
MASTER’S THESIS 2019

Crystal Centering Using Deep
Learning
Jonathan Schurmann, Isak Lindhé

ISSN 1650-2884
LU-CS-EX 2019-25

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY

EXAMENSARBETE
Datavetenskap

LU-CS-EX: 2019-25

Crystal Centering Using Deep Learning

Jonathan Schurmann, Isak Lindhé

Crystal Centering Using Deep Learning

Jonathan Schurmann
dat12jsc@student.lu.se

Isak Lindhé
dat13ili@student.lu.se

September 16, 2019

Master’s thesis work carried out at MAX IV.

Supervisors: Jörn Janneck, jorn.janneck@cs.lth.se
Zdeněk Matěj, zdenek.matej@maxiv.lu.se

Examiner: Flavius Gruian, flavius.gruian@cs.lth.se

mailto:dat12jsc@student.lu.se
mailto:dat13ili@student.lu.se
mailto:jorn.janneck@cs.lth.se
mailto:zdenek.matej@maxiv.lu.se
mailto:flavius.gruian@cs.lth.se

Abstract

A problem in X-ray crystallography experiment is to find a good point on the
crystal to center in the beam. This problem can be solved by manual aiming or
automatically hit the crystal in every possible way and take the best point. When
using a more powerful beam, the crystal takes radiation damage after a number
of shots which might give unreliable results.

We present a machine learning-based solution by training a neural network with
labeled data. This approach does not rely on either brute force nor manual su-
pervision to determine where to aim the beam.

Based on our experiments we can conclude that machine learning is a poten-
tial solution to this problem. Our result shows that machine learning and more
specifically deep neural networks have the capability to learn where the crystal is.
Further research might improve on this and detect a more specific point which
is guaranteed to be a good point of where to aim the beam.

Keywords: MSc, Machine learning, X-ray crystallography, Deep learning, Convolutional
Neural Networks

2

Acknowledgements

First and foremost, none of this would be possible without MAX IV and all the amazing
people there. MAX IV o�ered the opportunity for us to write our thesis and have spent time
and resources on our work as an ambition for potential use in the future. Thanks to our
supervisor at MAX IV, Zdeněk Matěj for all ideas and helping us plan and execute our work.

We would like to thank our supervisor Jörn Janneck at the Faculty of Engineering at Lund
University for his irreplaceable and coherent feedback as well as the thought-provoking con-
versations.

Special thanks to Gustavo Lima for assisting in collecting data and the late evenings in the
beamline.

3

4

Contents

1 Introduction 7

1.1 Problem and Aim of the work . 9

1.2 Introduction to Convolutional Neural Networks 11

1.2.1 Overview . 11

1.2.2 Arrangement of weights in a convolutional layer 12

1.2.3 Fully connected layer . 13

1.2.4 Pooling layer . 13

1.2.5 Dropout layer . 13

1.2.6 Loss function . 14

1.3 Related Work . 14

1.4 Work Distribution . 15

2 Experiments 17

2.1 Approach I: Regression analysis . 18

2.1.1 Overview . 18

2.1.2 Technical details . 19

5

CONTENTS

2.1.3 Data set . 19

2.1.4 Transformation and augmentation 22

2.1.5 Variations on data transformation 22

2.1.6 Model . 24

2.1.7 Evaluation . 27

2.1.8 Results . 28

2.1.9 Discussion . 38

2.2 Approach II: Classification . 41

2.2.1 Data set . 41

2.2.2 Transformation and augmentation 41

2.2.3 Model . 43

2.2.4 Result . 43

2.2.5 Discussion . 45

3 Conclusion 47

Appendix A Instructions for counting reflections with DIALS 55

Appendix B DIALS output 57

6

Chapter 1

Introduction

An artificial neural network borrows inspiration from the biological equivalent found in the
field of neuroscience. It consists of neurons connected by synapses that carry out a function
when activated. The same idea is applied to the artificial network by connecting layers where
each layer is a collection of neurons. Each neuron is activated based on a mathematical con-
dition which in turn might activate neurons in the next layer. When adding a bunch of these
layers, the network can learn highly complex functions that might classify or predict a value
based on the input. Neural networks have existed for decades but did not take o� until recent
years due to a lack of computation power and access to large data sets. The reason one might
use a neural network is the ability to learn arbitrary features without explicitly programming
them.

Machine learning methods are applied here in the domain of crystallography, in particular
to the optimization of single crystal X-ray di�raction experiments. This class of experiments
is is the most common and well-established method for an experimental determination of
a 3D atomic structure of molecules including important biological molecules as proteins.
It is an essential component for the development of new pharmaceutical molecules used in
medicine.

In such a single crystal di�raction experiment a high-power X-ray beam is fired at some sort
of crystal sample. A detector behind the crystal detects the pattern (Figure 1.1) of how the
beam is scattered by the crystal. See Figure 1.2. The recorded interference pattern, called
di�raction pattern, is then used for the analysis of 3D atomic structure of the crystal. The
crystal is usually around 100µm across and the beam (in our case) has a diameter of 20µm.
The crystal is fixed by surface tension in a small metal loop, as seen in Figure 2.2 at page 18.

7

1. Introduction

Figure 1.1: An example of a di�raction pattern from a crystal.
© Gustavo Lima

Figure 1.2: Beamline setup at BioMAX. © Zdeněk Matěj

8

1.1 Problem and Aim of the work

This loop is in turn held by a goniometer [1] and the sample can rotate around 11 axis and
translates in 3 axis. A goniometer is an instrument which allows the loop to be positioned in
a precise position. Liquid nitrogen is constantly being blown on the crystal to keep it cool.

One place where this happens is the BioMAX beamline at the MAX IV laboratory in Lund,
Sweden. The light source at MAX IV has much higher energy than any other synchrotron
in the world at the time of writing and this is what distinguishes MAX IV for other syn-
chrotrons.

1.1 Problem and Aim of the work

To get a high-quality di�raction from the crystal, we want to aim the beam at a good part of
it. The quality of a di�raction pattern can bemeasured by counting the number of reflections
that appear in it. We will call this the reflection count (RC). This is how we determine what
is a good or bad part of the crystal. Other methods of measuring the quality exist and this is
just one of them. Most synchrotrons simply do this with a ’shotgun approach’, which means
scanning the X-ray beam over a grid of spatial points overlapping the crystal, then simply
picking the point giving the best di�raction signal.

Unfortunately, MAX IV cannot use this approach, as their beam is so intense it can inflict
serious radiation damage on the crystal if the ’shotgun approach’ is used. They therefore
have to center the crystal more carefully to get a good result without so much exposure as to
damage the crystal. This is currently done by painstakingly centering each and every crystal
manually.

Scientists who do this seem to build up an intuition that might be a good part of the crystal to
aim the beam at. This seemed like a good indicator that perhaps an artificial neural network
[2] could also learn this skill for recognizing good points on crystals to expose to the beam.

If we can train a model to recognize how well-centered the crystal is in a given image, we
can test various points to center on without having to fire the beam by simply cropping the
image around the point we want to test.

