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Abstract

This Master’s project presents a system to carry out semantically intelligent
searches in patent databases. Prior art study is a crucial step in the process
of drafting a patent application for an invention. The current state of the art
search engines such as Google Patents, Orbit or Patsnap are based on key-
word searches, which is a problem because important information can easily
be missed. The semantics of a patent are essential, and the difference between
inventions often exist in the smallest of details. With an exponential growth in
patent data worldwide, finding the correct invention is becoming increasingly
difficult.

This report describes a cloud-based system with the capacity of handling
a massive amount of patent data. Three different topic models have been im-
plemented and compared to one another, with the focus of finding relevant
search results efficiently. The models are based on transforming word vectors
obtained from patents to feature vectors, using different methodologies. When
the user inputs a query to the system, the query is transformed to feature vec-
tors and inferred to the model which returns the most similar patents to the
query.

The thesis suggests that the word embedding based topic model Doc2Vec
provided the best results for the problem, in regards to scalability, efficiency,
and accuracy.

Keywords: patent text mining, information retrieval, natural language processing, big
data
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Chapter 1
Introduction

Intellectual property in general and patents, in particular, are becoming increasingly impor-
tant to companies around the world. Statistics presented by theWorld Intellectual Property
Organization, WIPO, shows that the number of international patent applications increased
by more than double the amount between the years of 2004 and 2017. The trend is likely
to continue (WIPO, 2019). With this significant number of patent applications, there is a
need to sort, categorize, and filter the information it contains to make use of it.

This Master’s project was developed in close collaboration with Qlik (2019) and
Ström & Gulliksson (2019). Qlik is a company that provides end-to-end data management
and analytics platforms built to transform business. In this Master’s project, Qlik provided
the necessary system and software knowledge, together with means to set up a functional
cloud architecture. Ström & Gulliksson is a European patent firm with vast experience
and substantial knowledge of Swedish, European and international patent law, and in this
Master’s project, Ström & Gulliksson are the final users of the system. The problem for-
mulation together with the system requirements was developed by them.

This introduction chapter aims to provide an overview of the problem. We will define
the main objective, previous related research done in this field, limitations the project may
have, its scientific contributions to disciplinary fields, and finally a report outline.

1.1 Problem formulation
Due to the current massive quantities of patent data, obtaining relevant correlations con-
cerning similar patents has become increasingly difficult. Patenting an innovation requires
searching through already existing technology and attempting to figure out if this innova-
tion may coincide with previously patented technology. An International Patent Classi-
fication, or IPC, is a hierarchical classification system used to classify patent documents
according to the technical fields they pertain. In addition to patent related fields such as the
IPC, assignee, date of filing, date of priority and title, the relevant differences may often
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1. Introduction

be found in the nitty-gritty details of the patent’s body text. The task is daunting, and by
providing a program which may effectively filter and categorize patents utilizing machine
learning approaches, and finally visualizing them in a comprehensive manner, the process
can be vastly simplified.

As an inventor with an idea, it can sometimes be difficult to exactly define new tech-
nology, but you still want to be able to patent the idea to protect it. In order to confirm that
someone else hasn’t patented a similar idea, the examiner examining the patent application
will have to find keywords which define the technology. The keywords are being entered
in search tools to find any previous usage of these words. As it currently works, context is
not taken into consideration, and as a consequence, may not be detected by the keywords
search. This may result in involuntary patent infringements.

1.2 Objective
The principle of a program like this is based on collecting large quantities of data from
existing patents. The collected data will be parsed and stored in a word corpus, containing
all important sections of all the analyzed patents. The goal is to use the system by inputting
a query, which is to be compared with the patent corpus using different methodologies.
The output of the system will contain a list of the n most similar patents of the collected
patent data set to the query. A concise breakdown of the objectives is given in the list
below.

1. Download a large patent corpus which will be the base of a locally configured repos-
itory. We have obtained the patents from the United States Patent and Trademark
Office (USPTO, 2019) data bank, which are stored either locally or on a cloud stor-
age.

2. Investigate different types of machine learning algorithms related to text mining with
the goal of finding the best algorithm with regards to efficiency and accuracy. The
objective will be to research how information retrieval techniques can be applied for
patent text data mining to produce a desired output.

3. Create a web application with a user friendly design so that the implemented func-
tions can be executed remotely.

Additionally, a better way to handle the context of whole sentences will be investigated and
implemented, as a way to facilitate an improved clustering of documents, where words and
their context are taken into consideration.

1.3 Related research
In early studies conducted during the 1960s regarding massive technological development,
Schmookler (1966) examines whether inventions are driven by market-specific demands
or if they are self-generating. Schmookler’s approach is the first in this area utilizing
statistical analysis to study the correlation between technological and economic issues.
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1.4 Limitations

Beside Schmookler’s pioneering work in statistical patent analysis, Hehenberger and
Coupet (1998) were the first to apply text mining techniques to patent analysis. Since
then, several research studies have been conducted, as well as practical implementations
of business models which may provide a standard for accurate patent searching. However,
no standard is currently widely used across the industry. Tseng et al. (2007) analyze text
mining techniques for patent analysis in their study. They claim that automatic tools for
assisting patent agents, or other individuals making decisions in the patent industry, are
in great demand. Tseng et al. provide techniques for using topic maps in order to cluster
related patents to optimally suggest patterns, relations, and trends to the data. However,
Tseng et al. assert that more patent-relatedmining issues can be studied and that the current
methodologies for analyzing patents deserve more attention.

Lucheng et al. (2010) investigated the general idea of combining data mining tech-
niques and patent information analysis. This study describes how the process of imple-
menting machine learning algorithms such as K-means and neural networks can classify
the distribution of the main IPC to produce some visual charts. Lucheng et al. analyze
patent information with the goal of providing enterprises with information related to, for
example, less studied technical fields, to save time. Ultimately, this information is valuable
to an enterprise for enhancing technical innovation and competitiveness.

To the best of our knowledge, the method we have designed in this Master’s project
had not been investigated before. Text mining algorithms have been applied to collections
of patent data previously, as shown by e.g Hehenberger and Coupet (1998); Tseng et al.
(2007) and Lucheng et al. (2010). However, by evaluating the difference between the
bag-of-words and word embeddings methods and how the respective methods perform on
large sets of data to spot similarities, we extend a practical use to the current research.
Our implementation also provides a good method using existing software libraries and
parallelization to handle large collections of data as smoothly as possible.

1.4 Limitations
We will have to make certain work limitations to ensure that the Master’s project is com-
pleted in the allotted time period with the given resources.

Data management. Data management is a big concern for this Master’s project.
The ideal systemwould be to create a database containing all of the world’s patents in a sin-
gle database, but for testing and efficiency purposes a reduced dataset will be used. During
development, the created system will serve its purpose as a prototype, tested and improved
upon thoroughly, before handling much more data using a scalable cloud architecture.

Hardware. We implemented the system in two steps. In the first step, we had limited
computing capacity. In the second one, we scaled up the processing power with the help
of a cluster of nodes in the cloud. With that being said, until the system has a scalable
cloud architecture, many problems are going to arise due to hardware limitations. The
system will be implemented on local machines with 8 GB RAM, 2 core processors and an
approximate hard drive storage of 50 GB. This was bound to be problematic during many
processes of the system, which enhanced the necessity of a cloud architecture.

9



1. Introduction

Once a scalable product has been delivered, hardware limitations are less of an issue.
The required cloud resources will be provided by Qlik as needed. There may however be
further issues in the future in case of massive system load, but it is not relevant for the
Master’s project.

Scope. We implemented a system with features necessary to cover the objectives ex-
plained in Section 1.2. The objectives served as a base for the Master’s project’s limita-
tions, and any work not addressed as an objective can be regarded as out of scope. The
system we created is potentially a subject for further development, exceeding the total
amount of necessary work required to successfully carry out the Master’s project. This
essentially means that there are potential improvements that can be done to the system,
even after the scope of the project has been completed. Therefore, limitations have to be
defined to obtain a workload appropriate to the thesis.

1.5 Contributions
OurMaster’s project is expected to contribute to knowledge regarding patent textmining by
finding a way to build on the existing data mining and information retrieval techniques. We
implemented and compared several topic models and analyzed the semantics of patents,
with the help of the latest research in machine learning algorithms. Additionally, we com-
pared our best results with the current state of the art patent search engines, to propose a
potential improvement. Furthermore, the finished prototype may potentially be a subject
of utilization in other fields, where semantics are equally important.

1.6 Report outline
The report consists of four chapters: Approach, Development, Results, and Discussion,
each covering unique areas of the Master’s project. In addition to these four chapters, the
conclusion will highlight the key findings of the work.

The Approach chapter covers the fundamental theory behind the software and algo-
rithms used during implementation, ranging from intellectual property, to natural language
processing, data storage, and evaluation techniques. Moving on to the Development chap-
ter, a concise explanation of the implemented system is covered. The approach used is
thoroughly explained, together with all key design decisions chosen along the course of
the project. The results obtained after evaluation of the system are described in the Results
chapter. Finally, a couple of important discussion topics are covered in the final Discussion
chapter.
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Chapter 2
Approach

This chapter presents the underlying and fundamental approach behind the practical work
conducted in this Master’s project. In order to get a full understanding of the problem, we
explain the theory from the patent perspective as well as the data science perspective.

