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Abstract

All buildings need a foundation that supports the structure. Since a layer of soil is most
often in between a structure and the bedrock, a soil-structure interaction between the
foundation and the soil beneath occurs. This interaction is of great importance when
it comes to predicting the sectional forces that will arise in a structure, along with the
settlement that occurs. Therefore the need to conduct accurate calculations when it comes
to soil-structure interaction is evident.

One problem with modelling a soil-structure interaction using a full FE-analysis of the
soil is that it requires a large amount of computational effort along with a significant
effort in building the models, and a rather deep understanding of soil modelling.

For this reason commercial software programs are available for conducting calculations
regarding the soil-structure interaction. In this thesis the software RFEM and Abaqus
have been used in order to evaluate the accuracy and efficiency of modelling the soil using
the Winkler method and the Pasternak method. The Winkler method models the soil as
uniformly distributed springs beneath the structure. The Pasternak method uses the same
spring bed as the Winkler model, but with added shear springs between the main springs
making up the Winkler bed. These springs are added in order to capture the transfer
of shear forces that occurs in a soil. These methods were compared to full FE-analyses
using Abaqus with varying degrees of complexity when it comes to modelling the soil.

Four different types of foundations were analysed in a parametric study along with a case
study of a real structure. The types of foundations studied during the parametric study
were a pad-, strip-, raft- and basement foundation. In the case study a seven story office
building in Malmo, Sweden, called Eminent, was studied.

Result shows that when the Winkler method is used, both the shape and the magnitude
of the settlement differ significantly from the results of the full FE-analyses where the
soil is modelled using 3D elements and plasticity of the soil is considered. The major
reasons for this are that the soil surrounding the structure is not taken into account and
that the shear transfer that takes place in a soil is neglected. Neglecting shear in the soil
results in a convex shape of the settlement when in reality the structure takes more of a
concave shape. The sectional forces calculated using the Winkler method differ from the
ones obtained using the full FE-analyses. In particular the tensile stress at the top of the
foundations tend to be exaggerated.

The Pasternak model implemented in RFEM yields sectional forces that are similar to the
ones obtained when modelling the soil with linear elastic solid elements. It does, however,
underestimate the settlements of the foundation in relation to the full FE-analyses. The
difference in results between modelling the soil using a linear elastic material or an elasto-
plastic material tend to decrease when the size of the foundation increases. Therefore the
Pasternak method yields rather similar results for the sectional forces, to a full FE-analysis
with elasto-plastic material model on foundations such as rafts and basements.






Sammanfattning

Alla byggnader behdéver en grundlaggning som stodjer konstruktionen. Da det oftast
ligger ett lager jord mellan en byggnad och berggrunden kommer en interaktion mellan
byggnaden och jorden att ske och skapa en sa kallad samverkansgrundlaggning. Denna
interaktion har en betydande paverkan pa de snittkrafter och sattningar som kommer
att uppsta i grundlaggningen. Darfor finns det ett uppenbart behov av att kunna utfora
noggranna berakningar av samverkansgrundlaggningar.

Ett problem med att modellera en samverkansgrundlaggning med en full FE-analys ar att
det kraver stora datorresurser, samt avsevard tid for att bygga modellerna. Det kraver
ocksa att den som bygger modellerna har en relativt djup forstaelse av jordmodellering.

Kommersiella berdkningsprogram har utvecklats for att utfora berakningar av samverkans-
grundlaggningar. 1 detta arbete har programmen RFEM och Abaqus nyttjats for att
utvardera noggrannheten och effektiviteten av att modellera en jord med Winklermeto-
den och med Pasternaks metod. Winklermetoden modellerar jorden som jamnt fordelade
fjadrar under grundlaggningen. Pasternaks metod nyttjar samma fjaderbadd som Win-
kler, men adderar skjuvfjadrar mellan huvudfjadrarna. Dessa skjuvfjadrar adderas for
att kunna modellera det skjuvflode som uppstar i en jord vid belastning. Dessa metoder
jamfordes sedan med fulla FE-analyser i Abaqus déar jorden modellerades med olika ma-
terialmodeller.

I detta arbete utfordes parameterstudier pa fyra olika grundlaggningar under en fiktiv
byggnad. Aven grundlaggningen for en verklig bygenad studerades for att utvérdera
berakningsmetoderna. De grundlaggningstyper som utvarderades under parameterstu-
dien var plint, sula, hel bottenplatta samt kallare. Den verkliga byggnaden som studerades
i arbetet ar en kontorsbyggnad med sju vaningar, Eminent, belagen i Malmo.

Nar Winklermetoden nyttjades skiljer sig bade magnituden och formen pa sattningarna
avsevart fran de resultat som gavs fran de fulla FE-analyserna, dar jorden modellerades
med 3D solidelement. Denna skillnad beror till viss del pa att jorden runt byggnaden inte
tas i beaktande, samt att jordens formaga att ta upp skjuvspanningar negligeras. Detta
ger da att formen pa sédttningarna enligt Winklermetoden hos en hel bottenplatta blir
konvex nar den i verkligheten ska bli konkav. Snittkrafterna som ges fran Winklermetoden
tenderar att skilja sig en hel del fran de som ges av en full FE-analys. Framforallt sa
tenderar dragspanningar i ovankant av grundlaggningen att 6verdrivas.

Pasternakmodellen implementerad i RFEM ger snittkrafter liknande dem som ges av
en full FE-analys, dar jorden modellerats som linjart elastisk. Dock sa underskattas
sattningarna ganska kraftigt. Skillnaden mellan att modellera jorden som linjart elastisk
eller som elasto-plastisk tenderar att minska nar storleken pa grundlidggningen okar. Detta
innebéar att Pasternakmodellen i RFEM ger liknande resultat for snittkrafterna i en
grundlaggning som en full FE-analys med elasto-plastiska materialmodeller for jorden
pa grundlaggningar som hel bottenplatta och kéllare.
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1 Introduction

1.1 Background

One thing that all buildings have in common is the fact that they all need some form of
foundation that supports the structure. Inevitably this leads to soil-structure interaction
for a structure placed on soil, which in this thesis is abbreviated SSI. Therefore the need to
accurately carry out an SSI-analysis is obvious. A complete finite element analysis of SSI
requires large amounts of computational effort. Since the soil is modelled with solid 3D-
elements and thus the number of degrees of freedom in the model increases drastically, it
leads to a full analysis being very consuming, both in terms of time, but also in resources.

For this reason the Winkler method is often used by structural engineers to simplify the
models. The Winkler method models the soil as uniformly distributed springs under the
foundation with a prescribed stiffness, often supplied by geotechnical engineers.

The problem with the Winkler method is the fact that it does not take into account the
soil surrounding the structure. This often leads to predictions of unrealistic settlements,
both in terms of value but also in terms of shape. In addition to the Winkler method does
not account for the surrounding soil, the shear modulus of the soil is also neglected. The
neglecting of the shear modulus is manifested in the Winkler method by the springs being
uncoupled. Often resulting in that the concrete slabs become too thick or the rebars at
the wrong location. In the worst case the sectional forces are underestimated.

Clearly a need for simplified calculations of the SSI that maintain a high enough accuracy
as to make it viable as a tool for structural engineers when designing a structure where
SSI is present.

1.2 Aim and objectives

The aim of this project is to evaluate different calculation methods for SSI-analysis and
present recommendations for when different methods are preferable and what effect the
various models have on the calculated settlements and sectional forces. For the con-
struction business at large the aim is to raise the efficiency when it comes to performing
SSI-analysis along with raising the level of knowledge regarding SSI.

The reason for wanting to accurately model an SSI is to be able to obtain accurate sectional
forces and settlements for a foundation. This is necessary to design a foundation that can
fulfil the requirements put upon it.

The objectives of this thesis is to:

e Evaluate the effects that altering the stiffness of the soil have on the calculated
settlements and sectional forces for a foundation

e Evaluate differences of the underlying soil being a cohesive soil or a non-cohesive
soil

e Studying the effect of choosing various types of foundations on the calculated set-
tlements and sectional forces



1.3 Method

In order to achieve the aims set up for the project a parametric study was conducted for
various types of building foundations of a fictional building and by comparing the results
from different calculation methods of the soil. The software used in this thesis was Abaqus
and RFEM. Abaqus was used to conduct full 3D finite element analysis, where the soil was
modelled using solid elements. RFEM was used to perform calculations using the Winkler
method and a method based on Pasternak’s hypothesis, where the soil underneath the
structure was modelled as uniformly distributed springs, with or without coupling with
shear-springs.

These calculation methods was also evaluated for a real building, Eminent, which was
built in Malmo in 2018.

Results from the different calculation methods were then compared and conclusions drawn
from them. When evaluating the results from the different calculations mainly the set-
tlements and the sectional forces in the foundation were considered since these are the
factors most relevant when designing the foundation for a building.

1.4 Limitations

Due to time constraints this project was limited to:

e Time dependent behaviour was not studied

The effects of groundwater were not taken into account

Non-linear behaviour of concrete was not included

The soil models used in this thesis were restricted to

Three-dimensional linear elastic

Three-dimensional elasto-plastic
Winkler method
Pasternak method



2 Foundations

The purpose of a foundation is to provide support for the building and transfer the loads,
that are acting on the structure, to the soil (Potts and Zdravkovic 2001). There are
many different types of foundations, such as strip foundation, piles, and raft foundation.
Foundation types are often categorised as either shallow or deep foundations. Shallow
foundations that are placed directly on the soil are sometimes called surface foundations.

2.1 Foundation types

Three of the most common shallow foundations are pad foundation, strip foundation and
raft foundation. They are generally used when the load bearing capacity of the soil is
high relative to the applied loads from the structure. Deep foundations are, in contrast to
shallow foundations, used when the load bearing capacity of the soil is low and the loads
need to be transferred deeper into the soil, where the load bearing capacity is higher.

(d)

Figure 2.1: (a) Pad foundation, (b) Strip foundation, (c¢) Raft foundation, (d) Basement
foundation.

Pad foundations are usually in rectangular or circular shape and consist of concrete pads
and are used to support concentrated loads from pillars. Strip foundations, sometimes
called strip footings, are usually concrete strips used to support loads from walls or lines
of pillars.

A raft foundation consists of an uniformly thick concrete slab, usually reinforced, that
rests directly on the ground. The slab may sometimes have increased thickness in areas
where it is affected by large loads. This type of foundation spreads the load over the whole
foundation area, and is often used when there is a risk for large differential settlements,



or when it is too complicated to create pads and footings for every pillar.

Basement foundations are located below ground level and consist of a concrete floor and
basement walls that support the building. This solution creates a rigid and very stiff
foundation which is practical for structures that are subjected to large loads. There is
often an extra support at the bottom of the basement walls. This is usually done by
extending the bottom slab by a small distance. The reason to implement this extra
support is that the earth pressure increases at increasing soil depth.

2.2 Geotechnical parameters

It is important to gather information about the geotechnical conditions when choosing
which foundation type to use for a structure. Soil parameters are usually obtained from
a combination of both field tests and laboratory tests (Potts and Zdravkovic 2001). Ex-
amples of laboratory tests that are commonly used to derive different soil parameters are
oedometer test, triaxial test and direct shear test. From an oedometer test soil properties,
such as the overconsolidation ratio (OCR), the compression index and the preconsolida-
tion pressure, that are used in critical state models can be provided. Triaxial tests are
performed by subjecting a sealed cylindrical soil sample to confining pressure according
to Figure 2.2. Triaxial tests are commonly used to obtain parameters such as the angle of
friction, the cohesion and stiffness values such as the modulus of elasticity and Poisson’s
ratio of a soil.

1
g Ll

Ll e

/ /

/ 7 C2— —d2

7 %

I — K—
STTTT

Figure 2.2: Loading acting on a soil sample in an oedometer test (left) and a triazial test

(right).

Field tests are often performed to complement the results from laboratory testing. The
biggest advantage of field tests is that they are performed on soil in its natural condition
(Potts and Zdravkovic 2001). One of the most common tests is the standard penetration
test, SPT, from which values such as the cohesion, angle of friction and undrained strength
of the soil can be estimated. Another commonly used test is the cone penetration test,
CPT, which provides information of the soil types as well as estimations of the cohesion,
angle of friction and undrained strength of the soil. A disadvantage of field tests compared
to laboratory tests is that the soil parameters are estimated from empirical correlations
instead of direct measurements.

2.3 Sectional forces

When designing a foundation the sectional forces that will arise in the structure is of
great interest. They have a profound impact on both the sizing of a foundation and on
the reinforcement required. Therefore it is quite obvious that structural engineers are



interested in obtaining accurate values for these sectional forces when designing a founda-
tion. While concrete can absorb a rather high level of compression, it has got a rather low
capacity in tension (Bhatt, Macginley and Choo 2014). For this reason reinforcement is
added to withstand the tensile stresses in a structure after the concrete cracks. Two main
categories of reinforcement are mainly used in concrete foundations, they are longitudinal
reinforcement and vertical reinforcement. The longitudinal reinforcement’s task is mainly
to withstand the tensile stresses that arise as a result of moment in the foundation. The
vertical reinforcement’s task is mainly to withstand the stresses that arise from shear
forces in a foundation. These two types of reinforcements are visible in Figure 2.3.

Figure 2.3: Reinforcement of concrete beam.

2.4 Settlements

Another factor that is of interest when modelling a foundation is the settlement that
will occur. Settlement is basically the structure sinking into the ground as a result of
the increased loading on the soil (Sallfors 2013). A uniform settlement of a building
affects its connection to its surroundings, but as long as it is not excessive it does not
generally cause large problems, whereas differential settlements will affect the distribution
of sectional forces in the structure. Differential settlement is the difference in elevation
across a structure and can have a significant impact on a building. They can be the
result of an nonuniform distribution of loads and/or different soil parameters underneath
different parts of a foundation, among other things. Differential settlements can lead to
significant damages on the structure and cause problems during both the construction
phase and the service life of the building.



Figure 2.4: Uniform settlement (left) and differential settlement (right).

It is evident that there are several factors that affect a foundation and its design. There-
fore, the need for accurate calculation methods and the ability to accurately predict the
behaviour of a foundation is obvious.



