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Abstract

Reference Attribute Grammars (RAGs), an extension to canonical at-
tribute grammars, allow attribute to be references to any node in the
syntax tree. In previous work, RAGs were extended to support concur-
rent attribute evaluation.

This thesis investigates the possibility of applying these extensions to
existing RAG compilers, such as JModelica.org, to improve compilation
speed. We focus on one of the requirements for concurrent attribute eval-
uation, which is that attributes must be observationally pure. Our en-
deavours lead to the formulation of a new definition of functional purity,
useful for parallelizing RAG compilers. We present a new analysis which
combines simplified code generation for the JastAdd meta-compiler with
an existing purity analysis tool extended with further capabilities. We
show that our simplified code generation based purity analysis reduces,
on average, the number of warnings by 60% and analysis time by 45%
for ExtendJ and JModelica.org.

Keywords: Parallelization, Concurrency, JastAdd, Reference Attribute Gram-
mars, JModelica.org, Functional Purity Analysis
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Chapter 1
Introduction

Compilation speed is important for many applications [20, 3, 17, 19]. Slow compi-
lation can, for example, lead to delays in testing which wastes time and increases
latency in finding compile errors and warnings. The latter is especially problematic
since these procedures are typically used in IDE productivity features. At best,
increased latency will just make the IDE feel slow. At worst, increased latency leads
to the IDE features being considered useless because the latency is unacceptable.

As the improvement rate of processor clock speeds is slowing down the trend
in the computer industry has, in recent years, been to improve performance with
more parallelism. Modern processors are successively gaining an increased number
of cores. Therefore, many companies and researchers are utilizing parallel processing
on multi-core architectures in order to speed up computations [21]. Similarly, the
goal of this thesis is to investigate possibilities of utilizing parallelism to speed up
JastAdd compilers, such as JModelica.org.

JModelica.org is an open source compiler for the Modelica Language [22]: a
declarative, object oriented and equation based language used for simulating com-
plex physical systems. The JModelica.org compiler is implemented with the JastAdd
meta-compiler [11] which supports reference attribute grammars (RAGs) and is de-
signed to support extensible implementations of compilers. JModelica.org has been
extended with optimization features as a JastAdd compiler extension. Other exam-
ples of extensible compilers built with JastAdd include ExtendJ [25], Fuji [16] and
abc [2].

Recent extensions to RAGs include concurrent attribute evaluation [26]. These
contributions have opened the door for parallelizing JastAdd compilers like
JModelica.org. One of the requirements for concurrent attribute evaluation is that
attributes are observationally pure [23] so that attribute evaluation can safely be
reordered and parallelized. In order to apply concurrent attribute evaluation to
JModelica.org any existing purity-breaking side effects inside attributes need to be
removed. While side effects should not exist in JastAdd attributes, the attribute
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1. Introduction

equations are written in plain Java code which does not prevent side effects. Side
effects are sometimes unintentionally introduced due to accidental aliasing of refer-
ences, for example.

In order to ensure side-effect freedom for JModelica.org, parts of this thesis
focuses on analyzing attribute purity in JModelica.org and other JastAdd-based
compilers. Furthermore, we develop a new definition of functional purity specifically
for concurrent applications which removes some sources of concurrent side-effects
which would otherwise be allowed (see Section 2.5). We have applied existing purity
analysis tools to JModelica.org to investigate which attributes have side effects that
would need to be replaced in order to parallelize the compiler. For analyzing purity
in JModelica.org we have used the tools EPC[13] and Purano [35].

We also present a new analysis that combines our new simplified code generation
for the JastAdd meta-compiler with a version of Purano that has been extended with
further capabilities. The analysis is part of our new tool JastAdd-Purity-Analyzer
that analyzes Reference Attribute Grammars for concurrent purity.

We also present a different approach for parallel attribute evaluation in JMod-
elica.org where separate versions of the AST are maintained. Each thread that
evaluates attributes owns a separate copy of the AST. The goal is to ensure that
threads only operate on thread local data, which guarantees safe parallel attribute
evaluation. We apply this approach to interactive Modelica editing where two sep-
arate ASTs are maintained to improve the responsiveness of the compiler. The
research questions that the thesis aims to answer are the following:

• RQ1: Can compile time be reduced in a JastAdd compiler by parallelization?

• RQ2: How and where are concurrently impure attributes used in JModel-
ica.org?

• RQ3: Can parts of JModelica.org be transformed to be thread safe?

• RQ4: How can JastAdd attributes be analyzed for concurrent purity?
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Chapter 2
Background

In this chapter we will introduce some concepts that are important for this thesis.
We begin by introducing Reference Attribute Grammars (RAGs) and the related
tool JastAdd for building extensible compilers. Furthermore, we introduce some
concepts for multi-thread programs, namely data races, race conditions and thread
safety. Finally, we introduce functional purity and two existing functional purity
analysis tools for Java, ExtJPureChecker and Purano.

2.1 Reference Attribute Grammars
In Attribute Grammars, originally introduced by Knuth [15], a context-free grammar
is decorated with so-called attributes on nonterminals. A context-free grammar
(CFG) defines all the possibles strings of a language. A CFG consists of terminal and
nonterminal symbols, production rules and finally a starting symbol. A production
rule is on the form A → B1 B2 . . . Bn where A is a nonterminal and Bi where
i ∈ {1 . . . n} can be either a terminal or a nonterminal symbol.

The attributes of an Attribute Grammar are directed equations computing se-
mantic information about nodes in the Abstract Syntax Tree (AST). The AST is a
tree representation of a sentence in a context-free language which has been derived
using the production rules of a CFG. The AST incorporates, unlike the syntax tree,
only the essential parts which are needed to represent the sentence that the AST
corresponds to.

Knuth’s work introduced synthesized and inherited attributes. A synthesized
attribute equation is defined using only the node and other attributes on the node.
Inherited attributes depend on attributes defined in its ancestors1.

1It should be noted that here the term inherited has no relation to inheritance in object oriented
programming
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2. Background

Reference Attribute Grammars (RAGs) extend Knuth’s attribute grammars with
reference valued attributes [7]. That is, attribute values are allowed to be references
to any node in the AST. With reference valued attributes it becomes much easier
to implement attributes with non-local dependencies, for example to compute (non-
local) name bindings. The addition of reference attributes makes it feasible to
build larger compilers using attribute grammars. There have been several large and
complex compilers developed for languages like Modelica and Java based on RAGs
[12, 25].

2.2 The JastAdd Meta-Compiler
JastAdd [9] is a meta-compiler supporting RAGs. JastAdd supports both declarative
specification with RAGs and an imperative computation with normal Java code.
JastAdd supports so called aspect oriented programming, meaning that code can be
defined in a modular way in aspects.

An example of a JastAdd grammar with two node types, A and B, and a synthe-
sized and inherited attribute is given below.
// Abstract Grammar
A ::= left:B right:B;
B;

// Attributes
aspect F {

syn int A.x() = 0;
inh int B.y();
eq A. getLeft ().y() = 1;
eq A. getRight ().y() = 2;

}

Here the abstract grammar specifies that there exists a node type A and that A has
two children. The first child is named "left" and is of type B. The second child is
named "right" and is also of type B. The abstract grammar also declares node type
B.

The aspect above defines a synthesized (syn) attribute and an inherited (inh)
attribute. Attribute x is a synthesized attribute defined on A nodes with an equation
giving it the value 0. Attribute y is declared as an inherited attribute on the B node.
The value of attribute y is defined by an ancestor, in this case a node of type A.
Depending on the context the attribute y will have either the value 1 or 2. If B
is the left child of A the value is 1 and if it is the right child the value is 2. This
behaviour is visualized in Figure 2.1.

2.2.1 Higher Order Attributes
It is sometimes useful to dynamically compute nodes in the AST. This can be useful,
for example, to reify implicit constructs or to build temporary simplified expressions.
For this, we can use a type of attribute known as Higher Order Attributes (HOAs)
[33].

10



2.2 The JastAdd Meta-Compiler

Figure 2.1: The value of the inherited attribute y depends
on the position of the B node.

HOAs can be used to compute any subtree of the AST with an attribute. The
computed subtree of an HOA acts just like any other part of the AST and is higher-
order in the sense that is is an attribute value which itself can be attributed. HOAs
are only computed when needed (since they can in general compute unbounded trees
[18]). In JastAdd, a HOA is declared using the keyword nta (for Non-Terminal
Attribute, another name for HOAs).

2.2.2 Rewrites
JastAdd has support for automatic tree rewriting using the rewrite mechanism de-
scribed by Ekman et al. [4]. The initial AST built by the parser can often be
simplified, for example by classifying variable names by context or constant expres-
sion folding. These transformations can be applied by using rewrites instead of using
imperative tree transformations. A parsed node is automatically transformed the
first time it is accessed after parsing.

Rewrites and HOAs are both used for transforming the AST and in previous
work it was shown that circular HOAs are equivalent to rewrites [31]. A rewritable
node can in JastAdd be rewritten through a chain of rewrites if there exists a chain
of rewrite rules (rewriting from one node type to next, etc.). The chain of rewrites
should be non circular in order to find a final node state. JastAdd will treat the final
node as a non rewritable node. This is achieved with a boolean flag which indicates
that the node should not be rewritten further.

2.2.3 Collection Attributes
JastAdd supports a special type of attribute called collection attributes. The value of
a collection attribute is composed from contributions which are added by contributor
nodes in the AST if the right conditions hold. Contributors are always descendants
of a special node called the collection root. That is, only the sub tree of the collection
root is searched for contributors. The collection root is typically the node that holds
the collection attribute value. However, the collection root can be changed to be,
for example, the root node of the AST. Some example usages of collection attributes
are: gathering compile time errors, finding the call locations of a function or finding
all the sub-classes of a class.
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2. Background

2.2.4 Circular Attributes
Some problems in compilers are circular by nature. For example, computing the
reachability of a function, i.e., all the functions reachable from that function in
the call graph. Reachability can be reflexive, which is the case for, e.g., recursive
functions. Special support in the attribute evaluator is needed for this kind of circu-
larly defined attributes because otherwise the evaluation never terminate. JastAdd
supports the definition of circular attributes as long as the possible values of the
computation can be arranged in a lattice of finite height [5].

