
Abstract

We establish the central convergence properties of ordinary Dirichlet series, including the
classical result by Bohr, providing uniform convergence of the series where it has a bounded
analytic continuation (σb = σu). We also derive a lower bound for the supremum of Dirichlet
polynomials using Kronecker’s theorem, of which we see one proof. With this knowledge and
some probability theory we can follow the work of Queffélec and Boas proving the existence
of random series

∑
±n−s with certain convergence properties. In particular Boas work is a

probabilistic version of what Bohnenblust and Hille did, namely showing that estimate for
σa−σu ≤ 1

2 is sharp. Here, σa (introduced in Chapter 1) denotes the abscissa Re(s) = σa to
the right of which the Dirichlet series converges and to the left of which it diverges absolutely.
σu is the corresponding abscissa for uniform convergence.



Populärvetenskaplig
introduktion

En funktion som har f̊att mycket uppmärksamhet bland matematiker är den s̊a kallade Rie-
manns zeta-funktion, som definieras med hjälp av en summa av oändligt antal termer, en s̊a
kallad serie:

ζ(s) = 1 +
1

2s
+

1

3s
+

1

4s
+ . . . =

∞∑
n=1

1

ns
. (1)

Här är s = σ + it en komplex variabel med en reell del σ och en imaginär del t, där i har
egenskapen i2 = −1. Värdet p̊a den här serien kommer givetvis bero p̊a vilket värde p̊a s man
använder, och det kan ge serien b̊ade ett ändligt och ett oändligt värde. T.ex. s̊a har man

lyckats visa att ζ(2) = 1+ 1
22 + 1

32 + 1
42 +. . . = π2

6 men ocks̊a att ζ(1) = 1+ 1
2 + 1

3 + 1
4 +. . . =∞,

d.v.s. blir oändligt stort. Man kan visa att om s = σ + it har realdel σ > 1 s̊a har serien ett
ändligt värde. I övriga fall säger man att serien inte är definierad, och d̊a behöver man ett
annat sätt att ge mening till zeta-funktionen.

Anledningen till att den här funktionen är s̊a uppmärksammad är att den har en nära kop-
pling till primtalen, och det har länge varit ett olöst problem att hitta alla dess nollställen, dvs
de s s̊adana att ζ(s) = 0. Riemann själv formulerade en hypotes om att alla (icke-triviala)
nollställen finns längs en linje s = 1

2 + it, och Hardy har bevisat att längs den här linjen
finns det oändligt m̊anga nollställen, [12]. Däremot är det ingen hittills som har lyckats visa
att hypotesen faktiskt är sann eller hittat ett motbevis genom ett nollställe utanför linjen.
Många matematiker har funderat p̊a det här problemet och The Clay Mathematics Institute
har till och med utlyst en belöning p̊a 1 miljon dollar till den som löser det, som en del av
deras sju prisbelönta Milleniumproblem, [20].

Ett försök att bättre först̊a den här funktionen har varit att undersöka en mer allmän serie

a1
1

+
a2
2s

+
a3
3s

+
a4
4s

+ . . . =

∞∑
n=1

an
ns
. (2)

I fallet av zeta-funktionen s̊a noterar vi att an = 1, för alla n. Den här mer allmänna serien
kallas en Dirichlet-serie. Det visar sig att alla serier som har den formen delar en hel del
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gemensamma egenskaper, som man därför hoppas kan ge insikt om Riemann’s zeta-funktion.

Det här arbetet g̊ar främst ut p̊a att kartlägga de s̊a kallade konvergensegenskaperna hos
Dirichletserier. Det handlar om att undersöka vilka s man kan stoppa in i serien (2) för att
den ska ha ett ändligt värde och kunna definieras. P̊a vägen betraktar vi relevanta exempel
med en nära koppling till Riemann’s zeta-funktion och stöter p̊a ett par matematiska resultat
intressanta i sig.
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Chapter 1

Basic convergence properties of
the Dirichlet Series

Let s ∈ C and {an}n∈N a sequence of complex numbers. A series of the form

∞∑
n=1

ann
−s = a1 + a22−s + a33−s + . . . (1.1)

is said to be a Dirichlet series. (To be clear, this is what is said to be an ordinary Dirich-
let series. We will only consider this type and not the general Dirichlet series of the form∑∞
n=1 ane

−λns.)

However we only want to define it when it converges. This is one reason to investigate its
convergence properties.

1.1 Absolute convergence

The series (1.1) can converge in several ways. As a start, we might consider the easiest case
and ask ourselves for which s = σ + it

∞∑
n=1

|ann−s| =
∞∑
n=1

|ann−σn−it| =
∞∑
n=1

|an|n−σ

converges. For all s such that this happens, the series (1.1) is absolutely convergent, and it
is clear that the absolute convergence does not depend on the choice of t but only on the real
part σ. If the series converges absolutely in one point it also converges to the right of this
point, since |an|n−σ is a decreasing function of σ, for all n ∈ N.
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Hence absolute convergence occurs in a half-plane of C, which proposes the introduction
of an abscissa of convergence:

Definition 1.1 (Abcissa of absolute convergence). The real number

σa := inf{σ0 :

∞∑
n=1

|an|n−σ converges forσ > σ0}

is the abscissa of absolute convergence of the series (1.1).

Remark 1.1. We note further that where the series converges absolutely, it is bounded.
Therefore we can be sure that f(s) =

∑
ann

−s is a bounded function in the half-plane
{s : Re(s) > σa + ε}, for ∀ε > 0.

As mentioned above, the series converges absolutely for all s = σ + it in the half-plane
where σ > σa, and by this definition it must diverge (in the absolute sense) for all σ < σa.
In general we do not know what happens when σ = σa. Moreover, it may occur that a series
converges for all σ ∈ R and also for none.

Example 1.2. The series
∞∑
n=1

n−nn−s

converges absolutely ∀s ∈ C. Hence σa = −∞.

Example 1.3. Contrarily
∞∑
n=1

nnn−s

never converges absolutely. Hence σa =∞.

Example 1.4 (Riemman’s zeta-function). Consider

∞∑
n=1

n−s.

It is known that it converges absolutely iff Re(s) > 1, so we have σa = 1. At this half-plane
of absolute convergence it defines the Riemman’s zeta function, ζ(s).

1.2 Pointwise convergence

Abscissae turn out to be relevant also for other kinds of convergences, although it is less
obvious. The next result investigates what can be said about the domain of convergence of
a series, given that it converges for a fixed s0 ∈ C.

Proposition 1.5 (Convergence in half-plane). Let
∑∞
n=1 ann

−s be a series that is convergent
for s0 = σ0 + it0. Then it converges for all s with Re(s) > σ0.
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Proof. Consider the sequence of partial sums(
N∑
n=1

ann
−s

)∞
N=1

,

which we will show is a Cauchy sequence in C. C being a complete metric space, this is
enough to conclude convergence of the sequence. Let ε > 0 be fixed, and we will prove that
∃N ∈ N s.t. for p, q ≥ N∣∣∣∣∣

p∑
n=1

ann
−s −

q∑
n=1

ann
−s

∣∣∣∣∣ =

∣∣∣∣∣
q∑

n=p

ann
−s

∣∣∣∣∣ < ε,

assuming that p < q. We write the sum as

q∑
n=p

ann
−s =

p∑
n=p

ann
−s0n−(s−s0),

to next use Abel’s summation formula for a finite sum:

q∑
n=p

anbn =

q−1∑
n=p

n∑
m=p

am(bn − bn+1) + bq

q∑
m=p

am.

Applying this formula with an = ann
−s0 , bn = n−(s−s0), gives us

q∑
n=p

ann
−s0n−(s−s0) =

q−1∑
n=p

n∑
m=p

amm
−s0
(
n−(s−s0) − (n+ 1)−(s−s0)

)
+ q−(s−s0)

q∑
m=p

amm
−s0 .

The last term can be made smaller than ε for p big enough, for Re(s) > σ0. Considering

now the first term, we let this choice of p also be such that
∣∣∣∑n

m=p amm
−s0
∣∣∣ < ε, since this

is a tail of a convergent series. From this, we get the upper bound

∣∣∣∣∣
q−1∑
n=p

n∑
m=p

amm
−s0(n−(s−s0) − (n+ 1)−(s−s0))

∣∣∣∣∣ ≤ ε
q−1∑
n=p

|n−(s−s0) − (n+ 1)−(s−s0)| = (∗).

We can write the difference s− s0 as s− s0 = δ + it (δ > 0). With f(x) = x−(δ+it) and
f ′(x) = −(δ + it)x−(δ+it)−1, by Mean Value Theorem, with xn ∈ (n, n+ 1), we get

(∗) = ε

q−1∑
n=p

|f ′(xn)| = ε

q−1∑
n=p

|δ + it|x−(δ+1)
n ≤ ε|δ + it|

q−1∑
n=p

n−(δ+1)

︸ ︷︷ ︸
(∗∗)

.
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Here, the sum (∗∗) can be evaluated from above by comparison of sum and integral to

q−1∑
n=p

n−(δ+1) ≤ (p− 1)−δ − (q − 1)−δ

δ
.

That leaves us with

(∗) ≤ ε|δ + it| (p− 1)−δ − (q − 1)−δ

δ
≤ ε

∣∣∣∣1 + i
t

δ

∣∣∣∣ , (1.2)

which we can make arbitrarily small (by choosing an ε small enough, whenever
∣∣1 + i tδ

∣∣ is
bounded. In particular, that is true for a fixed s with Re(s) > Re(s0), which gives the
derived conclusion.

We remark that the bound in (1.2) is finite for any choice of t in a compact subset of the
half-plane {s : Re(s) > s0}. More generally, whenever∣∣∣∣ tδ

∣∣∣∣ ≤ C ⇐⇒ |t| ≤ Cδ,

for some constant C, the series converges uniformly. We state this as a corollary but will
discuss it more thoroughly in the next section.

Corollary 1.6. If
∑∞
n=1 ann

−s converges at a point s0, it converges uniformly in every
sector {s = σ0 + it : |t| ≤ Cδ} and in any compact subset of {s : Re(s) > s0}.

Now let us again consider the pointwise convergence, because Proposition 1.5 proves that
a Dirichlet series converges in the pointwise sense also in a halfplane. We have reason to
define:

Definition 1.7 (Abcissa of pointwise convergence). The real number

σc := inf
{
σ0 :

∞∑
n=1

ann
−s converges for σ > σ0

}
is the abscissa of pointwise convergence of the series (1.1). Whenever a Dirichlet series
converges in one point, we saw that it will converge in a halfplane, and the abcissa, and
otherwise we are not interested in defining σc.

As for the absolute convergence, the series diverges in the halfplane where σ < σc.

Since an absolutely convergent series is convergent, we have that absolute convergence im-
plies pointwise convergence. Thus, a Dirichlet series is pointwise-convergent anywhere where
it is absolutely convergent, which it is in half-planes, we record the following proposition.

