying Bullseye as the code instrumentation tool, Bullseye stores all the infor-
mation pertaining to what was exercised during run-time in a specified coverage file. But
as the format of the information in the coverage is made for the graphical user interface of
Bullseye, we first need to extract the information into a more accessible way such that we can
compare the results from di�erent runs.

This was solved by writing a Python script that searches through the coverage file and
extracts the rows that were evaluated during run-time and to which extent they were evalu-
ated. We then parse the coverage files and extract the data regarding what is exercised during

40

5.1 Build activity

run-time; this data is then stored as data-sets for analysis. The steps to collect the relevant
information can be seen below:

1. Compile code with Bullseye

2. Deploy and run code for four weeks in order to reflect the normal usage of a customer.

3. Extract the information from Bullseye coverage files for parsing and collection of rel-
evant information

4. Store the collected information

5.1.2 Test Case Code Coverage

Customer
usage

Manual Test Case
Code Coverge

Automated tests Code
Coverage

3

2

1

Figure 5.2: Process of calculating the amount of code covered by each
test case

The code coverage capabilities of each test case are based on the amount code that is
covered by each test case that is not covered by automated testing and then compared to
the target, which could be either a subset of the customers or the whole system. We gather
the amount of code covered by each test case by analyzing the data-sets containing coverage
information that was extracted from the testing environment and users.

41

5. Design science outcome

The process of finding out how much code is covered by each test case is illustrated in
Figure 5.2, the process consists of either two or three steps depending on the scope of the
testing. Step 1 consists of performing a left excluding join between a test case and the auto-
mated tests, this is done to find out howmuch that is covered by the test case but not already
covered by the automated tests. In step 2 we perform an inner join between the customer
usage and the test case to find out what is covered by the test case that is also used by the
user. The second step is only applied when regarding the users if the scope for the test session
is based on the whole system we skip directly to step 3, where we collect the results and store
them for further analysis.

To find out howmuch is covered by all testing e�orts, we go through a similar process, but
instead of looking at the coverage of each test case one by one, we accumulate the coverage of
all testing e�orts at AAGS. This is performed almost the sameway as collecting the individual
test case information, but the left exclusive join performed at step 1, see Figure 5.2, is replaced
by a full outer join.

The two methods of extracting information are done in the same step in the tool, such
that we can check the performance of each individual test while finding out the total per-
centage that is covered.

5.1.3 Test case evaluation
The test cases are evaluated based on the four criteria that were identified in the exploratory
case study, see section 4.4. In order to evaluate each test case based on the identified criteria,
we must first find the relative importance of each criterion compared to the rest. This is done
with the help of AHP, where we perform manual pairwise comparisons between the chosen
criteria to evaluate how important each criterion is compared to another, see table 2.1 [22].

The process of evaluating test cases can be summarized in the following steps:

1. Gather all relevant information for the evaluation

2. Prepare the information for the application of criteria weights

3. Apply the calculated criteria weights to the performance evaluations of the test cases

4. Sum the rows and divide by the number of columns to collect final weight

5. Order the test cases according to the size of the final weights in descending order.

In the first step, we collect all the relevant information regarding the performance of
test cases, i.e. criteria weights, code coverage and the values from the document analysis and
survey.

Test Case ID C1 C2 C3 C4
TC_1 MED MED HIGH HIGH
TC_2 HIGH MED LOW LOW
TC_3 LOW LOW LOW MED
TC_4 VERY LOW HIGH VERY HIGH VERY LOW

Table 5.1: Example of test case evaluations with Fuzzy values

42

5.1 Build activity

Test Case ID C1 C2 C3 C4
TC_1 5 5 7 7
TC_2 7 5 3 3
TC_3 3 3 3 5
TC_4 1 7 9 1

Table 5.2: Example of test case evaluations with Numerical values

In step two, in accordance with FAHP, we need to prepare the data such that it fits the 5
point scale in table 2.3 that was used for the evaluation of test cases, see Section 2.9. This is
done by defuzzyfying the fuzzy linguistic values into their numerical counterparts and fitting
the coverage data to the same scale, see Table 5.1 and Table 5.2. The defuzzyfication consists
of translating the fuzzy linguistic values to their numerical counterparts, see table 2.3. We do
not use the judgment of the testers to gauge the code coverage capabilities of the test cases,
but instead rely on the information found from the execution of test cases and customer usage
with Bullseye.

Step three consists of applying the found criteria weights on the judgments made by the
testers, which then yield the weighted value which is used for the prioritization of the test
cases. From the example in Section 2.8, from the comparison matrix, see Table 2.2, we get
the weights detailed in Table 5.3. The resulting weighted evaluations of the test cases can be
seen in Table 5.4.

Criteria ID Criteria Weight
C1 0.43
C2 0.37
C3 0.13
C4 0.07

Table 5.3: Normalized criteria weights

Test Case ID C1 C2 C3 C4
TC_1 2.2 1.85 0.91 0.49
TC_2 3.08 1.85 0.39 0.21
TC_3 1.32 1.11 0.39 0.35
TC_4 0.44 2.59 1.17 0.07

Table 5.4: Test case evaluations after application of criteria weights

In step 4, we calculate the sum of the weighted values, test case by test case and divide
the found value by the number of criteria employed to get the final value of the test cases
compared to the rest, as shown in Table 5.5. The order which test cases should be run is then
found by ordering the test cases according to the final value in descending order.