2.2.5 Concurrent Attribute Evaluation
Öqvist and Hedin presented a new extension to RAGs that support concurrent
attribute evaluation [26]. The new algorithms have been shown to be lock and wait-
free. The implementation of the algorithms has the added limitation that they are
not wait-free since a non wait-free implementation of a map is used.

The concurrent attribute evaluation requires that the base AST is not modified
after parsing. Therefore, normal rewrites are not supported for concurrent attribute
evaluation since rewrites modify the parsed AST. However, Söderberg et al. have
shown that rewrites are equivalent to circular HOAs [31] and they also present an
algorithm for translating rewrite to circular HOAs in JastAdd. Circular HOAs are
safe for concurrent attribute evaluation because they are HOAs which only compute
new parts of the AST and do not modify the base AST [26]. The concurrent attribute
evaluation also requires that semantic functions are terminating, observationally
pure and that circular attributes are computable. Similar assumptions are made for
JastAdd without concurrent attribute evaluation [8].

2.3 Race Conditions
A race condition occurs when two or more threads execute order-dependent opera-
tions without guaranteeing the correct ordering of those operations. Data races are
a kind of race condition which are caused by concurrent reads/writes of data (mem-
ory). Race conditions can make the execution of the program non deterministic and
lead to corrupted data and crashes [24].

When two threads or more share a variable and they access the variable concur-
rently, there is a risk of a data race when the following conditions hold:

• At least one access is a write
• The variable is not protected with mutual exclusion

The effect of a data race is not predictable as it depends on the timing of the
execution [30]. Data races can cause data corruption or program crashes. Errors
caused by race conditions can be hard to reproduce and lead to strange results [36].

Suppose we have the following simple (and faulty) Java class representing ac-
counts in a bank system:
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2.4 Thread Safety

public class Account {
private int balance ;

private synchronized int getBalance () {
return balance ;

}

private synchronized void setBalance (int amount ) {
balance = amount ;

}

public int withdraw (int amount ) {
int tmp = getBalance ();
if ( amount <= tmp) {

setBalance (tmp - amount );
return amount ;

}
return 0;

}

public void deposit (int amount ) {
int tmp = getBalance ();
setBalance (tmp + amount );

}
}

Suppose now that we were to simulate this bank system with two actors: an
account holder and an bank employee. The account holder is withdrawing 50 SEK
from their account with a current balance of 100 SEK. At the same time the bank
employee is depositing the account holders monthly salary of 20000 SEK to the
account. When withdraw and deposit are called concurrently and with a certain
ordering of events the effect of the deposit can be overwritten, causing the account
holder to not receive their salary. A visualization of how this happens can be seen
in Figure 2.2. The program is clearly free from data races: two threads can never
access the balance variable at the same time in the same Account object because the
only way to access it is through synchronized methods2. The program does however
have race conditions, which is why the account holder never received their salary.

2.4 Thread Safety
When building concurrent programs, a key property is thread safety. As defined by
Goetz [6], a thread safe class behaves correctly when accessed by multiple threads
regardless of the possible interleaving of the execution and without any synchroniza-
tion between the threads. Pradel et al. [28] use the same definition but extend it
further to refer to a class with only thread safe methods. A thread will for a thread
safe class only observe behaviour equivalent to a linearization of the function calls.
A linearization here means a possible sequential ordering (as if in a single thread)

2Only one thread at a time is able to run a synchronized method on a single object instance.

13



2. Background

Figure 2.2: A sequence diagram showing an execution or-
dering that leads to the account holder in our bank system
simulation losing their salary.

of all function calls from all the threads to a single object. The Account class de-
fined in Section 2.3 is an example of a class that is not thread safe. We used the
Account class in a bank system simulation and showed how calling withdraw and
deposit concurrently could lead to an account holder losing their salary. There are
two possible ways to linearize the calls deposit and withdraw, namely:

depos i t → withdraw
withdraw → depos i t

With the initial balance, withdrawal and deposit amounts as in Figure 2.2, both
of these linearizations will lead to the final balance being 20050. Thus, the end
result that was observed when calling the methods concurrently is not the result of
a linearization of the function calls. Therefore, the Account is not thread safe.

There are different ways of writing thread safe code. All of the different ap-
proaches do, however, have one thing in common. They all, in their own way,
ensure that code is free from race conditions. One way of dealing with race condi-
tions is to use mutual exclusion. For example, the Account class would be made
thread safe if the withdraw and deposit methods were synchronized. Making the
methods synchronized would remove the existing race conditions. There would be
no way for he threads to interleave since the methods would appear as atomic for
the threads. Another way of achieving thread safety, by ensuring freedom from race
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2.5 Functional Purity

conditions, is by eliminating shared mutable data among threads. Race conditions
can only occur when threads operate on common data which is mutable.

2.5 Functional Purity
An important property of a pure function is that it always returns the same value
given the same inputs. Despite the importance of functional purity, there is no well
established definition in the research community. The definitions found in literature
have varying level of strictness.

Haiying [34] defines four different types of purity: strong, moderate, weak and
once-impure. The following summary is by no means complete but highlights im-
portant aspects of these definitions. Strong purity requires that the function does
not access the heap or static variables. The less restrictive definition, weakly pure,
allows a function to write to and read from local objects on the heap but only read
from pre-existing heap objects. Furthermore, an object is not allowed to escape from
the function. The once-impure definition allows the function to be impure on the
first invocation. A definition such as the strongly pure definition is of limited use
for a language like Java. Generally a less restrictive definition is preferable.

Pearce [27] defines a pure method as a method that does not modify any field
or array cell that existed before calling the method. Pearce also points out that
any pure method must also only call pure methods. Yang et al. [35] define a
function to be pure when it does not modify state outside of the object. They further
divide pure functions into stateless and stateful: a stateless function being when the
return value is only determined by the arguments, whereas a stateful function also
depends on member fields. Naumann [23] defines the term observational purity
which allows a method to modify preexisting objects as long as those changes are
properly encapsulated. That is, side effects are allowed if they are not observable
to the caller. In the analysis developed by Sălcianu and Rinard [29] a method is
considered pure as long as it does not write to the heap, never invokes any impure
methods and finally never escapes an object globally.

We will now present a summary of the definitions that we have previously men-
tioned. Some of the definitions never mention certain operations such as if calling
native methods is allowed. Therefore, we have left these operations as undefined in
our summary. The summary covers escaping objects, which we consider to occur
when the reference of an object instantiated in the method is made visible outside
the method execution context. We have left out reading and writing to the stack
simply because it is allowed for all the definitions we found. Our summary of purity
definitions from literature can be seen in Table 2.1.

In previous work [35] it has been pointed out that pure functions are good can-
didates for parallelization. For example, the strong purity definition is guaranteed
to be thread safe because such a function only operates on state that not visible
to the rest of the program. As we have previously pointed out, the strong purity
definition is of limited use for real world Java programs. The strong purity defi-
nition would, for example, disallow memoization, a technique for only computing
expensive operations once. Consider the following Java code
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2. Background

Table 2.1: A summary of the purity definitions from the
literature. The left column contains either the name of the
purity definition or the name of the author who established
the definition. We mark properties with ⊥ if we were unable
to find specific information or draw any conclusion about that
particular operation. Operations marked with † are allowed in
some cases but not all. If the operation is only allowed the first
time the method is invoked it is denoted by 1st. Operations
that are always allowed are marked with Xand any operation
without any marking is disallowed. The operations that we
consider are: reading/writing of the heap, reading/writing
of static fields, escaping an object, monitor operations, i.e.,
acquiring and releasing locks (synchronized methods do this),
throwing exceptions and finally calling native methods.

Heap Static Escape Monitor Exception Native
Read Write Read Write

Strong
Moderate † †

Weak X †

Once-impure X † 1st 1st 1st 1st 1st 1st

Pearce X † X ⊥ ⊥ ⊥ ⊥

Naumann X † X ⊥ ⊥ ⊥ ⊥

Yang X † X ⊥ ⊥ ⊥ ⊥

Salcianu X X † ⊥ ⊥ ⊥

Concurrent X † X X X X
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2.5 Functional Purity

int value;
boolean value_calcuated ;
public int f() {

if (! value_calculated ) {
value = expensiveCalculation ();
value_calculated = true;

}
return value;

}

The function f above would not be considered pure with the strong purity definition.
On the other hand, the function would be considered pure when using the once-
impure definition because it allows a method to write to the heap the first time
it is invoked. However, calling the method concurrently could possibly cause race
conditions. Thus, a function can be considered pure according to some of the existing
purity definitions in academic writing without it being thread safe.

Therefore, it would be desirable to establish a definition for purity that can guar-
antee thread safety but that is not as restrictive as the strong purity definition. A
first attempt of a purity definition that is less restrictive than the strong purity defi-
nition but that can guarantee thread safety could be the moderate purity definition.
However, this definition is also far too restrictive to be useful in practice. Consider
the Java code below.
public class A {

public int x;
}
public int g(A a) {

return a.x;
}

According to the moderate purity definition the function g is not pure since it reads
from a preexisting heap object. The parameter a is already allocated on the heap
before the method g is invoked, and reading from preexisting heap memory is not
allowed with the moderate purity definition. Reading from a preexisting heap object
can cause concurrency issues if another thread is writing to the same heap object.
However, if no other thread writes to the heap object that g is reading from then
the read operation is safe. It is important to realize that this does not mean that
the function g is thread safe: if any other function writes to heap memory that g is
reading from a data race can occur.

A more suitable definition could be the weakly pure definition which allows
functions to read from preexisting heap objects. For the purposes of our work
this definition is also too restrictive since it disallows escaping objects, preventing
otherwise safe HOAs. Allowing an object to escape is no cause for concern as long
as it not modified after escaping. For example, when defining a HOA in JastAdd
the generated method escapes the HOA, which is expected behaviour.