Proposition 1.8.
σc ≤ σa.
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Example 1.9. We saw in Example 1.4 that for Re(s) > 1 the Riemann zeta-function is
absolutely convergent. But since ζ(1) =

∑
1
n =∞, we must have that σc ≥ 1. By Prop 1.8

we conclude σc = 1.

Example 1.10 (The alternating ζ-function). Define

ζa(s) :=

∞∑
n=1

(−1)n+1n−s.

By comparison to ζ(s) we conclude that σa = 1, as ζ and ζa coincide after taking absolute
values. However we are allowed to define this series on a bigger set. Indeed, for s = σ ∈
R, ζa(s) =

∑∞
n=1(−1)n+1n−σ is an alternating series convergent for σ > 0. Since pointwise

convergence occurs in a halfplane by Proposition 1.5, we can conclude that σc = 0, and we
define the series for all s with Re(s) > 0. We call it the alternating zeta-function, ζa(s).

1.3 Uniform convergence

Now let us return to Corollary 1.6, where we saw that when we had (conditional) convergence
in one point, we also had uniform convergence in any sector to the right of the point. The
uniform convergence is in some way a bit less intuitive in the case of Dirichlet series, but it is
something in between the pointwise and the absolute. To be clear, by uniform convergence
in a set S we mean that

∀ε > 0, ∃N : |f(s)−
N∑
n=1

ann
−s| < ε, ∀s ∈ S.

We introduce again an abscissa:

Definition 1.11 (Abscissa of uniform convergence).

σu := inf{σ0 :

∞∑
n=1

ann
−s converges uniformly for Re(s) > σ0}.

As a first approach to the the uniform convergence, we want to relate it to the other two
types of convergence that we have studied above.

Proposition 1.12.
σc ≤ σu ≤ σa.

Proof. (σu ≤ σa). Assume that the series converges absolutely at a point s0. Then trivially
it converges uniformly along the line s = σ0 + it. But it also converges absolutely in all of
the halfplane to the right {Re(s) ≥ σ0} – thus uniformly along all the lines to the right of
s = σ0 + it. Finally the series

∑
|an|n−σ is monotonically decreasing with respect to σ, and

thus the convergence at σ0 is enough to ensure the convergence for any σ ≥ σ0. So, the
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uniform convergence along the line s = σ0 + it is enough to ensure the uniform convergence
along all other lines to the right, which means the uniform convergence takes place in all of
the half-plane Re(s) > σa.

(σc ≤ σu). Suppose that the series converges uniformly on {Re(s) > σu+ε}. In particular
that means that it converges no matter the choice of s ∈ {Re(s) > σu + ε}.

To the right of σu, possibly with a margin of ε, the series converges uniformly, so
{Re(s) > σu + ε} defines the largest half-plane where the series converges uniformly. By
Proposition 1.12 we know that a half-plane like this exists whenever σa <∞.

To the left of σu it can be a bit complicated. If σu = σc, then the series necessarily diverge
to the left of the abscissa, by the properties of σc. However, if σu > σc, we saw in Corollary
1.6 that to the right of σc there was uniform convergence in sectors.

Figure 1.1: An illustration of the abcissas of and the domains of convergence.

What does this discussion tell us? Only that the uniform convergence does not divide
the complex plane into one convergent half and one ”divergent” half, separated by a line, as
was the case with the absolute and the pointwise convergence. However, we can still study
the largest halfplane where it surely converges uniformly, i.e. {s : Re(s) > σu + ε}.

Example 1.13. For ζ(s) we simply have σu = 1, since σa = σc = 1.

Remark 1.2 (Uniform convergence and boundedness). Moreover, whenever fN → f uni-
formly, as N →∞, and the the Dirichlet polynomials fN are bounded, then the fN :s are also
uniformly bounded (that is, there is one constant bounding all of them). The polynomials,
fN , are bounded on the half-plane {Re(s) ≥ σu}, being finite sums of bounded functions.
They converge uniformly to f on the half-plane {Re(s) > σu + ε}, so the polynomials fN are
uniformly bounded on this last half-plane.
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Moreover, we remark that in the same situation also f will be bounded. This is the fact that
uniform convergence preserves boundedness of a sequence, for its limit.

1.4 Distances between the abscissae

Proposition 1.14.
σa − σc ≤ 1

Proof. Let s be such that
∑
ann

−s converges. Then limn→∞ ann
−s = 0 and |ann−s| is in

particular bounded by a constant for all n. This gives∑
|ann−(s+1+ε)| =

∑
|an|n−σn−(1+ε) ≤ C

∑
n−(1+ε).

The series on the right-hand side is convergent, thus the original series converges abso-
lutely for s+ 1 + ε whenever it converges pointwise for s.

Example 1.15. When considering non-coinciding abscissae, we are not so interested in the
usual zeta-function, but the more in its alternating relative. For ζa we already know that
σc = 0, σa = 1, which is the biggest possible gap, and it proves that the inequality in
Proposition 1.14 is sharp. With help of a result to come, Proposition 1.17, we will be able
to conclude that 1

2 ≤ σu ≤ 1.

We will next relate the abscissae of absolute and uniform convergence, but in order to do
that we need to use another result, due to Fritz Carlson, see [9].

Proposition 1.16 (Carlson’s formula). For a Dirichlet series with a uniform limit f and the
abscissa of uniform convergence Re(s) = σu, it holds that

lim
T→∞

1

2T

∫ T

−T
|f(σ + it)|2dt =

∞∑
n=1

|an|2n−2σ, for σ > σu.

Proof. We have that fN → f, N → ∞ uniformly, where fN (s) =
∑N
n=1 ann

−s are Dirichlet
polynomials. Remark 1.2 gives that the Dirichlet polynomials fN thus are uniformly bounded.

We initially calculate
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1

2T

∫ T

−T
|fN (σ + it)|2dt =

1

2T

∫ T

−T
|
N∑
n=1

ann
−σn−it|2dt

=
1

2T

∫ T

−T

N∑
n=1

ann
−σn−it

N∑
k=1

akk
−σkitdt

=
1

2T

∫ T

−T

N∑
n=1

N∑
k=1

anak(nk)−σn−itkitdt

=
1

2T

N∑
n=1

N∑
k=1

anak(nk)−σ
∫ T

−T

(n
k

)−it
dt,

(1.3)

(k is never 0). Consider, for n 6= k, the integral

∫ T

−T

(n
k

)−it
dt =

∫ T

−T
e−it log(n/k)dt =

[
e−it log(n/k)

−i log(n/k)

]T
−T

=

(
n
k

)−iT − (nk )iT
−i log(n/k)

=
i

log n
k

((n
k

)−iT
−
(n
k

)iT)
=

2

log n
k

sin
(
T log

n

k

)
,

the last equality by Euler’s formula. This implies that (1.3) becomes

1

2T

N∑
n=1

N∑
k=1

anak(nk)−σ
2 sin

(
T log n

k

)
log n

k

=

N∑
n=1

N∑
k=1

anak(nk)−σ
sin
(
T log n

k

)
T log n

k

.

When n 6= k, the terms have limit 0 as T → ∞. However for n = k, the integral becomes∫ T
−T dt = 2T , which leaves us with the limit

lim
T→∞

1

2T

∫ T

−T
|fN (σ + it)|2dt =

N∑
n=1

N∑
k=1

anak(nk)−σ =

N∑
n=1

|an|2n−2σ.

Now we investigate the integral of (1.3) with f(s) =
∑∞

1 ann
−s, for s such that Re(s) >

σu:
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1

2T

∫ T

−T
|f |2dt =

=
1

2T

∫ T

−T
|fN + (f − fN )|2dt

=
1

2T

∫ T

−T
|fN |2dt+

1

2T

∫ T

−T
|f − fN |2dt+

+
1

2T

∫ T

−T
fN (f − fN )dt+

1

2T

∫ T

−T
fN (f − fN )dt︸ ︷︷ ︸

≤ 1
T

√∫ T
−T |fN |2dt

√∫ T
−T |f−fN |2dt

.

Next, we know that |f − fN | = |f(σ + it) − fN (σ + it)| = o(1), as N → ∞, uniformly in

t. That gives 1
2T

∫ T
−T |f − fN |

2dt = o(1), N → ∞. The same holds for the last terms, since
moreover fN is bounded by a constant. That allows us to conclude that

1

2T

∫ T

−T
|f(σ + it)|2dt −−−−→

T→∞

N∑
n=1

|an|2n−2σ + o(1) −−−−→
N→∞

∞∑
n=1

|an|2n−2σ. (1.4)

This final series is a limit of increasing partial sums. Moreover, we have established the

equality limT→∞
1
2T

∫ T
−T |fN (σ+ it)|2dt =

∑N
n=1 |an|2n−2σ, and since the fN :s are bounded,

so are these partial sums. Hence (1.4) is convergent.

Proposition 1.17.

σa − σu ≤
1

2

Proof. Let now s be such that
∑
ann

−s converges uniformly to a function f . We show that
the series converges absolutely in s+ 1

2 + ε. By the inequality of Cauchy-Schwarz,

∑
|an|n−σ−1/2−ε =

∑
|an|n−σ · n−(1/2+ε) ≤

(∑
|an|2n−2σ

)1/2
·
(∑

n−(1+2ε)
)1/2

,

The second factor is convergent and to the first we apply Carlson’s formula:

∑
|an|2n−2σ = lim

T→∞

1

2T

∫ T

−T
|f(σ + it)|2dt ≤ lim

T→∞

1

2T

∫ T

−T
||f ||2∞dt = ||f ||2∞,

where ||f ||2∞ = supt∈R |f(σ+ it)|. The sup-norm is bounded since the function f is a uniform
limit of bounded partial sums. See Remark 1.2.
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Chapter 2

Analytic continuation and
Bohr’s Theorem

We have now covered three usual types of convergences of a function series, but we will con-
sider one other property that turns out to be relevant. For complex valued analytic functions
and series defined on an initial domain, it is of interest to investigate the existence of a pos-
sible extension: finding another function defined on a larger domain that coincides with the
initial function on the initial domain. By assuming that this function and its continuation
should be analytic, the continuation is unique.

It turns out that the property of analytic continuation of a Dirichlet series is closely
related to its convergence properties. We will for that reason specifically consider the analytic
continuations that are bounded, for which the key result was proved by Harald Bohr, [8].
Let us first introduce the relevant abscissa.

Definition 2.1.

σb := inf{σ0 :

∞∑
n=1

ann
−s can be analytically continued to a bounded function f forσ > σ0}

It may not be obvious why we should look at analytic continuations in halfplanes, but let
us see what it gives. Here is an example:

Example 2.2 (Analytic continuation of ζ(s)). Finding an analytic continuation of ζ(s) is
highly relevant. One of the most famous (unsolved) mathematical problems is to determine
all zeros of this function, and none of them is in the domain where it is defined by the Dirich-
let series.
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Let s have Re(s) > 1. Since ζ(s) converges absolutely, we can compute

(1− 21−s)ζ(s) = (1− 21−s)(1 + 2−s + 3−s + 4−s + . . .)

