
MASTER’S THESIS 2019

Modeling and Analyzing
Developer Collaboration to
Guide Data Driven Decisions
Rasmus Hallevåg, Jesper Olsson

ISSN 1650-2884
LU-CS-EX 2019-21

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY

EXAMENSARBETE
Datavetenskap

LU-CS-EX: 2019-21

Modeling and Analyzing Developer
Collaboration to Guide Data Driven

Decisions

Rasmus Hallevåg, Jesper Olsson

Modeling and Analyzing Developer
Collaboration to Guide Data Driven

Decisions

Rasmus Hallevåg
dat13rha@student.lu.se

Jesper Olsson
dat12jol@student.lu.se

August 26, 2019

Master’s thesis work carried out at Praqma AB.

Supervisors: Lars Bendix
Bo Nyström

Examiner: Ulf Asklund

mailto:dat13rha@student.lu.se
mailto:dat12jol@student.lu.se

Abstract

In a software development context a high number of decisions have to be made.
Formany of these decisions the insight of experts in the area is the deciding factor
but themanual work to understand the context of a problem can potentially take
a large amount of time for these experts andmight not be entirely accurate due to
human biases and heuristics. With such problems utilizing automatically mined
metrics could be of aid. Finding newmetrics that a�ect performance and quality
can also lead to more relevant information being presented.

If team organization should follow the concept of collective code ownership
or if the knowledge should be more stratified is a common debate in the soft-
ware world. Creating an accurate representation of development structure and
comparing it to performance metrics could help answer the debate and inform
practices which would improve development. Two research questions have been
formulated in this thesis to best explore this subject, namely if developer struc-
ture could be modeled and if there are some correlation between it and metrics
relating to throughput or complexity.

Asmodern version control systems store a large amount ofmetadata, extract-
ing and presenting the information stored could help investigate the research
questions and potentially aid data driven decisions.

This was done through the creation of a prototype gathering and displaying
representations of collaboration with other metrics. Some observations such as
having more than 5 developers leading to more complex code was observable.
However, further work continuing the research may be necessary to create and
validate an accurate model.

Keywords: Mining Software Repositories, Data Driven Decicions, Collaboration, Own-
ership, Finding Correlations

2

Acknowledgements

We would like to thank our two supervisors Lars Bendix and Bosse Nyström for their sup-
port, feedback and guidance allowing this thesis to be created. We would also like to thank
everyone in the Praqma Malmö o�ce for the welcoming reception and good discussion of
ideas. Special thanks to Samuel Ytterbrink from Praqma Gothenburg who provided many
helpful hints regarding the extraction of data from git and also helped create a model for
finding the integration speed from a git repository.

3

4

Contents

1 Introduction 7

2 Background 9
2.1 Context . 9

2.1.1 General . 10
2.1.2 Praqma . 11
2.1.3 Open- and Closed Source . 12

2.2 Research Method . 13
2.2.1 General Method . 13
2.2.2 Workflow . 14
2.2.3 Alternate Methods . 15
2.2.4 Why Git? . 16
2.2.5 Picking Specific Sources . 17

2.3 Theory . 17
2.3.1 Configuration Identification: . 18
2.3.2 Configuration Management Database: 18
2.3.3 Configuration Status Accounting: 19
2.3.4 Version Control Systems: . 20
2.3.5 Git as a CMDB . 20
2.3.6 Extracting Information in Git: . 20
2.3.7 Network Analysis . 21

3 Design 23
3.1 Overall Design . 23

3.1.1 Specification . 24
3.2 Measuring Collaboration: Fractal Value . 25

3.2.1 Motivation . 25
3.2.2 Specification . 26
3.2.3 Alternatives . 27

3.3 Measuring Collaboration: Network Analysis 28

5

CONTENTS

3.3.1 Motivation . 28
3.3.2 Specification . 29

3.4 Complexity . 29
3.4.1 Motivation . 29
3.4.2 Specification . 30
3.4.3 Alternatives . 31

3.5 Integration Speed . 31
3.5.1 Motivation . 32
3.5.2 Specification . 32
3.5.3 Alternatives . 33

3.6 Visual Representation . 35

4 Results 37
4.1 Developer Level . 38

4.1.1 Network Analysis Output Excerpts 38
4.2 File Level . 40

4.2.1 Graphs . 40
4.2.2 Ownership Model Verification . 41
4.2.3 Performance metrics . 41

4.3 Project Level . 43
4.3.1 Graphs . 46

4.4 Trends over Intervals . 48
4.4.1 Plots . 50

4.5 Summary and Conclusions . 56

5 Discussion and Related Work 57
5.1 Discussion . 57

5.1.1 (RQ1) How can internal developer structure and level of collabora-
tion in a project or part of a project be modeled? 58

5.1.2 (RQ2) Is there a relationship between the level of collaboration be-
tween developers and complexity or integration speed? 59

5.1.3 General Discussion . 60
5.2 Threats to Validity . 61
5.3 Related Work . 62

5.3.1 Dont touch my code!: examining the e�ects of ownership on soft-
ware quality . 62

5.3.2 Fractal Figures . 63
5.3.3 A Degree-of-Knowledge Model to Capture Source Code Familiarity 64
5.3.4 RevisitingCodeOwnership and its Relationshipwith SoftwareQual-

ity in the Scope of Modern Code Review 64
5.4 Future Work . 65

6 Conclusions 67

6

Chapter 1

Introduction

Humans are not naturally rational in their decision making, assistance with decision making
is something that could be of great help in many contexts. This is especially true in a soft-
ware development context where a multitude of decisions have to be made and with a high
degree of frequency. Psychological studies of decision making has shown that personal biases
and human heuristics a�ect decision making to a degree that prevents expected models of
rational decisions from being accurate[1]. In a software development context it is common
with a reliance on experts and seniority to make various decisions based on a hopefully high
degree of domain knowledge with the proper biases and intuition. While completely replac-
ing these expert opinions with machines would not be possible with the technology of today,
presenting the right information could help the decision makers save time by presenting the
right information.

While relying on decisions made by experts on a subject may be necessary in some con-
texts, doing it universally can come with flaws. Constant reliance on intuition of individuals
could be problematic if there is no way to verify this intuition as there are no guarantees
that the intuition is correct for this context. There are also problems with the availability
of these experts, the only person who might know of an important section might have quit
working on it and can no longer o�er input. Also, experts does not scale, if an organisation
expands then there will be an increased need for experts which might not always be possible
so satisfy, maybe because it’s hard to find people with the correct domain knowledge which
would lead to people with less expertise needing to make decisions who’s intuition might not
be as developed.

Gathering the needed information in order to make an informed decision can also be a
demanding task. If an expert is required to do this then that is time the expert can not spend
on more productive tasks. So there is also a problem when it comes to available resources in
order to make a good decision. By giving some aid in the decisionmaking time could be saved
for the decision makers, letting them focus on their work rather than manually figuring out
the context of a problem.

As a starting point the research of this thesis considered the debate regarding how de-

7

1. Introduction

velopers in a team should organize to increase performance and code quality. This could for
example be through collective code ownership or non-collective code ownership. In the field,
there exists di�ering opinions of how this should be optimized. Following this is the ques-
tion of what definitions could be put on this. Should it be some sort of ownership, telling
who feels like the responsible one for a section of software? Should it be a measurement of
knowledge, showing who has the deepest level of understanding of the a section in a certain
context? Should it be something di�erent entirely? This leads into the first research question
of the thesis being if there is a way to accurately model internal developer structure and level
of collaboration of a project or part of a project.

While examining a succinctly and accurately modeled version of such a value alone may
be of some interest there will then not be possible to directly consider its e�ects. It would
therefore be of interest to examine how the value compares to metrics linked to performance
or code quality. This leads into the second research question being if there is a relationship
between the level of collaboration between developers and other metrics such as complexity
or integration speed.

Research Question 1. How can internal developer structure and level of collaboration in a project
or part of a project be modeled?

Research Question 2. Is there a relationship between the level of collaboration between developers
and complexity or integration speed?

As a potential method of investigating the research questions or solving other problems
in the field, automatically collected metrics could be utilized. These metrics could present
the context of a problem and aid with decision making.

The new information could for example be used to find bottlenecks in the code and
structure, or act as a ”canary bird” that show early indicators that things may be heading in
an unsatisfactory direction. Historical values could be utilized for analysis and finding the
”canary bird” metric that can be used to assess future performance.

To investigate the research questions the appropriate data values needed to be extracted.
While many sources could be utilized for this the version control system (VCS) git was chosen
as the sole source of data due its ease of integration with a command line interface and to the
authors familiarity with it.

Using data related to the developer structure and level of collaboration ideas for mod-
elling this can be presented. By collecting a varied number of other metrics and plotting
them against each other impact or causes of this can be analyzed. This is also something that
can be done on various levels of the structure. Due to the particular data gathered this the-
ses primarily focuses on full project level (in this case a single git repository) or individual
file level. The data is then collected for a specified time frame or a connected series of time
frames.

Due to various reasons the research was done in an open source setting and github was
utilized as the specific source of repositories. As of 2018, over 30 million developers have
made an account on github, contributing to over 90 million di�erent repositories[2], making
it suitable for finding a diverse selection of open source repositories. By mining data from
these software repositories metrics can be generated automatically, fast and be a part of a
bigger picture of metrics that can guide and inform decisions.

8

Chapter 2

Background

In order to be able to fully appreciate the thesis this chapter will set out to act as a reference
and base, describing and explaining concepts that the thesis is building upon. A background
to the field in general, what has been common viewpoints in the past compared to the present
and how the development has shifted will give a more profound view of where the ideas for
research questions were drawn and which problems or areas that will be able to be explored
based on those research questions.

The chapter will start with giving context to the lay of the land. Then move into the
context fromwhich the thesis was created. The chapter will also lay out the methodology fol-
lowed in the thesis and motivation behind said methodology. Important parts of the chapter
to understand include the how and why the research was carried out in the way it was.

After giving context to the thesis, there is a theory section which is aimed at computer
scientists who might need a refresher or exposure to the area of software configuration man-
agement, both in general and in relation to the topic of mining software repositories in par-
ticular. Reading this part can help a reader to fully appreciate the entire body of work that
this thesis entails and depending on the confidence in the area it might be beneficial to read
this section before research method. Its goal is to act as an introduction to the area and ex-
plain some of the key concepts used in this thesis. It will range from definitions of concepts
in play to di�erent applied technical techniques used.

2.1 Context
To understand the purpose of this thesis and its Research Questions some knowledge of the
context the research was performed in could be of help. A description of the general context
and state of the field leads into motivation of the research questions. This is followed by
descriptions of more specific contexts of the thesis discussing the partnered company and
the scope of the datasets.

9

2. Background

2.1.1 General
Reflection of the subject field was the biggest inspiration of the Research Questions. There
has long been a debate over how developers should organise to increase the quality and success
of the code a team produces for a project. As Kent Beck suggests in eXtreme programming[3],
programmers should express collective code ownership over the code they produce, arguing
against compartmentalizing a team and creating silos. This notion is then supported by
principles that shift development like development in pairs which increases the amount of
eyeballs on all piece of code produced. The increase in eyeballs does not only act as a real
time reviewer but as they the two collaborate and familiarize themselves with any piece of
code there is an increase in people who understand that part of the system. As more people
understand more parts of the code written by the team it becomes more robust to things like
layo�s or vacations, as there will not be a case were the one person who has written is the
only one who understands it, and might be on a 3 month parental leave.

Di�erent companies have tried versions of this, notably the likes of Microsoft with Win-
dows XP, but the real impact of changing a structure or practice this way remain unclear.
Only going anecdotal reports does not uphold any scientific standard, and while some com-
panies are compliant with a ”trust me, it works” from Microsoft or a programming guru like
Kent Beck it does not satisfy inquisitive persons from going, ”Why does it work?”. If there is
no way of measuring a change, then there is no way of knowing if the change was positive or
not.

This shift in mentality has been very noticeable in the recent time. The 2018 state of
DevOps report by DORA hit like a bomb, and has gained almost a rockstar following. The
report got released along with a book called ”Accelarate” written by the conductors of the
report [4]. Nicole Forsgren with a rigorous background in statistics along with the larger
than life figure Jez Humble who co-wrote ”Continuous Delivery: Reliable Software Releases
through Build, Test, and Deployment Automation” which is one of themost important pieces
of literature regarding the science behind agile development and Gene Kim who is one of the
most important thought factories behind the DevOps revolution. This star studded roster
explains the importance of metrics and measurements and also carefully go through how the
results which statistically proves that four measurements has a direct correlation with how
the successful the project will be. The four key metrics are lead time, deployment frequency,
mean time to recover, and change fail percentage. Being able to prove a relationship between
another metric and one of these metrics would therefore by inference prove the relationship
of that metric and the likeliness of success for that project.

Previous attempts have been made to analyse the impact of amount of developers on a
file, mainly interested in the amount of bugs connected to the file. This has been done with a
spread results. Christian Bird et al.[5] has conducted research where the results suggest that
the modules with more people working generates the highest frequency of bugs. Meanwhile,
Foyzur Rahman and Premkumar Devanbu have looked on a finer level and claim that bugs
are more likely to be found by ”the collective” and not introduced by them [6]. Because of
how bugs are reported, where only bugs found are made visible for that statistics, amount of
found bugs vary greatly, and more bugs found might not mean that there are more bugs in
the code. Bugs can be more or less visible, and finding more bugs can be a positive things, as
only bugs that are found can be fixed, at least intentionally.

Another distinction is the notion of shared, or collective code ownership and non-ownership.

10

2.1 Context

In a collective code ownership Beck means a state where everyone is responsible for the code,
and therefore also allowed to change everywhere. This requires a knowledge to be spread
which is why pair programming is a recommended practice along with it for knowledge to
be spread in order to facilitate everyone’s ability to own and change everywhere. If how it
is not well facilitated and no one is responsible for anything then a state of non ownership
can be reached. In this state changes can be made everywhere but responsibility for the code
is not shouldered by neither the team or a person. When no one is responsible then quality
su�ers.

This is what has sparked the basis for our first research questionHow can internal developer
structure and level of collaboration in a project or part of a project be modeled? Which is a gener-
alisation of how to measure collective code ownership. In order to get a point of reference
in which analysis can be done upon this is pertinent. If it can be modelled e�ectively then it
can be used to cross-correlate and analyse its impact on a project. Finding an e�ective model
which can be proven to yield the correct metric is therefore of high importance in order to
make further development in the field.

The second research question is a continuation of the first one, if a model is found. Is
there a relationship between the level of collaboration between developers and complexity or integration
speed? By analysing the states of a project and how they shift, can a relationship between them
be established. If it can then this will yield information which can be used to guide decisions
of how development should be made to increase the quality and or productivity.

If these research questions were to be thoroughly answered it could help development
teams everywhere in making informed decisions. If the level of collective ownership is shown
to have low or project-dependant e�ects it would allow for working in a preferred manner
without worrying about adhering to a specific standard for structure. If high levels of ef-
fect are found it could serve as a help for teams looking to increase performance through
restructuring.