In Figures 1.3 and 1.4 you can see some examples of images centered at good and bad points.
As you can see, the good images have the crystal in the center, where the beam is hitting,
while the really bad ones are usually centered on the edge, on the loop or do not even have a
crystal.

This thesis aims to examine the possibility to use machine learning and neural network to
solve this problem.

11 axis is used in most experiments at BioMAX. The actual limit is 3 axis.

9

1. Introduction

Figure 1.3: Some images with high reflection counts

Figure 1.4: Some images with low reflection counts

10

1.2 Introduction to Convolutional Neural Networks

1.2 Introduction to Convolutional Neural Net-
works

In order to have some basic understanding of Neural Networks to get the most out of this
report, we recommend looking through the lecture notes of the Stanford course: http://
cs231n.github.io/, specifically these two lessons:

• Neural Networks Part 1: Setting up the Architecture,
http://cs231n.github.io/neural-networks-1/

• Convolutional Neural Networks: Architectures, Convolution / Pooling Layer,
http://cs231n.github.io/convolutional-networks/.

However, we go through some of the basic concepts also here.

1.2.1 Overview

The basic structure of a Neural Network (NN) [3] are neurons arranged in layers. These layers
are placed sequentially after each other. See figure 1.6 at page 14 for an example of how the
layers are connected.

Each neuron has one or more inputs which is multiplied with some weight w. These weights
and inputs are then summed up and added togetherwith a bias [2]. See Figure 1.5 and equation
1.1. ∑

j

w j x j + b = wx + b (1.1)

Vector x represents our inputs and j is the number of inputs. Hereafter vector notation will
be used.

Figure 1.5: Schematic image of a neuron with inputs x, weights w
and bias b. The neuron will produce some output z.

11

http://cs231n.github.io/
http://cs231n.github.io/
http://cs231n.github.io/neural-networks-1/
http://cs231n.github.io/convolutional-networks/

1. Introduction

We will use a type of NN called Convolutional Neural Network (CNN). The most common
input to a CNN is an image X with a dimensionality of X ∈ R3 or X ∈ R2 depending on
the number of channels. If color images of size 28 × 28 are used, the number of inputs will
be 28 · 28 · 3. The output will di�er depending on what we are trying to achieve. A single
output neuron will be enough for binary classification or regression analysis. For multiclass
classification, the number of outputs will be the same as the number of classes if the output
is represented as base-10. [4]

Classification is a subset of supervised learning and means that the network will learn a func-
tion to assign each data point to a category. Binary classification means that we have two
categories while multiclass has three or more categories. Regression analysis means the use
of data to predict a continuous value with respect to our learning data.

The characteristic layer in a CNN is the convolutional layer. The intuitive meaning of a
convolutional layer is to find patterns in the image. The input to this layer is arranged as
a 3-dimensional matrix with dimensions width × height × channels. The layer’s filters
(also called kernels) slide (convolve) over the width and height dimension of the input to
determine distinctive features. A feature is a bit of visual information in the image. It’s
usually something abstract or vague such as an edge. The filter is small spatially (height,
width) but fills the entire channels dimension of the input. A typical filter might be 3 × 3
or 5 × 5 and 3 deep for color images. Sliding the filter over the image will produce a 2D
activation map with activations (real numbers) by taking the dot product between the filter
weights and input pixels. Each filter will have a set of weights and therefore represent or
symbolize a feature. The weights for a filter are the actual matrix values. [2]

Example. Suppose our input image has a dimension of 28 × 28 × 3 and we are using filter of
size 5 × 5. Each filter in our convolutional layer will have 5 · 5 · 3 weights + 1 bias parameter
= 76.

1.2.2 Arrangement of weights in a convolutional layer

Howmanyweights are there in a convolutional layer andwhat is the dimension of the output?
The dimension is dependent on the hyperparameters of the convolutional layer. The depth
is equal to the number of filters. The width and height are dependent on four parameters:

• Input size (W) - Spatial size of the image.

• Filter size (F)- Spatial size of the filter.

• Zero-padding (P) - Padding with zeroes around the input volume.

• Stride (S) - How "far" we move with the filter when we slide it. Stride 1 means that we
move the filter one pixel at the time.

12

1.2 Introduction to Convolutional Neural Networks

The spatial size of the output from the convolution layer is given by equation 1.2.

W − F + 2 · P
S

+ 1 (1.2)

Example. Suppose we have an input of 28 × 28 × 3. The convolutional layer has 32 number
of filters with a zero-padding of 0, a stride of 1 and a filter size of 5. This means that W =
28, F = 5, P = 0, S = 1. The spatial output from the convolutional layer is then
28−5+2·0

1 + 1 = 24.

The number of weights is dependent on the filter size F, the number of channels of the input
C, and the number of filters N .

Example. The total number of weights in a convolutional layer is given by equation 1.3.

(F · F · C + 1) · N (1.3)

We add 1 to each filter to account for the bias parameter.

Given the previous example, the total number of weights is (5 · 5 · 3 + 1) · 32 = 2432.

1.2.3 Fully connected layer

The layer which implements the operation specified in equation 1.1 is called fully connected
layer.

1.2.4 Pooling layer

Pooling helps the model become slightly invariant to small translations of the image [5]. The
function is to reduce the number of parameters by discarding activations. The activations
are usually discarded by performing the MAX operation on the input by sliding a window
of generally 2 × 2 with a stride of 2. This drops 75% of the activations and therefore helps
with overfitting. Pooling is done on a single slice of the input at the time.

1.2.5 Dropout layer

A layer that reduces overfitting by randomly setting N% of the activations to zero.

13

1. Introduction

Convolution Pooling Dropout Fully connected

3@28x28

32@24x24 32@12x12 32@12x12
1x256

1x1

Figure 1.6: An example of a very simple architecture with the de-
scribed layers.

1.2.6 Loss function

Loss functions are needed to measure compatibility between a prediction and ground truth
data. Two loss functions for continuous data are Mean Square Error (MSE) and Mean Abso-
lute Error (MAE). n is the number of predicted data points, ŷ is ground-truth value and y is
predicted value.

MSE =
1
n

n∑
i=1

(y − ŷ)2 (1.4)

MSE is useful the error weight should increase exponentially. Being o� by 4 should weight
more than twice as much than being o� by 2. If that’s not the case, MAE is better to use.

MAE =
1
n

n∑
i=1

|y − ŷ| (1.5)

Binary cross-entropy loss may be used for binary classification. [4]

H = −(y ∗ log(ŷ) + (1 − y) ∗ log(1 − ŷ)) (1.6)

1.3 Related Work

Convolutional neural networks are often used for classification tasks and in 2012, Krizhevsky
et al. (2012) [2] used an architecture called AlexNet to classify 1.2 million images into 1000
di�erent classes. AlexNet has ReLU, Max-pooling and dropout layers in the architecture.

14

1.4 Work Distribution

AlexNet also uses data augmentation techniques such as horizontally flipping the images to
increase the data set. All of these are techniques are used in this thesis.

Using CNN for regression analysis seems to be less common, however. Shimobaba et al. (2018)
[6] uses CNN for a regression problem. They try to do depth prediction in digital holography
to get a precise prediction down to a few millimeters of precision. They use an architecture
similar to us and a single neuron as the output layer.