= 1 + 2−s + 3−s + 4−s + . . .− 2 · 2−s − 2 · (2 · 2)−s − 2 · (2 · 3)−s + . . .

= 1− 2−s + 3−s − 4−s + 5−s − 6−s + . . . =

∞∑
n=1

(−1)n+1n−s

= ζa(s).

But ζa(s) is defined for Re(s) > 0, so ζ(s) must coincide with ζa(s)
1−21−s on this larger half-plane.

We now show that ζa(s) is analytic in the strip 0 < Re(s) ≤ 1. We can deduce it from
the pointwise convergence for Re(s) > 0 together with Corollary 1.6. Let’s go to the details.

Figure 2.1: The Dirichlet Series converges in s0 − ε, and by Cor 1.6 it converges uniformly
in a compact subset to the right of that point or, as illustrated here, in a sector.

ζa(s) is analytic in a point s0 with Re(s0) > 0 if and only if it can be developed in a
power series in a small disc around s0. Since it converges in {s : Re(s) > 0}, it converges in
particular at s0−ε (> 0 when ε is taken small enough). By Corollary 1.6 the series converges
uniformly in a compact subset of {s : Re(s) > Re(s0) − ε}, e.g., in a small disc centered at

s0. Thus the series is a uniform limit of the partial sums
∑N
n=1(−1)n+1n−s (and these are

analytic since they are a finite sum of analytic functions). Hence its limit is also analytic.
See Figure 2.1.

This provides the analytic continuation (1− 21−s)−1ζa(s), to
{s : Re(s) > 0} \ {1 + i 2πnlog 2 , n ∈ Z}, of ζ(s).
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Remark 2.1. This tells more about the zeta-function. We already know that it is defined
for Re(s) > 1 and that σa = σc = 1, since we have ζ(1) =

∑
1
n = ∞. But the relation to

the analytic continuation tells that the singularity of ζ(s) at s = 1 is a pole of order 1, since
1− 21−s has a zero of order 1 there.

There exists again another analytic continuation for ζ(s) to the half-plane Re(s) ≤ 0,
defined by a functional equation, which we will not consider here. Riemann himself conjec-
tured that all of the complex zeros lie on the line Re(s) = 1

2 . This is known to be the, still
unproved, Riemann hypothesis [16, p.23]. The function also have what is called the trivial
zeros, lying on the negative real line.

Example 2.3 (σb for ζ(s)). In fact, the analytic continuation that we derived is not defined
in a half-plane, but only a punctured one. The pole at s = 1 actually provides that σb ≥ 1.
Indeed, we can already observe that σb ≤ σa (see Remark 1.1), so we get σb = 1 here.

Example 2.4 (σb for ζa(s)). What about the alternating zeta-function? It is known that
the zeta-function ζ(σ + it) is unbounded when t → ∞ along all lines σ ∈ (0, 1), [11, p.184].
So in the region 0 < σ < 1 that is called the critical strip, the analytic continuation is
not bounded. Thus, since (1 − 21−s)ζ(s) = ζa(s) in this region, ζa cannot be bounded
either. They will consequently share the same σb. On the same subject, Lindelöf also had
an hypothesis about the critical line Re(s) = 1

2 , see for example [16, p.162], namely that
ζ( 1

2 + it) = O(|t|ε), ∀ε > 0, as t → ∞. If Riemann’s conjecture holds, so will Lindelöf’s,
however it remains neither proved nor rejected.

The following section will provide us with more information about the abscissa σb.

2.1 Bohr’s theorem

We are now ready to connect the notions of analytic continuation and convergence. We do
it by a classical but not so obvious theorem of Bohr (published in [8]), which states that the
halfplane of uniform convergence coincides with the halfplane of analytic continuability to
a bounded function. This also explains why we decided to consider only continuations to
bounded functions.

The proof is rather long and contains a lot of computations. The outlines are explained in
the beginning to be followed by the details, with techniques from especially complex analysis
but also Fourier analysis.

Theorem 2.5. (Bohr’s Theorem) σu = σb.

Proof. (σu ≥ σb). Suppose that the Dirichlet series converges uniformly on {Re(s) ≥ σu +
ε}. The partial sums are bounded there (also on the slightly bigger set {Re(s) ≥ σu}).
Since uniform convergence preserves boundedness, see Remark 1.2, the uniform limit is also
bounded on {Re(s) ≥ σu + ε}. We conclude that σu ≥ σb.
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(σu ≤ σb). Outline of proof: By the above, we know that σu ≥ σb. Let f denote the
analytic continuation of

∑∞
n=1 ann

−s, that is bounded in the open half-plane to the right of
σb, and suppose that f is bounded by a constant K. To show that σu = σb it remains to
prove that the partial sums

SN (s) =

N∑
n=1

ann
−s

converge uniformly to f(s) on the half-plane {s : Re(s) > σb + δ, δ > 0}. Indeed, then
σu = inf{s : Re(s) > σb + δ, δ > 0} = σb. Note that we can assume that δ ∈ (0, 1) such that
σb + δ < σa. If it is not possible (if σb = σa) we have nothing to prove, since to the right of
σa we automatically converge uniformly.

We will use Cauchy’s integral formula with a certain choice of function and contour. This
integral is by construction equal to f but by calculations also the limit of the partial sums
SN .

Proof: Consider s with Re(s) > σb + δ. We introduce

gs(ξ) =
f(ξ)

ξ − s

(
N +

1

2

)ξ−s
, Re(ξ) > σb,

and the contour γ (see figure 2.2).

We define the integral

I :=
1

2πi

∫
γ

gs(ξ)dξ =
1

2πi

∫
γ

f(ξ)(N + 1
2 )ξ−s

ξ − s
dξ =

(N + 1
2 )−s

2πi

∫
γ

f(ξ)(N + 1
2 )ξ

ξ − s
dξ,

and by Cauchy’s formula (f(ξ)(N + 1
2 )ξ being holomorphic)

I = (N +
1

2
)−sf(s)(N +

1

2
)s = f(s)Indγ(s) = f(s).

We split I into 4 integrals, following the contours γ1, γ2, γ3, γ4, respectively. We first
consider I2:

2πi · I2 =

∫
γ2

g(γ)dγ =

∫
γ2

f(ξ)(N + 1
2 )ξ−s

ξ − s
dξ =

γ2(t) = s+ t+ iNα+2, with α = σa − σb
γ′2(t) = 1

t ∈ [α,−δ]


=

∫ −δ
α

f(s+ t+ iNα+2)(N + 1
2 )t+iN

α+2

t+ iNα+2
dt

so that
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Figure 2.2: The contour of integration γ, consisting of γ1, γ2, γ3, γ4.

|2πiI2| ≤
∫ α

−δ

K(N + 1
2 )t

Nα+2
dt ≤

K(α+ δ)(N + 1
2 )α

Nα+2

= K(α+ δ)(1 +
1

2N
)α+2 · 1

(N + 1
2 )2
→ 0, as N →∞.

More specifically I2 = O
(

1
N2

)
as N → ∞. This holds also for I4 by similar computations.

We next consider I3:

2πi · I3 =

∫
γ3

g(ξ)dξ =

∫
γ3

f(ξ)(N + 1
2 )ξ−s

ξ − s
dξ

=

[
γ3(t) = s− δ + it, t ∈ [Nα+2,−Nα+2]

γ′3(t) = i

]
=

=

∫ −Nα+2

Nα+2

f(s− δ + it)(N + 1
2 )−δ+it

it− δ
idt,

so that
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|2πi · I3| ≤ K
∫ Nα+2

−Nα+2

(N + 1
2 )−δ

√
t2 + δ2

dt =
K

(N + 1
2 )δ
· 2
∫ Nα+2

0

dt√
t2 + δ2︸ ︷︷ ︸

=:J

.

Naming the last integral J , we observe

J =

∫ 1

0

dt√
t2 + δ2

+

∫ Nα+2

1

dt√
t2 + δ2

≤ C +

∫ Nα+2

1

dt

t
= C + logNα+2,

and so

|2πi · I3| ≤ 2K

(
C

(N + 1
2 )δ

+
(α+ 2) logN

(N + 1
2 )δ

)
= O

(
logN

Nδ

)
, N →∞.

To sum up, the three first integrals considered are all o(1), which we do not expect from
I1, but we hope to find something that is close to the partial sums of the series. This will need
more careful computations. We thus investigate finally the behaviour of I1, with contour in
the region where the series converges uniformly:

2πi · I1 =

∫
γ1

g(ξ)dξ =

[
γ1(t) = s+ σa − σp + it, t ∈ [−Nα+2, Nα+2],

γ′1(t) = i

]

=

∫ Nα+2

−Nα+2

f(s+ α+ it)(N + 1
2 )α+it

α+ it
idt

(2.1)

Thanks to the uniform convergence f can be replaced by the series, and we can permute
the integration and the summation, so that

2πi · I1 = i

∫ Nα+2

−Nα+2

∑∞
n=1 ann

−(s+α+it)(N + 1
2 )α+it

α+ it
dt

= i

∞∑
n=1

ann
−s
(
N + 1

2

n

)α ∫ Nα+2

−Nα+2

( n
N+ 1

2

)−it

α+ it
dt︸ ︷︷ ︸

=:In

.

We will look at the first N terms and the corresponding tail of this series separately. In
fact the integral In turns out to behave differently for n smaller and greater than N . To see
this, notice that the integral closely resembles
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lim
T→∞

∫ T

−T

( n
N+ 1

2

)−it

α+ it
dt = lim

T→∞

∫ T

−T

e
−it log

(
n

N+1
2

)
α+ it

dt

= 2πF−1
(

1

2π(α+ it)

)(
− log

(
n

N + 1
2

))
= (∗).

(2.2)

The limit here is in L2 sense, meaning a limit in norm. What we formally do here is to use
the inversion formula for Fourier transforms (that is the equality between f and F−1f̂) in
x = − log(n/(N + 1/2)), and in order to do that we need to be cautious. For a function in
L2, the Fourier transform and its inverse is defined by such a limit in norm. Furthermore, if
a function f is in L1 (even though its transform is not) and if it is piecewise C1, the inversion
formula holds at any point where f is continuous. This is the Dirichlet condition, in e.g. [10,
p.144].

To start at the beginning, we have the Fourier transform of a function in L2 ∩ L1:

(Ff)(t) = F(χ(0,∞)(x)e−2παx)(t) :=

∫ ∞
−∞

χ(0,∞)(x)e−2παxe−2πixtdx =

∫ ∞
0

e−2πx(α+it)dx

=

[
e−2πx(α+it)

−2π(α+ it)

]∞
0

=
1

2π(α+ it)
.

The transform Ff is not in L1, but only in L2. Now, by the Dirichlet condition, we may apply
the inversion formula as in (2.2), because the function f = χ(0,∞)(x)e−2παx is continuous and
C1 with exception from one point, x = 0. We use the inversion formula in x = − log( n

N+ 1
2

) 6=
0, since both n,N ∈ Z. Thus (2.2) becomes

(∗) =

2πe
−α
(
− log n

N+1
2

)
, n < N + 1

2

0, otherwise

=

{
2π
(

n
N+ 1

2

)α
, n < N + 1

2

0, otherwise,

and this is also what we would like to estimate In with. To do this, we need to investigate if
and how it tends to the inverse Fourier transform as N →∞.