Firstly, this chapter outlines the background concepts of intellectual property related to
this Master’s project, together with a brief explanation of the patent parts that we analyzed.

Secondly, we present the approach behind the implementation process, starting with
thorough coverage of the natural language processing fields of data preprocessing, corpora,
and topic modeling. Additionally, we will explain data mining and how we used learning
algorithms to solve our problem. A section regarding data storage is also included, and
lastly how the implemented models will be evaluated using a similarity measure.

2.1 Intellectual property
Intellectual property (IP) is a tangible representation of intellectual ideas. IP can be real-
ized as patents, copyrights, and trademarks. Patent attorneys and patent engineers working
at corporate offices are constantly dealing with intellectual property issues with existing
technologies and inventions. A big problem in finding relevant patents and patent appli-
cations exists due to the sheer amount of data in patent databases such as the European
Patent Office (EPO) or the United States Patent and Trademark Office (USPTO). It can
sometimes be extremely difficult to pinpoint the exact technology and purpose of a new
invention, thus resulting in patent engineers being unable to draft new patent applications.
Frequently, one specific type of invention’s area of technology overlaps with another. The
patent of the invention needs to be newsworthy in order to ensure patentability.

Consider a specific type of engine which is a mechanical construction with a certain
unique design decision. If the design shares essential features with a second engine’s
design it can potentially infringe on a patent of the second engine, even if the construction
of the engine itself is different. This can be problematic in two ways. Firstly, it is not
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2. Approach

entirely clear exactly what type of correlating fields an invention infringes on, due to cross
disciplinary features of the invention. Secondly, highly skilled patent engineers have the
ability to practically write patents on anything by presenting the technology with different
semantics and descriptions, although the words essentially relate to the same technology
as another. This is why it is crucial to discover the true underlying meaning behind the
words, to find out how the technology actually works.

2.1.1 Patent structure
A patent contains useful information to make sure that the invention prohibits infringe-
ments on a similar invention. In this Master’s project, we analyze three different parts of
the patent: abstract, description and claims:

• The first part is the patent abstract. This section will clearly and concisely break
down the core components of the invention.

• The second part is a thorough description of the invention.

• The third part contains claims. The claims are crucial in regards to warning what
others must not do if they are to avoid infringement liability.

Moreover, patents contain several other pieces of information like for example the IPC
class, assignee, date of filing, date of priority, and title. However, all these parts of infor-
mation can be found on the first page of the patent. Although the current state of the art
in patent search engines provide keyword-based searches, they lack the ability to handle
the context of words. This means that if a paragraph is semantically explained in a totally
different fashion than what is being searched for, context is not taken into consideration
and the search results become inaccurate.

2.2 Natural language processing
Before the creation of the patent text corpus, the retrieved patent texts are expected to go
through a pipeline of text processingmodules, as a way to prepare the data to be used by the
data mining algorithm. The purpose of the text processing phase is to reduce the sample
data set to make the learning algorithm more accurate and efficient. Text processing can
be performed using different approaches, based on which problem is being solved.

2.2.1 Data preprocessing
Data preprocessing is the art of formatting data before analyzing it, by removing noise,
inconsistencies, and missing data. Since low-quality data will lead to low-quality data
mining, the preprocessing step is very important for the mining algorithm to provide de-
sirable output.

Data cleaning is related to removing noise and correct inconsistencies in data (Han
et al., 2011). An example of correcting an inconsistency can be to convert all capitalized
letters to lower-case.

12



2.2 Natural language processing

Data integration aims to merge data from different sources to create a more coherent
data collection which can find further context from individual words (Han et al., 2011).

To reduce data size from the raw patent text, data reduction is applied. The reduction
will eliminate certain words which are not considered to be relevant for the mining algo-
rithm to function as supposed (Han et al., 2011). When analyzing patent text, there are
some irrelevant data which can be removed. Cardinal numbers do not give any meaning-
ful information to the technology, and can, therefore, be discarded. The same reasoning
applies to words that occur very rarely (exists only one time in one patent), and words that
occur very commonly (exist in more than set percentage value of the observed patents),
and they can also be removed. A significant amount of data in the natural language are
so-called stop words, e.g. it, the, a, an, over, and they generally do not provide any useful
information and they can, therefore, be removed too.

2.2.2 Unsupervised learning
Unsupervised learning is defined as a learning algorithm, which is used by the model to
learn relationships between data that is unlabeled from the beginning, by looking for hid-
den structures behind the data, and group the raw data together using e.g. cluster analysis
(Aggarwal and Zhai, 2012). As said by Hastie et al., unsupervised learning is the act of
learning without a teacher (Hastie et al., 2009, p. 486). Hastie et al. consider a case with a
set of N observations (x1, x2, ..., xN ), where the goal is to find coherent properties without
a supervisor or teacher providing correct answers or degree-of-error for each observation.
The properties which are to be found and correlated to each other are defined differently
depending on what problem is being solved. In patent text analysis, the relevant proper-
ties are essentially weighted values for each word that is being processed. The learning
algorithm uses three different sets of data in order to provide the best possible output: the
training set, the validation set, and finally, the test set (Gutierrez-Osuna, 2005):

1. Training the algorithm is done on the training set. This data set usually comprises
about 50-60% of the total data samples. The training set is used to construct the
prediction model to decide how to link inputs with outputs.

2. The validation set is a set of data samples which attempts to determine the perfor-
mance of how well the prediction algorithm managed to predict the training data.
The quantity of the validation set is normally between 20-25% of the total data sam-
ples.

3. The final data set is the test set, and this is normally the last 20-25% of the remaining
data samples. The test set will determine how well the chosen prediction algorithm
is performing on previously unseen data.

Consider the same probability density Pr(X) mentioned by Hastie et al. again. Cluster
analysis has the objective of trying to discover multiple convex regions of the X-space that
contains modes of Pr(X) (Hastie et al., 2009). Performing cluster analysis on the entire
data set, training set, validation set and test set, will answer the question if the probability
density Pr(X) can be divided into smaller subsets with the content of a more similar set of
data compared to the data set before the cluster analysis. The patent text cluster analysis is
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2. Approach

based on clustering patents by having similar values in the same cluster, so that correlations
between patents can be observed and analyzed.

2.2.3 Supervised learning
Supervised learning is defined as constructing a model using training data, where for each
input there is a desired/correct output value predefined. Compared to unsupervised learn-
ing, it can be seen as having a supervisor providing the correct answers. A neural network
can be used as a learning method to classify inputs and form patterns based on a large
amount of training data. In this Master’s project, we used a neural network as a supervised
learning method. The neural network will create meaning to the input by converting it to
feature vectors for each word or pixel. Consider the following image:

Figure 2.1: Image classification example. Image retrieved from
MathWorks (MathWorks, 2018).

The neural network will attempt to classify the image by analyzing it pixel by pixel,
and the same methodology is applied to word classification. Once the model has received
a substantial amount of training examples during the feature learning process, or training,
it will know what type of feature vectors correlate with the new input. Upon receiving a
new input, the model will analyze it based on previous data received by concatenating the
pixels and finally, in this case, classifying it as a car as the most likely content.

A neural network will always consist of one input layer, one output layer, and N hidden
layers. During training, each word or pixel will travel between all layers for the number
of epochs specified. For each epoch, the parameters of the model will be tuned for more
accurate classifications. However, it is important that the model does not overfit and cause
a decrease in accuracy, by iterating too many times in the network. A substantial amount
of research and different strategies have been applied in order to prevent a model from
overfitting. For example, randomly dropping units during training can be used as a means
to prevent overfitting, as explained by Srivastava et al. (2014).

2.2.4 Topic model
Topic modeling is an unsupervised or supervised text mining technique used to measure
similarities between words, sentences, or documents. Different topic models use differ-
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2.2 Natural language processing

ent approaches to process significant quantities of data, e.g from large websites such as
Wikipedia, Twitter, or Google, with billions of terabytes of data. The general approach
is based on vectorizing the words into feature vectors, and subsequently extracting these
features and comparing it with other vectors to determine how similar they are, by for
example calculating distances between the vectors. We analyzed and implemented three
topic models in this Master’s project: TFIDF, GloVe, and Doc2Vec.

TFIDF
A term-document matrix is a matrix that contains the number of word occurrences for
every document, by storing it in amatrix, where each row has a document, and each column
has a unique word. We used the one-hot encoding to form the term-document matrix as a
preparation for the first topic model implemented. One-hot encoding is required when no
ordinal relationship exists between the words in the data. A binary representation will be
added for each vector in the term-document matrix, where a 1 means that the word exists,
and a 0 means that the word does not exist. An example of how a one-hot encoding may
look like is shown in Table 2.1.

cat dog fish table chair scarf hat
Doc 1 1 1 1 0 0 0 0
Doc 2 0 0 0 1 1 0 0
Doc 3 0 0 0 0 0 1 1

Table 2.1: A potential one-hot encoding. This specific example
contain three documents: 1, 2, and 3. In this case, the first docu-
ment is related to animals, the second document is related to fur-
niture, and the third document is related to clothes.