In the crystallography field there exists work trying to classify the outcome of the crystal-
lization process [7]. Miura et al. (2018) [8] takes this one step further by first segmenting the
crystallization area and then trying to classify crystals in that area only.

There is little to no research in solving the exact problem we have. Some work exists in trying
to detect the sample holder and/or the crystal. There are two versions that we are aware of:
lucid2 [9] and lucid3 [10]. Background and motivation for lucid can be found in [11]. Both of
these are using traditional image analysis with OpenCV. They are developed for usage at the
European Synchrotron Radiation Facility (ESRF) which has a slightly di�erent setup than
MAX IV and does not guarantee us a good result.

Both lucid versions use a laplacian edge detecting algorithm [12]. These work well in con-
stant lightning conditions but they are very fragile to changes in the lighting environment.
Modifications are therefore needed before one can expect the same result in BioMAX as in
ESRF with lucid. One would also need to be aware of changes to the lightning at the exper-
imental setup and modify lucid to continue using it. Our method will not be as a�ected by
the lightning since diverse training data will help neutralize this.

1.4 Work Distribution

Most of the work has been carried out in close collaboration between the authors. The only
exception is that when Approach 1 looked like it might be a lost cause, Jonathan Schurmann
started working on Approach 2 while Isak Lindhé kept tweaking Approach 1 until we got
results we could use.

The writing of this report was divided similarly, with Isak Lindhé being mainly responsible
for Approach I, and Jonathan Schurmann being mainly responsible for Approach II, as well
as the Introduction and conclusion chapters.

15

1. Introduction

16

Chapter 2

Experiments

We will now describe two di�erent approaches for solving the problem under consideration
in this project. The reason formultiple approaches came naturally during the project timeline
when the first approach was chosen was not giving reliable results in the initial stage of the
project. The report on the first approach is also describing the heads on-solution to solving
the problem. When that approach didn’t turn out as expected, we started with the second
approach as a way to troubleshoot what could be wrong. The approaches are not necessarily
in chronological order see Figure 2.1.

Figure 2.1: Timeline over the execution of approaches.

17

2. Experiments

Figure 2.2: A loop holding a crystal, seen from the perspective of the
beam source.

2.1 Approach I: Regression analysis

2.1.1 Overview

Here we attempt to teach a CNN to estimate the reflection count associated with a particular
image. Reflection count, i.e. the number of di�raction spots in the X-ray detector image, is
one of the possible measures of quality of the di�raction pattern obtained by shooting the
crystal. The center of the image is always the place where the beam is aimed at.

This was done by using a CNN as a regressor. As input data, it was given photos of crystals
taken while the beam was on. These images were taken from the point of view of the beam
source and were centered on the point where the beam hit. An example of these images is
shown in Figure 2.2. As output data, the CNN was given a numeric metric of the quality
of the di�raction pattern resulting from the shot in the associated image, specifically the
number of reflections in the di�raction.

Prediction heatmaps

Once we can guess the reflection count of a particular image, we can use this to find the
crystal by creating what we call a prediction heatmap. Since the beam always hits the center
of the image, we can simulate aiming the beam anywhere in an existing image by cropping
around some chosen point. If we then give our cropped image to the neural network, it will
predict what reflection count we could expect if we were to fire the beam at the point we
cropped around. Now we can do this for each point in a dense grid all over the image, and
get a heatmap of where the network predicts a high RC and where it predicts a low RC. We
can now aim the beam where the highest RC is predicted, or in some other way decide where
to aim from this information.

18

2.1 Approach I: Regression analysis

2.1.2 Technical details

We are using Python 3.6 with the neural-network library Keras [13] to build, train, and test
our various models. Description from Keras website:

Keras is a high-level neural network API, written in Python and capable of run-
ning on top of TensorFlow, CNTK, or Theano. It was developed with a focus on
enabling fast experimentation.

Keras was at the right level of abstraction for us to make it easy to prototype our models with-
out too much work. We use TensorFlow in the backend since it is a well-known library and
popular in the community and was also available to use at the High-Performance Comput-
ing cluster (HPC) at MAX IV and Lunarc. Fast.ai [14] and PyTorch [15] were also considered.
Fast.ai is similar to Keras and is using PyTorch as backend but didn’t have as big community
support as Keras.

2.1.3 Data set

The data set encompasses a collection of images with the observed reflection count (RC)
for each image. To collect this we need to capture those images as the beam is firing, then
determine which image belongs to which reflection count.

Collecting data

The data was obtained bymodifying the source code ofMXCuBE [16] which is used to control
the data acquisition in BioMAX. Figure 2.3 shows the interface for MXCuBE. There are two
"camera" systems relevant to the acquisition of data for the training set. There is an X-ray
detector that is hardware-synchronized with the data acquisition. Next is the visible-light
camera which is controlled indirectly over another vendor-specific subsystem and it is not
hw-synchronized to the supervising control system. In order to acquire images that could be
associated with a particular reflection count, modifications were made to save timestamped
copies of the image from the visible-light camera at approximately 8 images/second (as fast
as performance would allow) while the beam was on.

While collecting data, we moved the crystal in the following two ways.

Helical scan is where the crystal is moved in a line through the beam. This gives us a high
variation of reflection counts since the beam moves through both good and bad parts of the
crystal, as well as the background. However, the variation in images is quite small, since they
are all from the same angle in a given scan.

19

2. Experiments

Figure 2.3: Graphical interface of MXCuBE running in browser.

Rotational scan is where the crystal is manually centered and then rotated while firing the
beam. This yields a high variation in images since the angle is always changing, but all the
reflection counts will likely be quite high since we are always hitting the crystal.

We used both these types of scans in order to gain a high variation in both images and reflec-
tion counts.

Matching image and RC

Our strategy for determining which image belonged to which reflection count was to times-
tamp each image as it was being captured, and then match those timestamps with those of
the di�ractions being generated by the detector.

BioMAX utilizes EIGER 16M X-ray detector [17] which outputs data in the HDF5 file for-
mat [18]. This file contains timestamps of each frame (the smallest unit inwhich the detector’s
input is divided by time, analogous to a frame in a normal video) but these were unfortunately
not accurate, so another way to match each image with each frame was necessary. The solu-
tion was found in the log file from EIGER. These logs have timestamps of when each frame is
written into the HDF5 file. The solution is a compromise available at the time of the project.
Our method relies on logs that disappear after a few days and are not guaranteed to match
from a time-perspective so it is not much robust. Time might not be synchronized on the
di�erent servers.

RC was found by using DIALS [19] to count the number of reflections in the di�raction
image in the HDF5 file from EIGER. Instructions for doing so are presented in appendix A.

20

2.1 Approach I: Regression analysis

Figure 2.4: Histogram of the reflection counts in the whole data set.

The complete data set was then assembled by going through log timestamps and find amatch-
ing image if the image was not taken too far away in time. You can see the distribution of
the reflection counts for all the images in Figure 2.4. As you can see, there is a big spike
towards the lower end. These are all the bad shots, often not even pointing at the crystal,
resulting in roughly 0 reflections. The high values are more spread out, ranging up to over
2500 reflections.

In the end we had a dataset of roughly 12000 pairs of images and reflection counts.

