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Abstract 

The objective of this thesis was to perform multi-disciplinary sensitivity and uncertainty 
analysis of the building parameters integrating thermal comfort, energy and daylight. The case 
study of a Danish office building was used for performing the simulations. The study 
evaluated the suitability of developed methodology for further usage in the early design stages 
of the building projects. A literature review was conducted to summarize existing methods 
for sensitivity and uncertainty analysis as well as to identify the most commonly used 
variables. Eighteen building parameters such as window types, opaque constructions 
insulation thicknesses, infiltration rate, ventilation rate, setpoint and setback temperatures, 
internal gains, and surface optical properties were tested. Total energy consumption, number 
of rooms compiled with Danish Building Regulations thermal comfort requirements and 
spatial daylight autonomy, were used as the result indicators. After validation of the statistical 
model of Pearson’s method, Spearman’s rank-order correlation method was chosen for this 
study. Both the sampling method and sample size were carefully determined for the 
generation of sampling.  Results of the study included the most crucial parameters for the case 
building optimization. In addition, the results showed the quantification of the uncertainty in 
according to the results. Filtering the best-performing multi-disciplinary results led to the 
identification of the best performance input regions according to the input parameters. A 
significant outcome of the study was development of DIVA code and Python code in IES VE 
which could be further readjusted and reused based on the consultant needs. 
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1 Introduction 

This chapter presents the theoretical background, objectives, and scope of the project. It also 
details research methods, project deliverables, and research limitations. 

1.1 Background 

The building industry is under continuous development and several changes in legislation and 
building codes concerning energy efficiency have been implemented in recent times [1]. 
Reducing the building’s energy consumption and optimizing its energy performance are the 
two key-target areas for both architects and engineers. Prediction of the building’s energy 
consumption is not only a significant step towards finalizing the design process but is also 
central for classifying the building based on its energy performance. Building simulations 
aiding the decision-making process are widely used in the latter stages of the design process. 
However, due to the time required for modelling and computation, and due to the uncertainties 
in the design input parameters, benefits of using building simulations in the initial design 
stages of the construction projects are still limited. Consequently, statistical methods have 
been frequently used in both practice and research [2-4] for predicting the energy consumption 
of the buildings and for assessing the impact of the design input parameters on the simulation 
results.  
 
As requirements on energy demands are becoming more stringent with every new change in 
buildings regulations [5], early decision making in a project lifecycle can lead to better time-
efficiency in solving design challenges. Sensitivity and uncertainty analysis can be used to 
identify the order in which the design parameters should be addressed, and to quantify how 
uncertainties in modelling inputs may affect the model outputs [6]. Majority of the case 
studies reported in the literature [7-9] have performed sensitivity and uncertainty analysis 
considering only one design objective, for example, minimising the energy demands of a 
building. A relatively small number of studies have investigated energy, thermal comfort and 
daylight at the same time [6]. Only a handful of studies have used a holistic design approach 
to the building design process. For example, Iason et al. [10] suggested a methodology for 
analysing multiple objectives from the early design stage to the final design stage of a building. 
The ‘holistic design approach’ also provides a significant motivation for performing multi-
disciplinary sensitivity and uncertainty analysis.  

1.2 Aim and objectives 

Firstly, this study aimed to develop a methodology for performing multi-disciplinary 
sensitivity and uncertainty analysis for energy, daylight and thermal comfort. The main task 
of this objective was to create scripts in two different building simulation tools DIVA and 
IES-VE for automating the simulations of daylight, energy performance and thermal comfort, 
respectively. The codes developed in this project shall be able to be used in real-life projects. 
Secondly, another objective of this work was to identify the design parameters for the studied 
case, which should be focused upon by the design team, and to determine their sensitivity. 
Thirdly, ranges of expected energy consumption values of the investigated building, 
dependent on the uncertainty of input parameters, were determined. Fourthly, this work aimed 
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to determine if performing uncertainty and sensitivity analysis in the early design stages of a 
project could lead to time-savings in the later stages of the design process. Finally, the study 
aimed to find out how different design variables influence the multi-disciplinary results and 
how these variables can be evaluated to obtain the best solution in the early design stages of 
the building projects. 
 
The main research outcomes of this thesis project are: 
 

 Identification of the most important design input variables and their sensitivity 
ranking, 

 Quantification of the influence of the design input variables on the multi-disciplinary 
output indices, 

 Interpretation of the multi-disciplinary results and suggestions for decision-making. 

1.3 Scope and limitations 

This work has used Spearman’s rank-order method for assessing the correlations between 
variables. Due to the excessive computational time required for running the samples, the 
geometrical complexity of the model and the limitations of the VEScript python editor, the 
number of initial design input variables considered for the study was limited. For daylight 
simulation, only one floor was chosen for investigations. The energy and thermal comfort 
evaluations were, however, performed for the whole building. No surrounding buildings nor 
vegetation were included in the models. The IES VE energy model did not include detailed 
design of the HVAC system. However generic system, used for building simulations, was 
specified in Apache. 

1.4 Research methods 

The work was carried out using the following research methods: 
 

 Literature review: Previous research projects on sensitivity and uncertainty analysis 
for single and multi-objective assessment were investigated to identify the trends in 
the choice of input / output values, 

 Modelling: Scripts in VE Python API and DIVA were created to automatize the 
process of performing multiple simulations, 

 Simulation: Simulations were performed to produce daylight, thermal comfort, and 
energy performance data, 

 Statistical analysis: Post-processing of results, statistical analysis (using Excel VBA, 
‘R’ programming language) and graphical visualization of extracted data (using 
Tableau, ‘R’ and Excel) were carried out to answer the main research questions. 
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1.5 Disposition of the thesis 

The thesis report begins with the literature review summing up available methods for 
sensitivity and uncertainty analysis as well as the current state of research in the building 
design context. The methodology chapter presents the description of the methods used for the 
thesis work, with a special focus on the script development for performing multi-disciplinary 
sensitivity and uncertainty analysis. It also includes a description of the base case building 
used for the energy, daylight and thermal comfort simulations. The results and discussion 
chapters present the outcomes of the sensitivity and uncertainty analysis for the case building. 
Ranking of the most important parameters and recommendations for favourable input ranges 
are also defined in this chapter. The results of the study are placed in the broader context of 
multidisciplinary evaluations including daylight, energy, and thermal comfort. Finally, last 
chapter highlights future work possibilities including further development of scripts and usage 
of different sensitivity and uncertainty analysis methods. 
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2 Literature review 

The literature review was divided into two parts. The first part aimed to summarize the current 
state of research concerning sensitivity and uncertainty analysis with different objectives, 
while the second part was focused on the different statistical methods suitable for performing 
Monte Carlo simulations. Based on the literature review, a list of dependent and independent 
variables for creation of data matrix, was generated.  

2.1 Case studies for sensitivity and uncertainty analysis 

Table 1 presented below, provides a summary of the previous research works in the area of 
sensitivity and uncertainty analysis and identifies the most commonly used statistical methods 
for building parameters sensitivity and uncertainty analysis, together with the most frequently 
analyzed input and output variables. 
 
Table 1. Literature research summarizing choice of input / output parameters and different methods 

used for sensitivity / uncertainty analysis in buildings. 

Input variables Output variables Research area Type of 
study 

Aim of 
research 

Ref. 

89 input variables, 
for example: 
wind pressure 
difference 
coefficients, room air 
temperature 
distribution, outdoor 
climatic conditions, 
heat gains from 
people, lighting and 
equipment, control of 
solar shadings and 
windows 

TO-performance 
indicator 
(The number of 
hours in a year 
when more than 
10 % occupants 
feel dissatisfied)  

Thermal 
comfort  

Uncertainty 
analysis  
(Bayesian 
node 
method), 
Sensitivity 
analysis 
(Latin 
Hypercube 
sampling) 

Thermal 
comfort 
assessment 
performance 
of a four-
storey office 
building in 
The 
Netherlands.  

[11] 

24 variables 
including: 
building height, 
length, width, 
rotation, view factor 
of the ground, ground 
reflectivity, 
insulation thickness, 
glazing ratio, weather 
parameters, setpoint 
temperature, 
ventilation rates, 
variables concerning 
occupancy and 
building environment 

Yearly heating 
loads, 
Heating load per 
m3, 
Heating power,  
Summer comfort 
factor 

Thermal 
comfort, 
Energy needs 

Sensitivity 
analysis 
(Morris 
method and 
FAST)  
 

Thermal 
comfort and 
heating /  
cooling 
loads 
assessment  

[3] 
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General methodology 
for performing 
Sensitivity analysis 
and Uncertainty 
analysis (different 
methods) 

Not specified Holistic 
approach 

Sensitivity 
analysis  

- [12] 

Infiltration rate at 50 
Pa, 
ventilation system 
heat recovery, 
U-value of different 
building components, 
window type, 
sunscreen type, 
energy pricing 
scenarios, 
workmanship errors, 
internal heat gains, 
temperature set 
points 

Net-present cost 
based on 
effectiveness and 
robustness 

Methodology 
for 
incorporation 
of different 
sensitivity and 
uncertainty 
analysis 
methods 
and case study 
focusing on 
cost 

Uncertainty 
analysis and 
Sensitivity 
analysis 
(meta- 
models) 

Building 
performance 
analysis and 
multidimensi
onal 
optimization 
of semi-
detached 
residential 
house  

[13] 

70 input parameters 
(for example): 
thermal conductivity 
of materials, 
thermostat setpoints, 
ground reflectivity, 
surface convection 
coefficients, solar 
radiation, heat gains 

Energy 
consumption, 
Peak power 
demand, 
Maximum / 
minimum /  
mean swing of 
temperature, 
Mean radiant 
temperature, 
Dry resultant 
temperature 

Thermal 
comfort, 
energy 

Sensitivity 
analysis: 
DSA, MCA, 
SSA 
methods 
 

Passive 
solar, single-
zone 
buildings 
tested for 
application 
of different 
Sensitivity 
analysis 
methods 

[14] 

Exemplary 
parameters: 
weather conditions 
physical properties of 
building materials, 
internal heat gains 
(occupancy, 
metabolic rate, 
equipment, lighting, 
setpoint temperature), 
interventions in 
building fabric and 
systems, infiltration 
rate, chiller COP, 
boilers efficiency 

Annual heating 
energy, 
Annual cooling 
energy, Carbon 
emissions 

Thermal 
comfort and 
adaptation to 
climate 
change 

Sensitivity 
analysis: 
SRC and 
ACS 
methods; 
Uncertainty 
analysis 

University 
building 
renovation 
scenarios 
assessed 
regarding 
changing 
climate 
conditions 

[15] 
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8 chosen parameters: 
location, façade, 
orientation, window 
control, WWR, SW, 
internal heat gains, 
thermal mass, 
airtightness rating at 
75 Pa 

Heating / cooling 
/ total / lighting 
energy 
consumption, 
Peak loads 
improvements: 
heating / cooling / 
total, UDI, PPD 

Thermal and 
visual comfort 

Sensitivity 
analysis 
(global main 
index)  

Office 
building 
with EC 
façade 
assessed 
holistically 
to support 
building 
design 
decision-
making 
process 

[10] 

U-values of building 
components, ACH, 
heat recovery, 
thermal bridges 

Annual heating 
energy per m2 
floor area, 
Cost-benefit 
analysis based on 
sampling results 

Review of 
different 
sensitivity 
analysis 
methods, 
assessment of 
compliance 
with standards  

Sensitivity 
analysis 
(Sobol’ 
sampling) 
and 
Uncertainty 
analysis 

3 case 
studies 
combining 
cost-benefit 
calculation 
and bps 

[2] 

Orientation, UWall, 
URoof, UFloor, UWin, 
solar heat gain 
coefficient, window 
frame thickness, 
Thermcontrol, 
ventilation and 
infiltration rate, 
occupation, 
metabolic rate, 
clothing level 

Annual heating 
energy 
consumption, 
Predicted mean 
vote index 

Energy, 
Thermal 
comfort 

Sensitivity 
analysis 

Sensitivity 
analysis of 
Building 
parameters 
and 
occupancy 
parameters 
effects in 
residential 
buildings 

[16] 

Window shading 
size, 
window width, 
window length, 
windows infiltration 
rate, doors infiltration 
rate, AFVentilation, 
UExtWall, UIntWall, 
UFirstFloor, URoof, SHD, 
𝛼ExtWall, 𝛼Roof, 𝛼Floors,   
thickness of floor 
slab 

Heating / cooling 
/ fans energy 
consumption, 
Total degree 
hours, 
Global objective, 
Cooling degree 
hours, 
Heating degree 
hours 

Energy, 
Thermal 
comfort 

Sensitivity 
analysis 

Building 
design 
optimization 
using 
Sensitivity 
analysis and 
genetic 
algorithm 

[17] 

Orientation, window 
to wall ratio, skylight 
to roof ratio, UWall, 
URoof, USkylight, UWin, 
UFloor, CFloor, CRoof, 
CWall,  αExtWall, SHGC, 
Tvis, infiltration, 
glazing, floor, 
parapet, corner linear 
transmittance 

Hourly discomfort 
index, 
Cooling energy, 
Annual electricity 
energy 

Energy, 
Thermal 
comfort 

Sensitivity 
analysis 

Sensitivity 
analysis and 
optimization 
of building 
design in 
subtropical 
regions 

[18] 
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Orientation, window 
to wall ratio, 
overhang depth, 
SHGC, insulation, 
infiltration rate, 
insulation thickness, 
window resistance, 
TslabFloor, infiltration, 
sensible heat 
recovery 
effectiveness, air 
distribution 
effectiveness, heating 
and cooling setpoints, 
Tcoolair, Theatair 
 

Energy 
consumption, 
Predicted mean 
vote index 

Energy, 
Thermal 
comfort 

Sensitivity 
analysis 

Sensitivity 
analysis 
throughout 
the building 
design 
process 

[19] 

Window to wall ratio, 
window type, space 
aspect ratio, 
insulation, TShading, 
 𝛼front shade,  𝛼back shade 

UDI, 
Lighting energy 
consumption, 
Heating / cooling 
energy 

Energy, 
Daylight 

Sensitivity 
analysis, 
Uncertainty 
analysis 

Performance 
of Office 
room with 
automated 
shading 

[20] 

Window to wall ratio, 
UWall, UWin, solar heat 
gain coefficient, side 
fins degree surface 
reflectance 

Energy 
consumption, 
Daylight factor, 
Overtemperature  
 

Energy, 
Thermal 
comfort, 
Daylight 

Sensitivity 
analysis 

Informed 
decision 
supported by 
Sensitivity 
analysis in 
multidimensi
onal design 
space 

[6] 

Location, orientation, 
window to wall ratio 
smart windows, 
Smart windows rule-
based controls, 
thermal mass, 
infiltration rate 

Energy 
consumption, 
Peak energy 
demand, 
UDI, PPD 
 

Energy, 
Thermal 
comfort, 
Daylight 

Sensitivity 
analysis 

Office 
building 
with smart 
windows:  
Sensitivity 
analysis of 
design 
parameters 
on 3 aspects 

[10] 

Aspect ratio, window 
to wall ratio, number 
of floors, orientation, 
overall scale, U-
values: wall roof, 
window, solar heat 
gain coefficient, 
lighting peak density, 
equipment peak 
density 
 
 

Heating energy 
use, 
Cooling energy 
use, 
Electricity use 
 

Energy Sensitivity 
analysis: 
SRC, FAST 
TGP, Morris 

Comparison 
of the 
suitability of 
different 
Sensitivity 
analysis 
methods in 
assessing 
building 
energy 
performance  

[21] 
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Reflectance of 
surfaces: floor, wall, 
ceiling, ground, 
frames 

Total Annual 
Illumination, 
Useful Daylight 
Illuminance, 
Daylight 
Autonomy, 
Daylight Factor 

Daylight Sensitivity 
analysis: 
Morris 

Sensitivity 
analysis 
studying the 
impact of 
reflectance 
values 

[22] 

 
The reviewed scientific literature provides state-of-the-art in multi-disciplinary sensitivity and 
uncertainty analysis. It can be noted that the majority of the previous literature on sensitivity 
and uncertainty analysis of buildings, focused only on one or two output indices, with thermal 
comfort being the most popular choice. Only a few studies reported in the literature have 
implemented a holistic approach including energy, thermal comfort, and daylight 
simultaneously. No unified trends regarding choices of input parameters and methods are 
evident. Selection is highly dependent on available time and resources for project 
implementation. The number of input parameters varies between 4 and 89 or more, among 
the reviewed literature. Based on the literature review, there is no clear pattern indicating 
which parameters should be prioritised. Nevertheless, a minimum number of samples is 
necessary for the chosen statistical method. 

