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Abstract 
 

Financial return series are often characterized by volatility clusters and a leptokurtic 
distribution. Many models that account for these properties exist, with the GARCH 
model proposed by Bollerslev (1986) being the most popular. This thesis explores 
an alternative model to capture the stochastic volatility in financial time series. The 
considered model is denoted the autoregressive gamma variance Gaussian mixture 
model and was proposed by Johannesson et al. (2016b). The model consists of the 
product of two independent time series, namely an autoregressive Gaussian process 
and an autoregressive gamma process, where the gamma process modulates the 
variance of the Gaussian white noise. 

 

This thesis proposes and evaluates an alternative method to estimate the correlation 
coefficient of the gamma process. The proposed method outperforms the original 
method when the true correlation coefficient is exceedingly large, which is the case 
for almost all financial return series. In addition, this thesis develops basic unbiased 
methods to interpolate	and predict the gamma process given the observed daily 
financial return. These partial results require further research to fully develop more 
advanced prediction methods.  

 

Keywords: Volatility, financial time series, autoregressive gamma process, 
generalized Laplace distribution, autoregressive gamma variance Gaussian mixture 
model 
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1 Introduction 
 

The efficient market hypothesis states that the price of a financial instrument fully 
reflects all available information. This implies that one cannot profit by purchasing 
or selling assets based on the available information (Malkiel, 1989). From a 
statistical standpoint, this phenomenon translates to an expected return of zero at any 
point in a return series, consisting solely of white noise.  

 

While this implies that the conditional mean of a financial return series cannot be 
meaningfully modeled, modeling financial data remains a widely popular area. The 
focus lies not on modeling the conditional mean but modeling the measure of risk. 
Financial time series are known to be volatile and the risk associated with an asset 
depends on how volatile the asset is. The degree of variation over time is referred to 
as volatility and is measured using the standard deviation, or variance of the 
logarithmic returns of a financial time series. In financial data, clusters of less 
volatile periods and clusters of more volatile periods tend to be present. This was 
first shown by Mandelbrot (1963) and is referred to as volatility clustering. While it 
may not be possible to predict profitable trades, ways of predicting the future 
volatility of an asset exist and are useful tools for making financial decisions. 

 

Other than volatility clustering, also known as conditional heteroscedasticity, 
financial return series are often characterized by a leptokurtic (heavy-tailed) 
distribution. A range of different models have been proposed to capture these 
properties. Well-known examples of these are the autoregressive conditional 
heteroscedasticity (ARCH) model by Engle (1982) and the generalized ARCH 
(GARCH) model, an extension of the former, proposed by Bollerslev (1986). The 
GARCH model is probably the most popular choice when modeling financial return 
series which, in short, predicts the volatility of the returns using past values of the 
conditional variance and returns. 

 

An alternative model that could have potential to capture the characteristics often 
observed in financial return series is the autoregressive gamma variance Gaussian 
mixture model. The model has been used within the engineering field and was 
proposed by Johannesson et al. (2016b) to model road topography data. The structure 
of the road topography data closely resembles the typical volatility clustering 
observed in financial data. The model consists of the product of two independent 
time series, namely an autoregressive Gaussian process and an autoregressive 
gamma process. This product follows a generalized Laplace marginal distribution 
regardless of autoregressive order in its components. As previously mentioned, 
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under the assumption of the efficient market hypothesis, the mean process of 
financial returns should consist solely of white noise. If the Gaussian component is 
white noise, only the gamma component needs to be fitted, which would further 
simplify the structure of the model. It will be shown that the gamma component 
allows for the model to both express excess kurtosis and varying variance, which, as 
previously stated, are two key properties of financial return series. 

 

One distinct difference between the engineering and financial fields is the degree of 
importance in interpolating and making future predictions. Johannesson et al. 
(2016b) focus on estimating parameters to simulate data that mimics the behavior 
and structure of the original data. No methods of interpolation and predictions are 
therefore developed in the article. However, in finance interpolation and prediction 
are of high interest for making financial decisions. Therefore, methods to interpolate 
and predict volatility would need to be developed for the model to be useful in a 
financial context. 

 

The purpose of this thesis is to explore the applicability of the autoregressive gamma 
variance Gaussian mixture model on financial return series. Furthermore, this thesis 
aims to develop some basic methods for interpolation and prediction. Moreover, 
because volatility clustering indicates a very slow change in the variance, an 
alternative method of estimating the correlation coefficient 𝜌$  that may perform 
better under the condition that 𝜌$  is very large is explored. Throughout the thesis two 
financial stock indices, the OMXS30 and the NASDAQ Composite, are utilized to 
exemplify various properties of financial data. All computations and illustrations are 
performed using R. 
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2 Background 
 

In this section a common transformation which allows for financial time series data 
to be stationary is proposed. Moreover, the key characteristics and properties of 
financial time series data are discussed to give an understanding of how financial 
time series tend to differ from the most basic Gaussian processes. Finally, the ARCH 
and GARCH models, which account for these characteristics, are briefly introduced. 

 

2.1 Fundamentals of financial data 
 

Two well-known stock indices, the OMXS30 and the NASDAQ Composite, will be 
used to exemplify the key properties of financial time series. The OMXS30 is an 
index of the 30 most traded stocks on the Stockholm Stock Exchange and the 
NASDAQ Composite is one of the largest indices in the US and weighs heavily 
towards IT companies (Nasdaq Nordic, 2019). Both time series are illustrated in 
Figure 2.1 and consist of the daily closing price of each index between 2007-01-02 
and 2019-05-31.  

 

 
Figure 2.1 The daily closing price of the OMXS30 (A) and NASDAQ Composite (B). Both series 
exhibit a clear upward trend over time. 
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One of the key assumptions in time series modeling is that the process is stationary. 
A stochastic process 𝑍* is said to be weakly stationary if the mean of 𝑍* and the 
covariance between 𝑍* and 𝑍*+, do not depend on time 𝑡. The mean should be 
constant, and the covariance should only depend on the time difference 𝑘  (Tsay, 
2010, p.30).  

 

In almost all cases, raw financial index data does not meet the assumption of 
stationarity. This should be obvious, since if the mean was constant, it would suggest 
that the price (value) of an index does not change over long periods of time. Figure 
2.1 displays clear upward trends in both the OMXS30 and the NASDAQ Composite, 
which suggests that neither time series has constant mean. A common way to combat 
this is to transform the data into the daily log-returns, 𝑌* , through 

 

𝑌* = log 3
𝑝*
𝑝*+5

6 = log(𝑝*) − log(𝑝*+5) (2.1) 

 

where 𝑝* is the daily closing price on day 𝑡 (Cryer & Chan, 2008, p.278).  