The data set is split into three parts:

• Training

• Validation

• Testing

This split was 60/20/20 (training/validation/testing), a rather typical ratio [20]. The training
set is used during the training phase to fit parameters such as weights, kernels, and bias. The
validation set is also utilized for the training but it is used to optimize hyperparameters such
as learning rate and momentum. The testing set is used for an unbiased evaluation of the
final model.

21

2. Experiments

2.1.4 Transformation and augmentation

The following sequence of transformations is made to the images before they are fed into the
neural network.

Cropping and resizing are applied to normalize and to put the focus on the object itself.
First, the images are cropped into squares. The size of the cropping linearly depends on the
zoom level of the camera when the image was taken (which was saved as metadata at the time
of data collection). The output size after resizing the cropped image is 128 × 128, a loose
compromise between fidelity and computation speed.

We then normalize the pixel values of the images to have average value 0 and standard devia-
tion 1. Not only does this help neural nets learn [21], it also deals with the problem that some
images are much brighter than others, removing a factor that could confuse the network.

The reflection counts are also normalized in the same fashion as the images, but along the
whole data set, so the mean value is 0 and the standard deviation is 1. We will call an RC
(reflection counts) that has been fed through the transformation pipeline TRC (transformed
reflection count).

Data augmentation

A common practice in machine learning is to artificially increase the size of your dataset
by adding modified versions of the data you already have. This is to stop the network from
overfitting to features we know to be irrelevant.

We can assume that the horizontal "flippedness" of the image should a�ect what reflection
count we can expect from it. Therefore we add the horizontally-flipped version of every
image with the same reflection count.

On top of this, for each image we add a version that has been rotated 90◦, 180◦ and 270◦.
We could have added more rotations but it would be more cumbersome since we would also
need to zoom or add black pixels around. We have already octupled the size of our dataset.
An example of this data augmentation can be seen in Figure 2.5.

By using this data augmentation our dataset increases in size from circa 12 000 pairs to circa
96 000 pairs.

2.1.5 Variations on data transformation

In an attempt to increase the accuracy of our model, Three di�erent variations of this trans-
formation sequence were tried over the course of this project. These are presented here.

22

2.1 Approach I: Regression analysis

Figure 2.5: The resulting images from data augmenting a single im-
age. All these would have the same reflection count in the dataset.

Vanilla transformed

This is the transformation sequence described above in Section 2.1.4. Histograms after split-
ting the dataset into train/test/validate are visible in Figure 2.6. Using this transformation
pipeline, we can see that there is a high variance in the reflection counts where the beam hit
the crystal (those above 100). This is to be expected since the crystals are of varying quality.
By this, we mean that some crystals have a higher capacity in the number of reflections that
can be produced in a di�raction. However, it might add unnecessary di�culty to the neural
network. For example, if the network predicts that a particular image will give a reflection
count of 500, and it was 2000 reflections, it would look like a large error; but for our pur-
poses, 500 is a perfectly acceptable guess, since it means we are aiming somewhere on the
crystal, which is what we care about. This is why we created the two variations below.

Figure 2.6: Histograms of the vanilla transformed reflection counts
in the three parts of the data set. Note that the range has shrunk due
to the the normalization transformation, as mentioned in Section
2.1.4.

23

2. Experiments

Log transformed

Here the reflection counts are logarithmized (i.e. being modified by the function log(x)) after
being normalized. The log function is used because it groups large values. The point of this
is to reduce the di�erence between ’good enough’ reflection counts of crystals of di�erent
quality. One crystal might have a peak reflection count of 1500 while a lower quality crystal
can only produce 500 reflections at best, but there is no point in the model trying to dis-
tinguish between these cases. All we care about is hitting the crystal. The histograms of the
transformed reflection counts are visible in Figure 2.7.

Figure 2.7: Histograms of the log transformed reflection counts in
the three parts of the data set.

Tanh transformed

Although logarithmizing reflection counts clusters high values together, the low values are
spread out. But we do not care about the di�erence of an image with 3 reflections and one
with 10. They are both worthless, so the data set should reflect that. We thought that the
hyperbolic tangent (tanh) function (plotted in Figure 2.8) could be a good way to cluster
together both low and high values. The histograms of the modified reflection counts are
visible in Figure 2.9

Figure 2.8: Plot of tanh(x)

2.1.6 Model

The CNN architectures used for this experiment are regressors, meaning they are for guess-
ing a particular value (in this case the transformed reflection count) rather than choosing

24

2.1 Approach I: Regression analysis

Figure 2.9: Histograms of the tanh transformed reflection counts in
the three parts of the data set.

between a set of classes. [22] The input is some image of a crystal taken from the beam-
source while the beam is firing. The point that is hit by the beam is in the center of the
image. The output is the reflection count yielded from that particular firing of the beam.
Both input and output are first transformed as described in section 2.1.4.

The neural network begins with a series of convolutional layers, followed by flattening and a
series of fully connected layers (as described in section 1.2.3). The final output layer only has
one neuron which represents the guessed transformed reflection count. All architectures are
shown in Table 2.2.

Keep in mind that this project is not about optimizing a neural net for the given task. Its
main aim is answering a principal question if we can get a neural net to solve these kinds of
problems. And so the 10 architectures are somewhat arbitrarily chosen by us to get a good
variety ofmodels. Some architectures are deeper. Some havemore convolutional layers. Some
have more fully connected layers. There are likely other architectures that would perform
much better. The reason only one architecture includes a max-pooling layer is that they
reduce the spatial information in the image. The pooling layers are useful if one wants to
know if there is an object in the image, but do not care about the object position. Since we
care very much about where the object (in particular crystal in this case) is, pooling layers
did not seem like they would be much help. [5]

All tested architectures were using the Adam optimizer [24] with Mean Squared Error as the
loss function. All layers use the activation function ReLU [23] except the last one with no ac-
tivation function since this is a regressor. Adam, MSE, and ReLU were chosen because they
are all rather typical choices for neural networks. Each model is trained until its MSE on
the validation set stops decreasing. This is called early stopping and is conveniently avail-
able as a callback function in Keras (documentation: https://keras.io/callbacks/
#earlystopping) [13].

25

https://keras.io/callbacks/#earlystopping
https://keras.io/callbacks/#earlystopping

2. Experiments

Header Description
CN Number of convolutional layers with N filters of size 3 × 3 followed by 25% dropout.

[23].
MPOOL Number of max pooling layers [2]

FN Number of fully connected layers with N neurons followed by 50% dropout [23]

Table 2.1: Keys for the Table 2.2. These values (including the val-
ues for N) were chosen somewhat arbitrarily by trial and error. We
had to be selective in which hyperparameters to vary due to time
constraints.

Architecture C8 MPOOL C16 F256 F128 F64
a1 2 0 0 1 1 0
a2 2 0 1 1 1 0
a3 2 0 2 1 1 1
a4 2 1 2 1 1 1
a5 2 0 2 2 2 2
a6 2 0 0 0 1 1
a7 1 0 1 1 1 0
a8 1 0 0 1 1 0
a9 1 0 0 1 0 0
a10 1 0 0 1 1 1

Table 2.2: The di�erent neural network architectures used in this
experiment. Key for the headers is in table 2.1. The layers are in the
same order as in the table.