They differ by
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2πF−1
(

1

2π(α+ it)

)(
− log(

n

N + 1
2

)

)
− In = lim

T→∞

∫ T

−T

( n
N+ 1

2

)−it

α+ it
dt−

∫ Nα+2

−Nα+2

( n
N+ 1

2

)−it

α+ it
dt

= lim
T→∞

∫
T>|t|>Nα+2

( n
N+ 1

2

)−it

α+ it
dt,

and we denote this difference by Rn.

By calling β := n
N+ 1

2

let Rn = R+
n +R−n , where

R+
n = lim

T→∞

∫ T

Nα+2

β−it

α+ it
dt

= lim
T→∞

[
β−it

−i log β
· 1

α+ it

]t=T
Nα+2

− lim
T→∞

∫ T

Nα+2

β−it

−i log β
· −i

(α+ it)2
dt

= O
(

1

log(β)Nα+2

)
= O

(
1

log( n
N+ 1

2

)Nα+2

)
, asN →∞.

We see in after the partial integration that our limit will converge. Similarly

R−n = O

(
1

log( n
N+ 1

2

)Nα+2

)
, N →∞.

To simplify the errors we estimate from below:

n ≤ N : log

(
n

N + 1
2

)
≥ log

(
1

N + 1
2

)
≥ C

N
,

n > N : log

(
n

N + 1
2

)
≥ log

(
N + 1

N + 1
2

)
= log

(
1 +

1

2N + 1

)
≥ C

2N + 1
,

so that, for all n,

O

(
1

log( n
N+ 1

2

)Nα+2

)
= O

(
1

Nα+1

)
, N →∞.

Hence we can replace In by the estimation and get
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2πi · I1 = i

N∑
n=1

ann
−s
(

n

N + 1
2

)−α
In + i

∞∑
n=N+1

ann
−s
(

n

N + 1
2

)−α
In

= i

N∑
n=1

ann
−s
(

n

N + 1
2

)−α(
2π

(
n

N + 1
2

)α
+O

(
1

Nα+1

))
+

+ i

∞∑
n=N+1

ann
−s
(

n

N + 1
2

)−α(
0 +O

(
1

Nα+1

))

= 2πi

N∑
n=1

ann
−s + i

N∑
n=1

ann
−(s+α)O

(
1

N

)
+ i

∞∑
n=N+1

ann
−(s+α)O

(
1

N

)
.

(2.3)

Further,
∑∞

1 ann
−(s+α) ≤ C, forRe(s) > σb+δ. One way of seeing that this bound is uniform

in s is by the absolute convergence of the series in s + α = s + σa − σb, for Re(s) > σb + δ.
By the Remark 1.1, the series is bounded in the same set, and the functions ann

−(σ+α) are
monotonously decreasing. We thus conclude that we can pick a uniform bound. Finally

2πi · I1 =

∫
γ1

g(ξ)dξ = 2πi

N∑
n=1

ann
−s +O

(
1

N

)
, N →∞.

In conclusion

f(s) =
1

2πi

∫
γ

gs(ξ)dξ =
1

2πi

(
2πi

N∑
n=1

ann
−s +O

(
1

N

)
+ o(1)

)
,

as N gets big, which implies

lim
N→∞

N∑
n=1

ann
−s = f(s),

independent of the choice of s with Re(s) > σb + δ. Thus the series converges uniformly in
the half-plane {Re(s) > σb + δ}, and σb = σu.

Remark 2.2. In fact, we can deduce another result along the way. If we instead of the integral
I1 in (2.1) change the endpoints and calculate

1

2π

∫ T

−T

f(σ + it)

σ + it

(
N +

1

2

)σ+it
dt,

the expression in (2.3) becomes slightly different:

2πi · I1 = 2π

N∑
n=1

ann
−s +

∞∑
n=1

ann
−(s+α)O

(
Nα

T

)
.
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In this case we consider N to be fixed, and the limit as T → ∞ then yields the following
result.

Corollary 2.6 (Perron’s formula).

lim
T→∞

1

2π

∫ T

−T

f(σ + it)

σ + it

(
N +

1

2

)σ+it
dt =

N∑
n=1

ann
−s,

where f(s) =
∑
ann

−s for all s where the series can be analytically continued to a bounded
function.

Example 2.7 (ζ(s), ζa(s), revisited). We saw already in Example 2.3 that σb = 1 for ζ(s),
and we can summarize the quite one-sided properties of ζ(s):

σc = σu = σb = σa = 1.

Concerning ζa(s), we found in Example 2.4 that ζa(s) and ζ(s) share the same σb. By
Bohr’s theorem, we know that it also coincides with σu, so for the alternating zeta-function
we again see that we have:

σc = 0,

σu = σb = σa = 1.
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Chapter 3

Bohr’s Inequality for Dirichlet
Series and Kronecker’s theorem

In Chapter 4 we will construct an example of a Dirichlet series with certain properties. We
will then use an inequality that is not at all obvious but a special property of Dirichlet
series, that we present in Theorem 3.1. The idea behind this lies in the connection be-
tween Dirichlet series and Taylor polynomials of infinitely many variables. It is based on the
unique prime factorization of integers, n = pν11 · . . . · p

νl
l . Thus, n−s can be factorized into

(pν11 · . . . · p
νl
l )−s = (p−s1 )ν1 · . . . · (p−sl )νl , which can be thought of as a product of l complex

variables due to Kronecker’s theorem.

This idea was introduced by Bohr already in 1913, see [7], and it is still highly relevant in
recent research. For example it was a central idea used by Hedenmalm, Lindqvist and Seip
in their article from 1997, [13].

Concerning the inequality that we are going to derive, we will not consider the general case
but only the series with terms of the form±kit (we denote their coefficients by εk). The reason
for this is that we will consider random series related to the ζ-functions

∑
±n−s =

∑
εnn

−s

in the following section.

Theorem 3.1 (Bohr). For the partial sums of a Dirichlet series with coefficients εk the
following property holds:

sup
t∈R

Un(t) := sup
t∈R

∣∣∣∣∣
n∑
k=1

εkk
−it

∣∣∣∣∣ ≥ ∑
p≤n,p prime

|εp|.

As one may imagine, this inequality relates Dirichlet series to prime numbers. For exam-
ple, Theorem 3.1 could give an upper bound of the number of primes ≤ N , by studying the
supremum of the partial sums of ζ(s) more closely
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A difficulty in proving the theorem lies in the fact that this is a 1-dimensional supremum
that is hard to evaluate. Playing with the thought, we could have evaluated: supt1,...,tn |

∑n
k=1 εkk

−itk | =∑n
k=1 |εk| ≥

∑
p≤n, p prime |εp|. But since we can only choose one value of t for all the terms,

we can not immediately evaluate the supremum. What we can do is to consider the Dirichlet
polynomial as a Taylor polynomial of several variables – thanks to the unique prime factor-
ization of every integer. Once here, a number theoretic result by Kronecker is what helps out
us of the tricky situation with the supremum of one variable. Let’s go to the details.

Proof of Theorem 3.1. We assume that the integers ≤ n have at most m prime factors, and
we can factorize it as k = pν11 · . . . · p

νl
l , l ≤ m. We use this prime factorization to translate

our Dirichlet polynomial into a Taylor polynomial of m variables:

n∑
k=1

εkk
−it =

n∑
k=1

εk(p−it1 )ν1 · . . . · (p−itl )νl ,

where we can consider p−itj as a complex variable zj , belonging to the unit circle. It is then
natural to instead investigate

n∑
k=1

εkz
ν1
1 . . . zνll = f(z1, . . . , zm), z1, . . . , zm ∈ ∂D. (3.1)

What will now be our key, and what we need to establish, is the equality

sup
t∈R

Un(t) = sup
z1,...,zm∈∂D

|f(z1, . . . , zm)|, (3.2)

but for this we will need one more tool.

Let us just introduce a more readable multi-notation. What was before εkk
−it, is in the

Taylor polynomial εkz
ν1
1 . . . zνll , but we will simply denote it by ενz

ν where z = (z1, z2, . . .)
and ν = (ν1, ν2, . . . , νl, 0, . . .). Each term in this sum has a different amount of variables zj
(namely l = l(k), depending on the prime factorization of k and thus on ν), and we sort the
sum into different parts according to this amount:

f(z) = ε1+
∑

ν:
∑
νi=1

ενz
ν

︸ ︷︷ ︸
1 prime factor

+
∑

ν:
∑
νi=2

ενz
ν

︸ ︷︷ ︸
2 prime factors, counting multiplicity

+ . . .+
∑

ν:
∑
νi=m

ενz
ν

︸ ︷︷ ︸
m prime factors, counting multiplicity

.

This choice was not coincidental, since the first sum (besides ε1) is exactly the sum corre-
sponding to the prime numbers, and these are the integers k with exactly 1 prime factor,
counting multiplicity. In addition we note that for this block εν = εp.
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Kronecker’s Theorem

The equality that we want to establish is the same as

sup
t∈R
|f(2−it, . . . ,m−it)| = sup

z1,...,zm∈∂D
|f(z1, . . . , zm)|.

For m = 1, this is true, since supt∈R |f(2−it)| = supz1∈∂D |f(z1)|.

Consider the next case, m = 2. z1, z2 being taken independently on the unit circle is the
same as ei2πθ1 , ei2πθ2 for θ1, θ2 taken arbitrarily in R, see Figure 3.1. Consider them as fixed
and arbitrary.

Figure 3.1: z1 = ei2πθ1 , z2 = ei2πθ2 arbitrary in the unit circle ∂D.

We want to convince ourselves that we can choose t ∈ R such that

e−i2πt log 2 is arbitrarily close to z1 = ei2πθ1 ,

e−i2πt log 3 is arbitrarily close to z2 = ei2πθ2 .
(3.3)

For a continuous function f , (3.3) is enough to have the desired equality (3.2). And we
can be sure that such a t exists. It is here that our theorem comes into play.

Theorem 3.2 (Kronecker in 2 dimensions). Suppose that λ1, λ2 ∈ R are linearly independent
with respect to Z and let θ1, θ2 ∈ R be arbitrary.

Then ∀ε > 0, ∃t ∈ R s.t. |e2πi(λnt−θn) − 1| < ε, n = 1, 2.

Remark 3.1. λ1, λ2 linearily independent w.r.t. Z means that they cannot be written as a
linear combination with non-trivial integer coefficients, i.e. if ∃m,n ∈ Z s.t. mλ1 + nλ2 =
0⇒ m,n = 0.

Remark 3.2. To give an even more visual image of this problem, consider the equivalent one
of the existence of t ∈ R s.t. the line
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
x = t log 2

y = t log 3 =
log 3

log 2
· t log 2

passes arbitrarily close to (θ1, θ2) (mod 1),

see Figure 3.2.