 

 
Figure 2.2 The daily return (%) of the OMXS30 (A) and NASDAQ Composite (B). These transformed 
series suggest that the data has been successfully detrended, with the mean now being constant in both 
cases. 
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Moreover, the values in 𝑌*  are multiplied by 100, which allow its values to be 
interpreted as the percentage increase or decrease of the closing price of a given day. 
The transformed data is depicted in Figure 2.2 and clearly suggests that the data has 
been successfully detrended: The mean is constant around zero throughout the entire 
series. The behavior of the conditional variance will be discussed in section 2.3. 
Throughout the rest of the thesis, this transformed data will be referred to as returns.    

 

2.2 Dependency in returns 
 

Empirical studies have shown that no or very little dependency exists in daily return 
series (Fama, 1970; Pagan, 1996). The return series is then said to consist of white 
noise, serially uncorrelated data with finite mean and variance. If dependency in 
returns were to exist, one could make profitable predictions on future returns. 
Therefore, in an efficient market, the conditional mean should be zero (Cryer & 
Chan, 2008, p.277). This behavior is often described by the efficient market 
hypothesis, which states that the price of a financial instrument fully reflects all 
available information, with the implication that one cannot profit by purchasing or 
selling assets based on the available information (Malkiel, 1989).  

 

 
Figure 2.3 Autocorrelation functions of the OMXS30 (A) and NASDAQ Composite (B). In both cases 
there are no signs of autocorrelation, which is in agreement with the efficient market hypothesis of 
financial returns being white noise. 
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The dependency in a time series is commonly measured by its autocorrelation. The 
sample autocorrelation function measures the correlation between a time series and 
a delayed version of itself at various lags 𝑘 and is defined as  

 

𝑟?(𝑘) =
∑ (𝑌* − 𝑌A)(𝑌*+, − 𝑌A)B
*C,D5

∑ (𝑌* − 𝑌A)B
*C5

( . (2.2) 

 

The autocorrelation functions of the OMXS30 returns and the NASDAQ Composite 
returns are portrayed in Figure 2.3. In both cases there are no signs of autocorrelation. 
Throughout the rest of the thesis, the assumption is made that the daily returns of 
both the OMXS30 and the NASDAQ Composite are white noise. 

 

2.3 Volatility clustering 
 

Financial time series are characterized as heteroscedastic time series because the 
conditional variance in not constant over time. As described by Mandelbrot (1963), 
in financial time series, the conditional variance appears in clusters. He stated that 
“large changes tend to be followed by large changes - of either sign - and small 
changes tend to be followed by small changes” (Mandelbrot, 1963). This slow 
process of varying conditional variance is often referred to as volatility clustering 
due to the clusters of both high and low conditional variance that naturally appear. 
What this means is that an unstable period with violent price changes tends to be 
followed by a larger conditional variance compared to a stable period which tends to 
be followed by a smaller conditional variance (Cryer & Chan, 2008, p.277). 

 

Naturally, this common characteristic in financial return series is crucial for any 
model to capture. Simple models that do not account for heteroscedasticity cannot 
capture the dependency that is present in the conditional variance. In Figure 2.4 the 
returns of the OMXS30 and the NASDAQ Composite are illustrated again, this time 
with the volatility clusters roughly outlined. Plots of the squared returns are also 
included, which is a popular (albeit primitive) proxy of the volatility clusters – a 
period with high conditional variance will be represented by a higher ceiling of the 
squared values. Moreover, the clear dependency in the conditional variance can be 
further highlighted by calculating the autocorrelation of the squared returns. The 
autocorrelation functions of the squared returns are depicted in Figure 2.5, which 
reveals a very long dependence that concurs with the observed volatility clusters and 
with Mandelbrot’s description above. 
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Figure 2.4 These figures highlight the volatility clustering that is prevalent in financial time series. 
Figure A illustrates rough outlines of the volatility clusters in the OMXS30 returns. Figure B depicts 
the same process for the NASDAQ Composite. Figures C and D illustrate the same clusters on the 
squared return series, which can be seen as a primitive volatility proxy. Both cases display typical 
behavior in financial time series where the clusters last for several months at a time. 
 

 
Figure 2.5 Autocorrelation functions of the squared returns of the OMXS30 (A) and NASDAQ 
Composite (B). Both figures exhibit long term dependency, which concurs with the volatility clusters 
of the returns that span several months. 
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2.4 Distribution of returns 
 

Financial returns are often observed to follow distributions with leptokurtic 
properties. A distribution is said to be leptokurtic when its tails are heavier than a 
normal distribution with equivalent mean and standard deviation. A concept closely 
related to this is the kurtosis of a distribution. The kurtosis is a measurement of the 
heaviness of a distribution’s tails and is calculated through 

 

𝜅 =
𝑚G

𝑚(
( (2.3) 

 

where 𝑚G is the fourth moment about the mean and 𝑚( is the second moment about 
the mean. Commonly, the kurtosis is compared to the kurtosis of the normal 
distribution, which is exactly 3. Thus, a distribution is considered leptokurtic when 
its kurtosis is greater than 3 (often referred to as excess kurtosis). The leptokurtic 
features in distributions of financial returns was early described by Mandelbrot 
(1963) and Fama (1965) and suggestions for suitable distributions have been 
explored ever since.  

 

In section 2.3 it was discussed that any successful model must be able to account for 
the conditional heteroscedasticity that is commonly present in financial return series. 
The same applies for the distributional properties of the returns: It is crucial that any 
model accounts for the leptokurtic distribution. One way to accomplish this is by 
assigning random variance to a normal distribution, which increases the kurtosis. 
This can be shown using a simple example. Consider two normal distributions 
𝑓JK(𝑥5) and 𝑓JM(𝑥() with zero mean and standard deviations 𝜎5 = 1 and 𝜎( = 3 
respectively. The densities of these distributions are portrayed in Figure 2.6A. 
Furthermore, define 𝛿~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝), where 𝑝 is any probability between 0 and 1, 
and the outcome 𝛿 ∈ {0,1}. The density of 

 

𝑌 = 𝛿𝑋5 + (1 − 𝛿)𝑋( (2.4) 

 

is illustrated in Figure 2.6B and clearly exhibits excess kurtosis. Meanwhile, the 
underlying function can be simplified as a standard normal random variable 𝑋 
multiplied by the random standard deviation √𝑅, defined as: 
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𝑅 = `𝜎5
(, 𝑤𝑖𝑡ℎ	𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑝
𝜎((, 𝑤𝑖𝑡ℎ	𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	1 − 𝑝

(2.5) 

 

Furthermore, this can be extended to non-trivial cases where 𝑅 is a random variable 
that follows any given non-negative distribution and the distribution of the product 
√𝑅𝑋 follows a leptokurtic distribution. 

 

To summarize, one way to model data that follows a leptokurtic distribution is by 
allowing for random variance. One such method is to define the model as the product 
of a normal distributed variable and a random variable of a non-negative distribution, 
e.g. the gamma distribution. 