It is also interesting as mapping out variables and parameters of this kind can be used
as a basis for machine learning. Neural networks can be used along with the parameters in
order to make predictions of how the future will develop. This would allow for a lot of future
work.

2.1.2 Praqma
The research has been conducted at the facilities of Praqma. Praqma is a consultant com-
pany who sends out their experts to customer companies. The experts then aid development
and work with the company to set up agile/lean practices, service solutions or, makes assess-
ments on how the company works. Their work revolves around being experts not only in
the philosophy of development but also being experts on a wide range of tools and activ-
ities surrounding development. Praqma employees frequently hold courses in git and help
other companies migrate from other version control systems towards git. Their knowledge
in git provided help for understanding the underlying mechanisms of git and how it could
be manipulated to gather the data required to carry out the thesis.

What Praqma gained in this collaboration was a open source implementation of the pro-
totype which was created to investigate the research questions and a blog post summarizing
the work. The prototype is intended for free use by companies and Praqma’s consultants can
use it as a basis for future feature extractions. What the thesis gained from the collaboration

11

2. Background

is access to a network of people with experience in the subject field to discuss ideas and get
assistance with technical troubles.

By collaborating with Praqma there was a hope of using their connections in order to gain
access to traditional companies developing closed source software to investigate the e�ects
for that context. Companies showed concern for business secrets and this became an issue
despite e�orts to anonymize the data and making sure no information from the actual source
code or the structure of their organisation would be leaked were made. Because of the limited
time period the thesis was carried out with a decision to analyze open source repositories.
This decision was made as the time it took to get a response from people within companies
could range several weeks.

2.1.3 Open- and Closed Source
Instead of focusing the analysis on one company, analysing multiple open source projects
allowed for a wider range of data sources. However the structure of open source projects dif-
fer from normal companies despite some some aspects such as quality and throughput being
universally desirable. In open source projects anyone can use, contribute and be involved in
the development meaning that the structure of how people work on it can vary greatly. Typ-
ically development in open source projects is more distributed where developers all around
the world contribute to di�erent parts of the project because of di�erences in geographic lo-
cation. There is also a looser definition of a team, as there usually are a set of few developers
who are seen as the (hopefully benevolent) dictators, who decide if the contributions made
by other developers will be added into the main repository.

Some disadvantages of doing the analysis of this thesis on open source projects is that
traditional collaboration is less common due to geographical distribution and that there may
not exist a clear team structure. There may also be di�culties in interviewing insiders from
the project as they might not be available or interested. An advantage is that a larger quantity
of projects can be examined as they can be directly downloaded and there is no need for an
elusive non-disclosure agreement.

In a closed source environment there are hierarchies in titles and positions at the com-
pany. Companies also create teams or divisions with a separation of labour which is dis-
tributed within the company. The teams have one set of structure in the hierarchy of the
company, then a structure of the social dynamics of the working place, who is friends with
whom and who is sitting close to whom.

Disadvantages of using closed source environment for a data mining project include the
di�culty of finding a company that allows outsiders to examine metadata and present parts
of it in a report. An advantage would be that it would be easier to perform an in-depth case
study if legal rights are obtained.

These contrasting structures makes the context of development disparate meaning that
the analysis made for one set of them not necessarily apply to the other. Analysis will have
to be made as to which metrics can be applied generally to both open and closed sourced
project and which that are specific.

As no suitable closed source project could be found a decision was made to examine open
source projects. This also influenced the decision to examine a larger quantity of repositories
in less detail as this was made possible by utilizing public open source projects.

12

2.2 Research Method

Figure 2.1: The iterative process of the Research Method

2.2 Research Method
This section aims to give an insight to how the research was structured. It will tell the story
of how the steps were taken to move from ideas to a proof of concept generating results
which could be analyzed. Along with stating how the research was made, it will also present
motivations for the choices that were made. After this chapter it should be made clear as to
why the thesis is built on git, why the certain models were chosen and why 107 di�erent open
source projects were analyzed.

2.2.1 General Method
Large parts of the research used an iterative approach that repeated a method several times to
find di�erent results. While a more rigid plan was initially considered the iterative approach
was deemed more fitting as it would be more forgiving of errors and allow planning of later
stages based on results from earlier ones. A flowchart summarizing an iteration as used for the
research in this paper is shown in figure 2.1. The goal of using this approach was to divide the
research questions in more manageable subgoals rather than the potentially insurmountable
obstacle that a more rigid approach might have presented.

The first step of this approach is to decide on the goal of the iteration. In most this meant
extracting a specific type of data and potentially processing this data to create new values,
with the final method for processing still not being decided upon. This is followed by a short
literature and tool examination to see if something similar have been done before. If similar
extractions have been done with an accessible tool it may be utilized for extraction. If earlier
research uses models similar to the end goal they may be used as is or in an altered form for
later parts. In some cases ideas can be deemed too di�cult or impossible with the utilized
resources and discarded or reworked. With a larger picture in mind a decision can be made
of what should actually be extracted and processed. This may include several complementing
or alternative values. The plans are realized in an implementation phase where scripts that
collect and process data are written. Finally the obtained results are examined and tested
and validated. If the output appears to be faulty the code is examined and found bugs are
corrected in order to increase the validity of results. If the results are deemed to be overly
limited in usage or redundant due to similarity to other values theymay be skipped in later it-
erations. The testing and validation is done continually and missed issues from earlier phases

13

2. Background

can be fixed in later ones. While more extensive testing may have been preferable many of
the issues are linked to specific repositories that were used and as the list of used repositories
was extended more issues were illuminated. As the used data sources was changing through-
out the research to complement current needs and grow more exhaustive this was di�cult
to plan around.

2.2.2 Workflow
For a more specific explanation of the overall workflow the research took o� with a general
literature studies with a goal to try and find an e�ective quantification of an ”Expert Factor”
that would provide a measurement of collaboration and internal developer structure. An-
other early goal was to determine the scope and specifications for a final prototype. A goal
was to consider several definitions of this Expert Factor and test them through an experimen-
tal method where di�erent representations would be tried and compared against each other
to find an acceptable representation. Similar representations could be implemented in the
same iteration while di�ering ones were saved for later iterations. From early on inspiration
was taken from the fractal figures and fractal values as presented by D’Ambros et al. [7] and
this was used as a basis for one of the utilized models. This representation was seen as appeal-
ing due to its scalability in being possible to examine at di�ering levels such as on single files
or on larger component, as well as the data required for it being relatively simple to extract.
This value had previously been compared to the number of bugs and comparing it to other
values was a goal for later stages. Other inspiration was taken from a master thesis relating
to network analysis[8] where a project was presented as a network where contributors are
represented as nodes and collaborations are represented as edges. This network was built
using the same data as the fractal value but served as an alternative way to examine the prob-
lem and allowing for di�ering values to be extracted from the built network and a version
of this network representation was used as a basis for another used model. Other models for
viewing collaborations such as the line based model discussed by Tubor Gîrba et al.[9] was
evaluated, but as it distributes removed/changed lines over all developers in the file evenly it
was deemed to not be robust against cases such as reformatting and adding documentation
among other things. The implementation cost of that model along with its added flaws led
to it not being pursued.

Aside from the Expert Factor a goal from the start was to extract a variety of other data
to compare it to. A goal was to select points of comparison accepted as being linked to
performance. For this reason examination of the Accelerate[4] metrics was performed. Out
of the four presented measurements the stability metrics which contain the mean time to
recover after system failure and a change failure rate measuring how many changes lead to
bugs both required sources outside of git. These two metrics would be highly interesting to
extract but because this thesis did not have access to the sources required to extract them it
was decided against. The sources to extract those metrics could be either tags or labels in a
version control system which would need to be unified and properly filled in, or access to a
bug tracker with commit messages that connects to the issues in the tracker. While extraction
is definitely possible it is highly specific to each project making it hard to create a general
extraction required in order to examine multiple projects which was done by this thesis.

The other two measurements were the throughput metrics containing deployment fre-
quency and the lead time between a change is made and it running in production. While

14

2.2 Research Method

Github contains a release functionality that could have functioned as a deployment frequency
this feature was found to have varying methods and degrees of usage in the examined open
source projects leading to deployment frequency not being measured in this thesis. Finally,
the lead time was considered the most accessible metric utilizing only git and a version of this
was chosen for further examination. While there was no guarantee that this is equivalent of
code running in production for every examined open source project the time between code
being first committed in a branch and it being integrated into the main branch was used as
a definition of this for the results and discussions of this thesis. For a sanity check the bal-
ance of commits in branches to total number of commits was also considered. If a majority of
commits are done directly in branches before merging into main it may be a valid assumption
that the code is tested and cleanly integrated before merging in.

The implementation phases was to lead to the creation of a software prototype. The pur-
pose of this software prototype was to serve as a proof of concept tool for extracting and
processing the desired values. There was an attempt to balance quick and e�cient imple-
mentation with making clean and readable code as to ease later examination and bug fixing.
As it was only meant as a proof of concept usability was not a priority.

As a way of producing a modular prototype where work was easy to divide and to sim-
plify understanding for people only interested in either data gathering or visualization, the
prototype is divided in two parts. One is a collection of scripts for extracting and processing
data from a git repository and saving selected values in a file. The other is used to visualize
the values from the generated files by generating graphs. Due to the nature of the research
creation of a running prototype was deemed an important step as validation of proposed
models would have been overly di�cult if a paper prototype was used.

To test and validate the prototype as well as to perform some basic analysis of results the
generated graphs and files were examined. If values seemed odd or faulty the source code was
examined and bugs were fixed. This was repeated until the values were found acceptable.

Rounding o� the research there was a phase of more dedicated analysis where results and
findings of every phase of the work was searched for and examined. Due to time constraints
and finding older bugs in the later examination this phase was cut somewhat short but still
provided some valid results. An earlier goal for validating the results was an interview with
knowledgeable contributors from one of the examined projects, however no suitable agree-
ments for such an interview was possible and this had to be cut from the scope of the thesis.

2.2.3 Alternate Methods
There exist other research wherein alternate approaches to mining a software repository is
presented. In one paper byD’Ambros et al.[10] a general approach to software repository anal-
ysis utilizing a Release History Database where relevant information is stored. This database
is used both in a similar manner to this thesis with an analysis of developer e�ort, and for
di�erent analysis such as finding hot-spots and coupled files. As the particular database pre-
sented in the paper requires examined repositories to use the version control system CVS
alongside the bug tracker Bugzilla it would not have bee suitable for the research of this the-
sis. Utilizing a database to save all data that was to be examined may have been a preferable
approach toward later stages but a modular approach with di�erent files collecting di�erent
data was seen as preferable in early stages due to increased ability to quickly try out new fea-
tures and fix issues in older data handling. For later stages switching to a database approach

15

2. Background

was considered but decided against due to time constraints.
One aspect that could have been considered is where the hot-spots of the code are. There

are some slight variations of what the definition of a hot-spot is. D’Ambros et al.[10] sees it
as volatile, dependent and often buggy code and looks at a wide variety of metrics and how
they change over time to decide this. Adam Tornhill[11] uses a simpler definition that only
looks at complexity and change rate. Tornhill’s simpler definition fit the scope of this thesis
better but no in depth analysis of a model based on this was used due to limitations in scope
and tine.

Gîrba et al.[9] suggests defining ownership of code by looking at who last edited every
line of code. A formula for approximating this in CVS is presented but in git the last editor
of every line is explicitly extractable. This method was examined in earlier phases. This has
some advantages over examination of commits such as being applicable to all code currently
running in production while ignoring code that is no longer relevant. It does however have
some drawbacks such as it being more di�cult to view recent changes as more relevant,
contributions that only remove code not being considered and small edits of lines giving full
ownership of the line to the editor over the original author as any formatting change such
as indention or reordering would give a large ownership percentage compared to the change
that actually was made. Overall there were stronger arguments for examining commits and
it was chosen as the main basis for this thesis but similar studies could be made using owned
lines.

Alonso et al.[12] uses a di�erent view on the subject matter where the expertise of a
developer is measured by words used in subject matter of changes and commit messages.
This provides a di�ering method but ultimately felt disconnected from the chosen research
questions of this thesis.

A method of defining ownership using bugs and bug fixes is presented by Rahman et
al.[6]. While it would have led to interesting analysis where bugs and bug fixes appears it is
not generally extractable from git alone and would require external bug trackers.

Orucevic-Alagic andHöst[13] presented the definition of the network representation and
uses it in a case study examining the larger scale android network. The work of this thesis
examines it in a di�erent context by looking at a larger number of networks in less detail.

2.2.4 Why Git?
As the sole source of data, the version control system git[14] was chosen. This was done
for several reasons. One reason git was chosen over other version control systems was that
it is easily usable from the command line, making data extraction utilizing the command
line through parsing easier. This also leads to git being easy to integrate into scripts, which
made it suitable for building the prototype upon. The widespread usage of git, particularly
in an open source context, opened a possibility to examine a wide variety of sources. Git also
supports migrating from several other version control systems[15], allowing for a wide variety
of historical data despite the widespread usage of git being relatively new. Another reason
is that the authors has experience in git. Said experience allow commands to be utilized
without spending too much time on tutorials. As to why no complementing sources of data
such as a bug tracker or a mailing list was used the reasoning was that these sources are often
project specific and there was unwillingness to lock down to one project. If there had been a
possibility to conduct the research on a proprietary repository rather than just open source

16

2.3 Theory

repositories there would likely have been some tailoring for the specific source but as no
suitable proprietary projects were found this was deemed too limiting.

2.2.5 Picking Specific Sources
In order to investigate the structural collaboration between developers central to RQ1 there
was a need to analyze repositories with collaboration as a focal point. Multiple people writing
on a file are collaborating on a file level, multiple people working on the same project are
collaborating on a project level even though they might not work on the same file. If there
is only one developer connected to a repository then no collaboration has occurred either
on project or file level. That is the reason for selecting projects where collaboration can be
determined to have existed. While having a bigger corpus and including all di�erent types of
repositories would have been preferable for the sake of more generalizable results, the time
frame for this thesis made it so that a selection of focus had to be made.

For specific projects to look at 107 di�erent GitHub[2] repositories were chosen. An at-
tempt was made to select repositories of varying size and origin but avoiding trivially small
repositories with 1 or 2 contributors or next to no source code files. As the tool Lizard[16]
that was utilized to extract complexity metrics requires examined files to be of certain pro-
gramming languages projects that mostly used these languages were selected. As the final
tool looked at the same period of time for comparison there was an attempt to select projects
that have had activity between 2017 and 2019. Dynamically selecting an active period for
each repository would have been possible but was not done due to time constraints. While
the Linux kernel repository was initially examined it was ultimately decided against because
of the high level of activity leading to performance issues and values being on a di�erent
scale than those of other repositories. In some rare cases the naming in the file structure pro-
vided problems for the parsing, for example when spaces were used in folder names. As these
projects were rare it was deemed more e�ective to replace them than to implement support
for every possible file structure.