2.2 Statistical methods for sensitivity and uncertainty analysis 

2.2.1 Uncertainty analysis 

The uncertainty in the output results can be classified based on what causes the differences 
among them [23]. According to de Wit [11], uncertainty can be divided into categories of 
specification, modelling, scenario and numerical. Therefore, it is important to distinguish 
between different uncertainty sources before choosing an appropriate method for statistical 
quantification. The type of the uncertainty influence the choice of the method for solving the 
design problem, providing the right results data and generating suitable conclusions. Various 
types of uncertainties can be directly linked with each other. This is due to the lack of precise 
determination of certain behaviors of occupants or other factors, for example, the infiltration 
rate. The correct quantification of the related inputs is needed to obtain reliable results [2] 
both in sensitivity and uncertainty analysis. Several research works focused on uncertainty 
analysis [8, 10, 19, 20], however, different methods for quantification of the results were used 

2.2.2 Sensitivity analysis 
Sensitivity analysis has been widely applied in the context of building energy modelling to 
assess how uncertainties in the input parameters may influence the results [26]. The main 
reason for performing the sensitivity analysis is to identify the input parameters which have 
the largest influence on the results. Moreover, performing sensitivity analysis can also 
determine the design variables which do not affect the results. These insignificant parameters 
could be excluded from the main focus of optimization in the design projects [27]. Sensitivity 
analysis can even be used to better understand the relationship between inputs and outputs 
and to detect errors in the model [26]. According to Tian [25], sensitivity analysis methods 
can be divided into local and global approaches. The local sensitivity analysis approach is 
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focused on the influence of uncertain parameters over the user-defined point in the data sets, 
whereas the global analysis refers to these uncertainties over the whole input space [25, 2]. 
Even though the global approach is generally considered more reliable for data interpretation, 
it requires a high computational effort to perform the analysis. This leads to the fact that both 
local and global approaches are widely used in practice. Monte Carlo based techniques are 
typically used to compare uncertainties with normal distributions to the parameters defined in 
ranges. Figure 1 presents the schematic representation of sensitivity and uncertainty analysis. 
 

 
Figure 1. Schematic representation of Sensitivity and Uncertainty Analysis. 

2.2.3 Sensitivity analysis methods 
Sensitivity Analysis methods can also be evaluated by different quantification categories. 
According to Heiselberg [28], three main classes of sensitivity analysis methods are screening 
methods, local sensitivity methods, and global sensitivity methods. Hamby [29] assigned the 
sensitivity analysis methods into ten one-factor-at-a-time-methods, four methods dividing or 
segmenting input parameters into two or more empirical distributions based on the 
partitioning of the output distribution, and ten methods based on generation of sample of input 
matrix and associated output vector. Mokhatari and Frey [27] noted that there is no formal 
guidance / evaluation matching specific sensitivity analysis methods to the specific type of 
scientific problems. However, they suggested general guidance on sensitivity analysis of the 
probabilistic risk models.  

 Local methods 

Local sensitivity analysis explores the design space around data points (or base case) and does 
not include the possible interactions between them [26, 30]. Therefore, the local method is 
quite limited in comparison to global method therefore decreases the accuracy of the outcomes. 
Local sensitivity analysis belongs to the one-factor-at-a-time methods (OFAT / OAT). 
According to Delgarm [31], each variable is changed once at a time over the whole design 
space, while all the other parameters are kept fixed. The same process is repeated for each 
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variable. The one-factor-at-a-time method is assessed using gradients or partial derivatives of 
the output variables when the function of outputs is available [2, 31]. 

 Global methods 

In general, the global methods, summarized in Table 2, include regression methods, screening 
methods, variance-based methods, and metal-model methods. Each method differs in terms 
of suitability of statistical model, sample size, sampling method, and sensitivity index. 
 

Table 2. Summary of global methods (n means number of parameters). 

 
Regression methods have low computational costs as they are easy to implement and fast to 
compute [30]. Screening methods are suitable when the aim of the analysis is to exclude 
unimportant parameters from a large number of inputs [34]. Screening methods, variance-
based methods or meta-modeling methods are recommended to recognize non-linearity and 
interaction effects [35]. Meta-modeling methods are recommended for cross-platform 
simulations, as they are computationally efficient and faster to get the predictive results [30]. 
Meta-modeling methods are suitable when the model is complex and computationally 
intensive. Additionally, they are better for performing quantitative sensitivity analysis, design 

Methods Regression 
methods 

Screening 
methods 

Variance-based 
methods 

Meta-model 
methods 

Reference  
 

Number of 
model 
evaluations 

10n 2n-10n 100n-1000n 1000n [24, 32]  

Computational 
cost 

Cheap Cheap Very expensive Very expensive [30, 33] 

Accuracy moderate moderate high high [30, 4] 
Sampling 
method 

LHS, Monte 
Carlo 

Morris Sobol, FAST Sobol, FAST [4, 30] 

Sensitivity 
indices 

Regression 
coefficient 
 
Correlation 
coefficient 

μ: main effect  
 
σ: interaction 
with other 
factors or the 
nonlinear 
effects  

First-order 
sensitivity 
index  
 
Total-effect 
index"  

First-order 
sensitivity index  
 
Total-effect 
index"  

[30, 4] 

Linear model ✓    [30] 

Monotonic 
model 

✓    [30]  

Non-
monotonic 
model 

 ✓ ✓ ✓ [30] 

Interaction 
effects and 
non-linear 
effects 

 ✓ ✓ ✓ [30] 

Field Sensitivity 
analysis, 
Uncertainty 
analysis 

Sensitivity 
analysis 

Sensitivity 
analysis, 
Uncertainty 
analysis 

Sensitivity 
analysis, 
Uncertainty 
analysis 

[30, 4] 
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space exploration and optimization, as time of running detailed model is much longer than 
time of running meta-model [30]. Kristensen and Petersen [36] noted that Morris (screening) 
method, which requires a significantly smaller number of samples, can provide as accurate 
results as Sobol’ (variance-based and meta-model) method for ranking of parameters 
importance. In this thesis work, regression methods were preferred by the authors due to the 
time limitations of the project and limited computational power for performing complex and 
time-consuming simulations. Regression methods, which include linear regression and 
correlation method, will be explained in detail in the following sections. Description of other 
sensitivity analysis methods is presented in Appendix A. 
 
Linear Regression: 

Linear Regression methods include Standardized Regression Coefficient (SRC), Standardized 
Rank Regression Coefficient (SRRC), Partial Correlation Coefficient (PRC), and Partial Rank 
Correlation Coefficient (PRCC). SRC is commonly used in the field of building energy 
assessment since it is easier to understand and fast to compute [30]. The computational cost 
for SRC is moderate compared to Morris and Sobol’ method [33]. A higher SRC value 
indicates a higher significance of the variable, and a negative SRC value suggests that the 
outputs values will change in opposite direction compared to the changes in inputs [21]. 
Menberg et al. [33] suggested that the distinction between non-influential and influential 
parameters increases with the number of samples tested. An SRC of 0.01 is a threshold to 
indicate that the results are robust and meaningful. If SRC is lower than 0.01, the values of 
SRC will vary according to different sample sizes [33]. 
 
However, SRC is not reliable if the statistical model is highly non-linear. Besides, it is valid 
only when the inputs are not correlated. If there exists a correlation between inputs, PRC 
should be used instead. PRC and SRC will give similar results else wise [30]. The coefficient 
of determination (R2) should be calculated for the linear model. R2 = 0.7 indicates that the 
outcome of the building model sufficiently fit into the regression model. If R2 is lower than 1 
even for a sufficient number of samples, it reveals the presence of significant non-linear 
effects and interactions between the parameters [33]. The SRRC can be implemented when 
R2 value is low since it is suitable for a non-linear but monotonic model. The monotonic model 
means the relations between variables have similar trend directions but at probably inconstant 
rates [86]. As mentioned by Anh-Tuan and Sigrid, to calculate SRRC, the input and output 
parameters are replaced by their ranks and regression is calculated based on them. Detailed 
SRC and SRRC functions are explained in reference [4]. 
  
Correlation: 

Correlation methods include Pearson’s correlation, Kendall rank correlation, Spearman’s 
correlation, and Point-biserial correlation. Pearson’s method measures the linear correlation 
coefficient between input X and output Y. However, this sensitivity index can only be applied 
to the linear model. Pearson’s correlation is applicable when the two correlated variables are 
measured on a continuous scale. If at least one variable has discrete values, then Spearman's 
correlation should be used. More details on the suitability of each correlation coefficient are 
provided further down in Section 3.7. In the case of the monotonic function, Spearman’s 
method should be considered. Spearman’s method is based on the ranking of input variables 
instead of the raw values of Pearson which is similar to SRRC and PRCC [4]. 
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2.2.4 Sensitivity and uncertainty analysis sampling 

 Sampling method 
The choice of the sampling method is a very important step in performing sensitivity and 
uncertainty analysis. Special attention must be paid to samples distribution within the created 
data matrix. The more uniform spread of design iteration is, the more accurate the results are 
[2]. Sampling methods such as random sampling, cluster sampling, stratified sampling, and 
systematic sampling are commonly used for performing sensitivity analysis. 
 
Different sensitivity analysis methods require specific sampling methods associated with 
them. For example, traditional Morris sampling technique (factorial sampling) is a one-
parameter-at-a-time (OAT) method, which means only one parameter is varied in each sample. 
Sobol’ method requires sampling based on Sobol’ sequences which is a quasi-random low-
discrepancy sampling approach [36]. Regression and meta-modeling methods can use both 
random sampling methods, e.g. Monte Carlo sampling, or quasi-random methods, such as 
Latin Hypercube sampling (stratified sampling category). Compared to random sampling 
methods, quasi-random sampling methods more quickly provide evenly distributed samples 
covering the design space [35]. The reason is that quasi-random stratified methods initially 
divide the parameter space into equal areas and then select the random samples within these 
multi-dimensional areas [33, 36]. 

 Probability distributions 

According to Burhenne [2], probability distributions affect the quantification of uncertainties 
in the project inputs. Since the probability density function (PDF) affects the results of 
sensitivity analysis, it should be carefully selected [38]. Particularly attention should be paid 
to sensitivity measures for variance-based and density-based methods since the results are 
related to an output probability distribution [39]. In addition, the PDF affects results since 
shape of distribution is influenced by any potential parameter correlations and is model-
specific. The PDF can be generally categorized into several types of distributions, including 
uniform and non-uniform, among others. The uniform distribution is called non-informative 
and can be implemented for any sensitivity analysis method. Non-uniform distribution is 
called informative and can only apply to specific sensitivity analysis methods [36]. Some 
sensitivity analysis methods require certain PDFs. For example, Morris and Regional 
Sensitivity Analysis (Monto Carlo filtering) should have uniform input distribution [35]. On 
the contrary, some probability density functions are limited to specific sensitivity analysis 
methods. For example, if there are both uniform and non-uniform distributions, Sobol’ 
method should be selected rather than Morris or Local methods, as it can consider the shape 
of parameter distributions, range and correlated effects simultaneously [36]. Burhenne [2] has 
reported that uniform, normal and log-normal distributions are the most commonly used types. 
However, this does not indicate the applicability of the aforementioned types to every single 
project. The choice of the right probability distribution is dependent on the uncertainties of 
inputs and their types. 
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Table 3. Probability distributions based on the applicability in building simulations analysis. 

Input 
parameters 

Distribution Type  Examples Reference 

x,y Uniform Continuou Lack of specific background 
knowledge about input parameters 
for example efficiency, overhang 
projection ratio 

[2, 40] 

µ, σ Normal Continuous Setpoints temperature, useful when 
physical quantities are measured 
(for example, length) 

[41] 

α, β Beta Continuous Efficiency of heat recovery [41] 
2,  Log-normal Continuous Non-negative parameters 

(material’s density, metabolic rate, 
air change, U-values) 

[42] 

x,y,z Triangular Continuous Applicable for variables between 
uniform and normal distribution 

- 

x,y Uniform Discrete Number of occupants / inhabitants, 
sky radiation, shading coefficient 

[2, 43] 

0≤p≤1 Bernoulli Discrete Fixed number of trials with a fixed 
probability of succeeding. Has only 
two outcomes, therefore limited 
applicability in case of building 
projects.  

[44] 

p, n, q Binomial - Related to Bernoulli distribution 
where each trial is independent. 
Limited applicability. 

[45] 

u, k, c Weibull  - Commonly used to model 
tropospheric wind speed 

[46] 

 
Table 3 presents the different types of probability distributions. Normal distribution means 
the value of input parameters will have equal probability around a mean value (e.g. setpoint 
temperature). Log-normal distribution means higher values will be more probable than lower 
values (e.g. U-values and infiltration rate). Beta distribution means higher values will be less 
probable than lower values (e.g. efficiency of heat recovery) [41]. Parameter distributions are 
used in the detailed design phase when the uncertainty is included in the fixed parameter 
values chosen in the early design stage. Besides, they are applied when the values are fixed 
as expected or preferred, for example, Eggebø [48] chose normal distribution based on the 
new Norwegian energy standard for TEK 10 (NS3031) and applied a standard deviation of 
±10 %. In addition, when the uncertainty of the existing building stock needs to be reflected, 
different types of probability distribution functions can be used [36]. 

 Sampling size 

Several methods for determining minimum sample size exist such as conventional rules, 
statistical power methods, cross-validation approaches [49]. Determination of sample size is 
a crucial point in the sensitivity and uncertainty analysis to yield accurate results. Too small 
sample group might result in biased data, not going far beyond the analyzed base case, thus 
rejecting the validity of the performed analysis. The necessary sample size is linked to the 
goal of the development project and the required accuracy of results. According to Brooks 
and Barcikowski, the sample sizes which are not large enough are prone to type II error [49]. 
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In the effect-size method, there is an inverse correlation between the size of the sample and 
the effect size meaning that with the decrease of effect size there is an increase in the number 
of samples [50].  
 
The sampling size considers many factors such as input variables, the range of variables, the 
distribution in range, building type or the HVAC system [37]. Loeppky et al. [51] 
recommended 10 * n (n being the number of inputs in this section) as a sampling number for 
the regression method. In any case, the sampling size should be large enough which enables 
input convergence for the sensitivity indices [27]. The Morris method recommends r (the 
number of trajectories) * (n+1) [24].It usually sets r between 5 to maximum 15 [51]. On the 
other hand, Willems et al. [52] concluded that while r = 25 manages to clearly differentiate 
between influential and non-influential factors, it still does not suffice to stabilize the factor 
raking. Variance based methods, such as Sobol indices require having m * (2n+2) number of 
samples, whereas m is the number of evaluations according to the individual effect. The 
variable m can usually take any values such as 16, 32, 64 (and so on), which leads to larger 
sampling and therefore higher computationl cost [4]. Tian [53] applied sequential method to 
determine the number of samples required for convergence. In addition, the Sobol’ method 
has proven to determine convergence faster than the SRC method. 
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3 Methodology 

The main goal of the project was to explore the most significant building design parameters 
for the case building by means of sensitivity analysis. The project objectives also included an 
assessment of how the design inputs affect different results by performing an uncertainty 
analysis. Schematic workflow for the project work is shown in Figure 2. 
 

 
Figure 2. Schematic workflow for performing sensitivity analysis and uncertainty analysis. 

Among the various available statistical methods, correlation methods were chosen for 
performing sensitivity and uncertainty analysis in the current project. Pearson’s correlation 
coefficient was used for evaluating the strength of linear association between paired input and 
output values, whereas, SPEAR, which is a none-parametric test, was used when Pearson’s 
method was not suitable [27]. The statistical approach for energy and thermal comfort 
included running multiple simulations based on randomly generated samples (SimLab 2.2). 
This was executed by implementing python codes in IES VE Script Python Editor (software 
build-in). A similar methodology was used for daylight analysis with the difference of 
performing simulations in DIVA. The methodology, including samples generation, 
development of python and DIVA codes for automatization of simulations and selection of 
methods for data interpretation, is aiming to be applicable for future building optimization 
projects. Workflow for performing sensitivity and uncertainty analysis, which is presented in 
Figure 2 for the project case, is described in detail in the following sections. 
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3.1 Building base case 

The initiator of this research project was company Rambøll, with main headquarters located 
in Copenhagen, Denmark. In this study, the chosen base case was a newly built office located 
in Nordhavn (coastal part of Copenhagen) with an approximated floor area of 29,403 m2. The 
approximated heated area is 25,994 m2 and the total window area is 6,337 m2. The ground 
and the first floors are fully glazed and are open for public. The office floors spread from the 
second floor up to the twelfth floor of the building. External glazing area is varying according 
to different azimuths in the façade. The window to wall ratio varies between 54 % in the north 
to 34 % in the south. An atrium is located in the centre of the building and is covered by a 
roof skylight on the top. The building includes a basement floor located underground and a 
sky lounge on the thirteenth floor. Northern, southern and top view of the building are shown 
below in Figure 3. 
 

 
Figure 3. North Façade, South Façade and Top view of the case study building. 

In reference to shading strategies, internal shading devices have been added to the rooms from 
the southwest to the southeast. The shading is operating in the discrete mode, which means 
that the shading is fully raised when the incident irradiance variable is lower than 200 W/m2 
and the shading is fully lowered when the incident irradiance variable is higher than 300 W/m2. 
The opaque and glazed constructions used in the model are presented in Table 4 and Table 5. 
 
Table 4. Opaque construction for base case. 