 

 

 
Figure 2.6 Density plots of two normal distribution with different standard deviations (A) and the 
density of the leptokurtic distribution generated by randomly sampling from the two normal 
distributions  
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Figure 2.7 Density plots of the daily returns of the OMXS30 (A) and NASDAQ Composite (B). In both 
cases the distribution of the observed density (black line) is compared to a normal distribution with 
equivalent mean and variance (red line). In both cases there are clear signs of excess kurtosis with the 
peak and tails having more density than the normal distributed equivalent. 

 

Density plots of the two return series along with a normal distribution of equivalent 
mean and standard deviation are depicted in Figure 2.7. In addition, this can be 
confirmed by directly calculating the sample kurtosis. The sample kurtosis of the 
OMXS30 returns is 8.06, and the sample kurtosis of the NASDAQ Composite is 
10.15. Thus, both distributions show clear signs of being leptokurtic, both through 
the computed kurtosis and through visual means in Figure 2.7. 

 

2.5 The ARCH and GARCH models 
 

Different models have been proposed to account for some of the characteristics of 
financial return series. As discussed, the financial return series in general consist of 
a serially uncorrelated sequence with zero mean but with variance changing over 
time, observed as volatility clustering. This implies that the conditional variance, or 
more commonly known as the conditional volatility, is not constant. The 
autoregressive conditional heteroscedasticity (ARCH) model was introduced by 
Engle (1982) to model this conditional volatility. Let 𝜖*  denote the error terms with 
respect to a mean process. The general form of the ARCH(𝑞) model can then be 
expressed as follows: 
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𝜖* = 𝜎*𝜀* (2.6) 

𝜎*( = 𝛼l +m𝛼n𝜖*+n(

o

nC5

(2.7) 

 

where 𝛼l > 0 and 𝛼n ≥ 0 for 𝑖 > 0. Here 𝜀*  are independent and identically 
distributed standard normal random variables independent of 𝜎*. The ARCH 
parameter 𝑞 is the number of lagged error terms to be included in the model. 

  

An extension of the ARCH model was proposed by Bollerslev (1986) as the 
generalized ARCH (GARCH) model. This model includes 𝑝 lags of the conditional 
variance. Like in the ARCH model, 𝜖*  denotes the error terms with respect to a mean 
process. The GARCH(𝑝, 𝑞) model is defined as: 

 

𝜖* = 𝜎*𝜀* (2.8) 

𝜎*( = 𝛼l +m𝛽u𝜎*+u(

v

uC5

+m𝛼n𝜖*+n(

o

nC5

(2.9) 

 

where 𝛼l > 0, 𝛼n ≥ 0, 𝛽u ≥ 0, and 𝜀*  are once again independent and identically 
distributed standard normal random variables independent of 𝜎*. The constraint 
∑ (𝛽n + 𝛼n)
xyz(v,o)
nC5 < 1, where 𝛽u = 0 for 𝑗 > 𝑝 and 𝛼n = 0 for 𝑖 > 𝑞, is necessary 

for the GARCH model to be weakly stationary. For details on model order selection 
and parameter estimation, see for example Cryer and Chan (2008) and Tsay (2010). 
Additional models have been developed to further capture the volatility and other 
characteristics that might appear in heteroscedastic time series data, see for example 
Tsay (2010). 

 

In most cases, only the simplest ARCH(1) or GARCH(1,1) model is necessary when 
modeling financial return series, which may suggest that the simple and slow-
changing volatility structure can be modeled in an even simpler fashion. Moreover, 
a disadvantage of the ARCH and GARCH model is that there is not an explicit 
marginal distribution. 
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3 Autoregressive gamma model for volatility 
 

In this section the autoregressive gamma model is defined. Furthermore, simulations 
are utilized to explore which general range of parameter values may be suitable in 
order to generate time series that resemble the frequently observed volatility 
clustering in financial time series.  

 

3.1 Autoregressive gamma process 
 

It was argued in section 2.3 that any model suitable for financial data must be able 
to account for conditional heteroscedasticity. Furthermore, it was argued in section 
2.4 that by modulating a normal distribution with random variance through √𝑅𝑋, the 
distributional features of financial return series can be captured. The gamma 
distribution is a non-negative distribution that is a suitable candidate for 𝑅. More 
specifically, an autoregressive gamma process 𝑅*  is a reasonable option to modulate 
the conditional variance of 𝑋 in a manner that resembles the autoregressive and slow-
changing nature of the volatility. 

 

A random gamma variable 𝑅 standardized to 𝐸[𝑅] = 1 follows the distribution 

 

𝑓(𝑟) =
1

Γ �1𝜈� 𝜈
5/�

𝑟(5/�)+5𝑒+$/� (3.1) 

 

where 𝜈 > 0.	The stationary autoregressive gamma process 𝑅*  was presented by Sim 
(1990). With a given 𝜈 and 𝜌$  the process is defined as 

 

𝑅* = 𝜌$𝐾*𝑅*+5 + (1 − 𝜌$)𝜖*. (3.2) 

 

The process has an exponentially decaying autocorrelation function  

 

𝐶𝑜𝑟𝑟(𝑅*, 𝑅*+,) = 𝜌$, 
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for lag 𝑘 = 1,2,3, …, which has been shown by Johannesson et al. (2016a). The 
random innovations 𝜖*  are independent gamma distributed variables with 𝐸[𝜖*] = 1 
and 𝑉[𝜖*] = 𝜈. The random innovations are also independent from 𝐾*  and 𝑅*+5. The 
random factors 𝐾*  are dependent on 𝑅*+5 and defined as 

 

𝐾* =
1
𝑚*

m𝐸n

��

nCl

(3.3) 

 

where 𝐸l = 0 and for 𝑖 > 0 𝐸n~𝐸𝑥𝑝(1), and thus 𝐸[𝐸n] = 1. Furthermore, 
𝑁*~𝑃𝑜(𝑚*), where 𝑚* is given by 

 

𝑚* =
𝜌$/𝜈
1 − 𝜌$

𝑅*+5. (3.4) 

 

3.2 Exploratory simulations of the autoregressive gamma process 
 

With the autoregressive gamma process defined, a brief demonstration of how the 
behavior of 𝑅*  is affected by changes in 𝜈 and 𝜌$  is provided using simulated data. 
To maintain the focus on the model’s possible applicability in specifically financial 
time series, the examples will only contain extremely large values of 𝜌$ . Recall from 
section 2.3 that the volatility clusters in financial time series are usually several 
months long, which translates into a very slowly changing volatility process 𝑅* . 
Because the parameter 𝜌$  represents the daily correlation, the correlation in the 
process on monthly distance (assuming an average of 21 trading days in a month) is 
then 

 

𝐶𝑜𝑟𝑟(𝑅*,𝑅*+(5) = 𝜌$(5 (3.5) 

 

Two sets of values of both parameters are examined. The correlation coefficient 𝜌$  
is set to 0.99 and 0.95 (which gives correlations between months of order 0.99(5 ≈
0.81 and 0.95(5 ≈ 0.34). The shape parameter 𝜈 is set to 0.5 and 2. This results in 
a total of four combinations of parameter values. The four simulated series are 
depicted in Figure 3.1. 
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Figure 3.1 The four simulated autoregressive gamma series. The figures show how an increase in 𝜌$ 
leads to a slower change in 𝑅*, which is desirable in order to mimic the behavior of the volatility clusters 
in financial return series. An increase in 𝜈 yields more defined clusters of large and small values. 