43

5. Design science outcome

Test Case ID Weighted Value
TC_1 1.36
TC_2 1.38
TC_3 0.79
TC_4 1.06

Table 5.5: Final weighted values of the test cases

5.2 Evaluate activity
In this section, we describe the evaluate part of the design science stage of this thesis. In
order to ensure that the proposed solution fulfills the needs of AAGS, a process of evaluation
was established. The evaluation process consists of two parts, one part where we compare
and evaluate the performance of the proposed solution to other well-known methods. The
second part is where the process of working with the implementation and integrating the
proposed solution is evaluated by a focus group meeting held with the testing department.

5.2.1 Performance evaluation
To gauge the e�ciency of the proposed solution, we compared the performance of our so-
lution, i.e. FAHP to the current prioritization strategy employed by AAGS. To evaluate the
performance of the proposed solution compared to a third method, we decided to evaluate
the performance of random order prioritization. When evaluating random order prioritiza-
tion, we randomized the order of test cases and took the average performance of 100 di�erent
runs for the comparison. This was done in order to reduce the risk of extreme values, where
the random order prioritization could perform either badly or well compared to the average.
The main aspects of the comparisons between the di�erent prioritization strategies were
coverage versus the number of executed test cases needed.

The comparison between di�erent strategies is performed over all test cases that are used
when performing regression testing for the chosen system atAAGS. The following plots show
the cumulative code coverage obtained from running the automated test suite and then the
manual test cases. This was done in order to elucidate possible duplicate testing between the
manual test suite and automated testing, as well as highlighting the real added value by each
test case. But as we include all test cases in the comparison, the total amount of coverage will
be the same for all methods. Because of this we chose three points for the comparisons, 90%,
99%, and a point close to the total amount covered.

Coverage Testing from the perspective of the entire Software
System
In Figure 5.3 we can see the accumulated percentage of the total system coverage when per-
forming regression testing versus the number of test cases needed. In Table 5.6, we present
howmany test cases are needed to reach certain levels of the total test coverage of the system.

The current strategy used by AAGS needs 258 test cases to reach 90% of the total test
coverage, and random order prioritization needs 192 test cases. Our proposed method using

44

5.2 Evaluate activity

Figure 5.3: Cumulative code coverage as the number of test cases
increases.

Coverage/% AAGS Random FAHP
90 258 192 63
99 425 410 212
99.9 442 445 367

Table 5.6: Number of test cases needed to reach the coverage level
of the system.

FAHP only needs 63 test cases to reach the same percentage. Using our proposed method,
212 test cases are needed to reach 99% code coverage, while the currently employed method
and random order prioritization both need over 400 test cases to reach 99%.

Coverage / %: AAGS Random FAHP
90 628 578 289
99 1225 1205 784
99.9 1284 1298 1115

Table 5.7: Execution time in minutes to reach the coverage level of
the system.

In order to further evaluate the performance of the proposed solution, Figure 5.4 shows
the execution time instead of the number of executed test cases. When considering the time
needed to cover certain percentages, the di�erences are less clear. With the currently em-
ployed method, it takes the testers 628 minutes to reach 90% of the total coverage, while
using our method, it takes the testers 289 minutes to reach the same level of coverage. For

45

5. Design science outcome

Figure 5.4: Cumulative code coverage percentage of the total test
suite system coverage

reaching 99% of the total test coverage, the times are closer together, where there is only
20 minutes di�erence between random order prioritization and the method currently em-
ployed by AAGS. As can be seen in Figure 5.4, when over 90%, the methods perform almost
the same, but FAHP still increases the level of coverage a bit quicker than the rest. Our pro-
posed method based on FAHP needs less than half the time of both the currently employed
method and random order prioritization.

Coverage testing from the perspective of what source code is
executed by the customer

Coverage / % AAGS Random FAHP
90 112 24 6
99 308 226 48
99.9 425 417 137

Table 5.8: Number of test cases needed to reach the coverage level.

In Figure 5.5, we can see the accumulated coveragewith regards to the source code actually
executed at the customer site. As shown in table 5.8, AAGS’ currently employed method
needs 112 test cases to reach 90% of the total coverage of the customer usage. However,
random order prioritization can reach the same level of coverage in 24 test cases and our
proposed method can reach it with 6 test cases. As the percentage increases, random order
prioritization get closer and closer to the same performance as AAGS current method, while
FAHP continues to outperform both of them. Where randomorder prioritization andAAGS

46

5.2 Evaluate activity

Figure 5.5: Cumulative code coverage for the source code executed
by the customer

need more than 400 test cases to cover 99.9% of the total test coverage of the customer’s
usage, our method can reach the same level of coverage in 137 test cases.

Figure 5.6: Cumulative code coverage for the source code executed
by the customer

47

5. Design science outcome

Coverage / % AAGS Random FAHP
90 214 72 22
99 767 638 186
99.9 1225 1183 559

Table 5.9: Execution time in minutes to reach the coverage level of
user utilization of the system.

For the comparison between the methods based on the amount of time needed to reach
the chosen levels of coverage, out proposed method reaches 90% coverage about ten times
faster. And compared to random order prioritization, the proposed method takes less than a
third of the time to reach the same level of coverage. However, the di�erence is less extreme
when reaching 99% and 99.9% of the total test coverage of the customer’s usage, but FAHP
still outperforms AAGS and random order prioritization. Where FAHP needs less than half
the time as AAGS and random order prioritization to reach 99.9% coverage.

5.2.2 Focus group meeting
The purpose of this meeting was to involve the testing department as soon as possible in the
design of the tool and process. We also wanted to gather feedback on the proposed solution
and how the results from the tool could be used to increase the e�ciency of the testing at
AAGS.