The reason for analyzing over a hundred repositories is to find statistically significant
generalizable results. Instead of focusing in on a few repositories and analysing themmore in
depth. If access to a closed source project was granted then it would likely have been the other
way around and gone into full depth about that specific project, validating the results with
the developers in that project. Going in-depth could also have been possible for a few selected
open source repositories, but with access to a high amount of open source repositories the
thesis valued establish relations between di�erent metrics over analysing information could
be extracted for the given context.

2.3 Theory
To ease understanding of thismaster thesis some fundamental concepts relating to the field of
Software ConfigurationManagement (SCM) will be laid out. Firstly the concept of Configu-
ration Identification andwhywe care about it will be discussed. Then the topic will be broad-
ened to configuration status accounting (CSA) and configurationmanagement database (CMDB)
which is the theory which this thesis will apply in practice. The version control system git is
used as the sole source of collected data throughout the thesis and some basic functionality of

17

2. Background

git will therefore be explained. Git contains certain elements of a CMDB andCSAwhich will
be used to extract additional information in line with CSA. How git functions as a CMDB
and CSA will be also be covered followed by a section of higher detail covering the methods
in git that were used in this thesis. Outside of SCM there will be a short explanation of the
weighted directed networks used for parts of the thesis.

2.3.1 Configuration Identification:
Identifying which items are tracked is an early step in gathering information from these
items. Configuration identification deals with definingwhich parts of software systemwill be
controlled as in stored and given unique nomenclature.[17] Kelly [18] defines a configuration
item (CI) as any part of the systemwhich is independently identified, stored, tested, changed,
delivered and or maintained. She also argues for how this does not only include source code,
but all things developers could care about including things like documentation, pictures and
notes or test data information.

The definition of a CI can also be looked at in contrast to the definition of an Artefact.
An Artefact is anything related to the system regardless of if it should be identified and
maintained, making CIs a subset of Artifacts. For a CI there is a guarantee of persistence but
an Artifact might be transient. The CIs will be worked on and transformed by developers
during the course of a project and as a result the history of how the CIs have changed. A
representation of di�erent versions of a CI being stored is shown in figure 2.2. In this figure
three versions of the same configuration item are shown. While version 3 is the latest the
historic contents of versions 1 and 2 are saved with the contributors of each version serving
as an example of stored metadata.

Berso� and Davis outlines that there needs to be the history of changes that were made,
who made them and why they were made.[17] This type of metadata is related to CSA which
will be covered later but it is important to highlight the connection between CIs as the items
that are important and will be given the treatment of collecting and recording data regard-
ing changes. This means that CIs also includes metadata, which is stored in version control
systems as git. The information about a CI is therefore also a CI, and this is what this the-
sis in interested in extracting and analysing. Some of the metrics analysed like amount of
commiters, lines added and integration speed comes directly from these metadata CIs, while
others such as number of functions and cyclomatic complexity is generated by static analysis
of the source code CIs.

From thewide range of CIs whichwill exist in the project this thesis is interested in source
code files and the metadata related to these files. The reason being is to limit the results to
coding as a way to clean the large output of di�erent results and staying related to the subject
field and interesting to both Praqma and the Computer Science faculty. Limiting the results
to source code also allows for code-specific values such as complexity to be collected.

2.3.2 Configuration Management Database:
Tracking changes and files is an important step of the research of this essay and to do that
they must be stored somewhere. In order to store and share the CIs between each other there
needs to be some sort of electronic library where all the CIs are stored, such a library is called
configuration management database (CMDB).

18

2.3 Theory

Figure 2.2: Versions of a CI

Submitting and retrieving files should be easy and as a library the CMDB is expected to
be well ordered so that searching for what currently is needed is easy.

It can be seen to have a primarily administrative purpose, but great benefits exists if the
CMDB is fast and contains all information necessary for work to begin as what is unique for
a CMDB is that transformations on files are very common and necessary for the development
to carry on forward.[18]

Both Kelly and Daniels describes a database where not only files are important, but infor-
mation surrounding the files[18][19]. Daniels separates the information into three categories;
control which deals with versions, if it is reviewed and planned future work for the file etc;
identification, which contains identifiers for the file, connected requirement or story and
which developers who are responsible for it; documentation which contains things like doc-
umented changes and reason for them.

After data mining files a large collection of rawmetadata can be obtained and transform-
ing said raw data to more specific and useful information is an important step.

While what is supposed to be included in the CMDB can be subject for riveting debates,
Daniels o�ers one view of how he thinks it should be structured. The main idea being that
it is not only important to be able to retrieve and update files, it is required for a CMDB to
also be able to handle information about the file. The types of information that should be
stored is handled by the field of configuration status accounting.

CMDB is central to what information this thesis extracts from the di�erent tools. How
it is accessed and stored, and which types of information could be beneficial for the tools to
either append or for a future tool to include as a selection criteria.

2.3.3 Configuration Status Accounting:
Configuration Status Accounting (CSA) is an important part of dataminingCIs and provides
background on the origin of the collected information. CSA is defined by Daniels[19] as the
discipline of recording and reporting the status of CIs in the project, providing feedback and
tracability for the project.

The recorded information can include things such as which versions exists of the CI,
which one is the most current one as well and current status of change requests. There
may also exist metadata regarding changes of files like who has changed what, when did the
changes occur or who is working on it right now. For collections or individual CIs accounting
could include test information regarding performance or functionality.

19

2. Background

2.3.4 Version Control Systems:
There are various CM tools which aims to act as a CMDB, recording and tracking changes to
CIs. Usually they are called version control systems (VCS), of these some prominent ones are
Git, PerForce and Mercurial. Central to them is that there exists a CMDB called the main or
global repository which stores all previous configurations of the CIs.

Developers can either copy the repository to a local machine, usually referred to the lo-
cal repository or their workspace or check out individual files that they which to work on.
Transformations made to their workspace will not a�ect the global repository until they se-
lect which changes they want to add and then apply it on top of the global repository. The
model of checking in and out files is described as the Checkout/Checkin model by Feiler[20].

2.3.5 Git as a CMDB
Git is a VCS containing features such as independent switchable and mergeable branches
and a distributed workflow where the repository is cloned rather than checked out[14]. It
was chosen as a basis for the thesis because of its widespread usage which makes finding
suitable projects easy and the open source nature allowing for usage without licences. This
section will describe what data is stored in git and explain the methods behind querying git
to extract its data.

Git stores a delta containing the changes to files as what they call a commit. An example
of this is shown in figure 2.3. In this figure changes are stored as a delta keeping track of all
changes between versions. In the figure fields representing the files A, B and C are shown
in color for a version when they have been updated for that particular version and in white
with dotted borders if the latest change took place in a previous version, representing the
metadata about when the file last was edited. Each delta contains a set of code changes that is
the di�erence from one version to the other but it also stores information about the commit.
This information is accessed through calling the git log, any version is retrievable and there
are selection criteria that can be carried out.

When a developer commits a change to a git repository, metadata regarding this commit
will be stored in a retrievable log. This data includes author, timestamp, files changed, num-
ber of lines added and deleted and a potential commit message from the author. It is possible
to see the di�erences in a file compared from any two arbitrary versions of it.

This thesis will be focused on extracting data from the change history of the files. Specif-
ically binding authors e�orts made to the files, considering the sizes, dates and amount of
interactions with files.

2.3.6 Extracting Information in Git:
A number of commands exists to retrieve the data from the git CMDB[21]. git log and
its summarized form git shortlog can access data about each commit and can be used on
the full project, individual folders or individual files. By default git log retrieves commit
hash, author, date, and commit message for each commit. Options exists to additional data
including changed files, additions, deletions and the option --follow can be used to look
at all commits to a file including before a potential rename or move. git blame can look
at each individual line in a file and show at what commit it was last edited and who was the

20

2.3 Theory

Figure 2.3: How git stores and tracks changes

author of this commit. By analysing the output of these commands and the raw data can be
collected and processed into a more specific piece of information.

2.3.7 Network Analysis
The networks used throughout the thesis are weighted directed networks where there be-
tween every pair of nodes i, j exist two weighted vertexes, namely wi j from i to j and w ji
from j to i. Given this basis a simplified definition of the vertex strength of a vertex in a
weighted graphs given by Barrat et al.[22] would be given by vsi =

∑
j∈N(v) wi j where N(v)

is the set of all vertexes. For directed graphs this definition can be expanded to give one
in-vertex strength vsin

i =
∑

j∈N(v) w ji and one out-vertex strength vsout
i =

∑
j∈N(v) wi j

21

2. Background

22

Chapter 3

Design

To explore the research questions of this thesis a prototype incorporating the utilized models
has been created. This chapter will explain the overall design and methodology of modeling
various values as detailed explanations of the specific models used and how they have been
integrated with the prototype. With clear specifications of how they were extracted and
processed. The data extraction follows from these models explanations of what work was
carried out in this thesis and how this was done along with motivating why it was done in
this way and comparing the selected method to alternate methods. The subchapters will
present each parameter and model examined in this thesis and how it relates to the research
questions. The section will be of interest to a reader that want to understand the nuts and
bolts of the designed prototype and data collection.

Aside from the technical explanations the utilized models of putting the data together
are explained and motivated. For creating non-trivial pieces of information using metadata
relating to files, knowing the model of how these values are to be built is important. Inves-
tigating how to to put these together to have it model the required aspects with su�cient
accuracy. In the case of a new model or a usage in a new context tests of validity and utility
may also be in order.

3.1 Overall Design
To explore the research questions, mathematical representations of the concepts are needed
to be established, these mathematical representations is in chapter referred to as models.
Di�erent aspects such as the level of collaboration or the integration speed in a project will
need to be modeled and measured.

By experimenting with several models of the same subject matter or using one proven suc-
cessful in previous research more trusted models could be utilized. To verify and test these
models as well as gathering the data neccessary for the cross-referencing of research question
2 a prototype for gathering data for and utilizing the selected models had to be constructed.

23

3. Design

As manual extraction and processing, while used in the initial phase of building the pro-
totype, would be time consuming and prone to manual mistakes a programmed prototype
was constructed rather than a theoretical paper prototype that might not have allowed for
su�cient testing and validation.

There was no software available that allowed for extraction of all the models needed for
the thesis. Where it was possible external tools were used when following the specifications
of the models in the thesis, in those cases the tools were integrated into the prototype to
allow automation of execution. By automating the extraction it allowed for examination a
wide range of repositories while also allowing for extensions, both during this thesis and for
potential as a basis for future research.

The following section will explain how this prototype works in a more general sense,
giving some background that could be of interest in understanding the more specific expla-
nations.

3.1.1 Specification
The prototype is based on a collection of created scripts utilising bash, python and R. As
performance was not a primary focus these scripting languages were powerful enough to get
a satisfying level of performance making it possible to iterate and rerun an extraction and
processing for a specific project in less than fiveminutes. Bash scripts was chosen for its wrap-
ping functionality, binding di�erent scripts together and having direct access to the same git
commands designed for the bash terminal. Python was chosen because of its simplicity when
it comes to libraries for line by line manipulating along with its performance being good
for a scripting language. R was the library of choice when creating visual representations as
there exists several libraries for appending di�erent statistical methods in visualisation and
also due to its ability to generate interactive plots. The interactivity increased the useful-
ness making it possible to hover over outliers and see additional information which could be
loaded into a point of the plot [23].

A representation of how the prototype works is shown in figure 3.1. The scripts were
separated and generated temporary files to dump data into, those files were processed by
another script, turning that raw data dump into structured comma separated value (CSV)
files. These csv-files contained the processed information and another script allowed for
unifying the di�erent CSV-files depending on the level of extraction. The file level data all
had a field with the filename where all CSV files on that level could be unified into one big
csv-file containing all extracted and processed data regarding the specific files. The same was
the case for the project data, where intermediate files held data which could be processed into
one big project data CSV file. On a project level di�erent projects could be appended into
one big project data CSV file, or multiple time periods for one project could be appended
for a trend analysis on that project.

Because of the modular design where scripts could generate data into a intermediate
form then be processed by an independent script it allowed for extending functionality as
the extraction could be kept but processing changed or vice versa. It also allows for future
research to be built on top of it as the scripts function as separate units and are unified on a
high level, if an arbitrary number of the extractions are wanted as a base for new comparisons
it would be easy to extend or modify the base prototype for that need.

24

3.2 Measuring Collaboration: Fractal Value

Figure 3.1: Data flow for prototype

3.2 Measuring Collaboration: Fractal Value
Measuring collaboration is the cornerstone of this thesis, exploring and evaluating di�erent
ways of modelling collaboration is our first research question. The model chosen will directly
impact the second research question where the thesis will relate the collaboration metrics to
performance metrics.

As the basis of the thesis relies on the model chosen for representing collaboration, ex-
ploring and analysing di�erent ways of representing collaboration was done. Hence this
chapter will emphasizemotivating the choices that weremade and highlight alternative paths
that can be of interest for future research.

The following section will describe the origin and specification of the fractal value which
is the primary collaboration model chosen.

3.2.1 Motivation
The fractal value is one of the measurements of number and distribution of contributors
working on a file or component. With it it becomes possible to tell apart the almost chaotic
parts of very high collaboration withmore rigid structures where one or a few people domost
of the work.

A big reason for picking the fractal value as one of themain values to examine was because
it was customizable and scalable, making it possible to examine at di�erent levels, allowing
for single file examination as well as full project examination. Another reason was that it was
simple and generalizable. All that is needed is extracting commits and their authors which is
possible on every git repository and would also be possible in other version control systems.
There was also a possibility to experiment with a basis for the model other than number of
commits which is something that was done in the early stages of the research done by this

25

3. Design

Figure 3.2: Fractal representation of distributed development on a
component

thesis.
To compare results of using the model on high and low levels a decicion was made to

examine the value file and project levels. It would also have been interesting to examine the
value on a level between those but there were some troubles in deciding and limiting the
extraction of the value on a proper level. A component level would have led to interesting
analysis but an accurate and generalizable way of dividing a repository in components was
not found as preliminary examination of di�erent repositories showed varying structure of
components. Another medium-scope level that could have been examined is on a directory
level which is something that has been done in previous research using the value[7]. This
would have been done by calculating the value using commits that edited a file being located
in the specific folder to be examined and repeating this for every folder containing at least one
file that there is interest in. While examining this level may have led to a better representation
of the value than the file and project representations it was ultimately decided against due
time constraints leading to an overall focus on the file and project level and the fact that no
other metrics were specifically collected on a folder level.

As some of the details are lost there are some drawbacks of the fractal value as compared
to the fractal figure visualization. For example, the pattern with few balanced developers and
the one with one major and many minor developers may result in the same fractal value de-
spite di�erent distributions but by cross-referencing the value to the number of contributors
some more detail can be seen.