26

2.1 Approach I: Regression analysis

2.1.7 Evaluation

Here we describe the metrics and methods we used to evaluate our models. Some of these
methods are more quantifiable, while others are more based on perception.

Mean Square Error

We use Mean Square Error as our loss function, as described in section 1.2.6. We chose it over
Mean Absolute Error (MAE) because if the model guesses almost the right reflection count,
that is good enough. We only care if the guess is way o�, and MSE reflects that by inflating
big errors more than small errors, therefore MSE seemed to us like a more relevant metric
than MAE.

Correlation Graph

For each model, we create scatter plots with real reflection count on the X-axis and predicted
reflection count on the Y-axis. This is to help us visualize how well the model is doing and
what it’s getting wrong.

High and low predicted images

It could be useful to see what kind of images it predicts to have the highest/lowest reflection
count, as well as what images it gets wrong. We chose a random sample of images that the
model predicted to have a very high RC or very lowRC. This way we can see if the predictions
of RC look reasonable for those images.

Prediction heatmap

The final, actual use case of this is to find the best point (or at least a point) on the crystal to
shoot. To simulate this we take an image of a crystal and crop around di�erent points on the
image, arrayed in a grid, thus creating input data for the neural net as if we were aiming at
that point. We can then use the neural net to try to predict the RC on each of those cropped
images. Hopefully, the ones that are more centered on the crystal will have a higher predicted
RC. To make this more useful, we will put an X on the center point of the highest N points in
the point matrix, where N is some low positive integer. This will serve as our guess for where
to aim the beam.

27

2. Experiments

2.1.8 Results

Mean Square Error

Table 2.3 shows the resulting scores of our various experiments with using the regressors
described in section 2.1.6 on page 24.

Layers MSE
Architecture C8 MPOOL C16 F256 F128 F64 vanilla log tanh

a1 2 0 0 1 1 0 0.5789 0.3207 0.3638
a2 2 0 1 1 1 0 0.5241 0.5729 0.4886
a3 2 0 2 1 1 1 0.923 0.5539 0.4789
a4 2 1 2 1 1 1 0.7803 0.3789 0.3572
a5 2 0 2 2 2 2 0.8812 0.4141 0.4467
a6 2 0 0 0 1 1 0.4279 0.3539 0.3585
a7 1 0 1 1 1 0 0.6095 0.3794 0.4088
a8 1 0 0 1 1 0 0.3775 0.2931 0.2291
a9 1 0 0 1 0 0 0.442 0.3036 0.2188
a10 1 0 0 1 1 1 0.4292 0.2076 0.2869

Table 2.3: Result of training on various architectures with various
data set. Keep in mind that the MSE showed is the error in the trans-
formed reflection count, therefore MSE scores are not as comparable
between di�erent transformation pipelines as they are between dif-
ferent models. The key for this table is found in Table 2.1 on page
26.

Correlations

More interesting is the correlation between the real reflection counts and the predicted. Fig-
ure 2.10, 2.11, and 2.12 show the correlations using log-, tanh-, and vanilla-transformed re-
flection counts respectively (TRC).

High and low predicted images

To get a more intuitive understanding of the model, we present some images that were pre-
dicted to have very high or very low RC. We will focus on one of the more promising of our
10 models.

Figure 2.13 shows some images that received very low predictions (under 0). Figure 2.14 shows
some images that received very high predictions (over 0.7). Note that in all these images, the
red cross in the center is added afterwards to make it easier for you to see where the physical
beam was aimed when this picture was taken and is not part of the data.

28

2.1 Approach I: Regression analysis

Figure 2.10: Correlation of the real values and the predicted values
(logarithmized). Each dot corresponds to an image, the X-axis is the
actual value and the Y-axis is the predicted value. The orange line is
x=y, which is the ideal target.

29

2. Experiments

Figure 2.11: Correlation of the real values (modified by tanh(x)) and
the predicted values. Each dot corresponds to an image, the X-axis
is the actual value and the Y-axis is the predicted value. The orange
line is x=y, which is the ideal target.

30

2.1 Approach I: Regression analysis

Figure 2.12: Correlation of the real values (unmodified). Each dot
corresponds to an image, the X-axis is the actual value and the Y-
axis is the predicted value. The orange line is x=y, which is the ideal
target.

31

2. Experiments

Figure 2.13: Images that the model predicted to have a low RC.

32

2.1 Approach I: Regression analysis

Figure 2.14: Images that the model predicted to have a very high RC.

33

2. Experiments

Figure 2.15: The raw image used as the only input to the trained
model to create the heatmaps below. The models have never seen
this crystal before.

Prediction heatmaps

Here we present the prediction heatmaps that were described in Section 2.1.1 on page 18.
This shows how our models would perform in the real use case on a crystal they’ve never seen
(shown in Figure 2.15). See Figure 2.16, 2.17, and 2.18.

34

2.1 Approach I: Regression analysis

Figure 2.16: prediction heatmaps (as described in section with ar-
chitectures trained and tested on log-transformed reflection counts.
Warmer color means higher predicted reflection count. The black X
is the global maximum.

35

2. Experiments

Figure 2.17: prediction heatmaps with architectures trained and
tested on tanh transformed reflection counts. Warmer color means
higher predicted reflection count. The black X is the global maxi-
mum.

36

2.1 Approach I: Regression analysis

Figure 2.18: prediction heatmaps with architectures trained and
tested on vanilla transformed reflection counts. Warmer color
means higher predicted reflection count. The black X is the global
maximum.

37

2. Experiments

2.1.9 Discussion

From the tables, it appears the simpler models are usually the ones that produce better re-
sults. MSE might not be very trustworthy though. If we look at Figure 2.6, 2.7, and 2.9 in
subsection 2.1.4, we see that the distributions of reflection counts are quite di�erent between
the training, validation, and testing sets. This might result in unfair MSE scores. For exam-
ple, the tanh variant has very few low values in its test set, so if low reflection counts are
predicted poorly, that will not a�ect the MSE as much as it should. This problem stems from
the quite small size of our data set and the fact that we need to separate our data by crystals
so that no crystal is in two sets. We think this problem is likely to even out if we collected
data from more crystals since there could then be a greater variety of crystals with di�erent
ranges of RC in each subset.

Regarding the correlations, a theme common to all models is that they have trouble with
the very low-RC images. However, we found this to be quite excusable when we look at the
images it predicts too high but is low (see Figure 2.19). We think they are visibly very similar
to images that do have high reflection counts, and therefore the model can not be faulted for
predicting it as high. This is more likely to be a problem with our dataset. After showing
this to some beamline scientists working in BioMAX, it turned out that this is a common
problem that they run into even when centering manually.

Other than that, the correlations for the log-basedmodels (Figure 2.10) are surprisingly highly
correlated for images with high reflection counts! It is important to remember that these are
not the actual reflection counts, but the log-transformed reflection counts. If we were to
transform the data back into real reflection counts, we would have much bigger errors for
high reflection counts. However, the point of this is not to exactly predict the reflection
count, just to make sure if we are hitting the crystal in a decent place.