Opaque Constructions U-value 
[W/(m2K)] 

Assigned for 

External Wall-1 0.709 3rd to 11th floor 
External Wall-2 0.725 2nd floor 
External Wall-3 0.716 12th floor 
External Wall-4 0.150 Sky lounge and the ground floor 
Internal Wall 0.568 All floors 
Ground Floor 0.103 Basement floor 
Exposed Floor-1 0.150 1st and 2nd floor 
Exposed Floor-2 0.709 3rd to 11th exposed floor (twisted) 
Exposed Floor-3 0.715 12th exposed floor (twisted) 
Internal Floor / Ceiling 0.978 All floors 
Roof-1 0.150 Basement, ground and top floor 
Roof-2 0.700 3rd to 12th floor exposed roof (twisted)  
Roof-3 0.707 2nd floor exposed roof (twisted) 
Roof-4 0.180 Ground atrium part 
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Table 5. Base case glazed constructions. 

Glazed construction U-value 
[W/(m2K)] 

g-value Assigned for 

External Window 0.638 0.350 All 
Roof-light 1.508 0.774 All 
Internal Window-1 1.051 0.349 Rooms surrounding atrium 
Internal Window-2 4.081 0.813 Internal windows between rooms 

 
Table 6 presents ten thermal templates which were assigned to different types of rooms. The 
heating and cooling operation profiles were adjusted to the building working hours, with a 
setpoint temperature of 21 ˚C for heating and 23 ˚C for cooling. In the table, MS stands for 
the maximum sensible gain, and ML stands for the maximum latent gain. 
 
Table 6. Thermal templates assigned for the base case. 

Template Heating-cooling 
setpoint 
temperature 

Internal gains Infiltration rate 
 

Auxiliary 
ventilation 
 

Atrium 21-23 ˚C - 0.2 l/s/m2 - 
Auditorium 21-23 ˚C People = 1.5 m2/person  

MS: 6 W/person 
Equipment = 900 W+8 W/m2 
Lighting = 6 W/m2 

0.2 l/s/m2 9.4 
l/s/person 

Auditorium 
- 
Cloakroom 

21-23 ˚C People = 124  
MS: 83 W/person 
ML: 30 W/person 
Lighting = 6 W/m2 
 

0.2 l/s/m2 9.4 
l/s/person 

Canteen 21-23 ˚C People = 1.5 m2/person  
MS: 100 W/person 
ML: 43 W/person 
Lighting = 6 W/m2 

0.2 l/s/m2 11.3 
l/s/person 

Heated 
rooms 

21 ˚C Lighting = 6 W/m2 0.3 ach - 

Meeting 
rooms 

21-23 ˚C People = 2.5 m2/person 
MS: 100 W/person 
ML: 43 W/person  
Equipment = 24 W/m2 
Lighting = 6 W/m2 

0.2 l/s/m2 11.3 
l/s/person 

Non-heated 
rooms 

- - 0.3 ach - 

Office 21-23 ˚C People = 8 m2/person 
MS: 100 W/person 
ML: 43 W/person 
Equipment = 12.5 W/m2 
Lighting = 7 W/m2 

0.2 l/s/m2 7 l/s/person 
0.7 l/s/m2 

Print room 21-23 ˚C - 5 ach - 
Sky lounge 21-23 ˚C People = 49  

MS: 100 W/person 
ML: 43 W/person 
Lighting = 6 W/m2 

0.2 l/s/m2 11.3 
l/s/person 
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Since the majority of the windows cannot be opened, a mechanical HVAC system is used for 
providing ventilation inside of the building. The properties and the location of the opening 
types are shown in Table 7. Ground floor includes windows which can be manually opened 
by the room users, therefore energy and thermal simulations included possibility of the natural 
ventilation. 
 
Table 7. Opening types. 

Opening type Opening percentage [%] Placement 
Windows_opening_1 10.3 Ground floor northern and southern entrance 
Windows_opening_2 6.5 Ground floor main entrance 
Windows_opening_3 1.6 External skylight 
Windows not openable 0.0 Whole building except above areas 

 
The generic HVAC system for the whole building was assigned and the settings are presented 
in Table 8. The ventilation airflow rate was demand-controlled, i.e., changing accordingly to 
the occupancy rate. 
 
Table 8. HVAC settings. 

Category Parameter Value Unit 
Heating Seasonal efficiency of heat source 3.50 kW/kW 

SCoP of entire heating system 3.00 kW/kW 
Ventilation heat recovery 0.85 - 

Cooling Seasonal efficiency of cool source 2.50 kW/kW 
SSEER of entire cooling system 2.00 kW/kW 

Auxiliary energy System-specific fan power 1.50 W/1/s 

3.2 Input parameters 

According to de Wit [11], there is no existing database specifying input parameters for 
building sensitivity and uncertainty analysis. Therefore, all inputs for the current project were 
initially determined based on the literature review, previous knowledge, and discussions with 
experts. These inputs are presented in Table 9. The initial list consisted of eighteen parameters 
divided into five groups: configuration of façade design, construction quality, system design, 
internal gains, and material surface optical properties. It is important to highlight that along 
the course of the project, several constraints on input parameters appeared due to the 
limitations of the software combined with the complex geometry of the building. Description 
of python limitations in IES VE resulting in the limitations to the input paraments is presented 
in Section 3.6. 
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Table 9. Input parameters for parametric studies including distributions and ranges. 

Category Parameter Distribution Range Units 
Configuration 
of Façade 
design 

Wall insulation 
thickness 

Uniform 0.01 - 0.25 m 

Roof insulation 
thickness 

Uniform 0.16 - 0.20 m 

Floor insulation 
thickness 

Uniform 0.20 - 0.45 m 

Glazing type Discrete 1, 2, 3, 4, 5 (Table 10) - 
Construction 
quality 

ACH at 50 Pa 
(blower door test) 

Discrete 0.179, 0.279, 0.379, 0.479, 
0.579 

ach 

System design Auxiliary 
ventilation rate 

Discrete 9.5, 12.5, 14.5, 16.5, 18.5 l/s/person 

Inlet air 
temperature 

Discrete 14, 15, 16, 17, 18 ˚C 

Indoor heating 
setpoint 

Uniform 18 - 22 ˚C 

Indoor heating 
setback 

Uniform 12 - 17 ˚C 

Indoor cooling 
setpoint 

Uniform 23 - 26 ˚C 

Indoor cooling 
setback 

Uniform 26 - 30 ˚C 

Occupancy profile 
type 

Discrete 1, 2, 3, 4, 5 (Table 11) - 

Internal heat 
gains 

Occupancy Discrete 8, 10, 12, 14, 16 m2/person 
Lighting Discrete 5, 7, 9, 11, 13 W/m2 

Equipment Discrete 10.0, 12.5, 15.0, 17.5, 20.0 W/m2 
Material 
surface optical 
properties 

Reflectance of 
Ceiling 

Discrete 0.7, 0.8, 0.9 - 

Reflectance of 
Walls 

Discrete 0.5, 0.6, 0.7, 0.8 - 

Reflectance of 
Floor 

Discrete 0.2, 0.3, 0.4 - 

 
The U-value of the opaque constructions is a significant factor in the building façade design. 
Building regulations for various climates, in terms of U-value, may have different 
requirements. For example, according to Swedish Building Regulation BBR [54], the U-value 
of external walls, ground slabs and roof structures for new building should be lower than 0.18 
W/(m2K), 0.15 W/(m2K) and 0.13 W/(m2K), respectively, whereas according to the Danish 
Building Regulations 2018 [1], they should be less than 0.3 W/(m2K), 0.2 W/(m2K) and 0.2 
W/(m2 K), respectively. The U-values of exiting external roof and ground structures fulfill the 
Danish building code requirements in the case building. According to BR18 [1], the 
approximate insulation thicknesses for external walls, ground slabs, and roof structures are 
150 mm, 150 mm and 200 mm, respectively. Therefore, different insulation thicknesses for 
different opaque constructions were tested and are presented in Table 9. 
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Window properties, such as heat conductivity, solar heat gain coefficient, and light 
transmittance, affect energy, daylight and thermal comfort in different ways. Previous 
sensitivity analysis studies have analyzed these properties separately and concluded that the 
g-value is more important than the U-value of the window [38, 8, 35]. Sherman and Bre 
investigated window type as an independent variable which included all window properties 
[55, 56]. However, due to the limitation of VEScript explained in Section 3.6, only the glazing 
type of the outer pane was tested among different window types in this project. The properties 
of the middle pane and inner pane remained the same as in the existing case. The U-value for 
all the tested window types was the same, i.e. 0.638 W/(m2K). The properties for window 
types are listed in Table 10. 
 
Table 10. Type of windows chosen for parametric studies. 

Window Type Outer pane glazing type g-value Reflectance Light transmittance 
w-1 Planiclear 0.700 0.078 0.720 
w-2 Planitherm 0.580 0.200 0.689 
w-3 Cool Lite Xtreme 60-28 0.260 0.600 0.524 
w-4 SKN 174 II 0.340 0.380 0.601 
w-5 Cool Lite Xtreme 70-33 0.300 0.400 0.610 

 
The airtightness of the building envelope can significantly affect the building energy 
performance as well as the indoor air quality. Higher infiltration rate results in the increase of 
the total energy demand (higher heating and cooling) and potentially leads to unpleasant 
draught [57]. In addition, during summertime, warm and humid air leaking might condense 
on the cooler part of the construction, which may result in mould and consequently harms the 
structure [57]. The Swedish passive house airtightness should be below 0.3 l/s/m2 at 50 Pa. In 
a conventional building [58], the air permeability value varies around 0.8 l/s/m2 at 50 Pa. 
Nevertheless, in the existing buildings, the air leakage value falls within the large range of 0.1 
l/s/m2 to over 30 times the standard value of 0.8 l/s/m2 from the former Swedish Building 
Regulation [54, 58]. The airtightness depends on the quality of workmanship, the 
continuousness of airtight layer in the constructions, age of the building and number of floors 
[58]. In the project base case model, the infiltration rate was assigned to different thermal 
templates resulting in an overall building infiltration value of 0.179 ach, equal to 
approximately 0.2 l/s/m2. Different air change values were tested with the purpose of 
determining the sensitivity of the parameter.  
 
The auxiliary ventilation airflow rate is used for constantly allowing fresh air in the building, 
to keep the CO2 concentration at a low level. Higher ventilation rate can significantly limit 
the CO2 concentration which benefits people’s health. However, in a cold climate, it might 
result in higher heating demand in winter but less cooling need in the summer. The desired 
indoor climate is specified in terms of the desired air quality for a designed building. CIBSE 
Guide A Table 1.5 [59] and ASHRAE Handbook Fundamentals 2009 Chapter 16.10 [60] 
suggest airflows of 10 l/s/person for office rooms. Danish Standard 447 [61] and BR18 [1] 
specifies that flow needs shall be determined based on the size and the usage of the rooms. 
 
The auxiliary ventilation rate in the investigated building varies between 7 l/s/person, 9.4 
l/s/person, and 11.3 l/s/person in different thermal templates. However, in order to have a 
general value for the whole building, the overall auxiliary ventilation was calculated as 9.5 
l/s/person (plus addition for the heated floor area) based on the occupancy rate in each 
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template. The testing options of auxiliary ventilation rates, are in reference to ASHRAE 
standards [62] and decision of project authors. Different ventilation rates were tested for the 
sensitivity and uncertainty study. When using outside air for free cooling, a higher supply air 
temperature may result in less mechanical cooling, less terminal box reheating and higher fan 
power consumption [63]. Optimizing the supply air temperature can help to decrease energy 
consumption [64]. Therefore, the inlet air temperature was considered as a parameter for 
testing. Prior research [63] has shown that the supply air temperature should be related to the 
outside temperature. For example, the ‘outdoor temperature-compensated supply air 
temperature’, also described as supply air temperature as a function of outdoor temperature, 
is commonly used when the VAV system is applied. However, with the aim of testing values 
above and below the base case (16 ˚C), discrete values between 14 - 18 ˚C for inlet air 
temperature were tested. The airflow was varying according to the occupancy schedule. 
 
Setpoint temperature is used to maintain the air temperature of the rooms when occupied. On 
the contrary, setback temperature is used outside of the occupied hours. The typical heating 
setpoint temperature is around 21 - 22 ˚C and the cooling setpoint temperature is 23 - 24 ˚C 
[65]. However, if the setpoint temperature is closer to the outside temperature, the energy 
required for heating and cooling is decreased [65]. According to the ANSI / ASHRAE 
Standard 55 [66], the heating setpoint temperature of 66 - 80 ˚F (18.9 - 21.1 ˚C) and the 
cooling setpoint temperature of 74 - 78 ˚F (23.5 - 25.5 ˚C) are accepted by 80 percent of the 
building occupants. The ASHRAE standard also recommends having 55 ˚F (12.8 ˚C) as 
heating setback temperature and 82 ˚F (27.8 ˚C) as cooling setback temperature. However, in 
order to test more possibilities, the ranges presented in Table 9 were used. 
 
Different occupancy schedules result in various HVAC, lighting, and equipment operating 
times, which may lead to diverse energy consumption results. However, there is a lack of 
research investigating this parameter in the sensitivity analysis. Therefore, the occupancy 
profile type was included in the input parameters list. The length of working hours was kept 
the same as the base case. However, the starting point of the working day and the length of 
the lunch break were varying. Five types of tested profiles are listed in Table 11. 
 
Table 11. Types of profiles used in the project.  

Ty-
pe 

Office occupancy profile Canteen profile Heating setpoint profile 
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2 

 
 

 Time of day Time of day Time of day 
3 

 
 

 

 Time of day Time of day Time of day 
4 

   

 Time of day Time of day Time of day 
5 

 
 

 Time of day Time of day Time of day 
 
Internal gains are the sensible and latent heat generated by the internal sources such as people, 
lighting or equipment. They can result in different temperature and relative humidity 
conditions in rooms [67]. The internal gains contribute to the reduction of the heating demand 
in winter, meanwhile, they can increase the cooling demand in summer. In order to know how 
the internal gains influence both the energy demand and thermal comfort, different occupancy 
rates, and lighting and equipment gains were chosen for the sensitivity analysis. Building 
Research Established [67] have suggested that 12 - 16 m2/person would be the occupancy rate 
for general office building. Since the base case was 8 m2/person, 8 - 16 m2/person with an 
interval of 2 m2/person was selected as the test range. 

0.0

0.2

0.4

0.6

0.8

1.0

0 4 8 12 16 20 24 0.0

0.2

0.4

0.6

0.8

1.0

0 4 8 12 16 20 24
0

10

20

30

0 4 8 12 16 20 24

0.0

0.2

0.4

0.6

0.8

1.0

0 4 8 12 16 20 24 0.0

0.2

0.4

0.6

0.8

1.0

0 4 8 12 16 20 24

0

10

20

30

0 4 8 12 16 20 24

0.0

0.2

0.4

0.6

0.8

1.0

0 4 8 12 16 20 24
0.0

0.2

0.4

0.6

0.8

1.0

0 4 8 12 16 20 24

0

10

20

30

0 4 8 12 16 20 24

0.0

0.2

0.4

0.6

0.8

1.0

0 4 8 12 16 20 24 0.0

0.2

0.4

0.6

0.8

1.0

0 4 8 12 16 20 24

0

5

10

15

20

25

0 4 8 12 16 20 24



Sensitivity and Uncertainty Analysis of the Building Parameters  

 

25 
 

The Building Research Established [67] suggested that lighting load should be between 8 - 12 
W/m2, whereas Rees [68] indicated that lighting gains should fall within range of 10 - 15 
W/m2. Additionally, lighting of 5 W/m2, lower than existing case of 7 W/m2 was tested, with 
an assumption of implementing efficient LED lighting. In accordance with the guidelines [67, 
68], the tested range was finalized to be between 5 - 13 W/m2 with an interval of 2 W/m2. An 
assumption of the equipment gains given by the Building Research Established was 12 - 15 
W/m2 [67], while Rees suggested a range of 7.8 - 21.5 W/m2 for the equipment gains [68]. In 
order to test values above and below the base case (12.5 W/m2), range between 10 - 20 W/m2 
with an interval of 2.5 W/m2 was chosen. 
 
To maximize daylight usage, the reflectance of the internal surfaces should be investigated in 
the initial design stage [22]. Highly reflective surfaces often have a lighter color. They can 
brighten up space by absorbing less daylight than the darker surfaces [69]. Brembilla et al. 
[22] performed a sensitivity analysis of the reflectance affecting the daylight performance. 
Research has shown that reflectance of the surfaces plays a significant role in climate-based 
daylight modelling evaluations. In addition, it has been found by Wilson [70] that the 
illuminance level can be increased by 50 % if the mean reflectance is changed from 0.4 to 0.6, 
and can be increased 100 % if the mean reflectance is changed to 0.7. However, according to 
the European Standard EN 12464-1 [71], reflectance recommendations for ceiling, wall and 
floor are 0.7 - 0.9, 0.5 - 0.8 and 0.2 - 0.4, respectively. For the surrounding and ground, the 
reflectance values of 0.44 and 0.2 are suggested. However, from preliminary simulation runs, 
it was observed that the daylight simulation may take a longer time than the energy simulation. 
Therefore, in order to increase the number of samples to be tested while avoiding time 
restrictions, a decision to use a fixed amount of daylight simulations was taken. By using 
discrete values for reflectance, the results led to 180 possibilities in total. 