3 Soil models

In this chapter the underlying theories utilised to model the soil in the SSI-analyses in
the project will be presented. The soil was modelled as a linear elastic material and as an
elasto-plastic material. The elasto-plastic soil was modelled by using the Mohr-Coulomb
criterion, the Drucker-Prager criterion and a modified Cam Clay model. These are yield
criteria that are often used in soil mechanics.

3.1 Soil-Structure interaction

The interaction between the soil and a structure can be modelled by a couple of different
methods. A full finite element analysis with the soil modelled as 3D-solid elements, either
fully elastic or elasto-plastic, can be used. Also a Winkler model or an extended Winkler
model can be used, where the soil is modelled as uniformly distributed springs. In some
instances it is also known that structural engineers will perform the calculations on the
foundation using a method that in this thesis is dubbed uniform soil pressure method.
In a uniform soil pressure model the foundation is viewed as a pillar deck, with the walls
and pillars acting as supports, and the load being uniformly distributed on the bottom
surface.

The aim of these calculations is to predict the sectional forces and settlements that will
arise in the actual structure once it has been built. When this is known the foundation
can be adequately designed to handle the loading situation, both in terms of dimensions
and reinforcement.

3.2 Sectional forces in beams and plates

For a structural engineer designing a foundation the sectional forces that arise are of great
interest. These are visualised in Figure 3.1.
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Figure 3.1: Sectional forces in a plate (adopted from Dlubal 2016).



The sectional forces per unit width for a shell element are calculated according to the
relations (Dassault systemes 2014) and (Dlubal 2016)

d/2

my = / 0.2 dz (3.1)
.y
d/2

my = / oyzdz (3.2)
—d/2
d/2

Mgy = / Tuy? Az (3.3)
—d/2
/2

Vir = / Tez d2 (3.4)
—d/2
d/2

Ve = / Ty» dz (3.5)
—d/2

where m, is the bending moment around the local y-axis, m, is the bending moment
around the local z-axis, mg, is the torsional moment, V. is the transverse shear force
along the local z-axis and V,, is the transverse shear force along the local y-axis.

In this thesis the sectional forces evaluated are the bending moments and the transverse
shear forces in the foundation. The torsional moment is used when calculating the moment
along a line that is not parallel to a main axis.

3.3 Linear elastic model

When modelling the soil in a SSI-analysis with 3D-solid elements the simplest material
model that can be used is a linear elastic one. A linear elastic material model is based
on Hooke’s law (Ottosen and Ristinmaa, 2005). Meaning that the relation between the
stress and the strain is linear and only dependent on the modulus of elasticity, i.e.

oc=Fe (3.6)

where o denotes the stress, £ the modulus of elasticity and ¢ the strain.

)

Loading

Unloading

£

Figure 3.2: Constitutive relation for a linear elastic material.



As can be seen in Figure 3.2 loading and unloading follows the same path in the stress-
strain diagram, i.e the material is path independent. Therefore the material will return
to its original configuration once it is fully unloaded.

In the three-dimensional case, o is a [6x1] matrix, D is a [6x6] matrix and € is a [6x1]
matrix. The relationship between the stresses and strains is then given by

oc=De (3.7)

Where D is called the constitutive matrix, or the stiffness matrix, defined as

Dy Dis Dis Dy Dis Dig
Dy Dy Dis Day Das Do
D3y Dz D33 Dsy D35 Dsg

D= 3.8
Dy Dsgp Diss Dys Dys Dayg (38)
D5y Dsy Dss Dsy Dss Dsg
| De1 Doz D3 Des Des D |
o and € are column vectors defined as
[0 11_ [ €11 |
022 €22
033 €33
o = g = 39
012 2€12 (39)
013 2¢€13
023 ] 2 €93

In the case of a linear elastic material with hyper-elasticity, the constitutive matrix is
both constant and symmetrical, meaning that

D =D" (3.10)

In this thesis, and commonly in other engineering applications, the soil is considered to
be an isotropic material, i.e. no material properties are dependent on the direction. This
means that the constitutive matrix is only dependent on two material parameters, namely
the modulus of elasticity £ and Poisson’s ratio of the material v. The constitutive matrix
for an isotropic linear elastic soil is then calculated as

1—v v v 0 0 0
v 1—v v 0 0 0
E v v 1-—v 0 0 0
— 3.11
Axoi—=z)| 0 0 o0 la-2 o 0 (3.11)
0 0 0 0 (1 —2v) 0
| 0 0 0 0 0 1(1—2v)]

For an isotropic linear elastic material the shear-modulus is a measure of how the material
responds to shear stress and is calculated according to (Ottosen and Ristinmaa 2005)

E
G:2u+y) (3:12)



From this expression it is evident that the relation between the modulus of elasticity and
the shear modulus only depends on the Poisson’s ratio of the material. For isotropic
materials it is possible to invert the stiffness matrix to obtain the flexibility matrix C,
according to

C=D" (3.13)

This is advantageous when calculating the strains in a material. Meaning that the stress-
strain relation for a linear elastic material also can be expressed as

e=Co (3.14)

Modelling a soil as a linear elastic material in 3D-solid elements means that plastic be-
haviour of the soil is neglected. It also means that the computational effort required to
perform the calculations is relatively small compared to elasto-plastic material models.

One drawback of modelling a soil as linearly elastic is the fact that repeated load-
ing/unloading cycles do not have an effect on the behaviour of the model (Lees 2016), as
can be seen in Figure 3.2. This means that a consolidation behaviour of a soil can not
be modelled with a linear elastic material model, meaning that a linear elastic material
model is not very suitable for soils that are subjected to repeated loading cycles.

3.4 Elasto-plastic model

Plasticity theory is used to describe materials that do not return to their original config-
uration after unloading. In order to accurately capture a realistic behaviour of the soil
plasticity needs to be taken into account. The reasoning to include plasticity in the soil
model is that soil in reality almost never behaves as a linear elastic material, but rather
as an elasto-plastic material (Lees 2016). Elasto-plastic materials can behave differently,
there is linear elastic perfectly-plastic material which behaves as shown in Figure 3.3 under
uniaxial loading. There is also linear elastic strain hardening material and linear elastic
strain softening material. These behaviours can also be combined in order to capture a
material’s real behaviour (Figure 3.4). In soil there is generally a hardening period after
the initial yield stress is reached. After this there is a softening of the material until
failure (Ottosen and Ristinmaa 2005).

10



3.4.1 [Elastic perfectly plastic

o)
o
OyO -1 OyO 1
13
e | 1 1 |
Elastic  Hardening Softening

Figure 3.3: Constitutive relation for
a linear elastic perfectly plastic ma- Figure 3.4: Hardening and softening be-
terial. haviour of a material.

An elasto-plastic material is assumed to behave linear elastic until it reaches the initial
yield stress o,9. When o, is reached plasticity begins. This means that yielding starts
to occur and irreversible plastic strains start to develop. The total strain in the material
is then expressed by

Etot = Ee T &p (3.15)

where €, is the elastic strain and ¢, is the plastic strain.

A material that behaves as shown in Figure 3.3 is called a linear elastic perfectly plastic
material. This means that it is impossible to apply a larger stress than the yield stress.
Once the yield stress is reached the material will continue to develop plastic strain until it
reaches failure. This type of behaviour is not generally found in soils, but soils will rather
exhibit some hardening and/or softening behaviour before failure (Ottosen and Ristinmaa
2005).

3.4.2 Hardening and softening plasticity

Hardening and/or softening can occur in a material once certain stress levels have been
reached, greater than or equal to the yield stress (Ottosen and Ristinmaa 2005). Hard-
ening is when the stress increases as a result of plastic straining. Softening is when the
stress is reduced following plastic straining. Hardening and softening behaviour in the
stress/strain space is presented in Figure 3.4.

This have real implications when dealing with soils since a typical soil often presents the
type of behaviour presented in Figure 3.4 (Ottosen and Ristinmaa 2005). Therefore this
needs to be considered when modelling a soil with an elasto-plastic model.
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Hardening and softening behaviour of a soil can be modelled in 3D-solid elements in
a finite element analysis by using, for example, the Mohr-Coulomb yield criterion, the
Drucker-Prager yield criterion or the Cam Clay model.

3.5 Yield criterion

The yield criterion for a material is defined as the stress at which yielding starts (Ottosen
and Ristinmaa 2005). If the yield criterion for a material is assumed to be independent of
the rate of loading, i.e. only depending on the stress tensor, the yield criterion becomes

If F(0) < 0 the material is in the elastic state, and yielding does not occur. For an
isotropic material in three dimensional space this expression can instead be rewritten as
a function of the principal stresses as

F(O’l,O'Q,O'g) =0 (317)

In order to avoid eigenvalue problems when determining the principal stresses, and to
make the expression a bit more intuitive by separating the deviatoric stress from the
hydrostatic stress, it is rewritten as a function of the three stress invariants I;, Jo and
cos 30, i.e.

F(I, Jy,cos 30) =0 (3.18)

In the formulation above, I; represents the influence of the hydrostatic stress, J, represents
the influence of the deviatoric stress, and cos 36 is the angle in the deviatoric plane, and
are given by

1

J2 = 531']' Sji (320)

3V3 J.
cos 36 = —\/_ 3?;2 (3.21)

2 J;

Here the stress invariant J3 is calculated according to
1

J3 == gSij Sjk Ski (322)

where the deviatoric stress tensor s;; is defined as

1
Sij = Uz‘j — g Okk 61’]‘ (323)

The geometrical definition of these invariants is shown in Figure 3.5 and Figure 3.6,
with Figure 3.5 illustrating the yield surface in the principle stress space, and Figure 3.6
illustrating the yield surface in the deviatoric plane.
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Figure 3.5: Yield surface in principal stress space.

02

Figure 3.6: Yield surface in the deviatoric plane.

3.6 Mohr-Coulomb criterion

Mohr’s circle of stress can be used when modelling soils where plastic behaviour needs
to be captured (Tudisco and Dahlblom 2018). The horizontal and vertical stresses (og
and oy ) acting on a body are used in order to obtain Mohr’s circle, the cohesion value is
represented by ¢ and the angle of friction is represented by ¢. The values of the cohesion
and the angle of friction are obtained from tests on a real soil sample. Yielding occurs once
the Mohr circle reaches the line obtained from the material’s value of cohesion and angle
of friction, as can be seen in Figure 3.7. This material model is suitable for non-cohesive
soils since preconsolidation does not need to be considered.

13



Figure 3.7: Mohr diagram.

The relation between the shear and the normal stress in a material is, according to the
Mohr-Coulomb yield criterion, defined by

T=c—otan ¢ (3.24)

where 7 denotes the shear stress in the material.

The Mohr-Coulomb criterion is one of the oldest yield criterion used in soil mechanics, and
is actually a combination of two criteria (Ottosen and Ristinmaa 2005), the Coulomb cri-
terion and Mohr’s failure mode criterion. The Coulomb criterion manages the magnitude
of the failure stresses for a material, whereas the Mohr failure mode criterion manages
the shape of the yield surface, with a basis in Mohr’s circle of stress.

In the principal stress space the Mohr-Coulomb yield criterion is defined according to
Figure 3.8 and in the deviatoric stress plane according to Figure 3.9.
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Figure 3.8: Mohr-Coulomb yield surface in principal stress space.

02

Mohr—Coulomb

Drucker—Prager

03 01

Figure 3.9: Mohr-Coulomb and Drucker-Prager yield surfaces in the deviatoric plane.

The angle of dilation controls how plastic strains will develop during plastic shearing of
the material and has to be defined when using the Mohr-Coulomb criterion in numerical
analysis. During the calculations that were carried out in this thesis, using the Mohr-
Coulomb yield criterion, Equation 3.25 is utilised for determination of the angle of dilation
(Lees 2016).

Y =@ —30° (3.25)

where 1 denotes the angle of dilation and ¢ is the friction angle of the soil. When
modelling a Mohr-Coulomb material in Abaqus the material parameters that need to be
defined are: the angle of friction, the angle of dilation and the cohesion yield stress.
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3.6.1 Coulomb criterion

One way to derive the Coulomb criterion is to start from the formulation previously given
in Equation 3.17 (Ottosen and Ristinmaa 2005), where the yield criterion is expressed in
terms of the principal stresses, i.e.

F(O’l,Ug,Ug) =0 (326)

with the assumption that

01 2 02 2 03 (3.27)

Expression 3.26 can then be simplified by assuming that the intermediate principal stress
o9 will have no effect on the results.

F(O’l, 0'3) =0 (328)

The most simple way to express this criterion is by a linear function between ¢, and o3,
according to

k‘Jl—O'g—m:O (329)

Where k£ and m are material parameters. Furthermore, if oy and o9 are set to zero, and
o3 is set to the compression strength o, it is shown that m = o, since

og.—m =0 (3.30)
This yields the expression given in

koy — o3 —0.=0 (3.31)

This is called the Coulomb criterion and will be used in cooperation with the Mohr failure
mode criterion in order to obtain the Mohr-Coulomb yield criterion.

Figure 3.10: The Coulomb criterion in a Mohr diagram.
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Another way to derive the Coulomb criterion is to look at the Coulomb criterion in the
Mohr diagram and make use of its geometry (Ottosen and Ristinmaa 2005). The midpoint
and radius of the Mohr-circle is calculated using

1 1
P:§(O'1+O'3) R:§(0'1—0'3) (332)

Assuming that the Coulomb criterion is fulfilled, o3 is substituted by Equation 3.31 and
thus the following is obtained

1 1
P = 5((k + 1)01 - Uc) R = 5(0-0 - (k - 1)01) (333)
Disposing of o7 then yields
O k—1
= - .34
S (3.34)

Here it should be noted that R depends on P linearly. This relationship can also be
expressed as
T=c— o (3.35)

From this relation it is visible that the shear stress 7 is in fact a function of the normal
stress o.