Participants
In total six participants were invited for the meeting, where all the participants had a part
in the testing at AAGS. All participants were present at the meeting.

Discussion
The use of a tool for the prioritization of test cases was seen as positive, as it could reduce
the amount of time needed for manual evaluation of individual test cases. Using code cov-
erage information as one of the criteria was also considered positive as it could increase the
confidence in the amount of testing done before sending out a new release candidate for beta
testing. In addition to increasing the confidence in the quality of the code, the participants
were pleased with possibly reducing the amount of testing for each release. Having a tool
that could find out how each test case contributes to code coverage was well received.

However, even though the tool was deemed as beneficial and useful, there were some
doubts about trusting the tool completely, and a process for evaluating the results of the tool
was discussed. The test cases that according to the tool do not cover any additional code when
running in the specific order, should be manually reviewed such that the testing department
knows if they have to run it at all. From the discussions, a process of handling themaintenance
of the test suite emerged, see Figure 5.7. Step one in the process consists of collecting coverage
data from the testing e�orts and information regarding the customer usage of the system.
Step two is the identification phase, where the testing department of AAGS uses the tool
and looks at the output information regarding the amount of additional coverage each test

48

5.2 Evaluate activity

Gather test coverage
data

Repeat for each release

Update test suiteAre there any
redundancies?

Test Suite Maintenance

YES

1

Are we testing what
is being used?

IdentificationData
Collection Prioritization

32

No action neededYES

NO

Gather customer
usage data

Figure 5.7: Test suite maintenance process

case adds and what is not covered by the testing e�orts. From this information, they can
find the test cases that are deemed redundant as they are not adding any new coverage when
executed in the specified order. In the same stage, they can also find out what parts of the
system that are covered, how much of the customer usage that is covered and what is not
covered at all by the testing e�orts. Depending on the results from stage two, a decision
needs to be made. In stage three, this decision results in either an update of the test suite or
no action is needed.

It was concluded that the identification stage of the test suite maintenance process needs
its own process as it is an important stage to ensure the quality of the test suite, see Figure
5.8.

Where the possibly redundant test cases are manually reviewed such that AAGS does not
miss important test cases that are testing nuances or any critical functionality. Nuances of
test cases could yield the same results when it comes to the regions of code covered. However,
there could be some di�erences depending on the specifics regarding e.g. the di�erent types
of cards that are used to unlock the locks, that might come in question later on that could
yield di�erent results. If the test case is still deemed redundant after the manual revision, it
was suggested that the test case could be placed in storage. Such that it is not a part of the
active test suite but still kept in the case of changes that a�ect that region of source code that
could make it useful again.

When dealing with missing coverage, they decided that it would be useful to check the
old test cases in the storage if any of them covers the missing code coverage. If not any older
test case covers the missing coverage, AAGS must analyze if this is something that needs to
be covered or if it is deemed as less important. For this, they proposed that they would have
workshops with the developers to find out it is needed to cover this, and if it is, how they

49

5. Design science outcome

Possible
Redundancy

2.1

Identification

Missing Coverage

Redundant

2.2

Manual
Evaluation

Covered by old Test
Case?

Remove Test Case

2.3

Result

Bring back Test Case

YES

Create new Test
Case

Keep Test Case

YES

NO

NO

Identification Process

Figure 5.8: The process of identifying and handling possible issues
with the test suite

should go about covering it.

5.2.3 Conclusions
We applied AHP in combination with Fuzzy values (FAHP) as the DSS for the evaluation of
test cases based on the identified criteria. The proposed method performs better than both
AAGS’ currently employed strategy as well as the independent method of random order pri-
oritization with regards to the amount of code covered. This holds true for both system test-
ing and customer usage testing but is most apparent in the latter case. This is most likely due
to discrepancies between the test strategy and the customer usage of the system. The cause
of these discrepancies might be because of the age of the system, where a lot of functionality
has been added along the way.

As can be seen in the above graphs, there exist some purely horizontal parts of the lines,
which indicates that there is some degree of redundancy in the testing e�orts of AAGS. This
could be due to various reasons, either there exists redundancy to some degree or there could
be test cases that test nuances of functionality. For such cases, the code covered remains the
same, but the assertions of the test cases might be di�erent.

The use of a tool for the prioritization of test cases was well received and the preliminary
results of the tool were met with both positive and skeptic response. Where the results were
seen as too good and there is a risk that we might miss important test cases if we blindly
trust the results from the tool. These discussions resulted in the design of a new process of

50

5.2 Evaluate activity

maintaining the manual test suite, and how to handle possibly redundant test cases as well as
missing coverage. It was also concluded that there is a need to further investigate and discuss
how the manual revision of the possibly redundant test cases and possibly missing coverage
should be handled.

51

5. Design science outcome

52

Chapter 6

Ex-post: Results from static validation

In this chapter we present the results from the static validation of the tool developed during
this thesis and the proposed process for the maintenance of the test suite.

6.1 Process evaluation meeting
This meeting was held in order to gather valuable feedback from the engineers that will
employ the proposed solution in their daily work. We started the evaluation meeting by
presenting the proposed process developed from the results from the focus group meeting,
see Figure 5.7. After summarizing the findings from the previous meeting, we presented the
main points to be discussed for this meeting. These include the evaluation of the tool and
process developed in the design science stage, and the identification stage of the maintenance
process developed in the focus group meeting, see Figure 5.8.