3.3 Output parameters 

Determination of the output parameters is correlated with the current Danish Building 
Regulations 2018 [1], DS 474 and CIBSE guide A [59]. All the specific requirements, as well 
as the choice of parameters for each investigated category, will be presented in the following 
sub-sections.  

3.3.1 Daylight 

Danish Building Regulations 2018 [1] mentions the following requirements for the daylight 
in new buildings. 
 

 Working rooms must have sufficient access to daylight ensuring sufficient level of 
lighting in the rooms, 

 10 % rule: Sufficient access to daylight could be documented by a glass surface 
without shadowing effect equivalent to minimum 10 percent of the relevant floor area, 

 300 lux rule: Sufficient daylight can be alternatively documented by spatial daylight 
autonomy (sDA300,50), where 300 lux (minimum) is required for minimum 50 % of 
working area for minimum half of the daylight hours, 

 Working area is defined as ‘the relevant floor area where workplaces are located’. 
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Based on the aforementioned building code requirements, Spatial Daylight Autonomy 
(sDA300,50) was chosen to be the investigated output parameter from the daylight simulations. 
According to Mohsenin and Hu [72], sDA quantifies the sufficiency of daylight illuminance 
by defining the percentage of the floor area meeting certain illuminance levels for a specified 
amount of annual hours. Only daylight hours were considered while performing simulations. 
The operational profiles of the building were disregarded in the calculations.   

3.3.2 Thermal comfort 

Thermal comfort of building occupants is affected by a range of different factors including 
mean radiant temperature, relative airspeed, humidity and most importantly air temperature. 
Moreover, personal factors such as clothing level and metabolic rate influence the thermal 
comfort perception of the building users [73]. According to InnoBYG guideline for the 
thermal comfort [74], there are three quantification categories for the thermal comfort 
calculations in the commercial buildings, minimum, standard and ambitious. Each category 
requirements were adjusted to fit into the Danish climate context. Thermal comfort in the 
current project was assessed by the determination of the number of hours when the operative 
temperature exceeded 26 C in the occupied spaces. According to the Building Regulations 
2018 [1] following requirements have to be fulfilled for thermal comfort investigations. 
 

 Satisfactory thermal comfort has to be ensured in the rooms with extended occupancy 
times (including activities in the rooms), 

 Thermal comfort calculations have to be based on critical room conditions and design 
reference year DRY 2013, 

 Calculation of the maximum number of occupational hours per year where room 
operative temperature exceeds 26 C and 27 C. For office building types maximum 
100 hours over 26 C and 25 hours over 27 C are acceptable. 
 

According to InnoBYG guideline [74], three evaluation periods are used for the thermal 
comfort calculations: 
 

 summer period: May-August 
 winter period: November-March 
 ‘transition period’: April and October 

 
Table 12 presents the maximum tolerance levels for the number of overheating hours based 
on different calculational periods. 
 
Table 12. Tolerance level for different calculational periods. 

 5 days working week 7 days working week  
Summer and transition period Max 100 hours  Max 140 hours 
Winter period Max 50 hours Max 70 hours  

 
For the current project case, limitation of five days working week is used, following BR18 
regulations [1] for the maximum amount of overheating hours in the period from April to 
October. The room categories that were tested included office rooms (265), open plan office 
rooms (18), lounge (1), auditorium (3), restaurant (3), reception (2), meeting rooms (64), 
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circulation (31), kitchen (30) and changing rooms (20). The number in parenthesis indicates 
the number of rooms belonging to each category. 

3.3.3 Energy 

Danish Building Regulations [1] specify requirements for commercial buildings energy 
performance framework. Total supply energy demand is the sum of energy for heating, 
ventilation, cooling, domestic hot water and lighting per square meter heated floor area as 
shown in Equation 1 [54]: 
 

Total energy demand per year ≤  41,0 +
1000

heated floor area
   kWh/m² per year 

 

(1) 

Nevertheless, a different methodology not compliant with BR18 [1] was used for the final 
evaluation. Total energy output generated in IES did not account for domestic hot water but 
instead included equipment gains. Each sample in the project was evaluated for outputs 
including total energy consumption, space heating demand, and space cooling demand. The 
ranking of parameters presents the influence on each category, leading the designers towards 
improved strategies for decreasing the total energy demand of the investigated building. 

3.4 Generation of samples: 

The schematic process of sample generation is illustrated in Figure 4. 
 

 
Figure 4. Process of sample generation. 

The inputs and probability density functions (PDF) for each of the input parameters are 
presented in Table 9 in Section 3.2. The literature review regarding types of PDF was 
presented in Section 2.2.4.2. The PDFs were determined to be either uniform or discrete based 
on the possibilities and limitations of VEScript in IES, discussed in Section 3.6. Referring to 
Section 2.2.4.1, Latin Hypercube sampling method was chosen for this study, since it provides 
more evenly distributed sampling comparing to Monte-Carlo method. The sample size was 
determined based on the results from software G*Power and Pass 2019 and compared for the 
explicitness of the data, between the two software. Detailed information is provided in Figure 
4. SimLab 2.2 was used for production of the samples data, since it is easy to use, and it 
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includes sampling methods according to the most common sensitivity analysis methods. The 
text file generated from SimLab 2.2 was converted to excel file, which could be read by the 
python code when automating the simulations. G*Power Analysis allowed determining the 
size of the sample based on the pre-determined  effect of confidence in the results [75]. Power 
Analysis is based on the following four quantities: 
 

 Size of the sample, 
 Effect size, 
 Level of significance (Type I error): the probability of finding an effect that is not 

there, 
 Type II error: the probability of finding an effect that it is there. 

 
Based on any three pre-determined variables, there is a possibility of calculating the fourth 
one, which in the project case was the size of the sample. Several options were tested with the 
following settings: 
 

 Test family: exact, 
 Statistical test: Correlation, bivariate normal mode, 
 Type of power analysis: priori, 
 Cohen’s effect sizes: small 0.1, medium 0.3, large 0.5, 
 α = 0.05. 

As a further test, sample results from G*Power were verified in software Pass 2019 (using 
PEAR formula for calculating the samples number) and the minimum recommended sample 
size was chosen (Table 13). 
 
In Table 13, N is the number of samples, power is the probability of rejecting a false null 
hypothesis (between 0 and 1; usually 0.8, 0.95, 0.99), alpha is the probability of type I error, 
usually 0.05, Beta is the probability of type II error, ρ0 (Baseline Correlation) is the value of 
correlation set at null hypothesis or the value of 0; ρ1 (Alternative Correlation) is the value of 
correlation at alternative hypothesis. The null hypothesis is accepted at ρ0 = ρ1. 
 
Table 13. Determination of the minimum sample size based on different accuracy levels. 

Power N Alpha Beta ρ0 ρ1 

0.95043 234 0.15 0.04957 0 0.2 

0.95125 102 0.15 0.04875 0 0.3 

0.95024 55 0.15 0.04976 0 0.4 

0.95267 34 0.15 0.04733 0 0.5 
0.80000 193 0.05 0.20000 0 0.2 

0.80018 782 0.05 0.19982 0 0.1 

0.85007 894 0.05 0.14993 0 0.1 

0.90007 1046 0.05 0.09993 0 0.1 

0.80008 193 0.05 0.19992 0 0.2 

0.8509 221 0.05 0.14910 0 0.2 

0.90038 258 0.05 0.09962 0 0.2 
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Values of the power, alpha and ρ0 were estimated based on the recommended values obtained 
from the literature review [49, 50, 76, 77] and software tutorials for setting up PEARS 
sampling. As a result, the minimum number of samples was calculated to be 258 for ρ1 = 0.2 
and 1046 for ρ1 = 0.1. However, due to the time limitations, running 1046 simulations was 
not possible, therefore an intermediate value of 400 samples was chosen. This value exceeds 
the minimum 258 samples recommendation for 90 % power with ρ1 = 0.2 (higher accuracy 
with increased sample number). 

3.5 Daylight analysis 

3.5.1 General workflow 

Workflow for the sensitivity and uncertainty analysis of building parameters affecting 
daylight (Figure 5) consisted of the following main steps. 
 

1) Data creation: according to the workflow described in Section 3.4. 
2) Model setup: Detailed description of taken steps is presented in the following Section. 
3) Simulation: Dynamic simulations in DIVA were carried to assess the effect of the 

different parameters on the base case model. Two tests with different quality setting 
were performed for each sample. The difference in results (point-in-time-illuminance) 
between the two simulations settings was compared and verified before further 
processing. 

4) Collection of the data: Excel VBA script and queries were used for the data extraction. 
Creation of the queries was time-saving in comparison to the usage of VBA script. 

5) Results evaluation: Statistical interpretation of the data comparing results for 
Pearson’s / Spearman’s (appropriate method was selected) and the SRRC method was 
followed by the creation of the parallel coordinate plots. 

 
Figure 5. Daylight simulations workflow. 
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3.5.2 Assumptions 

 For the daylight simulations, all floor plans were modelled without any internal 
objects / furniture. 

 Simulations were performed based on the weather file with annual climate data from 
Copenhagen, Denmark. 

 Different quality settings were tested prior to the final simulation runs. 
 No neighboring buildings or plants were modelled in the base case surroundings. 
 Only the top floor was simulated. 

3.5.3 Detailed workflow 

Setting daylight model: 

Geometry for the daylight model was imported from the software IES (export as DXF -> 
polyline with openings -> save), directly into the Rhino model and further cleared up for any 
geometrical inconsistencies. Each surface type was distributed into different layers (floor, 
external wall, internal wall, etc.), which were further used for assigning surface properties in 
DIVA. The direction of each surface in Rhino model was controlled, for example, to ensure 
that the window surfaces were pointing towards outside while the internal surfaces were 
pointing towards inside. The purple marked geometries, illustrated in Figure 6, were used for 
daylight analysis. Figure 7 shows the top floor plan. The results only focused on meeting 
rooms, office rooms, and reception. 
 

 
Figure 6. Daylight simulation model (left) glazing ratio variation on the top floor (right). 

For the daylight simulations, top floor (presented in Figure 7) was chosen for assessment of 
the sDA in the working rooms (meetings, offices, reception). The assessment was performed 
according to the regulations discussed in Section 3.3.1. It is worth noting that windows varied 
in size alongside the façade, between 54 % on the north to 34 % on the south as illustrated in 
Figure 6 (right). 
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Figure 7. Floor plan for sDA simulations. 

Customizing shading schedule: 

In order to keep consistency between the two models (daylight and energy / thermal comfort) 
shading operation profiles had to be imported from initial IES model into DIVA for 
Grasshopper. However, exporting the shading profile from IES was not possible, therefore a 
different strategy had to be applied to secure the integrity of both models. Consequently, the 
following methodology was applied for ensuring consistency in the project: 
 

1) Extraction of solar gains data for each room on the investigated floor (IES) with 
condition ‘internal shadings-on’, 

2) Extraction of solar gains data with condition ‘internal shadings -off’, 
3) Conversion of solar gains into ‘1’, ‘0’ shading operation profiles (where ‘1’ meant 

the shading was lowered down and ‘0’ meant shading was raised), based on the 
difference of the solar gains between two states, 

4) Importing 8760 hours yearly ‘0’ / ‘1’ schedule to DIVA for Grasshopper. 

It should be noted that each room on the top floor had different shading operational profiles, 
which as a consequence made the daylight simulation time significantly longer. 

 
Specification of window properties: 

As the next step in the development of the daylight parametric study, accuracy of window and 
surfaces data inputs was assured. Opaque components were simulated as ‘PLASTIC’ type of 
material, with roughness and specularity set to 0, whereas for windows, ‘GLASS’ was used 
as the set radiance material type. Radiance materials library requires conversion of the 
window visual transmittance (Tn) into the visual transmissivity (tn), by application of 
following Equation [78]: 
 

𝑡𝑛 =

(𝑠𝑞𝑟𝑡. (0.8402528435 + 0.0072522239 ∗ 𝑇𝑛 ∗ 𝑇𝑛) − 0.9166530661)
0.0036261119

𝑇𝑛
 (2) 
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Automatic conversion of transmittance to transmissivity is possible by Honeybee_Radiance 
Glass material (Honeybee required) or excel converter. Corrected values were plugged 
directly into the DIVA Window component. Following transmissivity values (Table 14) were 
used for sDA300,50 simulations. 
 
Table 14. Transmissivity values used for DIVA simulations. 

Window type Transmissivity value 
1 0.784440 
2 0.750665 
3 0.570898 
4 0.654789 
5 0.664595 

 
Due to the discrete distribution of the parameters (refer to Section 2.2.4.2) affecting daylight, 
400 main samples were sorted out for repetitive patterns which as a consequence, reduced the 
number of samples for daylight simulations.  
 
Grid size: 

One of the most important steps in the preparation of the daylight simulations was to set the 
proper grid size according to the requirements of the project. Grid-size determines how many 
sensor points are used in the simulation. The smaller the distance between grid points (finer 
grid), the more accurate are the results. Result data is given at sensor points, which are defined 
on an analysis grid build on the horizontal plane. Placement of the grid (height) is defined by 
the user, corresponding to the task that is performed at the specific room. In the project case, 
the grid was placed 0.75 m above the floor in the investigated rooms. The specified grid 
displayed results of spatial daylight autonomy for dynamic simulations. The grid size was set 
to 1.5 m × 1.5 m, in order to obtain relatively accurate results without extensively long waiting 
time for high-quality simulations. 
 
Raytrace quality setting parameters: 

Radiance is based on the backward ray-tracing algorithms, which in essence means that the 
rays of light are traced back from the measurement point (or view) to the light source [79]. 
Radiance is able to process diffuse inter-reflections between the objects. Ambient calculations 
are used to describe the calculation of the inter reflected light [72, 80]. A large part of the 
daylight arriving at the sensor points (especially the points deeper in the rooms) was 
calculated by the indirect part of the Radiance algorithm. Therefore, the most crucial ambient 
parameters were investigated prior to selecting inputs, to ensure a good trade-off between 
accuracy and simulation time. 

 
- ab: The number of ambient bounces characterizes the maximum number of diffuse 
bounces computed by the indirect calculation [81]. This parameter is set based on the 
number of reflections needed by the light to reach the task plus addition of interspace 
reflections. The optimization of the parameter is attributed to the type of analysed building. 
Setting the ab value to 0 indicates no indirect calculation, which as a result mean that the 
contribution of the indirect light from into the room will not be included since only direct 
sun / skylight patches are accounted for [80]. 
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- ar: Ambient resolution determines the maximum density of interpolated ambient values 
[82, 83]. The maximum ambient value density is calculated as the ambient accuracy 
multiplied by the scene size, divided by the ambient resolution. 
 
- aa: Ambient accuracy describes maximum error permitted in the indirect radiance 
interpolation. The lower the setting, the better the accuracy is achieved. When aa is set to 
0, no interpolation is performed, however, simulation time will be significantly extended 
[80-82]. 
 
- ad: Ambient divisions regulate a number of rays sampled over the hemisphere centred 
above each evaluated point in the scene. Increasing the parameter results in a higher 
number of rays for testing and according to the literature [83, 84] increases the simulation 
time. By doubling ambient divisions, over four times of the initial simulation time is 
required.  
 
- as: Parameter represents the number of extra rays applied to the areas with high variance. 
As applies only to the ambient divisions showing an indicative difference [84]. 

 
Rendering quality setting affects not only the accuracy of the simulations but can also 
significantly prolong the time needed to complete simulations. Therefore, careful choice and 
adjustment of settings were required to assure a satisfactory level of detail with optimized 
processing time. Radiance parameters for low-quality and high-quality settings are listed in 
Table 15. 
 
Table 15. Raytrace quality settings; Source: [85]. 

Abbreviation Parameter low-quality settings high-quality settings 
-aa Ambient accuracy 0.15 0.1 
-ab Ambient bounces 2 6 
-ad Ambient divisions 512 1024 
-ar Ambient resolution 256 256 
-as Ambient super-samples 128 256 
-dr Direct relays 2 2 
-ds Source substructuring 0.2 0.2 
-lr Limit reflection 6 6 
-lw Limit weight 0.004 0.000001 
-dj Source jitter 0 0 
-lr Limit reflection 6 6 
-sj Specular jitter  1 1 
-st Specular threshold  0.15 0.15 

 
According to [72], doubling the ambient bounces parameter can double up the rendering time. 
Similarly, the increase of ambient divisions can double the simulation time. After an initial 
test of high-quality settings (default inputs), simulation time for 1 sample reached over 22 
hours, therefore adjustments were implemented. 
 
Increasing ambient bounces to 6 and ambient divisions to 1024 significantly increased 
simulation time to 5 hours 29 min per investigated sample in comparison to low-quality 
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simulations (55 min per one sample), however, decreased the simulation time in comparison 
to high-quality run. 
 