T = f(o0) (3.36)
where f(o) is an arbitrary function of the normal stress . From Figure 3.10 it follows
that

tan ¢ = (3.37)

This together with assuming hydrostatic stress conditions (o7 = 09 = 03 = o), and
utilising expression 3.31 and Figure 3.10, yields

Oc
= 3.38
E (3.38)
c
o= — (3.39
p )
Setting expression 3.38 and 3.39 equal to each other result in
c Oc
- 3.40
P (3.40)

Since P has a negative value (as can be seen in Figure 3.10) in combination with Equation
3.40 it is given that

Ginp— 2 -0 (3.41)
ﬁ—P 7 —%(01+03)
Which can be rewritten as
1 i 20,
kel ki ~0 (3.42)
1 —sin ¢ 7 — (01— 03)




If we then compare this with Equation 3.31 it is obvious that

1+ s
L o (3.43)
1 —sin ¢
This means that £ > 1 and that Equation 3.43 can be rewritten as
kE—1
i = — 3.44
sin = o 1 ( )

Employing trigonometry (Pythagorean trigonometric identity and the definition of tan-
gents) it is obtained that

k—1
tan p = —— 3.45
T vk (345)
Combining Equation 3.44 with Equation 3.45 then leads to
&L (3.46)

CZQ\/E

Two connections have now been derived, between the material constants o. and k, and
between the material constants p and ¢. These will be utilised in order to derive the
Coulomb yield criterion.

02

Figure 3.11: Coulomb yield surfaces in the deviatoric stress plane.

From Equation 3.31 it is obvious that the meridians will be straight lines and that the yield
surface in the deviatoric plane will consist of straight lines between § = 0° and 6 = 60°.
Due to the symmetry in the deviatoric plane around the 60° angles, the Coulomb yield
criterion will have the shape according to Figure 3.11.

3.6.2 Mohr’s failure mode criterion

In the Coulomb criterion the size of the yield stress was determined. The Mohr failure
mode criterion will be used to determine the shape of the yielding (Ottosen and Ristinmaa
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2005). Using the Mohr circle of stress, the plane where the yield stress occurs is the same
plane where the failure will occur. This means that the failure will take the form of sliding
(See Figure 3.13).

If the point (o,7) that fulfils the Coulomb criterion is considered, the angle « is defined
according to Figure 3.12 and denotes half the angle between the o-axis and the normal
of the meridian, while § is the angle between the failure plane and the largest principal
stress direction. They are calculated according to

20+ 90° + p = 180° — o = 45° — g (3.47)
8= 45° + g (3.48)

The angles a and [ are presented graphically in Figures 3.12 and 3.13

Figure 3.12: The Coulomb criterion in a Mohr diagram.

X3 (03)

a=45—p/2

(09)

X1
V6:45 +9/2

Figure 3.13: Interpretation of o and 7.
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If the other stress state that fulfils the Coulomb criterion is considered instead, which is
displayed in Figure 3.14, it follows that « is now defined as
¥

360 — 20 +90° + = 180° — = 135° + (3.49)

From the interpretation of ¢ and 7, shown in Figure 3.15, it is shown that the angle
between the failure plane and the largest principal stress direction is equal for both con-
sidered stress states, i.e. f=45°+¢/2 in both cases.

Figure 3.14: The Coulomb criterion in a Mohr diagram.

X3 (03)
Ny
\\
4
B=d5+p/2 e

Figure 3.15: Interpretation of o and 7.

It can then be observed in Figures 3.13 and 3.15 that both failure planes contain the di-
rection of the intermediate principale stress direction (o3) (Ottosen and Ristinmaa 2005).
Mohrs failure mode criterion concludes that two failure planes exist and are located ac-
coring to Figure 3.16.
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Figure 3.16: Yield surfaces in tension (left side) and compression (right side).

3.7 Drucker-Prager criterion

Due to the sharp angles in the deviatoric plane for the Mohr-Coulomb yield criterion,
convergence during numerical calculations can sometimes be difficult. In order to get
around this problem the Drucker-Prager yield criterion can be used instead. This criterion
was developed especially to handle plasticity in soils (Potts and Zdravkovic 1999). In
the deviatoric plane the Drucker-Prager criterion is a circle (Figure 3.9) and thus these
convergence problems in numerical applications are reduced. As in the case of the Mohr-
Coulomb yield criterion, the Drucker-Prager criterion is also highly dependent on the
hydrostatic stress state in a material. This is visible in Figure 3.17.

Equation 3.18 is simplified, where cos 36 is ignored since it complicates the expression
even though it is of great importance (Ottosen and Ristinmaa 2005) to

F(I,J) =0 (3.50)

The octahedral normal stress oy and the octahedral shear stress 7y is defined as

1 2
o9 = § [1 T0O — g JQ (351)

This means that the simplest way to rewrite Equation 3.50 is by a linear relation between
I and +/J5 as

\/3J2+O!]1—6:O (352)

This is called the Drucker-Prager criterion, where o and 8 are material parameters with
« being dimensionless and [ of the same dimension as the stress. If « is set to zero,
Equation 3.52 becomes the Von-Mises criterion. Meaning that it is independent of the
hydrostatic stress state in the material in that case.
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Figure 3.17: Drucker-Prager yield surface in meridian plane.

02

Hydrostatic axis

03
Figure 3.18: Drucker-Prager yield surface in principal stress space.

The Drucker-Prager criterion is presented in the meridian plane in Figure 3.17, in the
principle stress space in Figure 3.18 and the deviatoric stress plane was presented earlier
in Figure 3.9.

When modelling a material with the Drucker-Prager yield criterion in Abaqus the material
parameters that need to be defined are the angle of friction, the angle of dilation and a
flow stress ratio. The flow stress ratio is a value between 0.778 and 1 and is a measure
of the flow stress relation between triaxial compression and triaxial tension (Dassault
systemes 2014). In this thesis the value of the flow stress ratio is kept constant at 1.
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3.7.1 Cap plasticity model

In order to not allow infinitely high hydrostatic pressure in a material modelled with the
Drucker-Prager criterion, a cap can be placed in the meridian plane (see Figure 3.19). By
putting a cap on the Drucker-Prager model a more realistic behaviour of a soil is likely
to be captured since an additional yield surface is added which controls the amount of
hydrostatic pressure the material can absorb. In reality soils can not take an infinitely
high hydrostatic pressure. Therefor this material model is suitable for cohesive soils,
where preconsolidation needs to be considered.

t

Cap

Figure 3.19: Drucker-Prager cap model yield surface in p-t plane.

The axis in Figure 3.19 have been changed compared to Figure 3.17 in an effort to make
it a bit more intuitive. The factors p and t are defined as

1

3
t= 5 Sij Sij (354)

Where p denotes the hydrostatic pressure and ¢ denotes the deviatoric stress. s;; denotes
the deviatoric stress tensor and is calculated according to Equation 3.23.

When modelling Drucker-Prager with a cap in Abaqus, several factors need to be taken
into account (see Figure 3.20). Factors such as the yield stress, the eccentricity of the
cap, the radius of the transition surface, the plastic strain and the initial yield surface
position among other things.
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Shear failure [>/

Figure 3.20: Drucker-Prager cap model yield surface in p-t plane (adopted from Dassault
systemes 2014).

3.7.2 Defining hardening behaviour

Once the cap has been reached, yielding starts and a hardening of the soil begins. During
the hardening of the soil a updated relation between the stress and the strain is defined.
This new relationship is denoted E5 in Figure 3.21, while £ denotes the initial modulus
of elasticity before yielding starts.

O

9

Figure 3.21: Change of stress-strain relationship.
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During normal three dimensional loading the relationship between the stress and strain
is described by

o11 1—v v v 0 0 0 €11
099 v 1—v v 0 0 0 €99
os3| E v v 1—v 0 0 0 €33
ol  (1+v)(1-2v)| 0 0 0 i(1-2v) 0 0 £12
013 0 0 0 0 %(1 —2v) 0 €13
| 023 | | 0 0 0 0 0 %(1 - 21/)_ | €23 ]
(3.55)

When modelling this hardening behaviour in Abaqus the yield stress is determined, after
this a second stress, larger than the yield stress, is defined along with the volumetric
plastic strain at this stress level. Volumetric strain is defined as the sum of the strains in
the principal directions (Ottosen and Ristinmaa 2005).

€y = €11 T €22 + €33 (3.56)

But since the loading from a foundation is mainly in one direction. The assumption was
made that the volumetric strain was the same as the strain in the main loading direction.
This means that Equation 3.55 can be simplified to

011 E 1—v v v 0

ol = ) v l1l—-v v 0 (3.57)

033

The volumetric strain associated with the second stress level given in Abaqus can be
calculated by solving Equation 3.57 for £33, i.e.

(1-v)E

033 = (1 n 1/)(1 — 21/)533 (3-58)

which yields

= — 3.59
€33 11—, ( )

E

This method of calculating an updated relation between stress and strain is based on a
loading situation according to Figure 3.22, where a uniformly distributed load is applied
to one side of the cube and the remaining sides of the cube are restricted from movement
in their normal’s direction. Thus ensuring that the strain in the loading direction will
be the same as the volumetric strain. It also requires that both the initial modulus of
elasticity and the relation between the stress and strain after yielding occurs is known.
While this loading situation does not fully represent the loading situation of a structure
on a soil it was used when determining the updated relation between stress and strain in
this thesis.

o35 ((1+v)(1 - 20)
( )
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Figure 3.22: Cube used for defining hardening.

When modelling the soils in this thesis using the Drucker-Prager criterion with a cap, it
was assumed that the plastic strain after yielding has occurred was four times the elastic
strain.

3.8 Critical state models

In the 1960’s at Cambridge university the first critical state models for soft soils were
developed. The Cam Clay model was presented by Roscoe and Schofield in 1963 and
the modified Cam Clay model was developed by Roscoe and Burland in 1968. Basically
the Cam Clay and the modified Cam Clay model share most of their features with the
exception for the shape of the yield surface (Potts and Zdravkovic 1999). In this thesis
the modified Cam Clay model is studied since a version of this is implemented in Abaqus
and will be utilised during the parametric study.

3.8.1 Modified Cam Clay model

The modified Cam Clay model is a plasticity model characterised by the mean effective
stress, the shear stress and the void ratio in a soil (Helwany 2007). The main reason for
choosing this model when modelling cohesive soils is the fact that consolidation can be
taken into account during loading and unloading. The model describes the soil with an
elasticity theory, a yield surface and a hardening rule.

The modified Cam Clay model is based on triaxial loading conditions where the mean
effective stress p’ and the shear stress ¢ can be calculated by aid of the principle effective
stresses o”.

, 01+ 05+ 0y

P (3.60)

1 / 7\2 I gl)2 ol — gh)2
q= E\/(O—l —03)? + (04 3)% + (07 5) (3.61)

If a clay sample is put under isotropic compression (¢} = o) = 0%), p’ and ¢ can be be
rewritten as
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P = =273 _ g (3.62)

= V(01— 03)? + (05 — 03)* + (01 — 03)* = 0 (3.63)

If the clay is subjected to an anisotropic stress state (o] # o} = 0%), instead of isotropic
compression, p’ and ¢ can be written as

, oy toytoy  203+0;

3 N 3

(3.64)

1
q= E\/(all —03)*+ (05— 03)* + (0] —03)> = 01 — 0y (3.65)
The relation between the mean effective stress p’ and the void ratio e in a soil is, according

to Helwany (2007), in the modified Cam Clay model defined by

e=ey—Alnyp (3.66)

e=ec—kInp (3.67)

Here X denotes the plastic slope of the normal consolidation line and x denotes the elastic
slope of the unloading/reloading lines in the In p’ — e plane. ey denotes the void ratio on
the normal consolidation line at unit mean effective stress and e~ denotes the void ratio
on the unloading/reloading lines (see Figure 3.23).

> In(p") [kPa]

Figure 3.23: Clay plasticity in the In p' — e plane (one dimensional case) (adopted from
Helwany 2007).
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The plastic and elastic slope in Figure 3.23 are obtained by performing an isotropic
consolidation test. Here the swelling index (C;) and the compression index (C.) are
obtained according to Figure 3.24 and inserted into the equations below to determine s
and .

C,
R= (3.68)
C
A= — )
In 10 (3.69)
Co 1 T~ ]
Q
O
>
[
o
>
S,
O
>
%
o©
> I‘ r
log(a’v) Po Pec log(p'v)

Figure 3.24: (a) one dimensional consolidation test, (b) isotropic consolidation test, both
in compression (adopted from Helwany 2007).

The yield function for the modified Cam Clay model according to Helwany (2007) is
defined as

e ( _ 11'c> _ (3.70)

This function represents an ellipse in the p’ — ¢ plane where M is the slope of the critical
state line and p/, is the pre-consolidation pressure which controls the size of the yield
surface and the hardening behaviour of the soil.
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Figure 3.25: Cam clay in the p' — q plane (adopted from Helwany 2007).

The slope of the critical state line is calculated according to

6 sin(¢’)
3 —sin(¢’)

where ¢’ denotes the internal friction angle of the soil.

M = (3.71)

The relation presented in Figure 3.25 together with the relation between the void ratio
and the effective mean stress results in a state boundary surface in the p’ — e — ¢ space
according to Figure 3.26. Inside this boundary surface the soil behaves elastically, on the
boundary surface the behaviour of the soil is elasto-plastic, and it is impossible for the
soil to be in a state outside of the state boundary surface.

S
bote q

Figure 3.26: Clay plasticity in the p' — e — q space (adopted from Helwany 2007).
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Since the elasticity of a real soil is stress dependent it should be modelled as a non-linear
material. This is achieved by defining a Poisson’s ratio v and an elastic bulk modulus
K, according to Equation 3.72, dependent on the initial void ratio ey, the mean effective
stress p’ and the slope k of the loading/unloading lines in Figure 3.23.

1 /

k= Lt (3.72)
K
Determining the elastic modulus and the shear modulus is then done according to

E=3K(1-2v) (3.73)

3K(1—2v)
=—= .74
¢ 2(1+v) (3:74)

These expressions are dependent on the elastic bulk modulus K and Poisson’s ratio of the
material v.

