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Abstract

Today, large amounts of textual information can be found everywhere. If
you have used digital platforms for reading books you have probably noticed
there are algorithms recommending similar books you might like. Some rec-
ommendations are based on other reader’s patterns and some are based on sim-
ilar content. One class of unsupervised machine learning algorithms used for
semantic analysis are called topic models. These algorithms are widely used
in the industry for long texts, but in the past years, there has been an increasing
interest towards analyzing short texts on digital platforms, such as SMS and
social media. This is due to high interest in analyzing trending topics. Doing
this presents problems in data sparsity caused by the short documents.

Topic models are statistical models that cluster words based on their co-
occurrences in the documents. This results in word clusters which humans
can interpret as topics, such as “weather” or “politics”. On top of this, each
document can be given a low dimensional representation used for clustering
or labeling to allow for classification of unseen text messages.

In this thesis, we have chosen latent Dirichlet allocation and biterm topic
model as our topic models. To infer the latent variables of these models, we
used Gibbs sampling. In total, 15 unique topics are found, though more and
better topics can be found with an improved model.

Keywords: MSc, unsupervised, machine learning, topic model, latent Dirichlet allo-
cation, biterm topic model
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Chapter 1
Introduction

1.1 Background
Today, more and more industries are moving towards data-driven solutions to keep up with
the rapid changes in society. The telecommunication industry is not an exception. Due to
the digital revolution, the way we humans interact with each other has completely changed.

In the past few years, there has been a large interest in analyzing texts, especially short
texts, on different platforms. Analyzing text messages can show trends in many different
industries. These trends can yield valuable insight information for companies. For exam-
ple, it can tell which directions to move their business towards, and where they can find
new customers.

In this Thesis, we will focus on topic models, which are statistical models used to find
underlying topics in large amounts of text. We will also discuss the challenges analyzing
short texts and evaluating unsupervised machine learning algorithms.

This report is written at and in collaboration with Sinch AB, which is a telecommu-
nication company developing cloud communications platform for mobile phones. Their
platform is used by their clients to send text messages to individuals. Since billions of
messages are being sent every month, the company wanted us to analyze the data to get
an overview of what type of messages are going through their system. Doing this, makes
it possible for the company to track and predict potential trends in the telecommunication
industry.

Looking at the currently existing research papers, although we found many papers
discussing the process and results of using topic models on short texts, we found no papers
using SMS as input. Therefore, the specific use of topic models on SMS is unique to us.
This is our contribution to the field of short text clustering.
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1. Introduction

1.2 Thesis objective
The objective of this Thesis is to find the underlying topics of Sinch’s dataset and the
prevalence of each topic that is found. Three topic models will be evaluated based on
different metrics and human evaluation in order to find the most suitable model.

1.3 Outline
In this report, Chapter 2 will first present the theoretical background used and needed to
understand the report. The tools used will also be explained, together with what theory
lies behind those. Afterwards in Chapter 3, we will present the methodology we used
when training and finding our final models, as well as preprocessing our data. The human
evaluation, which was done in the form as a survey, is also explained in the form of example
questions. Then, the results obtained from our models are presented in Chapter 4, and
further discussed in Chapter 5. Lastly, we present our conclusions of this thesis.
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Chapter 2
Theory

2.1 Topic models
In the field of machine learning, topic modeling is a category of statistical models often
used in text mining (Boyd-Graber et al., 2017). They have the property of clustering words
from the same topic by making use of the word co-occurrences found in a corpus. The
input to such models is generally text documents, which can range from chapters in a book
to very short tweets. The model will then extract topics, represented by a list of words and
their probability of belonging to a topic. The top words of such a list will form a topic
interpretable by a human. An example topic would be the top words: wind, snow, rain,
sunny, cloudy, ..., which we humans can interpret as “weather”.

Using topic modeling, one can find structures in corpora. Some structures might be
obvious, such as separating a newspaper into sports sections and politics. Other uses can
be to find relations between research papers of different areas of subject. A concrete ex-
ample would be taking each news article from a newspaper as a document, with the whole
newspaper being the corpus. Topic models can then automatically separate the corpus into
different topics, i.e. clusters, such as “sports” or “politics”. How the topics are generated
depends on the model used, and in this report, we will use latent Dirichlet allocation and
biterm topic model.

2.2 Notation and terminology
In this section, we explain the notations and terminology that is used throughout the report
when explaining the topic models.

The main focus of this thesis is on discrete data (text) and its basic unit word. We
will have V unique words and use one-hot encoding to represent them. This means that a
word will be represented as a unit vector that has one single element equal to one and all

9



2. Theory

other elements equal to zero. When N words are combined into a sequence, we call it a
document. A document will be denoted as d = (w1,w2, . . . ,wN ), where wN is the nth word
in the vocabulary. Here, we assume a bag-of-words representation, which means that the
order of the word sequence does not matter. When we have a collection of M documents
we call it a corpus. A corpus is represented as D = {d1, d2, . . . , dM}. Also, a semantic topic
is what a human would refer to as a topic. Most variables are explained in Table 2.1. Note
that this table is mainly a glossary for reference when reading the report later, in order
to easily find the meanings of different variables used. The explanations for some of the
variables will come later.

Table 2.1: List of variables and their explanations.

wi,w j word
d document
D corpus
|D| number of documents
l̃ average document length
V number of words in the vocabulary
M number of documents in the corpus
k topic number
K number of topics
φ topic-word distribution
φk topic-word distribution for topic k
φi, j probability for word wi in topic j
θ global document-topic distribution
θd document-topic distribution for document d
z topic assignment for all words
zi topic assignment for word wi
α hyperparameter for document-topic distribution
β hyperparameter for topic-word distribution
b biterm
B biterm multiset
|B| number of biterms in biterm multiset

2.3 Probabilistic Building Blocks
When working with probabilistic models, the goal is to find parameters for unobserved
models that can find a good way of explaining observed data. A common first step in
inference is to reverse this process. By inference, we mean that we estimate the values of
hidden parameters in the model. Instead of finding parameters that can make the model
explain the observed data, we can instead start with generating data based on the given
model parameters. Let us call this a generative story.

A generative story can be described as a recipe, listing a sequence of random events,
that creates the dataset we are trying to explain. To facilitate the understanding of the
models we will explain the most important probability distributions involved, how these

10



2.3 Probabilistic Building Blocks

distributions are parameterized and what samples look like when drawn from these distri-
butions, see Table 2.2.

Distribution PDF Example parameters Example draws

Gaussian 1
√

2σ2π
e−

(x−µ)2

2σ2 µ = 2, σ2 = 1.1 x = 2.21

Multinomial Γ(
∑

i xi+1)∏
i Γ(xi+1)

∏
i φ

xi
i φ = [0.1 0.6 0.3]T x = 2

Dirichlet
∏K

i=1 Γ(αi)
Γ(
∑K

i=1 αi)
∏K

i=1 θ
αi−1
i α = [1.1 0.1 0.1]T θ = [0.8 0.15 0.05]T

Table 2.2: Probability distributions used in the generative stories
of topic models (Boyd-Graber et al., 2017). PDF stands for prob-
ability density function.

Gaussian. The Gaussian distribution does not have a central role in the topic models
we are using, but we assume the reader is familiar with this distribution and will therefore
include it to compare with other distributions that we are using to make it easier to under-
stand the other distributions.

A Gaussian distribution is a continuous probability distribution. It means we can put
our hand into a bag of balls and get a ball with any real value from the interval (−∞,∞).
Note, all values do not have the same probability of being picked. Gaussian distributions
have two parameters, the mean µ and the variance σ2 that control the distribution of real
values in the bag. Most of the balls from the bag will have values close to the mean, and
how close depends on the variance. The higher the variance is, the more spread out the
samples will be. In Table 2.2, we can see example parameters for a Gaussian distribution
(µ = 2 and σ2 = 1.1) and an example draw (x = 2.21) from this distribution.

Multinomial. As mentioned in Section 2.2, documents are a sequence of words,
therefore a distribution over discrete sets is of interest. We can for example visualize the
multinomial distribution by thinking of a weighted die, where each side of the die is re-
lated to a distinct probability outcome. These probabilities correspond to the parameters
of a multinomial distribution. For example, in Table 2.2 we have the example parameter
φ = [0.1 0.6 0.3]T . Imagine we have a die with three sides (1, 2, 3) and that each side is
weighted according to φ. When rolling the die we can get the side with number two face
up. This corresponds to the example draw x = 2 and the probability on position two with
probability 0.6 in φ.

Multinomial distributions play a huge role in topic models, because they describe the
relation between both words and topics, and topics and documents. The relation between
words and topics is called a topic distribution, denoted as φk, where k is the topic number.
Each topic gives higher weights to some words more than others. For example, we have
a topic “sports” with the multinomial distribution φk = [0.1 0.6 0.3]T for the words tour,
win and world. Then, in the generative process we will explain later, we want to draw a
word following the weights of the probability vector φk.

11



2. Theory

(a) τ = (0.8, 0.2, 0.2),
α0 = 10

(b) τ = (0.2, 0.8, 0.2),
α0 = 10

(c) τ = (0.33, 0.33, 0.33),
α0 = 0.1

Figure 2.1: Probability density functions on the (K − 1) simplex
for different values of the basemeasure τ and the concentration pa-
rameter α. Darker areas correspond to higher probabilities (Boyd-
Graber et al., 2017).

The relation between topics and documents is denoted as θd . The vector contains the
probabilities of document d belonging to different topics.

For example, we have a multinomial distribution θd = [0.1 0.6 0.3]T for the topics
sports, politics and economics. Then, when drawing from θd in the generative process, the
document created is most likely related to politics.

Dirichlet. In Table 2.2, we can see that the sample drawn from a Dirichlet distribution
is a probability vector. More formally, a k-dimensional Dirichlet random variable θ can
take values in the (k−1)-simplex (a k-vector θ lies in the (k−1)-simplex if θi ≥ 0,

∑k
i=1 θi =

1), and has the following probability density on this simplex (Blei et al., 2003):

p(θ|α) =
Γ(
∑k

i=1 αi)∏k
i=1 Γ(αi)

θα1−1
1 ...θαk−1

k , (2.1)

where the parameterα is a k-vector with components αi > 0, and where Γ(x) is the Gamma
function. We will see in the next section that this probability vector corresponds to the
parameters for the multinomial distribution.

Similar to the Gaussian distribution, the Dirichlet distribution also has parameters that
correspond to mean and variance. The expected value (mean) from a Dirichlet distribution
is called the “base measure” and is denoted τ. It is the values we would get by averaging
many draws from the distribution. Then we have the parameter that controls how much
each draw deviates from the base measure α0, which is called the concentration parameter.
It is also common to combine τ and α0 into α = α0τ for each dimension (Boyd-Graber
et al., 2017).

In Figures 2.1-2.2, we can observe the behavior of the Dirichlet distribution for differ-
ent values on the concentration parameter. If α0 is large then the draws from the distribu-
tion are close to τ. If α0 is small, then the draws from the distribution will deviate from τ.
Basically, for small values on α0, the distribution will become very sparse, which means
that only a few values have a high probability and all other values are small.

12



2.4 Latent Dirichlet Allocation

(a) α = 0.33 (b) α = 1.00 (c) α = 2.00

Figure 2.2: Probability density functions in 3D with varying val-
ues on α with uniform base measure τ.

In topic modeling, the concentration parameter α0 has a major effect on the results,
because we want to create a model that can reflect the properties of the real documents.
Do we want to assume a document covers all possible topics or is it more reasonable
to assume only a handful topics are covered in a document? Modelling the sparsity of
Dirichlet distributions is therefore of high importance.

There are other important special cases of the Dirichlet distribution that is good to
mention. When τ is uniform, we say we have a symmetric distribution. This means that
all topics are equally favored.

In Table 2.2, we can see an example parameter (α = [1.1 0.1 0.1]T ) of a Dirichlet
distribution. The weights in the example are not uniform, which means some topics or
words have been given more weight. When drawing a sample from the distribution with
α as parameter, we get a new vector that corresponds to our word or topic distributions
(θ = [0.8 0.15 0.05]T ) .

In the rest of the report, we do not have prior knowledge of any words or topics of the
dataset we are working with, and therefore we use a symmetric Dirichlet distribution.

2.4 Latent Dirichlet Allocation
Latent Dirichlet allocation (LDA) is a generative probabilisticmodel created byBlei et al.
(2003). Such generative probabilistic models can be described by a generative process.
The generative process for the LDA model we use is given below:

1. For each topic k:

(a) draw a topic-word distribution φk ~ Dirichlet(β)

2. For each document d in D:

(a) draw a document-topic distribution θd ~ Dirichlet(α)
(b) For each word wi in d:

i. draw a topic assignment zi ~ Multinomial(θd)
ii. draw a word wi ~ Multinomial(φzi )

13



2. Theory

Table 2.3: Example of LDA output

"airport security" "competitive sports" "court"
security win man

air lead charge
service take court
airport world face
sydney title murder
flight aussie jail

concern tour trial
new open accuse
plan record sentence
fear claim drug
. . . . . . . . .