In concurrent RAGs attribute equations are required to be observationally pure.
Although Naumann’s definition in principle disallows non-thread safe effects in a
function (if a function is not thread safe it will, in some thread interleaving, cause an
observable side effect), the side effects it disallows are predicated on the execution
context of the function. In single-threaded execution a Naumann observationally
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2. Background

pure function is free to memoize its result and return a previously memoized value.
However, in a concurrent setting memoization can cause race conditions if not done
carefully. We believe that another purity definition would be a more suitable re-
quirement. Below we give an example of a method which is observationally pure for
single-threaded execution but not observationally pure in a multi-threaded setting.
Suppose we defined the following JastAdd attribute
syn lazy int A.x() = 0;

The lazy keyword tells JastAdd that the attribute should be memoized. JastAdd
would from this generate the following Java code
class A {

protected int x_value ;
protected boolean x_computed = false ;
public int x() {

if ( x_computed ) {
return x_value ;

}
x_value = 0;
x_computed = true;
return x_value ;

}
}

The method x is Naumann observationally pure. However, the method is not
thread safe because it can lead to race conditions. The method modifies preexisting
heap memory, namely the fields x_value and x_computed. These writes are to pro-
tected fields, which is why the method is considered observationally pure. However,
that the fields are encapsulated has no relevance for thread safety: race conditions
can still occur despite the fields being protected.

We can also observe that x has side effects (the writes to x_value and x_computed)
even though the attribute definition does not. These side effects are added by Jas-
tAdd in the code generation and are not defined by a developer. If a functional
purity analysis tool, like Purano (see section 2.7), was applied to x the tool could
generate warnings for these side effects. Since the side effects are not defined by a
developer it is not interesting to generate warnings for them. Therefore, this these
types of side effects can be considered to be false positives.

We propose a new purity definition which we will henceforth refer to as concur-
rent purity. The goal is to impose as few restrictions as possible but still be able to
guarantee thread safety if only concurrently pure functions are executed. To be able
to precisely define concurrent purity we need to define some additional and related
terms. Below we define the effects of a function and further divide this definition
into direct effects and indirect effects.

Definition 2.5.1. (Effect) We define the effects of a method f to be all writes to
a memory location that can be caused by invoking f .

Definition 2.5.2. (Side Effect) We define a side effect of a method f to be any
effect that modifies a Java object or an array that existed prior to f being invoked.
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Definition 2.5.3. (Direct/Indirect Side Effect) We define a direct side effect
of a method to be any side effect that is not caused by invoking another method.
Furthermore, we define a side effect that is not a direct side effect to be an indirect
side effect.

It should be noted that we consider modifying a static field to always be a mod-
ification of a preexisting Java object. Our definition of concurrent purity disallows
invoking native methods (directly or indirectly), i.e., methods that do not run in
the JVM.
Definition 2.5.4. (Concurrently Pure/Impure) We define a method f to be
concurrently pure if f does not have any side effects and does not invoke any native
methods. A method that is not concurrently pure is concurrently impure.

We will from here on use the term concurrently pure interchangeably with pure
and similarly use the term concurrently impure interchangeably with impure. Fur-
thermore, we extend our definition of impure into directly impure and indirectly
impure to be able to distinguish between the two.
Definition 2.5.5. (Directly/Indirectly Impure) We define a method f to be
directly impure if f is a native method or if f has any direct side effects. Furthermore,
we define any method that invokes native methods or has any indirect side effects
to be indirectly impure.

2.6 ExtJPureChecker
ExtJPureChecker (EPC) is a purity analysis tool developed for the master’s thesis
by Johnsson [13]. The tool is an extension to the ExtendJ compiler. The analysis
of EPC is, like JPure [27], based on Java annotations, i.e., in order for the tool to
be able to perform its analysis functions have to be annotated with a special set of
Java annotations. The annotations used by EPC are the same as JPure but with a
few new ones for a more precise analysis of HOAs. To handle HOAs the tool uses
a notion of freshness, like JPure. With this it possible to make modifications to a
fresh (newly created) object without generating warnings (the result of the tool).
This is crucial for RAGs that support HOAs because a HOA value is an AST node
which must be modified while constructing it inside the HOA equation. The HOA
value needs to be considered a fresh object which it is permitted to modify inside
the attribute equation.

EPC reports warnings for methods violating their purity annotation. The anal-
ysis takes into account problems occurring directly in a method such as modifying
a field or a static field but it also considers function calls. For example a method
annotated as pure is not allowed to call an impure method. EPC uses a conservative
approach: the analysis is based on a call graph constructed using a class hierarchy
analysis (CHA) as defined by [32], In a CHA call graph a method is connected to
all its called methods and all methods that override it.

To support analysis of JastAdd RAGs Johnsson has made a second tool which
is an extension to JastAdd that automatically annotates the code generated by
JastAdd.
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2.7 Purano
Yang [35] developed a purity analysis tool for Java called Purano that infer the
purity of functions by analyzing Java bytecode. Purano uses the ASM framework
for analyzing bytecode [1].

Purano constructs a class diagram and then traverses all the methods of the
class diagram. The class diagram incorporates information such as inheritance,
override relationships and method invocations. When a function is called, Purano
will consider all overrides of the method. This is a conservative approach because
it is unlikely that all overriding functions are called during runtime. This prevents
false negatives but also causes the analysis to produce more false positives.

Purano does not rely on any Java annotations: the analysis can be applied to
any existing code base without additional work to add annotations. Furthermore,
since Purano analyzes byte code and not the Java source code Purano is capable of
analyzing external libraries for which it only has access to the byte code.

Purano has the ability to identify cache semantics in a function. That a function
uses cache semantics can loosely be defined as using an object field for storing the
result of a calculation, for a more precise definition see the original paper [35]. An
example of a function with cache semantics is shown in the code below.
public A f() {

// lazy initialization
if (a == null) {

a = new A();
}
return a;

}

Purano does not generate warnings for side effects related to cache semantics. There
are other tools with similar capabilities like the analysis by Sălcianu and Rinard [29]
but this is not automatic: they maintain a list of so called special functions, which
are specified to the analyzer to be pure.
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Chapter 3
Parallelization in JModelica.org

We have identified two approaches for parallelizing JastAdd compilers, such as
JModelica.org. The key difference between the two is in how threads share data.
The first approach attempts to utilize the concurrent attribute evaluation exten-
sion to RAGs to evaluate attributes in parallel. As long as attribute equations are
concurrently pure the data is shared in a safe manner. Therefore, this approach
allows data to be shared fully when these requirements are met. At the time of
writing JModelica.org has some known cases of impure attributes and could po-
tentially have additional impure attributes that are not known about. Thus, the
challenge with parallelizing JModelica.org this way is twofold: A method for purity
analyzing JModelica.org has to be developed and any impure attribute that is found
has to be transformed to be pure. This approach did, in the end, not lead to paral-
lelization of JModelica.org due the amount of work required to ensure safe parallel
attribute evaluation. In Section 3.1 we present our attempts of purity analyzing
JastAdd compilers using the tool EPC [13] and in Section 3.3 we present our new
tool JastAdd-Purity-Analyzer (JPA) for purity analyzing JastAdd compilers.

In our second approach for parallelizing JastAdd compilers we have tried to
minimize the amount of shared data between threads. The motivation for this is
that threads that do not share any data do not suffer from race conditions. Thread
shared data is minimized by maintaining separate ASTs, each thread having its
own version. The threads can safely evaluate attributes in parallel since they never
operate on the same data. In Section 3.3 we present our work related to applying
this approach to JModelica.org.

3.1 ExtJPureChecker
In previous work, Johnsson developed ExtJPureChecker (EPC) for purity analysis
of Java programs with a special code generator to support JastAdd compilers [13].
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We have investigated the possibility of using EPC to purity analyze JModelica.org
with the motivation being that such an analysis could possibly be used to verify
concurrent purity.

Our attempts at purity analyzing JModelica.org with EPC lead to the tool giving
a number of false negatives and too many false positives. The causes of these
problems and ways of improving the analysis are presented below.

There are several examples in JModelica.org where internal JastAdd methods,
i.e., methods that are not intended for compiler developers, are used. One such
internal method is setChild, which is a method for building the AST. The setChild
method is used outside of the intended internal usages in 29 places in JModelica.org.
EPC annotates methods for building the AST, like setChild, with @Ignore as they
are not intended to be used by developers [13]. Because the methods are annotated
with @Ignore, warnings are not generated when they are used by a developer, even
though they are impure. This makes the analysis simpler for the checker, but also
assumes that the developer does not use any of these methods. This leads to a
number of false negatives in JModelica.org due to the use of setChild.

It would be possible to fix the false negatives problem by changing the generated
annotations in EPC. To show how the altered annotations work we will show an
example with a JastAdd rewrite. Suppose that a compiler developer has created an
abstract grammar with a rewritable node. Rewrites are triggered on demand, when
accessing a child through the getChild method. A part of the call graph for this
method and the annotations generated by EPC is shown in Figure 3.1.

Figure 3.1: A part of the call graph for getChild and the
corresponding generated annotations by EPC.

The figure shows how internal methods with side effects have been annotated
with @Ignore and internal methods which are pure, such as peek, have been anno-
tated with @Pure. This allows the parent of the rewritable node to call the setChild
method, which it must to replace the old node with the new one, without generating
a warning. The rewriteTo methods (the rewrite rules defined by developers) have
been annotated with the @Fresh annotation to allow the rewrite methods to create
and initialize the new node. This solution allows freshness to be analyzed in the
sequence of method calls from getChild to rewriteRule0. Furthermore, any usage
of internal methods with side effects are suppressed since they are ignored. The
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downside is that, as was pointed out before, an attribute calling an internal method
with a side effect such as setChild will not generate a warning.