When we look at the heatmaps in Figure 2.16 and 2.17, a recurring problem seems to be that
some of the networks get confused when the crystal is almost or completely out of view.
When the image is cropped so that the crystal is barely nor not at all visible some models
get confused, which results in a bright background in the heatmap. This is not that strange
since we barely have any images in the data set when the beam is aimed nowhere near the
crystal. This could quite easily be solved with data augmentation or with further data col-
lection. Despite this problem, some of these models look rather useful for the task, given the
heatmaps. Except for tanh + a4 and arguably both a5, all models chose a point somewhere
on the crystal. Another interesting phenomenon is that it seems that we can visibly see the
extreme overfitting of some models in the noisiness of their heatmaps, for example, tanh +
a5. Points that are very close to each other, and thus have very similar cropped images still
get predicted as having very di�erent RC, resulting in a grainy appearance in the heatmap.

The most relevant method to compare our results to are Lucid 2 and 3 [9][10]. The results of
using them to find the crystal in the image used for the heatmaps are visible in Figures 2.20
and 2.21. It’s important to point out that lucid and our method have di�erent goals and will
not achieve the same result. To quote lucid 2 technical manual [9]:

38

2.1 Approach I: Regression analysis

Figure 2.19: Images that have very low real RC, but were predicted
to have quite high. These predictions were made using vanilla trans-
formed reflection counts.

39

2. Experiments

Figure 2.20: The red x shows the result from lucid2 trying to find
the loop in the image.

Figure 2.21: The red x shows result from lucid3 trying to find the
loop in the image.

Lucid 2.0 is an image processing software that detects the target of Synchrotron
ESRF and returns its coordinates in an input image.

The target being referred to is the loop that the crystals are attached to. Lucid is developed for
usage in ESRF (European Synchrotron Radiation Facility, located in Grenoble, France) and
therefore we might not be as reliable at finding the loop at MAX IV since it was developed
assuming the setup at ESRF. We can see this in Figure 2.21.

Potential error sources

Since all of our data needed to be collected manually, and the time to do so was quite limited,
our data set is not as big as we would have liked. This coupled with the fact that we needed
to divide the data set along crystal boundaries (so no crystal would be in both the training set
and the testing set), meant that only a handful of crystals were in the test set and validation
set. So a model that happens to be well suited for those particular crystals would receive an
unfairly low MSE. This problem is made worse by the fact that images from a helical scan
(described in Section 2.1.3) will be very similar to each other, so the test set is not very diverse.

40

2.2 Approach II: Classification

If we look at the heatmaps of, for example log+a2 and log+a10 in Figure 2.16, and tanh+a7 in
Figure 2.17, there seems to be an indirect correlation between the bright parts of the image
and a high predicted value. It is possible that for some of our models, all it’s doing is looking
for bright blobs in the image since these are likely to be glare from the crystal. If this is the
case, the model could fail when presented with images with glare on the holder.

2.2 Approach II: Classification

To narrow down the problem and see if the model can learn the most simple features we
wanted to try binary classification. If the classification is a success we can assume that the
data set have learnable features and there might be some other problem for regression. The
labels were empty (empty loop) and crystal. That is, determine if we can see a crystal or not.
The input to the CNN is an image and the output is the probability for the classifying the
image as label empty in the range [0, 1]. We use the same tools here as in Approach I. See
subsection 2.1.2 at page 19

2.2.1 Data set

The data set encompasses crystals from the previous data set. Some crystals were removed
due to di�culties in recognizing if it actually was a crystal or just an empty loop. The reason
for this was to get a good data set as possible to minimize the possibility that the data set
was a source of error. One more data collection was performed to collect images with empty
samples.

Due to not having any crystal there was no need to do a helical/rotational-scan, and there-
fore the images collected did not have any movement, i.e. many images with the same loop
looked the same. To increase the data set and cope with an overabundance of crystal images,
data augmentation was performed on selected images with empty loops. The images were
selected so that each image was easy to distinguish from the others, either by zoom level or
the characteristic of the loop. Crops were generated from each image in 2.22. This was done
by sliding a window over the image and saving each crop as a new image. Splitting the data
set was done in the same fashion as for regression. The final size of the data set was 4468
images.

2.2.2 Transformation and augmentation

The images were transformed in the same way as the images in regression, see section 2.1.4.
Labels were encoded to 0/1 in alphabetical order i.e. crystal=0, empty=1.

41

2. Experiments

Figure 2.22: Loops without any crystal that are used for classifica-
tion.

42

2.2 Approach II: Classification

2.2.3 Model

Only one architecture was used since this approach was used to determine if simple features
could be detected. The architecture was inspired by models used for other kind of binary
classification such as one at Keras [25] and one at Towards Data Science [26]. Loss function
was binary cross-entropy see previously defined equation 1.6 at page 14.

CN Number of convolutional layers with N filters of size 3 × 3
MPOOL Number of max pooling layers [2]

FN Number of fully connected layers with N neurons
DROPOUTN Number of dropout layers with N% dropout

LOSS Loss function
ACC Prediction accuracy

Table 2.4: Keys for the Table 2.5

C32 MPOOL C32 MPOOL C64 MPOOL F64 DROPOUT50 LOSS ACC
1 1 1 1 1 1 1 1 0.2604 0.891

Table 2.5: Result of training on binary labeled data set

2.2.4 Result

The results are determined from evaluating from predicting on the test set. Figure 2.23 is
a confusion matrix visualizing the number of correct/incorrect predictions for each class.
Header ACC in table 2.5 shows the percentage correctly predicted.

43

2. Experiments

Figure 2.23: Confusion matrix showing the result of predicting on
the test set.

44

2.2 Approach II: Classification

2.2.5 Discussion

In this approach we have tried to classify images to one of two classes: crystal and empty.
We did this by training a CNN with an architecture inspired by other architectures used
successfully. We show that the CNN learns to classify the images with an accuracy of ∼ 89%.
This shows that a CNN can learn features from our data set and deep learning can be a viable
method for regression.

The data set is handpicked to have the most distinctive images which is why we expect the
network to achieve a high level of prediction accuracy. The low amount of training data
will probably cause overfitting, and the network might not predict with the same accuracy
on real-life data. This is however not important in our case and is nothing we investigated
further, as this was just a way to see if wewere on the right trackwith the network architecture
and our data set.

Due to the way data set splitting is done, the number of empty samples is drastically less
than crystals. The reason for this is that the number of crystal images varies from sample to
sample.

45

2. Experiments

46

Chapter 3

Conclusion

In this thesis, we have used neural networks to evaluate centerings of crystals before running
the experiments. In the correlation figures 2.10, 2.11, and 2.12 from approach 1 we can in
many cases see that the predictions are following the ideal target, although not that precise.
This shows that using the raw crystal images as input, we can get an idea of how good the
centering is. This mostly applies to crystals with a high reflection count since we found it
di�cult to predict the outcome from low-quality crystals due to the similarity in appearance.

To try to increase the accuracy of our models, we have used three di�erent transformations
of the reflection count. In the correlation figures we can see how they compare with each
other and the e�ect they have. There are some limitations to our current state of the models.
Predicting pixel-precise reflection counts or even correct reflection count is not possible with
our training data and models.