3.8.2 Extended Cam Clay model

In Abaqus an extended version of the modified Cam Clay model is used, where the yield
surface in the p — t plane is defined as

%(5—1)2+(ﬁ>2—1:0 (3.75)

Where p is the mean effective stress and ¢ is the shear stress. [ is a constant equal to 1 on
the "dry side” (left of the intersect between the ellipse and the critical state line) and is
equal to or less than 1 on the ”"wet side” (right of the intersect) (Dassault systemes 2014).
The value of 8 on the wet side can be chosen in order to model a real soil as closely as
possible. The parameter M denotes the slope of the critical state line and a is the value
of the mean effective stress at the intersect between the ellipse and the critical state line
and acts as a hardening parameter (Helwany 2007).

t

AN

>p

Figure 3.27: Clay plasticity in the p-t plane (adopted from Dassault systemes 201/).
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In the extended Cam Clay model a parameter K can be altered in order to change the
shape of the yield surface in the deviatoric plane. In this thesis K will be kept constant
at 1, and thus not affect the shape of the yield surface as can be seen in

2K

= 3.76
ITIVE (1K) (3.76)
where r is calculated as
97 1/3
Since the relation between t and ¢ is defined according to
q
t=- 3.78
g (3.78)

it is evident that g = 1 yields t = q.

The yield surface takes the shape in the deviatoric plane according to Figure 3.28.

02

Figure 3.28: Yield surface in deviatoric plane (adopted from Helwany 2007).

It can be seen in Equation 3.75 that in order for this model to work a value of the
parameter a needs to be determined, this is done with the aid of

1— Jr
a = ag exrp ((1 + eO)A——m) (379)

Here J? is the inelastic part of the volume change. It is also visible from Equation 3.79
that an initial value of a is required, this is calculated as

ag = 1exp (eN —c—rln po) (3.80)

2 A—K
This means that the yield surface takes the shape according to Figure 3.29 in the principal
stress space.
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Figure 3.29: Yield- and critical state surface for the extended Cam Clay model (adopted
from Helwany 2007).

3.8.3 Determining material parameters

In an effort to make the results from the Cam Clay model comparable to the results
obtained from the Drucker-Prager model and the linear elastic model, relevant material
parameters need to be determined. If these material parameters are not given from tests
on real soils, these tests can instead be simulated using finite element software.

Figure 3.30: Cube used in Abaqus for determining material parameters.

The Cam Clay model is mainly focused on soft cohesive soils. Therefore a test cube in
Abaqus can be modelled using the Drucker-Prager model with a cap, in order to capture
the consolidation behaviour of the soil.

The test cube is then loaded according to Figure 3.30 with the not loaded sides restricted
from movement in their normal’s direction. A graph plotting the displacement at the top
of the cube against the stress can be obtained and an initial void ratio of the soil sample
needs to be assumed. The assumption is then also made that the solid volume of the soil
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(V5) is to be kept constant. Meaning that the change in volume of the cube would be the
result of change in the volume of the voids (V) in the soil, i.e.

‘/tot - ‘/; + ‘/'u (381)

The void ratio in the soil sample is then plotted against the logarithm of the pressure
according to Figure 3.24, with the void ratio being calculated as
Vi
= — 3.82
= 352
From this graph the values for the swelling index (C;) and the compression index (C,) can
be calculated. The magnitude of x and A can then be calculated according to Equation
3.68 and Equation 3.69.

The value for the parameter a, presented in Figure 3.27, is then decided as half the stress
where yielding occurs in the loading of the test cube. The reason for this is to make
sure that yielding due to hydrostatic pressure occurs at the same stress for the Cam Clay
model as for the Drucker-Prager model with cap, see Figure 3.27 and Figure 3.20.

3.9 Winkler soil model

Since a full finite element analysis where the soil is modelled using 3D solid elements is
costly both in terms of man hours but also in computing effort the SSI is often simplified in
structural calculation software programs. The Winkler method is a common simplification
used in many programs. The basic idea of the Winkler method is to model the soil
underneath a structure as uniformly distributed springs with a certain stiffness. The
structure is then loaded and a shape and size of the settlements, along with magnitudes
of the sectional forces in the foundation obtained.
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Figure 3.31: Winkler method.
The mathematical expression for load applied to a spring is
p = wk (3.83)

where p denotes the applied force to the spring, w the deformation and k the stiffness of
the springs.

The spring stiffness used in the Winkler method can be obtained by first assuming a load
distribution in the soil (Tudisco and Dahlblom 2018), illustrated in Figure 3.32 for the
two-dimensional case
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Figure 3.32: Load distribution 2:1 in 2-D.

With this assumption the stress increase at a depth z beneath the surface of the soil can
be calculated. Where ¢ denotes the slope of the stress increment and is defined as

i ?ncr@ase z"n width (3.84)
ncrease in depth

meaning that for a 2:1 load distribution ¢ = 1/2.

For a two-dimensional load distribution the stress increment at a depth z beneath the
structure is calculated according to

bq
Ao(z) = T 200 (3.85)

Where b denotes the width of the foundation, ¢ the load distribution, ¢ the uniformly
distributed load and z the depth. In the three-dimensional case a 2:1 load distribution is
presented in Figure 3.33 below.

wm

oy

Figure 3.33: Load distribution 2:1 in 3-D.
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For the three-dimensional case the stress increment at a certain depth z is calculated
according to

bi1b2q
(by + 2iz)(be + 2i2)

where the factors b; and by denotes the length and width respectively of the foundation
and ¢ denotes the applied uniformly distributed load.

Ao, =

(3.86)

By utilising the fact that an expression for the stress increase at an arbitrary depth is
defined, the settlements ¢ can then be calculated while assuming the value of the uniformly
distributed load as ¢ = 1.

* Ao,
5:/0 z dz (3.87)

Equation 3.83 is then rewritten and the spring stiffness is instead defined by Equation
3.88 where k is given the dimension N/m? in the three-dimensional case and N/m? in
the two-dimensional case, as opposed to Equation 3.83 where the spring stiffness is of the
dimension N/m.

k= (3.88)
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Figure 3.34: Winkler model.

Once the system is set up, equilibrium is calculated and the results obtained. Therefore it
is quite obvious that this method does not yield completely accurate results since several
factors are neglected. One major factor that is neglected is the shear resistance in the
soil that would distribute local loads to a larger area of the soil, and thus yield a smaller
settlement acting on a larger area than the one calculated using the Winkler method. The
shape of the settlements would also differ from reality since the springs are not coupled
and the effects of the surrounding soil are neglected (see Figure 3.35).
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Figure 3.35: Left: Settlements Winkler model, Right: Real settlements (adopted from
Horvath 2011).
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Another factor that is ignored in this method is plasticity in the soil and pre-consolidation
of soils. The fact that plasticity is neglected means that if the load is removed from the
structure, it would return to its original geometry. In reality this might not be the
case since plastic deformation may have occurred and there may be lasting deformations
present.

3.10 Extended Winkler soil models

In order to cope with the problems arising from modelling the soil as uniformly distributed
springs under the foundation, the Winkler model can be extended to include more than
one parameter. There are several ways in which the model can be extended, as presented
in Table 3.1 (Horvath 2011). The aim of these modification is to capture the shear transfer
that occurs in a soil without requiring to large of a computational effort in relation to the
ordinary Winkler method.

Table 3.1: Methods for extending the Winkler model (Horvath 2011)

Subgrade model Physical elements used to visualize
Winkler’s hypothesis springs

Filonenko-Borodich deformed, pre-tensioned membrane + springs
Pasternak’s hypothesis | shear layer 4+ springs

Loof’s hypothesis shear layer + springs

Kerr model springs + shear layer + springs
Haber-Shaim plate + spring

Hetenyi springs + plate + springs

Rhines Springs + plate + shear layer 4 springs

The Kerr model is visualised in Figure 3.36. As can be seen this model views the soil as
two layers of springs with a shear layer in between. The purpose of the shear layer is to
model the shear transfer that occurs when loading a real soil.

EEEEEEFEEER
EEEEEEEEE

Js
<

AN N N R R e e S N SN

Figure 3.36: Kerr model (adopted from Horvath 2011).
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According to Horvath (2011) the Kerr model can be modified. The modification is visu-
alised in Figure 3.37 where the shear layer is replaced by a pre-tensioned membrane.
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Figure 3.37: Kerr model modified (adopted from Horvath 2011).

As can be seen in Table 3.1 there are several ways in which a Winkler model can be
extended. But due to time constraints, this thesis will mainly focus on the Pasternak’s
hypothesis.

3.10.1 Pasternak’s hypothesis

Pasternak’s hypothesis is a form of extended Winkler method where a shear layer is
introduced between the superstructure and the springs that make up the Winkler bed
(Caselunghe and Eriksson 2012). The basic concept of a shear layer model is visible in
Figure 3.38.
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Figure 3.38: Visualisation of Pasternak’s model.

The differential equation defining Pasternak’s model is given by

d*w
In this equation G, denotes the shear modulus of the shear layer (Breeveld N.D.). This
is not the same as the shear modulus of the soil. This becomes clear when studying the

dimensions of the two. The shear modulus for a soil is defined as N/m?, whereas G, has
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the dimension N/m. This can be seen from studying Equation 3.89. The Pasternak model
is visualised in Figure 3.38.

3.11 Uniform soil pressure method

In some cases it is known that, due to lack of time, structural engineers have used the
method that in this thesis is referred to as a uniform soil pressure method when performing
calculations regarding the foundation of a structure (Jonsson 2019). In this method the
foundation is essentially flipped and the foundation is viewed as a deck, with the walls
and pillar on the foundation modelled as supports. The soil pressure is assumed to be
uniform and act as the load on the deck. These calculations can be conducted with the
aid of some type of finite element software or manually. In this thesis these calculations
were carried out using Abaqus.

Figure 3.39: Foundation with load applied via pillars.
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Figure 3.40: Uniform soil pressure model of the foundation from Figure 3.39.

In Figure 3.40 above a uniform soil pressure model is visualised. The actual foundation
that is being calculated is visualised in Figure 3.39.

This is a heavily simplified model where several parameters are neglected, such as all
the material parameters of the soil. This model also assumes that the loading from a
structure will result in an uniformly distributed pressure on the soil. Something that is
very unlikely unless the structure has an infinitely high stiffness and the loading is applied
symmetrically on the foundation.

When modelling the structures using the uniform soil pressure method in this thesis
the boundary conditions of the structures were applied in such a manner that the contact
areas between the pillars and the foundation were restricted from movement in the loading
direction. In addition one point of the model was restricted from movement in the plane
of the foundation. This was done to ensure that a stable model was achieved.

One major drawback of this method is the fact that settlements of the structure can not
be determined. This since the locations of the actual loading is assumed to be stationary
and the rest of the foundations moves. A shape of the settlement can be obtained and
thus the relative settlements within the structure, but the total settlement of the structure
can not be obtained using this method.

The strength of this technique for conducting an SSI-analysis is the fact that it is rather
easy to set up and quickly calculated. The sectional forces for the foundation can be
obtained with ease. It does not require knowledge of the geotechnical situation for the
location were the building is to be constructed. Only the geometry of the structure and
the total load is required. Thus there is no need for geotechnical surveys for this method.
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4 Parametric study

In this chapter the models used to conduct the parametric study is presented along with
a description of the parameters evaluated. The results from the parametric study are
presented in Chapter 5.

4.1 Building geometries

Different geometries of the foundation were studied during the parametric study. A fic-
tional building was chosen to model the foundations in order to adequately compare the
results obtained from the different geometries. Meaning that the same building was to
be placed on the different foundation types. The fictional building was chosen to be a six
storey office building with a geometry of its bottom floor according to Figure 4.1. Since
the same building was to be placed on all the foundations, identical loads were applied to
each foundation. The basic layout of the ground floor of the fictional building is shown
in Figure 4.1. The fictional building used for the parametric study has a total area of
15x30 m with two load bearing internal walls and two pillars inside the structure, while
the remainder of the load is applied to the foundation by the outer wall.
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Figure 4.1: Layout building [mm)].

The types of foundations modelled were, pad foundation, strip foundation, raft foundation
and basement foundation.

4.1.1 Pad foundation

The dimensions of the pads were chosen as 2.5x2.5x0.5 meter with the loads from the
building acting in the centre of each pad. The pads were then placed according to Figure
4.2.
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Figure 4.2: Layout pad foundation.

4.1.2 Strip foundation

The strip foundation was modelled according to Figure 4.3, with the cross-section of the
strip being 0.8 x 0.4 m. The loads from the building are applied in the centre of the strip
as to not cause excessive torque in the foundation. The strip protrudes 0.5 meters beyond
the length of the internal walls as to not generate excessive settlements underneath the
last pillars in the internal walls.
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Figure 4.3: Layout strip foundation.
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4.1.3 Raft foundation

The raft foundation was given the same length and width as the building with a constant
thickness of 0.5 meters. The pillars applying the load were then placed directly on top of
the raft foundation.
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Figure 4.4: Layout raft foundation.

4.1.4 Basement foundation

The dimensions of the basement foundation were the same as for the raft foundation, but
with 3 meter high walls added around the structure, and then having the loads applied
on top of the walls. The thickness of the added walls was set to 30 cm around the entire
building. The basement model was also placed into the ground, with the top of the walls
on the same level as the top of the soil. During the modelling of the basement it was also
assumed that a slab would be placed on top of the basement. Thus ensuring that the top
of the walls were restricted from movement in the plane of the slab.

Note that the geometries chosen for the different foundations are not optimised for the
load case that they are subjected to. This is partly due to time constraints put on this
thesis, but also because the aim of the thesis is not to find the optimal solution for the
foundation, but rather study the interaction between the structures and the soils.

4.2 Loads

When determining the loads acting on the foundations for the cases used in the parametric
study, the building was assumed to be a six story office building. Basically the loads were
calculated as the sum of the live load in an office building together with the dead load. The
dead load was calculated by assuming six concrete floors with a thickness of 20 cm each.