Our goal was to let internal JastAdd methods that are known and expected to
have side effects to be annotated with @Local and to filter out JastAdd methods
that are of no interest to analyze by using the @Ignore annotation. A method
annotated with @Local signifies that method may induce changes to the fields
of the caller object [13]. An example of a method that can be ignored is the
ASTNode#mayHaveRewrite (a JastAdd generated method) because it will always be
pure. Therefore, its annotation can be changed from @Pure to @Ignore. Figure 3.2
shows the call graph with changed annotations.

Figure 3.2: A part of the call graph for getChild along with
a suggestion of a different set of annotations.

In this example, the only place a side effect can be added by a developer is in
rewriteTo and the rewriteRule0 method. It is of no real interest to analyze a
method like, e.g., getChild because we actually already know how it behaves. For
example, we know that it modifies the AST during a rewrite. However, this is in-
tended behaviour and should not lead to a warning. A consequence of this approach
is that a sequence of method calls containing one of these @Ignore annotations will
stop the analyzer from analyzing the method body. This can potentially shorten the
analysis time because the ignored methods no longer need to be analyzed. Likewise
any call to an ignored method will not be analyzed.

There is a potential downside of this approach: suppose a developer has de-
fined an attribute that calls the getChild method above and that the method
rewriteRule0 modifies a static field. The attribute is then impure since the method
can trigger a rewrite which in turn causes the static field to change. With our sug-
gested approach the defined attribute will inevitably be found pure because the side
effect is "guarded" by ignored methods. This does however seem to be in line with
how the checker operates: warnings are not generated for the entire sequence of
method calls that can cause the side effect. Consider the code below:
public class A {

public int i = 0;
@Pure public void f() {

g();
}
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@Pure public void g() {
h();

}
@Pure public void h() {

i++;
}

}

The analysis will in this case warn that h violates its annotation. Likewise a
warning will be generated for g. However, the function f will not receive a warning.
Thus, any sequence of methods calls will only generate warnings for the last two
functions of the sequence. We believe this is a design choice with the motivation
being that it will produce less redundant warnings from the tool. For a tool that
is aimed at identifying where side effects occur this is perfectly reasonable design
choice.

Unfortunately, for the purposes of this work this solution is not optimal: the
function f is concurrently impure and should therefore be reported as a warning.
To work around this, one could analyze the reachability of f, i.e., all reachable
methods in the call graph from f, and then study the purity information for those
methods.

The annotations generator tool for EPC does not generate annotations for ev-
erything. For example, plain Java methods as in the example below:
aspect F {

public class A {
private int i = 0;
public void f() {

i++;
}

}
}

The method f will in the generated code not receive any annotation. This might
seem like a minor detail but as was discovered for JModelica.org this is not the case.
We found over 500 class definitions, i.e., plain java definitions in the compiler. Every
method in these classes will cause the tool to generate a warning (false positive) when
they are called since they are assumed to be impure, due to the lacking annotation.
A possible solution to this problem could be to let the tool treat all unannotated
methods as if they were annotated with a @Pure annotation.

3.2 JastAdd-Purity-Analyzer
We were interested in finding ways of reducing the false positives rate when using
Purano to analyze JastAdd-generated code. The primary benefit of Purano is that
it does not rely on annotations. This could save substantial amounts of work that
would otherwise be required to make the false positive rate low enough with EPC
to be useful for an industrial compiler, such as JModelica.org.

A difficulty in purity analyzing a JastAdd grammar with a static analysis tool like
Purano is that the analysis usually leads to a substantial amount of false positives.
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Take for example when a compiler developer writes a JastAdd grammar with a
HOA, JastAdd will insert the attribute value in the AST. Purano would in this case
produce a warning that the AST has been modified. This is a false positive: we
know that the higher order attribute is going to be placed in the AST and we do
not want to report a warning for this. Thus, the major challenge in analyzing a
JastAdd grammar with a tool like Purano is to filter out these false positives.

In order to reduce the false positives rate we developed a new tool which trans-
lates JastAdd code to Java code but removes side effects in generated parts of the
code which are known to be safe (for memoizing attribute values, for example).

Our new tool JastAdd-Purity-Analyzer (JPA) generates Java code that is filtered
from irrelevant side effects which is then analyzed by the purity analysis tool Purano.
It should be noted that the generated Java code by JPA is not a functioning compiler
and not intended to be run. The code only serves to be the statically analyzed by
Purano. An overview of JPA can be seen in figure in Figure 3.3.

Figure 3.3: A high level overview of our tool JastAdd-
Purity-Analyzer (JPA). The input consists of grammar files,
external libraries, a white list and a truncation list. Any
method in the white list will be assumed to be pure by Purano.
The truncation list is used to stop the tool from traversing
further when encountering methods in the list. The output
is direct and indirect side effect warnings for the methods in
the compiler Java code.

To demonstrate the usefulness of JPA we will now give a small example showing
the difference between JPA and JastAdd code generation when an attribute has
been declared as lazy, see below.
syn lazy int A.x() {

return 0;
}

The corresponding code generated by JastAdd is shown below.

25



3. Parallelization in JModelica.org

// JastAdd
public int x() {

ASTState state = state ();
if ( x_computed ) {

return x_value ;
}
state (). enterLazyAttribute (); // Indirect Side Effect
x_value = x_compute (); // Direct Side Effect
x_computed = true; // Direct Side Effect
state (). leaveLazyAttribute (); // Indirect Side Effect
return x_value ;

}
public int x_compute () {

return 0;
}

When analyzing the attribute x we do not want to produce any warnings because the
equation that defines x does not have any side effects. However, Purano will produce
warnings for the generated code. Places in the code that could lead to a warning are
shown in the code with a comment. Invoking the methods enterLazyAttribute
and leaveLazyAttribute are considered indirect side effects because these meth-
ods increment/decrement a field. Their actions cancel when the method x re-
turns, their effects cancel within the method. That is, when calling x sequentially
it would not be possible to observe the effects of the enterLazyAttribute and
leaveLazyAttribute methods as a change on the heap if the heap was compared
before and after x was invoked. This is not true for the x_computed field though,
when calling the method for the first time the field changes from false to true, and
this effect would be visible on the heap after invoking the method. We have not
seen any purity checking tool capable of identifying cases where side effects cancel.

The code generated by our tool JPA is shown below.
// JPA
public int x() {

int x_value = x_compute ();
return x_value ;

}
public int x_compute () {

return 0;
}

As can be seen the calls to enterLazyAttribute and leaveLazyAttribute have
been removed. The method no longer writes to the x_computed field and the
x_value has been changed to a local variable, the JPA version of the method x
is concurrently pure.

An important detail to JPA is that it does not remove all the side effects in
JastAdd. It would be incorrect to do so: it would remove relevant purity problems
and lead to false negatives when the code is analyzed. There are internal methods
of JastAdd which are not supposed to be called by a developer, as pointed out in
Section 3.1. These methods tend to be used anyway despite the intent being that
they should not. An example of such a method is the setChild method generated
by JastAdd. This method modifies the child vector of AST nodes (the children of
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an AST node is stored in the child vector). Any attribute that uses this method to
modify the AST is indirectly impure. Suppose now that this method was changed so
that the child vector was no longer modified. Any attribute calling setChild would
no longer be indirectly impure and thus not cause a warning. This is not the intent
of JPA. The attribute should still be identified as being indirectly impure since it
invokes setChild.

In the following sections we are going to show in detail how JPA handles RAG
features like rewrites, higher order attributes, collection attributes and circular at-
tributes. Each of the following cases is based on an example abstract grammar in
which an attribute is defined in an impure way. To each case we provide a call
graph highlighting how JPA differs from JastAdd in its code generation. These call
graphs have been simplified for reader convenience (parts of the call graph we deem
irrelevant are not shown).

The call graphs use a combination of color coding and labels to represent prop-
erties for the methods. A method that is colored blue and that is not marked with
any label represents a method that is not directly impure. Methods that are di-
rectly impure are classified as being either added by a developer or by JastAdd.
For example, when defining a HOA the code written by the developer is placed in
the corresponding _compute method for the HOA. Any side effect in such a method
is considered to have been added by a developer. Evaluating the HOA also leads
to other methods being called, e.g., setChild to modify the AST (side effect) and
we consider these side effects to have been added by JastAdd. A directly impure
method where the side effect is added by JastAdd is colored in orange and marked
with the label "JastAdd". Finally, a directly impure method where the side effects
are added by a developer is colored in red and marked with a label "Developer".
Each of the following cases are based on the following abstract grammar:
// Abstract Grammar
A ::= B;
B;
C;
aspect F {

public static int A.i = 0;
}

For simplicity, all the side effects in the following cases will be the same, namely the
incrementation of the static integer i in class A.

3.2.1 Rewrites
Suppose a developer has defined a rewrite as shown below.
rewrite B {

when (A.i++ > 0) // Side Effect 1
to C {

A.i++; // Side Effect 2
return new C();

}
}

27



3. Parallelization in JModelica.org

This implementation has two side effects: one in the when-statement of the rewrite
(nr 1) and one in the block defining the new node of the rewrite (nr 2). As can be
seen in Figure 3.4 the side effects added by the developer occur in the rewriteTo
(nr 1) and rewriteRule0 (nr 2) methods of B. Thus, to analyze the getB method
we preserve all edges in the call graph leading to these two methods and remove all
other edges (dashed in the figure).

This principle can be applied to any rewritable node, for example, is$Final or
setChild are methods which can never lead to a side effect added by a developer.
Therefore, the calls to these methods can safely be removed in the getChild method.
The only way for the getB method in this case to become indirectly impure due to
a side effect defined by a developer is if the rewriteTo method of the rewritable
node is impure. The developer can cause this method to become directly impure,
indirectly impure or possibly both. Therefore, the call graph should only preserve
the call chain to rewriteTo method of the rewritable node. As a consequence, the
getChild method generated by JPA only calls the rewriteTo method defined in
the ASTNode class. This method is then connected to all other rewriteTo methods
since they are overrides of that method.