3.2.2 Specification
The fractal value originated in a paper by D’Ambros, Lanza and Gall[7] and was originally
meant as a complement to the fractal figure visualization shown in figure 3.2. Using this
technique for visualizing distributed development one figure represents a component of a
repository like a file or a folder and the di�erent-colored sections of the figure represents
one contributor. The relative sizes of the figure shows how large the contribution of every
developer is in comparison to the other developers. Four major di�ering patterns of distribu-
tion were found using this model, one developer, few balanced developers (shown in figure
3.2), one major with many minor developers and many balanced developers. Out of these
patterns, the first and last pattern can be inferred from the value with a value of 0 or a value
nearing one respectively. However, a flaw with the value compared to the figure is that it may

26

3.2 Measuring Collaboration: Fractal Value

be di�cult to tell the di�erence between few balanced developers or one major and many
minor developers.

The fractal value is a distillation of this figure into a singular value using the formula
1 −
∑
αi∈A(nc(αi)

NC)2 where A = {α1, α2, ..., αn} is the set of contributors, nc(αi) is the number
of commits in the selected scope by contributor αi and NC is the total number of commits
in the selected scope. The scope is customizable and can include a file or set of files along
with a timespan. The value can go from a minimum of 0 meaning only one developer to a
theoretical maximum of 1 where nearing it means that there is a large amount of contributors
that all have done very minor contributions. Higher fractal values would point to a lack of
clear ownership while lower would mean stronger ownership at the expense of collaboration.

In the prototype a fractal value is calculated on file and project level. From the git log all
commits over a specific time period, the author of the commit and the changed files are stored
in a temporary file. Merge commits were excluded from the examined commits, partially be-
cause they primarily put together other contributions rather than being a new contribution
and partially because the log of merges did not always showwhat files were a�ected. The pro-
jectwide fractal value is calculated using all of the stored commits while file-specific fractal
values can be calculated for every individual file using the commit data where that particular
file was edited. The file-level values can also be put together as a set of mean value, maxi-
mum value and standard deviation covering the values on project level, giving two seperate
representations on this level. While the value is possible to extract for every file in the final
prototype it is limited to source code files of certain programming languages as source code
files was of greater interest from both an academic and industrial viewpoint and to preserve
compatibility with other metrics such as complexity where the free tool used was limited to
certain programming languages.

3.2.3 Alternatives
An alternative of using the basic version of the fractal value would be a slight alteration using
a basis other than the number of commits, replacing nc(αi) and NC from the definition with
appropriate values. Earlier versions of the prototype calculated versions of this value using
added lines, deleted lines and owned lines as defined by who last edited a line in addition
to number of commits. The kind of line examination done had flaws as some outliers had
extremely high number without being an important contribution due to things like automat-
ically generated files. This reason along with the results being similar for all four models led
to the focus being put on number of commits for later stages. Pure additions and deletions
are still collected and used for some cross-reference with other values but the distribution be-
tween developers is no longer considered as results from previous experimentation pointed
to number of commits leading to the best representation of the value.

A utilization of the owned lines described by Gîrba et al.[9] This visualization contains
a line showing who the owner of a file is and the way that the owner changes led to the
identification of several patterns of collaboration or lack thereof. While this would lead to
interesting analysis on its own it would be di�cult to distill into one value to utilize for
cross-correlation and therefore not examined by the research in this thesis.

Liu et al.[24] presented a di�ering method for visualization looking at a more temporal
level where the when and by who of activity is examined. This is shown in a graph where the
number of operations per day is shown with di�erent lines representing di�erent developers.

27

3. Design

Much like the ownership line this value may have been interesting to examine by itself but is
di�cult to represent in one value for comparison to other values.

Meng et al.[25] examines ownership at a line level, making a distinction between shared
lines of code that have been edited by multiple authors and non-shared lines with one author
and compares the position and amount of shared lines with the position and amount of bugs.
Examination of individual line level being outside the scope of the thesis was a reason for
not choosing this representation. Measuring the amount and percentage of shared lines may
have led to a useful value for comparison on both file and project level but was not done due
to time constraints and concerns about prototype performance.

Fritz et al.[26] conducted amore detailed case study where authorship and interaction be-
tween developers and source code were measured. This study included detailed information
about work patterns such as deliveries, acceptances and every individual interaction with the
code. As this data was not possible to extract from a git repository and may in some cases
require studying the actual work being done by developers it was deemed inappropriate for
the scope of this thesis. For a more detailed case study such an approach may be useful but
for examining a large quantity of sources it becomes unviable.

3.3 Measuring Collaboration: Network Anal-
ysis

As an alternative method of exploring representation of collaboration and internal developer
structure a network model with nodes representing developers and edges representing bonds
between developers was used.

3.3.1 Motivation
A motivation for using the social network approach was the wide variety of information
that could potentially be extracted from it. As suggested in a paper by Hangal et al.[27]
using similar methods with data from twitter and academic papers, a directed and weighted
networkmodelling influence between people could be used for things like finding specifically
influential ties or people or for finding an especially strong path.

Tenggren and Johansson’s thesis on the subject[8] provided some more examples of what
information could be extracted from a network graph built in a similar context. The main
suggestions are Vertex Strength, Clustering Coe�cient and three di�erent versions of Cen-
trality. Out of these the Clustering Coe�cient appeared to have low e�ect by the results
discussed by Tenggren and Johansson and was not chosen for consideration in this thesis.
While measurments of Centrality might have been useful time constraints along with there
being three definitions, some of which were unsupported by the NetworkX package led to
Centrality not to be studied in detail. This left vertex strength which was extracted and saved
for future use.

A drawback of the vertex strength is that it was shown on a developer level, making it
unsuitable for comparison to values of other levels. To utilize the value a mean value along
with a standard deviation and a maximum value was calculated.

28

3.4 Complexity

3.3.2 Specification
The building of the network is based on the method presented by Orucevic-Alagic and
Höst[13] with a weighted and directed network of developers. For every file used to build
up the network the edge from a developer having contributed to a file to other developers
having any contributions on the same file is increased by the percentage of contributions
done by the first developer. This is repeated for every file of the right format in the repos-
itory. In the prototype this is done using the commit data for the selected time period. In
a final network developers with considerable contribution in a large amount of files with
several other contributors will have a larger amount of strong ties. Examining the network
and its connectivity could also give some clues to the structure of the team.

In the prototype the network was built using Python’s NetworkX package [28], which
supports the desired network type and a number of operations to perform on on the built
network. As in-data the same temporary files used for calculating the fractal value was used
as all relevant data was stored there. A di�erence is that more specific information about
specific developers can be obtained.

Aside from the standard network where every level of contribution on a file led to further
influence coming in and out of the node of a contributor, a clean graph where only developers
whose percentage of commits were over a specified and customizable threshold was built as a
way to only model more significant collaborations. A result that was shown after some quick
experimentation was that a threshold of 15% worked well in conjunction with the standard
network as it struck a balance between not being too similar to the standard network while
not throwing away too much useful data.

3.4 Complexity
When discussing "complexity" of code there are several di�erent definitions that could come
to mind. It could mean "di�cult to understand" or "with multiple paths". While sometimes
necessery depending on the problem which is implemented, complexity is generally a trait
which is avoided. Complexity is a part of technical debt making code harder to maintain
and extend, it is therefore chosen as a highlighted metric in this thesis research questions.
Is there a relationship between the levels of collaboration and complexity. Does lone wolf
programmers write more complex code, is complexity perhaps a ”too many cooks”-syndrome
or does complexity stem from things other than levels of collaboration. To investigate further,
models for complexitywas chosen and the following subchapters will discuss what complexity
measurments are used in this thesis and why these were chosen.

3.4.1 Motivation
As themainmeasure of complexity the cyclomatic complexity originally described byMcCabe[29]
was selected. It was chosen as it is one of themost common representations of complexity and
has been thoroughly tested through years of usage. Furthermore, free tools for calculating the
cyclomatic complexity or an approximation of it exists online.

While a pure measurement of complexity may not be directly related to performance.
Previous research by Gill and Kemerer[30] suggests that combining cyclomatic complexity

29

3. Design

with lines of code for a measurement of complexity density provided more noticeable results
as there appeared to be correlation between level of maintainability and complexity density.
Despite this there was interest in seeing if there was some connection between internal de-
veloper structure and complex code, making it an intriguing value to test against. As both
cyclomatic complexity number and lines of code is observable obtaining a complexity den-
sity would have been possible but was not done due to mismatch with the collected data as
complexity is looked at on a function level and would not have worked well as a comparison
to the total lines of code in the file.

For extracting values relating to complexity the free tool Lizard[16] was used. This tool
provided some noticeable drawbacks. First, it only measured complexity on a function level
rather than a file or higher level execution level. It also ignored main methods in some lan-
guages such as Python leading to the value not being measurable in some smaller files. These
considerations meant that the observable cyclomatic complexity number may be consider-
ably lower than the actual number. It was however deemed good enough for an approxima-
tion of the complexity. The limitation to certain programming languages was not seen as
a big obstacle as enough popular languages were supported to be generalizable for the used
repositories and some limitation in examined files could help focus the results.

Aside from the cyclomatic complexity some simpler complexity metrics such as lines
of code and function count may be of interest. These measurments are simpler and more
accurate and may in some cases lead to more visible, if slightly trivial results. They may also
be used in conjuction with the cyclomatic complexity, with lines of code as a way to measure
a "Complexity Density" in future studies and with the number of function as a sort of sanity
check where limitations of the used tools may be observed.

3.4.2 Specification

McCabe’s Cyclomatic Complexity measurement of counts the number of linear independent
paths that the execution of the code can take. In the case of imperative code with no decision
points the cyclomatic complexity would be one. Decomposing a section of code to a control
flow graph G with E edges, N nodes and P connected components gives the definition of
cyclomatic complexity number V (G) = E − N + 2P. In figure 3.3 an example of a control
flow graph for a program with a for-loop being followed by an if-then-else statement. With 9
edges, 8 nodes and 1 connected component the cyclomatic complexity would be 9−8+2∗1 =
3

The Lizard tool works on source code files for a subset of common programming lan-
guages. As exact measurements of cyclomatic complexity are di�cult and may require the
execution of code Lizard calculates an approximation based on parsing and does so on a func-
tion level. Aside from the cyclomatic complexity lines of code, function count and parameter
count is counted and these values were saved as potential points of reference for the analysis.
As these values are done at one specific point in time rather than over an interval the proto-
type looks at the complexity metrics for the date specified by the end of the interval. As the
cyclomatic complexity was measured on a function level rather than a file level the value of
the most complex function in a file was chosen as an approximation of the complexity of the
file.

30

3.5 Integration Speed

Figure 3.3: An Example of a control flow graph

3.4.3 Alternatives
An alternate method to measure complexity would be counting the number of indentations
in a source code file. While this may have been simpler to extract it may also be less exact.
While many programming languages and code standards utilize tabs as execution gets nested
it is not universal and points of decision following each other rather than being nested would
only be counted once. Despite some of the drawbacks of the Lizard tool the measurement of
it seemed more thorough than merely counting indentations.

Another alternate measurment of complexity is the Halstead Complexity Measures[31].
These are a series of measures using operators and operands for several di�erent values. While
themultiple values could give amore complete picture than the singular cyclomatic complex-
ity only one measurment of complexity felt neccessary for later stages and the cyclomatic
complexity was chosen. Some disadvantages of using the Halstead Metrics in the context of
this thesis is that the list of considered values for analysis was growing large to an extent that
would provide an inconvenience during analysis and due to the fact that free tools used to
extract the Halstead Measures tended to be language specific.

3.5 Integration Speed
To answer research question 2 it was a necessity to gather a throughput metric and integra-
tion speed was chosen for this for reasons that will be argued for in the following subchapter.
Integrating often as opposed to collecting a technical debt and doing a big bang merge is
becoming more and more common[32]. Kent Beck includes continuous integration as one of

31

3. Design

the principles of eXtreme programming [3] and Martin Fowler vouches for continuous inte-
gration on its own merits [33]. Its widespread application and proven usefulness makes it an
interestingmetric to investigate and potential relationships to themeasurments of collabora-
tion could be explored. This subchapter will go into further motivation as to why integration
speed is interesting to look at, how it is extracted for the thesis and prototype and lastly if
there were any alternative ways which could be interesting.

3.5.1 Motivation
Nicole Forsgren et al.[4] has through their research identified factors based on speed as some
of the most important in predicting success for a project. These include three key perfor-
mance metrics primarily based on speed, lead time for changes, deployment frequency and
time to restore service. Being fast gives positive qualities, such as time to market, the faster it
is possible to deploy, the faster this new feature can be released to the market. Fast is also rel-
ative, but as Nicole Forsgren et al. found clear clusters of high performing teams, the projects
with the highest performance could deploy multiple times a day.

These key performance metrics are interesting as finding other metrics with causalities
against the key performance metrics can give rise to information about the usefulness of a
practice. The key performance metrics can for the most part not be directly mined from
git and need more data from outside sources such as issue trackers or code analysis. This
thesis is restricted to data that is available in git in order to analyse a large set of open source
repositories. Therefore it was not possible to reliably extract the key performance metrics
from a arbitrary repository. Therefore a substitute for a throughput metric was generated,
and will be argued to be a fair substitute in the following paragraph.

In order to be able to deploy fast there also need to be some sort of changes to deploy,
or else it will not be a new deployment but a verification of the old build. To allow for
deployment of anything new every day, which is possible for the highest performers, work also
has to be integrated every day. Another concept, whichMartin Fowler argues for in his blog is
Continuous Integration[33]. Continuous Integration is a set of practices aimed for frequent
integration the work which is becoming more and more commonplace. It has been proven
byMichael Hilton et al. that projects following continuous integration and integrating often
release more frequently than those that do not[32]. Integrating more frequently is therefore
proven to have a relationship with deployingmore often, which is one of the key performance
indicators according to Nicole Forsgren et al.

Integration speed is an interesting metric to investigate as it has been proven that apply-
ing continuous integration leads to beneficial results, but also due to the connection with the
key performance metrics of Forsgren, Humble and Kim.

3.5.2 Specification
Git has a referencing system in which every commit has a reference to the previous commit in
the chain, its so called "parent". In the case of a merge a commit can reference several parents.
By examining a specific commit there is no way to go forwards in time, as no reference to
the children of a commit gets generated when a new commit is made. By walking through all
parents there is no way of distinguish if a commit has been integrated or not as there is no
information that states this in the metadata of the commit.

32

3.5 Integration Speed

Amethod was developed along with Samuel Ytterbrink of Praqma (see Algorithm 1). The
method was based on git’s parent referencing system. Because the first parent of a commit
will always refer to the commit parent in the branch which the merge is happening in, which
in the case of only looking at the main branch will always be the main branch. With this, it
is possible to utilize the ".." selection criteria. ”..” in git allows for selecting all commits that
exists in one tree structure which does not exist in a di�erent specified tree structure. Figure
3.4, explains how the two tree structures gets selected. HEAD in the figure is pointing to a
merge point. By following the commits of the first parent, which in git is referenced by ”ˆ1”,
the green dotted set of commits gets selected and by following the second parent, ”ˆ2”, the
red dotted set gets selected. By selecting the di�erence of the two sets a new set containing
only the commits from the branch will be created.