Point-in-time illuminance simulations: 

Point-in-time illuminance results for fall equinox (12:00) from low-quality and high-quality 
simulations, were compared for each sensor on the grid. Difference between the results 
yielded a maximum difference of 2384 lux between two consecutive runs (4.6 % difference). 
Therefore, it was concluded that low quality was not sufficient and sensitivity analysis / 
uncertainty analysis should be performed on data simulated with ‘high quality’ parameter 
settings.  

3.6 Development of script in VEScript Python Editor 

The VE Python application programming interface allows users to interact with the VE Model 
and Vista Results File, through the implementation of individually written Python code. 
Currently, there are no existing templates for writing the code and available learning sources 
are very limited. This application is still in the development phase, therefore import of 
individual packages adding functionality was not possible. Python programming language 
automatically transferred data between Excel file to / from IES, thus allowing to automatically 
run simulations, with changes in parameters based on the assigned function from the code. 
Creation of own customized script automatized the parametric studies and therefore reduced 
time spent on optimization of the buildings. Currently IES includes a tool which allows 
parametric studies. However, limitations do not allow to change several parameters at the 
same time. On contrary, unlimited changes to the model (except software own limitations, 
described further) were possibly by running simulations with Python code. 

3.6.1 Steps in coding the VEScripts 

The first step in the python code development was importing the package named ‘xlrd’ which 
enabled to read data in python from excel. Each variable created in SimLab 2.2 (see Section 
3.4) was imported and read by the specified code function. Figure 8 presents the data 
allocation code based on the sample used in the project. Following code has to be adjusted 
accordingly for each new project (in case of additional variables). 
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Figure 8. Python code for reading Excel data. 

 
Changing the insulation thickness for the opaque construction: 

In order to specify the construction types which users want to edit, the index of each 
construction type had to be identified. Each index ID corresponds to a specific construction 
type which was assigned in the initial building model. The code from Figure 9 describes the 
process to identify the index in the database by knowing its ID (Example: ID nr 20130014 for 
the external wall) which can be known from ‘IES construction database’. After knowing the 
index for each construction, user can call the “project.get_construction” function to get the 
specific construction by inputting the index (e.g. ids[1]). This methodology can also be 
applied to get a specific window construction. 
 

 
Figure 9. Python code for getting opaque constructions. 

Figure 10 represents the workflow for setting the thickness of insulation for a specific 
construction. The layer of the insulation has to be specified according to the project 
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requirement. As an example, in the project base, the insulation layer is on the third place, 
therefore 2 was used as the index. Important: In python coding, the index starts from 0 and 
not from 1. 

 
Figure 10. Python code setting properties for constructions. 

According to the VE Python functionality, it is possible to overwrite the following properties 
of the model: 
 

 Layer level: surface emissivity, surface resistance and solar absorptance 
 Material level: specific heat capacity, conductivity, density, vapour resistivity can be 

changed in the material level. 
 

However, when the material properties have to be changed, the command ‘layer.get_material’ 
is required. 
Changing the properties of the window constructions: 

Using the same methodology of finding index as employed in ‘opaque construction’, the 
‘external glazing construction’ indexes in the ‘construction database’ were read as 0, 4, 5,  and 
6. Since all the external glazing constructions should be changed at the same time for each 
investigated sample, the list ‘d’ was used to store the indexes as shown in Figure 11. Then, 
the code of ‘for i in d’ was used for looping 4 indexes in the list of d. In addition, the window 
type numbers 1 to 5 were pre-defined in the sample data, therefore, the transmittance and 
reflectance should be stored in the lists before extracting the window type. The outer pane 
was edited, and therefore 0 was used as the index. 
 

 
Figure 11. Python code for changing window properties. 

It shall be noted that when the function ‘get_material’ is followed by ‘(True)’, the code will 
only apply changes to the material in the selected construction. If it is followed by ‘(False)’, 
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the changes will apply to all the constructions which have this material included. Nevertheless, 
if different constructions are using completely different materials from the database, then 
‘True’ and ‘False’ will work the same. 

Changing the occupancy profile and inlet temperature profile: 

When testing different office occupancy profiles, canteen occupancy profiles and heating 
setpoint profiles should also be changed correspondingly. Correlation should be kept between 
the schedules in the whole building. For example, if the occupancy profile for the working 
area had one or two-hour lunch break, then the canteen profile should be adjusted accordingly. 
As it can be seen in Figure 12, the daily profiles were determined by their corresponding 
profile ID, which can be found in the profile database from the user interface. 

 
Figure 12. Python code for getting a daily profile from the database. 
 
The different types of profiles should be stored in different lists, prior to extracting the data 
based on the type number. The code in Figure 13 shows an example of how the information 
corresponding to the profiles should be stored. The Python code overwrites the 24 h value for 
each profile. This is based on the user-defined profile variations. The term ‘hsb’ represents 
the heating setback value while ‘hpt’ corresponds to the heating setpoint value (specified in 
Excel). For example, [0, hsb, ‘-‘] means that the temperature profile at 12 am is equal to the 
specified heating setback value.  
 

 
Figure 13. Python code for storing information of daily profile. 

Figure 14 demonstrates command which extracts the specific profile data from the list based 
on the profile type number, and followingly assign the new data to the existing profile. 
 

 

Figure 14. Python code for overwriting daily profile. 

One should carefully check if the setpoint is specified by a constant value, setpoint / setback 
setting or through the profile including daily variations (refer to apache settings for each 
thermal template). If the setpoint temperature is assigned by the profile, then it is flexible to 
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control which hour in the day when the desired setbacks or setpoints start. If the heating and 
cooling are assigned by a constant value, then system working hours will be based on the 
operational profile. However, if the setpoint temperature is set by constant values, they can 
be overwritten by the code command presented in Figure 15. 
 

 
Figure 15. Python code for changing set points. 

Changing the internal gains and air exchanges for the chosen templates: 

Change of the data inputs in the thermal templates is based on the individual index for each 
template. Python code presented in Figure 16 allows extracting the template sequence in the 
database. 
 

 
Figure 16. Python code for getting templates database. 

The second step of the process is the determination of the number representing the specific 
template, which will be altered in the parametric study (Figure 17). The “get_bodies (True)” 
function returns the rooms which are selected in the user interface, while “get_bodies (False)” 
returns all the rooms in the model. Following process is required to extract the number for 
each template: 
 

 Select one room belonging to each template, 
 Run the script (Figure 17) for the selected rooms, 
 Record the number followed by ‘general_template’ and name followed by 

‘general_template_name’ accordingly into the table. 
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Figure 17. Python code for getting template number. 

Template numbers and indexes extracted for the base case model are presented in Table 16. 
 
Table 16. Template number and index assigned in the base case model.  

 Number Index Infiltration Auxiliary 
Ventilation 

Atrium 7 6 ✓  

Auditorium 17 9 ✓ ✓ 
Garderobe 24 14 ✓ ✓ 
Canteen 18 10 ✓ ✓ 
Heated rooms 8 7 ✓  

Meeting rooms 19 11 ✓ ✓ 
Not heated rooms 10 8 ✓  

Office 20 12 ✓ ✓ 
Sky lounge 21 13 ✓ ✓ 
Print room 25 15 ✓ ✓ 

 
The next step in this process is to add the additional internal gains and air exchanges into the 
database. This can be done as shown in Figure 18. Each element should have a unique name, 
referenced in the section ‘Gain Reference’. Naming conventions will be used to indicate the 
indexes of newly added gains and air exchanges. 
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Figure 18. Internal gains database. 

The script shown in Figure 19 describes how to access the database of internal gains and air 
exchanges. When referring to the “Gain Reference” names, the index of each gain or air 
exchange will be determined. The database length should be checked in advance to know the 
number of total internal gains. Since the added gains or air exchanges would normally be at 
the end of the database, counting backward would be suggested. For example, in project case, 
the total number of internal gains was 64 and the index of last gain was 63. 
 

 
Figure 19. Python code for getting internal gains and air exchanges database. 

The code in Figure 20 shows the process of adding gains and air exchanges to the chosen 
templates. The occupancy, equipment and lighting gains have only been assigned to the office, 
while infiltration was added to all the templates. Auxiliary ventilation can only be assigned to 
the templates which had it assigned in the base case. Command of “template.apply.changes” 
was added at the end of the script to implement the pre-assigned changes.  
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Figure 20. Python code for adding gains and air exchanges. 

Removing gains and air exchanges before the next simulation run: 

Modified gains and air changes have to be removed before overwriting data for the next 
simulation run. Figure 21 illustrates the steps needed to remove gains and air exchanges. 
 

 
Figure 21. Python code for removing gains and air exchanges. 

Reading data of *. aps result file in Python: 

Required results from simulated “*.aps” file can be directly written down to Excel, using the 
Python script. In the case of a large number of simulated samples, running python code 
significantly reduces the amount of time spent on the extraction of results data. In the project 
case the result categories that were extracted included heating and cooling demand, lighting 
demand, equipment demands, and total energy. However, when different types of results have 
to be extracted, additional “read_variable” functions can be added. The example shown in 
Figure 22 aimed to extract various variables. Results category in vista pro (where user can 
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read detailed results ingeneral or detailed breakdown) have to be verified, prior to data 
extraction. 
 

 
Figure 22. Python code for extraction of the results. 

3.6.2 Limitations in the VEScript Python Editor 

Since the Python module in IES VE is still in the development phase, there are several 
limitations to functions which can be implemented by the python code. Unfortunately, this 
affected the initial choice of parameters for sensitivity and uncertainty analysis, which needed 
to be re-defined based on the software constraints. At the initial stage of the project, the test 
model was defined as a simple room with 1 window. Python code implementing changes in 
the test model was developed for a simple box before proceeding with adjustments to code 
designed for the more complex building. Following limitations were discovered in a ‘trial-
error’ process of defining the possibility of parameter change: 
 

 WWR: It is not possible to change the window-to-wall ratio in the case of having pre-
defined window geometries. Change of the window to wall ratio is possible if 
windows geometries were defined by ‘add by percentage component’ in IES VE. One 
of the solutions proposed for parametric studies, where a change of WWR is required, 
is the development of different VE models containing different window geometries 
generated by Dynamo in Revit. Parametric studies with python code can be performed 
for scenarios with different models. Currently solution to problem with change of 
WWR is in development phase by IES technical department. 
 

 Change of window construction: Only existing layers of assigned window type can 
be overwritten, without the possibility of changing construction type from the 
windows added to the database. Unfortunately, this limited the testing options of 
different window types in the current project. For example, if the existing window 
construction has triple pane windows, the double pane windows cannot be tested by 
‘overwrite’ function. The faulty function was given in Figure 23. Currently, IES VE 
function for overwriting windows is in the development stage. 
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Figure 23. Example of faulty function in the VEScript Python Editor.  

 Gas-filled windows: The gas filling in the window construction cannot be changed 
by using the python code, which makes it impossible to test windows with large-span 
of U-values. Moreover, the VEScript can only change the outside emissivity of the 
outer pane and the inside emissivity of the inner pane. The inside emissivity of outer 
pane and outside emissivity of the inner pane are fixed. This limits the possibility of 
testing different coatings applied to surfaces. Therefore, the U-value can be fixed, by 
inputting the resistance in the air cavity, and only the windows with different glazing 
types for the outer pane were tested. 
 

 Internal Gains and air exchanges: The only way to modify gains and air exchanges is 
by adding the value to the database, instead of overwriting the current value. 
Therefore, test options have been limited to discrete values excluding the possibility 
of testing ranges with uniform distributions. This negatively affected the results of 
the uncertainty analysis. Additionally, supplementary work of removing the internal 
gains and air exchanges is required, before running the next sample. 

 
 Thermal templates: Quality assurance of changes implemented by each function of 

the developed code was checked in a series of ‘test runs. Unfortunately, error with 
changes in thermal templates was detected: once internal gains or air exchanges were 
added through the Python script, the assigned templates were reset and the whole 
building was distributed with the default template. To solve this error, the code of 
assigning templates to the whole building was added at the end of the whole python 
code. After running the code in Figure 24, the room id’s of each template was inserted 
to the different room lists and then each list was assigned with the corresponding 
template as shown in Figure 25. 
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Figure 24. Python code for reading room ids. 

 
Figure 25. Python code for assigning templates to rooms. 

 Application limitations: Some errors can only be fixed by IESVE technical support. 
For example, overwriting the construction will not be reflected in the model properly, 
unless manually saved after altering each template. This further disabled the 
possibilities of running the apache simulation directly from the Python script. The 
approach to solving the ‘overwriting’ problem was to open a construction type from 
the database and click “save changes” before closing the windows. The solution for 
the second problem would be to save the project in the user interface and then set the 
apache simulation in either the user interface or Python script. However, if IES 
development team can fix these two errors for VESript Python Editor, then the Python 
script could loop all the samples to run the simulations without any manual work. 
 

 Data filtering: One more limitation is that Python cannot filter the required data when 
reading the “*.aps.” file. It is possible to limit the start and end day for hourly 
evaluation; however, it is not possible to exclude weekends / holidays / nighttime. 
The approach to solving this problem would be to extract all the operative temperature 
hourly values for each room and automatically write them to columns by using the 
code shown in Figure 26. Further data sorting in excel would be required for the 
purpose of excluding undesired days / times used in the overheating evaluation. To 
continue, the code showing the procedure to evaluate the number of overheating hours 
for the listed rooms (if 24 h and 7 days are considered) is presented in Figure 27. The 
code is able to extract the ids of the rooms which have overheating problems, as well 
as the number of overheating hours for each room. 
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Figure 26. Python code for writing data to Excel. 

 
Figure 27. Python code for checking the number of overheating hours in the problematic rooms. 

3.7 Data processing in R 

Choice of the right statistical method is highly dependent on the generated data sets as well 
as the type of function that is represented by the data plots. Correlation measures the strength 
of the association between the independent and dependent variable, while regression analysis 
is commonly used to predict the result based on the specific values of all the parameters [86]. 
Spearman’s method is distribution-free, meaning non-parametric ranking, while Pearson’s 
method requires fulfillment of specific assumptions [87-89]. Spearman’s method is suitable 
for monotonic function (calculations based on ranks), whereas PEARS is computed based on 
true values, therefore requires linearity of the data [89]. Since Spearman’s rho is not a measure 
for linear relationship between variables, it can be used for variables at the ordinal level which 
makes it a good fit for data sets with various distributions [87]. For Pearson’s correlation 
following rules should be met [87, 89]: 
 

 All variables should have a normal distribution, 
 The linearity of the function: straight line between variables, 
 Homoscedasticity: data should be equally distributed alongside the regression line, 
 Outliers can negatively affect linearity. 
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If even one of the pre-requisites is not fulfilled, Pearson’s method cannot be used. In contrast 
to Pearson’s method, the Spearman’s rank correlation does not require any prior assumptions 
about the data distribution. However as previously mentioned, data must be monotonically 
related [50, 77, 87, 89]. In order to best define the suitability of the method for data evaluation, 
both PEARS and SPEAR were plotted in ‘R’ software (scatter plots) and correlation / 
determination rank was calculated. Following steps were required for the calculations: 
 

1) Adjustment of data to comply with the format required for data import in ‘R’: rows / 
columns headings, naming conventions, data format (*.txt or *.csv), 

2) Setting the right directory for data import, 
3) Standardization of the data prior to the statistical analysis, 
4) Computation of correlation matrix, 
5) Graphical interpretation: Scatter Plots, 
6) Determination of model linearity / none-linearity. 

 
The initial assumption of the suitability of Pearson’s method was verified by testing models 
linearity. In case of proven linearity, parameters’ distributions, outliers, and homoscedasticity 
were tested. However, in case of nonlinearity of model, Pearson’s method was excluded, and 
statistical analysis proceeded based on Spearman’s Rank Correlation Coefficient. The 
linearity of the model was tested based on the coefficient of determination (R2), describing 
models performance for R2 below 0.5 as unsatisfactory [90], and R2 values over 0.5 validate 
the chosen method. 
 
The value of the correlation coefficient and significance level (p) for each independent 
variable (vs output parameter) was calculated and analyzed. The value of the correlation 
coefficient has to be placed in an interval between -1 to 1, where 0 means no correlation [91]. 
When the correlation coefficient is positive, it means y (dependent variable) will be increased 
when x (independent variable) increases, meanwhile when the correlation coefficient is 
negative, y will be decreasing. Strength of correlation can be described by following level of 
association [92], listed in Table 17: 
 
Table 17.  Evaluation of correlation strength. 

Value of coefficient of correlation (R) (+ and -)  Level of association 
0 None 
0.1 to 0.3  Weak 
0.4 to 0.6  Moderate 
0.7 to 0.9  Strong 
1 Perfect 

 
Additionally, in order to confirm or reject the null hypothesis of the method, significance level 
(p) of the results needed to be evaluated. The ‘p’ value describes the probability of a null 
hypothesis being correct, therefore the value of below 5 % (p < 0.05) is considered statistically 
significant [87] as presented in Table 18. 
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Table 18. Evaluation of significance level. 