Figure 3.4: Part of the call graph for getB which accesses
the rewritable node B. The graph shows where JastAdd and
the developer have added side effects. The graph also shows
removed methods calls, as dashed edges, in JPA code genera-
tion.
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3.2.2 Higher Order Attributes
In the following code the example of a list HOA from the JastAdd webpage [11] has
been used and a side effect has been added to the HOA definition.
syn nta C A. getCList () {

A.i++; // Side Effect 3
return new List <C >()

.add(new C())

.add(new C());
}

The call graph for the HOA as generated by JastAdd is shown in Figure 3.5. The side

Figure 3.5: Part of the call graph for getCList which gets
a HOA list attribute. The graph shows where JastAdd and
the developer have added side effects. The graph also shows
removed method calls, as dashed edges, in JPA code genera-
tion.

effect added by the developer (nr 3) is in the getCList_compute method. Making
the getCList method call only the compute method will remove a large number of
the side effects added by JastAdd. HOAs generated by JastAdd are treated as lazy
attributes. As such there is always a value and boolean field for the HOA. In this
case their names are getCList_value and getCList_computed. JPA does not cache
the HOA and the method generated for the HOA will only call the corresponding
compute method.

3.2.3 Collection Attributes
Suppose that a developer has defined the follwing collection attribute:
public class MySet <T> extends HashSet <T> {

public MySet () {
super ();
A.i++; // Side Effect 4

}
@Override
public boolean add(T t) {

A.i++; // Side Effect 5
return super.add(t);

}
}
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coll Set <String > A. myCollection () [new MySet < >()];

B. contributes A.i++ > 0 ? "" : ""
to A. myCollection (); // Side Effect 6

As can be seen in the code above, a new class MySet has also been defined where
the constructor and the add method of the set have side effects. In the contribution
statement the developer has also added a side effect. See Figure 3.6 for the call graph
generated by JastAdd. The survey phase of the collection attribute, i.e., the phase
where the contributors to the collection are collected, is completely removed in JPA
code generation. The call to the survey method can never lead to side effects added
by a developer and is therefore not useful to preserve. For collection attributes JPA
preserves edges to the collection constructor and to the contribution statements to
the collection. In the example above side effect 4 occurs in the MySet constructor,
side effect 5 in the B#contributeTo_A_c node and finally side effect 6 in the add
node.

Figure 3.6: Part of the call graph for myCollection. The
graph shows where JastAdd and the developer have added
side effects. The graph also shows removed methods calls, as
dashed edges, in JPA code generation.

3.2.4 Circular Attributes
The following code shows a circular attribute that contains two side effects.
syn int A. myCircular () circular [ myCircularInit ()];
eq A. myCircular () {

A.i++; // Side Effect 7
return 0;

}

syn int A. myCircularInit () = A.i++; // Side Effect 8
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The call graph for the example can be seen in Figure 3.7. The side effects added

Figure 3.7: Part of the call graph for myCircular. The
graph shows where JastAdd and the developer have added
side effects. The graph also shows removed methods calls, as
dashed edges, in JPA code generation.

by the developer are in the compute method and in the initialization of the circular
attribute. Circular attributes in JastAdd use an initialized field and a value field,
the code generated by JastAdd modifies these fields during evaluation (side effects).
JPA removes these operations and in the end the attribute method only calls the
corresponding compute method and the method initializing the attribute, unless of
course the attribute is not initialized by a method.

3.2.5 Analysis by Purano
The first stage of JPA is to generate Java code that is filtered from irrelevant Jas-
tAdd side effects. Next, the JPA generated code is analyzed by the purity analysis
tool Purano. Purano analyzes all the methods in the class diagram and for each
method it produces warnings for both direct and indirect side effects. It should be
noted that Purano does not use the terminology of direct and indirect side effects.
Purano divides side effects to be either modification of fields, arguments and static
fields. In the output of the tool this is denoted as @Field, @Argument and @Static,
respectively.

Side effects in Purano have a reference named from that can either be null
or point to another method. If the pointer is null the effect is according to our
terminology a direct side effect, whereas if the pointer points to another method we
consider it an indirect side effect. The analysis result is output as a summary for
each method where both direct and indirect side effects are shown.

We can consider the analysis result by Purano to be a directed graph. Each vertex
is a method which is associated with a list of direct and indirect side effects. Any
indirect side effect connects the vertex to another vertex with the from reference.
We will call this graph the side effect graph.

To give an example of a side effect graph we give a small code example.
public class A {

int i = 0;
void f() {

g();
}
void g() {

h();
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}
void h() {

i++;
}

}

The corresponding side effect graph for the above code sample is shown in Figure 3.8.
We have omitted any indirect side effect from the associated list of side effects for

Figure 3.8: A graph representation of the analysis result
produced by Purano for our code example.

the vertices since any indirect side effect will correspond to an edge in the graph. An
example summary for the method f that is output by Purano is shown in Figure 3.9.
The function f in the code above is impure since it modifies a preexisting object.

Figure 3.9: The method summary for f generated by Purano
for our code example.

When the method f is invoked the this object already exists and during its execution
f indirectly modifies that object. The this object is modified because when f
invokes g it will in turn invoke h and this method directly modifies the field this.i.
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Suppose now that we would want to analyze f for concurrent purity. We know
that f is concurrently pure if it is neither directly or indirectly impure. Therefore,
if the associated list of side effects for the method f is empty we know that f must
be concurrently pure. If on the other hand we find that f is impure it would be
interesting to know which program statements that cause f to be impure.

For example, if we would like to know why the method f in our example is impure
we could use the analysis result shown in Figure 3.9. We would then find that f is
indirectly impure because it invokes the method g. To proceed we would then look
at the analysis result of g and conclude that g is indirectly impure because it calls h.
Finally, we would find in the analysis result that h is directly impure and that it is
not indirectly impure. Suppose now instead we analyzed a function that indirectly
calls a large amount of functions that cause it to become indirectly impure. Doing
the same type of analysis would be very time consuming. In the next section we
will talk about our extensions to Purano that tries to solve these problems.

3.2.6 Extensions to Purano
To identify all the sources of indirect impurity for a method in a time efficient and
accurate way we extend Purano to produce its result on a new format. We translated
the internal graph representation of Purano, i.e., the side effect graph, to the graph
description language DOT. This could then be used to automatically output an
image of the graph. An example of such an image is the one shown in Figure 3.8
which we have generated with our extension. The extension is useful for visualizing
the sources of indirect impurity in a method. However, for some examples the graphs
become so large that converting the DOT file to an image takes too long time and
produces impractically large images.

For very large graphs, we instead only report the direct side effects reachable from
the method. For example, the only reachable direct side effect from f in Figure 3.8
is the one in the node for the method h. We also associate each direct side effect
with one of the possible paths that leads from the entry methods to that direct side
effect. For example, our extension would for the method f find the direct side effect
in h and associate that side effect with the path A#f() → A#g() → A#h(). The
paths to a direct side effect are found by using a depth-first traversal over the side
effect graph, following the pseudo code in Algorithm 1.

To illustrate the format of the reported warnings we give a real world example
for JModelica.org. We have simplified the example for clarity by omitting package
names. The reported warning is shown in figure 3.10. The first line shows the method
(geSrcStoredDefinition) that is analyzed which is then followed by a call chain
leading to a reported side effect. The figure shows that the attribute SrcLibNode (a
HOA) indirectly calls the setChild method. When using our extended version of
Purano on JModelica.org it can in some cases produce a lot of output. One of the
causes of this is methods with side effects on static fields. Any other method that
calls such a method will also be considered indirectly impure regardless of whether
or not the function is called on a local object. For example, we found that methods
were identified to be indirectly impure anytime that they called the Iterator#next
method despite it being a local object. The cause for this was that there was a class
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Algorithm 1 Reachable Direct Side Effects
1: procedure Entry_Method(method)
2: methodStack← new-stack
3: Visit_Method(method,methodStack, φ)
4: procedure Visit_Method(method, methodStack, visitedMethods)
5: push(method, methodStack)
6: visitedMethods← union(visitedMethods,method)
7: for each direct side effect s in method do
8: Report_Warning(s,methodStack)
9: for each indirect side effect s in method do

10: if s.from /∈ visitedMethods then
11: Visit_Method(s.from, methodStack, visitedMethods)
12: pop(methodStack)

Figure 3.10: An example of a side effect warning reported
by JPA. The warning is for a HOA defined in JModelica.org.

that extended the Iterator class and the overridden next method had a side effect
on a static field.

We found a possible solution to this problem by making the analysis run in
different modes. For example, in one mode that we call "no static" mode, side
effects on static variables are ignored. This solves the aforementioned problem with
the Iterator#next method since any side effects on static fields are ignored.

Another mode that we added is a "static" mode in which the analysis only outputs
side effects on static fields. In this mode, any indirect side effect where the from
pointer points to a method with no static effects is truncated. An example of such
a case is shown below.
public class A {

public static A a = new A();
public int i = 0;
public void f() {

i++;
}
public void g() {

a.f();
}

}

If the function g is analyzed normally our analysis will output the direct side effect
in f and the call chain A#g() → A#f(). However, with only this information it is
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not clear that a static field is affected. In the scope of f the direct side effect that
occurs is on the non-static field i. In our static analysis mode the call analysis will
instead output the indirect side effect a.f() and the associated call chain which in
this case is only A#g. The statement a.f() is the first place that it can be detected
that a static field is modified. See Figure 3.11 for a comparison of the two analysis
modes using the text format output of the tool. Finally, we also added a mode

Figure 3.11: A comparison of the output of JPA when an-
alyzing the code sample in 3.2.6 in default mode and static
mode. The output from the default mode is shown to the left
and the output from the static mode is shown to the right.