6.1.1 Participants

In total six participants were elicited for the evaluation meeting: the test manager, two man-
ual testers, a test developer, a test tools development lead and one test leader. Due to various
reasons, only three of the elicited participants were able to participate in the meeting. The
missing participants were instead told to write down their ideas, possible problems and ques-
tions regarding the topics for the meeting. In order to incorporate their ideas, we chose to
read them out loud during the meeting, such that the participants could discuss their ideas
and draw possible conclusions.

53

6. Ex-post: Results from static validation

6.1.2 Results
The proposed tool and process were well received. The use of the tool to prioritize and
evaluate the performance of the test cases was perceived as simple and straightforward. The
process of employing the results from the tool for the maintenance and improvement of the
test suite was seen as a step in the right direction, and a way to reduce the amount of time
needed to evaluate the test cases.

By using the tool for the evaluation of the test cases, more time could be spent onmanually
reviewing other aspects of the test cases, to find out if and why it is important to incorporate
the specific test case in the test suite. By reviewing the customer usage that was not covered
by the test e�orts, new test cases could be created to cover this, which would raise the overall
quality of the testing.

When discussing how the information from the tool could be used, there were a lot of
ideas pertaining to how AAGS could increase not only the e�ciency of their testing e�orts,
but also the overall quality of the testing. The output of the tool could be used in the creation
of new test cases that could cover the customer usage that is not covered by the currently
employed set of test cases. Possibly redundant test cases could be identified by reviewing the
test cases that yielded no additional coverage when run in the specified order.

The need for several workshops to analyze the results of the tool emerged through the
discussions. In those workshops, the test cases that were deemed as redundant should be
manually reviewed by the testing department of AAGS and then if needed by the developers
as well. Furthermore it was also concluded that the possibly missing customer usage, should
be reviewed by the developers to find out if it is something that should be covered. If it is
deemed as important, find out how this could be covered by creating use cases for future test
cases.

During the meeting we decided that the ones not present would get a chance to comment
and add their understanding or ideas about the discussions and results of the meeting. For
this, we compiled the results of the meeting and sent it to all the elicited participants such
that the engineers not present could review the results and provide feedback. But also allow
for the participants to reflect upon the findings of the meeting and add any possibly missing
idea/thought.

6.2 Survey
Finally we conducted a survey as a validation of the results from the meeting and a final
validation of the proposed processes and use of the tool developed during this thesis. The
questions in the questionnaire were a mix of open and directed questions. The questionnaire
can be found in Appendix B.

6.2.1 Participants
We sent the questionnaire to all the elicited participants, and during the course of two weeks,
in total five out of six responses were received. As all respondents but one sent in their
answers, we consider all relevant perspectives covered.

54

6.2 Survey

6.2.2 Survey Results
All the participants answered that the proposed process and tools would benefit their work
to some degree. Where some feel that it would have a direct e�ect on their work, while others
feel it would indirectly a�ect their work. One of the main benefits seen by the participants
regarding the tool, was that it could speed up the process of regression testing without en-
dangering the level of quality and it could highlight where they should focus their e�orts.
Regarding the process of maintaining the test suite there were several possible benefits if
more customer usage could be collected too increase the confidence in the findings. The us-
age of customer usage information was seen as a key component, as it could reveal the real
usage of the system, what should have a higher priority when testing and if there is a need to
create additional test cases.

The test developers found that the information from the tool could benefit their work by
elucidating what is already covered by the automated e�orts and what remains to be auto-
mated. As the proposed solution could decrease the amount of time needed for performing
regression testing, the engineers executing the manual test cases could possibly focus more
on other types of testing, e.g. exploratory testing. From the perspective of the test manager,
the results of the tool are beneficial as the information can serve as an additional basis for
decisions regarding the testing practices of AAGS. There were some concerns regarding us-
ing the tool without caution, several of the respondents wrote that information found from
the tool should be used but the limitations of the tools should be reviewed and considered
when making decisions. More customer usage information must be collected, and the setup
must be reviewed to increase the confidence in the findings.

We have summarized the possible benefits perceived by the participants of this survey
below:

• Find possibly duplicated testing

• Find possibly untested customer usage

• Speed up the regression testing

• Increase the quality of the testing

• Possibly identify what could be automated

The possible challenges/problems can be summarized by the points below:

• Need to review the setup and what parts of the system that are considered

• Need to map out the limitations of the tool

• Need to collect usage information from a larger group customers

55

6. Ex-post: Results from static validation

56

Chapter 7

Discussion

7.1 DSS for regression test prioritization at
AAGS

The employment of a DSS for the regression test prioritization yielded good results com-
pared to the currently employed method and random order prioritization. We first intended
to compare the proposed approach to history based testing in addition to random order pri-
oritization. History based testing relies on increasing the priority for failed test executions,
and the system under test was a mature and stable system. Thus, there were hardly any failing
tests between releases in the regression testing suite, which resulted our decision to remove
history based testing as it would not yield much di�erent results compared to the currently
employed strategy.

If we judge the performance of our solution solely on the amount of code covered in the
least amount of time, then the proposed solution would save AAGS a considerable amount of
time and e�ort when regression testing. But as code coverage is naive, and does not consider
variations of test cases that could cover the same regions of code but still could be testing dif-
ferent things, the results must be met with some skepticism. The results need to be manually
reviewed as discussed in the evaluation.

The di�erence in performance is most apparent when regarding the customer usage of the
system, which has not been used by AAGS before. When testing the whole system, there is
still quite a di�erence in performance between the methods, with FAHP reaching the highest
level och coverage with the least e�ort. But when closing in on the total system test coverage,
the di�erence in performance between the methods are less and less extreme.