In order to account for walls, installations and the remaining dead load, the calculated
dead load was then doubled.
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The area of one floor in the building was calculated as
Area = 15 x 30 = 450 m? (4.1)
The volume concrete in a floor is then calculated as
Volume concrete = Area x 0.2 = 90m? (4.2)
The mass of a floor is calculated using the density of the concrete to
Mass concrete = Volume concrete x 2400kg/m® = 216000 kg (4.3)

Since the load from the floors are doubled, and there are six floors in the building, the
total dead load is then given as

Dead load = Mass concrete x 6 x 2 x 9.81 = 25.4 MN (4.4)
Thus the design dead load is calculated according to (Isaksson and Martensson 2010):
Qdeaqd = 1.2 x Dead load = 30.5 MN (4.5)

The live load acting on the foundation is calculated by simply multiplying the total floor
area of the building with the distributed live load for an office building given by (Isaksson
and Martensson 2010)

Area = 450 x 6 = 2700 m* (4.6)

Quive = 1.5 x 2700 x 2500 = 10.1 MN

This then means that the total design load acting on the foundation is

Qtot = Qdead + Qlive = 40.6 MN (48)

During the modelling of the structure the loads were applied to the foundations according
to Figure 4.5. Here it is visible that the pillars applying the load on the foundation are
divided into five categories. The aim of this layout is to create a somewhat realistic load
case for a foundation of a six storey office building. All pillars were assigned the same
cross-sectional dimensions of 0.3 x 0.3 m.
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Figure 4.5: Pillar layout.
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The magnitude of the loads applied to the different pillar types is presented in Table 4.1.

Table 4.1: Pillar loads

Pillar type | Load [MN]
P1 1

P2 2

P3 1.5

P4 2

P5 3

The sum of these loads applied on the foundation adds up to 40 MN. Which is reasonable
since the load from the floor underneath the pillars should not be applied on the pillars.

Note that these load calculations are only conducted in order to obtain reasonably realistic
loads and are not based on a real structure. Also the placement of the pillars were
conducted in order to get a, relatively, evenly distribution and is not based on any deeper
analysis. As for the geometries, the loads are not a central part of this thesis but are rather
used in order to evaluate the SSI. Therefore, this load case was deemed to accomplish its
purpose and not refined any further.

4.3 Three-dimensional FEM-analysis

For the finite element analysis the software Abaqus was used to conduct the SSI-analysis.
The models were built up according to Figures 4.6-4.9. The soil was modelled using solid
elements, whilst the structures were modelled with shell elements. The structures were
modelled with shell elements in an effort to minimise the number of elements required
in order to get accurate results, and to obtain the sectional forces directly as output
variables.

Figure 4.6: Pad foundation. Figure 4.7: Strip foundation.
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Figure 4.8: Raft foundation. Figure 4.9: Basement foundation.

When building a model in Abaqus the soil was created as one part and the foundation
as one part. These two parts were then joined together using a tie constraint where the
surfaces on the foundations were defined as slave surfaces and the surfaces on the soils
as master surfaces. This means that the degrees of freedom for the nodes on the slave
surface are deactivated and simply follows the degrees of freedom of the nodes on the
master surface.

Gravity is applied to the model, excluding the foundation, during a geostatic step in order
to avoid convergence problem when modelling the soil as a Mohr-Coulomb material. This
is done in order to get some initial hydrostatic stress in the soil, and thus enabling it
to absorb some level of shear stress (see Chapter 3.6). The foundation was excluded
by introducing a model change during the geostatic step, where the elements in the
foundation are deactivated. These elements were then reactivated during the static step
following the geostatic step.

4.3.1 Boundary conditions

For the FEM-analysis to be stable, boundary conditions needs to be defined, thus ensuring
that the model is able to run. The boundary conditions were defined according to Figure
4.10.
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Figure 4.10: Boundary conditions for the pad foundation.

Each surface of the soil, apart from the top surface, were restricted from movement in
their normal’s direction, thus ensuring a stable model. This is true for all models, apart
from the basement that has additional boundary conditions applied on top of the walls,
restricting them from movement in the plane. This was done in an effort to simulate a
slab being placed on top of the walls.

4.3.2 Mesh

In order to perform a finite element analysis the models need to be assigned a mesh (see
Figure 4.11). Meshing a model means dividing it up into finite elements. These elements
are then assigned an element type. The solid elements making up the soil were assigned
20-node quadratic elements and the shell elements making up the structures were assigned
4-node linear elements.

Figure 4.11: Meshed model Abaqus with the thickness of the pad rendered.
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Solid elements in Abaqus can either be provided with linear interpolation or quadratic
interpolation (Dassault systemes 2014). When using linear and quadratic interpolation
the nodes in the elements are arranged according to Figure 4.12. With linear arrangement
of the nodes, the displacement in the element varies linearly over the whole element.

Quadratic elements (see Figure 4.12) were used when modelling the soil in this thesis.
The reasoning behind this is the fact that they are better at capturing local stress con-
centrations and provide a smoother shape to deformed elements. This is because 20 nodes
are used for each element, as apposed to 8 nodes for the linear interpolation elements.
Meaning that the displacement variation in an element can be defined using a second
order equation.

Figure 4.12: Linear 8-node brick element (left) and quadratic 20-node brick element (right)
(adopted from Dassault systémes 2014).

Modelling with quadratic elements means that the total number of nodes increase with
the same number of elements. Thus meaning that the computational effort required
is increased. Accuracy per degree of freedom is higher for quadratic elements, but the

accuracy in terms of computational effort does not necessarily increase (Dassault systemes
2014).

Figure 4.13: 4-node shell element (Left), 8-node shell element (right).

The shell elements used for the concrete structures were assigned 4-node linear elements.
The reason for this was partly to reduce the computational effort, but also since this
element type provide accurate solutions under all loading conditions, due to also including
rotational degrees of freedom (Dassault systemes 2014).
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4.3.3 Mesh convergence study

In order to determine the least number of degrees of freedom that could be used in the soil,
and still yield correct results, the calculations were first conducted with a small number
of degrees of freedom. The number of degrees of freedom were then increased until the
results were kept stable. This number of degrees of freedom for the soil was then used
during the FEM-analysis in Abaqus. The same was done for the structure in an effort to
try and keep the computational effort required for the simulations to a minimum while
still providing accurate results.

The results from the mesh convergence studies are presented in Chapter 5 and in Appendix
A. The number of nodes in the model is plotted against the relative error of the settlements
and the stresses. The relative error is the difference between the results from a model and
the results from the model with the highest number of nodes.

relative error = abs(w) (4.9)
umaz

Here the index "maxz” indicates that it is the settlement from the model with the largest
number of nodes, and the settlement without an index is the current model evaluated.
The relative error is calculated in the same fashion for the stresses, the variables u are
then changed to o.

4.3.4 Size of the soil

The size of the soil in the finite element analysis in Abaqus needs to be greater than the
size of the structure in order to capture the true behaviour of the SSI. The size of the
soil needed to produce accurate results in the parametric study was therefore evaluated.
This was done by running a simulation, saving the results, and then extending the soil
and running the simulation again. This was repeated until the change in the size of the
soil did not affect the results. The smallest size that did not affect the results relative to
the largest size studied was then used for the parametric study.

Soil

Structure

Figure 4.14: Size of soil.
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In Figure 4.14 the layout of the structure placed on the soil is presented. The parameter
x denotes the protruding length of the soil and is what is evaluated in this chapter. The
distance x is kept constant around the structure. Meaning that the soil protrudes the
same distance from the structure on all sides.

The results from the convergence studies of the size of the soils are presented in Chapter
5 and in Appendix B. In the same manner as for the mesh convergence study, the relative
error of the stresses and settlements were plotted against the size of the protruding soil
and conclusions drawn regarding the length the soil needs to protrude.

The depth of the soil during the parametric study was chosen as 10 m. This is a typical
depth at which bedrock is situated in the southern parts of Sweden.

4.4 FEM-analysis RFEM

RFEM is a FEM structural analysis software made by the company Dlubal. In this thesis
RFEM was used to perform the calculation of the Winkler models and the Pasternak
models. RFEM is the main program of a modular software system, where the geometries,
materials, supports and loads are defined. Calculations are then often carried out using
specialised add-on modules for the particular situation that is studied.

When modelling the structures, shell elements were used. The size of the mesh of the
structures were the same as for the FEM-analysis carried out using Abaqus. This was
done in an effort to make the results from the calculations as comparable as possible, and
thus be able to draw conclusions regarding their capabilities. The models with rendered
thicknesses are presented in Figures 4.15 to 4.18.
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Figure 4.15: Pad foundation. Figure 4.16: Strip foundation.
Figure 4.17: Raft foundation. Figure 4.18: Basement foundation.
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Since the soil is modelled as distributed springs in RFEM. A load representing the earth
pressure was applied to the outside of the walls in the basement foundation. This pressure
was calculated as ¢ = pgh, with h denoting the distance from the top of the wall, p the
density of the soil and g as the acceleration due to gravity.

4.4.1 Winkler model

For the Winkler analysis of the SSI the software RFEM was used. Models with the same
geometries and material parameters as for the FEM-analysis using Abaqus was built in
RFEM. But instead of modelling the soil with solid elements the soil was modelled as
uniformly distributed springs, as discussed in Chapter 3.

When calculating the spring stiffness that was used for the foundations, the assumption
was made that there was an uniformly distributed load on the structure. This was done
in order to carry out the calculations according to Chapter 3.9. Two different spring
stiffness were used for the Winkler bed. One with an assumed 2:1 load distribution and
one with no load distribution.

The results were then extracted and compared with the results from the other calculation
methods.

4.4.2 Pasternak model

As in the case for the Winkler analysis the software RFEM was also used to evaluate
the extended Winkler analysis. The add-on module RF-SOILIN in RFEM was used
since this module is based on Pasternak’s hypothesis (Dlubal 2016). RF-SOILIN uses
an iterative process to calculate the foundation parameters as shown in Figure 4.19. The
input parameters that were used to calculate the foundation parameters were the modulus
of elasticity, Poisson’s ratio, the soil’s density and the layer thickness.
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Figure 4.19: Iteration scheme for RF-SOILIN (adopted from Dlubal 2010).

As can be seen in Figure 4.19 the iteration process in RF-SOILIN continues until the
convergence criterion is fulfilled and results are then extracted.

4.5 Uniform soil pressure method

The calculations of the uniform soil pressure models were conducted using the software
Abaqus. This method is presented in Chapter 3.

When modelling the pad foundation using the uniform soil pressure method the highest
load applied to a pad in the foundation (Figure 4.2) was 3 MN. This load was divided
by the surface area of the pad and applied uniformly on the bottom of the foundation
with an upwards direction. The surface that the pillar applies the loading to the pad was
restricted from movement in the loading direction when the calculations were conducted.
Results are presented in the next chapter.

The strip foundation was also calculated by uniformly distribute the total applied load
on the bottom of the foundation with an upwards direction, and the surfaces where the
pillars apply the load to the foundation were restricted from movement.

The raft- and basement foundations were calculated using the same method, with the
boundary conditions being the only difference. This since they have the same geometry,
apart from the walls on the basement. For the raft foundation the boundary conditions
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were applied in the same manner as for the pad- and strip foundation, in that the areas
where the pillars apply the loading are restricted from movement in the loading direction.
The boundary conditions for the basement were applied as line supports where the walls
are located, and the areas where the pillars are located inside the structure were modelled
in the same manner as the other foundations.

The results from the uniform soil pressure method foundation calculations are presented
along with the results from the other methods in Chapter 5.

4.6 Material parameters

When modelling the soils in this thesis it was decided that one non-cohesive soil and one
cohesive soil were to be studied. The material properties for the superstructure were kept
constant (Table 4.2). The material parameters chosen for the soils are presented in Tables
4.3, 4.4, 4.5 and 4.6. Concrete of class C35 (Isaksson and Martensson 2010) was chosen
to be used in the entire superstructure. During the parametric study the modulus of
elasticity were altered for these soils. Poisson’s ratio for the materials were kept constant
during the parameter study for all soil models.

Table 4.2: Material parameters concrete C35 (Isaksson and Martensson 2010)

Material parameters concrete
Modulus of elasticity E 34 GPa
Poisson’s ratio v 0.2
Density p 2400 kg/m?

When calculating the stiffness in a concrete structure (Bhatt, Macginley and Choo 2014)
the relation used is

0.8E.1.
EFl=——
1+ pe

where FE,. denotes the modulus of elasticity of the concrete, I. denotes the moment of
inertia of the slab and ¢, is the creep coefficient. This relation was not included in this

thesis since the main aim is to evaluate different SSI-models and time dependent behaviour
was not included.

(4.10)

The non-cohesive soil was modelled as an uniform sand with the material parameters
provided by (Séllfors 2013). The stiffness of the sand was chosen as medium and thus
the angle of friction and density of the soil, along with the remaining parameters in Table
4.3, were determined accordingly.
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Table 4.3: Material parameters non-cohesive soil

Material parameters non-cohesive soil
Modulus of elasticity £ | 10-70 MPa
Poisson’s ratio v 0.3
Density p 1900 kg/m?
Angle of friction ¢ 35°
Angle of dilation v 5°
Cohesion yield stress ¢ 1 kPa

Note that a small cohesion was added to the non-cohesive soil. This was done to ensure
that convergence would be achieved when running the simulations. A pure non-cohesive
soil with zero cohesion could encounter problem, particularly around the edges of the
structure, where significant shear forces might become present.

As for the non-cohesive soil, the material parameters for the cohesive soil were provided
from Sallfors (2013). Since the location of the building treated in this thesis is in the
south of Sweden a rather stiff cohesive soil was chosen because the cohesive soils in the
southern parts of Sweden largely consists of stiff clays.

Table 4.4: Material parameters cohesive soil

Material parameters cohesive soil
Modulus of elasticity £ | 5-70 MPa
Poisson’s ratio v 0.4
Density p 2000 kg/m?
Angle of friction ¢ 20°
Cohesion yield stress ¢ 70 kPa

To mimic the behaviour of a real cohesive soil when modelling with the Drucker-Prager
cap criterion, the yield stress was set at 100 kPa after which the relation between stress
and strain was calculated according to Chapter 3.7.2. The values used as input in the
Drucker-Prager cap model in Abaqus are described in more detail in Chapter 3 and are
presented in Table 4.5.