"native mode" that only identifies calls to native methods.
Another problem that we discovered was how to deal with calls to the Java

standard library. Our algorithm presented above will traverse to the Java standard
library and find direct side effects. This can causes a number of redundant side effects
to be reported, for example when calling the Java standard library Hashtable#put
the information that is of interest is that the Hashtable is modified, however when
analyzing this method our analysis finds 16 different direct side effects. This tends
to cloud the analysis with too much information. A possible solution would be to not
propagate to any standard impure library function and just showcase that a call to
an impure standard library function is made. We tried this approach and discovered
that it can truncate propagation to functions that are not part of the standard library
that are of interest to analyze. For example, suppose that we have implemented a
class that extends the Iterator class part of the Java standard library and its
hasNext writes to a static field. Any function that invokes Iterator#hasNext will
then be considered indirectly impure. But the analysis will only show that a call
to an impure standard library function is made, not that it is caused by our new
iterator class.

Our solution is, instead, to maintain a so called "truncation list" which manually
specifies which parts of the standard library that should be truncated. This can
reduce the number of identified direct side effects for our previous example of the
Hashtable from 16 to 1. Moreover, if it is found that a method calls an impure
standard library function which is truncated and it is unclear why the method is
impure the method can simply be removed from the list. We also maintain a white
list which makes Purano assume that the listed methods are pure.
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3.3 Maintaining Separate ASTs

Figure 3.12: A high level overview of our approach of main-
taining separate ASTs for JModelica.org.

The JModelica.org compiler builds the AST in a lazy manner. Initially, the
AST is minimal in both size and in the number of evaluated attributes. This is
achieved using a combination of rewritable nodes and lazy attributes. We will
call this minimal syntax tree the base AST. When an attribute is evaluated the
AST is expanded on demand when parts of the AST that need to be rewritten are
accessed. Furthermore, any attribute that a evaluating attribute depends on will as
a consequence also be evaluated.

Our new approach of maintaining separate ASTs uses these facts, each thread is
given a separate base AST. An overview of the approach can be seen in Figure 3.12.
The JModelica.org front-end parses the source code (*.mo files) and builds a base
AST, which is then assigned to a worker thread. The worker threads are instructed
by the main thread to perform operations on their AST and report back the result.
In Figure 3.12 T1 and T2 are the worker threads. When a worker thread is finished
with its computation it stores the value in a cache structure that is owned by a
monitor object and then signals to the main thread. The cache is a concurrent
hash map with <String, Object> key value pairs. The cache can be used both for
worker threads to store the result of the operation they have been assigned to do,
but also to store computationally expensive attributes that can be shared among
the worker threads.

The idea is to make concurrent attribute evaluation safe by evaluating on differ-
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ent ASTs. If the threads do no share any data then no race conditions can occur,
i.e. concurrent attribute evaluation is safe. The threads do not share any data as
long as they do not perform I/O write operations or operate on any static fields.
However, to allow the worker threads to perform I/O we have added support for
this in the monitor object. If a thread needs to do I/O it is granted exclusive access
to do I/O via the monitor object, blocking any other thread until finished. Sim-
ilarly, reading or writing to static fields can be done via synchronized methods in
the monitor object. However, if it is known that a static field is only ever read, i.e.,
never modified by the threads then there is no need to synchronize the access.

To detect writes to static fields one could use our tool JPA to analyze a given
attribute in the "static" analysis mode described in Section 3.2.6. Furthermore, JPA
can also be used to identify usage of I/O. This can be done by running the analysis
in "native" mode. I/O is always performed by the operating system and is as such
always native. The identified native methods can then be inspected to find if any
of them are related to I/O.

Being able to share data between threads is often desirable because it can po-
tentially speedup execution and reduce memory usage. This is why we have also
added support for controlled data sharing between the threads by using the cache
in the monitor object. The result of costly evaluations can be stored in the monitor
cache which can then be reused by other worker threads. Suppose that the mon-
itor object is available for all ASTNodes and we have a computationally expensive
attribute expensiveAttr on the program root. We could declare expensiveAttr
in the following way.
syn int Program . expensiveAttr () {

if (! monitor .cache. containsKey (" expensiveAttr ")) {
int val = calcExpensiveAttr ();
monitor .cache. putIfAbsent (" expensiveAttr ", val );

}
return monitor .cache.get(" expensiveAttr ");

}

This is similar to the algorithm described by Öqvist and Hedin [26] for memoized
non circular attributes. The difference here is that it is done manually and that the
attribute is cached in a monitor cache.

The threads can safely put and get values from the monitor cache concurrently.
However, even though the monitor cache is thread safe the objects in the cache
might not be. As such, there are limitations of what they do can with the values.
If a non thread safe object is cached the worker threads should not modify it after
it has been shared, since this can cause race conditions.

An advantage of maintaining separate ASTs as we do in this approach is that
legacy rewrites, i.e., non circular HOAs are supported. This is not true for standard
concurrent attribute evaluation [26] where only circular HOAs are compatible. Since
the threads do not share the AST it is safe to modify it, as is done with legacy
rewrites. Furthermore, the requirements on attribute equations are less strict. Take
for example the following attribute.
aspect F {

public int i = 0;
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syn int x() {
return i++;

}
}

The attribute x is not concurrently pure. However, each AST has its own version of
i and so do each worker thread as a consequence. Therefore, each worker thread can
safely evaluate x concurrently despite the attribute being concurrently impure.
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Evaluation

In this section we present the answer to research question 1-4 introduced in Section 1.
To address RQ1 we have measured the responsiveness of the JModelica.org compiler
for a computationally expensive operation when using our approach of maintaining
separate ASTs. In Section 4.3 we introduce the operation that was tested along with
our experimental data. To answer RQ2 we have documented impure attribute in
JModelica.org and categorized these according to their use pattern. Furthermore,
to address RQ3 we propose ways to refactor these attributes to be thread safe. In
Section 4.1 we present the different categories of impure attributes in JModelica.org
along with suggestions how they can be refactored. To answer RQ4 we developed our
new tool JastAdd-Purity-Analyzer (JPA) for purity analyzing JastAdd grammars.
In Section 4.2 we present measurements that compare JPA to purity analysis with
standard JastAdd generated code and Purano.

4.1 JModelica.org Purity Survey

Below we present some example use patterns of impure attributes in JModelica.org.
Our method for finding impure attributes in the compiler is, both to collect infor-
mation about known cases from the developers, and to apply JPA to the compiler.
Furthermore, some of the impure attributes have been found when working with
the source code. However, all of the attributes in the survey can be verified to be
impure with JPA since the tool generates true positives when analyzing them. We
will for each case explain the pattern and also propose how to either remove or deal
with the side effects of the particular case to establish thread safety.
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4.1.1 Memoization

We have found examples of attributes in JModelica.org that are impure because
they indirectly call methods that memoize a static field the first time it is needed.
That is, the field is null until the method is called for the first time and then
the field is assigned a value. All subsequent invocations of the method returns
the memoized value. An example of where this occurs in JModelica.org is in the
getSCCContributors method of the AbstractBiPGraph class.

Memoization is in a multi threaded environment a potential cause of race condi-
tions. For example, multiple versions of the memoized object can escape to the rest
of the program. One of the ways memoization can be supported in a multi threaded
environment is the strategy that is used for lazy attributes in concurrent RAGs.
Here a special operation called compare-and-swap is used to write to the _value
field of the lazy attribute. Multiple threads may start evaluating the attribute but
only one thread will succeed in writing to the _value field. Since the returned value
from the attribute evaluation is the value stored in the _value field all threads that
evaluate the attribute are guaranteed to return the same value. Instead, one could
also protect the memoization block or the method where the memoization occurs
with mutual exclusion.

4.1.2 Aborting Fixed Point Iteration

JastAdd uses fixed point iteration to compute circular attributes. Circular attributes
are evaluated multiple times, at least twice to ensure that the fixed point is found.

In JModelica.org there are examples of attributes with circular dependencies
where it is known that if the attribute evaluation is circular then it is not necessary
to evaluate the attribute a second time. If the attribute is declared as circular then
it will inevitably be evaluated twice since it is computed using fixed point iteration.
In JModelica.org these attributes are not declared as circular and have instead been
implemented using a custom evaluation technique. The node that owns the attribute
is given a boolean flag that is set to true when the attribute evaluation starts. When
the attribute is evaluated it is checked if this flag is true, if it is then the evaluation
terminates prematurely preventing evaluation a second time. This type of side effect
occurs in JModelica.org in the calcVariability method in the InstAssignable
class.

This is an example of using a side effect in an attribute to perform of an op-
timization technique on circular attributes. These attributes could be transformed
to be pure by instead declaring the them as circular. An alternative to making the
attribute pure is is to declare the boolean flag that is used to abort the fixed point
iteration prematurely as a thread local object. The attribute would still be impure
but the writes to the flag would only be visible to the thread that performed the
write.
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4.1.3 Accessing Inherited Attributes
In order to access inherited equations in JastAdd a node has to be part of the AST.
Therefore, any freshly created node will not be able access to inherited equations
unless it is added to the AST. Since any expansion of the AST costs memory, a
potential drawback of using inherited attributes is memory usage. In JModelica.org
a special way of accessing inherited equations without permanently expanding the
AST has been developed in order to optimize memory usage. To access the inherited
equations a node is temporarily put into the AST, when the inherited equations are
no longer needed the node is removed from the AST. An example of where this
is used in JModelica.org is the dynamicFExp method in the FExp node class. The
method accepts an FExp parameter and uses setChild to put the paramater FExp
in the AST.

To allow a node to temporarily access inherited attributes one can set the parent
reference of the node and not link it as a child of the AST. This is desirable because if
the node accessing inherited attributes is fresh this operation is thread safe. Nodes
in the AST are connected using a combination of references. The children of a
node are stored in an array and the parent is stored in a single reference. With
our proposed solution the AST is not modified: it is only the parent reference of
the node accessing the inherited attribute that is modified. This works because
the algorithm for finding inherited attribute equations uses the parent reference
to traverse upwards in the tree. This approach will work correctly for inherited
attributes that are broadcast, i.e., attribute available in an entire sub tree. The
solution will, however, not work for basic inherited attributes (non-broadcasted).
The attribute evaluation algorithm will for basic inherited attributes verify that the
caller node is the child that the attribute is defined for.