The command git log <commit-hash>^1..<commit-hash>^2will therefore give the
metadata of all commits that existed in the branch but does not exist in the main branch,
which will be all the commits that were added to that branch and integrated to the main
branch at the merge point. It will however have problems with recognizing commits that has
been integrated through ”rebasing” and if commit squash is done with a pull request. While
it has some limitations it was deemed the best choice with more detailed explanation in the
”alternatives” section.

Set v
foreach MergeCommit m do

d ← Date(m)
foreach commit c | c ∈ SecondParent(m) ∧ c 6∈ FirstParent(m) do

v.add(DateDi�(d, c))
end

end
Algorithm 1: Pseudocode for extraction of integration speed

The integration speed can then be measured by looking at the commit metadata which
is available in the form of commit date. The closer the date where the commit was made is
to the merge point where it was integrated, the faster it was integrated.

Due to it being possible to also get information o� which files changed in each commit,
the age of the commits which forms our integration speed can be connected with the files
integrated. Making it possible to extract the integration speed on a file level, where analysis
of why certain files takes longer or shorter to integrate and why that might be can be in-
vestigated. The data can also be processed into the project level, where the commit speed is
aggregated for all integrations in a given time period. That allows for doing trend analysis
on a specific project as data on integration speed for each time interval in the project can be
done.

3.5.3 Alternatives
Other methods for analysing if a commit had been integrated or not were considered. An
idea was to create a new data structure and parse through all commits to build up a new tree
containing the correct data that was required. While such a solution would have yielded in
precise data specifically because it could have been implemented to trace commits which has
been merged by the "rebase" functionality git has, which employs a series of commits from
one branch on top of another branch instead of the standard "merge". Because of time and

33

3. Design

Figure 3.4: The two di�erent sets of commits (blue balls) which
comes from following either the first of second parent

scope such a method of commit analysis was not chosen, as it would require to reimplement
a big part of git and also extend its functionality.

The simpler version described in the previous section relies on the first and second parent
in a merge point, it works well for the standard merge case, but git allows for di�erent ways
to circumvent this system. Mainly it is circumvented by the re-base system but also in the
case of a pull-request where the commits have the option to be squashed, creating one new
commit and merging that commit in. Because of these cases it is not entirely accurate, but as
a compromise was needed to be made, as we didn’t have the time to reimplement a new tree
structure for git it was deemed su�cient for analysis.

Alternatives to integration speed as a metric itself was also considered, the di�erent
throughput metrics described in Nicole Forsgren et al. [4] where all pursued. But as they
would require access to more information available in for instance issue trackers it was de-
cided to keep the prototype general and applicable to any open source repository using git.
There are a multitude of issue trackers available, in order to get the data reliably then it
would be required to gain access to the issue tracker in use and have an implementation for
that issue trackers api ready. Even if access to an issue tracker is in granted it is also possible
for developers in the project to not filling in the information needed. The integration speed
metric is interesting on its own while also having a strong connection to the dora established
metrics.

34

3.6 Visual Representation

3.6 Visual Representation
The visual representation is built on scripts based on the R language. Specifically the library
”readr” for importing data on a CSV format [34], ”ggplot2” for plotting of points with statisti-
cal aids such as confidence intervals[35], correlation coe�cients and regressions. The library
”plotly” was used in order to make the plots interactive [36].

The packages all pertain to how the data is visualised. When plotting file data the amount
of data points can exceed 10 000 for big repositories, plotting such an amount of data gener-
ated more requirements on the plotting tool. In order to generate the highest quality infor-
mation, the plotting tool had to be interactive because statically showing thousands of labels
in a plot makes it crowded and hard to analyse as text and points are overlapping. This was
achieved with the ”plotly”-library which also made it possible tosave the plots as generated
html-files which opens up for the plots to be a part of a webpage and automatically update.

The ”ggplot2” package supports the plot generation and includes many features which
are useful for analysis.[35] It is easy to make the plots contain more information than the
standard x,y point pairings as you can add opacity, size or colour to the points based on any
of the fields. That is excellent for hotspot analysis, trying to find which files where more
care is needed to be taken, for example Adam Tornhills hotspot definition depends on size
in lines of code, and change frequency or commits[11], both of these values can be put into
the ”ggplot2” plotting function as colour intensity and size.

For statistical analysis ”ggplot2” has functionality for plotting out regression lines, his-
tograms, boxplots displaying the median and quantiles among other functions that were not
used in the thesis. The regression functions which are of most importance as analysis will
partly be based on them uses the statistical package or R which is developed by the core
R team and also a part of the core of the R language[37]. R is widely used by professional
statisticians and data analysts who rely on the correctness of these statistical packaged every
day[38].

35

3. Design

36

Chapter 4

Results

The prototype, with its implementation of the models described in the previous chapter,
has been applied to the collected set of repositories. The application has for di�erent parts
been done on either the full set of 107 projects as a way to compare output from a larger set
of data or on one project for a more focused lower level analysis. Because of an interest in
making comparisons across levels such as file or project level without major di�erences in the
structure of examined projects the analysis done on only one project was done with a more
unified case study on only one project being selected. The Gerrit Code Review repository was
chosen for this because of its constant level of activity over recent years and an unfortunately
lost opportunity of discussions with people from within the project being a consideration
in earlier phases. The models and prototype have been used to gather the results which the
analysis will be based on. The results of the prototypes extraction will be presented in this
section.

The visualisations will display the metrics defined by the models in the design chapter,
but other relevant metrics are also explored, those include amount of commiters, lines of
code, number of functions. Because of how somemetrics are better explored in a specific level,
the metrics have been gathered on di�erent levels, per file, per developer and per project.
These di�erent levels of granularity are explored, more details will be in the section and in
the discussion relating to it.

The git metadata was dumped into files, which in this thesis is called the ”raw data”, this
raw data was processed and refined which resulted in the ”processed data”, the processed data
was compiled and through visualization techniques, it will be formed into ”information”. Of
course information can be extracted from any point, from the metadata or raw data to the
visualizations, but with every step, the data transforms into higher level information. To
gain information from the raw data, high domain knowledge and experience with that con-
text is required, but as the data becomes processed, compiled and visualized the information
becomes accessible and understandable by people who do not have a deep domain knowledge.

Results that relate to the previously presented research questions through both validation
and comparison are prioritized but other intriguing results are also shown. Presenting varied

37

4. Results

data the structure should be such that individual readers may find what relates to their spe-
cific interests. The result will be the basis upon with the discussion is based on, observations
will be made from the presented data and will be referred to in the discussion. It can be of
interest if the reader wishes to verify the observations made in the discussion, or to spark the
imagination of what results can be extracted by the prototype and what potentially could be
extracted and used in their context.

Throughout the chapter several di�erent values are utilized in graphs and discussions. For
more detail of how and why these particular values were selected the previously appearing
Design chapter may be of interest as the results of chapter builds on the discussed models
and values of the previous chapter.

The chapter will start with some graphs and discussions relating to the lower levels that
were examined, namely the developer level and file level explorations. After that the higher
level exploration done on a project level will be shown and discussed. In the penultimate
subchapter an alternative method of analysis comparing di�erent timespans on the same
project will be the focal point. Finally there will be a short summary of the results of the
chapter.

4.1 Developer Level
Examination on a developer level served as a lower level of examination alternative to the file
level. On this level several aspects of the network representation from section 3.3 could be ex-
amined, serving as a method of continued exploration of the representation of collaboration
and developer structure central to research question 1. However, due to some concerns about
how examining these values on this level could lead to excessive scapegoating, examination of
the complexity and throughput metrics important to the comparisons of research question 2
was not examined at this level. Furthermore, because of how tools only measured cyclomatic
complexity on a function or file level and could be di�cult to link to specific developers
without analysis that was considered out of the scope of this thesis it was not measured on
this level.

4.1.1 Network Analysis Output Excerpts
Most of the output on this level was not used in plots due to the lower amount of considered
values not being able to lead to good comparison. It was presented through output in the ter-
minal and some excerpts examplifying what how this data appears will be presented. These
were generated using the data from the gerrit project using di�erent intervals for compar-
isons to examine how the network works on di�erent kinds of timespans. Figures 4.1 through
4.3 features the vertex strengths, serving as a way to measure the level of collaboration of a
developer, for some of the most significant developers while figure 4.4 shows the strongest
ties in the network for one developer, showing who someone have collaborated with, in this
example the strongest ties of David Pursehouse is shown.

In figures 4.1, 4.2 and 4.3 the vertex strength and how it varies based on interval length can
be shown. Someone with a high vertex strength could be identified as the most influential
developer. Increasing the timespan gives higher values as more activity is utilized in the
calculation of the values. A potential conclusion for this is that it may be more accurate

38

4.1 Developer Level

Figure 4.1: Some Vertex Strength levels for developers in the gerrit
project between June 2017 and June 2019

Figure 4.2: Some Vertex Strength levels for developers in the gerrit
project between June 2018 and June 2019

Figure 4.3: Some Vertex Strength levels for developers in the gerrit
project between February 2013 and June 2013

Figure 4.4: The Strongest Ties for one developer in the gerrit project
between 2018 and 2019

39

4. Results

if looked as as a comparison between developers for just one project and interval as it may
otherwise widely vary without it giving more information than the amount of activity.

The strongest ties shown in figure 4.4 could be used for something like finding ideas for
who someone oftenworks with. The in-ties in this excerpt are high for developers having high
contribution of files the specifically examined developer works in and the out-ties are high for
developers working in files where the specifically examined developer has high contribution.
Looking at both of these ties separately may be redundant as it in this and several other
observed cases linked to the same people. There also exist a tendency of this functionality to
favor the most influental developers as can be seen when comparing to figure 4.2. While this
is to be expected it may be to such an extent that it is not an accurate way to find internal
teams.

4.2 File Level
Themain lower level exploration was done on a file level. The representation of collaboration
of research question 1 is something that was shown to be better represented on lower levels
so large parts of the validation of selected models such as the fractal value explained in the
Design chapter was done on this level. Some of the comparisons necessary for exploring
Research Question 2 can also be performed at this level as the complexity metrics in the
previous chapter are file-based and the integration speed can be examined on a file level.

4.2.1 Graphs
Because the fractal value is a continuous value that can be compared to other values scat-
terplot graphs for those has been chosen. In the scatterplot graphs a point represents a file
in one project and the x- and y-axis is two values that are plotted against each other. A line
showing potential correlation through regression or interpolation is also shown in the graphs
alongside its confidence interval. These lines can aid in identifying potential correlations, as
well as suggesting how trustworthy they are based on the datapoints. For the file level graphs
the Locally Estimated Scatterplot Smoothing (LOESS) which is a regression that allows for
curved lines was used.

When displaying graphs with a discrete x axis, barplots were the chosen method. Because
scatterplots does not easily display additional information as of where the median is and how
the spread is distributed barplots were used in figure 4.8, 4.9 and 4.10. The barplots in this
section works the following; a white rectangle displays the interquartile range, that means
the range from the first quartile to the third, which is the centermost 50%; inside the white
rectangle there is a black line, marking the median; the whiskers that span out from the white
rectangle with a length of 1.5 times the interquartile range, points outside of this range will
show up as scatterplot points and can be treated as outliers in the data. The choice of 1.5 as
coe�cient for the whiskers is based on the standard setting of the R statistical package [37].

Because the need to reduce biases and get data which was spread from files with di�er-
ent amount of developers, the processed data chosen for the plots have been selected as a
randomized subset from all the processed data from all files of the 107 repositories. If only
one projects files was chosen it could be that potential relationships seen could be a�ected
by biases, a�ected by some context specific to that repository and a general study was seen

40

4.2 File Level

as preferable to a case study given the circumstances. From the 107 repositories 10 000 files
were selected randomly with the shuf tool from the GNU Core Utilities, extracting random
lines from a compiled file containing the processed data of all files. The reason for picking
10000 files was that it was the highest which would not make the computers used in this
thesis crash, but it is also deemed su�ciently large in order to not have the data be biased
towards one repository while also getting a spread of data representative of the entire data
set.

Because the repositories contains di�erent amount of files this selection method is inher-
ently biased towards repositories containing more files as those repositories files are more
likely to be selected than repositories with lower amount of files. Instead of randomly se-
lecting, it would be possible to categorize the files and repositories to try and find results
regarding specific types of projects or files, but such in depth analysis was outside of the
scope for this thesis. From figure 4.14 it is possible to see the there are 70 repositories with
between 0-1000 files, 34 repositories with between 1000-7500 files and 13 repositories with
between 7500-20000 files. Files from the 13 repositories are therefore roughly represents 50%
of the file data with the other roughly 50% piece is coming from the other two categories.

4.2.2 Ownership Model Verification
Because this thesis ownership model is built on commits which was argued for with design
specifications and previous literature models regarding added lines were disregarded. To val-
idate the choices made figure 4.5 was generated to display the di�erences between commits
and added lines. The LOESS fitting produced a clear line pointing towards a strong correla-
tion, themore changes to a file there is themore added lines are also included. But what is also
clearly visible is that there contains a lot of outliers, especially when there is a few amount
of commits. The reason for this can be how git records added lines when a file is renamed or
as a result of auto-generated files it could also be the result of a ”git squash” compiling mul-
tiple commits into one. Another reason could be the inclusion of other open source libraries
which might be added to the repository.

To better understand the other plots relating to files it can be useful to understand the
distribution of developers in the files analysed which is plotted in figure 4.6. From the 10000
random samples around 50% where developed by only one developer. That means that the
majority of files in open source is developed by only one single developer. Because files can
be of any varying size and importance to the main logic of the program you can not from the
graph tell if 50% of the work is done isolated in the files. From the processed data prepared
by the prototype it would be possible to explore this question but due to scope it was omitted
but could be interesting for future research.

4.2.3 Performance metrics
While no universal connection between the fractal value and integration speed or complexity
is directly observable throguh figure 4.7, files with a fractal value of zero, meaning only one
developer stretches across both extremes for the comparing values. While themedian is lower
for one developer the amount of outliers seems to be higher. Causes of the high amount of
outliers for one developer could be the higher amount of data points in this column as about
half the data set contained files with only one developer as seen in figure 4.6.

41

4. Results

Figure 4.5: The number of commits against the amount of added
lines

Figure 4.6: The distribution of the amount of developers on a file

42

4.3 Project Level

(a) The fractal value of the file against the cyclo-
matic complexity

(b) The files fractal value against the integration
speed

Figure 4.7

From figure 4.8 it seems that an increase in developers working on a file does impact the
max complexity of the file. The median is and interquartile range is is similar when there are
between one-five developers but as the amount of developers gets higher, so does the median
and it is followed by the LOESS fitting line. When looking at figure 4.9 which plots the the
commiters against the average complexity of all functions in a file it is seen that the median
and interquartile range is stable and around the same between 1 to 15 developers. That means
that while the average complexity of the functions in one file remains the same regardless of
number of developers, but having more developers makes it more likely that one function
within the file has a higher complexity.