Table 4.5: Parameters to define Drucker-Prager cap model in Abaqus

Parameters Drucker-Prager cap model
Cap eccentricity 0.1
Initial yield surface position 0
Transition surface radius 0.01
Flow stress ratio 1
Initial yield stress 100 kPa

To capture the consolidation behaviour of the cohesive soil, the Cam Clay model was
used. The material parameters for this model were determined by the aid of Potts and
Zdravkovic (2001) and are further described in Chapter 3.
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Table 4.6: Material parameters cohesive soil Cam Clay

Material parameters cohesive soil Cam Clay
log elastic bulk modulus & 0.000521
Poisson’s ratio v 0.4
Density p 2000 kg/m?
log plastic bulk modulus A 0.02754
Stress ratio M 0.77

agp 63.75 kPa

g 1

EeN 1

4.7 Computational time

To evaluate the computational time required for running the different models all simu-

lations were run on the same computer. The computer used was equipped according to
Table 4.7.

Table 4.7: Computer performance

DELL OPTIPLEX 3020
Processor Intel Core i5 - 3.20 GHz
Installed RAM 8 GB
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5 Results from parametric study

Once all the calculations presented in the previous chapter had been completed, their
results were compared in an effort to highlight the differences and draw conclusions re-
garding their accuracy. In addition to the results from the calculations, the computational
time required for the different analyses is presented.

Table 5.1: Calculation models used in the parametric study

Non-cohesive soil | Cohesive soil

Linear elastic X X
Mohr-Coulomb X

Drucker-Prager X
Cam-Clay X
Uniform soil pressure X X
Winkler X X
Pasternak X X

When studying the results along the lines across the structures a non-cohesive soil with a
modulus of elasticity of 30 MPa was chosen and for the cohesive soil a modulus of elasticity
of 20 MPa was chosen. The remaining material parameters were chosen according to Table
4.3,4.4,4.5 and 4.6.

5.1 Pad foundation

The line across the pad foundation that was studied when gathering the results is presented
in Figure 5.1.

Figure 5.1: Pad foundation with line used for presenting results in graphs.

The results from the convergence study regarding number of nodes in the soil required
in order to get accurate results is presented in Figure 5.2. Here the maximum values of
the settlement and the von Mises stress are utilised. It is visible that when the number
of nodes is above 20 000 the relative error is less than 2 %. This corresponds to a mesh
size of the soil of 0.7 m, which was then used during the parametric study of the pad
foundation.
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Figure 5.2: Mesh convergence study of the soil, pad foundation.

In Figure 5.3, the results from the convergence study regarding the length the soil needs to
protrude beyond the foundation is presented. As for the convergence study of the number

of nodes, the maximum values of the settlement and the von Mises stress are used for the
evaluation.

During the parametric study a length of 5 m was used, since this corresponds to a relative
error of the settlements of 1.3 % and a relative error of the stress less than 1 %.
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Figure 5.3: Size of soil convergence study, pad foundation.
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The results from the parametric study when the modulus of elasticity was varied for the
cohesive soil and the non-cohesive soil are presented in Figure 5.4 and 5.5. The results
which are presented are the maximum settlements in the centre of the pad.
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Figure 5.4: Settlements from varying the modulus of elasticity, non-cohesive soil.
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Figure 5.5: Settlements from varying the modulus of elasticity, cohesive soil.
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Below the moment and shear force distribution along the line for the non-cohesive soil is

presented.
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Figure 5.6: Moment distribution, non-cohesive soil.
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Figure 5.7: Shear force distribution, non-cohesive soil.
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The computational time required for the different analysis of the pad foundation are
presented in Table 5.2 below. The times are from simulations carried out using the same
computer.

Table 5.2: Comparison of computational time

Model Time
Abaqus linear elastic 20 s
Abaqus Mohr-Coulomb 58 s
Abaqus Drucker-Prager with cap 58 s
Abaqus Cam Clay 3m 14s
Abaqus Uniform soil pressure method | 10 s
RFEM Winkler model 3s
RFEM Pasternak model 8s

Additional results for the pad foundation are presented in Appendix C.

5.2 Strip foundation

The line and points used to gather the results from the strip foundation is presented in
Figure 5.8. The line is located at the centre of the pillars transferring the load onto the
foundation.
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Figure 5.8: Strip foundation line and points used for presenting results in graphs.

The results from the convergence study regarding number of nodes in the soil required
in order to get accurate results is presented in Figure 5.9 below and Figures A.2 and A.3
in Appendix A. As for the pad foundation the settlements and the von Mises stresses
were used when evaluating the number of nodes required. Here it is visible that when the
number of nodes is above 80 000 the relative error is less than 2 % for both the stresses
and the settlements points 2 and 3 while it is 3 % for point 1. This correspond to a mesh
size of the soil of 1 m, which was then used during the parametric study of the strip
foundation.

61



100

LT3BE

5u|‘k

Error [#]

30 || ™~
20 -l

10 ———

0 —

0 20000 40000 60000 80000 100000 120000 140000 160000 180000

Mumber of nodes

—Settlements — =35tress

Figure 5.9: Mesh convergence study, strip foundation.

In Figure 5.10, the results from the convergence study regarding the length that the soil
needs to protrude beyond the foundation is presented for point 1. During the parametric
study a length of 10 m was used, since this corresponds to a relative error of the settlements
of 2 % and a relative error of the stress less than 0.5 %. More results of the convergence
study regarding the length of the protruding soil is presented in Appendix B.
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Figure 5.10: Size of soil convergence study, strip foundation.
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The results from the parametric study where the modulus of elasticity was varied for the
cohesive soil and the non-cohesive soil in point 1 are presented in Figure 5.11 and 5.12
below. Additional results of this parametric study are presented in Appendix D.
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Figure 5.11: Settlements from varying the modulus of elasticity, non-cohesive soil, point
1 on strip foundation.
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Figure 5.12: Settlements from varying the modulus of elasticity, cohesive soil, point 1 on
strip foundation.
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Below the moment and shear force along the line for the non-cohesive soil is presented.
The results from the line is presented from left to right in Figure 5.8.
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Figure 5.13: Moment distribution, non-cohesive soil.
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Figure 5.14: Shear force distribution, non-cohesive soil.

In Figure 5.14 it is visible that the results obtained from modelling the soil using solid
elements results in an oscillating curve for the shear force. This behaviour is due to
the fact that the foundation is modelled using shell elements, and the soil using solid
elements. Meaning that the deformations in the foundation are expressed with a third
degree equation, whereas the soil is determined using a second degree equation. Since
the foundation is then tied to the soil in the model, the foundation is forced to follow
the deformations of the soil. Resulting in the behaviour visible in Figure 5.14, where the
peaks of the curve corresponds to the element boundary’s in the soil. This behaviour is
also visible in the moment diagram (Figure 5.13) although not to the same extent. A
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finer mesh could reduce this effect since the peaks would be spaced closer together and
the difference in settlement between them reduced.

The settlement along the line is presented in Figure 5.15.
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Figure 5.15: Settlements distribution, non-cohesive soil.

The computational time required for the different analysis of the strip foundation are pre-
sented in Table 5.3. The times are from simulations carried out using the same computer.
Additional results for the strip foundation are presented in Appendix D.

Table 5.3: Comparison of computational time

Model Time
Abaqus linear elastic 3m 40s
Abaqus Mohr-Coulomb 2h 4m 59s
Abaqus Drucker-Prager with cap 48m 37s
Abaqus Cam Clay 6h 44m 52s
Abaqus Uniform soil pressure method 14 s
RFEM Winkler model 4s
RFEM Pasternak model 20 s

5.3 Raft foundation

The liness and points used to gather the results from the raft is presented in Figure 5.16.
As for the strip foundation, line 1 is taken at the centre of the pillars transferring the load
to the foundation.
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Figure 5.16: Raft foundation lines and points used for presenting results in graphs.

The results from the convergence study regarding number of nodes in the soil required in
order to get accurate results is presented in Figure 5.17 and Figures A.4 - A.6 in Appendix
A. Here it is visible that when the number of nodes is above 80 000 the relative error is
less than 0.5 % for both the von Mises stresses and the settlements for all points studied.
This correspond to a mesh size of the soil of 1 m, which was used during the parametric
study of the raft foundation.
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Figure 5.17: Mesh convergence study, raft foundation.

In Figure 5.18, the results from the convergence study regarding the length that the soil
needs to protrude beyond the foundation is presented for point 1 on the raft foundation.
During the parametric study a length of 10 m was used, since this corresponds to a relative
error of the settlements of less than 2 % and a relative error of the stress less than 0.5 %.
Additional results are presented in Appendix B.
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Figure 5.18: Size of soil convergence study, raft foundation.

The results from the parametric study where the modulus of elasticity was varied for the
cohesive soil and the non-cohesive soil in point 1 are presented in Figure 5.19 and 5.20.
The results from point 2 is presented in Appendix E.

B0

30

E-modulus [MPa]
&

20

10

20 40 60 B0 100 120 140

Settlements [mm)]

—B—Linear elastic —— Mohr-Coulomb —=—Winkler no distribution Winkler 2:1 —ea—Pasternak

Figure 5.19: Settlements from varying the modulus of elasticity, non-cohesive soil, point
1 on raft foundation.
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Figure 5.20: Settlements from varying the modulus of elasticity, cohesive soil, point 1 on
raft foundation.

In Figures 5.21 to 5.23, the moment, shear force and settlements along the line for the
non-cohesive soil is presented. In the same manner as for the strip foundation the moment
and shear force graphs oscillates somewhat. This is due to the same reason as for the
strip foundation, presented in Chapter 5.2.
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Figure 5.21: Moment distribution, non-cohesive soil, line 1.
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Figure 5.22: Shear force distribution, non-cohesive soil, line 1.
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Figure 5.23: Settlements distribution, non-cohesive soil, line 1.
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The computational time required for the different analysis of the raft foundation are pre-
sented in Table 5.4. The times are from simulations carried out using the same computer.

Table 5.4: Comparison of computational time

Model Time
Abaqus linear elastic 6m 56s
Abaqus Mohr-Coulomb 1h 28m
Abaqus Drucker-Prager with cap 43m 18s
Abaqus Cam Clay 1h 16m 51s
Abaqus Uniform soil pressure method 16 s
RFEM Winkler model 4s
RFEM Pasternak model 31s

Additional results for the raft foundation are presented in Appendix E.

5.4 Basement foundation

The lines and points utilised to gather the results from the basement foundation is pre-
sented in Figure 5.24. The lines are taken at the same locations as for the raft foundation.
This was done in order to be able to compare the results from these two foundations.
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Figure 5.24: Basement lines and points used for presenting results in graphs.

The results from the convergence study regarding number of nodes in the soil required
in order to get accurate results is presented in Figure 5.25 and Figures A.7 to A.9 in
Appendix A. Here it is visible that when the number of nodes is above 100 000 the
relative error is less than 2 % for the stress in the foundation and less than 0.5 % for the
settlements. This is true for all points studied, and correspond to a mesh size of the soil
of 1 m, which was used during the parametric study of the basement foundation.
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Figure 5.25: Mesh convergence study, basement.

In Figure 5.26, the results from the convergence study regarding the length that the
soil needs to protrude beyond the foundation is presented for point 1 on the basement
foundation. During the parametric study a length of 10 m was used since this corresponds
to a relative error of the settlements of less than 3 % and a relative error of the stress less

than 1 %. Additional results of the mesh convergence study are presented in Appendix
B.
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Figure 5.26: Size of soil convergence study, basement foundation.

The results from the parametric study where the modulus of elasticity was varied for the
cohesive soil and the non-cohesive soil are presented in Figure 5.27 and 5.28. The results
from the parametric study of the remaining points are presented in Appendix F.
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Figure 5.27: Settlements from varying the modulus of elasticity, non-cohesive soil, point
1 on basement foundation.
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Figure 5.28: Settlements from varying the modulus of elasticity, cohesive soil, point 1 on
basement foundation.
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In Figures 5.29, 5.30 and 5.31 the moment, shear force and settlements along line 1 for
the non-cohesive soil presented. The results from the other soils and lines are presented
in Appendix F.
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Figure 5.29: Moment distribution, non-cohesive soil, line 1.
1ouu
» .
500 - ‘f |

Shear force [kN/m]

-1500
0 5 10 15 20 75 30
Location [m]
Linear elastic - Mohr-Coulomb ~ ----- Winkler no distribution
Winkler 2:1 — — Pasternak — -+ = Uniform scil pressure

Figure 5.30: Shear force distribution, non-cohesive soil, line 1.
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Figure 5.31: Settlements distribution, non-cohesive soil, line 1.

The computational time required for the different analysis of the basement foundation
are presented in Table 5.5. The times presented are from simulations carried out using
the same computer. Additional results for the basement foundation are presented in
Appendix F.

Table 5.5: Comparison of computational time

Model Time
Abaqus linear elastic 3m 51s
Abaqus Mohr-Coulomb 8h 53m 18s
Abaqus Drucker-Prager with cap 6h 4m 6s
Abaqus Cam Clay 21h 43m 23s
Abaqus Uniform soil pressure method 17s
RFEM Winkler model 4s
RFEM Pasternak model 24 s

5.5 Discussion

The results from the parametric study showed for the simplest model, i.e. the pad foun-
dation, that the different SSI-models gave similar results when comparing the shear force
and bending moment along the lines. This was the case for both the cohesive soil and the
non-cohesive soil.

From the parametric study it is also clear that the SSI-analysis in RFEM based on Paster-
nak’s hypothesis is the method that predicts the least amount of settlements. The results
from the parametric study showed that this was the case for all foundation geometries,
and for both soil types. The sectional forces obtained from this method were, however,
relatively close to the sectional forces obtained from the linear elastic model and the
elasto-plastic models.
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When studying the results from the distribution of bending moment along line 1 of the
basement foundation (Figures 5.29 and F.7), a sharp peak is visible in the middle of the
graphs for the Winkler models. This peak is located at the point were the internal wall
connects with the external wall. The reason that this spike only occurs for the Winkler
model could be that the Winkler model ignores the shear transfer in a soil. This leads
to the internal wall acting as a lever, pushing the external wall upwards, thus creating
a positive bending moment on the line on foundation. The same behaviour is observed
at the corners of the foundation, where the external walls meet. Here the external walls
perpendicular to the line where results are gathered act in the same manner as the internal
wall for the spike in the middle. This highlights the need for considering the shear transfer
in a soil, either by adding shear springs in the Winkler bed, or by redistributing the spring
stiffnesses. This is something that should be studied further.