4.1.4 Impure Rewrite Equations
We have observed several instances of rewritable nodes in JModelica.org that modify
an existing boolean flag when they are rewritten. The flag is modified in the corre-
sponding JastAdd generated rewriteRule method. One example of such a rewrite
is the
InstShortClassDecl node that sets a boolean simpleRewriteDone to true when
the rewrite happens. This is used to prevent the rewrite from happening additional
times since the rewrite is only allowed to happen when the flag is false. Rewrites can
typically not happen again once they have been fully rewritten. However, JModel-
ica.org modifies the is$Final flag which indicates that a node can not be rewritten
further.

A possible strategy for dealing with the impure rewrite equations that we ob-
served in JModelica.org could be to change the boolean that the equations modify
to be thread local. However, since concurrent RAGs require that rewrites are im-
plemented as circular HOAs the compiler would first have to changed to implement
rewrites this way. It is possible that the desired behaviour for the impure rewrites
are not compatible with circular HOA implementation.
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4.1.5 Rewriting Final Nodes
In JModelica.org there are examples of nodes setting the is$Final flag to false after
they have been fully rewritten to allow the node the be rewritten again. An example
node in JModelica.org that is rewritten this way is the FAssignStmt node.

Since the rewrite equation for these nodes modify the is$Final flag they are not
compatible with circular HOAs. This is becuase, in the circular HOA implementa-
tion, this flag has been removed. We have not identified any way of achieving the
same behaviour using normal rewrites. It is our belief that these rewrites need to
fully revised to make JModelica.org compatible with circular HOAs and concurrent
attribute evaluation.

4.1.6 Logging
To support logging of, for example, the amount of primary memory used during
compilation JModelica.org has a system for adding logging information dynamically.
There exists a global logger object which is accessible through a static field in the
ASTNode class. Thus, the logger object is reachable from any place in the entire
program, and in particular from any attribute. We have found examples of attributes
that during their evaluation write logging information to the global logger object.
These attributes are, as consequence, impure because they modify the global logger
object. An example of an attribute that modifies the global logger object is a HOA
called SrcStoredDefinition which is defined on nodes called SrcLibNode. The
HOA will during its creation for example log that a file has been read or log debug
information when an exception is thrown.

The logging mechanism in JModelica.org could possibly be re-implemented with
collection attributes: collection attributes are often used to solve these kinds of
problems and they are supported in concurrent attribute evaluation. Alternatively,
the logging mechanism could be changed so that any read or write operation to the
logger object was protected using mutual exclusion. The advantage of this approach
is that a large part of the source code could remain the same whereas the collection
attribute solution requires substantially more changes.

4.1.7 Error Checking
During error checking in JModelica.org, static errors are reported to a global er-
ror handler which resides in the AST root node. When errors are reported the
global error handler will add the error to an internal list. The error reporting
method is statically declared, making the handler is available in the entire pro-
gram. The handler is not only modified by attributes related to error checking but
also to seemingly unrelated attributes. For example, the previously mentioned HOA
SrcStoredDefinition reports an error if parsing the library fails. A possible reason
for implementing the error checking in this way instead of the idiomatic approach
which is to use collection attributes could be related to the survey phase of collection
attributes. Typically, the survey phase will not visit the child nodes of HOAs and
these nodes cannot directly contribute to the collection.
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The error checking system used in JModelica.org is not safe for concurrent eval-
uation due to the global error handler that is used. To transform the attributes part
of the error checking to become pure the global error handler could be replaced with
a collection attribute rooted in the AST root node. JastAdd has recently added
support for contributing to collections from HOA child nodes. To make the error
checking thread safe rather than pure, the methods that modify the global error
handler could be changed to be synchronized.

4.1.8 Constant Propagation
JModelica.org uses a modified version of the constant propagation optimization
technique [14]. The algorithm searches for equations that can be solved at com-
pile time. These equations are removed from the final equation system and any
reference to the equations are replaced by the found solutions. The optimiza-
tion technique was shown to both reduce compile and simulation times. We have
seen multiple places where the implementation performs impure operations on the
AST. An example is the cache system that the algorithm uses. Some ASTNodes
have a cache field named evaluationValue that is modified during the evalua-
tion. For example, this field is modified on InstComponentDecl nodes by using the
setLocalCachedEvaluationValue method.

We have not been able to find a way to remove the side effects in the constant
propagation algorithm in JModelica.org. The algorithm is complex and would re-
quire a comprehensive investigation to find if side effects could be removed from the
implementation. An alternative approach could be to protect any read or write op-
eration with mutual exclusion. For example, the cache field that the algorithm uses
that we previously described could be protected using mutual exclusion: anytime a
thread wanted to read or write to the cache field it would have to acquire a lock.

4.2 Purity Analyzis of JastAdd Attributes
With our new tool JastAdd-Purity-Analyzer (JPA), JastAdd attributes can be ana-
lyzed for direct and indirect side effects, direct and indirect calls to native methods.
We have not performed any analysis for evaluating if any true positives are removed
by the tool. It would, however, be desirable to do so. A possibility could be to, first,
identify every place in JastAdd syntax in which it is possible to add side effects.
Next, a JastAdd project with a direct side effect in each of these places could be
analyzed with the tool. Finally, the result of this analysis could be used to verify
that none of those direct side effects are removed. This would verify that none of
the direct side effect are removed. However, it would not verify that the tool pre-
serves all indirect side effects, which is much harder to verify. It is harder because
each direct side effect can cause multiple methods to be indirectly impure. That is,
for each direct side effect it would be required to verify that all methods that are
indirectly impure due to that side effect are still indirectly impure using JPA code
generation.
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Table 4.1: The result of our experiments where the impact of
our side effect filtered code generation is tested. The compilers
ExtendJ and JModelica.org are written in short as ExtJ and
JMod, respectively. The left column specifies the type of code
generation, either normal code generation with JastAdd or our
side effect filtered code generation with JPA.

Code size (NCLOC) Nr of Impurities Analyzis Time (s)
ExtJ JMod ExtJ JMod ExtJ JMod

JastAdd 120 602 419 498 50 316 432 651 49.7 802
JPA 102 282 393 908 15 415 181 130 42.3 157

We have, instead, focused on measuring the impact of JPA code generation.
Our experiments were run on an Intel Core i5-4300 at 1.9 GHz running ubuntu
16.04 LTS, Java version 1.8.0_212 (Oracle JDK) and a Java heap size of 7 Gb. We
evaluated the number of found side effects for JModelica.org and ExtendJ when the
code is built with JastAdd 2.3.0 and JPA. To count side effects we traverse the side
effect graph and visit all nodes that are not part of the Java standard library. For
each node we then count the number of side effects that Purano has found for the
method. The result of our measurements is shown in table 4.1. It should be noted
that the analysis finds more side effects than lines of code for JModelica.org. This
is because one line of code can have multiple side effects. An example would be
invoking a method that modifies two arguments and a static field, this single line of
code would have 2 + 1 side effects.

We have also compared the code size of the generated code for JModelica.org and
ExtendJ using JastAdd 2.3.0 and JPA. The code size is measured in non comment
lines of code (NCLOC) using the tool cloc. To account for non-generated Java
code, we first removed all the generated code and ran cloc. This number was then
subtracted from the number we obtained when running cloc after generating the
code. The result of our measurements are presented in Table 4.1. As can be seen
in the table the number of identified side effects when generating with JPA instead
of JastAdd v.2.3.0 are reduced by 69 % and 58 % for ExtendJ and JModelica.org,
respectively. This can be compared to the code size reductions which are 15 % and
6 % for ExtendJ and JModelica.org, respectively.

We have also measured the time it takes for Purano to construct the side effect
graph when analyzing JModelica.org and ExtendJ when the Java code is generated
by JPA and JastAdd v2.3.0. We constructed the side effect graph 10 times for
each case. The result of these experiments can be seen in table 4.1. Our experi-
ments found that JPA reduces the analysis time by 15% and 80% for ExtendJ and
JModelica.org, respectively.
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4.3 Compile Time in JModelica.org
We tested our approach with maintaining separate ASTs for JModelica.org for a
known case where long compilation time is a problem. The case is the startup of
an interactive Modelica editor. The editor allows the user to edit Modelica models
interactively using graphical editing features like drag-and-drop. On startup the
editor queries the compiler to compute an inheritance graph. The inheritance graph
(IG) is a data structure that incorporates the inheritance relationships of all loaded
Modelica code (developer source code and loaded external libraries). Here inheri-
tance refers to inheritance as in object oriented programming. Constructing the IG
is in general costly: the operation has to account for the developer source code as
well as any external libraries that the developer has loaded.

We tried to improve the responsiveness of the compiler to the editor by using
two separate ASTs. One is used to construct the IG, we will call this thread 1, and
the other handles other queries, we will call it thread 2. In sequential evaluation the
compiler is responsive once the base AST and the IG have been built. With separate
ASTs the compiler will become responsive as soon as the base AST of thread 2 has
been built.

As input for our experiments we used the Modelica Standard Library (MSL).
We compiled MSL and built an IG both with sequential evaluation and parallel
evaluation using two separate ASTs. We measured the response time for each case
10 times. The experiments were run on an Intel Core i7-5600 at 2.6 GHz running
Windows 10 Pro, Java version 1.8.0_202 (Oracle JDK) and a Java heap size of 6
GBb. We found that using sequential evaluation the compiler became responsive
after 12.4 s. When using parallel evaluation thread 2 became responsive after 2.7 s,
i.e., a speedup of about 4.6X.
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Chapter 5
Conclusion and Future Work

5.1 Conclusion
The goal of this thesis was to examine the possibility of using parallelism in JastAdd
compilers, such as JModelica.org, in order to improve compilation speed. We have
investigated different approaches for this endeavour. One approach was to try to use
the concurrent attribute algorithms for RAGs [26]. Our study of impure attributes
in JModelica.org has shown that this approach is difficult because as we found there
are many examples of impure attributes in JModelica.org. The study has also shown
that JModelica.org does not fulfill the requirement of circular HOAs. This is because
there are several examples of rewritable nodes that are incompatible with circular
HOAs.