TFIDF, or term frequency–inverse document frequency, is used to calculate exactly
how important a word is, by checking how many times a word occurs in a document, and
offset the value by the total number of documents in the corpus that has this word (Mishra
and Vishwakarma, 2015). The approach that TFIDF uses is called a bag-of-words ap-
proach, and there are two important statistical values that have to be calculated to form the
tf-idf product: the tf (term frequency) weight, and the idf (inverse document frequency)
weight. The feature vectors for the TFIDF-model is calculated by the formula:

tf-idf(t,d) = tf(t,d) × idf(t), (2.1)

where t f (t, d), the term frequency denoting the number of times a term t occurs in a doc-
ument d, is multiplied with the id f component of the term t. In this Master’s project, we
used a raw count weighting scheme to calculate the tf weights as ft,d . The idf weights are
computed as:

idf(t) = log
1 + nd

1 + df(d, t)
+ 1, (2.2)

where nd is the total number of documents and d f (d, t) is the number of documents con-
taining term t. Finally, the resulting TFIDF arrays are then normalized by the Euclidean
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2. Approach

norm as:

vnorm =
v
||v||2

=
v√

v12 + v22 + · · · + vn2
(2.3)

The resulting vectors are given as a matrix with the calculated TFIDF values.

GloVe
GloVe (Global Vectors for Word Representation) is a word embedding based topic model
developed by Pennington et al. (2014a). Similar to TFIDF’s one-hot encoding approach,
word embedding is another method of representing words as vectors. When using a word
embedding representation, each word is mapped with a vector in a predefined vector space.
Word embeddings are used in situations when the context of the words is important to dis-
cover, and not just word count across the corpus. According to Pennington et al., GloVe
is a global log-bilinear regression model that combines and utilizes the advantages of two
different families in topic modeling, namely the global matrix factorization and local con-
text windowmethods. The TFIDF-model uses a global matrix factorization to represent its
feature vectors, which effectively takes advantage of learning the global corpus statistics.
The downside of this is that it does not take the context into account, i.e the local surround-
ings of the analyzed word. In the local context window case, the most popular methods
used in industry are the Skip-gram model and Continuous Bag of Words (CBOW) devel-
oped by Mikolov et al. (2013). These models are used to capture syntactic and semantic
word similarities and relationships between distributed vector representations of words.

Figure 2.2: Image showing how words have been correlated to
each other during GloVe feature vector training. Image source:
GloVe official webpage (Pennington et al., 2014b).
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As previously stated, GloVe effectively takes the best parts of the two families: large
scale corpus patterns and locally retrieved sentence or word patterns. The core theory
behind the GloVe model is to, instead of learning the raw co-occurrence probabilities of
all of the words in the corpus, learning the ratios of all the co-occurrence probabilities
in relation to each other. This will create a co-occurrence ratio vector for each of the
analyzed words in the corpus, and effectively reduce the max space required to store all of
the non-required zeros which are present in the sparse matrix of e.g the TFIDF-model.

Figure 2.2 illustrates an example of how certain words have been correlated with each
other in two dimensions: X and Y . Consider the top three words for example: niece, aunt,
and sister. These words tend to appear frequently together in both dimensions, as the
meaning of the words are similar and used in similar semantical contexts. Looking at the
three words approximately 0.4 below in the Y dimension, we see the words nephew, uncle,
and brother. These three words, similarly like the ones before, appear frequently together.
Now we can see that they appear very close in the X dimension to the group of three words
above, but further away in the Y dimension, which reveals that they may be the opposite
word in a semantical context.

Doc2Vec
Doc2Vec, also called Paragraph Vector, utilizes a word embeddings based topic model for
discovering word contexts in a global perspective of a text corpus. Doc2Vec came to life
after Mikolov et al. analyzed the weaknesses of the one-hot encoding based topic models,
where words having equal distance from each other despite the fact that the semantics
were entirely unassociated. Concretely, much like GloVe, each document was instead
represented by a dense vector. With Doc2Vec however, the model is trained with a neural
network to predict words in the document.

Mikolov et al. developed two different models based on paragraph vectors: A dis-
tributed memory model (PV-DM) and a distributed bag-of-words model without word or-
dering (DBOW). The framework used by Mikolov et al. for learning the word vectors in
both of the models are shown in Figure 2.3.

Figure 2.3: The framework used for learning word vectors. Image
source: Mikolov et al. (2013).
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The three words presented in the figure: the, cat, and sat, together predict the word on
by being mapped as columns of the matrixW . Considering the context of the sentence, the
words following on might have been the and mat, which led to the model predicting on as
the classifier. The full sentence would then be the cat sat on the mat. Each word is mapped
as a feature vector, which subsequently gets concatenated to an average feature vector of
the words. A sequence of r words will opt to maximize the average log probability as

1
T

T−k∑
t=k

log p(wt | wt−k, ...,wt+k) (2.4)

In order to predict the word, the classifier is using a softmax function denoted as

p(wt | wt−k, ...,wt+k) =
eywt∑
i eyt

(2.5)

where each yi is an un-normalized log probability log-probability for each output word i
computed as

y = b + Uh(wt−k, ...,wt+k; W ) (2.6)

where U and b are the softmax parameters and h is the concatenated string from the re-
spective word vector extracted from W .

As previously stated, both of Mikolov et al.’s models utilizes the framework presented
as Figure 2.3. In this Master’s project, both the PV-DM model and the PV-DBOW model
are used, and further explanation is therefore required. The key difference between the
models is that they form the classifier using different methodologies:

• PV-DM predicts 1 word from N inputs, whereas

• PV-DBOW works contrarily by predicting N words from 1 input.

The extension made which creates the PV-DM model is shown in Figure 2.4. The
difference compared to learning word vectors as shown in Figure 2.3 can be denoted as
the paragraph matrix D, with a specific id per paragraph. Each paragraph vector in the
matrix D serves as a memory of what is missing from the current topic of the paragraph
being analyzed, hence the name distributed memory.
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Figure 2.4: PV-DM extension to the word vector representation
model. The paragraph matrix D denotes the memory obtained for
each training step. Image source: Mikolov et al. (2013).

PV-DM consists of two key stages: training, and whatMikolov et al. calls the inference
stage. The vectors in the paragraph matrix D, are trained using stochastic gradient. For
each step of the gradient descent in the network, an error gradient can be calculated. This
error is used to tune the parameters in the model for the next iteration in the network. The
parameters tuned during training are the paragraph matrix D, the word vectors W , and the
softmax weights U and b for the hierarchical classification. The purpose of the inference
stage is to predict new paragraph vectors by adding more columns in D while keeping the
trained parameters W,U, B fixed. This is done once the model has finished training, e.g to
predict similarities among word vectors.

While instead considering the PV-DBOW model, the context words of the input are
now ignored, and instead forced to predict randomly sampled words from the paragraph
in the output. After each training step, a text window is sampled together with a random
word from the text window. These random words create a classifier, shown in Figure 2.5.

Figure 2.5: PV-DBOW extension to the word vector representa-
tion model. The classifier is formed from the small text window
after each training step. Image source: Mikolov et al. (2013).
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As opposed to PV-DM, the PV-DBOWmodel doesn’t need to store as much data. Only
the softmax weights are required, and not the word vectors in matrix D.

2.3 Data storage
We will develop a system which is heavily reliant on storing and analyzing massive data.
The data storagemedium usedwill serve a big role in order to assure consistency for system
maintenance.

2.3.1 Non-relational database
Non-relational databases provide, as the name implies, a technique for collecting and stor-
ing data in non-tabular relationships. This can be beneficial in some types of data manage-
ment. A big advantage is the simplicity of design a non-relational database provides. One
item can be stored with many attributes, which is absolutely essential when storing patents
with different important attributes as keys. In case of a relational database, the document
instead would have had to be stored in multiple tables, with a join operator to get all the
necessary data. It would be extremely inefficient to join tables of the sizes required in the
system. The simplicity of design in non-relational databases will, therefore, imply that
operations are faster and less costly.

Non-relational databases also provide better horizontal scaling to clusters of machines.
The database will dynamically and concurrently spread data across servers when the user
load is heavy. This is beneficial in case of a server shutdown to quickly restore data without
the users of the system noticing.

Non-relational databases will also be able to capture both unstructured and semi un-
structured data. Consider the scenario that the structure of a patent gets changed, and sev-
eral new important fields get added to the content. A non-relational database will easily
have the opportunity to freely add a key value to a JSON document without the neces-
sity of defining changes. A document does not need to have all the key values present
either. In certain situations, this could be beneficial. For example, design patents tend to
have few words explaining the invention, but instead have multiple images. So for design
documents, we would not want as many key values as in for example a chemistry patent.

2.3.2 Matrix model representation
Different types of matrices are generally used by the model for both storage and compu-
tations, meaning that a big part of the efficiency of the model is directly dependent on the
representation of the matrix. There are two types of matrices that we will mention in this
section: sparse matrices and dense matrices.