Figure 3.2: The line (x, y) = (t log 2, t log 3) (mod 1). Whenever it arrives at the boundary of
[0, 1)2 it continues where it would have entered a neighbouring square. Will it pass arbitrarily
close to any point (θ1, θ2)?

So what the result says is that this line in fact is dense in [0, 1)2, and it will pass arbitrarily
near every point. This holds because the numbers log 2, log 3 are linearly independent with
respect to Z. The proof of the theorem that we will now see is not as intuitive as this
geometric discussion of its consequence, but it is very efficient. We thus leave our geometrical
argumentation here.

Proof. We consider the case m = 2. The general case follows by slightly modifying this
argument.

The strategy of this proof will be to construct the function

F (t) = 1 + e2πi(λ1t−θ1) + e2πi(λ2t−θ2)

and show that supt∈R F (t) = 3 = 1 + 2. This is sufficient for the existence of a t such that
|e2πi(λnt−θn) − e0| < ε, n = 1, 2.

We can already deduce that supt∈R F (t) ≤ 3, since, by the triangle inequality,

|F (t)| ≤ 1 + 1 + 1 = 3.

This leaves us to show that supt∈R F (t) ≥ 3. We will use the Fejér kernel. It is a trigonometric
polynomial with certain properties that can be used to prove Fejér Theorem in Fourier
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analysis. See for example [17, p.28]. It can be expressed using any one of the formulas:

Kn(t) =

n∑
j=−n

n− |j|
n

eijt =
1

n

(
sin( 1

2nt)

sin( 1
2 t)

)2

.

For example, from the second expression, we note that it is a positive function. We will
need the composite kernel

Kn(t) = Kn

(
2π(λ1t− θ1)

)
Kn

(
2π(λ2t− θ2)

)
=

 n∑
j=−n

n− |j|
n

eij2π(λ1t−θ1)

 n∑
j=−n

n− |j|
n

eij2π(λ2t−θ2)

 .

Multiplying out gives

Kn(t) =

1 +

n∑
j=−n,j 6=0

n− |j|
n

eij2π(λ1t−θ1)

1 +

n∑
j=−n,j 6=0

n− |j|
n

eij2π(λ2t−θ2)


= 1 +

n− 1

n

(
e−i2π(λ1t−θ1) + e−i2π(λ2t−θ2)

)
+R(t),

(3.4)

where R(t) =
∑
cm,ne

i2πt(mλ1+nλ2) is a trigonometric polynomial with exponents i2πt(mλ1+
nλ2) that are all different from 0,−i2πtλ1,−i2πtλ2. Thus we can express the product

F (t)Kn(t) = 1 +
n− 1

n

(
ei2π(λ1t−θ1)e−i2π(λ1t−θ1) + ei2π(λ2t−θ2)e−i2π(λ2t−θ2)

)
+ S(t)

= 1 +
n− 1

n
· 2 + S(t),

where S(t) is a trigonometric polynomial with exponents all different from 0. We further
note that Fejér’s kernel Kn has mean 1 over one period, meaning 1

2π

∫ π
−πKn(t)dt = 1, which

follows from straight-forward calculations using the definition. The composite kernel will

instead have the property of limT→∞
1
2T

∫ T
−T Kn(t)dt = 1. This can again be obtained by

calculations, using the expression of Kn in (3.4). The calculations are identical to what we
will see in (3.5), so we don’t go through the details here.

A key for the proof is to note that

lim
T→∞

1

2T

∣∣∣∣∣
∫ T

−T
F (t)Kn(t)dt

∣∣∣∣∣ ≤ sup
t∈R
|F (t)| lim

T→∞

1

2T

∫ T

−T
|Kn(t)|dt

= sup
t
|F (t)| lim

T→∞

1

2T

∫ T

−T
Kn(t)dt︸ ︷︷ ︸

=1

= sup
t
|F (t)|,
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since this gives a lower bound to our supremum. To compute this lower bound we evaluate
the limit

lim
T→∞

1

2T

∣∣∣∣∣
∫ T

−T
F (t)Kn(t)dt

∣∣∣∣∣ = lim
T→∞

1

2T

∣∣∣∣∣
∫ T

−T

(
1 + 2 · n− 1

n
+ S(t)

)
dt

∣∣∣∣∣
= lim
T→∞

1

2T

∣∣∣∣∣2T
(

1 + 2
n− 1

n

)
+

∫ T

−T
S(t)dt

∣∣∣∣∣
=

∣∣∣∣∣1 + 2
n− 1

n
+ lim
T→∞

1

2T

∫ T

−T
S(t)dt

∣∣∣∣∣ .
As mentioned above, S(t) is a trigonometric polynomial and can be expressed as

S(t) =
∑
k

cke
iγkt, γk 6= 0.

Thus

1

2T

∫ T

−T
S(t)dt =

1

2T

∫ T

−T

∑
k

cke
iγktdt =

1

2T

∑
k

ck

∫ T

−T
eiγktdt

=
1

2T

∑
k

ck
1

iγk

(
eiγkT − e−iγkT

)
=
∑
k

ck
γk

eiγkT − e−iγkT

2iT

=
∑
k

ck
γk

sin(γkT )

T
−−−−→
T→∞

0.

(3.5)

Hence

lim
T→∞

1

2T

∣∣∣∣∣
∫ T

−T
F (t)Kn(t)dt

∣∣∣∣∣ = 1 + 2
n− 1

n
,∀n ∈ N,

so in particular this tends to 1 + 2 = 3 as n→∞, and this ends the proof.

Remark 3.3. In the proof of the Theorem 3.1, we apply this result in the general m-
dimensional case, which is still provided by Kronecker’s theorem, as mentioned in the begin-
ning of the proof.

Now, we conclude that

sup
t∈R

Un(t) = sup
z1,...,zm∈∂D

|f(z1, . . . , zm)|.

Let’s again look at the Taylor polynomial in (3)
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f(z1, . . . , zm) = ε1 +
∑

ν:
∑
νi=1

εpz
ν +

∑
ν:
∑
νi=2

ενz
ν + . . .+

∑
ν:
∑
νi=m

ενz
ν

for which we are interested in the supremum over zj ∈ ∂D. By choosing zj = r ·sgn(εpj ), |r| =
1 (we remind that εk = εpj when k is the j:th prime), we estimate from below that

sup
z1,...,zm∈∂D

|f(z1, . . . , zm)| ≥ |ε1 +
∑

ν:
∑
νi=1

εp(rsgn(εp))
ν + . . .+

∑
ν:
∑
νi=m

εν(rsgn(εp))
ν |

= |ε1 + r
∑

ν:
∑
νi=1

|εp|+ . . .+ rm
∑

ν:
∑
νi=m

εν(sgn(εp))
ν |.

This is in fact (the absolute value of) a polynomial of r, that we note as

F (r) = c0 + c1r + . . .+ cmr
m, defined for |r| = 1.

But such a function can without any problem be defined for all r ∈ C, in particular all |r| ≤ 1,
and we will use this extention on the whole disc D. We will use this polynomial to find the
lower bound of supz1,...,zm∈∂D |f(z1, . . . , zm)|. The supremum is a finite number, since the

Dirichlet polynomial f is bounded on D. Thus we have

K =: sup
z1,...,zm∈∂D

|f(z1, . . . , zm)| ≥ |F (r)|, ∀|r| ≤ 1.

From here, we can by Cauchy’s integral formula prove that

|F ′(0)| = c1 =
∑

p≤m, p prime

|εp| ≤ K.

Indeed, this holds because, for r = 1

|F ′(0)| =

∣∣∣∣∣ 1

2πi

∫
|ξ|=1

F (ξ)

ξ2
dξ

∣∣∣∣∣ ≤ 1

2π

∫
|ξ|=1

|F (ξ)|
|ξ|2

dξ ≤ K.

Thus |F ′(0)| ≤ K. But that means exactly that

|F ′(0)| =
∑

p≤m, p prime

|εp| ≤ sup
z1,...,zm∈∂D

|f(z1, . . . , zm)| = sup
t∈R

Un(t),

and we are done.

30



Chapter 4

Studies of the Random Series∑
±n−s

We have up until now examined general Dirichlet series and their convergence behaviour in
different senses. We have seen some important examples, namely ζ(s) and ζa(s). ζ(s) turned
out to be quite one-sided in its convergence with all the abscissae coinciding, whereas the
abscissae of ζa(s) are not all the same.

We will in the remaining chapters focus on constructing certain examples. In particular
we wish to see a series of maximal strip width σa − σu = 1

2 . We will not reach there until
Chapter 5, but for all the examples we will have the same starting point. That is considering
series with coefficients ±1 (thus resembling the zeta-functions) and also taking a step into
the probabilistic world, by allowing the choice of these coefficients to be stochastic. What
we will see in this chapter is some of the work done by Hervé Queffeléc in [19].

Now, consider the series of the form

∞∑
n=1

εnn
−s. (4.1)

We choose εn to be either 1 och -1, with equal probability 1
2 . Formally we introduce the

sample space Ω = {−1,+1}N, equipped with the product topology F of the discrete topology
in each factor. Further we equip this topological space with the product probability distri-
bution P of Pn(ε = 1) = Pn(ε = −1) = 1

2 in each factor. A point (an event) ω ∈ Ω is of the
form ω = (ε1, . . . , εn, . . .) with components εn(ω) that are independent stochastic variables.
They are said to be Rademacher distributed [15].
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4.1 Almost Surely and Quasi Surely

Let (Ω,F , P ) be the probability space introduced above. We make the following definitions:

Definition 4.1 (Almost surely). An event E ∈ F is said to or to occur almost surely (denoted
a.s.) if P(E) = 1.

This definition is rather standard. Another notion not as frequent is the following:

Definition 4.2 (Quasi sure). A property that occurs on a countable intersection of open
dense sets is said to be quasi sure (q.s.).

This is a topological concept and does not involve a probability measure (and thus not a
probability space, but only a topological space). The theory of probability and topology is
not meant to be a central part of this work, so we will only treat and explain the necessary
parts briefly.

Let us just look at an example of a quasi sure property:

Example 4.3. Consider for example all the real numbers, R. Each subset R \ {q}, q ∈ Q,
with one rational number removed, is a dense, open set in R. Since Q is countable, the
intersection over all rational numbers of all such subsets is

⋂
q∈Q R\{q} = R\Q. This means

that a real number is quasi surely irrational.

These are two interpretations of what we mean by a big event, and – as will be clear –
different events will be big, depending on the choice of interpretation. What is important for
us is that the non-zero probability of a certain event provides the existence of Dirichlet series
with certain properties. This is the content of Queffélec’s theorem that we will now consider.

4.2 Queffélec’s Example

The following results tell us the typical properties of
∑
±n−s. Of course these typical prop-

erties depend on our notion of ”typical”.

Theorem 4.4 (Queffélec). The series f(s) =
∑∞
n=1 εnn

−s (4.1) has q.s. the properties

σu = σc = 1,

and the line σ = 1 is a natural boundary for f, i.e. there is no possible analytic continuation
to the left of that line.