We have found that it is sometimes very difficult to verify that an attribute
is concurrently pure. This is because its purity depends on the attributes that
are part of its evaluation. For example, by tracing JastAdd attribute evaluation we
found that several hundred attributes are involved when constructing the inheritance
graph mentioned in Section 4.3. Furthermore, the tracing does not cover any non
attribute Java code, which is commonly used in JModelica.org. We concluded that
doing this analysis manually by inspecting the code is not viable. It would be both
time consuming and prone to errors.

Due to the non determinism of concurrent evaluation it is harder to test concur-
rent RAGs. In sequential evaluation the attributes in a RAG can be tested using
standard software testing techniques such as unit testing. With this it is possible
to conclude that an attribute will always evaluate to an expected value for a spe-
cific input because the evaluation is deterministic. This is not true when evaluating
attributes concurrently. Impure attributes and any attribute affected by the side ef-
fects of those impure attributes will only evaluate to their correct value with "lucky"
timing. Purity analysis is a highly valuable tool when applying the concurrent at-
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tribute evaluation extensions to RAGs [26]. This is why we focused on developing
a way of purity analyzing RAGs for concurrent purity.

These efforts lead to the development of our new tool JastAdd-Purity-Analyzer
(JPA) that analyzes RAGs for purity. We introduce a new purity definition, con-
current purity, which has advantages for analyzing thread safety compared to other
purity definitions. We believe that this definition is better suited for ensuring the
correctness of concurrent RAGs than the observational purity definition which has
been used in previous work [26].

The tool combines our simplified code generation for JastAdd with the existing
purity analysis tool Purano. We have shown that the impact of our code generation
is significant, reducing both the number of false positives and analysis times. Fur-
thermore, we extended Purano (see Section 3.2.6) with different analysis modes and
an algorithm for finding all the side effects of an attribute.

Due to the difficulty in verifying and transforming the JModelica.org grammar to
fully support concurrent attribute evaluation [26], we developed a new approach for
evaluating attributes concurrently. Our new approach maintains separate versions
of the AST for each thread which minimizes the amount of shared data between
threads. It is easier to establish safe concurrent attribute evaluation with this ap-
proach. This is because if it is established that the threads do not share any data
then safe concurrency is guaranteed. Moreover, our new method also supports legacy
rewrites, i.e., the concurrent attribute evaluation does not require that rewrites are
implemented as circular HOAs. A limitation of this approach is that it can signifi-
cantly increase memory usage. If the AST is the dominating factor in memory cost
having more than one AST can be very high.

With the results of our work, pure attributes can be identified for RAGs. More-
over, if several pure attributes are identified these can safely be evaluated with
concurrent attribute evaluation [26]. Our tool JPA also gives information about the
causes for an attribute not being pure which can be used as a guide in transforming
the attribute to be pure. Our new approach for concurrent attribute evaluation
using separate ASTs can be used to support concurrent evaluation for any grammar
that is correct in sequential evaluation, does not perform I/O write operations or
modify any static fields.

5.2 Future Work
We have identified additional ways that the JastAdd code generation could be mod-
ified to improve the accuracy of Purano. The purity analysis by Purano will for
a function call consider the function being called as well as all the methods that
override it. This can in some cases lead to false positives. Take for example the
following abstract grammar:
// Abstract Grammar
A ::= B;
B;
C;
D;
aspect F {
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public static int A.i;
rewrite B {

to C {
A.i++;
return new C();

}
}
rewrite C {

to D {
A.i++;
return new D();

}
}

}

Since the A node has a child B JastAdd will generate a Java method getB, as shown
below.
public B getB () {

return (B) getChild (0);
}

A part of the call graph for getB is shown in Figure 5.1. The nodes that are
not directly impure are colored blue and have no label. Methods that are directly
impure are colored red and have the label "Developer" indicating that the method
has a side effect added by a developer. As we can see in the figure, the getB method

Figure 5.1: A part of the the call graph for the getB method
generated by JastAdd which gets a B node from the AST.

is connected to the rewrite method for the C node. Therefore, JPA will generate
a warning for getB due to the side effect in the C#rewriteTo method. This is,
however, a false positive: calling the B method can never cause C#rewriteTo to run
since the child of the A node is a B node. The cause for the false positive is that
when getB calls ASTNode#getChild type information is lost.
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For methods like getB that returns a node from the AST it would be possible
to improve the accuracy of the analysis. These methods will only ever invoke side
effects that are caused by calling rewrite methods. Furthermore, we know from
the method signature which rewrite method could be called (only one is possible).
Therefore, these methods could be changed to only call the possible rewrite method
instead of getChild. Applying this change to getB would yield the call graph
shown in Figure 5.2. The usage of colors and labels are equivalent to those in figure
5.1. As can be seen in the figure, getB is no longer connected to C#rewriteTo.

Figure 5.2: A part of the call graph for the getB method
using the hypothetical JPA code generation.

Consequently, the analysis will not generate a warning for the side effect in the
C#rewriteTo method. There are likely more cases like this one which could be
taken advantage of to further improve the accuracy of Purano.

In this work we have used functional purity analysis to serve as an indication of
thread safety. Any set of concurrently pure attributes are safe to evaluate in parallel,
i.e., will not suffer from race conditions. However, concurrently impure attributes
can also, in some cases, be safe to evaluate in parallel. A race condition can only
occur if more than one thread accesses a shared memory location and at least one of
those accesses is a write. Therefore, an attribute with a side effect is safe to evaluate
concurrently if no other thread is reading or writing to the memory location affected
by the side effect. For example, consider the following attribute grammars:
// Abstract Grammar
A;
aspect F {

public int i = 0;
syn int x() {

i++;
return 0;

}
syn int y() = i;
syn int z() = 0;

}

As we can see, x has a side effect that affects the variable i. It would not be safe
to evaluate x concurrently with y because x and y read/write to a shared memory
location without any synchronization. However, it would be safe to evaluate x with
z since z never reads to the field i.

It would be interesting to apply analysis of thread-shared data to parallel at-
tribute evaluation. For example, TSA (Thread Sharing Analysis) [10], a tool for
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5.2 Future Work

identifying thread-shared data in multi-threaded programs in Java, could be appli-
cable for parallel attribute evaluation. TSA implements algorithms for both static
and dynamic analysis. It would be interesting to see how useful these algorithms are
when applied to RAGs. The static algorithm has been verified to have reasonable
analysis times for large scale projects with sizes similar to JModelica.org. Therefore,
the static algorithm seems to be promising for real world RAG compilers.
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Kan flerkärniga processorer göra
kompilatorer snabbare?

POPULÄRVETENSKAPLIG SAMMANFATTNING Joachim Wedin

Snabbhet är en viktig egenskap för kompilatorer. Ett sätt att göra kompilatorer snab-
bare kan vara med parallellism. Detta arbete har undersökt olika tillvägagångssätt för
att parallellisera JModelica.org i syfte att göra kompilatorn snabbare.

Dagens datorer har ofta processorer med flera
kärnor. Dessa processorer kan utföra flera instruk-
tioner samtidigt, något som brukar kallas för par-
allellism. Genom att fördela instruktioner över
flera kärnor kan man göra datorprogram snab-
bare. För att göra detta i praktiken så krävs det
att datorprogrammen är speciellt anpassade för
det syftet. Man måste, bland annat, se till att de
olika kärnorna inte förstör för varandra. Ett van-
ligt problem är exempelvis att två kärnor skriver
till samma plats i minnet samtidigt, vilket kan
leda till problem.
Jag har i mitt arbete undersökt olika sätt att

parallellisera JModelica.org i syfte att göra kompi-
latorn snabbare. JModelica.org är en kompilator
för språket Modelica som används för att mod-
ellera och simulera komplexa fysikaliska system.
JModelica.org är utvecklad med JastAdd vilket är
ett verktyg speciellt gjort för att bygga kompila-
torer. För att bygga en kompilator med JastAdd
uttrycker man hur den ska fungera med en speciell
formalism kallad referens-attribut-grammatik.
JastAdd genererar utifrån detta Javakod, vilket

är ett vanligt programmeringsspråk. Den gener-
erade koden har tidigare inte varit anpassad för
att köras parallellt. Nya tillägg till JastAdd har
dock ändrat på detta. De nya tilläggen kräver att
koden som ska köras parallellt är fri från sidoef-

fekter. Ett exempel på kod med sidoeffekter är
kod som ändrar på globala variabler.
Ett av sätten att parallellisera JModelica.org

som jag undersökt är ifall dessa tillägg är applicer-
bara på kompilatorn. För att ta reda på detta har
jag undersökt ifall kravet om frihet från sidoef-
fekter uppfylls. Jag presenterar i mitt arbete en
studie över sidoeffekter som finns i JModelica.org.
I studien ger jag även lösningar hur man kan ta
bort dessa sidoeffekter.
Arbetet har även resulterat i ett nytt verktyg

som analyserar kompilatorer utvecklade med Jas-
tAdd för sidoeffekter. En av svårigheterna med en
sån analys är att den genererad koden innehåller
många ointressanta sidoeffekter. De intressanta
sidoeffekterna drunknar ibland dessa. Verktyget
löser detta genom att filtrera den genererade ko-
den ifrån de ointressanta sidoeffekterna. Koden
undersöks sedan med ett existerande verktyg som
analyserar sidoeffekter. För att lättare identi-
fiera var i koden som sidoeffekter uppstår har jag
utökat det existerande verktyget ytterligare. Mitt
verktyg kan användas för att identifiera kod som
är fri från sidoeffekter och som därför är säker att
köra parallellt. För den koden som inte är det
ger verktyget information om var det sker i ko-
den. Verktyget kan alltså även användas som en
guide för att ta bort sidoeffekter.
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