 

It is immediately clear why the values of 𝜌$  were chosen as large as 0.95 and 0.99.  
It is evident that already when 𝜌$ = 0.95, 𝜌$  is too small in the context of financial 
time series. 𝑅*  is varying too frequently to mimic the behavior of volatility clusters 
observed in the OMXS30 and NASDAQ Composite examples. Moreover, when 𝜈 =
0.5 the volatility clusters mimicked by 𝑅*  are not as clearly defined as in the example 
data. However, when both 𝜈 and 𝜌$  are large, the simulated time series has a general 
structure that is very reminiscent of the outlines of the squared return plots of the 
OMXS30 and NASDAQ Composite that were illustrated in Figure 2.4C-D.  
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4 Autoregressive gamma variance Gaussian mixture 
model 

 

This section proposes an alternative approach to model conditional 
heteroscedasticity and excess kurtosis. A brief introduction of the model, its 
composition and parameters are provided. Furthermore, the simulations of 𝑅*  are 
extended to simulate 𝑌* , which confirms the conclusions that were drawn in section 
3.2 about which parameter values may be reasonable in the context of financial 
return series. 

 

4.1 Model definition 
 

The model is termed the autoregressive gamma variance Gaussian mixture model, 
in short ARGVG. The model has its roots in the engineering field where it was 
originally proposed by Johannesson et al. (2016b) to model road topography data. 
The model is defined as 

 

𝑌* = 𝜎�𝑅*𝑋* + 𝜇 (4.1) 

 

where 𝑅*  and 𝑋* are two independent time series. The gamma distributed 𝑅*  was 
introduced in section 3 and allows for 𝑌*  to vary in its conditional variance and 
express excess kurtosis, while 𝑋* is a normally distributed ARMA process of 
arbitrary order. Thus, 𝑅*  can be considered a process that models the volatility of the 
time series 𝑌* . Unlike in the ARCH-model and its extensions, which have 
untraceable distributional structure, the ARGVG-model has an explicit marginal 
distribution that follows a generalized Laplace distribution (Johannesson et al., 
2016b).  

 

𝑅*  and 𝑋* are generally standardized, which allows the mean and scale of the process 
to be isolated in the outer parameters 𝜇 and 𝜎. 𝑋* is standardized to 𝑁(0,1) in 
traditional fashion, while the non-negative 𝑅*  is standardized to 𝐸[𝑅*] = 1. 

 

Because the focus of this thesis lies on financial time series, the theory presented is 
restricted to the case when 𝑋* consists of white noise (See section 2.2). For a more 
general case, where 𝑋* cannot be assumed to be white noise, see Johannesson et al. 
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(2016b) where 𝑋* is modeled as an AR(1) process. For general theory on ARMA 
processes see for example Cryer and Chan (2008). 

 

4.2 Exploratory simulations of the ARGVG process 
 

The behavior of 𝑅*  was explored through simulations in section 3.2. With the full 
model defined, these simulated series can be extended to explore the behavior and 
structure of the product 𝑌* = √𝑅*𝑋*, which models a return series, and not just 𝑅*  
which models the volatility of a return series. Note that changes in 𝜇 and 𝜎 result in 
obvious behavior in 𝑌*  and will not be examined. The parameters 𝜇 and 𝜎 are set to 
0 and 1 respectively in all simulations. 

 

In Figure 4.1, the four sets of 𝑌*  are presented. In Figure 4.2, 𝑌*( is visualized to 
highlight the volatility clusters and in Figure 4.3, histograms of 𝑌*  are presented. 

 

 

 
Figure 4.1 Four simulated ARGVG-time series with different sets of parameters. The figures suggest 
that an increase in 𝜌$ leads to a slower change in volatility. An increase in 𝜈 yields more defined 
volatility clusters.  
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Figure 4.2 An illustration of the squared simulated series. Figure C has remarkably similar structure to 
the squared return series in Figure 2.4C-D. 

 

 
Figure 4.3 Histograms of the four simulated series. The main take away from these figures is that the 
distribution of the series with a large value in 𝜈 provides a closer resemblance to the distributions of 
the observed data with its high peak and fat tails, previously illustrated in Figure 2.7. 



21 
 

A few conclusions about the behavior and features of 𝑌*  can be drawn, unsurprisingly 
much of this is in agreement with the observations made in section 3.2. An increase 
in 𝜌$  results in a more slowly changing volatility. The leptokurtic properties in 𝑌*  
increases as 𝜈 increases, which from a time series-perspective (with a large 𝜌$) 
allows for the clusters of high and low conditional variance to be more clearly 
defined, which is noteworthy as this is usually observed in financial data. The 
histograms further highlight this. The histograms where 𝜈 = 2 display clear excess 
kurtosis and bear more resemblance to the densities of the OMXS30 and NASDAQ 
Composite in Figure 2.7 than the histograms where 𝜈 = 0.5. 

 

5 Model Fitting 
 

To fit the ARGVG model, a total of four parameters must be estimated. Methods of 
how to estimate these are presented in the following section. Furthermore, an 
alternative method of estimating 𝜌$	is proposed along with simulations to investigate 
its performance. In addition, the estimation process is applied to the previously 
introduced OMXS30 and NASDAQ Composite time series. 

 

5.1 Estimation of the mean and scale 
 

Estimating 𝜇 and 𝜎 in the ARGVG model can be easily accomplished by calculating 
the sample mean and the sample standard deviation of 𝑌*  and will not be discussed 
further. The estimated mean and scale of the OMXS30 and the NASDAQ Composite 
time series are reported in Table 5.1. 