Sparse matrix. A sparse matrix is characterized as a matrix where most of the
elements are zeros. This is associated with a complexity problem in both time and space.
Matrix operations on two matrices containing many zeros will be slow because many zero
elements will be added or multiplied with one another. Moreover, storing zero values
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doesn’t contribute to the richness of the data which means that it is a waste of memory
resources. The one-hot encoding described in Table 2.1 is an example of a sparse matrix.

Dense matrix. A dense matrix is characterized as a matrix where most of the ele-
ments are non-zero, i.e. where the sparsity of the matrix is low, with a very low amount
of zero elements. Dense matrices are much less memory-dependent compared to sparse
matrices, as most of the data stored is valuable. Word embedding based models used for
the GloVe or Doc2Vec algorithm uses a dense matrix representation.

2.4 Model evaluation
Evaluating a model is an important part to determine how well a certain implementation
performs on a test set. The two major evaluation terms are called precision and recall. The
formulas for calculating precision and recall are the following:

Precision =
TP

TP + FP
(2.7)

Recall =
TP

TP + FN
, (2.8)

where TP = True Positive, FP = False Positive and FN = False Negative. Precision
is defined as the percentage of the results which are relevant, whereas recall refers to the
percentage of total relevant results which have been correctly classified by the algorithm.
The mean average precision (MAP) calculation measures how precise the model is on
average for a set of queries (Cormack and Lynam, 2006). MAP is the calculated mean of
the AP values. The formula for AP is defined as:

AP =
|S|∑

k=1

rel(Sk) ·
P@k

R
, (2.9)

where P@k is the precision at k returned documents:

P@k =
k∑

i=1

rel(Si)
k

, (2.10)

and R and rel(d) are defined as:

R =
∑
di∈D

rel(d) (2.11)

rel(d) =
1, if document d is relevant to the test set
0, otherwise.

(2.12)
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2.5 Similarity measure
Cosine similarity is used tomeasure the similarity between two non-zero vectors and return
a value between 0 and 1, where the closer the value is to 1, the more similar the two vectors
are. The formula for calculating the cosine similarity is as follows:

similarity = cos(θ) =
A · B∥∥∥A
∥∥∥ ∥∥∥B

∥∥∥ =
∑n

i=1 AiBi√∑n
i=1 A2

i

√∑n
i=1 B2

i

, (2.13)

where A and B are the two vectors to be compared.
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Chapter 3

Development

The methodology chapter presents how we implemented the system. We implemented the
system in Python, using several libraries for text processing and topic modeling, as well as
distributed computing clusters for computational parallelization. We saved relevant system
data using efficient binary serialization formats and subsequently stored in a non-relational
database. A total of 3 models: TFIDF, GloVe, and Doc2Vec, were created and evaluated
against each other by us, using measures well defined for patent information retrieval. For
the final prototype system though, only Doc2Vec was developed and integrated with the
resulting architecture.

The general idea of how the system is intended to work in practice is as follows: The
system’s corpus data will be created once with the desired amount of patents as a base.
Subsequently, the user of the system will be able to input a query to the system which
returns a set of k documents with the highest similarity score with the input query.

3.1 Preprocessed data format

The bulk dataset containing US patents was retrieved at USPTO (PatentsView, 2019),
where patents can directly be downloaded in XML format. The patent files are released
every week, and one file contains an average of 6,000 patents. These downloaded files
would have been parsed and preprocessed, where the general structure would look like
Figure 3.1.
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Figure 3.1: Figure showing the layout of the file containing the
preprocessed data.

where each line corresponds to one paragraph, resulting in a file with the layout shown
in Figure 3.1. Each line in the file was labeled with its corresponding file line number.
Simultaneously while this file is being written, the document id and corresponding para-
graph index of the paragraph are noted and written to another file, with the following
general structure:

<doc-id>!<paragraph-index> (3.1)

which can be shown in Figure 3.2, which are the labels for the data in Format 3.1.

Figure 3.2: Figure showing the layout of the file containing the
labels.

3.2 Gensim
The open source Python library Gensim is a collection of scalable statistical semantic
tools, plaintext analyzers, and semantical similarity extractors, and it has been used for
many parts during the implementation process of this Master’s project (Řehůřek, 2019).
Gensim both has bag-of-words based topic models and word embedding models in its
library. They serve the purpose well of evaluating and comparing different models on the
same test set.

Moreover, Gensim has some important features related to memory handling which is
valuable when handlingmassive amounts of data: Gensim employs bothmemory indepen-
dence and memory sharing. Memory independence means that the corpus may be loaded
document by document instead of loading the entire corpus into the RAM at once. Mem-
ory sharing is related to loading and unloading trained models to the disk to effectively
allow processes to share the same data. By passing different parameters to the Doc2Vec
model, it can effectively change implementation between Mikolov et al.’s different Para-
graph Vector models explained in Section 2.2.4.
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3.3 Model implementations
The three models covered in the theory section were implemented using Gensim, with the
purpose of being tested on how well they performed.

3.3.1 TFIDF
The first model that was implemented was a bag-of-words TFIDF-model. This served as a
baseline model for the system, and further developments could effectively be compared to
the baselinemodel in order to determine howwell they performed. A hierarchical overview
of the first model is shown in Figure 3.3.

Figure 3.3: Hierarchical structure of the implemented baseline
model.

In order to utilize the system more efficiently, the creation of the TFIDF corpus may be
executed and saved to a MessagePack-file before using the system for its intended usage;
namely to find relevant patents based on the input query. MessagePack is an efficient
serialization formatter, which is deemed far more efficient when it comes to speed and
memory efficiency compared to other serialization formats (Furuhashi, 2019), which was
also confirmed during the implementation process by us. The essential features of the
baseline model can be broken down to three different services as shown in Figure 3.3.

1. The first thing we did was to download the bulk patent data set described in Section
3.1. In Figure 3.3 this part is called the persistence service. We loaded the patents
by linearly iterating over all of the documents, saving them document by document
in a texts array containing each document per element in the array.
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2. The second service is called the analysis service, and in this service, the texts array
was subsequently fitted to a Gensim Dictionary object. The dictionary contained all
of the words denoted as tokens. In order to keep the dictionary as small as possible,
duplicates of the words were not kept. The words were, therefore, added uniquely
from text arrays. The dictionary served as a base for creating a corpus, but before it
could be fitted to a corpus, extreme values had to be filtered to effectively reduce the
total space. This was done in accordance with removing noise and inconsistencies
to the data as explained in Section 2.2.1. A Dictionary object can be filtered by
providing filter values for a bottom and top threshold of the frequency of the words.
The thresholds denote what words will be filtered out and thus removed from the
dictionary before creating the TFIDF vectors. The feature weights extracted from
the TFIDF calculations were based on Gensim’s TFIDF-model. The TFIDF-model
was fitted by passing the corpus as a parameter, which returned a list of the TFIDF
vectors and it was finally stored as a MessagePack-file.

3. Once the corpus TFIDF had been stored, the system was ready to be used for query-
ing in order to find relevant documents. This service is called the aggregation and
similarity service. The input query was to be processed similarly as for the bulk
patent dataset, which finally created a TFIDF vector of the input query. The vectors
were then to be compared using the cosine similarity metric explained in Section
2.5. The k documents with the highest similarity score would be sorted out using a
partial heap, which for small number k will be linear in complexity.

3.3.2 GloVe
The second model that was implemented was based on a pretrained GloVe model, ex-
plained in Section 2.2.4. The figure below shows the hierarchical structure design of the
implemented model:

Figure 3.4: Hierarchical structure of the implemented GloVe ar-
chitecture.
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Following Figure 3.4, the first part of the model is a persistence service, which is more
or less the same as the one from the baseline model, as shown in Figure 3.3. The only
difference is that the texts are preprocessed here, by removing noise and inconsistencies
to the data as explained in Section 2.2.1. After removing the stop words of the patents, the
texts are turned into feature vectors using the pretrained model retrieved from GloVe.

The next step was to load the pretrained models into memory. These were retrieved
fromGloVe’s website, and the models had been trained onWikipedia text. The GloVe pre-
trained model is based on word embeddings as explained in Section 2.2.4. The Wikipedia
text contains 6 billion tokens, 400 vocabularies, which subsequently created 300-dimension
feature vectors. Whenever an input query is being sent into the system, the model which
has been loaded would then create a feature vector for the query and for each document
in the system, before going into an aggregation and similarity service. In this service,
the cosine similarity between the vectors would be calculated, as explained in Section 2.5.
Lastly, the returned similarity vector is sorted so that the k documents with the highest
calculated similarities would be returned by the application.

Each document in the corpus was loaded, file by file, for each query, leading to efficient
use of memory. There is never more than one document loaded into the memory at any
time during the execution of the query.

3.3.3 Doc2Vec
The third model implemented was based on directly training a Doc2Vec model using the
corpus containing patents. The figure below shows the hierarchical structure design of the
implemented model.

Figure 3.5: Hierarchical structure of the implemented Doc2Vec
model.
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Following Figure 3.5, there are four different services in total:

• Web service - Contains the web application and front-end part of the system. The
web service is the one shown to clients or users of the system to operate the system.
The users can provide a search query to an aggregation and similarity service which
collects the k most similar patents based on the search query. Once the results have
been retrieved, the users can then directly perform GET-requests to the MongoDB
database, by clicking on a document, to obtain further information regarding the
selected patent obtained from the aggregation and similarity service.