The comparison of computational time, that was conducted during the parametric study,
showed large differences in time for running the analysis with different SSI-models. For
example, an analysis with the Winkler model on the basement foundation only took 4s
to run. In comparison, the Mohr-Coulomb analysis on the basement foundation took 8h
53m 18s to run, which is almost 8000 times longer.
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6 Case study

As part of this thesis a case study was conducted to evaluate the different techniques
presented in the previous chapters on a real structure. The structure used in this case
study is the building "Eminent” in Malmo, Sweden. Eminent is a seven story building
with a ground floor area of 2185 m? containing mainly office spaces and was built in 2018.

The blueprints along with the load calculations used when designing the building were
provided as a basis for the case study.

6.1 Geometry of the foundation and material parameters

The material parameters and the geometry for the building were provided from the con-
struction of the real structure.

6.1.1 Geometry

When modelling the structure, blueprints from the actual construction were used in order
to get a model as close to reality as possible. The basic layout of the building can be seen
in Figure 6.1. More blueprints are added in Appendix G. The sketch below details the
basement of the building where the walls and pillars applying load to the foundation are
included.

Figure 6.1: Eminent basic layout basement floor.

The foundation consists of three different thicknesses (see Figure 6.2) and there are a
total number of 35 pillars. Both the external and internal walls were assigned a thickness
of 30 cm and the pillars were assigned a diameter of either 40 cm or 60 cm.
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0.9 meters thickness

1.3 meters thickness

Figure 6.2: Thickness of foundation.

The results from the case study were taken from lines on the structure. The lines inves-
tigated in this thesis are presented in Figure 6.3. Material parameters for the soil at the
location of the building were provided from the construction of the building. Therefore,
no points were selected for studying the effects of altering the modulus of elasticity in the
soil. The material parameters not given from the geotechnical survey in the area were
determined by simulating test on FE-models of the soil, as presented in Chapter 3.

Figure 6.3: Lines used for presenting results in graphs.
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6.1.2 Material parameters

The material parameters used when modelling the structure are presented below in Tables
6.1, 6.2 and 6.3. The concrete used for the foundation was chosen as C35 and the material
parameters determined according to Table 6.1 (Isaksson and Martensson 2010).

Table 6.1: Material parameters concrete

Material parameters concrete
Density p 2400 kg/m?
Modulus of elasticity E 34 GPa
Poisson’s ratio v 0.20

A geotechnical survey had been conducted in the area where the building was built in
order to determine the soil profile and parameters in the area. The results from this
survey is presented in Figure 6.4 and Table 6.2. The soil parameters had been determined
by aid of both field tests and laboratory tests.
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Figure 6.4: Soil profile.

Table 6.2: Material parameters soil

Material parameters soil

Soil layer | v [kN/m?] | E [MPa] | v | ¢’ [°] | ¢ [kPa] | Thickness [m]
1 21 20 0.3 30 15 1
2 20 15 03] 30 10 1
3 21 60 03| 30 25 10
4 21 100 03| 40 0 2
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Table 6.3: Material parameters soil with Cam-Clay model

Material parameters soil
Soil layer K A ag [kPal | M | p
1 9.56 x10~* | 0.03913 46.3 1.2 1
2 0.001274 | 0.05965 46.9 1.2 1
3 3.21 x107* [ 0.01102 | 459 |1.2|1
4 1.88 x107% | 0.0089 46.3 1.6 |1

In the same manners as for the parametric study, the material parameters for the Cam
Clay model were determined by simulating tests on FE-models of the soil. These material
parameters are presented in Table 6.3.

Beneath the last soil layer is a bedrock of lime stone with a modulus of elasticity of 500
MPa. Therefore the model of the soil ends here and had a boundary condition applied,
restricting it from movement. This since adding the bedrock in the model would only
have a marginal effect and increase the computational effort required.

The soil profile before construction started is presented in Figure 6.4. In this thesis it was
assumed that the bottom of the basement slab was placed on top of soil layer 3. Poisson’s
ratio for the different soil layers were not provided in the report, therefore it was assumed
that it was constant at 0.3 for all layers.

6.2 Loads on the foundation

Three types of loads are applied to the foundation, loads from the pillars, loads from the
walls, and loads from the trusses in the facade. In addition to these loads a gravity force
was added in order to mimic the real structure as closely as possible.

The loads from the walls were applied as line loads both in Abaqus and RFEM. The pillar
loads were applied as surface loads where the pillars connect to the slab, and the loads
from the trusses were applied as point loads on top of the exterior walls.

The magnitude of the loads and their positions are presented in Appendix G, along with
figures presenting the manner in which they are applied.

Boundary conditions were applied to the top end of the walls which restricted them from
movement in the plane.

6.3 FEM-analysis Abaqus

The modelling of the case study was carried out in the same manner as for the parametric
study. Meaning that the full FEM-analysis was done using Abaqus, with the soil modelled
using solid elements and the structure using shell elements. As for the parametric study,
the soil was modelled with quadratic elements and the structure by using linear elements.
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Figure 6.5: Abaqus model, Eminent.

The length that the soil protrudes beyond the edges of the structure was chosen as the
same for the basement during the parametric study. Also, the size of the mesh was taken
as the same as for the basement foundation during the parametric study. This was partly
chosen because the license used in Abaqus did not allow for more than 250 000 nodes,
and the number of nodes in the model was rather close to this amount. Therefore a finer
mesh or a larger soil was not included in the model.

In the full FE-analyses of the case study, the soil models used were:
e Linear elastic

e Drucker-Prager with cap

e Cam Clay

The reason for choosing these soil models is the fact that the soil beneath Eminent largely
consists of clay. Therefore material models that can handle the preconsolidation behaviour
of cohesive soils were used.

6.4 FEM-analysis RFEM

As for the parametric study, the case study was also conducted using RFEM. The soil
was modelled using the Winkler method and the Pasternak method.
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Figure 6.6: RFEM model, Eminent.

The geometry of the structure was built up according to Figure 6.6, where the loads were
applied in the same manner as in the Abaqus models.

The stiffness of the springs utilised in the Winkler model was calculated according to
Chapter 3.9, where a load distribution in the soil of 2:1 was assumed. This resulted in a
uniformly distributed spring stiffness of 7.9 MN/m?.

6.5 Comparison of results

The results from the case study were taken along two lines (see Figure 6.3). In the same
way as for the parametric study of the fictional building, the bending moment, the shear
force and the settlements along the lines were used for comparing the different calculation
methods. The bending moment studied was the bending moment acting around an axis
perpendicular to the lines used to gather the results (Ottosen and Peterson 1992). Mean-
ing that for a line not aligned with the main axis a transformation to a new coordinate
system was performed as

M,, =n’An (6.1)
where n denotes the direction of the line where the moment is to be obtained and
n M. M.
n=| " A= o wy} 6.2
[ny} [Mwy My, (6.2)

with n, =cos(a) and n, =sin(a). Where a denotes the angle between the x-axis and the
n-axis.
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6.5.1 Bending moment

The bending moments are presented along the two lines (Figure 6.3) from left to right in
Figures 6.7 and 6.8.
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Figure 6.7: Bending moment, line 1.
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Figure 6.8: Bending moment, line 2.
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Below the bending moment around the y-axis for the entire structure is presented for the
different calculation methods.
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Figure 6.9: Bending moment (kNm/m),
colour scale. Figure 6.10: Linear elastic.

Figure 6.11: Drucker-Prager with cap. Figure 6.12: Cam Clay.

Figure 6.13: Winkler. Figure 6.14: Pasternak.
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6.5.2 Shear force

The transverse shear forces are presented along the two lines (Figure 6.3) from left to
right in Figures 6.15 and 6.16.
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Figure 6.15: Shear force, line 1.
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Figure 6.16: Shear force, line 2.
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Below the transverse shear force in the z-direction for the entire structure is presented
for the different calculation methods.
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Figure 6.17: Shear force (kN/m), colour
scale. Figure 6.18: Linear elastic.

Figure 6.19: Drucker-Prager with cap. Figure 6.20: Cam Clay.

Figure 6.21: Winkler. Figure 6.22: Pasternak.
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6.5.3 Settlements

The settlements are presented along the two lines (Figure 6.3) from left to right in Figures
6.23 and 6.24.
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Figure 6.23: Settlements, line 1.
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Figure 6.24: Settlements, line 2.
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Below the settlements for the entire structure is presented for the different calculation
methods.
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Figure 6.25: Settlements (mm), colour
scale. Figure 6.26: Linear elastic.

Figure 6.27: Drucker-Prager with cap. Figure 6.28: Cam Clay.
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Figure 6.29: Winkler. Figure 6.30: Pasternak.



6.5.4 Computational time

The computational time required for the different calculation methods were measured and
are presented below.

Table 6.4: Comparison of computational time

Model Time
Abaqus linear elastic 32m 53s
Abaqus Drucker-Prager with cap | 11h 53m 6s
Abaqus Cam Clay 23h 56m 45s
RFEM Winkler model 6s
RFEM Pasternak model 2m 48s
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7 Discussion

In this chapter the results from the parametric study and the case study are evaluated in
an effort to explain the results and the reason behind them.

7.1 Soil models

The Abaqus model, where the soil was modelled as a linear elastic material, proved itself
to be a rather fast and easy way of conducting the calculations compared to the elasto-
plastic models. The larger the contact area between the structure and the soil, the less
plasticity occurred and the results from the linear elastic model was closer to the results
from the elasto-plastic models. This is likely due to the fact that the stiffness in the
structure is far higher than that of the soil. Thus the loading applied to the foundation
is distributed over a larger area, and the stress in the soil reduced, resulting in a lower
level of plasticity, meaning that the difference between the linear elastic model and the
elasto-plastic models is reduced.

Modelling the soil using the Mohr-Coulomb model in this thesis resulted in far greater
computational times. This is partly due to the fact that unlike a linear elastic model, an
elasto-plastic model can not be computed in one step, but rather has to be computed over
a series of iterations. The advantage of the Mohr-Coulomb model compared to the linear
elastic model however is the fact that plasticity in the soil is included in the calculations,
thus yielding results that should be closer to the values of the actual soil. One drawback
of modelling a soil using the Mohr-Coulomb model is that the amount of shear stress
a soil can withstand is related to the hydrostatic pressure it is subjected to. Because
of this reason, the soil on the sides of the basement foundation had to be modelled as
linear elastic. Otherwise the model was not able to run, since the soil in contact with the
walls was tied to the walls. This means that it had to follow the settlements of the walls,
resulting in significant shear stress, when not much hydrostatic pressure was present,
causing the model to fail.

For the models where the soil was modelled using the Drucker-Prager criterion with cap,
it was assumed that the plastic strain after yielding occurred was four times the elastic
strain. This assumption was made after studying test data from several sources, although
not based on any one source and is therefore not based on a particular soil. If more
accurate results were to be derived, tests on real soils would need to be conducted.

When obtaining the material parameters used for the Cam Clay models results from test
on a soil modelled using the Drucker-Prager model with a cap was used. In addition
assumptions were made regarding the void ratio in the soil and the initial stress level. For
this reason it is hard to say if the soil modelled using Cam Clay was actually the same
soil as the ones that were modelled using the other models. To confidently state that
the same soil was modelled with the different methods, test on real soil samples would
need to be conducted, where all material parameters used for the different soil models are
measured.

The top of the soil just outside of the edges of a foundation can experience some tensile
stresses as a result of the foundation sinking into the soil. A soil modelled using Cam Clay
can absorb very limited levels of tensile stress before convergence problems are reached.
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Therefore a layer of soil modelled as linear elastic was added between the structure and
the soil modelled using Cam Clay. Since a linear elastic layer of soil was added between
the structure and the soil modelled using Cam Clay one can not state that the soil was
fully modelled using Cam Clay in this thesis.

The models where the soil was modelled according to the Winkler method, without exten-
sion, can depend on the size of the structure to a high degree when load distribution in the
soil is considered. This is visible in the results of the settlements of the raft and the strip
foundations. Here it is obvious that the difference in settlements are noticeably larger
between Winkler including distribution and Winkler disregarding the load distribution in
the soil, for the strip foundation. The reason for this is quite obvious when studying the
way that the spring stiffness is derived (Chapter 3.9).

In this thesis the spring stiffness was constant underneath the entire structure. It appears
common that structural engineers often redistribute the springs in order to have a higher
stiffness around the edges of a structure. This is done to obtain the correct shape of the
settlements, and is something that could be implemented in future studies.

A source of error for the Winkler model without extension in this thesis is the fact that
the spring stiffness is calculated by assuming a uniformly distributed load on the entire
foundation. Since the stiffness of the structure is greater than the stiffness of the soil,
the loads are distributed over large areas of the foundation. Although not nearly what is
assumed when deriving the spring stiffness of the Winkler bed.

From the RFEM user manual and the RF-SOILIN manual it is not obvious exactly how
Pasternak’s hypothesis is implemented in RFEM. The results gained from the calculation
reveal that the sectional forces obtained are relatively close to the results from the Abaqus
models where plasticity is included. Figure 4.19 is adopted from the RF-SOILIN manual
and details the iteration scheme used in RFEM for the Pasternak hypothesis. The exact
way the calculations are conducted are not presented and therefore it could be useful
to study this a bit deeper. This could be done by writing a matlab code implementing
Pasternak’s hypothesis and comparing it to results obtained from an identical model made
in RFEM.

The uniform soil pressure models proved to be very fast ways of acquiring sectional forces
in the foundations. Unfortunately these sectional forces proved to differentiate themselves
rather significantly from the other models. This is not very surprising since only the
properties of the structure is included in this model. There does however seem to be
certain situations when using the uniform soil pressure method could be useful, namely
when a rather small, stiff and symmetrically loaded structure is analysed. This can be
seen in the results from the pad foundation, where the sectional forces obtained from the
uniform soil pressure model was quite similar to the other models.

7.2 Parametric study

When the soils in the Abaqus models were meshed, the same size of the mesh was used
for the entire soil. This is something that could have been refined and possible lead to
more accurate results without raising the total number of nodes in the model. A finer
mesh could be used close to the foundation and then a more coarse mesh further away
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from the structure. The results from the lines would likely also benefit from a finer mesh
around the structure since the size of the mesh of the soil had an impact on the results
(see Figure 5.14), and led to some discretization problems.