From figure 4.10 which analyzes the integration speed and its relationship with number
of developers it is shown that there being between 1 to 10 developers on a file leads to similar
medians and interquartile ranges. The speed therefore does not seem to be impacted by
amount of developers. The LOESS fitting points to that the integration speed is lower for
single developers than compared to two developers. This can also be seen in the fractal value
plot (see figure 4.7b) where the fitting predicts that fractal values between 0.5 to 0.75 has
the fastest integration speed. For integration speed it seems that collaborating is beneficial
compared single developers.

4.3 Project Level
Examining at a project or repository level is a higher level exploration complementing the
lower level ones. While the presented informationmay be less exact than corresponding lower
level values a wider variety of data could be utilized. For example the network representation
otherwise where values otherwise were examined on a developer level could be examined on
the project level, allowing for alternate methods of exploring both research questions.

43

4. Results

Figure 4.8: The amount of commiters to the file against the max
cyclomatic complexity for a single function

Figure 4.9: The amount of commiters to the file against the average
function cyclomatic complexity

44

4.3 Project Level

Figure 4.10: The amount of commiters to the file against the inte-
gration hours

45

4. Results

(a) The mean vertex strength plotted against the
number of files for 107 projects between 2017 and
2019

(b) The mean vertex strength of the cleaned graph
plotted against the number of files for 107 projects
between 2017 and 2019

Figure 4.11

4.3.1 Graphs
The graphs of the project level can be seen as scatterplots where every point represents one
project and two values are plotted against each other. Like in the similar graphs for the file
level there also exists a line showing potential correlation through regression with a confi-
dence interval. For the project level a linear regression with a straight line was utilized when
deemed necessary.

In figure 4.11 the number of files and vertex strength should be dependant due to defi-
nition but not enough so that the model appears primarily based on this. The values appear
correlated based on the images. This makes sense given the definition but some concern over
its utility on the level may arise due to being to influenced by this aspect. Despite the depen-
dency large fluctuation still appears to be present and examining the outliers could lead to
further results.

Finding some connection between a representation of developer structure and integra-
tion speed would give clues of how to optimize the developer structure. However, the fractal
value and the integration hours appear to be unrelated as seen in figure 4.12. Two possible
reasons for this is that the aspects that are modeled by the fractal value is completely un-
related to throughput, or that the lost detail of project level leads to correlations not being
observable with the model.

The comparison of vertex strength of figure 4.13 and integration hours have similar mo-
tives and results to the plot in 4.12 where connections could not be proven. A di�erence
is that few projects of larger vertex strength were found so there may be some connections
for such projects that need further data for proof. If correlations between number of files
and integration speed were found it could show that repository size can a�ect throughput.
Again, no clear correlation could be observed in figure 4.14, showing that a connection here

46

4.3 Project Level

Figure 4.12: The mean fractal value against the mean integration
hours for 107 projects between 2017 and 2019

Figure 4.13: The mean vertex strength plotted against the mean in-
tegration hours for 107 projects between 2017 and 2019

47

4. Results

Figure 4.14: The mean integration hours plotted against the number
of files for 107 projects between 2017 and 2019

is unlikely.
If connections were found between complexity and fractal value on a project level it

would mean that developer structure could a�ect code practices which could help with fur-
ther decisions in the field. While analysis of figure 4.15 there may be a small correlation the
confidence interval shows that it is statistically insignificant and should not be assumed to
exist at this point. Mean values of complexity may also not have a huge significance as larger
amounts small files will decrease it despite complex files existing in the project.

Like the analysis done in figure 4.15 the comparison of vertex strength and complexity
in figure 4.16 could show the connections between correlation or developer structure and
complexity. While no clear correlation can be observed one interesting detail is the fact that
even though most projects have both low vertex strength and low complexity the projects
with very high mean complexity also have low mean vertex strength, meaning low levels of
collaboration. A reason for this could be that some developers write more complex code
when being the only developer on a file.

4.4 Trends over Intervals
Aside from examining the results on several files or several projects, following the trends of
one project served as an alternate method of analysis where how a value changes over time
can be examined. With more proof of the e�ects of certain values this kind of analysis could
be utilized in the industry where negative and positive trends could be observed and dealt
with accordingly.

Because of the more limited datasets and simpler plots, finding correlations is somewhat
more di�cult using this method but further validation of selected models can be obtained

48

4.4 Trends over Intervals

Figure 4.15: The mean fractal value plotted against the mean cyclo-
matic complexity for 107 projects between 2017 and 2019

Figure 4.16: The mean vertex strength plotted against the mean cy-
clomatic complexity for 107 projects between 2017 and 2019

49

4. Results

Figure 4.17: Fractal value for the full gerrit project

by the examination of how they vary between equal and equally spaced timespans. This can
be used to further help validation of suggested models for measuring collaboration, as well
as those utilized for checking the complexity and throughput.

4.4.1 Plots
Over an interval line plots were possible to produce. These follow one project over a period
of time with equally spaced and equally long intervals with the line showing an interval to
interval change of the value. The line then follows one value at a time. While it would
have been possible to impose di�erent values in the same image as the scales often were very
di�ering it was chosen to be limited to one with an accurate scale on the y axis. Overly short
intervals such as 1 month was not preferable due to the low amount of data being collectable
for such a short span and overly long intervals requires projects with longer histories to allow
for analysis between the timespans, timespans between 3 and 6months generally worked well
for this visualization. The graphs in this section all follow the Gerrit project between June
2011 and June 2019 with an interval length of four months. The project fractal value shown in
figure 4.17 can work as an overall measurement of how people worked on the project in each
time period. When lower such as in the first interval one developer have done a large amount
of work and when higher the work is distributed between several. Observing fluctuations
the changes can be observed.

The mean fractal value from figure 4.18 instead looks at a file level and gives lower values.
While the utilization of all edited files led to a hypothesis of lower fluctuations but the value
still fluctuate about as much as the project fractal value in this example. This may represent
phases where components that require several developers are changed.

Utilizing the fractal values an approximation of the developer distribution and how it
varies from month to month can be observed. The average value over every file and the full
project value led to very di�erent results. Both of these representations appear to have flaws
as the project value is an overview with lack of detail and the mean over files loses most detail

50

4.4 Trends over Intervals

Figure 4.18:Mean fractal value of individual files in the gerrit project

(a)Mean vertex strength in the gerrit project
(b) Standard Deviation for vertex strength in the
gerrit project

Figure 4.19

in the conversion.
The mean vertex strength seen in figure 4.19a should have similarities to the fractal value

but with a bigger focus on collaboration. With some shape similarities to mean fractal value
this hypothesis holds. The months where shape di�er could be examined in more detail.
These intervals are where collaboration is higher but contributions are weighted towards a
lower amount of developers.

With constant distribution from zero the standard deviation and the mean value of the
vertex strength both shown in figure 4.19 follow very similar distributions and examining
both is probably unnecessary.

The added lines seen in figure 4.20 shows a level of activity per interval that could be
compared to others such the amount of commits and commiters to find something like av-
erage commit size. While not completely trustworthy as some lines may be automatically
generated in bulk or taken from elsewhere but periods of larger additions could be examined
in detail.

51

4. Results

Figure 4.20: Added lines to the gerrit project

Figure 4.21: Cyclomatic Complexity mean of the gerrit project

52

4.4 Trends over Intervals

Figure 4.22: Mean hours to integration in the gerrit project

While examining complexity may be interesting there are some flaws with doing it in
this context as cyclomatic complexity only measures an average of files that have been edited
in the timespan. Still, from figure 4.21 it can be observed when the more complex files are
toched which could be compared to other values.

The exploration of figure 4.22 showing mean integration hours of the examined project
showed a considerable slower integration in the June 2013 period, the details of this merge
was not examined further but could be searched for in case of interest. Similar spikes seemed
somewhat common in other examination of this value.

Themaximum integration hours of figure 4.23 showed spikes not visible in themean value
of figure 4.22 such as the October 2018 interval. This would point to the slow integration
only being a small part of the full integration. Further examination of the details may be
interesting but was not done due to being outside the scope of the research of this thesis.

The number of integrated commits in figure 4.24 roughly matching the number of total
commits in figure 4.25 helps validate the examination of integration hours as a significant
part of files are used for this value. In cases where the number of integrated commits are
considerably lower integrations are rarely used in the projects, leading to the integration
time being less accurate and important.

The number of commits is another baseline value for looking at the level of activity of a
project and was used as the main measurement for this in several used models of this thesis.
By analysing the value in figure 4.25, high- and low-activity intervals could be identified. The
number of commiters is another baseline value and there should usually (but not always) be
rough similarities to the number of commits. This can be seen by comparing figure 4.26 and
figure 4.25, comparison between the values in the figures could also give an idea of the the
average amount of commits per commiter.

53

4. Results

Figure 4.23: Maximum hours to integration in the gerrit project

Figure 4.24: Number of integrated commits in the gerrit project

54

4.4 Trends over Intervals

Figure 4.25: Number of commits of the gerrit project

Figure 4.26: Number of commiters of the gerrit project

55

4. Results

4.5 Summary and Conclusions
The results obtained from the thesis have been examined on di�erent levels, on lower levels
such as developer and file level results could be examined on a more detailed level while on
higher levels such as the project or interval levels a more general level of analysis could be
performed. While only limited analysis was done on developer level a method of finding the
most influential developer as well as an attempt to identify teams.

On the project level no specifically interesting and statistically significant correlations
could be found. This could mean that there is no connection between the examined metrics
but because of an overall lack of any connection for certain values a likely reason is that
many of the models and values works badly on the project level. A reason for this could be
that many of them are mean values where much of the detail is lost in the conversion of the
original values.

While not many new insight could be obtained from examination of the interval graphs
some insight in how the project level metrics relate could be discussed. This kind of way of
analyzing a project may also be of greater interest in the industry.

56

Chapter 5

Discussion and Related Work

Here a general discussion of the results from the previous chapter will take place. It will be
where the analysis takes place, and is important for highlighting interesting results by com-
paring and discussing them and in that way help the reader get the most from the results in
the previous section. The results generated in this thesis will then be related and compared
to results generated by other papers. Discussion and analysis on how this thesis fits the land-
scape of papers carried out in this area. Are the results contradicting some parts, or perhaps
it can provide a deeper aspect or explanation of results which others have found.

It will end with a section suggesting areas of interest which can be explored by future
research. Hopefully to inspire and help guide future generation of researchers to find in-
teresting problematics and to give insight what might be possible in the future of this area.
It will also include parts which presents works that was initiated in this project but was not
completed due to changes of scope and direction. Discussing the early foresights which can be
used as a reconnaissance suggesting preliminary results which would require future research
in order to draw any conclusions from them.

5.1 Discussion

In this section, there will be some overall discussions about the results and how they relate
to the research questions. The section will first discuss how well the selected methods of
modelling collaboration and developer structure, as specified by research question 1. It will
follow with discussion relating to research question 2, explaining how well correlation to
between the structure metrics and throughput or complexity metrics. Finally some general
observation made from the results will be discussed.

57

5. Discussion and Related Work

5.1.1 (RQ1) How can internal developer structure
and level of collaboration in a project or part
of a project be modeled?

To answer research question 1 two di�erent suggestions of how to model collaboration and
developer structure was created and tested. The models are created from concepts that
seemed to capture collaboration well but when quantified and turned into a single number
it became hard to gain intelligible results.

The models explored turned out to not capture the collaboration to a satisfactory level
and future research can take that knowledge and tackle the problem from di�erent aspects.
As research question 2 was impacted by how the models for research question 1 was decided
it was hard to gain conclusive results, most of the generalizable results comes from looking at
a simpler model based on amount of committers, which does not capture collaboration that
well.

A conclusion that could be drawn by comparing figures 4.12 through 4.16 with figures 4.7a
and 4.7b is that while the the fractal value produce somewhat intelligible results on a file level,
the loss of detail in converting them to project level bymethods such as taking themean value
makes them unsuitable for the project level. For more conclusive discussion of a project-wide
level of examination, more research may need to be conducted. When conducting similar
research it could either be of use to focus on the lower level resolutions, or if a desire for higher
levels exist, be careful in the selection of models so that something suitable for the level can
be obtained. Conclusions that can be drawn from the project level results is that complexity
and integration speed does not correlate with the average fractal value or vertex strength,
making the representation somewhat a failure of both research questions on that level. The
clearer results of examining the number of commiters carries the implication that keeping
examined values simple is generally preferable to creatingmore advancedmodels. Despite the
intriguing results using the metric, the number of commiters is not an accurate measurement
of collaboration as it says nothing about the balance of work between the commiters. For
example, if there are 5 contributors on a file they may have done the same amount of commits
or one contributor may have done 90% of the commits. These outcomes would give di�ering
fractal values but look the samewhen examining number of commits pointing to a disconnect
from the research question.

Even though the examination of figures 4.7a and 4.7b shows that exploring the fractal
value for each file gives clearer results than the projectwide exploration of figures 4.15 and
4.12 the representation may still be flawed as some results are more observable by simply us-
ing the number of contributor as seen in for example figure 4.8. This along with the insight
from figure 4.1 through 4.3 implying that the vertex strength representation is fairly evenly
distributed between developers implies that more work in creating an e�ective representa-
tion of collaboration may be a necessity for to accurately model it.

When examining the similarities of additions and commits to a file which was an im-
portant part of creating the model, as Adam Tornhill stated that these two values are highly
correlated[11], we found that the correlation is not that clear which can be observed in fig-
ure 4.5. Outliers with high amount of additions of lines seems to occurs more commonly
with low amount of commits which could be explained with automatically generated files
and things like one developer reformatting a file with the help of a tool, another explanation

58

5.1 Discussion

can be that it shows the copying and pasting between files. Because of these reasons commits
were pursued further, and used as a base for the fractal value and network analysis.

To aid in finding models of ownership in a project, literature was used as an aid. The goal
of these literature studies was an analysis of models that have been explored in the past that
could serve as a basis for the implemented prototype.

Due to the functionality of the prototype it was necessary to run the data collection over
a timespan and as the goal was to model collaboration some considerations had to be taken
when selecting this timespan. A logical assumption to make is that a person who changed
something in a file five years ago has done little collaboration with a person who changed
in the file today, when the context and file might have changed considerably. Because the
model for fractal value and vertex strength is based on the fact that developers whom have
developed on the same file have shared a collaboration the timespan had to be limited in
order for changes to the same file to still be considered changes. Analysis is for those reasons
done using data from a specified time interval, for the file and project level graphs it been set
to a two year span from 2017 to 2019. For the interval plots the set interval is four months
and has a starting point from 2011 up until June of 2019.