Significance level ‘p’ Description of the results 
< 0.05 Statistically significant  
≥ 0.05 Statistically non-significant 

 
The p-value of 0.05 indicates that, if there is no correlation between the variables, there is a 
possibility of obtaining the observed difference in 5 % of the statistical studies due to the 
random sampling error. Ranking of the parameters is based both on the calculated correlation 
and the verification of the significance level of the investigated population. For cross-
validation of the outcomes between different sensitivity analysis methods, variables from 
chosen correlation method were compared to the ranking from the Standardized Regression 
Rank Coefficient. 
 

3.8 Overall results in Design Explorer 

The approach of data-processing mentioned above might be complicated and time-consuming. 
Therefore, this thesis also explored the feasibilities of using an online tool named Design 
Explorer. Design Explorer can generate parallel coordinate plots which illustrate multi-
disciplinary results instantly by importing the inputs and outputs of all the samples. Also, it 
can add filtration to the results according to user requirements. This leads to quicker filtering 
the best-performing samples and yielding the favorable ranges for building parameters. As a 
result, this might provide quick suggestions to facilitate the decision for the consultants.  
 
To test the applicability of Design Explorer, the same filtering process used by the uncertainty 
study were applied. Then, the best performing ranges yielded by Design Explorer were 
compared with the results of the uncertainty study to verify the validation of using the 
software.  
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4 Results  

This chapter presents the final outcomes of the sensitivity and uncertainty analysis of the 
building parameters affecting daylight, thermal comfort, and energy consumption of the 
considered case. The workflow is shown in Figure 28. All simulated data is presented in the 
form of histograms, parallel coordinate plots and scatter plots. In the following sections, 
detailed analysis of the data is presented and discussed for each investigated category. 
 

 

 

 
Figure 28. Flow chart for interpretation of the results. 

4.1 Sensitivity analysis 

Sensitivity analysis results are highly dependent on the type of the function (linear, non-linear, 
and monotonic) represented by the simulated data sets. As a first step, Pearson’s determination 
coefficient (R2) was calculated to validate the suitability of the analysis method against the 
requirements specified in Section 3.7. The results of calculated coefficients (R2) are presented 
in Table 19. As all coefficients are below 0.5, suggesting unsatisfactory performance of the 
current statistical model, Pearson’s method was unsuitable for the studied case. [90]. The 
calculated coefficients revealed the significant non-linear effect of the simulated data [29]. 
Consequently, Spearman’s method was chosen as the final sensitivity analysis method for the 
interpretation of the results. 
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Table 19. Pearson’s determination coefficient. 

Parameters Total energy 
consumption 

Heating 
demand 

Cooling 
demand 

Thermal 
comfort 

Wall insulation thickness 0.000079 0.018380 0.005502 0.000371 
Roof insulation thickness 0.003597 0.003048 0.000092 0.000673 
Floor insulation thickness 0.004646 0.000169 0.002004 0.001126 
Inlet air temperature 0.052470 0.133033 0.118067 0.019309 
Infiltration rate 0.012642 0.307623 0.027720 0.051624 
Auxiliary ventilation rate 0.093048 0.060617 0.000674 0.055767 
Heating setpoint 0.005231 0.265877 0.010801 0.006952 
Heating setback 0.004523 0.011011 0.005071 0.001923 
Cooling setpoint 0.008934 0.000013 0.039702 0.273984 
Cooling setback 0.000938 0.000931 0.003306 0.000149 
Occupancy profile type 0.003214 0.000331 0.000812 0.000522 
Occupancy rate 0.389619 0.006263 0.345372 0.002133 
Window g-value 0.002051 0.025760 0.062276 0.301542 
Lighting gains 0.008217 0.001143 0.000028 0.006271 
Equipment gains 0.022699 0.000471 0.000372 0.000020 

 
For each independent variable defined in Section 3.2, the distribution of the results data is 
presented as scatter plots. The coefficient R describes the level of correlation between the 
input and output variable. The p-value represents the significance level of the correlation. If 
p < 0.05, it means that the rejection of the null hypothesis is achieved, and therefore it validates 
the existence of the correlation.  

4.1.1 Energy & Thermal comfort 

Firstly, the correlation between building parameters and energy results is presented. Figure 
29 shows the correlation between wall insulation thickness and the total energy consumption, 
and heating and cooling demand. It indicates that the increasing thickness of the wall 
insulation positively contributes to the reduction of the heating demand. However, the level 
of correlation between the wall insulation thickness and heating demand can be described as 
negative, weak (see Section 3.7). The correlation and significance level of the wall insulation 
thickness towards cooling demand, suggest a positive,weak correlation. This implies that 
increasing the insulation thickness will lead to higher cooling loads. Nevertheless p-value 
over 0.05, neglects the significance of the correlation between the cooling demand and wall 
insulation thickness. Followingly, significance level p of the correlation results between wall 
insulation thickness and the total energy consumption equals to 0.41. Therefore, the initial 
hypothesis that there is no correlation between the thickness of wall insulation and the total 
energy demand, fails to be rejected. In the studied case wall insulation thickness does not have 
high importance in reducing the total energy consumption.  
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Figure 29. Scatter plots showing correlation level between wall insulation thickness and total energy 

consumption, and heating and cooling demand.  

Figure 30 shows the correlation level between roof insulation thickness and total energy 
consumption, and heating and cooling demand. Roof insulation thickness has a weak 
correlation level with total energy consumption, with p equal to 0.13. The p-value is 
equivalent to 13 % error margin, due to random sampling error, as described in Section 3.7. 
The significance level of the correlation results between the heating demand, cooling demand 
and roof insulation thickness are over 0.05. Therefore, there is no proven statistical correlation 
between roof insulation thickness and cooling and heating demands for the studied range. In 
the case building, roof insulation thickness will not be prioritized in the optimization process. 
 

 
Figure 30. Scatter plots showing correlation level between roof insulation thickness and total energy 

consumption, and heating and cooling demand.  
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Figure 31 presents the correlation level between floor insulation thickness and total energy 
consumption, and heating and cooling demand. The scatter plot for floor insulation thickness 
presented in Figure 31 clearly indicates how increasing the ground floor insulation contributes 
to decreasing the total energy consumption. Despite this positive effect, the high p-value of 
0.15 and very low R-value of -0.072 indicate no correlation between the floor insulation 
thickness and the total energy consumption. This is due to the statistical insignificance of the 
datasets. Similarly, the p-value of correlation results between the floor insulation thickness 
and the heating and cooling demands is over 0.05, therefore there is no proven correlation 
between variables in the studied building case.  
 

 
Figure 31. Scatter plots showing the correlation between floor insulation thickness and total energy 

consumption, and heating and cooling demand. 
 
Figure 32 presents the correlation level between inlet air temperature and the total energy 
consumption, and heating and cooling demand. Figure 32 shows that increasing the inlet air 
temperature significantly decreases both the heating demand and cooling demand. This is 
represented by moderate, negative correlation with a high significance level of the results. 
The explanation for the decreased cooling demand is that higher inlet temperature air 
increases the use of free cooling through the ambient air thus decreases the cooling demand. 
The correlation between total energy consumption and the inlet air temperature can be 
described as weak, negative. Nevertheless, thermal comfort assessment should be performed, 
to ensure an acceptable level of air temperature in the occupied rooms. 
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Figure 32. Scatter plots showing the correlation between inlet air temperature and total energy 

consumption, and heating and cooling demand. 

Figure 33 shows the correlation level between the infiltration rate and the total energy 
consumption, and heating and cooling demand. As can be seen from Figure 33, the higher 
infiltration is another factor significantly contributing to the increase of the heating energy 
demand. High significance level confirms correlation between the infiltration and the heating 
demand. Therefore, the airtightness of the building has to be carefully examined. Moreover, 
infiltration rate has a negative correlation with the cooling energy demand. Higher air change 
rates result in lower cooling energy values. Nonetheless level of association is weak. Looking 
at the overall results for correlation between total energy consumption and the infiltration, it 
can be implied that increased level of infiltration results in a slight increase in the total energy 
consumption. 
 

 
Figure 33. Scatter plots showing the correlation between infiltration and total energy consumption, 

and heating and cooling demand. 
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Figure 34 presents the correlation level between the auxiliary ventilation airflow rate and the 
total energy consumption, and heating and cooling demand. As seen from Figure 34, there is 
a weak, statistically significant correlation between the infiltration and the total energy 
consumption. Auxiliary ventilation airflows contribute to increasing of the total energy 
consumption. Therefore, while designing HVAC system, it is very important to adequately 
define ventilation rate per person. Increased auxiliary ventilation airflows result in the 
minimal decrease of cooling demand in investigated population. At the same time, higher 
ventilation rates contribute to increased heating demand. However, while assessing the 
realistic effect of the auxiliary ventilation airflow rate on the heating demand, ventilation flow 
rate and the inlet air temperature should also be accounted for. In order to do that, statistical 
method, accounting for interactions between the input variables, should be used. However, 
the multivariable interactions were not tested in this thesis. 
 

 
Figure 34. Scatter plots showing the correlation between auxiliary ventilation and total energy 

consumption, and heating and cooling demand. 

Figure 35 and Figure 36 show the correlation level between the heating setback and setpoint 
temperature and total energy consumption, and heating and cooling demand. The comparison 
of the figures indicates that heating setpoint temperature plays more important role in the 
heating demand and total energy consumption. As expected, heating setpoint temperature is 
moderately, positively correlated with the heating demand. Higher heating setpoint results in 
higher heating demand. Furthermore, the heating setpoint temperature was negatively 
correlated with the cooling demand. A possible explanation can be that the heating and 
cooling occur simultaneously during the summertime. The heating setback temperature does 
not have a statistically proven correlation with the cooling demand.  
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Figure 35. Scatter plots showing the correlation between heating setpoint and total energy consumption, 

and heating and cooling demand. 

 
Figure 36. Scatter plots showing the correlation between heating setback and total energy consumption, 

and heating and cooling demand. 

Figure 37 and Figure 38 present correlation level between the cooling setpoint and setback 
temperature and the total energy consumption, and heating and cooling demand. The figures 
show that the cooling setpoint temperature has a larger influence on the cooling demand than 
the cooling setback. The correlation level between cooling setpoint temperature and cooling 
demand is negative, weak. On contrary, there is no statistically proven correlation between 
cooling setback temperature and cooling demand for the studied case. Moreover, none of these 
two parameters have a significant effect on the total energy consumption, since p-value in 
both cases exceeds 0.05. Heating demand is correlated neither with cooling setpoint 
temperature nor with cooling setback temperature. Results of the studied building indicate 
that when specifying the space conditions, it is important to dedicate most attention to the 
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heating setpoint temperature in comparison to cooling setpoint temperature and heating / 
cooling setback temperature. 
 

 
Figure 37. Scatter plots showing the correlation between cooling setpoint and total energy consumption, 

and heating and cooling demand. 

 
Figure 38. Scatter plots showing the correlation between cooling setback and total energy consumption, 

and heating and cooling demand. 

Figure 39 presents the correlation level between the type of occupancy profile and the total 
energy consumption, and heating and cooling demand. Figure 39 below shows that there is 
no significant correlation between the occupancy profile type and the total energy 
consumption since p-value is equal to 0.22. Similarly, there is no correlation between the 
occupancy profile type and the heating and cooling demand. All the profiles had equal length 
of working hours and the only difference between them was the starting hour and the length 
of the lunch break.  
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Figure 39. Scatter plots showing the correlation between the type of occupancy profile and total energy 

consumption, and heating and cooling demand.  

Figure 40 shows the correlation between occupancy rate and the total energy consumption, 
and heating and cooling demand. The results show that the occupancy rate has more influence 
on the cooling demand in comparison to the heating demand. The significance of the 
correlation results between the occupancy rate and the heating demand is not statistically 
proven since p-value is equal to 0.086. Considering the total energy consumption, there is a 
moderate, negative correlation between the variables indicating that higher occupancy rate 
results in lower total energy consumption. Decrease of total energy is connected to the way 
in which occupancy rate was defined. In this thesis, occupancy rate is defined in term of 
m2/person. Hence, an increase in occupancy rate means lesser number of people in the 
building. Nevertheless, in a real case scenario, the occupancy rate is not a factor that can be 
controlled by the building design.  

 
Figure 40. Scatter plots showing the correlation between occupancy rate and total energy consumption, 

and heating and cooling demand. 
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Figure 41 shows the correlation between the g-value of the window and the total energy 
consumption, and heating and cooling demand. Based on the figure, it can be concluded that 
g-value is positively correlated with cooling demand. This indicates that higher solar gains 
result in enhanced cooling demand of the building. The g-value is directly connected with the 
type of windowpane. Therefore, glazing should be chosen considering both energy 
consumption and daylighting. Due to the moderate level of correlation, g-value of window is 
considered one of the crucial factors affecting cooling demand. In terms of heating demand, 
higher g-value is beneficial in cooler climate (represented by the building case study), since 
higher solar gains positively contribute to the reduction of heating demand. In investigated in 
thesis building, g-value of the window had weak, positive correlation with the total energy 
consumption, represented by R equal to 0.1 
 

 
Figure 41. Scatter plots showing the correlation between g-value of window and total energy 

consumption, and heating and cooling demand. 

Figure 42 presents the correlation between lighting gains and total energy consumption, and 
heating and cooling demand. Based on the figure, higher lighting gains lead to an increase in 
total energy consumption. Correlation between the total energy consumption and the lighting 
gains can be described as weak. Even though higher lighting gains contribute to lower heating 
demand in winter (minimal, negative correlation), less efficient lighting leads to higher 
electricity consumption in the building. Therefore, usage of the energy-efficient luminaries is 
recommended. There is no proven correlation between cooling demand and lighting gains in 
this case study since p-value is equal to 0.38. 

g-value of external window g-value of external window g-value of external window 
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Figure 42. Scatter plots showing the correlation between lighting gains and total energy consumption, 

and heating and cooling demand. 

Figure 43 shows the correlation between equipment gains and total energy consumption, and 
heating, and cooling demand. The figure presents that increase of equipment gains do not 
have a correlation with the cooling demand (85 % error margin on the rejection of null 
hypothesis, referring to Section 3.7). On contrary, there is weak, positive correlation between 
equipment gains and total energy consumption. The coefficient of the correlation between 
those two factors is equal to 0.2. Higher equipment heat gains lead to increased total energy 
consumption. There is no statistically proven correlation between heating demand and 
equipment gains. 
 

 
Figure 43. Scatter plots showing the correlation between equipment gains and total energy 

consumption, and heating and cooling demand. 
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In the following paragraphs, correlation results between building parameters and thermal 
comfort are presented and discussed. Thermal comfort in the building was evaluated in terms 
of the number of rooms complying with the requirements set in Section 3.3.2, including 
calculation of the maximum number of occupational hours per year where room operative 
temperature exceeds 26 C and 27 C. For office building types maximum 100 hours over 26 
C and 25 hours over 27 C are acceptable. The scatter plots showing correlation between 
different independent parameters and number of complied rooms are presented in the 
following paragraphs. 
 
Figure 44 presented below shows that the thickness of the insulation layers of opaque 
elements including the wall, roof, and floor, does not have a significant influence on the 
thermal comfort, due to the p-value over 0.05 in each studied case. Spearman’s coefficient of 
correlation between the insulation thickness of each element and thermal comfort is close to 
0, therefore there is no proven connection between the parameters. 
 

 
Figure 44. Scatter plots showing the correlation between the thickness of building envelope materials 

and thermal comfort. 

Figure 45 shows the correlation between inlet air temperature, infiltration rate, auxiliary 
ventilation and the number of rooms complied with the thermal comfort standard set in 
Section 3.3.2. The figure shows that higher infiltration and auxiliary ventilation rates 
dramatically increase the number of rooms which are compliant with regulations, while higher 
inlet air temperature negatively impacts the number of rooms fulfilling set requirements. All 
the correlation results are statistically proven (p < 0.05) resulting in rejection of null 
hypothesis.  
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Figure 45. Scatter plots showing the correlation between inlet air properties and thermal comfort. 

 
Figure 46 shows the correlation between heating and cooling setback / setpoint temperature 
and thermal comfort, described as number of rooms which are in compliance to standard from 
Section 3.3.2. Figure 46 figure demonstrates that the cooling setpoint temperature 
significantly affects the thermal comfort indices. The coefficient of correlation equal to -0.53 
indicates moderate, negative correlation with thermal comfort. Based on the high correlation 
level between thermal comfort and cooling setpoint temperature, it can be argued that 
decreasing cooling setpoint temperature would significantly increase the number of rooms 
which are in compliance to standard from Section 3.3.2. There is no proven correlation (p-
value over 0.05) between cooling and heating setback temperature and number of rooms 
complying with the thermal comfort requirements. Higher heating set point temperature 
results in minimal negative effect (R = -0.077) on the thermal comfort parameter. Nevertheless, 
significance of the correlation results between the heating setpoint temperature and thermal 
comfort is not statistically proven.  
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Figure 46. Scatter plots showing the correlation between setback / setpoints temperature and thermal 

comfort. 