The initial work to be able to employ this method is rather time consuming, as the testers
must evaluate all test cases based on the performance when considering each criterion. In
addition to the collection of judgments of the testers, to gather the code coverage information
from the testing e�orts of AAGS the testers needed to rerun all test cases with the Bullseye
compiled version. We needed to both install the Bullseye compiled version at the customer’s

57

7. Discussion

site and then collect the results. These tasks consume a large portion of time and resources,
which means that the investment for using our solution could be considered rather large,
even though the potential yield could make up for it in the longer run. The ideal situation
would be to collect information from the customers after each release, and rerunning all the
test cases. However, as long as information is collected during the release testing most of the
test suite will be kept up to date.

In addition to the initial work to apply this tool and process, there is some work that
needs to be done continuously for the evaluation not to become old and stale. The test cases
chosen for the regression testing needs to be executed with Bullseye enabled to update the
coverage information, but the test cases that are not involved could become relevant later
on. These test cases must thus be updated within some time interval. AAGS also needs to
collect information from customers to be able to trust the results, and this must be done for
each release of the system if the information should be kept up to date. This could be up for
discussion, how often or for which releases the information must be updated, but it must be
done to prevent that the information becomes outdated.

Using the tool and process for the prioritization and maintenance of the test suite can
help the testers to increase the quality of the testing and reduce the time needed for regres-
sion testing. As mentioned before, the tool does not only calculate the order in which test
cases should be run but also stores information regarding the individual performance of each
test case and the total coverage for the given scope. From this information, possibly redun-
dant test cases could be found, and customer usage of the system that is not tested could be
identified. This could be used when performing maintenance of the test suite, to possibly
reduce the time need to perform regression testing and possibly increase the quality of the
testing.

7.2 Threats to validity
In this section, we list the possible threats to the validity and possible limitations of the work
presented in this thesis.

• Test case evaluations: When gathering evaluations of the test cases for the FAHP, we
were only able to collect answers from one tester regarding the whole test suite. This
means that there is a risk of the evaluations being skewed by the judgment of a single
source as other testers might judge di�erently.

• Code Coverage Measurements: When measuring the coverage of each test case, we
only had time to run the whole manual test suite once due to a large number of test
cases. This means that we were not able to filter out any possible noise in the system
that should not be regarded as the standard coverage of a specific test case. This runs
the risk of skewing the evaluation of test cases and possibly increasing the priority of
a test case that actually has less coverage than another. This could be mitigated by
rerunning all test cases multiple times and remove the oddities that do not show up in
the majority of test runs.

• Customer base: Due to time constraints, we were not able to gather user data from a
large number of customers, but instead have to rely on a single customer. This runs

58

7.3 Future Work

the risk of missing important functionalities that are not used by the customer that
we collected data from. This will be a continuous e�ort for AAGS, and the proposed
method will yield more trustworthy results as more user data is added. Until then
AAGS will not remove any test case that is not a hundred percent covered by other
testing e�orts, such that they do not miss any important test case.

• Code Coverage as a criterion: The e�cacy of using code coverage as a way of ensuring
the e�ectiveness of testing is considered questionable as code coverage does not guar-
antee test quality [13]. We chose to use this criterion anyhow since we are able to match
the code coverage of AAGS testing e�orts against the usage by their customers. Thus
increasing the reliability in that they at least cover what is used by most customers.

7.3 Future Work
In this chapter, we propose di�erent topics for further research on this subject as well as
possible features and development for the tool that could yield better results.

• Collect a larger set of customers: When regarding the customer data we were only
able to collect data from a few customers, which might not reflect the needs of the
entire customer base. It would increase the level of confidence in the prioritization
and possible minimization of the test suite if we had data from a wider range of users.

• Create customer type profiles: When releasing new increments of an existing software
system, it could be that the changes made to the code might not a�ect all customers.
Thus it would be beneficial to create profiles based on the di�erent types of customers,
such that one can re-prioritize the testing e�orts based on the type of customers that
will be a�ected by the changes.

• Extended duration of data collection: We collected the data from the execution of in-
strumented code during a relatively short amount of time, but long enough to reflect
the normal usage of the system. However, it does not take di�erent seasonal behavior
into consideration, where di�erent functionality may be used due to seasonal di�er-
ences in activity by the end users of AAGS customer’s hotels. It would be beneficial to
base the prioritization on data collected over a longer period of time.

• Combine the information regarding coverage with specific releases: When deploying
di�erent releases it could vary a lot which customers that will be a�ected by the update.
To further increase the e�ciency when regression testing one release could match the
knowledge of what configurations are used by the di�erent customers. Selecting a
subset of test cases that cover the regions of source code that are a�ected by the changes
or additions made could be possible.

59

7. Discussion

60

Chapter 8

Conclusion

In this thesis we developed a tool for the prioritization of test cases based onmultiple criteria.
We present a process for how the tool could be used for the maintenance of a test suite.
For this we applied FAHP, as the DSS for the evaluation of test cases based on the criteria.
The main criterion employed in the evaluation of test cases was code coverage, where we
combined information about the customer usage of the system with the code coverage of the
test cases. Based on this, we identified which test cases cover the most of the customer usage
of the system, which is not already covered by other testing.