The span of two years was experimentally determined as the period needed to be large
enough for all 107 repositories to have recorded any activity during the period, while still
being small enough for a collaboration to still be regarded as relevant. By utilizing weighting
or alternative extractions of ownership the time period could be extended while preserving
the notion of collaboration. Weighting the commits by the time passed since they occurred
is one alternative possible to pursue, determining such a weight was outside the scope of this
thesis. This would require some sort of definition of how long knowledge and ownership
stays after an edit has been made and when editing the same sections should be considered
collaboration or not. In the case of going into more detailed exploration such as a line based
approach where the owner of a line is the developer that last edited it, it could be of use with
older, now static, contributions not a�ecting analysis of the current state to a large degree.

5.1.2 (RQ2) Is there a relationship between the level
of collaboration between developers and com-
plexity or integration speed?

To answer research question 2 the models used to answer research question 1 was compared
to the simultaneously gathered measurements of complexity and integration speed to explore
if correlations could be found.

Some correlations are visible when examining the produced graphs at a file level but
what might be of higher interest is the fact that these correlations were not visible when
examining the same values where resolution has been changed to the project level. In these
cases it might be because of impreciseness and dilution that happens when compounding the
metrics a single number.

From max complexity, average complexity and integration speed, the median and in-
terquartile range was the lowest when there were around one to five developers (figure 4.8
and 4.10). When there are more developers than five then the max complexity is shown to
have a larger increase while the average complexity of the functions in the file are stable. What
is lacking in the average complexity of the functions are the resolution of scale, perhaps when

59

5. Discussion and Related Work

multiple people are developing there is an addition to smaller helper functions which could
bring the average down while complexity in the bigger functions increase.

Integration speed is more stable and amount of developers does not seem to have a big
impact on the speed. While having low amount of developers is better it can be seen from
figure 4.10 that the regression slopes downwards and also the median is lower for two and
three developers rather than one. Reasons for this could be that when collaborating the
responsibility of the file is not only towards the project as a whole but towards the other
persons. When two or three people collaborate, then they are all responsible and can spur
each other to integrate and share their work. Also interesting for integration speed is that it
seems as though the amount of outliers is the highest between one to three developers. This
could be due to the nature of open source work where because work does not necessarily get
assigned a single developer or a small group can work on one file for a longer time before
choosing to contribute and integrate it to the main repository.

As there appears to be connections between complexity and number of commiters (figure
4.8) and a smaller connection between commiters and integration time (figure 4.10), both on
amedian level and for outliers, it seems fairly likely that the level of collaboration is correlated
with complexity and integration time, giving a hypothesis of the answer to research question
2. However, as the suggested methods of modelling this in a more thorough manner than
simply examining the number of commits may need more work to be generally utilizable and
other factors could be examined in more details for a better verification of the answer.

5.1.3 General Discussion
This section aims to include discussions and analysis which are relevant and interesting but
only tangentially connect to the stated research questions.

No generalizable insight could be obtained from examination of the interval graphs.
While not generalizable it still provided interesting grounds for analysis specific to the repos-
itory analysed that way. It can be used for analysing the trends and monitoring the relevant
metric, giving ground for analysing why spikes have happened and to see how a implemented
change in development methods impact these metrics. Analysis of this could also be of use
when attempting to predict future trends of the metrics which could potentially be done
utilizing machine learning algorithms. The resolution of looking at four month spans was
experimentally determined in order to get enough data in order to be relevant, this could
be because of how open source projects can have lots of variance in development intensity
and activity. A more active and consistent repository opens up the possibility for shorter
timespans to become relevant for analysis. Because we suspect that this sort of consistency
is more common among close sourced repositories, this way of analyzing a project may be of
greater interest to the industry.

This thesis especially with RQ1 has been battling definition of what ownership is and
why anyone should care about it and the debate will keep on happening in the future. Bird
et al. argues that because ownership is actionable it is an interesting metric to investigate.[5]
Kent Beck promoted collaborative ownership and pair-programming with his book about
eXtreme programming. [3] Because processes and decisions can be made which change how
developers collaborate and develop files can be produced and enforced it is interesting to
understand how this ownership relate to other metrics.

Is it something assigned, like property, as if a file is like a house with papers stating who

60

5.2 Threats to Validity

owned it, and no matter how many people collaborate to build it will always be owned by
the one that signed the paper for the houses creation. Is ownership assigned such that people
own the parts they built? Or perhaps ownership has nothing to do with the actual building
of the house and the terminology has blinded the researchers including the authors of this
thesis to focused on concepts that does not apply for software development.

If you want to tear down a wall in a house, you do not care for who painted the facade,
you are interested in the electrician, plumber and architect to know if there are cables, pipes
or if the wall is supporting the roof. Ownership does not drive development of houses and
certainly does not drive software changes, transferring knowledge does. If a change is going
to be made to a file, the developer in charge of the change is not interested the ownership
property but rather in the knowledge. The one who owns a change is likely to have knowledge
about it, but if the change was made a long time ago than the knowledge might be forgotten.
Like wise someone who has not made any changes to that file might have excellent knowledge
of it if they have reviewed the file. Instead of ownership, perhaps the interestingmetric should
be knowledge when it comes to investigating the properties of collaborating.

5.2 Threats to Validity
In this section, some potential flaws throughout the process will be discussed, both in a more
general sense and in some specific cases.

The selected 107 repositories used were picked in based on the qualifiers of activity and
spread of contributions, repositories of less than 3 commiters or less than 200 commits were
omitted in favor of repositories where a substantial number contributions had been made
by multiple developers in order to better simulate a context where developers collaborate
to develop. Because the need to analyse multiple projects around the same time period the
repositories selected needed to have activity around the same time period. A sizable subset of
the inspected repositories tended to have bursts of high activity followed by periods of low to
no activity, this burst of activity had to fall inside the common time period of evaluation in
order to be useful for our analysis. A conscious e�ort was alsomade in order to get variance in
size of the repositories. While this can lead to some correlations being more easily observable
with values being both lower and higher it could present a threat to the generalizability of
the results.

Because the selection of files for plotting were random among all source code files from
the repositories it is more likely that files were selected from repositories containing more
files. Containing more files does not necessarily state anything about the type of project or
if it is smaller or larger in terms of lines of code as the amount of files in a project depends
on a wide variety of parameters such as the designed architecture, interfaces and helper files,
programming language. But does introduce a bias of the result where files from bigger repos-
itories are over-represented.

Because of the abovementioned selection processes have been used they constitute sources
of bias in the data set, where the data set might not be a fair representation of the average
open source repository but rather a selection of repositories which contain multiple contrib-
utors.

While the two-year span was useful for allowing all of the selected repositories to be
used, it may not have been the optimal length for this. A shorter time span could have led to

61

5. Discussion and Related Work

collaborations being more accurately determined as a commit might no longer be relevant
after two years of activity.

As git logs are used as the basis for most of the gathered data operations that alter the git
log such as git squash and git rebase leads to the accuracy of the models to be reduced.
Squash specifically lowers the resolution by compiling a large chunk of commits into one
while rebase is a bit more intricate. Rebase redirects all commits from one branch to another
by reapplying them on top of another branch in a way rewriting history of the tree. For
complexity analysis squash and rebase does not impact the metric; the collaborative metrics
based on commits are impacted by squash; rebase fully circumvent the integration speed
model by rewriting the tree structure while squash still gets recorded but reduces the metric
by compiling and setting the commit date to a later than the actual. Due to the di�culty
and complexity of rebasing long diverged changes as merge conflicts need to be resolved
for each commit it is likely not commonly done and did probably not influence the result
significantly. Squashing on the other hand can be more common, which can have impacted
both collaboration metrics and integration speed. The distribution of squashing is unknown
in repository is unknown, it might a�ect all developers equally or certain developers are more
likely to squash or not. Equally it could have resulted in that integration speed was recorded
to be lower than it was supposed to be.

Some of the utilized tools had certain flaws that may have negativly a�ected the end re-
sults. The lizard tool used for finding the complexity had a flawwhere the complexity of main
methods was not calculated for some programming languages, leading to a common situation
where the presented complexity is lower than the actual complexity, in some cases even go-
ing down to zero but as that value should not normally occur for cyclomatic complexity the
data points of those values were ignored in the graphs and analysis. Ignoring these values also
provided a threat to the validity as the data points then become selective and more limited
in amount, making generalizations less accurate.

5.3 Related Work
Because this thesis is not the first one to explore this field there exists a space containing
other research attempting to investigate the same or similar research questions. The section
will contain a small summary of a selection of related papers and more importantly some
discussions and comparisons between the conclusionsmade in the relating research to the one
done in the thesis in order to analyse and explain how this thesis fits into the bigger picture
of the field. It tries to answer if the result in this thesis strengthen or contradict previous
conclusions and if observations made in the field can gain a richer explanation finding the
cause of the e�ects noticed.

5.3.1 Dont touch my code!: examining the effects of
ownership on software quality

Christian Bird et al. analyzed the closed source software repositories of Windows Vista and
Windows 7, their level of granularity was in the middle between project level and file level,
as they focused on software components. Components were a collection of di�erent files

62

5.3 Related Work

which produced one binary such as a .dll library, .exe executable or .sys driver. By looking at
the raw amount of larger and smaller contributors which worked on the files that produced
the component and relating it to failures connected to the component they explored how
collaboration impacted the amount of failures.[5]

They claim to have found appropriate models for measuring ownership and through
quantitative evaluation of relationships between the ownership measures and software fail-
ures they proved that people who have a low ownership of a component have a stronger
correlation with software failures relating that component.[5]

Because Bird et al. have examined some of the Windows operating systems which are
closed sourced projects, it can be hard to compare the results to the findings of this thesis as
they are coming from open source projects, but interesting parallels can be made.

Their definition of ownership was based on how many major and minor developers were
working on a component where a developer having done more than 5% is considered a major
developer and a developer having done less than 5% is considered a minor developer. What
they found was that an increased amount of developers on a component, specifically minor
developers, was strongly correlated with failures.[5] That can be compared with this thesis
result where increasing the fractal value above 0.75, meaning a fragmented development that
probably includes several minor developers, had a relationship with higher complexity (see
figure 4.7a). The closer the fractal value goes towards 1 the more minor developers are con-
nected to that file, which raises the question if the increase in failures found in the Windows
components was caused by the increased complexity of the modules that produced that bi-
nary. This is a potential connection which could explain the results found by Bird et al.

5.3.2 Fractal Figures
In a paper by D’Ambros et al.[7] developer e�orts are examined in a way to answer questions
about how split the development e�ort of a file or folder is and how this insight could po-
tentially be used to reorganize the team structure if it is found lacking. This is mainly done
using an image showing a figure of how the development is distributed between developers.
The fractal value also used throughout this thesis is utilized in a case study of open source
projects from the Mozilla Foundation using the CVS version control system as a basis. As an
example of correlating the fractal value to another metric, the fractal value is compared to
the number of bugs for the files in the repositories. Much like the first research question of
this thesis the overall goal of the paper is a representation of development structure with a
focus on validating the explored representation.

The analysis done in the paper showed that comparing the number of bugs to the level of
developer distribution showed that all files a high amount of found bugs were those with
higher fractal value, meaning more spread development with no clear main contributor.
However, there also appears to be a large amount of files with spread development and low
amount of bugs as the upper corner of the presented graph appears to have a clump of data
points. It may also be a possibility that the di�erence of actual bugs is not as high as only
found bugs can be measured where a higher amount of developers may make it easier to find
otherwise hidden bugs.

Much what was explored in this thesis the fractal figure paper examines the fractal value
at a file level and compares it to other metrics. A point of di�erence is the value to compare
to, the fractal paper focuses on the number of bugs which was not examined by this thesis due

63

5. Discussion and Related Work

to being outside of the scope and being di�cult to extract from just using a version control
system. The results with comparison to number of bugs were also cleaner and more easily
observed than the comparison to complexity and integration speed done in earlier chapters.
This may be because of stronger relations for number of bugs than the other metrics, or it
may be because of the data set being more uniform as Mozilla projects were used as the sole
source of information.

5.3.3 A Degree-of-Knowledge Model to Capture Source
Code Familiarity

In a paper by Fritz et al. [26] how to model the degree of knowledge of a section of source
code for a developer. This model would enlighten the developer structure by finding the
experts of various sections. Thismodel looks at aspects such as initial authorship, finished and
unfinished changes after the initial version and a more thorough examination of the amount
of interactions between developers and code and the timeframes of these interactions. The
model is substantiated by two case studies in closed source commercial development contexts.
For exact weightings in creating theDegree of Knowledge a surveywhere developers answered
questions about how familiar they were with code they had recently edited or examined,
which was then compared to the collected data.

Through the case studies the Degree of Knowledge method was shown to work fairly
well at finding someone knowledgeable about a section of code, finding this person more
accurately than utilizing the gut feeling of the developers. A potential flaw in the model is
that it may not be completely generalizable due to the smaller amount of case studies. This is
also suggested by the lower correlation when using the weights of the first case study on the
context of the second case study, meaning that the results may be better when recalculating
the weights for new contexts.

Compared to this thesis the study of the paper examines workflow on a lower level with
examination of things such as on what weekday changes or deliveries are made. While the
di�erence in scope makes it di�cult to directly compare the results to those of this thesis,
something similar to the degree of knowledge could potentially be utilized as a basis in future
research as a basis for higher level values. There would however, be some problems with this
as data about who has opened or looked at a section of code may need to be collected, as well
as more work in verifying the weights being recommended.

5.3.4 Revisiting Code Ownership and its Relationship
with Software Quality in the Scope of Modern
Code Review

Code ownership traditionally relies on authorship. Ownership usually defined by the au-
thorship of the file’s conception or the amount of changes in commits or lines changed or
any other derivation a developer can apply. The more changes that has been done by a devel-
oper, the more that developer is said to have ownership over it.

Thongtanunam et al. complements the traditional idea of ownership used by Bird et al.
in [5] which uses a commit based definition and the one used by Rahman and Devanbu in [6]

64

5.4 Future Work

which uses a line based one. By including code review into the ownership metric they hope
to uncover links between code reviews and ownership and substantiates their findings with
a case study in an open source context.[39] Thongtanunam et al. found that the majority of
developers in their case study who had contributed to any module had not actually done any
code change but rather had contributed by code review. They also found that modules with
post release faults tended to have more developers who were both minor contributors of code
and also minor contributors of reviews. They also conclude that including review statistics
can improve an ownership metric.[39]

Because information about reviews are not available through git and require other sources
this thesis did not include review statistics in the models for ownership and collaboration.
But by narrowing in the scope and focusing on a set with fewer repositories would make it
possible to get the data needed to measure reviews and turn it into a metric.

5.4 Future Work
In this section, we will discuss some ideas for how continuation of research in the field could
happen, including some ideas where earlier investigation have been started throughout the
work done in this thesis.

An aspect that could be focused on for future studies is utilizing weightings of the meta-
data extracted, which if applied correctly could give a more accurate representation. This
could for example be something like weighting a project wide value based on some param-
eters of the project context or file values on for example the size of the file. Because this
thesis implemented a breadth of models and extraction methods time did not exist to prop-
erly investigate how weights would best be applied. In order to utilize the weights they need
su�cient testing and experimentation in order to find scientifically proven improved model.