There is still major work to implement this in production at BioMAX. There will be technical
challenges in the integration and improvements to the model is necessary. We are hopeful
that our work will be of use, if not directly but indirectly.

Future work

As mentioned before, this is probably not the most e�cient or optimal way of automati-
cally centering crystals. The architectures used here are semi-arbitrarily chosen. It would
be interesting to try to use some well known, high performing architectures in place of our
a1-10 architectures. Lots of these are conveniently available in Keras (https://keras.io/

47

https://keras.io/applications/
https://keras.io/applications/
https://keras.io/applications/

3. Conclusion

applications/) [13].

The fact that di�erent crystals can produce di�erent amounts of reflection count is a prob-
lem. It means that RC is not a direct measurement of how well the beam was aimed, one
crystal could produce the same number of spots when hit perfectly as another crystal pro-
duces when hit on the edge. It might be beneficial to look for some quality measures other
than the reflection count. Perhaps combining the reflection count with one ormoremeasures
of the crystals quality as a whole, i.e. its capacity for producing reflections.

Another thing that could be improved is howwematch camera images with reflection counts.
The current method of using timestamps seems very ad hoc and unreliable.

We might also be able to produce better results by combining this with other techniques for
locating an object in an image, such as segmenting the image into the crystal and not crystal
before doing regression analysis as Y. Muira et al [8] might improve results since the entire
focus will be on finding the best spot in the crystal, and not having to find the crystal itself.

A di�erent way of acquiring data might be worth looking into. Our data were collected by
doing a helical scan or a rotational scan. Mesh scan is a type of scan where the user draws
a 2-dimensional grid over the area of interest. This was not available during our time but
might be implemented later. This way we could more directly compare our heatmaps to real
measurements.

Increasing the size of the data set is another way that is straightforward to improve the re-
sult. Specifically collecting data from a larger number of crystals. This could help with our
problem of being unable to evenly divide our data set into train/test/validate subsets.

To use this in practice, one could first use lucid to guess the target and then create a heatmap
around that area. Depending on their size and density, heatmaps could take a few seconds to
be generated. If we wanted to do this in real-time while a user is examining a crystal, with
a heatmap as an overlay, this could speed up that process, since the heatmap would not have
to cover the whole camera image.

48

https://keras.io/applications/
https://keras.io/applications/
https://keras.io/applications/

Bibliography

[1] “Md3 high precision x-ray microdi�ractometer.” https://www.arinax.com/md3-
high-precision-x-ray-microdiffractometer. Accessed: 2019-3-27.

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep con-
volutional neural networks,” in Advances in Neural Information Processing Systems 25
(F. Pereira, C. J. C. Burges, L. Bottou, and K. Q.Weinberger, eds.), pp. 1097–1105, Curran
Associates, Inc., 2012.

[3] Fei-Fei Li et al, “Module 1: Neural networks, neural networks part 1: Setting up the
architecture,” in CS231n Convolutional Neural Networks for Visual Recognition, 2019.

[4] M. A. Nielsen, Neural Networks and Deep Learning. Determination Press, 2015.

[5] D. Scherer, A. Müller, and S. Behnke, “Evaluation of pooling operations in convolu-
tional architectures for object recognition,” in International conference on artificial neural
networks, pp. 92–101, Springer, 2010.

[6] T. Shimobaba, T. Kakue, and T. Ito, “Convolutional neural network-based regression for
depth prediction in digital holography,” CoRR, vol. abs/1802.00664, 2018.

[7] M. Yann and Y. Tang, “Learning deep convolutional neural networks for x-ray protein
crystallization image analysis,” 2016.

[8] Y. Miura, T. Sakurai, C. Aranha, T. Senda, R. Kato, and Y. Yamada, “Classification of
x-ray protein crystallization using deep convolutional neural networks with a finder
module,” CoRR, vol. abs/1812.10087, 2018.

[9] “Esrf - lucid 2, technical note.” https://github.com/mxcube/lucid2/blob/
master/doc/Lucid2TechnicalNote.pdf. Accessed: 2019-4-02.

[10] “lucid3: Loop and ucrystals identification version 3.” https://github.com/mxcube/
lucid3. Accessed: 2019-3-27.

49

https://www.arinax.com/md3-high-precision-x-ray-microdiffractometer
https://www.arinax.com/md3-high-precision-x-ray-microdiffractometer
https://github.com/mxcube/lucid2/blob/master/doc/Lucid2TechnicalNote.pdf
https://github.com/mxcube/lucid2/blob/master/doc/Lucid2TechnicalNote.pdf
https://github.com/mxcube/lucid3
https://github.com/mxcube/lucid3

BIBLIOGRAPHY

[11] O. Svensson, S. Malbet-Monaco, A. Popov, D. Nurizzo, and M. W. Bowler, “Fully auto-
matic characterization and data collection from crystals of biological macromolecules,”
Acta Crystallographica Section D, vol. 71, pp. 1757–1767, Aug 2015.

[12] “Opencv: Laplace operator.” https://docs.opencv.org/4.1.0/d5/db5/
tutorial_laplace_operator.html. Accessed: 2019-7-09.

[13] F. Chollet et al., “Keras.” https://keras.io, 2015.

[14] J. Howard et al., “fastai.” https://github.com/fastai/fastai, 2018.

[15] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison,
L. Antiga, and A. Lerer, “Automatic di�erentiation in pytorch,” 2017.

[16] U. Mueller, M. Thunnissen, J. Nan, M. Eguiraun, F. Bolmsten, A. Milàn-Otero, M. Gui-
jarro, M.Oscarsson, D. de Sanctis, andG. Leonard, “Mxcube3: A new era ofmx-beamline
control begins,” Synchrotron Radiation News, vol. 30, no. 1, pp. 22–27, 2017.

[17] “Eiger x detectors for synchrotron.” https://www.dectris.com/products/eiger/
eiger-x-for-synchrotron. Accessed: 2019-3-27.

[18] The HDF Group, “Hierarchical Data Format, version 5,” 1997-2019.
http://www.hdfgroup.org/HDF5/.

[19] G. Winter, D. G. Waterman, J. M. Parkhurst, A. S. Brewster, R. J. Gildea, M. Gers-
tel, L. Fuentes-Montero, M. Vollmar, T. Michels-Clark, I. D. Young, N. K. Sauter, and
G. Evans, “DIALS: implementation and evaluation of a new integration package,” ACTA
CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, vol. 74, pp. 85–97, FEB
2018.

[20] A. Ng, “Model selection and train/validation/test sets - advice for applying machine
learning | coursera.” https://www.coursera.org/lecture/machine-learning/
model-selection-and-train-validation-test-sets-QGKbr. Accessed: 2019-
7-08.

[21] S. Io�e and C. Szegedy, “Batch normalization: Accelerating deep network training by
reducing internal covariate shift,” CoRR, vol. abs/1502.03167, 2015.

[22] D. F. Specht, “A general regression neural network,” IEEE transactions on neural networks,
vol. 2, no. 6, pp. 568–576, 1991.

[23] G. E. Dahl, T. N. Sainath, and G. E. Hinton, “Improving deep neural networks for lvcsr
using rectified linear units and dropout,” in 2013 IEEE International Conference on Acous-
tics, Speech and Signal Processing, pp. 8609–8613, May 2013.