In the generative process, we use “~” to describe drawing a sample from a distribution.
For instance, “φk ~ Dirichlet(β)” means that we draw a sample φk = [0.1, 0.05, 0.001, ..]
from a (symmetric) Dirichlet distribution with the parameter β.

The intuitive interpretation for α can be found in the Dirichlet paragraph above. Mean-
while, β controls the word density of each topic. A high value of β means that the proba-
bility of each word being chosen is split more evenly among each word. This effectively
results in having more dominant words in the topic. On the other hand, a low β will result
in allowing fewer dominant words. The goal is to find a β which yields one semantic topic
to appear in each topic cluster.

In Eq. 2.2 we have the resulting joint distribution from the generative process described
above.

p(θ, φ, z, d|α, β) = p(φ|β)p(θ|α)p(z|θ)p(d|φz) (2.2)

The variables that are most interesting to us are the latent (i.e. hidden) variables, z, θ
and φ, where z is the topic assignment for all words.

What makes LDA very interesting for our problem is that it can in an unsupervised way
learn topics that correspond to the human interpretation. In Table 2.3, we see an example
of three topics. Each column represents one topic. The top row is a summary of each
topic, added afterwards by humans.

Plate model. Plate models are a graphical way to represent the relations between
random variables. In our case, we have a plate model of LDA in Figure 2.3, which shows
the relations between LDAs different random variables. Each circle represents a random
variable in the model. A circle with gray background means that it is observable. Mean-
while, a white backgroundmeans that it is a latent variable. As for the plates, they represent
a certain number of repetitions, given by a fixed variable. Lastly, the arrows show the de-
pendencies between the random variables. For example, the latent variable θ is drawn M
times (once for each document), based on the random variable α. We also see that the topic
assignment z is dependent on the latent variable θ. Even though α is a random variable,
we choose to set it ourselves as a hyperparameter.

14



2.4 Latent Dirichlet Allocation

Figure 2.3: Plate model representation of LDA.

It is worth checking the generative process for LDA again, while comparing it to Figure
2.3. One can then see the similarities, and that it is a helpful tool to visualize the generative
process of LDA.

2.4.1 Inference
In topic modelling, the key problem is to reverse the generative process and compute the
posterior distributions of the latent variables in themodel given the observed data (Darling,
2011). Focusing on LDA, this means solving the following equation:

p(θ, φ, z|d, α, β) =
p(θ, φ, z, d|α, β)

p(d|α, β)
(2.3)

Since the normalization factor, p(d|α, β), cannot be computed exactly, the distribu-
tion is in general intractable to compute (Blei et al., 2003). However, even though exact
inference is intractable for the posterior distribution, there are a number of approximate
inference algorithm that can be considered. In this report, we use a Markov chain Monte
Carlo (MCMC) algorithm called Gibbs sampling.

2.4.2 Gibbs sampling
The goal of MCMC algorithms is to construct a Markov chain that has the posterior distri-
bution in Eq. 2.3 as its stationary distribution. Sampling from the converged distribution
should be close to sampling from the desired posterior distribution (Darling, 2011). In
general the following procedure is being performed when using Gibbs sampling:

1. Randomly initialize each topic assignment zi

2. For each iteration t:

2.1 zt+1
1 ~ p(z1|z(t)

2 , z
(t)
3 , ..., z

(t)
m )

2.2 zt+1
2 ~ p(z2|z(t+1)

1 , z(t)
3 , ..., z

(t)
m )

2.m zt+1
m ~ p(zm|z(t+1)

1 , z(t+1)
2 , ..., z(t+1)

m−1 )
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2. Theory

Instead of probabilistically sampling a new state all at once for all variables, the idea be-
hind Gibbs sampling is to do it one at a time. When probabilistically sampling a new state
for a variable, the new state will depend on all other variables states (Resnik and Hardisty,
2009). This procedure is repeated several times until convergence has been reached. In
theory, convergence is guaranteed with Gibbs sampling but in practice it is not possible
to know how many iterations are required to reach the stationary distribution. Gibbs sam-
pling is a very powerful tool with good performance. Even though not knowing when it
converges is a big problem, one can obtain an acceptable estimation of convergence by
calculating the log-likelihood (Darling, 2011). We will discuss more about log-likelihood
further on in the report.

An example of an iteration with Gibbs sampling with three variables is represented
below (Resnik and Hardisty, 2009):

• The new value of z1 is sampled conditioning on the old values of z2 and z3.

• The new value of z2 is sampled conditioning on the new value of z1 and the old value
of z3.

• The new value of z3 is sampled conditioning on the new values of z1 and z2.

2.4.3 Collapsed Gibbs sampling.
For LDA, we are interested in the topic assignments, document-topic distributions and
topics. Before explaining collapsed Gibbs sampling, we will talk about these variables
more thoroughly.

Topic Assignments. As mentioned in Section 2.4, every word is assumed to be
generated from a topic, therefore we can consider the topic assignment of a word, zi, to
be a variable. For example, if we take a look at the word “court”, this word can refer to a
tennis court or a court where a trial can be held. In other words, a word can have different
meanings and therefore appear in different topics, i.e. have different topic assignments.
This variable is important to be able to estimate the global properties of the topic model
(Boyd-Graber et al., 2017).

Document-topic distributions. Document-topic distribution is a distribution
over topics for a document. Basically, it tells us how popular each topic is in a document.
Counting how often a topic appears in a document can give us a hint of its popularity. Let’s
define nd,k as the number of times topic k appears in document d. The more popular the
topic is in the document the larger nd,k will be. Since we are working with probabilities,
and the variable is larger than one, we can normalize it with the number of words in the
document (Boyd-Graber et al., 2017).

nd,k∑
k′ nd,k′

(2.4)
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Observe that Eq. 2.4 can sometimes be problematic, because if a topic does not occur
in a document the numerator will be equal to zero. The equation is ignoring the influence
of the Dirichlet distribution, therefore the following ratio is preferred

θd,k =
nd,k + αk∑
k′ nd,k′ + αk′

(2.5)

This ratio will never become zero (since α > 0), and that is good because we want
all topics to have the probability to appear in a document. This opens up the door for
the sampler to explore more of the possible combinations. In Eq. 2.5, we can see how α
affects the document-topic distribution. α effectively adds additional counts to each topic
in each document. This means that the actual counts to each topic matter less for higher α.
Instead, the result will approach a uniform distribution as α increases. On the other hand,
a low α will let the documents contribute on their own.

Topics. A topic is a distribution over words, also referred to as topic-word distribution
in the report. In order to understand what a topic is about we have to look at the words that
have been assigned to that topic. The probability of a word in a topic is defined as

φk,w =
nk,w + βw∑

w′ nk,w′ + βw′
(2.6)

where nk,w is the number of words w in topic k and β is the Dirichlet parameter for the
topic-word distribution (Boyd-Graber et al., 2017). Similarly to Eq. 2.5 and α, Eq. 2.6 re-
veals the effect of β on the topic-word distribution. A high value of β adds more additional
counts to each word in each topic. In that case, the actual contribution from the document
matters less. A low value of β, however, will just like for α and the document-topic distri-
bution, let the documents contribute the most. Still, due to β > 0, it will always guarantee
that all words have a small probability of appearing in any topic.

As we can see Eqs. 2.5-2.6, θd and φk depend on zi. This is because we need to know
the topic assignments z in order to count nd,k and nk,w. Knowing this makes it possible to
use a simpler algorithm by integrating out the multinomial parameters and only sample
zi. This is called a collapsed Gibbs sampler. Note that the topic assignment z is a latent
variable, drawn from a multinomial distribution according to the generative process, while
the topic k is a concrete value of z, i.e. k ∈ 1, 2, ..,K (Darling, 2011).

The collapsed Gibbs sampler calculates the probability of a topic z being assigned to
a word wi, given the topic assignments of all other words. More formally, the algorithm
will compute the following posterior probability

p(zi = k|z−i, d, α, β) =
p(zi, z−i, d|α, β)
p(z−i, d|α, β)

(2.7)

where z−i means all topic assignments except for zi and d all words in a document. The
specific Gibbs sampling equation for assigning a word to a particular topic for LDA can
be found in Eq. 2.8. If the reader is interested in the derivation steps they can be found in
Darling (2011).

p(zi = k|z−i, d, α, β) ∝
n(−i)

d,k + αk∑
k′ n

(−i)
d,k′ + αk′

n(−i)
k,w + βw∑

w′ n
(−i)
k,w′ + βw′

(2.8)
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n(−i)
d,k : Number of times topic k occurs in document d

n(−i)
k,w : Number of times word w occurs in topic k
αk : Dirichlet parameter for document-topic distribution
βw : Dirichlet parameter for topic-word distribution

For every word, we compute Eq. 2.8 for all topics. This results in a word-topic distri-
bution. From this multinomial distribution, we draw a new topic assignment for word wi,
update nd,. and n.,w and move on to the next word and repeat. Further on, collapsed Gibbs
sampling is referred to as Gibbs sampling.

Log-likelihood. Log-likelihood is a standard measure of performance for statistical
models of natural language and is defined as (Pleplé, 2013):

L(Dtest) = logp(Dtest |φ, α) =
∑

d

logp(du|φ, α), (2.9)

where Dtest is a collection of unseen documents du and φ is the word distribution matrix.
The higher the log-likelihood value, the better the model.

2.4.4 Gibbs sampling example
Let’s illustrate with an example what exactly is happening when performing the Gibbs
sampling algorithm.

Assume we observe a document of length 5 created from the generative process, with
random topic assignments 3,2,3,1,1. From each topic, we sample the words home, lending,
boosts, bank, profits, see Table 2.4. Assume the same procedure is repeated multiple times
for all documents in the dataset.

Table 2.4: Example document with topic assignments and sam-
pled words from the generative process.

3 2 3 1 1
home lending boosts bank profits

Next, we want to improve the topic assignments of the words in the documents. For
example, in Table 2.5, home has occurred 36 times and was assigned topic 3, 35 times and
topic 1, once.

Table 2.5: Topic assignments of words in example corpus.

1 2 3
bank 42 1 0
boosts 0 0 20
home 1 0 35
lending 10 8 1
profits 50 0 1
...
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When we want to update the topic assignment of a word we start with pretending that
the topic assignment of that word is unknown. Let’s start with the word lending as in Table
2.6.

Table 2.6: Assume the topic assignment of lending is unknown.

3 ? 3 1 1
home lending boosts bank profits

Due to assuming not knowing the topic assignment of this word, the number of times
the word lending occurs in topic 2 decreases from 8 to 7, see Table 2.7.

Table 2.7: The number of times lending occurs in topic 2 de-
creases from 8 to 7.

1 2 3
bank 42 1 0
boosts 0 0 20
home 1 0 35
lending 10 7 1
profits 50 0 1
...

In the next step, we want to use the conditional probability distribution from Eg. 2.8.
Remember, the first factor tells us how much a document likes a topic. We can visualize
it with horizontal bars, see Figure 2.4.

Figure 2.4: Topic distribution for the document represented as
horizontal bars.

As we can see, the document uses topic 1 and 3 more compared to topic 2. Note that
topic 2 is not completely zero due to the Dirichlet parameter in Eq. 2.8. The second factor
of the equation tells us how much a topic likes a word. Once again this can be visualized
with vertical bars, see Figure 2.5.
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Figure 2.5: The number of times lending occurs in each topic
represented as vertical bars.

We can see that the word lending is used a lot in topic 1, a fair bit in topic 2 and barely
in topic 3. Knowing the horizontal bars corresponds to the first factor and the vertical bars
to the second factor allows us to think about this geometrically.

Figure 2.6: Geometrical interpretation of topic assignment prob-
abilities.

Multiplying the bars together as in Figure 2.6 creates the rectangular areas, which
corresponds to the values of the conditional probabilities. In this case, the conditional
probability for selecting topic 1 is very large.

Let’s say topic 1 is being selected as the topic assignment for the word lending as in
Table 2.8, then the tables will be updated accordingly to Table 2.9.

Table 2.8: Topic assignment 1 has been assigned to lending.

3 1 3 1 1
home lending boosts bank profits

For each iteration in the Gibbs sampling algorithm, these steps are performed for all
words in all documents.

2.4.5 Biterm Topic Model
Biterm topic model (BTM) is a topic model based on forming biterms from a corpus,
proposed by Yan et al. (2013). According to their own tests, it performed better than LDA
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Table 2.9: The number of times lending occurs in topic 1 in-
creases from 10 to 11.