• Aggregation and similarity service - Accepts search queries from the client, and
performs a similarity check with the client’s input and return the output to the client.

• Analysis service - Used to train the Doc2Vec model, as explained in Section 2.2.4.
The Doc2Vec model will be initially trained on a fixed amount of patents, which
will serve as a base model. USPTO provides weekly batches of raw patents which
can effectively be added to the database and model for further training. This would
enable keeping the model updated on a weekly basis if needed. The MongoDB
service takes care of the database, which is used to provide the corpus for the training
process, while also providing separate individual requests from the web service.

• MongoDB service - Handles the database containing all of the patents.

The Doc2Vec model was implemented based on two different approaches:

1. In the first approach, Gensim’s tagger was used to tag 3 lines for each document. A
tag is defined as an entity which when used in a single sentence, it captures themean-
ing of all the words in this sentence. The lines were analyzed as abstract and title
concatenated together, claims, and finally description. The purpose of this separa-
tion was simply because of the difference in semantics of the three different sections.
The title and abstract are very concise and shortened to just a few hundred words
maximum, whereas the description is a detailed description of the invention that may
very well be more than 50 pages of text. The claims are totally different since they
more or less constitute an enumerated list of features or specifications the invention
has to follow or comprise. The fundamental semantic differences between the three
sections warrant a separation, with the purpose of having separate querying towards
the three different models.

2. The second approach implemented was to move away from the idea with three sep-
arate models and instead treat the document as one entity with multiple paragraphs,
tagging the paragraphs individually, across every section. The idea was to handle the
three semantically divergent sections (abstract, claims, description), but still be able
to search across an entire document. When implementing this approach, the visual-
ization and similarity results were depicted slightly differently, since one document
can have several matches on different paragraphs across the document. Relevant re-
sults were now filtered in two different ways, namely on the number of matches per
document, combined with the best matching paragraph per document.
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3.4 Test set
In order to evaluate the performance of the different models in relation to their MAP score
(see section 2.4), we defined a test set. We used the same test set on TFIDF and GloVe to
ensure correct, realistic, and as unbiased a result as possible. Key values of the test set are
shown in the table below:

TFIDF GloVe Doc2Vec
Test set patents 100K 100K ~1M
Number of queries 50 50 8
Assessments per query 10 10 10

Table 3.1: Table presenting the test set used for TFIDF, GloVe
and Doc2Vec to evaluate its mean average precision

As shown in Table 3.1, the test set for TFIDF and GloVe contained the same 100,000
patents from the year of 1980. Note that the test set only contained the patent abstracts.
The test set could not contain more than 100,000 abstracts because of hardware limitations
which arose during querying. We used 50 queries to evaluate the MAP score. For each
query, 10 manual assessments were made to determine if the results obtained were relevant
or not. It is important to note that these tests were evaluated by ourselves, with little to
none expertise in the field of patents.

There was, for several reasons, a problem using the same test set with the Doc2Vec
model as the two others. First and foremost, the Doc2Vec model requires a lot more data
in order to work properly. By only having 100,000 abstracts in the test set corpus with the
Doc2Vec, the similarity results obtained were subpar, thus giving the other two models
an unfair advantage. The test set used for the Doc2Vec model instead consisted of all
granted patents released by USPTO from the year 2016 through 2018, which corresponds
to approximately 1M patents.

Doc2Vec was tested slightly differently compared to TFIDF and GloVe. We instead
let two experts in the patent industry perform the manual assessment of the queries, using
a total of 8 previously unknown queries with 10 assessments per query. We then let the
same experts convert the queries to keyword based queries compatible with one of the
industry standard patent search engine: Orbit Intelligence (Questel, 2019), for a system
comparison.

3.5 System architecture
The following section will cover the architecture of the final Doc2Vec based system, which
will build on the usage of various microservices, which would be used to create a highly
scalable and efficient system. A microservice architecture is defined as an architectural
style that structures an application as a collection of services. The architecture allows
a large and complex system to be separated into an arbitrary number of subroutines to
handle different areas of responsibility. The final production model is based on Doc2Vec,
specified in Section 3.3.3.
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The system now handles communication between microservices in an optimal manner
so that each service has one specific responsibility. The division between microservices
has also been made to ensure that I/O delays are kept to a minimum. Finally, the division
of labor will also be very beneficial when creating isolated containers for a cloud solution,
so that certain services do not need libraries that are not used.

3.5.1 Microservices
Figure 3.6 shows in detail how the microservices of our system are communicating with
each other and which data is being sent between them.

In total, the number of microservices present in the system is four. A detailed expla-
nation of how the user uses the system and how the microservices are communicating is
given in this section.

Figure 3.6: Microservice communication.

The user interacts with the web service through a Python Flask app, which is a light-
weight web framework that doesn’t require particular tools or libraries. In order to use the
system to find similar patents, the model first has to be trained. The user specifies how
many documents they want to have in the model when querying, and send this number
from a web service to an analysis service. The analysis service responds with an acknowl-
edgment, to notify the web service that the specified number of documents have been
provided, and subsequently request this number of documents from a MongoDB service.
The analysis service will now begin its training to create the Doc2Vec model. Once the
training is finished, the model will be saved in the analysis service, and wait for the user
to request a similarity score from a query from the web service.

When a query is initialized from the web service to an aggregation and similarity ser-
vice, the aggregation and similarity service will send a request to the analysis service to
let it know that it wants the Doc2Vec model. The analysis service will begin streaming
the model, and once it has finished, the aggregation and similarity service will perform its
operation to return similarity scores to the web service based on the query received.
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Lastly, the user may request additional information from the simulation scores by click-
ing on a specific document name. The web service will then request the patent directly
from theMongoDB service, and theMongoDB service will send back the entire document
with all interesting parts of the patent (title, abstract, claims and description).

3.5.2 gRPC
Communication between services was accomplished using gRPC, an open-source univer-
sal remote procedure call framework implemented by Google, which would be used for
both simple requests, but also streaming of data. A remote procedure call, or RPC, is a
signal sent from one subroutine of a system or a network to another, which either a request
or a response. The RPC is defined globally, and the different subroutines do not need to
understand the details of each other’s networks.

The first step is to define the gRPC services and the method request and response type,
using protocol buffers. This is done in a .proto file. The protocol buffers provide a way to
serialize structured data. gRPC has four different options to define services, where two of
them were defined in this project:

• A simple RPC which works similar to a normal function call. The client sends a
request to a server using a stub and awaits a response. Simple RPCs were used
for requesting a document from the MongoDB by the web service, querying for
similarity score from the aggregation and similarity service by the web service, and
initializing the training in the analysis from the web. The only communication where
Simple RPCs does not work is when streaming a model. In this case, a response
streaming RPC was used instead.

• With a response streaming RPC, the client sends a request to the server and then
waits for the server to return a stream of messages.

When the services had been defined, the gRPC server and client interfaces were gen-
erated from the .proto service definition. These interfaces were used by the microservices
presented in Figure 3.6. Traditionally, a front end service would act as a client and a back
end service as a server. However, out of the services presented in Figure 3.6, only the web
service is actually a front end module. Hence, we created a custom definition of which
services would act as servers and which services would act as clients:

• Web service: client for both the MongoDB service, the analysis service, and the
aggregation and similarity service.

• Aggregation and similarity service: server for the web service, and client for the
analysis service.

• Analysis service: server for both the web, the aggregation and similarity service,
and the MongoDB service.

As the MongoDB service serves as a separate entity, it does not use the same gRPC
microservice communication as the other services do. Instead, the MongoDB will receive
requests from its two clients web service and analysis service.
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3.5.3 MongoDB
We usedMongoDB (2019), a cross-platform document-oriented database, to store the data
from the USPTO bulk data. MongoDB is a non-relational database, which in our case has
several advantages over a relational database such as design simplicity, availability control,
easy capture of new data, and efficiency. TheMongoDBwas integrated with the Flask web
application, where simple JSON-requests would be used to retrieve specific documents.

3.5.4 Docker
Docker (Docker, 2019) was used to deploy the application in a container, with all of the re-
quired dependencies. The isolated environment that was created with the help of Docker,
makes it much easier to enhance the application into a more scalable approach, with the
same predefined environment, as stated by a Dockerfile. A Docker image is a file which
contains multiple layers, used to execute a program in a Docker container. Once the ser-
vices had been created, their respective Docker image was then pushed to a Docker Hub
repository.

3.5.5 CircleCI
CircleCI (2019) was used as a continuous integration tool during development, which
would build all services for every commit to the repository and automatically push the
images to Docker Hub, after each successful build. CircleCI provides fast builds, build
isolation where the builds are run in clean containers, extensive support, and coverage for
other tools such as Docker, while also being GitHub friendly.

A CircleCI config file was used to define the CircleCI builds, which included setup of
a remote Docker engine, a docker build process being started for each of the three services,
and then the resulting build image for each service being published to Docker Hub.

3.5.6 Amazon Web Services
Amazon Web Services (Amazon, 2019), or AWS, was used as an on-demand cloud com-
puting platform, which provided a virtual cluster of computers, where the services would
be deployed for execution. The system architecture used the services S3, EC2, EFS, and
ELB.