Theorem 4.5 (Kahane-Queffelec). The series (4.1) has a.s. the properties

σu = 1, σc =
1

2
,

and the line σ = 1
2 is a natural boundary for f.
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The first theorem provides a series
∑
±n−s such that all abscissae coincide at σ = 1, just

as for the series representation of ζ(s), but there is no analytic continuation possible. The
second theorem provides the existence of a sequence of ±1 such that its corresponding series
has a shifted abscissa σc – just in between the abscissa for ζ(s) and ζa(s). We are going to
prove these properties, following the approach of Queffélec did.

Remark 4.1. We know that since

∞∑
n=1

|εnn−s| =
∞∑
n=1

n−σ

converges for s such that Re(s) = σ > 1, the the series (4.1) converges absolutely for these
s, and σa = 1, not depending on the choice of (εn)n∈N.

Proof of Theorem 4.4

Proof. (σc = σu = 1, σ = 1 is a natural boundary, q.s.): Since σa = 1, and if we can
show that σ = 1 is q.s. a natural boundary, we will automatically have the rest. But what
does it mean that this line would be a natural boundary, quasi surely? By definition of q.s.,
this means that

The set of all points ω ∈ Ω for which the series

∞∑
1

εnn
−s has

Re(s) = 1 as a natural boundary is a countable intersection of open dense sets.

In other words, the set {ω ∈ Ω : Re(s) = 1 is a natural boundary for
∑
εnn

−s} is of the
form

⋂
j∈NOj , where Oj are open, dense sets. We will instead consider its complement for

which an equivalent statement is

The set of all points ω ∈ Ω for which the series

∞∑
1

εnn
−s does

not have Re(s) = 1 as a natural boundary is a countable union of closed sets with

empty interior, that is

⋂
j∈N
Oj

{

=
⋃
j∈N
O{
j , O{

j closed, of empty interior.

We will prove that the last statement is true. That the line σ = 1 is not a natural
boundary means that there is an analytic continuation beyond the line. Denote E the set of
all such ω. Note that this set can be expressed as
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E = {ω ∈ Ω|
∞∑
1

εn(ω)n−s has an analytic continuation beyond Re(s) = 1}

= {ω | ∃a ∈ C, Re(a) = 1,∃r > 0 s.t.

∞∑
1

εn(ω)n−s has an analytic cont. on Da,r}.

By Da,r = {s ∈ C : |s− a| < r} we mean the disc of center a and radius r. This is a minimal
requirement for analytic continuation.

To be able to caracterize this set even more, we note that we may have such an analytic
continuation that is not bounded on all of Da,r. But in this case it would be bounded on
Da, r2

, so in fact we can without loss of generality assume that the continuation is bounded
on the disc, i.e.

E = {ω ∈ Ω | ∃a ∈ C, Re(a) = 1,∃r > 0,∃N s.t.

∞∑
1

εn(ω)n−s = fω(s)

has an analytic cont. on Da,r, and |fω| ≤ N on Da,r}.

But this is a union over all a, r,N for which an ω is in E, so that E can be written

E =
⋃
a,r,N

Ea,r,N .

This union is in particular countable if a, r ∈ Q, N ∈ N. We thus have to show that the sets
Ea,r,N are closed and of empty interior. We take one of them, and fix thus a, r,N , and write
a = 1 + it.

(Ea,r,N is closed): As the standard procedure for this kind of result, we prove that
Ea,r,N = Ea,r,N , where Ea,r,N is the closure of Ea,r,N . We di it by taking a point in Ea,r,N
and showing that it is also in Ea,r,N (since the converse inclusion is always true).

So, let ω ∈ Ea,r,N . Since this set is closed there exists a sequence in Ea,r,N converging to
this point, i.e.

∃ (ωi)i∈N s.t. ωi ∈ Ea,r,N and ωi → ω, i→∞.

For each ωi ∈ Ea,r,N there is a corresponding analytic continuation fωi , by the definition of
Ea,r,N and since each ωi ∈ Ea,r,N . We denote it fi.

We have that |fi| ≤ N on Da,r, which means that the fi:s forms a family of uniformly
bounded holomorphic functions on the compact discs. Thus, by Montel’s theorem [18, p.225],
the functions in (fi)i∈N form a normal family on Da,r. By definition, this means that there
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exists a uniformly converging subsequence on every compact subset of Da,r. Differently for-
mulated, ∃ik, k ∈ N and ∃g s.t. fik → g, k → ∞, uniformly on every compact of Da,r.
Moreover, g is holomorphic and |g| ≤ N on Da,r.

We will show that this g defines an analytic continuation corresponding to ω, which is
enough to conclude that ω ∈ Ea,r,N .

We use the fact that the subsequence ωik → ω, k →∞ ⇐⇒ εikn → εn, k →∞, ∀n ∈ N.
Then, for Re(s) > 1,

∣∣∣∣∣∣∣∣∣∣∣
∞∑
1

εikn n
−s

︸ ︷︷ ︸
has analytic cont. fik

−
∞∑
1

εnn
−s

︸ ︷︷ ︸
has analytic cont. fω

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣
∞∑
1

(εikn − εn)n−s

∣∣∣∣∣ ≤
∞∑
1

|εikn − εn|n−σ

is arbitrarily small for k big enough.

Thus g ≡ fω on Da,r ∩ {Re(s) > 1}, so g is an analytic continutaion of fω on Da,r, and
|g| ≤ N . Hence ω fulfills all the criterion of being in Ea,r,N , which is then closed.

(Ea,r,N is of empty interior): Note that

[(Ea,r,N )
o

= ∅]

⇐⇒ [@VM ⊂ Ea,r,N , VM open]

⇐⇒ [∀ω ∈ Ea,r,N ,∀VM 3 ω, s.t. VM open .⇒ VM * Ea,r,N ]

We will try to prove the last statement by contradiction.

Let ω = (ε1, ε2, . . .) ∈ Ea,r,N . A neighbourhood of ω (open set containing ω) is

VM = {ω′ = (ε′1, ε
′
2, . . .)|ε′n = εn, n ≤M}.

These neighbourhoods form a basis for the product topology on Ω, so any open set of Ω (and
hence any open set included in Ea,r,N ) can be written as a union of VM :s. By assuming that

VM ⊂ Ea,r,N , (4.2)

we seek a contradiction. This is done in several steps. We will initially find an analytic
function on the disc Da,r. Its Taylor expansion will yield a converging series that we know
must diverge, and we will then have reached our contradiction.
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Step 1: (taylor series argument): Let ω′′ ∈ Ω be an arbitrary point. It defines a
series with coefficients ε′′n. We want to find out if it has an analytic continuation on Da,r .

∞∑
n=1

ε′′nn
−s =

M∑
n=1

ε′′nn
−s +

∞∑
n=M+1

ε′′nn
−s +

M∑
n=1

(εn − εn)n−s

=

M∑
n=1

εnn
−s +

∞∑
n=M+1

ε′′nn
−s

︸ ︷︷ ︸
fω′ (s), ω

′∈VM

+

M∑
n=1

(ε′′n − εn)n−s︸ ︷︷ ︸
analytic on C

.
(4.3)

The last sum is a polynomial and analytic on all of C. The first two define a series corre-
sponding to a point ω′ ∈ VM . We have assumed that VM ⊂ Ea,r,N , so the point ω′ is such
that its series has a bounded analytic continuation to Da,r, and we denote it by fω′(s). Thus
the series in (4.3) does have an analytic continuation on the disc. We denote this continuation
by fω′′ .

In light of the above, we can Taylor expand fω′′ on the disc Da,r. To stay in the region
where fω′′ can be expressed by its Dirichlet series, we expand it in a smaller disc of cen-
ter a + ε, with radius e.g. 3ε (we can do this if ε is sufficiently small), such that the disc
Da+ε,3ε ⊂ Da,r, see Figure 4.1.

Figure 4.1: fω′′ has an analytic continuation in Da,r that we can express in a Taylor ex-
pansion. If ε > 0 is chosen small enough for the disc Da+ε,3ε to be included in Da,r, the
expansion can be expressed using derivatives of the Dirichlet series.
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The Taylor expansion of fω′′ centered at a+ ε is

fω′′(s) =

∞∑
n=0

f
(n)
ω′′ (a+ ε)(s− (a+ ε))n

n!
. (4.4)

Since

f
(n)
ω′′ (a+ ε) =

∞∑
m=1

(−1)n(logm)nε′′mm
−(a+ε),

(4.4) becomes

fω′′(s) =

∞∑
n=0

∞∑
m=1

(−1)n(logm)nε′′mm
−(a+ε) (s− (a+ ε))n

n!

=

∞∑
n=0

(−1)n
(s− (a+ ε))n

n!

∞∑
m=1

(logm)nε′′mm
−(a+ε), for s close to a.

We now use this expansion to evaluate fω′′ at s = a − ε = 1 − ε + it ∈ Da+ε,3ε. We
evaluate the Taylor expansion:

fω′′(a− ε) =

∞∑
n=0

(−1)n
(−2ε)n

n!

∞∑
m=1

(logm)nε′′mm
−(a+ε).

Furthermore we make a choice for ε′′m (which is possible, since ω′′ = (ε′1, ε
′
2, . . .) was arbitrary),

namely ε′′m := sgn(cos(t logm)). This choice is in order to get positive terms in the Taylor
series, when considering the real part of fω′′(a− ε):

Refω′′(a− ε) =

∞∑
n=0

2εn

n!

∞∑
m=1

(logm)nm−(1+ε)ε′′mRe(m
−it) =

=

∞∑
n=0

2εn

n!

∞∑
m=1

(logm)nm−(1+ε)ε′′m cos(t logm)

=

∞∑
n=0

2εn

n!

∞∑
m=1

(logm)nm−(1+ε)| cos(t logm)|.

Since all terms are now positive, we can permute the sum signs, and we recognize another
well-known expansion
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Refω′′(a− ε) =

∞∑
m=1

| cos(t logm)|m−(1+ε)
∞∑
n=0

(2ε logm)n

n!︸ ︷︷ ︸
=e2ε logm=m2ε

=

∞∑
m=1

| cos(t logm)|m−(1−ε) <∞.

(4.5)

This series is finite since fω′′ is bounded on Da,r.

The final step of the proof is to use this to conclude by this that also∑
m−(1−ε) <∞, (4.6)

which would obviously be a contradiction.

Step 2: ((4.5) ⇒ (4.6)) If the implication does not hold, and the series in (4.6) diverges
but (4.5) converges, this factor would be small enough, often enough, to stop the divergence.
However, it turns out that most of the time the cosine-factor only scales the terms with a
constant. And we know that scaling the terms of a divergent series with a constant is not
enough to stop its divergence. We will now see exactly how it works.

The contrapositive implication claims that

∑
m−(1−ε) diverges⇒

∞∑
m=1

| cos(t logm)|m−(1−ε) diverges. (4.7)

We use the idea described above, that for some t logm the cosine term is very small
(denote this set by M{), and the rest of the time it is greater than a constant, say 1

2 (denote
it by M)

∞∑
m=1

| cos(t logm)|m−(1−ε) ≥
∑
m∈M

1

2
m−(1−ε) +

∑
m∈M{

0 ·m−(1−ε) =
1

2

∑
m∈M

m−(1−ε).