Our tool performed considerably better than both the currently employed method and
random order prioritization when considering the number of test cases or execution time
needed to reach a high level of coverage. But as code coverage is naive, andmight not consider
variations of test cases that could cover the same regions of the source code but still test
di�erent things, the results must be considered with caution. To handle the results of the
tool, we held a focus group meeting with the testing department to discuss how they should
handle test cases that are deemed as redundant by the tool, and how to handle the customer
usage that is not covered by the testing e�orts of AAGS. It was concluded that this should be
manually reviewed, where the testing department and the developers would have workshops
where they shall decide if the test cases are indeed redundant and if/how to cover the missing
coverage.

By employing the proposed solution, AAGS could possibly reduce the time taken for
regression testing without reducing the level of quality when testing. This is due to the fact
that the tool elucidates the information pertaining to what is used be the customers and what
is tested by AAGS.

So far, we could only collect information from one customer, which means that AAGS
needs to collect information from more customers before deciding which test cases that
should hold a lower priority when testing against what is actually used by customers. In
the meantime, the results could be used to guide reviews of test cases that do not cover any
additional code when testing the whole system, i.e., the potentially redundant test cases iden-
tified by our tool.

61

8. Conclusion

62

Appendices

63

Appendix A

Interview guide

1. What is your role at AAGS?

2. What is your background?

3. What is your view on regression testing?

4. Do you see any problems or challenges related to performing regression testing?

5. How would you describe your capability to perform regression testing today?

6. How do you verify that you have tested enough?

7. How would you describe the current approach to regression testing at AAGS?

8. How would you describe the di�erent levels of prioritization that is used today (1-4)?

9. Anything else that would provide further insight into the current regression testing
practices at AAGS?

65

A. Interview guide

66

Appendix B

Questionnaire

• What are your thoughts on using the tool for the prioritization of test cases?

– Do you see any possible challenges/problems?

• What are your thoughts on the usage of customer usage data when prioritizing test
cases?

– Do you see any possible challenges/problems?

– Any benefits?

• Would the tool and process have an positive impact on your work?

• What are your thoughts on the proposed maintenance process for the test suite?

– Do you see any possible challenges/problems?

– Could it be improved?

• How would the tool and process a�ect your work?

– Any benefits?

– Could it consume more time than it saves?

• Is there anything you would like to add?

– Problems?

– Challenges?

– Benefits?

67

B. Questionnaire

68

Bibliography

[1] Agile 101. https://www.agilealliance.org/agile101/, 2018. [online, Last ac-
cessed 16 February 2019].

[2] A. Ahlam, A. Khan, A. Khan, and K. Mukdam. Optimized regression test using test case
prioritization. Procedia Computer Science, 79:152–160, 2016.

[3] ASSAABLOY. About assa abloy global solutions. https://www.
assaabloyglobalsolutions.com/en/aags/com/about-us/. [online, Last
accessed 16 February 2019].

[4] K. Beck, M. Beedle, and van A. Bennekum. The agile development manifesto. https:
//agilemanifesto.org/, 2001. [online, Last accessed 16 February 2019].

[5] R. Beena and S. Sarala. Code coverage based test case selection and prioritization. In-
ternational Journal of Software Engineering & Applications (IJSEA), 4, 2013.

[6] A. Beszedes, T. Gergely, L. Schrettner, J. Jasz, L. Lango, and T. Gyimothy. Code coverage-
based regression test selection and prioritization in webkit. 2012 28th IEEE International
Conference on Software Maintenance (ICSM), page 46, 2012.

[7] E. Bjarnason, M. Unterkalmsteiner, M. Borg, and E. Engström. A multi-case study of
agile requirements engineering and the use of test cases as requirements. Information
and Software Technology, 77:61–79, 2016.

[8] E. Costa, L.A. Soares, and P.J. Sousa. Situating case studies within the design science
research paradigm: An instantiation for collaborative networks. In Collaboration in a
Hyperconnected World - 17th IFIP WG 5.5 Working Conference on Virtual Enterprises, PRO-VE
2016, Porto, Portugal, October 3-5, 2016, Proceedings, pages 531–544, 2016.

[9] B. DiCicco-Bloom and B. F. Crabtree. The qualitative research interview. Medical Edu-
cation, 40(4):314 – 321, 2006.

[10] Umm e Habiba and S. Asghar. A survey on multi-criteria decision making approaches.
2009 International Conference on Emerging Technologies, page 321, 2009.

69

https://www.agilealliance.org/agile101/
https://www.assaabloyglobalsolutions.com/en/aags/com/about-us/
https://www.assaabloyglobalsolutions.com/en/aags/com/about-us/
https://agilemanifesto.org/
https://agilemanifesto.org/

BIBLIOGRAPHY

[11] S. Elbaum, G. Rothermel, and A.G. Malichevsky. Incorporating varying test costs and
fault severities into test case prioritization. IEEE Transactions on Software Engineering,
23(10):929–948, 2001.

[12] E. Engstrom, P. Runeson, and M. Skoglund. A systematic review on regression test
selection techniques. Information and Software Technology, 55:14–30, 2010.

[13] G. Gay, M. Staats, M. Whalen, and M.P.E. Heimdahl. The risks of coverage-directed test
case generation. IEEE Transactions on Software Engineering, 41(8):803, 2015.

[14] T. Gorschek, C. Wohlin, P. Carre, and S. Larsson. A model for technology transfer in
practice. IEEE Software, Software, IEEE, IEEE Softw, 23(6):88, 2006.

[15] M. Harman. Making the case for morto: Multi objective regression test optimization.
2011 IEEE Fourth International Conference on Software Testing, page 111, 2011.