• S3 (Simple Storage Service) was used as a long-term object storage service, where
the data containing the patents in JSON-format would be stored and loaded into
MongoDB during setup.

• EC2 (Elastic Compute Cloud), was used to provide computing capacity in the cloud
in the form of hardware.

• EFS (Elastic File System) was used for storage of temporary data files that would
be required both during and after the training process, where e.g. files such as the
preprocessed corpus, labels, and the finished models would be stored and easily
accessible by all parts of the system.

32



3.5 System architecture

• Lastly, ELB (Elastic Load Balancing) was used by the web service, which would
handle incoming connections to the web application, while also providing an exter-
nal IP-address which could be used to connect to the application.

3.5.7 Kubernetes
Support for distributed computing was implemented for the application, as a way to tackle
the efficiency problem related to processing such big amounts of data. Docker was used as
the first and foremost base building block, where containers would be deployed to remote
computers using services such as AWS, where the computations would be done over the
cloud. Means for improving the parallelization during the execution were also taken into
consideration during the implementation, as a way to improve the efficiency even further.

Kubernetes is an open-source system for automating deployment, scaling, andmanage-
ment of containerized applications (Kubernetes, 2019). It acts as an orchestration system
which organizes and schedules an application over an arbitrary number of machines and
can be seen as a high-level operating system for the containers deployed by Docker. Ku-
bernetes has many advantages which makes it a state of the art open source system for
managing Docker containers. Firstly, it is light, simple and easily accessible. Secondly,
Kubernetes can be deployed in many different states (public, private, cloud) which makes
it portable and thus suitable for our application. Finally, it is also possible to add extensions
to the Kubernetes system in case future iterations require such.

3.5.8 Cloud architecture

Figure 3.7: The complete cloud architecture of the finished sys-
tem.
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3. Development

The cloud architecture was created by setting up the different components explained in
Sections 3.5.2, 3.5.3, 3.5.4, 3.5.5, 3.5.6, and 3.5.7. Figure 3.7 illustrates how the compo-
nents were coupled.

A Github repository was kept for code and version control. Once a push to the repos-
itory was initiated, the changes were automatically pushed further to CircleCI for a con-
tinuous build of the system. The final part of the CircleCI build was to push images of
the services to the Docker repositories to prepare for deployment. Helm was used as an
orchestration tool used to set up the Kubernetes clusters, and the system was subsequently
deployed to the AWS cloud with an S3 bucket for cloud storage. Once the system was
deployed to the cloud, a master user could connect to it from a local machine.

One important design decision that was made upon deploying the system to the cloud,
was to provide it with EFS-provisioner to ensure persistence. The EFS system consists of
a container that has access to an AWS EFS resource. This decision greatly simplified the
communication between services covered in Section 3.5.1, in the regards of models not
being required to be streamed from the analysis service to the aggregation and similarity
service. The persistent volume provided by the EFS-provisioner will instead contain the
saved models and model files created when training the model during analysis. Since
the aggregation and similarity service will have direct access to that volume, the files are
no longer required to be streamed, as opposed to the schema shown in Figure 3.6. The
aggregation and similarity service can simply load the model once it exists in the persistent
volume.
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Chapter 4

Results

We created the system with the purpose of handling as much data as possible, without
hindering the ability for the users to find appropriate results. During the implementation,
we obtained important results which led to certain design choices regarding further devel-
opment.

This chapter will present all of the results obtained from testing the different models.
Before launching the system on the cloud with Kubernetes, some local experiments were
made on a test machine. The purpose of these tests was to evaluate base models: If and
how well they could be used to scale up the system. We made manual assessments to
evaluate the models on a test set for the local system before deployment. The reasoning
behind this is that it shows that some of the models cannot be operated to its full potential
due to restrictions that emerge when handling massive data. Finally, the results of the
finished and deployed system are presented, together with the most important parameters
for additional tuning of the system.

While evaluating the models, a couple of different aspects were taken into considera-
tion:

• Themost obvious one is howwell the model works with regards to accuracy. Specif-
ically, what MAP score a query obtains after manually evaluating how precise the
model returns its results.

• Another crucial aspect is related to how much data the model can handle, both in
terms of memory usage and computational speed. As the goal is to train a model on
as much data as possible so that ideally every relevant patent document can be found,
the system is bound to be computationally dependent. Hardware requirements and
algorithm optimization are therefore consistently taken into account when analyzing
the results.

35



4. Results

4.1 TFIDF
The TFIDF model described in Section 3.3.1 was tested on the test set defined in Section
3.4. A manual assessment of how many of the returned results were deemed relevant was
done, yielding an approximate total MAP score of 57%. The implementation based on
the TFIDF model resulted in memory errors when scaling up by more than 100,000 patent
abstracts.

4.2 GloVe
The GloVemodel described in Section 3.3.2 was tested with the same test set as the TFIDF
model, and only on the abstract part of the patents. The manual assessment for the same
queries and the same test machine that was used while evaluating the TFIDF model re-
turned an approximate total MAP score of 52%. Unlike the TFIDF model, the memory
usage was handled well by the GloVe model. However, our implementation of the GloVe
model resulted in slow querying when scaling up by more than 100,000 patent abstracts.

4.3 Doc2Vec
The user interface of the final prototype we developed is shown in Figures 4.1 and 4.2.
Figure 4.1 shows the design of the system. There are in total three pages on the website:
Dashboard, Query, and Admin. The Dashboard page presents itself when a user navigates
to the website and gives a short introduction to the contents of the system. The Admin
page allows for logging in and retraining of the model, but this will not be available for the
ordinary user since it is solely used for development and testing purposes. Upon navigating
to the Query page, the user is presented with the interface in Figure 4.1. The user is here
prompted to enter a search query, which infers a word vector to the Doc2Vec model.

Figure 4.1: Image showing the query page of the final prototype.
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Figure 4.2: Image showing the results obtained after executing a
query to the system.

Figure 4.2 shows what happens once the user has entered a query. A list will present
itself, showing the 100 best matching paragraphs. The user can then order and filter the
results based on the title, the patent ID, the number of matches per document, or the best
matching query. Once the user clicks on one list entry, the document will be collected
from the database, showing its full content. The user may also look up all the individually
matching paragraphs in each document.

The final prototype shown in Figures 4.1 and 4.2 contained approximately 1 million
patents. A query to the system was executed in approximately 3 seconds. When testing
our system on the test set in Section 3.4, it returned a MAP score of 40%.
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Chapter 5
Discussion

This chapter discusses the implications of the results obtained during the development of
the system. Given the implemented system, we give answers to the following questions:

• How well does our system actually facilitate patent engineers in performing their
prior art study when receiving a new project?

• How well does the system stand up to the current industry standards with regards to
efficiency and accuracy?

• What are the potential drawbacks of the current system, and what future research
can be done in order to discover potential improvements to the system?

• Why is massive patent data a problem and how is our system developed to handle
this?

5.1 Model comparison
5.1.1 TFIDF
The first model, the TFIDF model, worked sufficiently well when it came to smaller
amounts of data. The TFIDFmodel takes into account specific words only, with no context
of words included, which still worked relatively well. One big drawback with the TFIDF
model is its sparse matrix representation, which is fast, but verymemory expensive to scale
up. Also, one of the key requirements and goals of this new system would be that it would
be able to handle the context of words and their semantic representations, which wasn’t
taken into account here at all, only the frequency of terms in relation to the occurrence in
all of the documents.
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It is important to note that the querying was only done on abstracts, because of the
simple reason that testing on claims and descriptions too would take a very long time,
perhaps even be impossible due to memory errors, with the test machine. By querying
only the abstracts of the patent, a substantial amount of essential data is missing from the
corpus, and even if the precision appears to be high in some cases, it is very likely that it
gives a false sense of accuracy when taking the entire patent into consideration. The model
was tested on claims and description too, however, after processing for over a minute the
memory requirement had exceeded well over the total amount of RAMon the test machine,
which resulted in memory errors and no relevant output.

We could have provided our TFIDF implementation with an indexer, such as Lucene,
to improve the performance (Lucene, 2019). Instead of searching for the entire text, each
word is instead mapped with an index, and Lucene will perform a fast lookup on the spe-
cific index which subsequently returns the text. However, since TFIDF still is lacking the
context based searches, we decided that the effort of implementing an indexer would not
be worth it, and we instead decided to implement a second model.

5.1.2 GloVe
We tested the second model, the pretrained GloVe model on a Wikipedia corpus, as an
alternative to the TFIDF model. This model tackled two problems which TFIDF did not:
It countered memory problems caused by the sparse matrix representation from TFIDF,
and it also used semantic representations of the words with the use of word vectors.

The GloVe model suffered from a different issue compared to TFIDF when scaling up.
The pretrained model loaded without issues no matter the size of the corpus. However, it
suffered from not being able to handle querying fast enough. Even though the model was
loaded, and the query didn’t require much memory (less than 1 GB), it took a very long
time. When querying with abstracts, claims, and description in the model with 100.000
documents, one query took 9 minutes to process. Since the goal of the system is to handle
ideally more than 100 million patents, it would be practically impossible for the GloVe
model to process that much data. Even with perfect parallelization of the workload with
computing clusters, it would cost a substantial amount of money to maintain all these
machines.