 

5.2 Estimation of 𝝂  
 

Johannesson et al. (2016b) propose using the sample kurtosis 𝜅 of 𝑌*  to estimate 𝜈 
through 

 

𝜈 =
𝜅 − 3
3

(5.1) 

 

where 𝜅 can be estimated using the method of moments described in section 2.4. 
Table 5.2 presents the result from a set of simulations estimating 𝜈 using this method. 
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Each set of simulations consist of 10000 iterations of a time series with 3000 
observations and varying combinations of 𝜌$  and 𝜈. The results suggest that the 
method of moments may not be the optimal method of estimating the 𝜈 parameter 
when 𝜌$  is very large and the length of the time series is not unreasonably long. 
Other methods such as Maximum Likelihood estimation may prove superior, 
however no investigation into this matter will be covered in this thesis. Furthermore, 
the estimates of 𝜈 using the method of moments for the OMXS30 and NASDAQ 
Composite are presented in Table 5.3. 

 

Table 5.1 The sample mean and standard deviation of the OMXS30 and NASDAQ Composite. 

 

 

Table 5.2 Estimation of 𝜈 based on a set of simulations, each consisting of 10000 iterations of a time 
series with 3000 observations. The results suggest that the method of moments may not be the optimal 
method of estimating the 𝜈 parameter when 𝜌$ is very large. The method performs well when 𝜌$ ≤
0.95. 

 𝜈 = 1, 

𝜌$ = 0.90 

𝜈 = 1, 

𝜌$ = 0.95 

𝜈 = 1, 

𝜌$ = 0.99 

𝜈 = 2, 

𝜌$ = 0.90 

𝜈 = 2, 

𝜌$ = 0.95 

𝜈 = 2, 

𝜌$ = 0.99 

Mean �̂� 

(sd) �̂� 

0.978 

(0.22) 

0.966 

(0.24) 

0.882 

(0.30) 

1.938 

(0.48) 

1.909 

(0.52) 

1.701 

(0.61) 

 

 

Table 5.3 The estimates of 𝜈 for the OMXS30 and NASDAQ Composite return series. 

 �̂� 

OMXS30 1.69 

NASDAQ Composite 2.38 

 

 

 

 �̂� 𝜎� 

OMXS30 0.008 1.390 

NASDAQ Composite 0.036 1.337 
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5.3 Estimation of the correlation in the volatility process 
 

The correlation coefficient 𝜌$’s impact on 𝑅*  has previously been reviewed in 
section 3.2. It was concluded that very large values of 𝜌$  are required to generate a 
process that resembles the volatility clusters in financial time series. In addition, 
section 3.2 also provides arguments as to why the performance of any method of 
estimating 𝜌$  will be highly important. As seen in Figure 3.1, the structure of 𝑅*  is 
drastically altered when 𝜌$  decreases by just a few hundredths. It should therefore 
be of high priority to identify the best possible method of estimating 𝜌$ , even if the 
accuracy appears to be just marginally more precise. 

 

5.3.1 Estimating 𝝆𝒓 using a weighted geometric mean 
 

It has been shown by Johannesson et al. (2016b) that in the case of the Gaussian 
component being white noise, the autocorrelation function of 𝑌( can be used to 
obtain estimates of 𝐶𝑜𝑟𝑟(𝑅*, 𝑅*+,) = 𝜌$, at each lag 𝑘 through 

 

𝜌$, =
𝐶𝑜𝑟𝑟�𝑌*(, 𝑌*+,( �(2 + 3𝜈)

𝜈 	. (5.2) 

 

Johannesson et al. (2016b) propose the following method to estimate 𝜌$: Estimates 
of 𝐶𝑜𝑟𝑟�𝑌*(, 𝑌*+,( � are calculated using the sample autocorrelation of 𝑌(, 𝑟?M(𝑘), as 
defined in Equation (2.2). These values are then put into Equation (5.2) to obtain 𝑘 
estimates of 𝜌$,. Any estimate of 𝜌$, that exceeds one is set to one and any estimate 
that is smaller than zero is set to zero. Using these k values, estimates of 𝜌$  are 
obtained through 

 

𝜌�$(,) = [𝜌�$,]
5
,. (5.3) 

 

Finally, a weighted geometric mean – with the weight decaying as 𝑘 increases – of 
these estimates is calculated to obtain an estimate of 𝜌$  through 

 

𝜌�$ = �𝜌�$(5)
, 𝜌�$(()

,+5 …𝜌�$(,)
5 �

(
,(,D5). (5.4) 
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No definite value of how many lags to utilize is suggested, however it is suggested 
that it should be kept low enough to keep some meaningful dependence 
(Johannesson et al., 2016b). 

 

5.3.2 Estimating 𝝆𝒓 by fitting the exponential decay 
 

An alternative method of estimating 𝜌$  is proposed in this section. Recall that 𝜌$, is 
exponentially decaying for lag 𝑘 = 1,2,3…. Thus, it should be obvious that log�𝜌$,� 
is linearly decreasing. Therefore, one could utilize Equation (5.2) and fit a simple 
linear regression of the 𝑛 estimates of log�𝜌�$,� with the lag 𝑘 = 1,… , 𝑛 as a covariate 
through  

 

log�𝜌�$,� = α + β𝑘 + 𝜖, (5.5) 

 

The estimated regression coefficient 𝛽�  can be viewed as an estimate of the linear 
decrease in log�𝜌�$,� as the lag increases by one. Thus, exp�𝛽�� acts as an alternative 
estimate of 𝜌$ . This is visualized in Figure 5.1 using simulated data with 𝜌$ = 0.99. 
The red line represents the linear regression fit based on the simulated data.  

 
Figure 5.1 An illustration of the estimated  𝜌�$,  using data simulated with 𝜌$ = 0.99. Figure A illustrates 
the linear relationship between the lag k and the logarithm of 𝜌�$, . Figure B illustrates the exponential 
decay in 𝜌�$,. Using this relationship, a simple regression model can be fitted to the logarithm of 𝜌�$,. 
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Furthermore, a cut-off value of the number of  𝜌�$, to include in this estimation 
process is proposed to be set to 𝑛, where lag 𝑛 + 1 is the first lag with non-significant 
autocorrelation in 𝑌(. When the real 𝜌$  is very large, this will provide a relatively 
large number of observations to be utilized, resulting in a more precise fit. 

 

5.3.3 Comparison between the two methods 
 

To compare the performance of the two methods, three sets of time series are 
simulated. Because the focus lies on financial time series, the performance is 
evaluated on data sets generated with parameters mimicking the characteristics of 
financial time series. The true values of 𝜌$  are set to  𝜌$ = 0.99, 𝜌$ = 0.97 and 𝜌$ =
0.95 respectively (or the correlation on a monthly basis, 0.99(5 ≈ 0.81, 0.97(5 =
0.53 and 0.95(5 ≈ 0.34 respectively). The true value of 𝜈 is set to 2 in all three sets. 
Each set of simulations consists of 10000 iterations of a time series with 3000 
observations. A summary of the simulations is presented in Table 5.4.  

 

This method of estimating 𝜌$  appears superior when 𝑋* is white noise and 𝜌$  is very 
large, which is the case for volatile financial time series. However, do note that its 
performance in the general case when 𝜌$  could be any value between zero and one 
has not been thoroughly investigated.  