1 2 3
bank 42 1 0
boosts 0 0 20
home 1 0 35
lending 11 7 1
profits 50 0 1
...

on short texts. The model assumes a generative process from which a biterm multiset is
formed. This is an alternative representation of the corpus we observe, and we wish to
infer the latent variables of this process from the biterm multiset.

We can write the generative process for BTM as:

1. For each topic k

(a) draw a topic-word distribution φk ~ Dirichlet(β)

2. Draw a topic distribution θ ~ Dirichlet(α) for the whole collection

3. For each biterm b in the biterm multiset B

(a) draw a topic assignment zb ~ Multinomial(θ)
(b) draw two words: wi, w j ~ Multinomial(φzb)

Here, we can see a difference compared to LDA, which draws a document-topic distribu-
tion for every document. By forming biterm from all documents and storing them in the
biterm multiset B, we alleviate the problem of sparsity in data, which LDA is known to
have problems with in short texts (Yan et al., 2013). Going back to BTM and its generative
process, the probability of each biterm is given by Eq. 2.10:

P(b) =
∑

z
P(z)P(wi |z)P(w j |z) =

∑
z
θzφwi |zφw j |z (2.10)

where P(z) is the probability of a topic being chosen and P(wi |z) or P(w j |z) is the prob-
ability of a word being chosen, given topic z. Also, by assuming independence between
biterms, a corpus, which is equivalent to the biterm multiset, can be represented by Eq.
2.11:

P(B) =
∏
i, j

∑
z
θzφwi |zφw j |z, (2.11)

In reality, since these probability distributions in Eq. 2.11 are unknown, they are esti-
mated from counting the words in a biterm multiset formed from the corpus.

Before training, BTM extracts biterms from all documents. This is done by taking an
unordered Cartesian product. In other words, this basically means that every unordered
pair of words in a document is paired together into a biterm. For example, the sentence I
ate the fruit. would generate the following biterms:

21



2. Theory

I ate, I the, I fruit, ate the, ate fruit, the fruit

By forming biterms from each document into a biterm multiset covering the whole
corpus, the problem of sparsity during topic inference which exists for LDA in short texts
will be made up for. Because the purpose of biterms is to capture the local word co-
occurrences, a window size is introduced during the biterm generation. In this way, words
that occur too far apart from each other will not form a biterm.

As BTMmodels the biterms over the whole corpus directly, there is no direct modeling
of the document-topic distribution as in LDA. Instead, only the topic-word distribution and
the global topic distribution are given. However, the document-topic distribution can be
approximated by marginalizing over biterms, as shown in Eq. 2.12:

P(z|d) =
∑

b

P(z|b)P(b|d) (2.12)

The first term in the sum can then be considered as the probability of choosing topic
z times the probability of independently choosing the two words of the biterm b in that
topic, then normalized. This can be seen in Eq. 2.13. As for P(b|d), this can be chosen
empirically, and is very close to a uniform distribution, an estimation which works well in
practice.

P(z|b) =
P(z)P(wi |z)P(w j |z)∑

z′ P(z′)P(wi |z′)P(w j |z′)
(2.13)

Hyperparameters. BTM has four hyperparameters which play a big role in de-
termining the final model. The number of topics K is one which has to be decided upon,
as well as α, β and the number of Gibbs iterations until the model is trained. Similarly
to LDA, α and β control the distribution of topics in documents and the distribution of
words in topics respectively. Since α and β are hyperparameters of symmetric Dirichlet
distributions, a higher α means that the topic assignments for each biterm will be more
evenly distributed. Similarly for β, a higher value means that more words are likely in
each topic. Typically in short texts, we expect very few topics in each document, and the
keywords that describe each topic should not be too many. Therefore, fairly low values of
α and β are to be expected.

Plate model. The generative process assumed by BTM can be represented in a plate
model, just as LDA, seen in Figure 2.7. In the plate model, we can see that β is the hyper-
parameter for ϕ, and that ϕ is drawn K times. This is the topic-word distribution for each
topic. We can also see that θ is only drawn once, using α as a hyperparameter. From θ, we
draw |B| biterms, beginning with the topic assignment z, then moving on to the two words
wi and w j that form the biterm. This plate diagram can be compared with the generative
process of BTM, where similarities can be found. Once again, like in LDA, collapsed
Gibbs sampling can be used to sample the topic assignment and infer the latent variables
φ and θ separately afterwards.
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2.4 Latent Dirichlet Allocation

Figure 2.7: Plate model representation of BTM.

Gibbs sampling. In Eq. 2.14, we see the resulting joint distribution from BTM’s
generative process.

p(θ, φ, z, b|α, β) = p(φ|β)p(θ|α)p(z|θ)p(b|φz) (2.14)
Just like in LDA, the interesting variables are z, θ and φ. However, what we actually

want to solve is Eq. 2.15, since we observe the dataset.

p(θ, φ, z|b, α, β) =
p(θ, φ, z, b|α, β)

p(b|α, β)
(2.15)

However, the denominator is intractable once again, so we turn to Gibbs sampling.
The algorithm for Gibbs sampling in BTM consists of initializing all biterms with a topic
assignment, then for each biterm in the bitermmultiset, removing the topic assignment of a
biterm and recompute it based on all other topic assignments. This conditional probability
can be seen in Eq. 2.16:

P(zb|z−b, B, α, β) ∝
(n(−i)

k + α)∑
k′ n

(−i)
k′ + α

·
(n(−i)

k,wi
+ β)(n(−i)

k,w j
+ β)

(
∑

w′ n
(−i)
k,w′ + β)2

(2.16)

n(−i)
k is the number of times the biterm b appears in the corpus excluding the current

biterm itself, while n(−i)
k,wi

and n(−i)
k,w j

is the number of times word wi and w j respectively
appears in topic k, once again excluding the words in the biterm b.

Recomputing the topic assignments for all biterms is one iteration of Gibbs sampling.
This process is then repeated, and will converge towards the actual distribution of the latent
variables of the generative process.

Once the Gibbs sampling is done, figuring out the latent variables is just a matter of
counting the topic assignments of the biterms according to Eqs. 2.17 and 2.18:

θk =
nk + α

|B| + Kα
(2.17)

φk,w =
nk,w + β∑
w′ nk,w′ + β

(2.18)
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Table 2.10: Time and memory complexity of the topic models
used.

Method Time complexity Memory complexity
LDA O(K |D|l̃) |D|K + VK + |D|l̃
BTM O(K |B|) K + VK + |B|

Once again, the variables here are the same as in Eq. 2.16, though no word counts are
excluded. In Eqs. 2.16-2.18, we see the presence of the hyperparameters α and β. They
can be viewed as additional counts of each word and topic. Here, we see that assigning a
high value of these hyperparameters will yield topics with more words being dominant and
increase the prevalence of each topic in the documents. Also, since the hyperparameters
are strictly positive, there will always be an additional count added to each word. Having
the additional counts allows each word to have some probability of appearing in each topic,
even if it is minimal. As a consequence, it allows for the model to explore more possible
combinations of topics for each biterm and in turn, also documents.

2.4.6 Time and memory complexity
According to Yan et al. (2013), the complexity of the two methods are given in Table 2.10.

K is the number of topics, |D| is the number of documents, l̃ is the average document
length, V is the number of unique words in the corpus and |B| is the size of the biterm
multiset from BTM. The time consuming part of the algorithms are the conditional prob-
ability of Gibbs sampling seen in Eq. 2.16 for BTM and Eq. 2.8 for LDA. The rest of the
algorithm is mostly initialization as well as some final estimations of the latent variables,
i.e. θ and φ, which only needs to be done once. Memory-wise, BTM needs a counter
for nk, the number of times a topic appears in total, resulting in K counters. It also needs
to keep track of nk,w, the number of times each word appears in each topic, which means
additional VK counters. Finally, each biterm has a topic assignment which needs to be
tracked as well. This requires |B| counters.

LDA requires counters for nd,k, the number of times each topic appears in each docu-
ment. That will be |D|K counters. The number of times each word appears in each topic
nk,w also requires VK counters just like in BTM. Lastly, the topic assignment z for each
word occurrence requires |D|l̃ counters.

2.5 Visualization
The main visualization tool we use is called pyLDAvis, a Python port of LDAvis for R
(Sievert and Shirley, 2014). Despite its name, it allows for visualization of topic mod-
els in general, given the right input. This includes the topic-word distribution and the
document-topic distribution of the topic model. The visualization tool then makes use of
a dimensionality reduction technique to bring down the topics into a 2D representation.
It also manages to preserve some "closeness" in semantic meaning of topics during this
process, meaning that topics in the same field can be found close to each other. This means

24



2.5 Visualization

that topics such as court and crime lie closer to each other compared to golf, which lies
closer to for example cricket.

The options for dimensionality reduction of pyLDAvis is limited to three algorithms,
namely principal coordinate analysis (PCoA), metric multidimensional scaling (mMDS)
and t-distributed stochastic neighbor embedding (t-SNE). In this report, we use PCoA as
the dimensionality reduction technique. The method requires a distance measure, which
we choose to be the Jensen-Shannon distance. This distance can be used to measure sim-
ilarities between two probability distributions. It is shown in Eq. 2.19:

DJS(P,Q) =
√

DKL(P ‖ M) + DKL(Q ‖ M)
2

(2.19)

Where M is the pointwise mean of P and Q, and DKL(·, ·) is the Kullback-Leibler
divergence, given in Eq. 2.20:

DKL(P,Q) =
∑
x∈X

P(x) log
P(x)
Q(x)

(2.20)

where P(x) and Q(x) are probability distributions. After computing all the distances and
storing them in a matrix, a principal component analysis (PCA) is then performed on this
distance matrix. PCA is a generalization of diagonalizing a matrix (Abdi and Williams,
2010). Picking the two largest principal components of this distance matrix, they can be
plotted by projecting all cluster centers onto the plane spanned by the chosen principal
components. The principal components correspond to the eigenvectors of a diagonaliza-
tion. This is the result from pyLDAvis. An example of how pyLDAvis looks like can be
seen in Figure 2.8 and 2.9.

Since pyLDAvis depicts topics, which consists of words, there is no direct relation
between the size of each topic (circle) and the number of documents in them. Instead,
the marginal topic distribution is dependent on which words belong to each topic and the
probability of the word belonging to the topic.

Looking at Figure 2.8, one can see the distribution of topics in the two principal com-
ponents to the left. The chosen topic is marked in red. To the right, the red bar shows
how many times a word occurs in the chosen topic. Meanwhile, the blue bar represents
the overall word frequency in the whole corpus.

There are two keymetrics in pyLDAvis which are used, namely relevance and saliency.
The definition of relevance is given in Eq. 2.21:

relevance(w, k|λ) = λ log(φk,w) + (1 − λ) log
φk,w

Pw
(2.21)

where φk,w is the probability of word wi in topic k and Pw is the overall probability of
word wi in the corpus. Reasoning about Eq. 2.21, one can see that the relevance takes
both absolute frequencies as well as relative frequencies into account. The extreme cases
of λ = 0 and λ = 1 showcases what each term does. When λ = 0, what matters is the
quotient between the probability of a word occurring in the topic against the probability
of the word appearing globally in the corpus. Graphically, this means that the top words
of each topic are sorted in order by the quotient between the red bar and the blue bar to
the right in Figure 2.8. The other extreme case when λ = 1 implies that the words are
sorted by the length of the red bar to the right in Figure 2.8 for each topic. For values of λ
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Figure 2.8: pyLDAvis showing a topic about car crashes from one
million headlines (Yadav, 2018).

Figure 2.9: pyLDAvis showing the corpus-wide most salient
terms according to Eq. 2.22.

between 0 and 1, pyLDAvis will take both absolute and relative frequencies into account,
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weighing them according to λ.

saliency(w) = P(w)
∑

k

P(k|w) log
P(k|w)
P(k)

(2.22)

where P(k|w) is probability of topic k given word wi and P(k) is the probability of topic k.
We can see that the saliency is defined as the overall frequency of word wi times the

Kullback-Leibler divergence between a topic k and a word wi. The Kullback-Leibler diver-
gence here describes how informative a specific word is to a topic (Chuang et al., 2012).
The most salient terms of a news dataset can be seen in Figure 2.9. A word which occurs in
many topics will get a lower value than words only occurring in specific topics. Of course,
the overall word frequency will also play a role in determining the most salient terms.

However, since topics are not directly related to documents, there is still a need for
evaluation methods.

2.6 Evaluation
There are multiple ways of evaluating a topic model. Human evaluation where we design
tests is one possibility, and we will use two variants of these, called word intrusion and
topic intrusion (Chang et al., 2009). These will be presented further on in the Section
3.5. Another possibility is to use different kinds of metrics such as log-likelihood. It has
however been shown that log-likelihood has a negative correlation with human evaluation
(Chang et al., 2009). Even though there are other metrics that has positive correlation,
there is no guarantee that optimizing topic models over such metrics will yield an opti-
mal human-interpretable topic model, especially when taking the resolution of topics into
account.