The explanation behind this poor performance is due to the fact that with each query,
feature vectors are constructed using the pretrained model for both the query and all of the
patents in the system, where the similarity is then calculated with the constructed feature
vectors, and then sorted so that the n most similar documents are retrieved. A possible
optimization would be to compute the feature vectors for each patent document in the
database initially and store them somewhere for later use, which would probably make the
queries much quicker. A better system for our use case would be to perhaps train our own
GloVe model on patent data, instead of using a pretrained model which has been trained
on other types of text data that doesn’t cover the representation of patents particularly well.

5.1.3 Doc2Vec
The third and last model, which also is the one we decided to incorporate into our final
prototype, is our own trainedmodel usingDoc2Vec. The first approachwe tookwas to treat
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the whole text of a patent separately as one input to the Doc2Vec trainer. So in this case,
each document would be trained only once. During testing of the model, we discovered
various problems with treating the entire patent as one input to the system, as presented in
Section 3.3.3. As the general structure of a patent consists of an abstract, a list of claims,
and a description, the variance in semantic representation between these three sections
tend to be high. This makes it harder for the model to learn a general representation of
the document as a whole. This is why we decided to analyze and tag the patent paragraph
by paragraph instead, and this is what the final prototype, shown in Figures 4.1 and 4.2, is
built on.

5.2 Comparison with an industry standard
search tool

The system we developed had the goal of facilitating the prior art study done during the
patent drafting process. Since the purpose of our system is to find semantically similar
patent paragraphs, it is very interesting to see howwell it performs in relation to the current
state of the art patent search engines. As explained in Section 3.4, we benchmarked our
system with that of Orbit Intelligence. The comparison between our system and Orbit
Intelligence was done on the exact same dataset, containing patents released by the USPTO
between the year 2016 and 2018. As shown in Table 3.1, this corresponds to approximately
1 million patents.

The Doc2Vec testing was conducted by patent experts performing new queries, so
the MAP score on the systems compared to the MAP score retrieved when testing the
TFIDF and GloVe based systems is no longer relevant. The interesting comparison in
this case instead is between the MAP scores retrieved when querying our system versus
the keyword-based system Orbit. Additionally, how the contents of the patents retrieved
differ from each other may give some suggestions about cases where one system performs
better than the other, without regarding the MAP score. We could let the patent experts
evaluate the TFIDF and GloVe models too, with the initial test set. However, the result
would most likely still be difficult to evaluate, since the test set only contained 100,000
patent abstracts. Since an abstract doesn’t contain sufficient information for an expert to
thoroughly evaluate its relevance, we instead decided to focus on the 1 million patent test
set for Doc2Vec.

Considering the MAP score, Orbit gave us 46%, which compared to our system’s 40%
only is a slight difference. It is however remarkable that none of the search results that
were returned by Orbit overlapped with our system’s results. This means that Orbit was
able to find several relevant patents which our system did not manage to find. And con-
versely, our system managed to find several documents which Orbit did not manage to
find. This observation substantiates the claim that the prototype we developed can serve a
very important role in the prior art study. In order to deduce for what type of queries and
patents our system works best on, further research has to be done. It is, however, clear that
our system can be used as a complement to the keyword-based search engines, similar to
Orbit, used today.

An additional comparison can be done in regards to the efficiency of the two systems.
An advantage with our system is that the keyword searches do not have to be defined as
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they do for Orbit searches. The keyword definition is of the essence when searching for
a patent, and the current keyword creation scheme of Orbit is based on different Boolean
algebra combinations together with advanced filtering. Our system instead only requires
a description, a claim, or a technical specification to be able to find appropriate results.
To exemplify this, the keyword-based search for the invention Video doorbell is shown in
Format 5.1.

((Video door?bell) AND (access control) AND (fac+ w recogn+) AND (facebook or social
media))

(5.1)
As seen in Format 5.1, Orbit takes a selection of cleverly defined keywords as input.

These types of searches take some effort to produce whereas an input to our systemmay be
fast if there exists a technical specification or similar. Moreover, the inputs to Orbit have a
wide variety of combinations that you may try combined for bigger coverage, whereas our
system only takes the input once. The input compatible with our system, corresponding to
Format 5.1, is shown in Format 5.2.

A video enabled doorbell connected to a security system for access control to a domestic
residence. The doorbell uses facial recognition to identify visitors and matches the face
of the visitor with a database of known faces. The database of known faces are friends on
Facebook.

(5.2)
The reason why we did not have any overlapping search results when comparing our

system with Orbit can be a combination of different aspects, where the following two are
the most feasible:

• Since the systems works fundamentally different when it comes to input queries, one
explanation may be that both of the systems would have required multiple inputs
describing the same invention. To increase the search space, Orbit could take a
different boolean combination of keywords, whereas our system could be given e.g
a claim or an alternate description. However, our system would most likely show
similar result, since it is based on semantical context.

• The nature of a word embeddings based topic model compared to a keyword based
model will cause the systems to give different results. Since the inputs were previ-
ously unseen, we did not know whether an invention like this existed or not in the
database.

5.3 Massive data in relation to computational
speed and memory

A source of complexity in the system is the introduction of additional data. If, for example,
the prototype would have contained 100,000 abstracts from patents, as the initial test set
did, the development of the system would require much less effort. On the other hand, it
would not serve its purpose very well in practice, because by only examining a fraction of
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the total patent space, as well as a fraction of each individual patent, a substantial amount of
data would be disregarded. This data is very important to analyze when deciding whether
the found patent is relevant or not. The introduction of massive data is evidently also the
reason why a cloud architecture was necessary, together with the hypothetical scenario
where the system would contain multiple simultaneous users.

The primary bottleneck of the final system is definitely the memory usage. There are
two major reasons why the system requires a large amount of RAM to function.

1. Firstly, before training the model, the system needs to have quick access to the
patents in the database. Hence, the MongoDB database will reserve a big amount of
memory. One of the advantages with MongoDB database however, which is men-
tioned in Section 3.5.3, is that it can easily be scalable to multiple machines if nec-
essary.

2. Secondly, the memory requirement is also large during training. Although the train-
ing has been implemented to use as little memory as possible, with several iterators
and streaming, the files saved to the disk from Gensim’s Doc2Vec still requires a
substantial amount of memory. The aggregation and similarity service needs to
have direct access to the model files to be able to infer a new feature vector from the
obtained query to return a similarity score.

When considering computational speed, a fundamental requirement is a high-end pro-
cessor during the creation of the model. By having a higher clock frequency, the time
spent preprocessing could be reduced, and by having more processing cores, the worker
thread count during training could also be increased, thus improving parallelization of the
process.

Given the system hardware requirements, an interesting question to be posed is: How
well does the system scale with more data? TheMongoDB service containing the database
can be parallelized over many nodes, whereas that possibility doesn’t exist when it comes
to the analysis and aggregation and similarity services. There are several files being formed
during the creation of the model, all which takes up a bit of memory each. The min_count
thresholdmentioned below defines theminimum frequency of words required for a specific
word to be included in the vocabulary. For the test set containing one million patents, these
are the following values:

• One million unique words in vocabulary with min_count threshold set to 10: As
there exist a finite number of unique words, this file will be expected to have a sub-
linear complexity notation as more and more patents are added to the vocabulary.
This essentially means that the number of unique words will not contribute to the
memory bottleneck of the system when adding more data.

• 70 million paragraph labels: The number of paragraph labels, on the other hand,
will consistently increase linearly with every patent, if the assumption is made that
a patent will continue to consist of the same amount of paragraphs per document.
However, with the current test set of approximately one million patents, this file only
takes up just over 3 GB of memory.
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As of June 2018, the USPTO had published over 10 million patents in total (USPTO,
2018). The interesting thing to note is that USPTO published its first five million patents
between the years of 1790 and 1991, and the last fivemillion in the following 27 years. This
trend is likely to continue, and statistics from WIPO establishes that this trend is followed
by other large patent organizations. Considering that the number of issued patents will be
expected to grow in the future, there may not be a finite resource requirement set. The
reason why we want to upscale the system is twofold:

1. The first and most apparent reason is that we ideally want to cover the entire space
of patents, to be able to find every relevant document that exists. The system has
so far only been developed and tested on the USPTO bulk data, but extensions to
other organizations only require a way to obtain the bulk data, via e.g adjusting the
XML parser. The other parts of the system work identical without considering what
language is being analyzed.

2. The second reason is that more data may increase accuracy. By providing the system
with more training examples, the system will continuously update itself with new
semantic formulations and additional unique words, which finally enables it to better
predict the content of the new, previously unseen, queries.

5.4 Further development and improvements
During development, several issues and reflections have risen regarding a future develop-
ment approach. Although it is outside of the scope of the Master’s project, it is clear that
our current prototype can be improved further.

5.4.1 Parameter tuning
The general way of improving the precision and overall performance of the trained model
consists of experimenting with various parameters, as there isn’t really a straightforward
way of figuring out the optimal parameter values for a set of data beforehand.