[16] Hadi Hemmati. How e�ective are code coverage criteria? In Proceedings of the 2015
IEEE International Conference on Software Quality, Reliability and Security, QRS ’15, pages
151–156, Washington, DC, USA, 2015. IEEE Computer Society.

[17] A.R. Hevner, S.T. March, J. Park, and S. Ram. Design science in information systems
research. MIS Quarterly, 28(1):75 – 105, 2004.

[18] M. Hilton, T. Tunnell, K. Huang, D. Marinov, and D. Dig. Usage, costs, and benefits
of continuous integration in open-source projects. 2016 31st IEEE/ACM International
Conference on Automated Software Engineering (ASE), page 426, 2016.

[19] Z. Hong, P.A.V. Hall, and J.H.R. May. Software unit test coverage and adequacy. ACM
Computing Surveys, 29(4):366 – 427, 1997.

[20] F. Horváth, T. Gergely, Á. Beszédes, D. Tengeri, G. Balogh, and T. Gyimóthy. Code
coverage di�erences of java bytecode and source code instrumentation tools. Software
Quality Journal, 27(1):79, 2019.

[21] IEEE. Iso/iec/ieee international standard - systems and software engineering–
vocabulary. ISO/IEC/IEEE 24765:2017(E), page 1, 2017.

[22] G. Kabir and A. A. Hasin, M. Comparative analysis of ahp and fuzzy ahp models for
multicriteria inventory classification. International Journal of Fuzzy Logic Systems, 1:87–
96, 2011.

[23] S. Kadry. A new proposed technique to improve software regression testing cost. Inter-
national Journal of Security and Its Application, 5(3), 2011.

[24] J.C. Knight. Safety critical systems: challenges and directions. Proceedings of the 24th
International Conference on Software Engineering. ICSE 2002, page 547, 2002.

[25] S. Kukolj, V. Marinkovic, M. Popovic, and S Bognar. Selection and prioritization of test
cases by combining white-box and black-box testing methods. 2013 3rd Eastern European
Regional Conference on the Engineering of Computer Based Systems, page 153, 2013.

70

BIBLIOGRAPHY

[26] S. Lauesen. Software requirements : styles and techniques. Addison-Wesley, 2002.

[27] A. Lawanna. An e�ective test case selection for software testing improvement. 2015
International Computer Science and Engineering Conference (ICSEC), page 1, 2015.

[28] Z. Li, M. Harman, and R.M. Hierons. Search algorithms for regression test case priori-
tization. IEEE Transactions on Software Engineering, 33(4):225, 2007.

[29] N.M. Minhas, K. Petersen, N.B. Ali, and K. Wnuk. Regression testing goals - view of
practitioners and researchers. 2017 24th Asia-Pacific Software Engineering Conference Work-
shops (APSECW), page 25, 2017.

[30] J. Myers, G and C. Sandler. The Art of Software Testing. John Wiley & Sons, Inc., USA,
2004.

[31] M.V. Mäntylä, B. Adams, F. Khomh, E Engström, and K. Petersen. On rapid releases and
software testing: a case study and a semi-systematic literature review. Empirical Software
Engineering, 20(5):1384–1425, 2015.

[32] L. Nan, M. Xin, J. O�utt, and L. Deng. Is bytecode instrumentation as good as source
code instrumentation: An empirical studywith industrial tools (experience report). 2013
IEEE 24th International Symposium on Software Reliability Engineering (ISSRE), Software Re-
liability Engineering (ISSRE), 2013 IEEE 24th International Symposium on, page 380, 2013.

[33] G. Rothermel and M. J. Harold. Analyzing regression test selection techniques. IEEE
Transactions on Software Engineering, 22:329–338, 1996.

[34] G. Rothermel and M. J. Harold. Empirical studies of a safe regression test selection
technique. IEEE Transactions on Software Engineering, 26(6):401–419, 1998.

[35] G. Rothermel, A.G. Malichevsky, and S. Elbaum. Test case prioritization: A family of
empirical studies. IEEE Transactions on Software Engineering, 28(2):159–182, 2002.

[36] G. Rothermel, R.H. Untch, C. Chu, and M.J. Harrold. Prioritizing test cases for regres-
sion testing. IEEE Transactions on Software Engineering, 27(10):929–948, 2001.

[37] P. Runeson and M. Höst. Guidelines for conducting and reporting case study research
in software engineering. Empirical Software Engineering, 14(2):131, 2009.

[38] T.L. Saaty. How to make a decision: The analytic hierarchy process. Interfaces, 24(6):19
– 43, 1994.

[39] S. Tahvili, M. Saadatmand, M. Bohlin, W. Afzal, S. Larsson, and D. Sundmark. Dynamic
integration test selection based on test case dependencies. 2016 IEEE Ninth International
Conference on Software Testing, page 277, 2016.

[40] Sahar Tahvili, Mehrdad Saadatmand, and Markus Bohlin. Multi-criteria test case pri-
oritization using fuzzy analytic hierarchy process. In The Tenth International Conference
on Software Engineering Advances, November 2015.

[41] D. Talby, A. Keren, O Hazzan, and Y. Dubinsky. Agile software testing in a large-scale
project. IEEE Software, 23(4):30, 2006.

71

BIBLIOGRAPHY

[42] Bullseye Testing Technology. Bullseye coverage measurement technique. https:
//www.bullseye.com/measurementTechnique.html. [online, Last accessed 16
February 2019].

[43] K.R.Walcott, M. So�a, G.M. Kapfhammer, and R.S. Roos. Timeaware test suite prioriti-
zation. In Proceedings of the 2006 International Symposium on Software Testing and Analysis,
pages 1–12, New York, NY, USA, 2006. ACM.