However, since there are metrics that have a positive correlation with human evalua-
tion, they can still be used as a guideline (Röder et al., 2015). Among the metrics that are
used, there is normalized pointwise mutual information (NPMI) and UMass. These are
coherence scores which can be used to measure how good a topic is. Röder et al. (2015)
provides a framework for evaluating topic models. Among these are some previously es-
tablished measurements such as UMass and NPMI. There, they are defined as seen in Eqs.
2.23 and 2.24.

CUMass =
2

N · (N − 1)

N∑
i=2

j=1∑
i−1

log
P(wi,w j) + ε

P(w j)
(2.23)

NPMI(wi,w j) =
log P(wi ,w j )+ε

P(wi)·P(w j )

− log(P(wi,w j) + ε )
(2.24)

where the denominator of Eq. 2.24 is a normalization factor, such that the value is limited
between [-1,1].

The sum in CUMass is computed over the top words of each topic, a number which has
to be specified. Meanwhile, the NPMI is computed for each pair of top words and summed
up, then averaged. However, there is still the question of how the probabilities in Eqs. 2.23
and 2.24 are computed. One difference is thatCUMass uses Boolean document counts. This
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(a) Placing initial clus-
ter centers

(b) Assign cluster to
data points.

(c) Move cluster cen-
ters.

(d) Repeat (b) and (c)
until convergence.

Figure 2.10: Example of how K-means algorithm works. The
circles are cluster centers and the squares are data points.

means that one count is added for each document which contains word wi (and w j). NPMI
instead uses a sliding window. This means that each timewi andw j appears within nwords
of each other in a document, the joint probability P(wi,w j increases by one. Meanwhile,
the probability for a single word is still the number of times it appears in the corpus.

However, since coherence scores do not have any units, it becomes harder to compare
them. For example, a difference in NPMI coherence score of −0.9 from one model com-
pared to −0.3 from another is hard to quantify. If both models work with the same dataset,
we can say that the second model is better than the first, but not really by how much. For
that, we would need to manually examine each topic and evaluate the model ourselves.

Fortunately, there is also another way to evaluate our models. Since each document has
a document-topic distribution, we can use these to classify the documents. The simplest
way of doing this is by assigning the topic which is the most dominant for each document.
By dominant, we mean the topic which has the highest probability for a document in the
document’s document-topic distribution. We call this method the dominant topic.

Another method of assigning labels to documents is to use K-means on each docu-
ment. The representation of each document will be its document-topic distribution. The
hyperparameter for K-means is the number of clusters K . The algorithm will then initial-
ize by randomly placing K cluster centers. Then, each data point will be assigned a label
corresponding to the cluster center which lies closest to it. For each label, a new cluster
center is computed. This center is placed at the center of mass of all points belonging to
that label (assuming unit weight for each point). The process of assigning data points a
label and then computing new cluster centers is iterated for a set number of times or until
convergence. An example of how K-means works can be seen in Figure 2.10:

Having classified documents using two methods, one can compare these by assuming
that one of the methods is the correct answer and another method is the prediction. Then,
using the F1-score one can see similarities and dissimilarities between the different meth-
ods. The F1-score is the harmonic mean of the precision and recall. All these are defined
in Eqs. 2.25-2.27:

recall =
True positives

True positives + False negatives
(2.25)

precision =
True positives

True positives + False positives
(2.26)
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Figure 2.11: Example of a normalized confusion matrix, taken
from scikit-learn (Pedregosa et al., 2011).

F1 = 2 ·
precision · recall
precision + recall

(2.27)

Given a specific topic k, the true positives are the documents that are correctly classified
into topic k. The false negatives are documents that were classified in another topic while
actually belonging to topic k. Lastly, the false positives are documents that were classified
in topic k while actually belonging to another topic.

On top of the F1-scores for each topic, a confusion matrix can be plotted to get an
overview of how similar the different methods classify the documents. A confusion matrix
shows the relation between the actual label and the predicted label, sorted in a matrix. This
can also be normalized to get a feel for how correct the classifications are, see Figure 2.11.

2.6.1 Collocations
In some cases, there are words that do not make sense by themselves, or change meaning
when they are next to each other. Word that often appear together are called collocations.
When doing topic modelling, we want our models to recognize collocations. Seeing the
words world and cup by themselves can give them different meanings than if they appear
together as world cup. Similarly, seeing the words Sri and Lanka by themselves without
the other one may confuse people. Sri Lanka, on the other hand, is meaningful.

Working with our corpus, we need a method to systematically find collocations. It
is reasonable to assume that collocations are formed from word pairs that often appear
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together and seldom alone. In other words, if they have a high ratio of word co-occurrence
compared to appearing alone, they are likely to be a collocation. A good example of this
is Sri Lanka, whose words one rarely sees appearing alone. Since word co-occurrence is
a suitable measure for this, one can use NPMI from Eq. 2.24. By counting the number of
times the words occur alone and the number of times they appear together, we can compute
the NPMI score of that word pair. After doing this, one can then limit the collocations that
will form by setting a threshold, only allowing word pairs with a NPMI score higher than
the threshold to actually form collocations.
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Chapter 3
Method

In this chapter the applied methodology for LDA, BTM and LDA-U is presented. The first
section introduce the tools and the dataset we have used. Then, we explain how we take
advantage of the dataset to create a new input for one of the models, and how the most
significant parameters are being selected. In the following sections, the preprocessing
steps are described and also shown in Figure 3.1. Then, we describe the way the topic
clusters are being evaluated. Lastly, the way the messages were classified is explained.
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Figure 3.1: Flowchart showing the preprocessing steps.

32



3.1 Tools and dataset

3.1 Tools and dataset
For this work, we have used a Java implementation of LDA called MALLET (McCallum,
2002) and it uses collapsed Gibbs sampling when training a topic model. This is then
run through Python using a wrapper provided by gensim (Řehůřek and Sojka, 2010). Our
BTM code is taken from the original authors through their github page (Yan et al., 2013).
This is mainly a C++ implementation with some parts in Python, which can be run through
shell scripts. As for evaluating and visualizing our models, we have used several Python
libraries, including spaCy (Honnibal and Johnson, 2015), gensim, pandas (McKinney,
2010), numpy (Oliphant, 2006), matplotlib (Hunter, 2007), pyLDAvis (Sievert and Shirley,
2014), scikit-learn (Pedregosa et al., 2011).

The dataset is a collection of 210,000 text messages in English. The majority of the
messages have been used in the unsupervised machine learning algorithms, but we anno-
tated 1000 of those messages for the classification step.

3.2 Aggregation
Since it is known that LDA does not work well on short texts (Yan et al., 2013), we took
inspiration fromWeng et al. (2010) by aggregating the messages from the same company.
Aggregating means that we combine individual messages into larger documents. In our
case, we chose to aggregate 10 individual messages. The new messages are referred to as
pseudo-documents and are used as the input for a separate LDA model, which is further
on referred to as LDA-U.

When it comes to classification, aggregating the messages leads to the assumption of
that all messages in the same pseudo-document are related to the same topic. In reality,
it might not be a relevant assumption, but if we are only interested in exploring the latent
topics, it still serves this purpose.

3.3 Hyperparameters
3.3.1 α, β
Before training our topic models, we had to set the two parameters α and β. The first
idea would be to apply grid search, but due to BTM’s large time complexity it was not an
option. Instead, we used the recommended parameters from Yan et al. (2013), see Table
3.1. For the meanings of the hyperparameters, see Table 2.1.

Table 3.1: The set parameters for different models.

LDA BTM LDA-U
α 0.05 50

K
50
K

β 0.01 0.01 0.01
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(a) LDA, K = 5, log-likelihood (b) LDA, K = 50, log-likelihood

(c) BTM, K = 5, NPMI (d) BTM, K = 50, NPMI

Figure 3.2: Convergence for some of the models we trained.

3.3.2 Iterations
Prior to computing the number of topics, we had to assure the model converges for all
parameter settings. By calculating the log-likelihood we could set the number of required
Gibbs iterations. Since the model converges differently for different number of topics, we
had to check the convergence of each model’s log-likelihood. For example, Figures 3.2a-
3.2b shows the approximated required number of Gibbs sampling iterations for LDA to
converge for K = 5 and K = 50. Around 150 iterations are needed for K = 5, while
around 1500 iterations are needed for K = 50.

For BTM, the log-likelihood is intractable. We would need to form the biterm multiset
for the whole corpus, which approximately scales quadratically with the average length
of the documents. Then, for each biterm, we need to get the probability of this biterm
occurring in all the topics, sum them up and taking the logarithm. This process needs to
be done for each model we want to analyze.

Instead, we can use topic coherence, which gives a score based on theword co-occurrences
of the top words from each topic. This score can be computed reasonably fast and to some
extent, also tells us how good the model is. Since we know that human evaluation and
topic coherence are positively correlated (Chang et al., 2009), a higher score means a bet-
ter model, and if the score plateaus at some level, this would mean the model is not getting
much better.

As can be seen in Figure 3.2, the models requires different number of iterations for
different values of K for convergence. In general, each set of parameters α, β,K requires
us to check the convergence individually.
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3.3.3 Number of topics
The number of topicsK is a parameter we set before training our topicmodel algorithms. If
we choose a too low number it can lead to multiple topics in a topic cluster, while choosing
a too high number can lead to very fine-grained topics. We ran the topic models several
times and recorded how their topic coherence varied with the number of topics. Using
this, we could find a good value to start with.

We used two coherence score measures, namely NPMI and UMass. As can be seen
in Figures 3.3-3.5, the actual topic coherence scores differ a lot. The explanation is that
the scorers have different intervals. However, the important part is that the behavior of the
graphs are similar. To identify the approximated number of topics for the dataset the "el-
bow"methodwas used. Thismeans if an elbow shape can be identified in the graphs it has a
potential of being the optimal or close to the optimal number of topics. In Figure 3.3 several
elbows were identified. Both graphs for LDA strongly indicated K = 10, 15, 25, 35, 40, 45.
Looking at pyLDAvis for these K we could discover K = 10, 15 was too few topics, be-
cause multiple topics could be found in a topic cluster. While for K = 35, 40, 45 duplicated
topics could be found due to the topics being too fine-grained. Therefore, the initial value
at 25 is a good value to continue with. The same reasons apply for both BTM and LDA-U,
who had elbows at K = 20, 25, 45 and K = 10, 15, 25, 30, 35, 40 respectively.

Examining the topics closer, the best number of topics seemed to be K = 25. Note that
the plots for BTM has a lower resolution. This is due to computational constraints.

3.4 Preprocessing
In the following parts, the preprocessing step is described in the same order as the prepro-
cessing was performed.

3.4.1 Initial preprocessing
The dataset contains of messages with a lot of abbreviations, numbers, codes, links and
non-alphabetic characters. The dataset also contains a lot of duplicated messages and
messages following templates, where only a person name, code or time differs. In order
to obtain high quality messages some preprocessing steps were required.

We started by removing all type of links, numbers, codes and non-alphabetic charac-
ters, because we assumed this type of information would not contribute to interpretable
topics. When we tried to run the algorithms without removing these information, the
topics were uninterpretable. Characters such as “www” and “_” appeared as top words.
Note, in the example below the company name have been censored as “Anon#1”, but it
was included when training the model.

Before: Anon#1 Rx: _NAME_, your Rx is due now. Reply REFILL to fill.
Rx details: _URL_ HELP for more info & STOP to opt out of Rx alerts.
After: Rx your Rx is due now Reply REFILL to fill Rx details HELP for
more info STOP to opt out of Rx alerts
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Figure 3.3: LDA topic coherence for different values of K . Note
the elbows at K = 10, 15, 25, 35, 40, 45.

Figure 3.4: BTM topic coherence for different values of K . Note
the elbows at K = 20, 25, 45.

Figure 3.5: LDA-U topic coherence for different values of K .
Note the elbows at K = 10, 15, 25, 30, 35, 40.

In the second step, all the messages were tokenized, lower cased and one letter words were
removed. Tokenized means that the message is converted from a single string into a list
of words. Note, in the example below the censored company name does not follow the
preprocessing steps.

[’Anon#1’, rx’, ’your’, ’rx’, ’is’, ’due’, ’now’, ’reply’, ’to’, ’refill’, ’fill’, ’rx’,
details’, ’help’, ’for’, ’more’, ’info’, ’stop’, ’to’, ’opt’, ’out’, ’of’, ’alerts’]
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Grammatical words such as “your” and “for” are words that appear frequently, but do not
contribute to informative topics. These words are called stop words. Filtering stop words
is a common step in preprocessing text for various purposes. There are many different
list of stop words for English. We chose the improved list from Stone, Denis, Kwantes
(2010). This is also used in the Python libraries gensim and spaCy. This list contains 339
stop words.