The set M is a union of ”periodic” intervals where | cos(t logm)| ≥ 1
2 ,

M =
⋃
n∈N

(an, bn).

Let us find out what the intervals (an, bn) exactly look like.
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| cos(t logm)| ≥ 1

2
⇐⇒

{
cos(t logm) ≥ 1

2 , or

cos(t logm) ≤ − 1
2

⇐⇒

{
t logm ∈ [−π3 ,

π
3 ] + 2πn, or

t logm ∈ [− 2π
3 ,

4π
3 ] + 2πn, n ∈ N

⇐⇒ t logm ∈ [−π
3
,
π

3
] + πn, n ∈ N.

We are interested in for which m this occurs, so we consider t as fixed. Note that we can
assume that t > 0, since cos(−t logm) = cos(t logm), and we exclude the case cos(0) = 1.
Thus we are interested in intervals

m ∈ [e−
π
3t+

πn
t , e

π
3t+

πn
t ] = [an, bn], n ∈ N.

We note further that

m ∈ [an, bn] ⇐⇒ m ∈ [dane, bbnc] = [an + ra, bn − rb],
since an, bn need not to be integers. Initially, we hope that we can ignore ra, rb, to take a
closer look later.

Thus we have

∑
m∈M

m−(1−ε) =
∑
n∈N

 ∑
m∈{dane,...,bbnc}

m−(1−ε)

 ≥∑
n∈N

∫ bbnc
dane

dx

x1−ε
.

We estimate the integral from below

∫ bbnc
dane

dx

x1−ε
≥
∫ bbnc
dane

dx

bbnc1−ε
≥ 1

b1−εn

(bbnc − dane) ≥
(bn − 1)− (an + 1)

b1−εn

=
e−

π
3t+

πn
t − e π3t+πn

t − 2(
e
π
3t+

πn
t

)1−ε =
e
πnε
t

e
πn
t (1−ε)

(
e
π
3t − e− π

3t

e
π
3t (1−ε)

)
− 2

e
πn
t (1−ε)e

π
3t (1−ε)

≥ eπnεt
(
e
πε
3t − e− π

3t (2−ε)
)
− 2

e
πn
t (1−ε) ,

to obtain

∑
n∈N

∫ bbnc
dane

dx

x1−ε
≥
(
e
πε
3t − e− π

3t (2−ε)
)∑
n∈N

(e
πε
t︸︷︷︸

>1

)n − 2
∑
n∈N

(e−
π(1−ε)

t︸ ︷︷ ︸
<1

)n.
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The first series diverges, because e
πε
t > e0 = 1 are terms of a divergent geometric series,

whereas the second converges, since e−
π(1−ε)

t < 1. Recall that ε is a choice of ours (although
we have to choose it small).

We have then reached the conclusion of (4.7) that

∑
m−(1−ε) diverges⇒

∞∑
m=1

| cos(t logm)|m−(1−ε) diverges,

and we can apply the contrapositive to conclude that

∞∑
m=1

m−(1−ε) <∞,

which we know is certainly not true, and we have reached the contradiction in our proof.

In conclusion, our assumption of the neighbourhoods in (4.2) were wrong and we must
have

VM * Ea,r,N .

As we noticed before, any open set of Ω is a union of VM :s. Thus Ea,r,N cannot include any
open set, and that proves its empty interior.

Proof of Theorem 4.5

To prove the second theorem we will need more tools, more specifically Theorem 3.1 that we
proved in Section 3 and the two following results from probability theory:

Theorem 4.6. Let (un)n∈N be a sequence of complex numbers. Then

∞∑
1

εnun converges almost surely ⇐⇒
∞∑
1

|un|2 <∞

Theorem 4.7. Let
∞∑
n=1

εn(ω)n−s

be a Dirichlet series of independent and symmetric (εn ∼ −εn) coefficients. Then the abscissa
of pointwise convergence σc(ω) is a.s. a constant, e.g. ∃c s.t. σc(ω) = c a.s. Moreover, if
σc > −∞, then the line Re(s) = σc is a.s. a natural boundary for the series.

The first of the two theorems is a special case of Theorem 22.6 in [3, p.289]. Theorem 4.7
can be found in [15, p. 44], and we will look closer into it later. First we prove Theorem 4.5.
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Proof of Theorem 4.5. Theorem 4.6 says in our case that

∞∑
1

εnn
−s converges almost surely ⇐⇒

∞∑
1

|n−s|2 =

∞∑
1

n−2Re(s) <∞.

That is true whenever Re(s) > 1
2 , and from this we conclude that σc = 1

2 almost surely.

From Theorem 4.7 we know that, since σc > −∞, the line Re(s) = σc = 1
2 is a.s. a

natural boundary for the series.

To determine σu we use the formula presented in [2] among others (with credits given to
Bohr):

σu = lim sup
n→∞

1

log n
log

(
sup
t∈R

∣∣∣∣∣
n∑
k=1

εkk
it

∣∣∣∣∣
)
.

By Theorem 3.1,

sup
t∈R

∣∣∣∣∣
n∑
k=1

εkk
it

∣∣∣∣∣ ≥ ∑
p≤n, p prime

|εp|,

and the last sum is just the number of primes p, that are less than n. This is the Prime-
counting function π(n), and by the Prime Number Theorem (see for example [1, p.74]) it is
asymptotic to n/ log n, meaning that

π(n)

n/ log n
→ 1, n→∞

Thus

1

log n
log

(
sup
t∈R

∣∣∣∣∣
n∑
k=1

εkk
it

∣∣∣∣∣
)
≥ log π(n)

log n
=

log
(

π(n)
n/ logn · n/ log n

)
log n

=
log π(n)

n/ logn + log n− log(log n)

log n

→ 0 + 1 + 0 = 1, n→∞

and finally

σu = 1.

Proof of Theorem 4.7

We recall that we are considering the series of symmetrically distributed and independent
coefficients as follows:

∞∑
n=1

εn(ω)n−s = F (s). (4.8)
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When it converges we denote its limit by F . It might or it might not be continuable beyond
the domain of convergence of the series.

Proof. Let σc(ω) be the lower bound of σ ∈ R such that
∑∞

1 εn(ω)n−σ converges. Then
the series (4.8) converges for σ > σc(ω) and diverges for σ < σc(ω) (recall that a Dirichlet
series converges pointwise in a half-plane, see Proposition 1.5). We will here use a result from
probability theory (see [15, p.7]):

Theorem 4.8 (Zero-one law). Let the random variable ε be defined on the sample space
Ω =

∏
Ωn. If

ε(ω1, . . . , ωn, ωn+1, . . .) = ε(ω′1, . . . , ω
′
n, ωn+1, . . .),

for any ω1, . . . , ωn, ω
′
1, . . . , ω

′
n, ωn+1, . . ., then ε is a.s. a constant.

If a Dirichlet series
∑
εn(ω)n−s only has a finite number of coefficients different from

another
∑
ε′n(ω)n−s, they will converge for the same s (indeed, their difference is a polyno-

mial). This implies that σc(ω) = σc(ω
′), when only a finite number of the ωn:s differ from

the ω′n:s. The zero-one law then implies that σc(ω) is a.s. a constant. Denote this constant
by σc. We suppose that −∞ < σc <∞.

Now we have two possible cases. Either Re(s) = σc is a.s. a natural boundary for F (s),
or it can be analytically continued beyond this line, for ω in a set of positive measure, say
ω ∈ E. In the latter case there would exist a disc with center c on the line Re(s) = σc,
into which F is continuable, for ω ∈ E. We will, by a contradiction, show that this is not
possible. The approach is the same as in the proof of Theorem 4.4, where we used a Taylor
expansion argument to find a contradiction.

What we need to do here is to Taylor expand F at a disc centered at c + δ, containing
c. We try to do this in the most straight forward way, by using the Taylor series. At c + δ,
the Dirichlet series converges absolutely to F , a.s. The Taylor series can thus be evaluated
at c− δ, for δ > 0 small enough:

∞∑
n=0

F (n)(c+ δ)
((c− δ)− (c+ δ))n

n!
=

∞∑
n=0

∞∑
m=1

εm(ω)(−1)n(logm)nm−(c+δ)
(−2δ)n

n!

(∗)
=

∞∑
m=1

εm(ω)m−(c−δ), forω ∈ E.
(4.9)

This is certainly a contradiction, but it is due incautious calculations. More precisely, we
are not allowed to change the summation signs in (∗), since the double sum is not absolutely
convergent (the terms are not absolutely summable in the product space).
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To deal with this, we can instead consider the Taylor polynomial, to securely permute
the sum signs. We get that

N∑
n=0

F (n)(c+ δ)
((c− δ)− (c+ δ))n

n!
=

N∑
n=0

∞∑
m=1

εm(ω)(−1)n(logm)nm−(c+δ)
(−2δ)n

n!

=

∞∑
m=1

εm(ω)m−(c−δ)m−2δ
N∑
n=0

(logm)n
(2δ)n

n!︸ ︷︷ ︸
amN

(4.10)

converges for all N , for ω ∈ E. We name the last part amN to apply a last result of Kahane
in [15, Thm. 1, p.13]:

Theorem 4.9. Let vm be independent, symmetric r.v. If
∑∞
m=1 vmamN converges a.s.

and if amN → 1, N →∞, ∀m, then

∞∑
m=1

vm converges a.s.

We see that in our case amN = 1, ∀m. We note further that for ω ∈ E the Taylor ex-
pansion in (4.10) converges a.s. (but not in the whole space Ω). That is enough to be able
to apply Theorem 4.9 (by assumption the coefficients are symmetric) and conclude that also
the Taylor series

∑∞
m=1 εm(ω)m−(c−δ) converges, a.s. for ω ∈ E. But that is a contradiction,

since this is the Dirichlet series evaluated in a point to the left of σc, and it does not converge
there on any set of Ω of positive measure.

Hence we can reject the possibility of analytic continuation beyond Re(s) = σc, and this
line must be a.s. a natural boundary.
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Chapter 5

Proving the Maximal Width of
the Strip σa − σu

In the preceding chapter we saw how Queffélec proved the existence of a Dirichlet series with
σa−σc = σu−σc = 1

2 , by constructing a probabilistic example. In that example σa−σu = 0,
but we know since Proposition 1.17 that we possibly may be able attain a distance between
these two abscissae of 1

2 .

Harold Boas points out in [4] that proving that this inequality is sharp is a real challenge.
Bohr who otherwise had done great progress in the area of Dirichlet series did not come up
with an example. It was finally Bohnenblust and Hille found one example with 1

2 , [5]. Their
work was however advanced and we shall not go into it. Instead we will look at the example
that Boas presents in [4], also proving the existence using a probabilistic approach.