[44] K. Wang, T. Wang, and X. Su. Test case selection using multi-criteria optimization for
e�ective fault localization. Computing, 100(8):787 – 808, 2018.

[45] W.Wong, S. London J. Horgan, andH.Agrawal. A study of e�ective regression testing in
practice. Proceedings The Eighth International Symposium on Software Reliability Engineering,
Software Reliability Engineering, 1997. Proceedings., The Eighth International Symposium on,
page 264, 1997.

[46] L. Zhang, S. Hou, C. Guo, T. Xie, and H. Mei. Time-aware test-case prioritization using
integer linear programming. In Proceedings of the Eighteenth International Symposium on
Software Testing and Analysis, pages 213–224, New York, NY, USA, 2009. ACM.

72

https://www.bullseye.com/measurementTechnique.html
https://www.bullseye.com/measurementTechnique.html

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTATIONSDAG 2019-05-15

EXAMENSARBETE Test Case Prioritization Using the Analytical Hierarchy Process
and Customer Usage Profiles for Regression Testing
STUDENT Mattias Karlsson
HANDLEDARE Markus Borg (LTH), Per Nordbeck (ASSAABLOY), Sahar Tahvili (Ericsson AB)
EXAMINATOR Per Runeson (LTH)

Prioritering av testfall baserat på
kunders användning av systemet

POPULÄRVETENSKAPLIG SAMMANFATTNING Mattias Karlsson

Regressionstestning är en viktig process för att kunna säkerhetställa att tidigare testad
funktionalitet fortfarande fungerar utan att fördröja en release av mjukvara för mycket.
I detta arbete nyttjar vi multikriteria-bedömning av testfall, varav en av de viktigaste
kriterierna är korrelationen mellan hur mycket av koden som täcks av tester och hur
mycket som täcks av kunders användning av systemet.

I dagens snabbt förändrande marknader är det
viktigt att kunna anpassa sig och kunna få ut ny
mjukvara så snabbt och med så hög kvalitet som
möjligt för att inte missa en möjlighet eller tappa
marknadsandelar till konkurrenter. För att kunna
säkra att tidigare testad funktionalitet fortfarande
fungerar och inga nya fel har introducerats, utförs
regressionstestning som ett sätt att säkerhetställa
kvalitén på produkten.
Regressionstestning har en tendens att bli kost-

sam och ta mycket tid, vilket kan fördröja en re-
lease av ny mjukvara. För detta har ett stort an-
tal olika metoder för testoptimering tagits fram,
varav många är baserade på ett kriterium för
bedömning av testfall. På senare tid har fler och
fler metoder baserat på flera kriterier tagits fram.
Det beror på att det kan vara svårt att bedöma
prestandan på ett testfall baserat på ett kriterium
när det kommer till större och mer komplexa sys-
tem.
I detta examensarbete har vi utvecklat ett verk-

tyg baserat på multikriteriaoptimering för regres-
sionstestning, där ett beslutstödssystem kallat
AHP nyttjas för att lösa multikriteriaoptimerings
problemet för regressionstestning. För att kunna

snabbt säkerhetställa att det kunder nyttjar är
tillfredsställande testat så är en av de viktigaste
kriterierna i vår modell är korrelation mellan test-
täckning och kundanvändning av systemet. Vi
jämför först hur mycket kod varje enskilt testfall
täcker med det som redan är täckt av automatiser-
ade tester och jämför sedan detta med kundernas
användning av systemet. Detta gör vi för att först
ta reda på hur mycket varje enskilt testfall täcker
som inte redan är täckt av annan testning. Sedan
hur mycket som det täcker utav det som används
av kunderna, och ökar sedan prioriteten på de som
täcker mest.
Förutom att reducera tiden det tar att utföra

regressionstestning, kan även detta verktyg an-
vändas för att öka kvalitén på testningen, genom
att använda informationen gällande vad som inte
är täckt för att skapa nya testfall. Med hjälp av
denna informationen skapade vi en process for un-
derhåll av testfallen.
Resultatet visar att nyttjandet av AHP och

kunders kodtäckning kombinerat med testtäckn-
ing kan väsentligt reducera antalet testfall och
tiden som det tar att uppnå en hög nivå av
kodtäckning vid testning.

	Introduction
	Background
	Case Description
	Purpose
	Contributions
	Outline

	Background
	Agile Software development
	Code Coverage
	Code instrumentation
	Regression Testing
	Regression Test Selection (RTS)
	Test Case Prioritization (TCP)
	Hybrid Approach
	Analytic Hierarchy Process
	Fuzzy Values
	Related Work

	Research Method
	Ex-ante: Case Study Research (CSR)
	Definition
	Interviews
	Document analysis
	Survey

	Design Science Research (DSR)
	Build
	Evaluate

	Ex-Post: Static validation

	Ex-ante: Case study results
	Interviews
	Observations
	Conclusions
	Limitations

	Document analysis
	Questionnaire
	Synthesis
	Objective for the design science phase

	Design science outcome
	Build activity
	Data extraction
	Test Case Code Coverage
	Test case evaluation

	Evaluate activity
	Performance evaluation
	Focus group meeting
	Conclusions

	Ex-post: Results from static validation
	Process evaluation meeting
	Participants
	Results

	Survey
	Participants
	Survey Results

	Discussion
	DSS for regression test prioritization at AAGS
	Threats to validity
	Future Work

	Conclusion
	Appendix Interview guide
	Appendix Questionnaire
	Bibliography