 

Furthermore, one should be aware that it is theoretically possible for this method to 
yield invalid estimates. This can happen either when an estimate is larger than one – 
It is after all technically possible for the estimated slope 𝛽�  to be positive. The other 
way it can happen is if the first lag in the autocorrelation of 𝑌( is below the level of 
significance, resulting in the linear regression being fitted to no data. However, these 
would be extremely uncommon with the values of 𝜌$  that are relevant in the context 
of financial time series and should only begin to present themselves when 𝜌$ ≤ 0.9. 
In the case that this method cannot be properly utilized to a data set, the weighted 
geometric mean method should still provide valid estimates for the given data. 

 

Ultimately, the final parameter 𝜌$  is estimated for the OMXS30 and NASDAQ 
Composite data. The estimators based on both the weighted geometric mean method 
and the proposed linear regression method are reported in Table 5.5. The estimated 
monthly correlation  𝜌�$(5 is also reported to highlight the notable practical difference 
in the two estimates. 
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Table 5.4 A comparison of the performance in estimating 𝜌$ using the weighted geometric mean 
method and the proposed method that utilizes a linear fit to the logarithm of the exponential decay. 
Each set of simulations consist of 10000 iterations of time series with 3000 observations. The proposed 
linear regression method preforms better. Note that in all cases a very large value of 𝜌$ is used, its 
performance when 𝜌$ is lower has not been investigated.  

 𝜌$ = 0.95 𝜌$ = 0.97 𝜌$ = 0.99 

Mean (sd) of 𝜌�$ using 
the geometric mean 

0.937 (0.032) 0.958 (0.024) 0.979 (0.015) 

Mean (sd) of 𝜌�$ using 
the lin. reg. method 

0.944 (0.020) 0.964 (0.014) 0.985 (0.007) 

 

Table 5.5 The estimates of 𝜌$ for the OMXS30 and NASDAQ Composite return series. In both cases, 
the estimate using both the weighted geometric mean method and the linear regression method is 
provided. 

 𝜌�$ (𝜌�$(5), geometric mean 𝜌�$ (𝜌�$(5), lin. reg. method 

OMXS30 0.975 (0.581) 0.985 (0.735) 

NASDAQ Composite 0.984 (0.717) 0.980 (0.653) 

 

 

6 Interpolation and prediction 
 

The previous section demonstrates how parameters can be estimated, which provides 
information of the overall structure and general behavior of the volatility process in 
a given time series. The parameter estimates alone do not provide the ability to 
interpolate or predict the volatility 𝑅*  of a given day, both in the case of a future day 
𝑌*D�, ℎ > 0 or an already observed day 𝑌* . This section proposes a method of how 
to interpolate and predict the underlying volatility 𝑅*  of an observed time series 𝑌*  
using the volatility proxy 𝑌*(. Initially, the conditional distribution, mean and 
variance of 𝑅|𝑌( is derived and presented. Subsequently, some basic methods of 
interpolating and predicting 𝑅�*  are proposed and tested using simulated data. 

 

6.1 The conditional distribution of 𝑹|𝒀𝟐 
 

In real financial data 𝑌*  is directly observed, while the proposed model consists of 
the two, individually unobserved, components 𝑅*  and 𝑋*. As previously discussed, 
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𝑋* is assumed to be white noise and therefore poses no issues in terms of prediction. 
This leaves the task of predicting the volatility process 𝑅�*D� , ℎ > 0 given the past 
observation 𝑌£, 𝑢 ≤ 𝑡. Furthermore, this task can be rephrased in the simplest 
formulation into finding interpolation of 𝑅�* , given the currently observed volatility 
proxy 𝑌*(. The predictor that primarily is considered is the expected value of the 
conditional probability distribution function, i.e.  𝑅� = 𝐸[𝑅|𝑌(]. However, in the 
early stages, the mode of the probability distribution is tested and compared as a 
predictor to ensure it is not performing better than the more complex method that 
utilizes the expected value.  

 

The first step to obtain this is to calculate the conditional probability distribution of 
𝑅|𝑌(. The definition of a conditional probability distribution function in the general 
case is 

 

𝑓¤|¥(𝑎|𝑏) =
𝑓¥|¤(𝑏|𝑎)𝑓¤(𝑎)

𝑓¥(𝑏)
, (6.1) 

 

or more relevant to this case, the conditional probability distribution function is 
proportional to 

 

𝑓¤|¥(𝑎|𝑏) ∝ 𝑓¥|¤(𝑏|𝑎)𝑓¤(𝑎). (6.2) 

 

Setting 𝐴 = 𝑅 and 𝐵 = 𝑌( = 𝑅𝑋( = 𝑊, the following proportional expression for 
the distribution of the volatility 𝑅* , conditional on the observed volatility proxy is 
obtained: 

 

𝑓©|ª(𝑟|𝑤) ∝ 𝑓ª|©(𝑤|𝑟)𝑓©(𝑟). (6.3) 

 

One may be reminded that 𝑅 follows a Gamma distribution with density 

 

𝑓©(𝑟) =
1

Γ(1 𝜈⁄ )𝜈5 ¬⁄ 𝑟5 ¬⁄ +5𝑒+$ ¬⁄ . (6.4) 
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With 𝑋* being standard normal, it follows that 𝑋(~𝜒((1) with density  

 

𝑓®(𝑥) =
1

Γ(1/2)√2√𝑥
𝑒+J/(. (6.5) 

 

Therefore, 𝑓ª|©(𝑤|𝑟) can be considered a 𝜒((1) distribution scaled by 𝑟 with 
density 

 

𝑓ª|©(𝑤|𝑟) =
1

Γ(1/2)√2 ⋅ 𝑟�𝑤/𝑟
⋅ 𝑒+°/($	. (6.6) 

 

Substituting Equation (6.4) and Equation (6.6) into Equation (6.3) yields the 
following proportional expression 

 

𝑓©|ª(𝑟|𝑤) ∝ 𝑟
�5¬+

±
(�𝑒+�

°
($D

$
¬	�. (6.7) 

 

This expression is proportional to a known distribution, namely the generalized 
inverse Gaussian distribution, albeit commonly defined with alternative 
parameterization by Jørgensen (1982) as 

 

𝑓©(𝑥) =
1

2𝜂𝐾v(𝜃)
3
𝑥
𝜂6

v+5
𝑒+

´�JµD
µ
J�

( (6.8) 

 

where 𝜃 = �2𝑤/𝜈, 𝜂 = �𝑤 ⋅ 𝜈/2	, 𝑝 = 1/𝜈 − 1/2 and 𝐾v is a modified Bessel 
function of the second kind. Because the parameter 𝜈 is restricted to positive numbers 
in the ARGVG model, a simplified definition that applies under the condition that 
𝑝 > −0.5 can be used to define 𝐾v(𝜃) (see Spanier & Oldham, 1987, p.500) as  