Figure 47 presents correlation occupancy profile type, occupancy rate, and thermal comfort, 
described as number of rooms which are in compliance with standard from Section 3.3.2. The 
figure below shows that the considered occupancy profile types and occupancy rates do not 
significantly influence on the number of rooms fulfilling the thermal comfort requirements. 
Very low correlation coefficient (R), followed by high margin of statistical error (significance 
level p over 0.05 for both cases), indicates that there is no correlation between the investigated 
parameters and thermal comfort. 
 

 
Figure 47. Scatter plots showing the correlation between type of occupancy profile / occupancy rate 

and thermal comfort. 
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Figure 48 presents the correlation between lighting gains, equipment gains, g-value of 
external windows and the number of rooms complied with the thermal comfort requirements 
from Section 3.3.2. The g-value of the window is highly correlated with thermal comfort. The 
lower the g-value, the lower solar gains are, which effectively leads to a higher number of 
rooms complying with thermal comfort requirements. On contrary, there is no statistically 
proven correlation between lighting / equipment gains and the thermal comfort, due to the 
p-value over 0.05 for both cases. 
 

 
Figure 48. Scatter plots showing the correlation between window g-value, lighting gains, equipment 

gains, and thermal comfort. 

Final evaluation of input parameters importance is based on calculated Spearman’s correlation 
coefficient (R), summarized in Figure 49, Figure 50, Figure 51, and Figure 52. These figures 
provide an overview of different input parameters and total energy consumption, thermal 
comfort, heating demand, and cooling demand, respectively. The figures also show if the input 
variables are positively or negatively correlated. Based on the differences between the 
variables, ranking of the most important parameters in Table 20, clearly indicates which 
parameters should be prioritized in the optimization process of studied building. The first five 
most important input parameters for each output indicator have been shaded, to indicate the 
similarities and differences between different result indicators. Moreover, the cross method 
verification with standardized regression coefficient (SRRC) method provides the reliability 
of the results from the Spearman’s method. 
 

g-value of external window 
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Figure 49. Spearman's coefficient of different input parameters for total energy consumption. 

Figure 50. Spearman's coefficient of different input parameters for thermal comfort. 

 g- 

 g- 
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Figure 51. Spearman's coefficient of different input parameters for heating demand. 

 
Figure 52. Spearman's coefficient of different input parameters for cooling demand. 

Table 20 presents the ranking of the most important parameters in the optimization process 
of the initial design. The results from Table 20 show that input parameters affect the output 
indicators differently, especially between total energy consumption and thermal comfort 
criterions. For example, occupancy rate is strongly correlated to the total energy consumption, 
while it has relatively insignificant effect regarding the thermal comfort and heating demand. 
Window g-value and cooling setpoint appear to be the most important parameters with the 
strongest correlation to thermal comfort. These parameters also have high importance due to 
strong correlation with the cooling demand, whereas they are ranked in the middle among all 
the other input parameters affecting total energy consumption. Infiltration rate is important 
for summer thermal comfort evaluations in the studied building. On the contrary, it does not 
have high importance considering total energy consumption due to the weak correlation with 
the output parameter. Equipment gains have a high correlation level with the total energy 

 g- 

 
g- 
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consumption, meanwhile considering heating demand, cooling demand and thermal comfort 
as separate indicators, importance of the parameter is disregarded. Lighting gains do not have 
an optimization priority in the studied building due to low correlation. Setback temperature 
show weak correlation with total energy consumption and thermal comfort, therefore, place 
towards the bottom of the importance ranking of those parameters. Profile type and insulation 
thickness of opaque construction show low to no correlation towards different result 
indicators, therefore, can be considered as less important parameters. Inlet air temperature has 
high importance for cooling energy demand. Variation in the total energy consumption results 
is mostly driven by occupancy rate, auxiliary ventilation rate, inlet air temperature, equipment 
gains, and heating setpoints. Therefore, they can be considered a priority for further 
optimization. Even though SRRC results are not fully consistent with Spearman’s method, 
the first five most important parameters are common for both methods. Nevertheless, cooling 
setpoint, window g-value, and infiltration rate are of high importance towards the thermal 
comfort assessment, therefore should not be disregarded in the optimization process. 
 
Table 20. Ranking of the most important parameters in the building optimization process. 

Parameters /  
Ranking 

Total energy 
consumption 

Total energy 
consumption 
(SRRC) 

Heating 
demand 

Cooling 
demand 

Thermal 
comfort 

Occupancy rate 1 1 8 1 13 
Auxiliary 
ventilation 

2 2 4 9 4 

Inlet air 
temperature 

3 4 3 2 5 

Equipment gains 4 5 11 14 8 
Heating setpoint 5 3 2 6 7 
Infiltration rate 6 6 1 5 3 
Lighting gains 7 8 12 10 6 
g-value of windows 8 7 5 2 2 
Cooling setpoint 9 9 12 4 1 
Roof insulation 
thickness 

10 11 9 15 14 

Floor insulation 
thickness 

11 14 14 12 12 

Occupancy profile 
type 

12 12 15 12 10 

Wall insulation 
thickness 

13 10 6 8 9 

Heating setback 14 15 7 11 11 
Cooling setback 15 13 10 7 15 
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4.1.2 Daylight 

This section presents the sensitivity analysis results of the parameters affecting daylight in the 
base case building. In order to determine type of function obtained from simulation results, 
scatter plots for Pearson method were plotted. Unfortunately, due to the nature of the data, 
graphical interpretation alone was not enough to determine the type of model represented by 
the samples. Therefore, Pearson’s coefficient of determination (R2) as presented in Table 21 
was calculated. All the results presented in this chapter are based on the data from high- 
quality settings simulations. 
 
Table 21. Comparison of Spearman’s and Pearson’s coefficients. 

Parameter / value Pearson Spearman 
p R R2 p R 

Wall Reflectance 3.73e-16 0.380 0.144 2.2e-16 0.560 
Tvis 2.2e-16 0.680 0.462 2.2e-16 0.690 
Floor Reflectance 0.032 0.160 0.025 0.400 0.063 
Ceiling Reflectance 0.520 0.047 0.002 0.028 0.160 

 
The calculated Pearson’s coefficient of determination (R2) for different parameters was 
presented in Table 20. As R2 < 0.5, it was deduced that datasets do not represent linear 
behavior, due to the unsatisfactory performance of the investigated model. Hence, Spearman’s 
rank correlation method was used for final evaluation of the data. 
 
Figure 53 and 54 present the correlation between reflectance’s of different surfaces, Tvis and 
sDA300,50. It can be seen that visible transmittance (representing different window types), wall 
and ceiling reflectance’s results were statistically significant. For Tvis and wall reflectance p 
is below 1 %, indicating that there is a strong or moderate correlation between the parameter 
and sDA300,50 results. Ceiling reflectance results have 97.2 % significance with p = 0.0028, 
the low R-value means a very weak level of correlation. 
 

 
Figure 53. Scatterplot showing the correlation between floor reflectance, ceiling reflectance, and spatial 

daylight autonomy. 
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Figure 54. Scatterplot showing the correlation between reflectance of wall and Tvis of different window 

types and spatial daylight autonomy. 

Table 22 presents the ranking of investigated independent variables based on calculated 
Spearman’s rank calculation coefficient and standardized rank regression coefficient (SRRC). 
Based on the parameters ranking shown in Table 22, it can be deduced that the window type 
effectively increases the sDA300,50, whereas reflectance of floor does not have any impact on 
the results. The reflectance of the wall plays a role in the distribution of light in the 
investigated space since increase of the reflectance value results in the increase of sDA300,50. 

The wall reflectance has positive correlation with sDA300,50, however level of association can 
be described as moderate. Ceiling reflectance has a weak correlation with the sDA300,50. Based 
on the analysis of SRRC and Spearman’s method, it is deducted that type of the window 
should be the priority in the early design stage, whereas wall reflectance can have moderate 
importance for the results. 
 
Table 22. Ranking of coefficients affecting daylight. 

Parameters  Significance level 
(represented by p)  

Ranking 
Spearman’s 
method 

Level of association 
(represented by R) 

Ranking according 
to SRRC method 
 

Tvis Strong- null 
hypothesis rejected 

1 Strong, positive 
correlation 

1 

Wall 
Reflectance 

Strong- null 
hypothesis rejected 

2 Moderate, positive 
correlation 

2 

Ceiling 
Reflectance 

Strong- null 
hypothesis rejected  

3 Weak, positive 
correlation  

3 

Floor 
Reflectance 

Failed to reject null 
hypothesis 

4 Negligible, no 
association 

4 

 
  

Tvis 
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4.2 Uncertainty analysis 

4.2.1 Energy & Thermal comfort 

One of the key problems when simulating building energy consumption is the lack of reliable 
information regarding the building envelope, detailed system design and users’ behaviour. 
The uncertainty of total energy consumption results, heating demand results, and cooling 
demand results were plotted in form of histograms in Figure 55, 56 and 57, respectively. The 
figures represent the density of result occurrences over investigated population. The summary 
of uncertainty analysis is presented in Table 23. 
 
Table 23. Summary of the data. 

Output parameter Median Mean Standard 
deviation 

Minimum Maximum 

Total energy 
consumption 
[kWh/m2] 

92.7 99.4 23.1 64.9 186.4 

Heating demand 
[kWh/m2] 

16.9 17.9 8.2 2.5 41.9 

Cooling demand 
[kWh/m2] 

10.6 12.3 6.7 3.3 40.3 

Thermal comfort 
(Number of rooms 
complied) 

301.5 267.1 143.6 0 429 

 
The density plots help to visualize the distribution of data over the whole range of the results. 
Based on the results of the whole design space presented in Figure 55 - 57 and Table 23, the 
results of total energy consumption, heating demand, and cooling demand are concentrated 
between 99 ± 23 kWh/m2, 18 ± 8 kWh/m2, and 12 ± 7 kWh/m2, respectively. The density of 
sub-ranges regarding energy demand is normally distributed as there is only one obvious peak 
in the trendlines. The normal distribution also implies that the median values will be close to 
the mean values.  
 
The number of rooms which complied with the thermal comfort standard have bimodal 
distribution (2 peaks). The median value is far from the mean, which indicates that the mean, 
median, and standard deviation values can be misleading when predicting the concentration. 
Figure 58 shows that density columns vary between 0 - 429 rooms. However, it has a peak 
between 410 - 420 rooms. This means that some specific building parameters in certain ranges 
affect thermal comfort. 
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Figure 55. Density plot for total energy consumption results based on 400 simulated samples. 

 
Figure 56. Density plot for heating demand results based on 400 simulated samples. 

 
Figure 57. Density plot for cooling demand results based on 400 simulated samples. 
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Figure 58. Density plot of results representing the number of rooms complying with requirements set 

in thermal comfort section (Less than 100 hr in period from April to October, with operative 
temperature exceeding 26 C). 

The following paragraphs present favourable ranges of input under different filters. The most 
favourable ranges of input were identified using a three-step procedure. Firstly, 117 samples 
corresponding to total energy below 85 kWh/m2 were taken. Then the density of each sub-
ranges was plotted in form of the histograms. Secondly, 118 samples corresponding to over 
400 rooms complied with thermal comfort standards were selected. Then histograms were 
made to present the density of each subrange. In the end, applying both filters at the same 
time, resulted in identification of the 8 % best performing results (31 samples). In these figures, 
the input values with higher densities yield the favourable ranges of input, and therefore it can 
provide the suggestions for the latter design stage. 
 
Figure 59 shows that there is no obvious pattern of favorable input ranges when considering 
total energy consumption or thermal comfort separately. However, wall insulation thickness 
between 0.10 - 0.15 m yields better performance when considering both thermal comfort and 
energy savings. 
 

 
Figure 59. Favorable input ranges for wall insulation thickness in 117, 118, and 31 samples. 

In Figure 60, no obvious pattern of favorable input ranges was observed when total energy 
consumption and thermal comfort criteria were applied separately. Nevertheless, roof 
insulation thickness between 0.160 - 0.165 m; 0.170 - 0.175 m and 0.195 - 0.200 m had the 
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highest density of occurrence when the criteria for thermal comfort and total energy 
consumption were applied simultaneously. 
 

 
Figure 60. Favorable input range for roof insulation thickness in 117, 118, and 31 samples. 

Figure 61 shows that it can be concluded that thicker insulation will be preferred regarding 
lower energy consumption, while thinner insulation could bring the benefit of having more 
rooms complied with BR18 [1]. However, floor insulation thickness between 0.350 - 0.375 m 
had the highest density of occurrence when the criteria for thermal comfort and total energy 
consumption were applied together. 
 

 
Figure 61. Favorable input range for floor insulation thickness in 117, 118, and 31 samples. 

Patterns from Figure 62 below show that higher inlet air temperature is preferable for lower 
total energy consumption, while it is undesirable for avoiding the overheating issues. The inlet 
temperature of 16 C and 18 C have the highest occurrence when both criteria were applied 
together. However, since this model had generic HVAC system, detailed HVAC design is 
required for further verification of the favourable input ranges. 
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Figure 62. Favorable input range for inlet air temperature in 117, 118, and 31 samples. 

Figure 63 shows the overall patterns are contradictory when the two criteria for total energy 
consumption and thermal comfort were applied separately. However, the distribution of 
density becomes uniform when two criteria were applied together. In this study, thermal 
comfort was analysed only between April to October. Therefore, if winter thermal comfort is 
concerned, low infiltration rate should be targeted. This is due to that higher infiltration rate 
will lead to winter discomfort [57]. This always requires a higher quality of construction and 
implementation of impermeable materials.  
 

 
Figure 63. Favorable input range for infiltration rate in 117, 118, and 31 samples. 

Similar to air inlet temperature and infiltration rate, favourable ranges for auxiliary ventilation 
rate is opposite when two criteria of energy consumption and thermal comfort are applied 
separately, which is illustrated in Figure 64. However, auxiliary ventilation of 9.5 l/s/person 
gives the highest probability of low energy consumption and reduced overheating problem in 
the studied case. The decision process of optimizing auxiliary ventilation rate should take 
account ventilation system standards, purpose of the building and client’s wishes.  
 

 
Figure 64. Favorable input range for auxiliary ventilation rate in 117, 118, and 31 samples. 
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Figure 65 suggests that a lower heating setpoint temperature is preferable for lower total 
energy consumption, whereas there is no obvious pattern regarding thermal comfort. 
Concluding general data pattern, it is recommended to lean towards the lower range of 
investigated setpoints in comparison to higher values. Nevertheless, heating setpoint 
temperature between 19.5 - 20 C provide best overall performance when both criteria are 
considered together.  
 

 
Figure 65. Favorable input range for heating setpoint in 117, 118, and 31 samples. 

It can be seen from Figure 66 that heating setback temperature in the range of 14 - 15 C is 
most suitable when both criteria are considered. However, sensitivity analysis indicated that 
the heating setback temperature had a relatively low Spearman’s coefficient. Therefore, this 
parameter should not be a design priority. 
 

 
Figure 66. Favorable input range for the heating setback in 117, 118, and 31 samples. 

Figure 67 indicates that lower cooling setpoint significantly reduces the number of rooms with 
overheating problem However, there is no distinctive range of favourable cooling setpoints 
affecting total energy consumption. After applying filters for both categories, cooling setpoint 
temperature between 23 - 24 C is formed to be the most favorable range. 
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Figure 67. Favorable input range for cooling setpoint in 117, 118, and 31 samples. 

As can be seen from Figure 68, thermal comfort is not affected by any particular range of 
cooling setback temperature. However, cooling setback temperature ranges of 26 - 26.5 C 
and 27.5 - 28 C are most suitable for total energy. Nevertheless, after applying both filters of 
energy consumption and thermal comfort, a cooling setback temperature of 27.5 - 28 C turns 
out to be the most optimal range. 
 

 
Figure 68. Favorable input range for cooling setback in 117, 118, and 31 samples. 

As shown in Figure 69 occupancy profile number 5, corresponding to working hours starting 
from 8:30 with a two-hour lunch break, provides the most optimal solutions. Nevertheless, 
detailed investigation of profile type connected with electrical lighting consumption is 
recommended. 
 

 
Figure 69. Favorable input range for occupancy profile type in 117, 118, and 31 samples. 
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As initially expected, higher occupancy rate is directly linked to the lower total energy 
consumption in the building (Figure 70). Nevertheless, buildings are designed for fixed 
amount of people. Modification in occupancy rate would be valuable when analyzing different 
alterations of building layouts.  
 

 
Figure 70. Favorable input range for occupancy rate in 117, 118, and 31 samples. 

According to Figure 71, in order to avoid overheating issues, higher g-values such as 0.58 and 
0.7 are not favourable. Window g-value does not have a big difference in density regarding 
total energy consumption. This implies that lower g-values are recommended when 
considering both total energy consumption and thermal comfort. Window with g-value of 
0.26 performed the best in terms of energy and thermal comfort. However, before the final 
selection of the window, daylight performance of pre-specified types should be investigated. 
 

 
Figure 71. Favorable input range for g-value of the window in 117, 118, and 31 samples. 

Figure 72 shows that lighting gains of 7 W/m2 occur the most in the population of samples 
when two criteria are added together. Even though the correlation between lighting gains and 
total energy places the variable in the middle of the ranking, energy-efficient lighting is 
recommended. 
 

g-value of external window 
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Figure 72. Favorable input range for lighting gains in 117, 118, and 31 samples. 