[’Anon#1’, ’rx’, ’rx’, ’due’, ’now’, ’reply’, ’refill’, ’fill’, ’rx’, details’, ’help’,
’more’, ’info’, ’stop’, ’opt’, ’out’, ’alerts’]

Then we lemmatized the words, so “details” turned into “detail” and “alerts” into “alert”.
The lemmatization step does also turn words such as “saw” into “see” and “mice” into
“mouse”. This facilitated the text analysis, because it reduced the inflectional forms to a
common base form. Stemming could also be used, but since stemming cuts the ending
of a word the word could sometimes be difficult to interpret. For example, if stemming
was used “applying” would turn into “apply” and “applies” into “appli”. Even though it
works effectively for an English corpus, due to similar endings, the interpretation of the
topic was assumed to be more important for our case, therefore we chose lemmatization.
For our work, we used the lemmatizer from the spaCy library.

[’Anon#1’, ’rx’, ’rx’, ’due’, ’now’, ’reply’, ’refill’, ’fill’, ’rx’, ’detail’, ’help’,
’more’, ’info’, ’stop’, ’opt’, ’out’, ’alert’]

Lastly, documents that contained less than three words were removed. The motivation for
this is the shorter the document is, the more difficult it will be to obtain a "correct" topic
distribution of the document.

3.4.2 Removal of frequent words
In this step, we used the visualization tool pyLDAvis to examine the topics. As mentioned
earlier, there are a lot of template messages in the dataset. To avoid clustering based on
the templates more than the actual topics, we removed standard words such as “reply” and
“stop”. These words appear among the top words due to being very common in the corpus,
but do not contribute to a meaningful topic, see Figure 3.6.

In addition, removing these kinds of words not only makes the individual topics better,
it also removes connections between topics that should not be there. For example, the
word “stop” can be found in text messages regarding discounts and offers, but also in
appointments as reminders of a meeting. In both cases, they represent the possibility to opt
out of receiving any further messages of these kinds. However, the two kinds of messages
belong to different topics, and they should not be clustered together. Since topic find each
other depending on word co-occurrence in documents, removing these words also removes
possible connections between topics. This results in less mixed topic clusters.
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Figure 3.6: Illustration of removing standard text message words.
In this case, we remove “stop” and “reply”.

3.4.3 Collocations
The Python library gensim was used for detecting word collocations. When using the
related functions we had to choose a scorer and a threshold. We chose NPMI as the scorer,
because its score was limited to a specific interval of [−1, 1].

Unfortunately, for Sinch’s dataset word collocations did not have the same effect, be-
cause there are too many messages following a template. This resulted in many false word
collocations. Therefore, we took the decision to exclude forming word collocations.

3.4.4 Part-of-speech tagging
POS tags stands for part-of-speech tags and are used to classify words depending on their
meaning and usage. When performing the initial preprocessing steps, we kept all the words
that were classified as nouns, adjectives, verbs, adverbs and proper nouns. This combi-
nation of POS tags will further on be referred to as the default combination. To analyze
the POS tags, the topic coherence score was measured for different combinations. We
then chose the combination with the highest score. The combinations of POS tags that we
tested were default, only “nouns”, “nouns and adjectives”, and “nouns and verbs”. In Ta-
ble 3.2 we can see both NPMI and UMass recommends the default combination for LDA
and BTM, while the “nouns and verbs” combination is recommended for LDA-U. NPMI
and UMass do not agree on the best combination for LDA-U, but according to Röder et al.
(2015), NPMI is better correlated with human interpretation. Note, the topic coherence
scores varies a lot between the preprocessing steps. It is important to remember that the
topic coherence value is an average value over all all topics and that there is no unit for
this score.
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Table 3.2: Topic coherence scores for different combinations of
POS tags. Default refers to nouns, adjectives, verbs, adverbs and
proper nouns.

Default Nouns Nouns and adjectives Nouns and verbs
LDA (NPMI) -0.042 -0.120 -0.123 -0.086
LDA (UMass) -9.503 -10.980 -11.213 -10.143
BTM (NPMI) 0.019 -0.076 -0.049 -0.017
BTM (UMass) -8.264 -10.324 -10.019 -8.974
LDA-U (NPMI) -0.045 -0.031 -0.024 -0.018
LDA-U (UMass) -4.981 -6.357 -5.995 -5.204

Figure 3.7: Plots over unique words with respect to their docu-
ment occurrences.

3.4.5 Removal of uncommon words
Since we are working with business to customer messages, it is relevant to assume there
are plenty of words only being used a few times. We thought of words such as person
names. These words have a low probability of being elected as one of the top words due
to Eqs. 2.8 and 2.16. To improve the model further, we removed words that do not appear
frequently.

The question is how the threshold should be picked. We chose to determine the thresh-
old by counting how many documents each unique word appeared in. By doing this, we
could get an overview of the entire corpus. For example, we almost have 7,000 unique
words appearing only in one document, and three words appearing in more than 20,000
documents, see Figure 3.7. The graph to the right indicates a cutoff around 10-20 occur-
rences will result in a smoother curve. By measuring the topic coherence score for the
suggested thresholds, we could decide which one to use, see Table 3.3. Excluding the un-
common words will dramatically decrease the number of unique words and improve the
model due to a better quality of the input.

3.4.6 Tune topics
In the very last step, pyLDAvis was used to do some final fine tuning. For each topic we
analyzed the top 10 words, because what the model found semantically close does not
always correspond to the human interpretation as semantically close. The words we found
irrelevant for the topic were added to the list of stop words.
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Table 3.3: Topic coherence scores for different cutoff thresholds.

10 15 20
LDA (NPMI) -0.080 -0.085 -0.045
LDA (UMass) -10.444 -10.336 -9.455
BTM (NPMI) 0.001 0.030 0.003
BTM (UMass) -8.498 -7.926 -8.537

LDA-U (NPMI) -0.057 -0.020 -0.026
LDA-U (UMass) -5.737 -5.201 -5.332

(a) Log-likelihood for final model of LDA. (b) Log-likelihood for final model of LDA-U.

(c) NPMI for final model of BTM (d) UMass for final model of BTM

Figure 3.8: Convergence for the final models we trained.

As we have mentioned, the dataset contains a lot of duplicated messages due to oc-
casionally specific massive sendouts. The model could sometimes pick up on these mes-
sages, which made some topics less clear. We detected these disturbing messages and
decided to remove them from the dataset.

On top of that, we also removed words which were part of some kind of template, as
well as not contributing much to any topic. Examples of these would be some kind of code
or unique identifier, or formal words to make a text message look more polite.

3.4.7 Convergence of chosen models
After all these preprocessing steps, we have finished choosing the parameters for prepro-
cessing our dataset and hyperparameters for our models. Now, we need to ensure that we
train these models long enough for them to converge. Therefore, we once again check the
log-likelihood for LDA and LDA-U, as well as the topic coherence scores for BTM. These
can be seen in Figure 3.8.

With these metrics ensuring the convergence of our final models, we decided to use
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300 Gibbs iterations for BTM, 1000 for LDA and 500 for LDA-U.

3.4.8 Clustering documents
Both LDA and BTM can output a document-topic distribution. This distribution can be
used to categorize the documents into different classes. For this, one can use the most
dominant topic of each document, i.e. the topic which the document has the highest prob-
ability of belonging to. This way, one can cluster similar documents together as well as
relate them to the words that dominate the topic they belong to. However, one needs to
be careful when doing this, since documents which show a relatively high chance of be-
longing to several topics are less likely to be semantically related to their assigned class.
Using document-topic distributions, we can also classify documents with K-means. We
tried doing this, and it yielded very similar results to picking the dominant topic. The dif-
ference mostly lay in one topic which "absorbed" documents from all other topics. This
result can be seen in Figure 3.9. Even then, the other topics in K-means clustering did
not necessarily improve that much, while one topic was basically ruined. In addition, the
F1-scores lay between 0.92 and 1 for all topics except for the predicted label 22 of Figure
3.9, which "absorbed" documents from the other topics. Therefore, we decided to move
on using dominant topic as our classifying method.

3.4.9 pyLDAvis
The optimal value for relevance in order to identify topic was around 0.6, according to
Sievert and Shirley (2014). This means that taking both local and global factors into ac-
count yielded the best result. This value seems to be specific for their own user study,
however we also did some tests in comparing different values for λ, and we found that the
value of 0.6 seemed to work fine. Therefore, we also chose to investigate our own topics
using that value.

In addition, we mostly used relevance when analyzing and discovering topics, since
pyLDAvis started sorting words by relevance instead of saliency whenever a topic was
selected.

3.5 Human evaluation
Inspired by the steps in Chang et al. (2009), we designed two forms of human evaluation
called word intrusion and topic intrusion. Because our goal of using topic models is to
summarize the messages and produce semantically coherent topics, it is also important
that humans can make sense of the topics. We test this by creating a survey based on our
models, where word intrusion refers to picking a topic and represent it by a list of its top
words. In addition, a word with a low probability within the same topic will be injected as
an intruder. The task would then be for humans to correctly identify the intruding word.
An easier example would then be the following words:

Angeles, Philadelphia, Atlanta, Los, Beijing, Washington
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Figure 3.9: Normalized confusionmatrix between dominant topic
as true label and K-means as predicted label.

The intruding word could then reasonably be Beijing, as it does not lie in North Amer-
ica. Also note that the collocation Los Angeles has been split up into two alternatives.
When creating the evaluation, we did not mention collocation, and purposefully left it to
the people evaluating topics to notice it themselves. Since only one word could be the
intruder, identifying a collocation excluded them from being the intruder.

Another example of word intrusion which is harder can look like this:

Tennis, Squash, Badminton, Soccer, Bandy, Golf

Here, it may not be so clear which word the intruder is. It could be soccer as it does
not need equipment that acts as extensions of your body. However, considering the shape
of the "ball" in these sports, the intruder could then be badminton, since it uses a shut-
tlecock which is far from a spherical shape. Other explanations could also justify other
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alternatives. In our evaluation forms, we had word intrusions of several difficulty levels,
ranging from the easy example to the hard example given. Even though the intruder of the
harder example is ambiguous, there will only be one correct answer. Therefore, one can
expect some questions to be hard and have a low human evaluation rate.

Topic intrusion, on the other hand, involves several topics as well as documents. Since
it is possible to compute the probability of a document belonging to a specific topic, this is
used in topic intrusion. By selecting a document and finding the document’s top topics, i.e.
the topics which the document is most likely to belong to, these topics will be represented
by their top eight words. Once again, an intruder will be injected, chosen as a topic which
the document has a low probability of belonging to. This topic will also be represented
by its top eight words. With this setup, the task is to read the document in question, and
then identify which topic is the intruder. If the document is too long, a few sentences at
most will be presented instead of the whole document. An example of this would be the
following sentence and topics:

Tour de France winner Lance Armstrong was accused of doping and had his
awards stripped.

• cancer, blood, doping, test, hormone, urine, performance, sports

• accuse, false, gossip, scandal, rumor, slander, talk, news

• election, candidate, party, government, poll, majority, result, minority

• cycling, road, gear, brake, bike, competition, saddle, tire

In this case, one could argue that the third topic is the odd one out, since the example
text mentions sentences and things related to scandals, as well as doping and cycling.

However, since we are working with short texts, we assume that each document only
contains one topic. Therefore, wewill do the topic intrusion differently. Instead of showing
the three most dominant topics, we show only one dominant topic. We also show the
bottom three topics instead of just one, i.e. we show the three least dominant topics for
each document. An example of this would then be the following sentence and topics:

Table tennis is a sport.

• ball, audience, arena, referee, winner, sport, court, intensive

• mechanics, photon, spin, molecule, quantum, quark, wave, particle

• chair, table, sofa, plastic, desk, wood, metal, fabric

• meat, cucumber, banana, vegetarian, pineapple, steak, potato, chives

The sentence is related to sports, and the task would be to pick out the topic about
sports, which is the first topic. The other topics can be quantum physics, furniture and
food.

Since the dataset we worked with was based on text messages from companies, some
words could have a different meaning or interpretation compared to a general situation. In
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these cases, we chose to provide additional information, mentioning that it is some kind
of company if it was a company, and writing out an abbreviation if it was an abbreviation.
This information was given next to the word in parantheses. For example, the abbrevia-
tion btwn was written as btwn (between) and a company like Sinch was written as Sinch
(telecom company). Also, due to sensitive information, the survey was only handed out to
employees within the company.