 

𝐾v(𝜃) =
√𝜋

(𝑝 − 1/2)! 3
𝜃
26

v
¸ 𝑒+´J(𝑥( − 1)v+

5
(	𝑑𝑥

º

5
. (6.9)			 

 



29 
 

The expected value of the generalized inverse Gaussian distribution is given by 

 

𝐸[𝑅] = 𝜂
𝐾vD5(𝜃)
𝐾v(𝜃)

= �(𝑤 ⋅ 𝜈)/2 ⋅
𝐾5
¬D

5
(	
��2𝑤/𝜈�

𝐾5
¬	+

5
(	
��2𝑤/𝜈�

(6.10)
 

 

and 

 

𝑉[𝑅] = 𝜂( »
𝐾vD((𝜃)
𝐾v(𝜃)

−
𝐾vD5(𝜃)
𝐾v(𝜃)

¼
(

=
𝑤 ⋅ 𝜈
2 ⋅ ½

𝐾5
¬D

±
(
��2𝑤/𝜈�

𝐾5
¬+

5
(
��2𝑤/𝜈�

− ¾
𝐾5
¬D

5
(
��2𝑤/𝜈�

𝐾5
¬+

5
(
��2𝑤/𝜈�

¿

(

À . (6.11)
 

 

Moreover, the mode of the distribution is defined as 

 

𝑀𝑜𝑑𝑒 =
1 − 3𝜈2 + 𝜈Â�1𝜈 −

3
2�

(
+ 2𝑤𝜈

2 . (6.12)
 

 

Note that the mode lacks any special functions such as Bessel functions, making it 
much simpler to calculate and use. 

 

Density, quantiles, CDF and random number generation of the generalized inverse 
Gaussian distribution can be obtained through the R package GeneralizedHyperbolic 
by calling the functions dgig, qgig, pgig and rgig respectively (Scott, 2018). It should 
be noted to the reader that the GeneralizedHyperbolic package by default uses yet 
another alternative parameterization with the following conversions to what is used 
throughout this thesis: 𝑐ℎ𝑖 = 𝑤, 𝑝𝑠𝑖 = 2/𝜈 and 𝑙𝑎𝑚𝑏𝑑𝑎 = 1/𝜈 − 1/2. 
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Consequently, the density, expected value and variance of 𝑅|𝑊 can easily be 
calculated. See Appendix 1 for a brief overview of the distributional properties of 
the generalized inverse Gaussian distribution. 

 

6.2 Interpolation 
 

As an initial test of the performance of the mode and expected value of 𝑓©|ª(𝑟|𝑤) 
as predictors of 𝑅|𝑊, the most basic scenario where 𝑌, 𝑅 and 𝑋 are merely i.i.d. 
random variables are assumed. Based on 1	000	000 simulated observations of 
𝑋~𝑁(0,1) and 𝑅~𝐺𝑎𝑚𝑚𝑎(𝜈 = 2), generalized Laplace distributed observations of 
𝑌 is constructed through  𝑌 = √𝑅𝑋. The values of 𝑊 = 𝑌( and  �̂� are then put into 
Equation (6.10) and Equation (6.12) to obtain  𝑅�ÆÇÈB and  𝑅�ÆÉÊÇ  respectively. 
Moreover, the residuals 𝑟𝑒𝑠ÆÇÈB and 𝑟𝑒𝑠ÆÉÊÇ  are calculated through  𝑅� − 𝑅. 
Histograms of the residuals based on both methods are displayed in Figure 6.1. Table 
6.1 presents the mean, median and variance of the residuals. 

 

 

 
Figure 6.1 Histograms of the residuals obtained when interpolating 𝑅�, both using the conditional 
expected value (A) and using the mode of the conditional distribution (B). 
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Table 6.1 Mean, variance and median of the residuals based on both interpolation methods. The method 
utilizing the expected value of 𝑅|𝑊 outperforms the method that utilizes the mode of the conditional 
distribution. 

 �̂� 𝜎�( Median 

Expected value method ≈ 0 1.32 0.28 

Mode method −0.7 1.42 −0.24 

 

It can be concluded that the method utilizing the expected value of 𝑅|𝑊 outperforms 
the method that utilizes the mode of the conditional distribution. No further attention 
will be given to the mode-method.  

 

Furthermore, albeit primitive, this method may be applied to interpolate time series 
data as well: If 𝑌*( is known for a given day 𝑡, the interpolated volatility of day	𝑡,	𝑅�* 
may be calculated as instructed above. Testing this method on simulated time series 
data with 𝜌$ = 0.99 and 𝜈 = 2 unsurprisingly shows that the performance is equal 
to the i.i.d. case. 

 

 
Figure 6.2 Histogram of the residuals obtained when interpolating 𝑅�* in a time series case. The method 
appears to perform equally well to that of the i.i.d. case in Figure 6.1. 
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Table 6.2 Mean, variance and median of the residuals obtained when interpolating  𝑅�* in a time series 
case. The results are equivalent to those in the i.i.d. case. 

 �̂� 𝜎�( Median 

𝑟𝑒𝑠nB*  ≈ 0 1.33 0.28 

 

 

6.3 Prediction 
 

In many situations, interpolating the volatility is not what is the most important. 
Instead, what is of interest is to predict the volatility of day 𝑡 + 1,  𝑅�*D5 using only 
the information available on day 𝑡, namely 𝑌* . One basic method to do this is 
presented in this section. One may be reminded that section 3.1 defines the 𝑅*  
gamma process as 

 

𝑅* = 𝜌$𝐾*𝑅*+5 + (1 − 𝜌$)𝜖* (6.13) 

 

where the random factors 𝐾*  are dependent on 𝑅*+5 and defined as 

 

𝐾* =
1
𝑚*

m𝐸n

��

nCl

(6.14) 

 

where 𝐸l = 0 and for 𝑖 > 0 𝐸n~𝐸𝑥𝑝(1), and thus 𝐸[𝐸n] = 1. Furthermore, 
𝑁*~𝑃𝑜(𝑚*), where 𝑚* is given by 

 

𝑚* =
𝜌$/𝜈
1 − 𝜌$

𝑅*+5. (6.15) 

 

While 𝐾*  is dependent on 𝑅*+5 through 𝑚*, one can easily see that 𝐸[𝐾*] = 1 
regardless of the value of 𝑅*+5. If 𝑅*+5 is large, it will provide a larger 𝑚*, which in 
return will provide a larger 𝑁* on average. Thus, the expected value of 𝑅*  may be 
defined as 

 

𝐸[𝑅*] = 𝜌$𝐸[𝐾*]𝐸[𝑅*+5] + (1 − 𝜌$)𝐸[𝜖*]. (6.16) 
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Note that section 5.3 provided methods of estimating 𝜌$ , and the random innovations 
𝜖*  were defined in section 3.1 to have expected value 𝐸[𝜖*] = 1. With this 
information, Equation (6.16) can be rewritten as 

 

𝐸[𝑅*] = 𝜌�$ ⋅ 1 ⋅ 𝐸[𝑅*+5] + (1 − 𝜌�$) ⋅ 1 

= 𝜌�$𝐸[𝑅*+5] + (1 − 𝜌�$). (6.17) 

 

This can be further developed into the conditional expected value 

 

𝐸[𝑅*D5|𝑅*] = 𝜌�$𝑅�* + (1 − 𝜌�$), (6.18) 

 

of which both  𝜌�$  and  𝑅�*  can be estimated and interpolated using the previously 
presented methods. 