5.1 Construction of Boas’ Series

The series resembles a bit Queffélec’s, with coefficients of ±1 assigned at random, but some
of them will also be chosen as 0. We will introduce the coefficients εn ∈ {−1, 0, 1} to the
series

∑
εnn

−s depending on the prime factorization of n.

Consider initially the first 16 primes:

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16

44



From here we group, for each k, the 2k consecutive primes starting at the 2k:th. For ex-
ample, for k = 0, we pick 20 = 1 prime starting at the 20 = 1:st prime. That gives: p1 = 1.
For k = 1, we pick 21 = 2 primes starting at p21 = p2 = 3. Those will be 3, 5. When k = 2,
we pick 22 = 4 primes, starting at p22 = p4 = 7. In this group we will thus have 7, 11, 13, 17.
In this way, the first 16 primes will be grouped as

(k = 0) 2

p1

(k = 1) 3 5

p2 p3

(k = 2) 7 11 13 17

p4 p5 p6 p7

(k = 3) 19 23 29 31 37 41 43 47 53

p8 p9 p10 p11 p12 p13 p14 p15 p16

Using such groups, we then form different integers n. The idea is to, for each k, form
products using the primes in the k:th group. However, we only allow products of k factors.

For example, when k = 2, we can choose between the primes 7, 11, 13, 17, but we only pick
2 primes (perhaps the same twice). This gives us n of the form n = 7α1 · 11α2 · 13α3 · 17α4 ,
where

∑
αi = 2. For example we can form n = 72, 7 · 11, 7 · 13, etc.

We note that for each k we construct integers using different primes, so we will never
construct the same integer twice. In general we get terms of the form

n−s = (p−s
2k

)α1 . . . (p−s
2k+1−1)α2k+1−1

= z
α

2k

2k
. . . z

α
2k+1−1

2k+1−1 , (α2k + . . .+ α2k+1−1 = k).

To all these terms we assign εn = ±1 randomly. For all the integers n that will never be
constructed throughout this process we set εn = 0.

This process characterizes what the Dirichlet series looks like. We can now investigate its
convergence properties. Throughout the proofs, we will consider the series as a summation
over blocks indexed by k
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∞∑
n=1

εnn
−s =

∞∑
k=0

 ∑
∑
αi=k

±zα2k

2k
. . . z

α
2k+1−1

2k+1−1

 .

5.2 Properties of Boas’ Series

Proposition 5.1 (Boas). There exists a series constructed as above with the following prop-
erties:

σa = 1, σu =
1

2
.

Throughout the proof we will apply several estimation bounds. One comes from inequal-
ities with close relation to the the prime number theorem. It is an application of [1, Thm
4.7, p.84]. We will in this proof not talk about the distribution of π(n) but the size of pn:

Lemma 5.2. For n ≥2 there exists a positive constant c1 such that

1

c1
<

pn
n log n

< c1.

Next we discuss a counting argument about how many terms of our series that are non-
zero, which is the number of terms constructed as described above. We form monomials of
type

zα1
1 zα2

2 · . . . · zαnn , α1 + α2 + . . .+ αn = m.

In our case n = 2k,m = k, but we denote them by n,m to keep it readable.

The question we ask ourselves is: how many monomials can we form, for each m,n? That
is in fact the same problem as choosing m elements from n possible, allowing repetitions,
without respecting the order. The exact number of ways to do this is

(
n+m−1

m

)
. However we

will settle for the estimation (
n+m− 1

m

)
≥ nm

mm
. (5.1)

Finally, we will also need to use some theory of random trigonometric polynomials. We
use the following result of Kahane in [15, Thm 3, p.70], without proof:

Theorem 5.3 (Kahane). Consider a random trigonometric polynomial in n variables

P (t1, t2, . . . , tn) =
∑

εifi(t1, t2, . . . , tn),

where the fi are complex trigonometric polynomials of degree less than or equal to m, εi = ±1
and

∑
a finite sum. Then we have

P
(
||P ||∞ ≥ C

(
n
∑
||fi||2∞ logm

)1/2) ≤ m−2e−n,
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for some absolute constant C.

We deal with a polynomial P (z1, . . . , zn) = ±zα1
1 · . . . ·zαnn , of degree m, with the variables

lying in the unit disc and ±1 assigned at random. By this result (considering the complemen-
tary event) there is a constant c2 so that with high probability (≥ 1 − 1

m2e2 ) the maximum
modulus of the polynomial is less than

sup
zi∈D
| ± zα1

1 · . . . · zαnn | ≤ c2n(m+1)/2
√

logm. (5.2)

In particular this result provides the existence of at least one sequence of ±1 such that
the above inequality holds, for each n,m. That gives us a choice of a Dirichlet series to which
we can apply the inequality on each of the k-blocks.

Proof. (σa = 1). We start by showing the divergence for σ < 1, by estimating from below.

For each k we get monomials of the form ±zα2k

2k
· . . . ·zα2k+1−1

2k+1−1 , α2k + . . .+α2k+1−1 = k, just as
described above. The estimation in (5.1) gives that for each k, we will never have less than
2k

2

kk
monomials. By estimating the modulus of these monomials we can evaluate the original

series by a series of k. By Lemma 5.2, the 2k+1:th prime is bounded by

p2k+1 < c12k+1 log 2k+1 < c12k+1(k + k) = 4c12kk.

The integers n formed for each k are then bounded above by

|n| = |pα2k

2k
· . . . · pα2k+1−1

2k+1−1 | < |p
k
2k+1 | < (4c12kk)k = (4c1k)k2k

2

.

We put this together and estimate from below

∞∑
n=1

εnn
−s >

∞∑
k=2

∣∣∣∣ ±1

((4c1k)k2k2)s

∣∣∣∣︸ ︷︷ ︸
size of each term

· 2k
2

kk︸︷︷︸
number of terms

=

∞∑
k=2

2k
2(1−σ)

(4c1)kσkk(1+σ)
.

By observing that (4c1)k ≥ 1,∀k (c1 must be larger than 1), we can make one more
estimation from below, obtaining

∞∑
n=1

εnn
−s >

∞∑
k=2

2k
2(1−σ)

(4c1k)k(1+σ)
=

∞∑
k=2

ek
2(1−σ) log 2

ek(1+σ) log 4c1k
.

When σ < 1, we conclude by e.g. the root-test that this is a divergent series, since

(
ek

2(1−σ) log 2

ek(1+σ) log(4c1k)

)1/k

=
ek(1−σ) log 2

e(1+σ) log(4c1k)
= ek

(
(1−σ) log 2−(1+σ) log(4c1k)/k

)
→∞, as k →∞.

However we know that for σ > 1:
∑
|εnn−s| ≤

∑
n−σ = ζ(σ) converges absolutely.

Hence σa = 1.
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(σu = 1
2 ). We want to estimate the sup of the modulus of the k:th block, that is

sup
zi=p

−s
i

∣∣∣∣∣∣
∑

∑
αi=k

±zα2k

2k
· . . . · zα2k+1−1

2k+1−1

∣∣∣∣∣∣ . (5.3)

Each of the variables zi = p−si takes its value in the disc D(0, p−σi ), and we estimate the
sup from above by letting all the variables instead take values in the largest of these discs,
the one with radius corresponding to the smallest prime, p2k . Then the k:th block (5.3) is
bounded by (using the estimation in (5.2))

sup
zi∈D(0,p−σi )

∣∣∣∣∣∣
∑

∑
αi=k

±zα2k

2k
· . . . · zα2k+1−1

2k+1−1

∣∣∣∣∣∣ ≤ 1

pkσ
2k

sup
zi∈D

∣∣∣∣∣∣
∑

∑
αi=k

±zα2k

2k
· . . . · zα2k+1−1

2k+1−1

∣∣∣∣∣∣
≤ 1

pkσ
2k

· c2(2k)
k+1
2

√
log k.

We can estimate this again from above by estimating the size of the smallest prime

p2k >
2kk log 2

c1
> 2kk

4c1
, to obtain that the supremum is less than

c22
k(k+1)

2

√
log k(

2kk
4c1

)kσ =: bk.

To study the convergence of
∑
k bk we apply the root-test:

k
√
|bk| =

∣∣∣∣∣∣∣
c22

k(k+1)
2

√
log k(

2kk
4c1

)kσ
∣∣∣∣∣∣∣
1
k

∼
√

2
k
(log k)

1
2

(2σ)kkσ
=

(√
2

2σ

)k
· (log k)

1
2k

kσ
=: Lk.

We conclude

Lk −−−−→
k→∞

{
0, if σ ≥ 1

2

∞, if σ < 1
2

By the root-test,
∑
|bk| converges for σ ≥ 1

2 . Furthermore, bk was the supremum of the
k:tk block, so being terms of a convergent series, we can almost apply Weierstrass M-test to
conclude the uniform convergence of our Dirichlet series.

Why do we say ”almost”? We need to clarify one last point of this argument. The
convergence we established bases on the order of summation we chose (when dividing the
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series into blocks). If we are to have convergence we must accept the natural summation
order. To come around this problem we can in fact use Bohr’s Theorem (Theorem 2.5). The
fact that the series converges with one specific summation order is enough to establish the
bounded analytic continuation for σ > 1

2 . Since σb = σu, we must also have σu = 1
2 .
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Chapter 6

Concluding remarks

In this work we have introduced ordinary Dirichlet series and we have closely studied its
convergence properties, most of it thanks to the work of Harald Bohr. We saw that one
can consider several types of convergences and that we can divide the complex plane into
half-planes where the series will be convergent and divergent respectively. We established
relations between these planes. We got a glimpse of how to relate a Dirichlet series to a Tay-
lor series of infinitely many variables, and we established one inequality using this approach.
We finally considered a probabilistic approach to generate examples that can be considered
as the ”extreme cases”.

Throughout the text we saw a lot of Riemann’s zeta-function and it is not a coincidence.
The function itself offers a very important relation to number theory, and the theory of
Dirichlet series was to some extent developed to better understand ζ(s). One thing that we
however have not mentioned, is the Euler product, which is only a small step away. Especially
the equality between the Euler product and Riemann’s zeta function

∞∑
n=1

n−s =

∞∏
p, prime

1

1− p−s
(6.1)

is particularly important, relating the prime numbers to the Riemann zeta-function. Euler
studied initially ζ(s) as a generating function of number theory and proved that

∑
p−1 di-

verges in order to moreover provide another proof that there exist infinitely many primes (see
[16]). The equality provides also information about the distribution of the prime numbers.
Moreover, the inequality in Theorem 3.1 provides another connection to the distribution of
primes.

A relation between log ζ(s) and an integral transform of the prime counting function π(x)
can be derived using Stiltjes integration, see for example [16]. Kahane presented a Fourier
analysis approach to the same problem in [14]. The point of the Riemann hypothesis is that
having all non-trivial zeros on the line Re(s) = 1

2 implies the smallest (in some sense) possible
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error term in the asymptotic estimate for π(x).

51



Bibliography

[1] T. Apostol, Introduction to Analytic Number Theory, Undergraduates Texts in Mathe-
matics, Springer-Verlag, New-York, 1976.
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