The examples given above can be seen as very easy to identify the intruder, except for
the second word intruder example. Generally, the word intrusions might not be that easy,
and even within one topic model, one topic might be better clustered than another. For
this, we compute a coherence score for each topic. By making humans evaluate topics
with high and low topic coherence, we can confirm the correlation between our chosen
scores and possibly identify what factors make the topics clear.

We chose the topics uniformly based on their coherence score. For word intrusion in
every model, we picked every other topic starting with the best one according to NPMI. If
we reach the bottom topic, we restart from the second best and pick every other. This was
done until we reached 15 topics. As for topic intrusion, we took 5 topics evenly spread out
in topic coherence score. By doing this, we hoped to see if we could find any correlations
between human evaluation and the coherence scores we had chosen. The choice of NPMI
over UMass was due to Röder et al. (2015) showing better results for the former.

3.5.1 Text classification
So far, we have only explored the dataset without measuring any accuracy. In order to
measure the accuracy of the document clustering performed in Section 3.4.8, we anno-
tated 1,000 text messages that were not a part of building the model. The annotation and
classification are based on the number of unique topics. The topics are named similarly to
Table 2.3. We look at the top words and find a word that captures the meaning of the top
words. In case that is not enough, we also check the top documents.

If multiple topic clusters are considered to have the same topic, they will be combined
into one class. If one topic cluster consists of multiple topics, the top messages indicate
which topic is themost dominant, and therefore which topic to choose. There is also a topic
cluster named “others” for messages that do not fit into any of the detected categories.

When classifying the unseen documents, two different procedures are used for themod-
els. For LDA and LDA-U, Gibbs sampling is used to infer the topic distributions. When
Gibbs sampling was used for building the model, the topic assignments were randomly
initialized. In this step, each word is instead assigned to the most probable topic according
to the model. Since we have a trainedmodel and a relevant initialization point, it is relevant
to assume not many iterations are needed for the unseen documents to converge. We chose
to set the number of iterations to 100. Note that, when inferring the topic distributions we
do not affect any counts in the model. For BTM, Eq. 2.12 is computed when inferring the
topic distribution.

It is important to mention topic modelling is not made for classification, but can be
used with caution. We do not expect the classification to work excellently, because we are
aware of that more topics can be found.
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Chapter 4
Results

In this chapter, we present the results from the three topic models we trained. The first sec-
tion presents a word cloud visualization of the found topics. The second section visualizes
the topic clusters using pyLDAvis. The third section presents the identified topic names in
descending order according to the topic coherence scores NPMI and UMass. In the fourth
and fifth section the results from the human evaluation are presented and compared to the
topic coherence scores. The last section presents the results from the classification.

4.1 Word clouds
The output from the topic models are topic clusters or more mathematically, 25 vectors
with the probability of each word belonging to the topic. In the word clouds in Figures 4.1-
4.3 we can observe three examples from the given dataset. All three models can identify a
public transportation, verification code and job cluster. The words the models assume are
semantically close are similar between the models, but the weight differs. A bigger font
size indicates a higher weight. In Figure 4.3a and 4.3b we can observe that LDA’s and
BTM’s job clusters attracted some bank respective housing related words.

(a) Model: LDA (b) Model: BTM (c) Model: LDA-U

Figure 4.1: Word clouds showing the top words of a topic about
public transportation.
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(a) Model: LDA (b) Model: BTM (c) Model: LDA-U

Figure 4.2: Word clouds showing the top words of a topic about
verification codes.

(a) Model: LDA (b) Model: BTM (c) Model: LDA-U

Figure 4.3: Word clouds showing the top words of a topic about
jobs.

4.2 Topic coherence
In Tables 4.1-4.3 one can observe the topics in descending order according to the coherence
score (NPMI). The coherence score gives us a quantitative measurement of how clear the
topics are or how semantically related the words that form the topics are. The higher topic
coherence score, the better the topic is. In Table 4.4, we have summarized the different
topics each model could find. The three models could find similar topics, but there are
minor variations.

4.3 pyLDAvis
In this section the distances between the topic clusters are visualized. Topic clusters that
are semantically related will lie closer to each other, while clusters that are not related will
be further apart. The distances are measured from the center of each circle.

Looking at Figure 4.4, five distinct groups can be found. The first group can be found in
the upper right corner (6, 9). In Table 4.1, the reader can see these clusters were identified
as topic clusters about verification codes. Moving downwards to another larger group of
topic clusters (12, 13, 17, 20, 24) we can observe the majority of the bank balance and
transaction related topic clusters have been collected. Nearby, to the left of this cluster
other bank related topic clusters (3, 5) can be found. Below, we can find three topic clusters
(8, 14, 23) about medical reminders. Lastly, in the left bottom corner the reader can find
the topic clusters (2, 15) that are related to the banking support.

In Figure 4.5, we have the pyLDAvis presentation of BTMand four distinct topic cluster
groups can be identified. In the upper left corner five topic clusters (3, 5, 9, 14, 18) about
bank transactions can be found. To the right, we have three topic clusters (1, 2, 24) about
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medical reminders. Lastly, in the upper right corner the reader can observe three topic
clusters (16, 23, 25) about public transportation. The other topic clusters have gathered in
the middle and are more difficult to distinguish.

The pyLDAvis visualization of themodel LDA-U can be seen in Figure 4.6. The groups
of topic clusters are more difficult to distinguish, but along the left side of the coordinate
system six topic clusters (3, 6, 10, 18, 21, 23) related to bank transactions can be identified.
To the right, topic clusters (7, 8, 19) about verification codes can be found. Note that topic
cluster 19 has been given the topic name bank transactions in Table 4.3, but has a very
close inter-distance to the verification code group. Reviewing Figure 4.4 and 4.5 again,
we discover that bank transactions and verification codes clusters are in general close to
each other in the coordinate system.
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Table 4.1: LDA topics sorted by NPMI score. The topic names
are labeled based on the top words and the corpus percentages are
based on clustering using dominant topic.

Topic index Topic name Corpus percentage (%) NPMI UMass
19 Public transportation 2.9 0.288 -3.405
10 Public transportation 2.8 0.141 -5.067
9 Verification codes 3.6 0.109 -7.079
12 Bank balances & transactions 2.8 0.105 -5.590
7 Order status 2.8 0.099 -6.929
23 Medical reminders 2.8 0.094 -7.026
6 Verification codes 1.3 0.044 -8.013
20 Bank balances & transactions 3.7 0.030 -6.870
14 Medical reminders 3.7 0.008 -9.316
21 Services & logistics 4.0 -0.004 -9.601
24 Bank balances 5.0 -0.022 -10.029
17 Bank transactions 3.7 -0.049 -7.205
4 Mixed 4.7 -0.069 -5.492
1 Power outage 1.5 -0.069 -10.658
11 Tracking 2.7 -0.083 -11.257
18 Discounts & offers 4.4 -0.090 -7.854
13 Bank transactions 6.3 -0.117 -9.809
3 Bank notifications 4.0 -0.123 -9.570
8 Medical reminders 3.3 -0.146 -11.677
5 Bank loans & fraud detection 4.5 -0.166 -11.164
22 Jobs & appointments 4.1 -0.191 -12.439
16 Motivational texts 4.3 -0.214 -12.030
25 Reservations 2.1 -0.252 -14.316
15 Banking support 8.8 -0.311 -15.319
2 Banking support 10.1 -0.318 -15.773
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Figure 4.4: Dimension reduction of LDA model. The numbers
refer to the “Topic index” of Table 4.1.
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Table 4.2: BTM topics sorted by NPMI score. The topic names
are labeled based on the top words and the corpus percentages are
based on clustering using dominant topic.

Topic index Topic name Corpus (%) NPMI UMass
23 Public transportation 1.8 0.244 -3.442
25 Public transportation 2.3 0.177 -5.041
24 Medical reminders 2.9 0.145 -4.975
17 Verification codes 3.3 0.145 -6.654
9 Bank balances & transactions 2.9 0.139 -4.332
14 Bank balances 3.0 0.117 -4.703
16 Public transportation 2.2 0.095 -6.056
19 Discounts & offers 2.3 0.085 -7.055
5 Bank balances 5.0 0.034 -8.613
6 Mixed 8.4 0.028 -4.782
12 Flights 0.6 0.008 -10.569
10 Services & logistics 3.2 0.006 -9.737
1 Medical reminders 3.7 0.001 -9.322
7 Mixed 2.4 -0.020 -5.244
22 Appointments 3.3 -0.028 -8.258
20 Jobs 3.5 -0.038 -9.475
3 Bank transactions 3.9 -0.042 -7.436
18 Bank transactions 7.1 -0.045 -7.759
2 Medical reminders 4.3 -0.086 -8.487
8 Bank loans & fraud detection 4.8 -0.096 -11.180
13 Bank transactions 1.4 -0.124 -12.830
21 Banking support 18.8 -0.125 -11.178
11 Tracking 2.8 -0.137 -11.408
15 Bank notifications 3.8 -0.170 -12.933
4 Reservations 2.4 -0.185 -12.777
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Figure 4.5: Dimension reduction of BTM model. The numbers
refer to the “Topic index” of Table 4.2.
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Table 4.3: LDA-U topics sorted by NPMI score. The topic names
are labeled based on the top words and the corpus percentages are
based on clustering using dominant topic.

Topic index Topic name Corpus percentage (%) NPMI UMass
24 Banking support 12.1 0.252 -2.827
5 Order status 2.4 0.248 -1.856
22 Medical reminders 4.2 0.171 -2.983
18 Bank balances & transactions 6.5 0.147 -0.982
10 Bank loans & transactions 4.8 0.120 -4.754
12 Services 3.6 0.116 -2.218
23 Bank balances 2.7 0.044 -5.102
3 Bank fraud detection 6.4 0.003 -4.389
9 Mixed 8.7 -0.013 -1.880
15 Public transportation 2.9 -0.027 -1.233
13 Public transportation 3.8 -0.040 -1.508
16 Medical reminders 3.3 -0.059 -6.994
20 Medical reminders 2.9 -0.061 -8.421
4 Mixed 2.0 -0.094 -11.174
7 Verification codes 2.2 -0.104 -5.612
6 Bank transactions 1.6 -0.105 -5.743
1 Jobs 4.1 -0.107 -3.178
11 Logistics & Power outage 2.3 -0.120 -6.121
14 Discounts & offers 2.9 -0.130 -4.934
19 Bank transactions 3.2 -0.130 -7.566
25 Bank notifications 3.7 -0.136 -8.639
21 Bank balances 3.8 -0.154 -9.291
17 Tracking 3.4 -0.197 -10.410
2 Appointments 3.6 -0.227 -9.046
8 Verification codes 3.0 -0.240 -13.178
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Figure 4.6: Dimension reduction of LDA-U model. The numbers
refer to the “Topic index” of Table 4.3.
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Table 4.4: Frequency and corpus percentage of topic clusters in
different models.

LDA BTM LDA-U
# Corpus (%) # Corpus (%) # Corpus (%)

Public transportation 2 5.7 3 6.3 2 6.7
Verification codes 2 4.9 1 3.3 2 5.2

Banking 9 48.9 9 50.7 9 44.8
Order status 1 2.8 − − 1 2.4

Medical reminders 3 9.9 3 10.9 3 10.4
Power outage 1 1.5 − − − −

Power outage & logistics − − − − 1 2.3
Services − − − − 1 3.6

Services & logistics 1 4.0 1 3.2 − −

Tracking 1 2.7 1 2.8 1 3.4
Discounts & offers 1 4.4 1 2.3 1 2.9

Jobs − − 1 3.5 1 4.1
Jobs & appointments 1 4.1 − − − −

Appointments − − 1 3.3 1 3.6
Reservations 1 2.1 1 2.4 − −

Flights − − 1 0.6 − −

Motivational texts 1 4.3 − − − −

Mixed 1 4.7 2 10.8 2 10.7
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4.4 Human evaluation
In total, we got 33 responses. 9 of these were for LDA, 11 for BTM and 13 for LDA-U.
Unfortunately, this sample size is not too big, but it is enough to give some indication of
the trends we want to see. The survey also cannot be presented here, since it contains
information that the company wants to keep secret.

4.4.1 Word intrusion
Following the process given in Section 3.5, we created and sent out surveys to get human
feedback on our models. We can see the results of the word intrusion in Tables 4.5-4.7
with 15 word intrusions for each model. Each row in these tables represents one word
intrusion, where the “Topic index” and “Topic name” are the same as in Tables 4.1-4.3. The
percentages in the “Human evaluation (%)” column is the fraction that chose the correct
answer. Also note that the tables are sorted in a descending order of NPMI score. We can
see that the peaks of word intrusion lie around the fifth word intrusion and not in the top.
In general, the top half scores higher than the bottom half.