 

In fact, because it is already known that 𝜌$  is very large in financial return series, 
one may already suspect that predicting 𝑅�*D5 will yield very similar results to merely 
interpolating  𝑅�*. Afterall, the very large 𝜌$  contributes to this in two ways. One: 
The second term of the conditional expectation will be very close to zero, while 
simultaneously merely scaling 𝑅*  in the first term by a percent or two. Two: By the 
definition of the correlation coefficient 𝜌$ , a very large value signals that 𝑅*  is 
changing very slowly. Thus, whether one interpolates  𝑅�*  using 𝑌*( or predicts  𝑅�*D5 
using  𝑅�* (which in return is interpolated through 𝑌*(), the real value of 𝑅*D5 seldom 
differs to a great extent from the real value of 𝑅*  due to the nature of the very slow-
changing process.  

 

To confirm this, another 1	000	000 observations of 𝑌*  are simulated with 𝜌$ = 0.99 
and 𝜈 = 2. Equation (6.18) is then utilized to predict observation 𝑡 + 1 using 
observation 𝑡 for each of observation 𝑡 = 1, … , 999999. The result confirms the 
hypothesis above. The histogram of the residuals is depicted in Figure 6.3. The mean, 
variance and median of the residuals are presented in Table 6.3. Both of which 
provide very similar results to the interpolation case in the previous section. 
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Figure 6.3 Histogram of the residuals obtained when predicting 𝑅�*D5 using  𝑅�*. The method appears to 
perform almost identically to the interpolation illustrated in Figure 6.2. 

 

Table 6.3 Mean, variance and median of the residuals obtained when predicting  𝑅�*D5 using  𝑅�*. The 
results are close to identical to the residuals of the interpolation of  𝑅�*. 

 �̂� 𝜎�( Median 

𝑟𝑒𝑠v$ÇÊ  ≈ 0 1.36 0.29 

 

6.4 Closing remarks on the interpolation and prediction method 
 

It must be emphasized that while both the interpolation and prediction methods are 
unbiased estimators of the true 𝑅* , and the distribution, mean and variance of the 
residuals indicate the predictor performs relatively well, the proposed methods are 
primitive and by no means fully developed.  

 

Note that 𝜈 is a fixed estimated value throughout a full process 𝑅* . The predictor 𝑅�* 
depends only on 𝑌*(, and thus 𝑅�* will overall mimic the swings of a scaled 𝑌*(, which 
does not resemble the smooth curve with slow changes of the true 𝑅* . This is 
exemplified in Figure 6.4, where an 𝑅*  process with 3000 observations is simulated 
and subsequently predicted using Equation (6.18). While the residual mean is merely 
0.08 in this case, it is still clear that  𝑅�*  does not capture the full behavior of 𝑅.  
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Figure 6.4 A simulated process 𝑅* (black) with the predictor 𝑅�* (red). While the mean of the residuals 
is near zero, it is still clear that the predictor does not capture the full behavior of 𝑅. 

 

 

 
Figure 6.5 The predictor  𝑅�*D5 tested on the OMXS30 and NASDAQ Composite return series. 
Because the true 𝑅*D5 is not known in real financial data, the predictor is compared to the GARCH 
predictor  𝜎�*D5. 
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In closing, the developed prediction method is tested on the OMXS30 and NASDAQ 
Composite. Because the volatility in real financial data is not directly measurable, 
the predictor cannot be compared to a true value of 𝑅*  as in the simulation study. 
Instead, the GARCH predictor 𝜎�*D5 is utilized as a substitute. Figure 6.5 depicts the 
two volatility predictors. The results are similar to the results of the simulation study.  

 

7 Conclusion 
 

The aim of this thesis has been to explore an alternative approach to model volatile 
financial time series using the autoregressive gamma variance Gaussian mixture 
model. Basic unbiased methods to interpolate and predict current and future values 
of the volatility process given the observed volatility proxy, the squared returns, have 
been developed and presented. However, as discussed in section 6.4, there is still a 
lot of room for improvement in the predictor. The developed predictor does not 
mimic the slow-changing nature of the true volatility process. In addition, an 
alternative method to estimate the correlation coefficient of the volatility process has 
been proposed and evaluated. The proposed method outperforms the original method 
when the true correlation is exceedingly large, which is the case for almost all 
financial return series. 

 

To determine the performance of the model it needs to be compared to the well-
established GARCH model(s). To accomplish this, further research is required to 
fully develop more advanced prediction methods that allow for the estimated 
volatility process to account for the fact that the process is extremely slow-changing.  

 

It has also been demonstrated that the method of moments-estimate of the model 
parameter 𝜈 suffers from high variance when using 3000 observations (a reasonable 
length of financial data) and the correlation of the volatility process is very large. It 
is possible that better estimates could be obtained by other methods, e.g. maximum 
likelihood estimation. 

 

Another direction of future research is to expand the model to the multivariate case. 
This thesis only considered the univariate case, however, the example data suggests 
that there may be a univariate volatility effect that influences all kinds of financial 
instruments. Thus, one could attempt to model entire portfolios of financial 
instruments with a single measure of the volatility process, combined with a 
multivariate normal ARIMA-process unique to each financial instrument.   
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Appendix 1 
 

The surface of this distribution for various values of 𝑊 and with a given value of 
𝜈 = 2 is visualized in Figure A.1. Moreover, surface plots of 𝐸[𝑅|𝑊] and 𝑉[𝑅|𝑊] 
for various combinations of 𝜈 and 𝑤 are displayed in Figure A.2 and Figure A.3 
respectively. 

 

 

 

 
Figure A.1 The conditional distribution of 𝑅|𝑊 for various values of 𝑤. 𝜈 is held constant at 2. 
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Figure A.2 Expected value of R|W for various combinations of 𝜈 and 𝑤. 

 

 

 
Figure A.3 Variance of R|W for various combinations of 𝜈 and 𝑤. 

 

 