[24] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in 3rd Interna-
tional Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings, 2015.

[25] F. Chollet, “Building powerful image classification models using very little data.”
https://blog.keras.io/building-powerful-image-classification-
models-using-very-little-data.html, 2016. Accessed: 2019-6-25.

50

https://docs.opencv.org/4.1.0/d5/db5/tutorial_laplace_operator.html
https://docs.opencv.org/4.1.0/d5/db5/tutorial_laplace_operator.html
https://keras.io
https://github.com/fastai/fastai
https://www.dectris.com/products/eiger/eiger-x-for-synchrotron
https://www.dectris.com/products/eiger/eiger-x-for-synchrotron
https://www.coursera.org/lecture/machine-learning/model-selection-and-train-validation-test-sets-QGKbr
https://www.coursera.org/lecture/machine-learning/model-selection-and-train-validation-test-sets-QGKbr
https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html
https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html

BIBLIOGRAPHY

[26] G. Surma, “Image classifier - cats vs dogs.” https://towardsdatascience.
com/image-classifier-cats-vs-dogs-with-convolutional-neural-
networks-cnns-and-google-colabs-4e9af21ae7a8, 2018. Accessed: 2019-6-25.

[27] “eiger2cbf.” https://github.com/biochem-fan/eiger2cbf. Accessed: 2019-4-09.

51

https://towardsdatascience.com/image-classifier-cats-vs-dogs-with-convolutional-neural-networks-cnns-and-google-colabs-4e9af21ae7a8
https://towardsdatascience.com/image-classifier-cats-vs-dogs-with-convolutional-neural-networks-cnns-and-google-colabs-4e9af21ae7a8
https://towardsdatascience.com/image-classifier-cats-vs-dogs-with-convolutional-neural-networks-cnns-and-google-colabs-4e9af21ae7a8
https://github.com/biochem-fan/eiger2cbf

BIBLIOGRAPHY

52

Appendices

53

Appendix A

Instructions for counting reflectionswithDI-
ALS

1. Run eiger2cbf [27] on the HDF5 master file from EIGER detector.

./eiger2cbf filename.h5 N:M out.cbf

N is start frame, M is last frame.

2. Run distl.signal_strength on each cbf file to get characterization of candidate Bragg spots.
See appendix B for an example output.

distl.signal_strength filename.cbf

In the output we can see Spot Total which is our RC. The binary distl.signal_strength is
found in the DIALS project. [19]

55

A. Instructions for counting reflections with DIALS

56

Appendix B

DIALS output

distl. signal_strength : characterization of candidate
Bragg spots

Parameters used:
#phil __ON__

distl {
image = "/ data/staff/common/ML - crystals / real_cbf

/20181214/ Sample -3 -07/20180479 _1_master / out000137 .
cbf"

res {
outer = None
inner = None

}
verbose = False
dxtbx = False
bins {

verbose = False
N = 20
corner = True

}
range = None

}
autoindex_override_beam = None
autoindex_override_distance = None
autoindex_override_wavelength = None

57

B. DIALS output

autoindex_override_twotheta = None
autoindex_override_deltaphi = None
image_specific_osc_start = None
codecamp {
}
pdf_output {
}
distl {

minimum_spot_area = None
minimum_signal_height = None
minimum_spot_height = None
spot_area_maximum_factor = None
peak_intensity_maximum_factor = None
method2_cutoff_percentage = 20
compactness_filter = False
scanbox_windows = 101 51 51
peripheral_margin = 20
pdf_output = None
port = 8125
processors = 1
nproc = 1

}

#phil __OFF__

MAX -IV Eiger 16M

File : out000137 .cbf
Spot Total : 1707
Remove Ice : 1610

In - Resolution Total : 1543
Good Bragg Candidates : 1313

Ice Rings : 6
Method 1 Resolution : 1.60
Method 2 Resolution : 1.52

Maximum unit cell : 153.7
<Spot model eccentricity > : 0.790
%Saturation , Top 50 Peaks : 1.46
In - Resolution Ovrld Spots : 0

Bin population cutoff for method 2 resolution : 20%

Number of focus spots on image #137 within the input
resolution range: 1543

Total integrated signal , pixel -ADC units above local
background (just the good Bragg candidates) 927143

58

Signals range from 14.3 to 18020.4 with mean integrated
signal 755.7

Saturations range from 0.0% to 3.0% with mean saturation
0.1%

59

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTERAD 2019-06-11

EXAMENSARBETE Crystal Centering Using Deep Learning
STUDENTER Jonathan Schurmann, Isak Lindhé
HANDLEDARE Jörn Janneck (LTH)
EXAMINATOR Flavius Gruian (LTH)

Can we teach a neural network to aim an
X-ray at a crystal without completely
frying it?

POPULÄRVETENSKAPLIG SAMMANFATTNING Jonathan Schurmann, Isak Lindhé

One of the most tedious tasks of a crystallographer at the MAX IV laboratory is
to manually center crystals in the beam. How can we harness machine learning to
replicate the crystallographers’ intuition for this boring task?

At the BioMAX research station in the MAX
IV laboratory, very bright x-ray beams are fired at
tiny tiny crystals to see how the beam diffracts in
them. To get good results you need to hit spe-
cific spots. Most radiation facilities are shooting
the crystal holder all over and are taking the best
result.

MAX IV, having the brightest X-ray
source in the world at the time of writing, can’t
really do that, because exposing the crystal to the
beam for that long would inflict severe radiation
damage and might even make the crystal explode.
So researchers at BioMAX need to spend their
valuable time painstakingly centering the crystals
manually. So can we improve this?
Yes! What if we can use the same “shotgun ap-

proach” as other synchrotrons without having to
fire? We taught a convolutional neural network to
recognize what an image of a well-centered crystal
looks like in comparison to a poorly centered one.
Using the number of reflections in the resulting
diffraction patterns (quality of the diffraction) as
labels for the dataset we can learn our network to
“understand” the crystals. The label corresponds
to the result of shooting in the center of the im-
age. With our trained model, all we need to do is

crop the image around different parts and for each
ask the model “Is this centered? This one? What
about this one?”

Figure 1: A crystal help onto a loop by sheer sur-
face tension

Here is the resulting heatmap, using one
of our better models. The color of each point is
determined by how much the model thinks it the
crystal is centered at that point. The red X is the
point where that the model is the most certain is
centered, and at least for this crystal it appears to
be quite right.

	Introduction
	Problem and Aim of the work
	Introduction to Convolutional Neural Networks
	Overview
	Arrangement of weights in a convolutional layer
	Fully connected layer
	Pooling layer
	Dropout layer
	Loss function

	Related Work
	Work Distribution

	Experiments
	Approach I: Regression analysis
	Overview
	Technical details
	Data set
	Transformation and augmentation
	Variations on data transformation
	Model
	Evaluation
	Results
	Discussion

	Approach II: Classification
	Data set
	Transformation and augmentation
	Model
	Result
	Discussion

	Conclusion
	Appendix Instructions for counting reflections with DIALS
	Appendix DIALS output