Plasticity was ignored when modelling the concrete in the foundations. The assumption
was made that reinforcement was added to the foundations where the tensile limit of
the concrete was reached. In reality some plasticity might occur where the loading is
applied to the foundations, and could possibly lead to redistribution of stresses in the
foundations. This is one aspect that could be studied a bit deeper in order to say with
certainty if plasticity needs to be included in the modelling of the concrete.

In this thesis the stiffness of the concrete structures were simply calculated as 1. Meaning
that the relation described in Equation 4.10 was ignored, and the stiffness of the concrete
was somewhat exaggerated. If the relation described in Equation 4.10 were to be used,
this would probably lead to the plasticity in the soil increase in the elasto-plastic models
as a result of the structure not being able to redistribute the loads to the same degree.
The relation between the different models and the difference in the magnitudes should
however remain rather constant.

Another important aspect is the fact that modelling in RFEM is both faster and more
user friendly than modelling in Abaqus. Working in Abaqus requires deeper knowledge
about the finite element method and the program contains both classical and advanced
plasticity models for soils. RFEM is more of a straight forward software where things like
meshing, for example, is done automatically when running the models and result diagrams
are easily obtainable. For this reason, the time it takes to model a structure in Abaqus
is significantly longer than for modelling the same structure in RFEM. Something that is
of great interest for the construction business.

The effects that the groundwater have on the SSI have not been studied and was outside
of the scope of this thesis. Although it could have a significant impact on the settlements
and the sectional forces in a foundation. Therefore this is something that should be
investigated in further studies.

In reality a structure has a certain stiffness that can lead to redistribution of loads when
parts of a structure experiences larger settlements that others. In this thesis this was
ignored, meaning that the stiffness of the structure was assumed to be negligible. This is
of course not realistic and is perhaps something that should be investigated further.

7.3 Case study

When the case study was conducted, some simplifications of the structure were imple-
mented. The thicknesses of the foundation was divided into 3 groups, as to not make the
model too complicated. In reality the foundation has 5 different thicknesses.

The type of concrete used in the foundation was also not given in the documentation
of the building. Therefore the assumption was made that C35 concrete was used in the
foundation. This assumption was not based on any data and purely made in order to be
able to run the models. If a more accurate model of the SSI of the case study was to be
made, the material parameters of the concrete should be included. In the same manner
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as in the parametric study, the concrete was modelled as a linear elastic material. This
is also something that could be changed if a more accurate model was to be constructed.

The maximum settlement for the model where the soil was modelled using Drucker-Prager
with cap was notably higher than for the linear elastic model (see Figure 6.27). The
reason for this is the rather high concentration of loads around the internal walls around
the elevators. This leads to the hydrostatic pressure in the soil underneath exceeding
the cap and plastic deformations to take place. The same is true for when the soil was
modelled using Cam Clay.

When studying the results of the settlement computations the model using the Winkler
method stand out. The shape of the settlements is quite different from the settlements
obtained from the other calculation methods. The settlements along the edges of the
foundation are significantly larger than the others and the whole structure attains a more
convex shape, relative to the others. This then yields larger tensile stresses in the top of
the foundations, which ultimately leads to more reinforcement being placed in an area of
the foundation that does not need it.

In the same manner as for the parametric study, the Pasternak model underestimates the
settlements of the structure. This is clearly visible in Figure 6.30. Here it is also visible
that the shape of the settlements obtained from the Pasternak model resembles the shapes
given from the full FE-analyses where the soil was modelled using linear elastic 3D solid
elements.

From Figures 6.7 and 6.8 it is visible that all calculation methods yield rather similar
results for parts of the lines. Where they diverge is around the elevators (See Figure
6.1). The reason for this is the fact that the models that include plasticity get larger
settlements here, and thus yield larger bending moments. It is also worth noting that
the Winkler model follows the results from the full FE-analyses during large parts of the
lines. This is somewhat misleading, since when viewing the full model it is clear that the
tensile stresses in the top of the foundation is generally exaggerated. Especially closer to
the edges of the structure, this is due to the fact that the surrounding soil is not included
in the model.

The shear forces obtained from the different calculation methods were quite similar, with
the exception of the Winkler model. The Winkler model managed to capture the shape of
the shear force distribution from the other models, but the peak values were significantly
higher (50-100%) for line 2. This means that excessive amounts of vertical reinforcements
would be placed in the foundation, if the results from the Winkler model were to be used
as the designing model.

The relation between the different computational times required for the different analyses
proved to be roughly the same as for the parametric study. This means that the Cam Clay
model required by far the largest computational effort, and that the models calculated
using RFEM required by far the least computational effort.
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8 Concluding remarks

In this chapter conclusions drawn from this thesis and suggestions for further studies are
presented.

8.1 Conclusions

One conclusion that can be drawn from this thesis is the fact that the results from models
utilising the Pasternak’s hypothesis in RFEM are rather close to the results from linear
elastic models in Abaqus, when it comes to sectional forces. Settlements on the other
hand are generally underestimated when using the Pasternak models. Meaning that the
add-on module RF-SOILIN in RFEM seems to be a viable option to obtain the sectional
forces in a foundation where little or no plasticity is present in the soil. But for obtaining
accurate values of the settlements, alternative methods should be explored.

The Winkler models proved to exaggerate the bending moment in the foundations. Es-
pecially the positive bending moment, meaning that the tensile stresses in the top of
the foundations were generally exaggerated. The shape of the settlements also differed
significantly from the settlements obtained from the full FE-analyses.

Another conclusion that can be drawn is that the uniform soil pressure method is seriously
flawed, and should not be used unless a relatively small, stiff and symmetrically loaded
structure is evaluated.

The effects of altering the stiffness in the soils did not change the relation between the
different soil models. The relative differences between them remained constant.

From studying the differences between a cohesive soil and a non-cohesive soil it was found
that the level of presonsolidation in a cohesive soil has a significant impact on the results.
Only the models where the soil is modelled as an elasto-plastic material can capture this
behaviour.

When studying the effects of choosing different foundation types it can generally be said
that a foundation with a larger surface area will yield less plasticity in the soil. Meaning
that less advanced soil models could be used in order to get representative results.

8.2 Further studies

To summarise, some aspects that could be interesting for further studies are:

o Effects of redistributing spring stiffness in the Winkler model

Effects of including groundwater and creep in soil models

Conduct tests on real soils and compare with numerical models

Studies of how Pasternak’s hypothesis is implemented in RFEM

Evaluate how non-linear behaviour of the concrete would affect the SSI

Investigate other means of extending the Winkler model (see Table 3.1)
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A Results from mesh convergence study

In this appendix the additional results from the mesh convergence study for the parametric
study is presented.

Mesh convergence pad foundation

Additional results from the mesh convergence study of the pad foundation.
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Figure A.1: Mesh convergence study, pad foundation.

Mesh convergence strip foundation

60000

Additional results from the mesh convergence study of the strip foundation.
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Figure A.2: Mesh convergence study, strip foundation.
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Figure A.3: Mesh convergence study, strip foundation.

Mesh convergence raft

Additional results from the mesh convergence study of the raft foundation.
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Figure A.4: Mesh convergence study, raft foundation.
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Figure A.5: Mesh convergence study, raft foundation.
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Figure A.6: Mesh convergence study, raft foundation.
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Mesh convergence basement foundation

Additional results from the mesh convergence study of the basement foundation.
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Figure A.7: Mesh convergence study, basement foundation.
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Figure A.8: Mesh convergence study, basement foundation.
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Figure A.9: Mesh convergence study, basement foundation.
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B Size of soil

In this Appendix additional results from the convergence study of the size of the soil for
the parametric study is presented.

Size of soil pad foundation

Additional results from the convergence study of the size of the soil for the pad foundation.
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Figure B.1: Size of soil convergence study, pad foundation.

Size of soil strip foundation

Additional results from the convergence study of the size of the soil for the strip founda-
tion.
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Figure B.2: Size of soil convergence study, strip foundation.
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Figure B.3: Size of soil convergence study, strip foundation.

Size of soil raft foundation

Additional results from the convergence study of the size of the soil for the raft foundation.
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Figure B.4: Size of soil convergence study, raft foundation.
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Size of soil basement foundation

Additional results from the convergence study of the size of the soil for the basement
foundation.

120

100

Error [%]
&5
-

o 2 4 [ 8 10 12 14 16
Length of protruding soil [m]

Settlements — — Stress

Figure B.7: Size of soil convergence study, basement foundation.
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Figure B.8: Size of soil convergence study, basement foundation.
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C Results pad foundation

In this appendix additional results from the parametric study of the pad foundation is
presented

Results of cross lines
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Figure C.1: Moment distribution, cohesive soil.
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Figure C.2: Shear force distribution, cohesive soil.
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D Results strip foundation

In this appendix additional results from the parametric study of the strip foundation is
presented

Varying modulus of elasticity
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Figure D.1: Settlements from varying the modulus of elasticity, non-cohesive soil, point 2
on strip foundation.
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Figure D.2: Settlements from varying the modulus of elasticity, cohesive soil, point 2 on
strip foundation.
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Figure D.3: Settlements from varying the modulus of elasticity, non-cohesive soil, point 3
on strip foundation.
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Figure D.4: Settlements from varying the modulus of elasticity, cohesive soil, point 3 on
strip foundation.
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Results along line

Here additional results along the line on the strip foundation is presented.
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Figure D.5: Moment distribution, cohesive soil.
3000

2000

1000

Location [m]

——Linear elastic =~ e Drucker-Prager ~ ====- Winkler no distribution
Winkler 2:1 — — Pasternak — + =Uniform soil pressure
— - - Cam Clay

Figure D.6: Shear force distribution, cohesive soil.
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E Results raft foundation

In this appendix additional results from the parametric study of the raft foundation is
presented
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Figure E.1: Settlements from varying the modulus of elasticity, non-cohesive soil, point 2
on raft foundation.
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Figure E.2: Settlements from wvarying the modulus of elasticity, cohesive soil, point 2 on
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Results along line

Line 1
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Figure E.3: Moment distribution, cohesive soil, line 1.
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Figure E.4: Shear force distribution, cohesive soil, line 1.
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Figure E.7: Shear force distribution, non-cohesive soil, line 2.
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Figure E.8: Settlement distribution, non-cohesive soil, line 2.
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Figure E.9: Moment distribution, cohesive soil, line 2.
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Figure E.10: Shear force distribution, cohesive soil, line 2.
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Figure E.11: Settlement distribution, cohesive soil, line 2.
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F Results basement foundation

In this appendix additional results from the parametric study of the basement foundation
is presented

Varying modulus of elasticity

Ln
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Figure F.1: Settlements from varying the modulus of elasticity, non-cohesive soil, point 2
on basement foundation.

[0}
[=]

E - modulus [MPa]
g
8 &

=)
=

-
=

=]

V] 50 100 150 200 250 300

Settlements [mm]

—B—Linear elastic Drucker-Prager —=—Winkler no distribution Winkler 2:1 —e—Pasternak

Figure F.2: Settlements from varying the modulus of elasticity, cohesive soil, point 2 on
basement foundation.
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Figure F.3: Settlements from varying the modulus of elasticity, non-cohesive soil, point 3
on basement foundation.
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Figure F.4: Settlements from varying the modulus of elasticity, cohesive soil, point 3 on
basement foundation.
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Figure F.5: Settlements from varying the modulus of elasticity, non-cohesive soil, point /
on basement foundation.
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Figure F.6: Settlements from varying the modulus of elasticity, cohesive soil, point 4 on
basement foundation.
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Results along line

Line 1
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Figure F.7: Moment distribution, cohesive soil, line 1.
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Figure F.8: Shear force distribution, cohesive soil, line 1.

128



Location [m]
] 5 10 15 20 25 30
0

10

= = e e e e e e e == e, -

(e e e e —
E | T T/ ee= —_— e — ., D R S e e
w 30 — — — —_—— —
3 — . -
£
Ex
£
R
m : ‘---“--‘------‘----ﬁ—-\-
70 Bt S S
Linear elastic Drucker-Prager ~  ====- Winkler no distribution
Winkler 2:1 — — Pasternak — - - Cam Clay
Figure F.9: Settlements distribution, cohesive soil, line 1.
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Figure F.10: Moment distribution, non-cohesive soil, line 2.
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Figure F.11: Shear force distribution, non-cohesive soil, line 2.
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Figure F.12: Settlements distribution, non-cohesive soil, line 2.
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Figure F.13: Moment distribution, cohesive soil, line 2.
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Figure F.14: Shear force distribution, cohesive soil, line 2.
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G Case study

In this Appendix the placement of the loads on the case study are presented along with

the magnitude of those loads.

V1

Figure G.1: Loads applied on the foundation, Eminent.
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Table G.1:  Pillar
loads

Pillar number | Load [kN]
P1 4236
P2 6305
P3 5746
P4 3250
P5 3666
P6 3365
P7 5729
P8 6041
P9 3055
P10 3387
P11 2170
P12 3331
P13 2782
P14 2566
P15 842
P16 719
P17 1683
P18 3414
P19 1263
P20 1585
P21 1260
P22 1512
P23 3685
P24 2521
P25 3668
P26 1623
P27 6353
P28 6026
P29 3035
P30 3361
P31 4191
P32 4927
P33 526
P34 206
P35 342

Table G.2: Truss loads

Truss number | Load [kN]
F1 3709
F2 1878
F3 1363
F4 909
EF'5 807
F6 962
E7 1532
F'8 2181
F9 1763
F'10 3638
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Figure G.2: Loads on walls, Eminent.

Table G.3: Loads on walls

Wall number | ¢; [kN/m] | g2 [kN/m]
V1 609 821
V2 775 554
V3 569 551
V4 663 686
V5 0 0
V6 670 678
V7 821 544
V8 0 0
V9 280 5h)
V10 663 673
V11 1037 1141
V12 641 1183
V13 293 1160
V14 708 1163
V15 727 1144
V16 703 1046
V17 488 987
V18 e 1001
V19 609 1470
V20 502 1663
V21 018 1630
V22 1476 652
V23 1680 438
V24 40 16
V25 91 106
V26 58 175
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