With a more focused scope there are a few interesting paths to take, for example in-
vestigate knowledge or ownership in a project and comparing patterns of high knowledge
developers and low knowledge developers to see what di�erences and e�ects there are of
various distributions of this.

Instead of randomly selecting files for plotting, it would be possible to categorize the files
and repositories to try and find results regarding specific types of projects or files. For exam-
ple a larger amount of files with a high number of contributors could be used and broader
generalizations about these files can be done than in a random context where only a low
amount of these files are analyzed.

In case of further analysis of how to represent collaboration and developer structure ac-
curately trying values other than the number of commits may be useful. In this thesis some
rudimentary analysis of alternative bases were performed and of the examined values the
number of owned lines seemed like it could potentially lead to interesting results. Added
lines also looked like it could lead to di�erent results.

For studies focused on mining software repositories it may also be interesting to utilize
machine learning algorithms as a way to predict how a value will develop in the future. This
could take the form of the interval trend plots with further fields for predicted future values
and could be applied to a variety of values.

Something that was used in some related papers that could have been utilized as an ex-
amined metric is the number of minor developers and the number of major developers and

65

5. Discussion and Related Work

how these numbers relate to each other. In the paper where this was discussed[5] the thresh-
old separating major and minor developers were 5% but it is also something that could be
experimented with. This way of looking at development would give a simple representation
of development structure of a section that could be used for future analysis beyond what has
already been done.

Finally performing similar studies using di�erent models may be of interest. For better
results these models could also use di�erent kinds of sources like for example an issue tracker.
The initial phase of finding a suitable model is an important step of finding new or improved
representations and a focus on this part may be of benefit for future studies.

66

Chapter 6

Conclusions

Because of the need for constant decisions and the ongoing debate regarding how to struc-
ture collaboration in a project the field has useful potential applications. A prototype was
produced which can be executed on any git repository, collecting metadata, processing and
presenting it. To investigate the research questions methods of modeling representations
of collaboration, complexity and integration speed through git metadata was done and ex-
tracted by the prototype. The metrics created was explored on a file level and on a project
level to investigate relationships between them.

Research Question 1: How can internal developer structure and
level of collaboration in a project or part of a project be modeled?

Finding a good model for collaboration present di�culties, this thesis has investigated two
di�erent high levelmodels, being the fractal value ofD’Ambros et al.[7] and the vertex strength
extractable from a network representation of development. These models initially seemed
promising but both had issues when interpreting results from them as they had flaws de-
scribing the true nature of collaboration.

Because of fluctuations when it comes to copy-paste, auto-generated files and reformat-
ting, the models were built on the number of commits rather than being line-based. Com-
mits and added lines were shown to be correlated (see figure 4.5) but behave di�erently at
low amount of commits, probably due to the said fluctuations.

Because the vertex strength represents the collaboration network in a bigger scale it was
not applicable on a file level which reduced its usefulness for relating to the performance
metrics. The fractal value was able to be extracted on a per file basis and on a project level.
The project level was not as useful as file level because of how the data was compiled and
resolution became to low to get any conclusive results.

67

6. Conclusions

Research Question 2: Is there a relationship between the level of
collaboration between developers and complexity or integration
speed?
While no clear connections were found on the project level there appeared to be some on a
file level. While the produced models hinted at similar results, the most observable results
could be seen by examining the number of collaborators.

Having between 1 to 5 collaborators on a file showed similar results but having more
than 5 seemed to lead to an increase in complexity. Integration speed was not as significantly
impacted by amount of developers. A problem with the pure number of commiters does not
say a lot about the nature of collaboration and may not directly answer the research question
but the metric still is of interest.

Final Remarks
While automatically collected metrics can not replace human decision with the technology
of today and work is required to collect useful information or to construct useful models
there is high potential in the field.

Through this thesis new methods of something like finding the integration speed of a
git commit have been found and could be used in future applications. Testing of certain
models have been conducted so that they can be expanded upon in future studies for better
representation. A prototype which can automatically extract and present the data has been
created and can be used as a base for future research or as an aid to analysis for companies.

68

Bibliography

[1] I. Ajzen, The Social Psychology of Human Decision Making. Guilford press, 1996.

[2] “Github.” https://octoverse.github.com/, 2019. Accessed on 2019-07-11.

[3] K. Beck and E. Gamma, Extreme programming explained: embrace change. addison-wesley
professional, 2000.

[4] N. Forsgren, J. Humble, and G. Kim, Accelerate - Building and Scaling High Performing
Technology Organizations. IT Revolution, 2018.

[5] C. Bird, N. Nagappan, B.Murphy, H. Gall, and P. Devanbu, “Don’t touchmy code! exam-
ining the e�ects of ownership on software quality,” ESEC/FSE Proceedings of the 19th ACM
SIGSOFT symposium and the 13th European conference on Foundations of software engineering,
2011.

[6] F. Rahman and P. Devanbu, “Ownership, experience and defects: a fine-grained study
of authorship,” in Proceedings of the 33rd International Conference on Software Engineering,
pp. 491–500, ACM, 2011.

[7] M. D’Ambros, M. Lanza, andH.Gall, “Fractal figures: Visualizing development e�ort for
cvs entities,” in 3rd IEEE International Workshop on Visualizing Software for Understanding
and Analysis, 2005.

[8] C. Tenggren and N. Johansson, “Social network analysis of open source projects,” Mas-
ter’s thesis, Department of Computer Science Faculty of Engineering LTH, 6 2015.

[9] T. Girba, A. Kuhn, M. Seeberger, and S. Ducasse, “How developers drive software evo-
lution,” in Eighth International Workshop on Principles of Software Evolution (IWPSE’05),
pp. 113–122, IEEE, 2005.

[10] M. D’Ambros, H. Gall, M. Lanza, and M. Pinzger, “Analysing software repositories to
understand software evolution,” in Software evolution, pp. 37–67, Springer, 2008.

[11] A. Tornhill, Your code as a crime scene: use forensic techniques to arrest defects, bottlenecks,
and bad design in your programs. Pragmatic Bookshelf, 2015.

69

https://octoverse.github.com/

BIBLIOGRAPHY

[12] O. Alonso, P. T. Devanbu, andM. Gertz, “Expertise identification and visualization from
cvs,” in Proceedings of the 2008 international working conference on Mining software reposito-
ries, pp. 125–128, ACM, 2008.

[13] A. Orucevic-Alagic andM. Höst, “Network analysis of a large scale open source project,”
in 2014 40th EUROMICRO Conference on Software Engineering and Advanced Applications,
pp. 25–29, IEEE, 2014.

[14] “About git.” https://git-scm.com/about, 2019. Accessed on 2019-07-15.

[15] S. Chacon and B. Straub, Pro Git, ch. 9.2, pp. 413–431. Apress, 2 ed., 2014.

[16] “Lizard.” http://www.lizard.ws/, 2019. Accessed on 2019-07-11.

[17] E. H. Berso� andA.M. Davis, “Impacts of life cycle models on software,” Communications
of the ACM, vol. 34, 8 1991.

[18] M. Kelly, Configuration Management - The Changing Image, ch. 5 and 7. McGraw-Hill Book
Company, 1996.

[19] M. A. Daniels, Principles of Configuration Management, Advanced Applications, ch. 4. Ad-
vanced Applications Consultants Inc., 1985.

[20] P. H. Feiler, “Configuration management models in commercial environments,” Tech.
Rep. SEI-91-TR-7, Software Engineering Institute, 1991.

[21] “Git documentation.” https://git-scm.com/docs, 2019. Accessed on 2019-04-24.

[22] A. Barrat, M. Barthelemy, R. Pastor-Satorras, and A. Vespignani, “The architecture of
complexweighted networks,” Proceedings of the national academy of sciences, vol. 101, no. 11,
pp. 3747–3752, 2004.

[23] R Core Team, R: A Language and Environment for Statistical Computing. R Foundation for
Statistical Computing, Vienna, Austria, 2019.

[24] Y. Liu, E. Stroulia, andH. Erdogmus, “Understanding the open-source software develop-
ment process: a case study with cvschecker,” in Proc. 1st Intl. Conf. on Open Source Systems,
pp. 11–15, 2005.

[25] X. Meng, B. P. Miller, W. R. Williams, and A. R. Bernat, “Mining software repositories
for accurate authorship,” in 2013 IEEE International Conference on Software Maintenance,
pp. 250–259, IEEE, 2013.

[26] T. Fritz, J. Ou, G. C. Murphy, and E. Murphy-Hill, “A degree-of-knowledge model to
capture source code familiarity,” in Proceedings of the 32nd ACM/IEEE International Con-
ference on Software Engineering-Volume 1, pp. 385–394, ACM, 2010.

[27] S. Hangal, D. MacLean, M. S. Lam, and J. Heer, “All friends are not equal: Using weights
in social graphs to improve search,” in Workshop on Social Network Mining & Analysis,
ACM KDD, 2010.

[28] “Networkx.” https://networkx.github.io/, 2019. Accessed on 2019-07-22.

70

https://git-scm.com/about
http://www.lizard.ws/
https://git-scm.com/docs
https://networkx.github.io/

BIBLIOGRAPHY

[29] T. J. McCabe, “A complexity measure,” IEEE Transactions on software Engineering, no. 4,
pp. 308–320, 1976.

[30] G. K. Gill and C. F. Kemerer, “Cyclomatic complexity density and software maintenance
productivity,” IEEE transactions on software engineering, vol. 17, no. 12, pp. 1284–1288,
1991.

[31] M. H. Halstead et al., Elements of software science, vol. 7.

[32] C. Usage and B. of Continuous Integration in Open-Source Projects, “Michael hilton
and timothy tunnell and kai huang and darko marinov and danny dig,” IEEE/ACM In-
ternational Conference on Automated Software Engineering (ASE), vol. 31, 8 2016.

[33] M. Fowler, “Continuous integration.” https://martinfowler.com/articles/
continuousIntegration.html, 2006. Accessed on 2019-07-15.

[34] H. Wickham, J. Hester, and R. Francois, readr: Read Rectangular Text Data, 2018. R
package version 1.3.1.

[35] H.Wickham, ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2016.

[36] C. Sievert, plotly for R, 2018.

[37] R Core Team, R: A Language and Environment for Statistical Computing. R Foundation for
Statistical Computing, Vienna, Austria, 2019.

[38] A. Vance, “Data analysts captivated by r’s power,” New York Times, 1 2009.

[39] P. Thongtanunam, S. McIntosh, A. E. Hassan, and H. Iida, “Revisiting code owner-
ship and its relationship with software quality in the scope of modern code review,”
in IEEE/ACM 38th IEEE International Conference on Software Engineering, 2016.

71

 https://martinfowler.com/articles/continuousIntegration.html
 https://martinfowler.com/articles/continuousIntegration.html

DEPARTMENT OF COMPUTER SCIENCE | LUNDS TEKNISKA HÖGSKOLA | PRESENTED 2019-08-23
MASTER THESIS Modeling and Analyzing Developer Collaboration to Guide Data Driven Decisions
STUDENTS Rasmus Hallevåg, Jesper Olsson
SUPERVISORS Lars Bendix (LTH), Bo Nyström (Praqma)
EXAMINER Ulf Asklund (LTH)

Analyzing developers collaboration
through popular coordination tool, Git

POPULAR SCIENCE PAPER Rasmus Hallevåg, Jesper Olsson

Quantifying collaboration and relating it to the complexity of the code or the speed
which work gets synchronized provides a foundation for decisions about collaboration.
By examining how different ways how developers collaborate can impact performance
it is possible to make intelligent decisions to how developers ought to collaborate.

In a software development context a high number
of decisions have to be made. For many of these
decisions project rely on the decisions of experts
with high level of specific knowledge. The amount
of time it takes for experts to understand the con-
text of the problem and make a decision based on
it can detract from the productivity of the expert.
Even the use of experts might not always give sat-
isfactory results, as even experts are human, and
therefore subject to human biases and mistakes.

The main question is if team organization
should follow the concept of collective code owner-
ship where an entire team develops more or less to-
gether and collectively develop files for the system;
or a follow a clearly divided responsibility where
ownership is assigned and requests for changes are
made. Creating an accurate representation of de-
velopment structure and comparing it to perfor-
mance metrics could help answer the debate and
inform practices which would improve develop-
ment. Two research questions have been formu-
lated in this thesis to best explore this subject,
namely how developer structure could be modeled
and if there are some correlation between it and
metrics relating to the speed of changes or com-
plexity in the code.
Modern version control systems are used by de-

velopers to coordinate their work, one of the most
popular ones is ”git”. Git stores large amounts

of metadata about which developer added which
change to which file, and it is possible to see when
and how the code has evolved. A prototype gath-
ering data from git, displaying representations of
collaboration and relating it to the performance
metrics was created. To answer the first question
three models were explored but the main result
came from the simplest model of just counting the
amount of developers who had made any changes
to a file. The other models were too complex to
get a straight relationship while the problem with
the amount of developers is that it does not say a
lot about collaboration in the file.
To answer collaborations relationship with per-

formance, having between 1 to 5 collaborators
on a file showed similar results but having more
than 5 seemed to lead to an increase in maximum
complexity of a function in a file. The average
complexity in a given file was similar across any
amount of developers, but the most complicated
parts of any file got more complex the more devel-
opers that were changing in the file. The speed of
synchronizing their work was not impacted by the
amount of developers or the division of labour in
the file.
The end result also led to the development of

a prototype that could be further developed and
used for insight of a project.

	Introduction
	Background
	Context
	General
	Praqma
	Open- and Closed Source

	Research Method
	General Method
	Workflow
	Alternate Methods
	Why Git?
	Picking Specific Sources

	Theory
	Configuration Identification:
	Configuration Management Database:
	Configuration Status Accounting:
	Version Control Systems:
	Git as a CMDB
	Extracting Information in Git:
	Network Analysis

	Design
	Overall Design
	Specification

	Measuring Collaboration: Fractal Value
	Motivation
	Specification
	Alternatives

	Measuring Collaboration: Network Analysis
	Motivation
	Specification

	Complexity
	Motivation
	Specification
	Alternatives

	Integration Speed
	Motivation
	Specification
	Alternatives

	Visual Representation

	Results
	Developer Level
	Network Analysis Output Excerpts

	File Level
	Graphs
	Ownership Model Verification
	Performance metrics

	Project Level
	Graphs

	Trends over Intervals
	Plots

	Summary and Conclusions

	Discussion and Related Work
	Discussion
	(RQ1) How can internal developer structure and level of collaboration in a project or part of a project be modeled?
	(RQ2) Is there a relationship between the level of collaboration between developers and complexity or integration speed?
	General Discussion

	Threats to Validity
	Related Work
	Dont touch my code!: examining the effects of ownership on software quality
	Fractal Figures
	A Degree-of-Knowledge Model to Capture Source Code Familiarity
	Revisiting Code Ownership and its Relationship with Software Quality in the Scope of Modern Code Review

	Future Work

	Conclusions