In Section 2.2.4, we presented two different approaches for learning the word vectors
of Doc2Vec. Distributed bag of words (PV-DBOW) was only used out of the two options.
Further experimenting is required to evaluate whether training word-vectors, as the dis-
tributed memory (PV-DM) approach suggests, would give any significant precision boost
to justify the much longer time needed to train the model, as opposed to only training the
doc-vectors.

The dimensionality of the feature vectors can potentially be experimented further with.
The final prototype had a fixed vector size of 100, but a higher dimension would be able
to catch a more detailed context and potentially improving the precision in that regard.
The problem with increasing this specific parameter is that it would require much more
memory and storage, which hurts the scalability of the system. This means that there are
two other parameters that may be tuned before increasing the vector size, which does not
affect the scalability. The first one being epochs, which modifies the number of times
word travel in the neural network. This parameter only affects training time, which is less
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of an issue. Finally, we could filter out more or fewer words by adjusting the minimum
threshold for how many times a word may occur in the corpus.

5.4.2 Patent releases

Patent organizations handle update distributions for new patents differently. USPTO pro-
vide weekly releases of newly granted patents, and they should be able to be inserted into
the database and trained, to keep the model up-to-date at all times. One issue though, re-
garding further training on an existing model, is that it is currently not possible to directly
update/build the vocabulary without having to retrain the whole model.

A potential approach to this problem is to update the vocabulary less frequently (e.g.
once per month). The reasoning behind this approach and why it could work well is due to
the fact that if the model already has a sufficiently big and diverse vocabulary, one weekly
update of 5000 to 7000 patents would usually not contain many (or perhaps any) new
words that are not in the vocabulary already. It is also unlikely that one weekly update
will contain new formulations or previously unseen sentence combinations. However, the
model still requires retraining after an arbitrary number of months. This is because the
model will require to keep pace with innovation and the filing of new patent applications.

5.4.3 Paragraph concatenation

The suggested Doc2Vec implementation we have taken in this thesis is to train the model
paragraph by paragraph. This is because a poor performance was discovered when analyz-
ing the patents by abstract, claims, and description. After labeling and training these large
chunks of texts as three separate training examples, the model would yield results from
a global perspective, rather than a detailed section of a text. This is a problem, because
the differences may often exist in small details. The similarities provided were all almost
exactly the same, and there was no clear way of making sense of the results. This is why
our approach performed better, by summarizing how many individual paragraphs matches
one document contained.

In some cases you may want to combine several paragraphs, to instead be able to get
a more global perspective of the patent text. The approach would be that two or more
consecutive paragraphs in a patent may be of greater importance combined, compared to
what they would have been if they were tagged and trained separately. The idea behind
this is rather abstract, and it could definitely be something to research further.

Consider Figure 5.1 as an example. In this specific example, two patents are being
analyzed.
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Figure 5.1: Paragraph concatenation example with two patents.

Our system will, with the current prototype implementation, return zero matches for
Document 1 and two matches for Document 2. However, if we were to train the model
with labels representing a concatenation of Paragraphs 1 and 2, Document 1 would return
one match, whereas Document 2 now would return zero. If the paragraph match from
Document 1 is potentially more relevant than the two separate matches from Document
2, this could now be found with the new trained pairs of paragraphs. With a combination
of pairs, the time complexity would increase exponentially, which would result in poor
scalability.

However, this is a subject of further research as certain modifications can be made to
what paragraphs are to be concatenated with each other. For example, a certain concatena-
tion can serve a greater semantic meaning in a patent describing a mechanical construction
as opposed to a chemistry-related patent.
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Chapter 6
Conclusion

Statistics show that there is a consistent increase in patent filings across the world. The core
differences between innovations are often found in small details of the patent description,
which asserts the need for an efficient, robust, and accurate search engine. The current state
of the art search engines are insufficient; performing a prior art study today can take up to
20 hours for an expert in the patent industry, depending on what type of invention is being
examined. This is because the keyword-based search engines of today lack intelligence.
They require combinations of cleverly crafted search queries, and the results retrieved still
may not be of relevance. An intelligent search engine that can discover the context of a
technical specification or comparable document is in great demand (Tseng et al., 2007).

As shown in Section 1.3, suggestions for intelligent tools in the patent industry have
been investigated. The system which we have developed during this Master’s project of-
fers a practical utilization accordingly. The development process presented in Chapter 3
showed some flaws with using TFIDF and GloVe as topic models for the specific problem
of the thesis. Suggestions to intelligent tools in the patent industry have been investigated,
as shown in Section 1.3.

• The one-hot encoding which TFIDF is built on required heavy memory to store its
vector representations for the words, because of the sparse matrix representation.
TFIDF also disregarded context and would, therefore, be inappropriate for the prob-
lem.

• GloVewas not suitable during the development because of performance issues when
inferring queries as vectors, as the feature vectors for the model had to be rebuilt.

The cloud architecture built around Doc2Vec was shown to work best for the prob-
lem in regards to scalability, efficiency, and accuracy. By using a model based on word
embeddings like Doc2Vec, to discover word and paragraph context, two problems can be
resolved.
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1. The first finding is that word embeddings discover context which the current state
of the art patent search engines do not find. The system comparison presented in
Section 5.2 showed that relevant search results could be retrieved by our system
which the Orbit tool did not find. With the current prototype, the converse was also
true. Therefore, the suggestion of using our word embeddings tool as a complement
to the current state of the art patent search engines was made.

2. The second finding presented in Section 5.2 showed that our system can be used with
less effort in producing the search queries. This can potentially be very beneficial
in terms of hours saved when performing prior art studies.

Numerous potential improvement areas are suggested. The improvements are related to
different approaches in training the model, handling new releases, and feature extensions.
The model creation approach we have implemented is to train the model paragraph by
paragraph, although further potential improvements can be done to this.

The purpose of ourMaster’s project was to contribute to knowledge regarding informa-
tion retrieval techniques in patent text mining and address limitations of the current state
of the art patent search engines. The implemented system can be seen as a sufficiently
good first prototype, which can be further researched and built upon in future work.
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Semantiskt intelligent sökmotor för
massiv patentdata

POPULÄRVETENSKAPLIG SAMMANFATTNING Emil Tostrup, Sani Mesic

En exponentiell ökning av patent i världen tillsammans med varierande semantiska
teknikbeskrivningar försvårar möjligheterna att hitta sammanfallande teknik. Detta
arbete presenterar ett system som, till skillnad från nuvarande industristandarder,
använder smarta textbehandlingsalgoritmer för att hitta relevant sökresultat.

Det krävs en djup teknisk förståelse för att
analysera om ny teknik går att patentera. För
att kunna avgöra om en uppfinning är unik eller
uppfyller ett unikt syfte behöver en genomgående
studie utföras, där redan känd teknik undersöks.
Skillnaderna ligger inte sällan i detaljerna. Två
tekniska uppfinningar kan potentiellt sätt beskri-
vas på hur många sätt som helst, trots att de
behandlar exakt samma område. Detta innebär
att det inte räcker att studera nyckelorden som
beskriver tekniken, utan det krävs en förståelse
på detaljnivå. Ett stort problem idag bland nu-
varande state of the art patentsökmotorer, är att
de tar beskrivande nyckelord som inparametrar,
och jämför dessa specifika orden med tidigare
förekomster i patentdatabaser. Genom att enbart
analysera de beskrivande orden försvinner mycket
semantisk mening bakom dem. Semantisk mening
i detta fallet talar exempelvis om hur ord förekom-
mer i meningar, hur de används i förhållande till
närliggande ord, eller hur storskaliga synonyma
formuleringar kan vara av relevans. Detta är in-
formation som kan visa sig vara väldigt nödvändig
då man genomför en nyhetsundersökning för att ta
reda på relevant närliggande känd teknik.

Vi har utvecklat ett system som avser fören-
kla den inledande delen av processen som krävs

för att få patent på sin uppfinning. För att pro-
ducera sökresultat med semantisk förståelse an-
vänds en modell som tränats på en enorm mängd
rå patentdata från den stora amerikanska paten-
torganisationen, USPTO. Med hjälp av denna
enorma mängd data, har modellen blivit så pass
intelligent att den kan skatta den semantiska in-
nebörden av nya, tidigare osedda, meningsformu-
leringar. Modellen baserar sina förutsägningar på
i vilken kontext orden tidigare har använts i an-
dra patentdokument. Det har visat sig att sys-
temet fungerar som ett utmärkt komplement till
dagens nyckelordbaserade sökmotorer för att hitta
relevant sökresultat.

Hur använder man då systemet? Enkelt!
Det är bara att navigera till webbadressen på din
dator eller mobila enhet. Väl där, letar du dig
in på sidan för sökningar och sen är det bara
att direkt börja använda systemet, likt den val-
fria sökmotor du är van vid! Träning av modellen
sker offline utan att användaren behöver tänka på
det. Sökresultaten kommer uppenbara sig i en
lista inom loppet av några sekunder. I listan kan
du sen på ett begripligt sätt sortera sökresultaten
baserat på antalet träffar i enskilt dokument, bäst
hittade enskild sökparagraf i ett dokument, eller
varför inte på patenttitel?
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