4.4.2 Topic intrusion
Just like for word intrusion, the topic intrusion questions were created according to Section
3.5, with the same information given. Five topic intrusions were created for each model,
and their topic index, topic name and the fraction of correct answers are given. The topics
are sorted in descending order of NPMI score as well and the result can be seen in Table
4.8. Here, we see that there is a fairly strong correlation between topics and documents
according to human evaluation. This means that the topic clusters summarize the semantic
topics of the corpus well.
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Table 4.5: LDAword intrusion results sorted by NPMI score. The
human evaluation refers to the fraction that answered correctly in
the survey.

Topic index Topic name Human evaluation (%)
19 Public transportation 44.4
10 Public transportation 66.7
9 Verification codes 66.7
12 Bank balances & transactions 77.8
7 Order status 77.8
6 Verification codes 44.4
14 Medical reminders 55.6
24 Bank balances 22.2
4 Mixed 33.3
11 Tracking 44.4
18 Discounts & offers 0
3 Bank notifications 22.2
25 Bank loans & fraud detection 55.6
16 Motivational texts 11.1
2 Banking support 44.4

Average 44.4

Table 4.6: BTM word intrusion results sorted by NPMI score.
The human evaluation refers to the fraction that answered correctly
in the survey.

Topic index Topic name Human evaluation (%)
23 Public transportation 27.3
25 Public transportation 9.1
24 Medical reminders 0
17 Verification codes 18.2
9 Bank balances & transactions 90.9
16 Public transportation 90.9
5 Bank balances 90.9
12 Flights 0
1 Medical reminders 54.5
22 Appointments 27.3
3 Bank transactions 45.5
2 Medical reminders 63.6
13 Bank transactions 9.1
11 Tracking 45.5
4 Reservations 45.5

Average 41.2
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Table 4.7: LDA-U word intrusion results sorted by NPMI score.
The human evaluation refers to the fraction that answered correctly
in the survey.

Topic index Topic name Human evaluation (%)
24 Banking support 76.9
5 Order status 84.6
22 Medical reminders 61.5
16 Bank balances & transactions 92.3
10 Bank loans & transactions 100
23 Bank balances 100
9 Mixed 7.7
15 Public transportation 30.8
16 Medical reminders 84.6
7 Verification codes 46.2
1 Jobs 23.1
14 Discounts & offers 15.4
25 Bank notifications 69.2
17 Tracking 15.4
8 Verification codes 23.1

Average 55.4

Table 4.8: Topic intrusion for all models. The human evaluation
refers to the fraction that answered correctly in the surveys.

Model Topic index Topic name Human evaluation (%)
LDA 19 Public transportation 88.9

21 Services & logistics 66.7
13 Bank transactions 100
8 Medical reminders 88.9
25 Reservations 55.6

Average 80
BTM 23 Public transportation 100

14 Bank balances 100
22 Appointments 100
20 Jobs 100
21 Banking support 72.7

Average 94.5
LDA-U 18 Bank balances & transactions 100

23 Bank balances 84.6
13 Public transportation 69.2
1 Jobs 100
2 Appointments 84.6

Average 87.7
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4.5 Classification
Using the trained models, we can infer the document-topic distribution of new unseen doc-
uments as well. After annotating previously unseen messages manually, we can compare
this label with the dominant topic of each model prediction for the annotated messages.
These comparisons can be seen in Figures 4.7-4.9, as well as the F1-scores for each topic
in Table 4.10. Since the confusion matrices are normalized, we also need the information
of Table 4.9, which states for each model, how many documents belong to that cluster.

For example, in Figure 4.7, we can see that themodel correctly classified all 7 messages
within “Power outage”, but it also misclassified 1% of “Verification codes”, 8% of “Reser-
vations” and 2% of “Others” as “Power outage” messages as well. Converting this into
numbers, this means 1 “Verification codes”, 3 “Reservations” as well as 2 “Others” mes-
sages were misclassified. This means that even though the normalized confusion matrix
looks good for classifying “Power outage”, it does not tell the full story by itself. Looking
at the F1-score of LDA’s “Power outage” class, it drops by quite a bit. The same can be
said for LDA’s “Motivational texts”; one has to use the confusion matrices in conjunction
with the tables below.

58



4.5 Classification

Figure 4.7: Confusion matrix from the final LDA model on an
annotated test set.
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Figure 4.8: Confusion matrix from the final BTM model on an
annotated test set.
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Figure 4.9: Confusion matrix from the final LDA-U model an
annotated test set.
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LDA BTM LDA-U
Public transportation 87 87 87
Verification codes 79 79 79

Banking 440 440 440
Order status 30 − 30

Medical reminders 33 33 33
Power outage 7 − 7
Services 34 34 34
Tracking 21 21 21

Discounts & offers 30 30 30
Jobs 81 81 81

Appointments − 8 8
Reservations 37 37 −

Flights − 7 −

Motivational texts 3 − −

Others 118 143 150

Table 4.9: Number of annotated documents in each class.

LDA BTM LDA-U
Public transportation 0.97 0.93 0.85
Verification codes 0.90 0.85 0.78

Banking 0.86 0.81 0.92
Order status 0.91 − 0.90

Medical reminders 0.81 0.87 0.79
Power outage 0.70 − 0.41
Services 0.70 0.73 0.64
Tracking 0.68 0.51 0.77

Discounts & offers 0.40 0.38 0.80
Jobs 0.64 0.62 0.69

Appointments − 0.11 0.06
Reservations 0.16 0.17 −

Flights − 0.40 −

Motivational texts 0.13 − −

Others 0.30 0.33 0.40
Average 0.63 0.56 0.67

Table 4.10: F1-scores for each model and class.
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Chapter 5
Discussion

5.1 Dataset size
Even though we had 210,000 messages available, having more data could have given us
more information. If we had gotten datasets from several time periods, we could have
found trends which are time-dependent by separately training models on data from certain
time periods. Some topics could have an increasing amount of messages sent as time
passes. New topics can also appear that did not appear before. Conversely, some topics
may decrease in size, meaning that less people use text messages for some purpose. In
extreme cases, those topics might even disappear.

5.2 Hyperparameters
Number of topics. In our results, we have some clusters that are mixed in their
content, containing two or more semantic topics. During our experiments, we found that
increasing the number of topic clusters does not always equate to more semantic topics.
Instead, there were cases where a semantic topic split itself up. An example of this would
be the semantic topic banking, whichwas split into topic clusters such as bank transactions,
bank notifications, etc. An explanation of why this happens is that the same semantic
topic can use different words to convey the same meaning. Since the models work based
on word co-occurrences, this means that topics will not cluster together depending on the
word choice in the documents. For example, in two of our bank transaction clusters, one
of them used abbreviations while the other used the full word. With our dataset, we found
25 topics to be a good trade-off between coherent topics and getting as many unique topics
as possible. Ultimately, this yielded 15 unique topics during our own evaluation.

Another thing to note when increasing the number of topics K is that the topic coher-
ence score will vary and find local maxima. This can be seen in Figures 3.3-3.5. Higher
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values of K correspond to more fine-grained clustering of the dataset. For Sinch’s dataset,
it would however result in more company specific topic clusters and less about topic clus-
ters that make sense semantically.

Convergence. The convergence for Figure 3.2c compared to Figure 3.2d is inter-
esting. In the case of Figure 3.2c, the coherence score converges very fast due to the top
20 relevant words remaining the same. After this seeming stabilization, we do not know
anything about the words below top 20. These words may still vary in their probabilities.
We are still satisfied with such a result, since we judge the topics mostly by their top words.
When we have a higher number of topics which we can see in Figure 3.2d, the words that
come from the frequent topics in the corpus can spread out over the different topics. Since
they are not enough to "fill" all topic clusters, we can see how the other (less frequent)
words still keep changing their topic assignments in the fluctuations of the graphs.

α and β. Regarding the other hyperparameters α and β, we can reason about whether
our set values make sense. For β, we only want a fraction of all the words to be frequent
within a topic. Consequently, we expect a value of β < 1 to be reasonable, since it is the
parameter of a symmetric Dirichlet distribution. We used the same value as the authors of
BTM, setting β = 0.01. As for α, the default value of 50/K given by the authors for BTM
performed satisfactorily as well. Having α > 1 seems reasonable for BTM, since we can
expect a fair amount of every topic in the corpus.

The same value of α = 50/K was used for LDA-U, and its results were reasonable.
Using K = 25, we got α = 2, which means that each document is likely to contain several
topics. It works for LDA-U, since it uses aggregated pseudo-documents which can contain
multiple topics. This value of α = 50/K also seemed to be fairly common when we did
our literature study.

Meanwhile for LDA, one of the problems we ran into was that using α = 50/K resulted
in very even document-topic distributions. In short texts, this is not desirable, since we
want roughly one dominant topic in each document. We expected a lower value to work
good then, at least α < 1, due to the same reasons as β < 1. We tried some values which
others have used, e.g. α = 0.1 and α = 0.05. Trying these, we evaluated the models
ourselves and found α = 0.05 as the best value.

Grid search. One might wonder why we did not use any form of grid search when
optimizing our hyperparameters. The biggest problem in our case was the time constraint.
We wanted a fair comparison between the models in terms of the models having converged
towards the actual distributions. For each set of hyperparameters, we would have to train
one model. Considering that we had many combinations of hyperparameters to try out,
this would result in requiring to train many models. However, BTM took a very long time
to train. Therefore, doing a grid search to find the optimal hyperparameters was not a
viable option.
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5.3 Preprocessing
In this work, many preprocessing steps were used to obtain the high quality input messages.
Obviously, there are steps that could be improved. For example, the disturbing messages
that were detected through the results of the topic model output. If the time of sending the
messages had been accessible, a filter could have been implemented to remove the massive
mailings of identical messages during a short time interval. Implementing this filter could
have led to clearer topics, because we noticed several disturbing messages became top
words, which made the topic difficult to interpret.

Another preprocessing step that could be improved is the initial cleaning. It was chal-
lenging to clean a dataset with a lot of abbreviations and non-alphabetic characters. In
the beginning, we tried to split words with non-alphanumeric characters as delimiters.
This led to an overabundance in abbreviations and topics that were impossible to interpret.
Therefore, we came to the conclusion of removing all words containing non-alphanumeric
characters. This led to much clearer topics, but the downside was the loss of interesting
information and topics. The improvement could be to find a way to extract the important
information from parts containing non-alphanumeric characters and a way to convert the
abbreviations into a common base form, or at least into human interpretable words.

When we explored other datasets, finding collocations was a step that contributed to
a better understanding of the topics. In this dataset, it was not possible to apply this step
due to many messages following predefined templates, which led to "fake" word colloca-
tions. Since the dataset consists of a lot of company names and other word combinations
that could improve the interpretation of the topics it would be interesting to search for an
alternate way to extract only the real word collocations.

5.4 Topic coherence
In Tables 4.1-4.3, the topics have been ranked in decreasing order according to NPMI. The
order would be different if it was sorted according to UMass, but the most important is to
see whether the general trend is the same. The top and bottom topics should generally be
the same. Note that topics such as “Jobs”, “Appointments”, “Reservations” and “Tracking”
are generally found among the bottom topics.

The topic coherence scores for the topics in LDA-U differed quite much compared
to the other models. For example, “Banking support” was among the bottom topics for
both LDA and BTM, but for LDA-U it was the best topic, while the opposite goes for
“Verification codes”. This result was very unexpected and we cannot explain why, besides
suspecting that it must be related to the aggregation.

5.5 Corpus percentage
In Table 4.4, we can find the corpus percentage of topic clusters in different models. The
models mostly agree with each other, but there are some interesting parts that differ. The
first is that LDA found one more topic than BTM and LDA-U. This might be the explana-
tion of why the mixed corpus percentage is much lower than the other models. Secondly,
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BTM managed to find a small cluster of flight messages and LDA managed to find a clus-
ter of motivational texts. We assume this is due to the randomized initialization of the
algorithms. Finally, according to the presented results, BTM is the only model that could
not find anything related to power outage. This is because it was in a mixed topic together
with loans and fraud detection. We chose to mark the topic as “Fraud detection” (topic 8)
in Table 4.2.

Note that one has to be careful with the corpus percentages given in Tables 4.1-4.3.
Infrequent topics that do not occur often in the corpus can gather in topic clusters with a
frequently occurring topic. In these cases, such words might not appear among the top
words, but they still affect the corpus percentage. For example, we know from the BTM
model that there is a “Flight” topic, but it does not appear in LDA or in LDA-U. This
cluster is most likely hidden in another cluster, maybe in public transportation. Situations
like these make the corpus percentage column of Tables 4.1-4.3 unreliable to read off
directly, but they give a hint of what is correct.

5.6 Visualization
Both the topic modelling and the visualization through pyLDAvis are forms of dimension
reduction. The original corpus in bag-of-words form can be seen as a D × V matrix,
with each row representing a document and each column representing a unique word. An
element would be the number of occurrences of each unique word in a document. After the
dimension reductions from our topic models and then pyLDAvis, we reach the results of
Figures 4.4-4.6. In these figures, we can still find similarities between models. The topics
that are semantically similar generally lie close to each other. Some of the clusters that
distance themselves from the large clump also belong to the same topic, which is banking
in general. This indicates that the different models find similar patterns in the dataset. This
is also further verified by looking at the word clouds of Figures 4.1-4.3.

As mentioned in the theory chapter, we know that our pyLDAvis figures use PCA for
dimension reduction. As we used a library to do this dimension reduction for us, some
intermediary steps are lost. One such piece of information that is interesting is the variance
along each principal component, which corresponds to how different the documents are
along an axis. In other words, finding out the variance of each axis would tell us how well
the pyLDAvis figures represent the document-topic distribution. If there are three major
principal components and the rest are minor, then we would know that a 3D-plot could be
suitable for visualizing the topic distributions of each model.

5.7 Human evaluation
Word intrusion. In the results for word intrusion (see Tables 4.5-4.7), it is hard
to determine whether the NPMI scores are related to human evaluation just based on the
tables. Talking to people that had completed the survey, the general impression was that
the intruders were hard to figure out. This can be seen in the results as well.

However, the cause for difficulties can differ from one word intrusion to another. Dur-
ing the creation of the survey, we decided to pick a bottom word from each topic, and then
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accept it as long as we could make sense out of it. Generally, bottom words (i.e. intrud-
ers) do not appear together with the top words in documents. Still, they can make sense
together with the top words in the survey. An example of this is the word “between”, that
appeared in a topic about public transportation. In this case, this word can be interpreted
as some form of connection, either between locations or in a time period. Since the top
words of this cluster included the collocation “exact fare” (split up in two alternatives),
it is reasonable to think of “exact” as the intruder instead of “between”, if one does not
recognize the collocation.

In other cases, the topic clusters may be mixed and therefore have words from two
or more semantic topics among the top words. Adding an intruder results in even more
confusion. The intruder could be combined with some of the top words to create a topic
which does not exist in the corpus. This happened in the “Flights” cluster of Table 4.6. The
other topic among the top words was related to sensors, while the intruder was “urban”.
We then suddenly have a topic about sensors in urban areas, and people start guessing
wrong.

The intruder might also coincidentally form a topic according to humans, even though
the corpus did not include this word co-occurrence. One has to remember that the basis for
LDA and BTM lie in word co-occurrence in documents. If an intruder belongs to the same
topic according to humans, all words suddenly become candidates for being the intruder.
The end result would then depend on what words people think belong "more together".
This happened for example in “Discounts & offers” in Table 4.5. The words in this word
intrusion were:

confirm, appointment, redeem, kiosk, respond, accept

The last word accept was the intruder, while the choice of humans was kiosk.
There is an important difference when comparing the circumstances for our human

evaluation and the intended receiver. The intended receiver may have additional back-
ground knowledge about the message in some cases. It can be that the receiver decided to
subscribe to a certain type of messages, and the message can use abbreviations which are
specific to the topic or the person’s circumstances. Therefore, if the dataset had less tem-
plates and the language varied more, the word intrusion may have yielded better results.

When analyzing the results in Tables 4.5-4.7, we can see that all models have a peak,
not in the beginning, but closer to the fifth highest word intrusion. This might have been
a coincidence, but it could also have to do with people learning how word intrusion works
as they do it. The order which the word intrusions were presented for each model was
basically in order of NPMI score, except for the second and fourth topic from the top,
which appeared last. This, together with the problems discussed above, can explain why
the top topics were not as correlated to human evaluation as we had expected. What we
should have done is to give them some warm-up questions before doing the actual survey.
Taking this into consideration, we can see hints of a correlation between human evaluation
and topic coherence: The higher topic coherence, the easier it was to answer correctly,
except for the problems discussed above about word intrusion.

The overall performance among the models was comparable to each other. Judging
from the average correct answers, LDA-U was slightly better.
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Topic intrusion. Since topic models have topics as outputs, we also have to make
sure that these are closely related to the actual perceived documents. That is why we
created the topic intrusions. Looking at the results in Table 4.8, we can see that people
generally could find the correct topic. In other words, this shows that there has to be
similarities between the top topic and the document given in a topic intrusion. This relation
justifies using topics as a summary of a document.

Considering the overall results, BTM performed the best in topic intrusion, which we
can see in Table 4.8.

5.8 Classification
What would be interesting to discuss is how the classification went for the topics that were
considered as a mixture of two topics. In Table 4.4, we have 15 unique topics and three
of them are considered as a mixture of two topics. We have “Power outage & logistics”,
“Services & logistics” and “Jobs & appointments”.

Starting with the topic “Power outage & logistics”, we can see that LDA was the only
model that could identify a clean cluster about power outages, while LDA-U found the
mixed topic. Looking at the F1-scores in Table 4.10, we see that LDA has a much higher
F1-score than LDA-U, just as expected. In the confusion matrices found in Tables 4.7 and
4.9, we can see that all messages labeled as this topic are correctly classified, but there
are other messages that are not labeled as this topic that have been classified as “power
outage”. This tells us the classification agrees with the human evaluation that the topic is
a mixture of multiple topics.

Doing the same analysis with “Services & logistics”, the majority of the messages
have been correctly classified. Looking at the confusion matrices in Tables 4.7-4.9, the
misclassified messages are from “Reservations” and “Others”. This was anticipated, due
to service related reservations and that the logistics messages have been labeled as others.
Note that LDA-U has a lower F1-score compared to other models, even though it was con-
sidered as a clean topic. The explanation of this is, when naming the topics, we looked at
samples of the documents. If we had sampled more documents, we could have discovered
a better representative for this topic.

For “Jobs & appointments”, it was only the LDAmodel that did not manage to separate
the topics. Interestingly, the F1-score for “Jobs” is around the same for all models. Look-
ing at the confusion matrices, approximately half of the messages labeled as “Jobs” were
correctly classified. When annotating it was relatively easy to identify the job messages,
so the problem most likely lies in the models having issues with distinguishing between
related topics. Another issue could also be in the preprocessing step due to removal of too
much information.

The conclusion from these three topics is that the human evaluation and the classifica-
tion correlates in the sense of that these topics are a mixture of multiple topics.

In Table 4.10, “Appointments”, “Reservations” and “Motivational texts” are the topics
with very low F1-score. This is it not surprising, because all three topics are among the
bottom topics according to the topic coherence scores in Tables 4.1-4.3. Another inter-
esting thing to note in Table 4.10 with all the F1-scores is that it partly agrees with the
topic coherence scores. They agree with each other on which topics are the clear ones and
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which topics are the unclear ones. The conclusion we can draw from this is that the topic
coherence scores are relevant.

In “Discounts & offers”, LDA-U has a much higher F1-score when compared to the
other models. It is not obvious why, because the topic coherence scores nor the human
evaluation can explain the large difference. The only possible explanation is that the ag-
gregation helped. Since there is a larger variation among the templated messages in “Dis-
counts & offers”, it is relevant to assume the number of unique words is larger in the
aggregated messages. This facilitated the model to find the connection between different
words.

Overall, these problems all assume that the annotated data is correct. In our case, we
allowed one person to annotate all 1000 messages. One upside is that similar messages
will be consistently classified the same, however if there are messages that are hard to
put a label on, the downside is that we do not know whether those messages are correctly
classified. On the contrary, those messages might all be wrongly classified. It would have
been better if several people annotated the same messages. This way, if someone is unsure
of how to label a message, others can help. Annotating like this would improve the "hard
to classify" messages.

To improve the classification, we could have balanced the uneven distribution of classes
in Table 4.9. As can be seen, there are a lot of messages related to “Banking” and a very
few related to “Flights” and “Power outage”. For the latter, it is difficult to say whether
they are representative for all the messages in that class. Therefore, their scores in Figures
4.7-4.9 and Table 4.10 also become less reliable.

Judging the models strictly based on F1-scores, we can see that their performance are
roughly in the same class, but LDA-U is the best performer.

5.9 Expectations
When we explored the topic models with news headlines there was no doubt BTM discov-
ered more and better topics than LDA. Therefore, the expectation we had was that BTM
would outperform LDA on Sinch’s dataset as well. According to the results obtained there
are no clear signs of that BTM works noticeably better than the other models for Sinch’s
dataset.

The interesting question is: Did BTM work less good or did LDA work better on this
dataset? The largest difference between the news headlines and Sinch’s dataset is that the
latter consisted of many template messages. We know that LDA has sparsity issues when
it comes to short texts, but somehow it performed equally good as BTM. We assume this
is due to the many template messages, which helped the model to find the connection
between words.

When it comes to LDA and LDA-U, we expected LDA-U to perform better. The moti-
vation is that when the messages are aggregated the issue with sparsity decreases. Accord-
ing to the results, there is not a large difference between these models either. Looking at
the F1-scores in Table 4.10, it shows that LDA has a better score in general for the topics
with the most template messages, while LDA-U could handle the topics with less template
messages better.

The conclusion we can take here is that when choosing a topic model, we cannot only
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consider the length of the documents, but also the structure of the documents.

5.10 Further work
Our current way of clustering messages into topics may have worked fairly well, but it is
simple and we did not explore this area enough. More sophisticated clustering algorithms
such as DBSCAN (Ester et al., 1996) and hierarchical clustering maybe could have found
other clusters.

In this work, we manually labeled the topics based on the top words. Next step, could
be to do this automatically by using WordNet (Miller, 1995). In WordNet you can search
for word hierarchies to find the common word that connects the top words.

Neural networks would be another interesting application of the results. For example,
topic model could be used to label the dataset and by extracting the best results from the
topic models it could be used to solve classification problems.

Building upon this work, one can implement an online version of the algorithm. This
can lead to being able to analyze text message traffic in real time to predict potential trends
in the communication market.
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Chapter 6
Conclusions

Topicmodels have been evaluated as a goodmethod to initially explore an unknown corpus
and its content. Depending on the purpose of analyzing a dataset, topic models can suffice
if exploration is the main goal. For further applications, it can also serve as a foundation,
such as classification. In our case, we have explored our given dataset and found 15 unique
topics spread over 25 topic clusters, which can be seen in Table 4.4.

Concerning the prevalence of each topic, we conclude that the corpus percentages of
Tables 4.1-4.3 are not exact, but still indicate how much the corpus contains of each topic.

Overall, there was no model that was significantly better than the others on Sinch’s
dataset, but based on topic coherence scores, F1-score and the human evaluation there is
an indication of that LDA-U is better in performance.
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Vad tror AI att pratar alla om?

POPULÄRVETENSKAPLIG SAMMANFATTNING Myky Tran, Michael Truong

Idag skickas det ett oräkneligt antal SMS runt om i världen, men vad handlar dessa
SMS om? På senare tid har man utvecklat modeller som kan analysera stora mängder
text. Modellerna hjälper oss att hitta ämnen såsom “sport” och “forskning”. Hur
coolt hade det inte varit att ständigt vara uppdaterad om de senaste trenderna?

Modellerna som används för att hitta dessa tren-
der kallas för topic models. Författarna har använt
tre modeller som heter latent Dirichlet allocation
(LDA), biterm topic model (BTM) samt en vari-
ant på LDA som kallas LDA-U. Dessa är statis-
tiska modeller som grupperar ord baserat på hur
ofta orden förekommer tillsammans. Varje ämne
(gruppering) representeras av flera ord, som till-
sammans uppfattas som ett ämne av oss män-
niskor. I bilderna ser vi två exempel som en av
våra modeller gett oss, baserat på nyhetsrubriker
från Australien. Kan du gissa vilka ämnen de syf-
tar på? Tjuvläs inte under bilderna!
Inom industrin appliceras dessa modeller på

långa texter för att exempelvis automatiskt kate-
gorisera ett dokument eller en hemsida. För korta
texter är det en större utmaning och något som
man forskar intensivt på. Problemet med korta
texter är att längden gör det svårare att hitta ett
sammanhang.
Inom telekommunikationsindustrin, skickar

företag massor av SMS varje dag för diverse
ändamål, alldeles för många för att kunnas läsa
igenom manuellt. Genom att applicera topic
models kan man sammanfatta de SMS som
skickas. Dessa sammanfattningar kan ge insikter
både om vad SMS:en handlar om och hur mycket

det pratas om varje ämne. Mäter man detta över
längre perioder kan man hitta intressanta trender
som företag kan agera utefter.
I examensarbetet har författarna lyckats hitta

15 ämnen från ett dataset av företags-SMS. De
modeller som testades presterade ungefär lika bra,
men den som var bäst överlag var LDA-U.

Svar:Bildernahandlaromhandelochval.
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