 
Figure 73 indicates that different equipment gains result in almost the same number of 
samples when the criterion of thermal comfort is applied. On the other hand, lower lighting 
gains result in the largest number of samples meeting the criterion of energy consumption 
below 85 kWh/m2. Based on the density of occurrence, equipment gains of 12.5 W/m2 result 
in the highest number of samples meeting both criteria. 
 

 
Figure 73. Favorable input range for equipment gains in 117, 118, and 31 samples. 

To sum up, uncertainty analysis defined the predicted spans of total energy consumption 
based on the variations in the input parameters. Moreover, input ranges for each design 
variable, based on the density of occurrence in the filtered best 8 % of the total results have 
been analyzed. Before proceeding with the overall recommendations for the whole building, 
sensitivity and uncertainty analysis of daylight variables will be presented, followed by the 
final solution. 

4.2.2 Daylight 

Study of 400 samples representing different design solutions, included 180 variations of 
inputs affecting spatial daylight autonomy. The study was conducted to investigate the 
distribution of predicted values of sDA300,50. The analysis was undertaken for all uncertain 
input parameters discussed in the methodology chapter. 
 
Table 24 shows that all samples present satisfactory performance in terms of the spatial 
daylight autonomy. All samples fulfill the requirements set in Section 3.3.1. Worst case 
scenario resulted in 76.98 % of the area receiving light over 300 lux in 50 % of the working 
area for minimum half of the daylight hours. The low value of the standard deviation means 
that most of the simulated samples are close to the mean value of 80.17 %. 
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Table 24. Uncertainty Results parameters for sDA300,50 output.  

Output parameter Median Mean Standard 
deviation 

Minimum Maximum 

sDA300,50 [%] 80.55 80.17 1.53 76.98 82.8 

 

 
Figure 74. Density plot representing the distribution of Spatial Daylight Autonomy results in simulated 

population. 

According to Figure 75 and Figure 76, higher reflectance of surfaces results in a greater 
number of samples meeting the criteria of 82.27 %. Ceiling reflectance of 0.9 and floor 
reflectance of 0.4 occurred most often in the population of samples. However, referring back 
to the sensitivity analysis results, it is important to understand the level of correlation between 
dependent and independent variable, therefore floor reflectance does not significantly affect 
daylight. 
 

 
Figure 75. Favorable input ranges for ceiling and floor reflectance, meeting the criterion of sDA over 

82.27 %. 

Figure 76 shows that window type with visible transmittance of 0.72 performed the best in 
terms of daylight. Nevertheless, multi-variate assessment (especially for window type 
parameter) requires further analysis including both energy and thermal comfort performance. 
Concerning the wall reflectance, surfaces with the reflectance of 0.8 perform the best. 
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Figure 76. Favorable input ranges for wall reflectance and window Tvis, meeting the criterion of sDA 

over 82.27 %.  

4.3 Overall Results 

Five parallel coordinate plots (PCP) were generated in Design explorer by applying different 
filtering criteria. Figure 77 shows PCP for 400 samples. Figure 78 presents the best-
performing samples generated by applying a filter of total energy consumption lower than 
85kWh/m2. It can be seen that the distribution of remaining samples was concentrated around 
lower infiltration values, lower auxiliary ventilation rate, lower heating setpoint temperature 
and higher inlet air temperature. These findings verify the results of sensitivity and uncertainty 
analysis presented before. However, the preferred inputs for some building parameters, such 
as cooling setpoint temperature and window types, cannot be clearly seen. 
 
Figure 79 presents the best-performing samples generated by applying the second filter 
representing number of rooms complied with standard from Section 3.3.2 ≥ 400. In general, 
the revealed input spans are the same as the results derived from the uncertainty analysis. For 
example, the lower values within the span of the heating setpoint temperature and cooling 
setpoint temperature are preferable. Besides, the distributions of lower ventilation rate, higher 
infiltration rate, and higher cooling setback temperature results are denser. In addition, as seen 
from Figure 79, window type of 1 and 2 which had g-values of 0.58 and 0.70 should not be 
chosen. Besides, it can be also observed that occupancy profile 3 is not favourable. 
 
Finally, samples with sDA300,50 over 82.27 % were selected. Remaining samples presented in 
Figure 80, were coherent with the performed uncertainty and sensitivity analysis, suggesting 
higher reflectance of the surfaces especially for the ceiling and the wall. However, the clear 
pattern for the floor reflectance could not be observed. Figure 81 presents the final, optimized 
multivariate solution . 
  
Therefore, to conclude, PCP can quickly illustrate the preferable input ranges and can rapidly 
exclude some design options, for example, window type 1 and 2 could be neglected. However, 
further analysis will be required when preferred input ranges can not be clearly identified. 
Density plots can be one solution. Nevertheless, generating parallel coordinate plots in Design 
Explorer is suggested for consultants, since it is an easy and quick way to give a sense of 
overall results. 
 
 

Tvis 
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F
igure 79. Parallel coordinate plot for rem

aining sam
ples after adding the second filter. 

F
igure 78. Parallel coordinate plot for rem

aining sam
ples after adding the first filter. 

F
igure 77. Parallel coordinate plot for 400 sam

ples.  
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F
igure 80. Parallel coordinate plot for rem

aining sam
ples after adding the third filter. 

F
igure 81. Parallel coordinate plot for the optim

um
 approach.  
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5 Discussion 

The main focus of the thesis was the development of methodology for performing 
multidisciplinary sensitivity and uncertainty analysis. Proof of the concept was based on the 
case study of an office building in Copenhagen, Denmark. The developed methodology 
included stepwise processes for performing sensitivity and uncertainty analysis, starting from 
the definition of input / output parameters to completing statistical analysis of simulated data 
for the specific building case. Feasibility of automating simulations in IES VE by utilizing 
python code was explored. The concept of integrating python script in IES VE for 
multidisciplinary studies is relatively new since the application is still in the development 
stage. Due to the limitations of the interface, selection of input parameters and the probability 
density functions was limited. Looking from the short-term perspective, current IES VE 
software limitations significantly decrease the feasibility of performing sensitivity analysis in 
the early design stages of the building projects. Nevertheless, if the studies would relate to 
automated geometrical modifications in other software (Dynamo or Rhino) or if the current 
VEScript limitations would be eliminated, sensitivity and uncertainty analysis could have a 
huge potential of usability in early design stages of the building projects. Implementing 
sensitivity and uncertainty analysis studies could lead to better time-efficiency and gradual 
cost reduction by limiting the number of time-consuming parametric simulations by using the 
importance ranking of input parameters. 
 
In this thesis, eighteen parameters related to façade design, construction quality, system 
design, internal heat gains and material surface optical were tested. Fourteen parameters 
influenced total energy consumption and thermal comfort, while three parameters affected 
daylight performance. The only parameter which had an influence on multidisciplinary results 
was window type. The ranges of input parameters were selected based upon building codes, 
indoor climate standards, and the literature review. The output parameters were determined 
according to Danish Building Regulations and available outputs from the chosen software. 
Four hundred simulations in IES VE and one hundred and eighty simulations in DIVA for 
grasshopper were carried out for this study. Based on the literature review, correlation method 
was chosen for the study and applied to the base case office building. Initially Pearson’s 
correlation coefficient method was tested. Unfortunately, after validating simulated datasets, 
no linearity was found in the functions represented by the data plots. Since the coefficients of 
determination (R2) for all tested variables, indicated a lack of satisfactory model performance 
in Pearson’s correlation coefficient method, Spearman’s rank-order correlation method was 
chosen as the suitable one for analysis. Although, different statistical analysis methods could 
be tested, more complex methods increase the time required for detailed analysis. Therefore, 
the choice of a suitable method based on the pre-defined time frame for project work is very 
important before proceeding with the sensitivity and uncertainty analysis. In this work, 
correlation method was chosen due to its simplicity and low computational cost in comparison 
to variance-based methods. 
 
The results presented importance ranking of parameters based on the correlation level with 
the output indicator and statistical significance of the results. As initially expected, each input 
parameter performed differently depending on different result indicators. As an example, 
window types with low g-values performed better in terms of energy and thermal comfort, 
but worse in terms of daylight. Therefore, it is recommended to implement an approach based 
on the multi-disciplinary analysis of the results. In this thesis, multidisciplinary evaluation of 
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the results was achieved by gradually adding filters representing different result indicators. 
Additionally, parallel coordinate plots were presented for verifying the results. According to 
the literature review, weighting system and global objective can also be used to assess the 
overall performance. In this study, the number of rooms complied with BR 18 (number of 
hours in the period from April to October, when operative temperature exceeds 26 °C < 100) 
cannot be translated to thermal discomfort index, therefore it cannot be combined with the 
total energy, as a single global objective. However, if PMV or PPD were used as the results 
indicators, methodology of creating a single global results objective would be possible. 
 
Based on the sensitivity analysis for the case building, it was found that insulation thickness 
of opaque constructions and occupancy type have very low correlation level with the energy 
consumption and thermal comfort. Inlet air temperature and auxiliary ventilation rate 
significantly influenced both energy consumption and thermal comfort. Higher inlet air 
temperature and lower auxiliary ventilation rate resulted in lower total energy consumption. 
On the contrary, lower inlet air temperature and higher auxiliary ventilation resulted in better 
thermal comfort. Based on the multi-disciplinary uncertainty analysis, airflow of minimum 
9.5 l/s/person with air temperature between 16 °C to 18 °C is recommended. 
 
Infiltration rate significantly affected both total energy consumption and thermal comfort. 
Lower infiltration rate contributed to the reduction of the total energy consumption but 
decreased the number of rooms complying with thermal conditions stated in BR18. As a final 
choice infiltration rate between 0.379 - 0.579 ach is recommended for the case building. 
Among setpoint and setback temperature, heating setpoint temperature plays the biggest role 
in affecting the total energy consumption, while cooling setpoint temperature has the strongest 
correlation with thermal comfort. Considering both energy consumption and thermal comfort, 
heating setpoint between 19.5 - 20 C, and cooling setpoint between 23 - 24 C are suggested 
for the case building. It is interesting to notice that occupancy rate influences the total energy 
the most. However, the occupancy rate is not a factor that building design can control. 
Different ways of testing the occupancy rates would be recommended. For example, 
occupancy rates in rooms with different orientations can be altered simultanously, which 
could help to determine more optimized building layout. Lighting and equipment internal 
gains had positive,weak correlation with the total energy consumption and no correlation with 
thermal comfort. The final recommendation for the investigated building is 7 W/m2 for 
lighting gains and 12.5 W/m2 equipment gains. 
 
Window type had a significant impact on all the investigated categories, especially thermal 
comfort and daylight. Window type, translated into light transmittance value for daylight 
investigations, had the strongest correlation level with spatial daylight autonomy among the 
investigated parameters. Nevertheless, all simulated samples fulfilled conditions set for 
daylight in Danish Building Regulations. In terms of multivariate analysis, windows with 
lower g-values are recommended, since they performed better for both thermal comfort and 
total energy consumption. The lesser overheating problem occurred among the simulated 
samples, with the lower the g-values. Choice of the right window type is very crucial in the 
optimization of the buildings, especially in colder climate as proven by the sensitivity analysis 
results of the case building. Even though window to wall ratio could not be tested due to the 
existing VEScript limitations, manual testing of the parameter is recommended for the future 
research. 
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To conclude, the results of the sensitivity and uncertainty analysis presented in this thesis are 
only valid for the investigated building case. Nevertheless, the developed methodology is 
applicable for future building projects, after adjustments to the python code based on the 
alterations to input parameters. The list of inputs and output parameters is strictly dependent 
on the project requirements and client needs; therefore, changes can be applied. Moreover, 
the selection of probability density functions is relatively flexible, since ranges for testing are 
user-defined. Uniform distribution requires more computational time for testing but yield 
more accurate results in comparison to discrete distribution of values. Sensitivity and 
uncertainty analysis can also be applicable while working with different software’ than IES 
VE and DIVA. Unfortunately, it is not guaranteed that utilization of created codes for analysis, 
will be possible in other software. 
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6 Conclusions and Future Work 

The main conclusions based on the thesis work are stated below. 
 

 VEScript python editor has facilitated partial automation of simulation process, 
drastically reducing time spent on the parametrical studies in IES VE. The 
functionality of VEScript is still under development, therefore, it limits possibilities 
for in-depth optimization of all the possible variations of parameters. 

 
 Choice of the suitable sensitivity analysis method is very crucial for the success of 

analysis. In the current project, due to lack of model linearity, Pearson’s correlation 
coefficient method could not be used, therefore final choice shifted towards 
Spearman’s method. Unfortunately, the interaction effect between input variables is 
not included, thus meta-modeling, Morris or variance-based methods could be 
investigated in the future research. 

 
 Sensitivity and uncertainty analysis provided enough information for prioritizing the 

most important variables affecting the final results. Parameters performed differently 
according to different result indicators. The result of total energy consumption was 
mostly influenced by occupancy rate, auxiliary ventilation rate, and inlet air 
temperature, whereas thermal comfort results were affected by cooling setpoint, g-
value of window and infiltration rate. Even though further optimization is required, 
a range of uncorrelated parameters can be excluded from the design process, which 
as a result will be time-saving for the consultants. 

 
 Results of sensitivity analysis and uncertainty analysis are highly dependent on the 

input ranges and their distributions. Therefore, the larger the input span the bigger 
the possibility of producing statistically accurate results regarding the optimization 
solution. 

Regarding future work, the methodology proposed in this study can be further developed to 
increase the efficiency and accuracy of the analysis. Tests of other sensitivity analysis 
methods, such as Morris or variance-based methods would be recommended. Those methods 
investigate the interactions between parameters and account for nonlinearity. Nevertheless, 
more complex methods require a larger sample size, which will lead to higher computational 
needs and longer time for analysis. Furthermore, the VEScript application is still under 
development, which reduced the possibility of having more testable input parameters. Work 
could be continued to follow up on the progressive development of the application. As an 
example, the development of python code for overwriting input parameters in IES VE would 
be very beneficial for future usage. Moreover, implementation of the weighting system for 
multidisciplinary assessment between energy, thermal comfort, and daylight could be 
investigated. Different approaches concerning the method could be tested, leading to the 
formation of a global assessment objective. Finally, life-cycle cost and life-cycle assessment 
could also be incorporated when identifying the best performing samples. 
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Summary 

The main focus of this thesis was multivariate, cross-disciplinary sensitivity and uncertainty 
analysis of the building parameters integrating thermal comfort, energy and daylight. The case 
study of a Danish office building was used for performing the simulations.  
 
A literature review was conducted aiming to place the thesis in the broader context and sum 
up current research about sensitivity and uncertainty analysis of building parameters. The 
literature research indicated that majority of sensitivity and uncertainty analysis papers 
focused on only one or two output indices (thermal comfort being most popular), but very few 
implemented holistic approach including energy, thermal comfort, and daylight at the same 
time. There were no unified trends regarding input parameters and the choice of the method. 
Both factors are highly dependent on time-framework and resources for the project 
implementation. 
 
Eighteen building parameters were tested, including window types, opaque constructions 
insulation thicknesses, infiltration rate, ventilation rate, setpoint and setback temperature, 
internal gains and surface optical properties. Total energy consumption, number of rooms 
compiled with Danish Building Regulations thermal comfort requirements and sDA300,50, 
were used as the result indicators.  
 
Spearman’s rank-order correlation method was chosen for sensitivity analysis. Results of the 
thesis identified the most crucial parameters for the case building optimization. In addition, 
the uncertainty of the results due to uncertainties in design parameters was quanitified in the 
project context. For the overall analysis, three type of filters were gradually applied to all the 
samples. As a result, input spans yielding the best holistic results in terms of daylight, thermal 
comfort and energy, were identified. In the case building result of total energy consumption 
was mostly influenced by occupancy rate, auxiliary ventilation rate, and inlet air temperature, 
whereas thermal comfort results were affected by cooling setpoint, window type, and 
infiltration rate. In terms of daylight performance, window type had higher correlation level 
with the spatial daylight autonomy results, than the optical properties of the surfaces.  
 
For the investigated building, lower auxiliary ventilation rate, inlet air temperature between 
16 - 18 °C, cooling setpoint between 23 - 24 °C, windows with lower g-value and infiltration 
rate between 0.379 - 0.579 ach yielded the best results considering multidisciplinary analysis, 
including energy, thermal comfort, and daylight at the same time. Nevertheless, the results 
are strongly case dependent, therefore careful selection of input parameters, ranges for testing 
and probability density functions is very crucial at the initial stage of performing sensitivity 
and uncertainty analysis.  
 
Overall study proves the suitability of developed methodology for further usage in the early 
design stages of the building projects. Python code for multivariate analysis in IES VE, as 
well as DIVA script, can be further re-adjusted, based on the choice of parameters for 
sensitivity and uncertainty analysis in the future projects. Nevertheless, both can be used as a 
solid basis for further development.  
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Appendix 

Appendix A: Literature review of other sensitivity analysis methods 

1) Screening methods 

Morris one-at-a-time-screening: 

According to Herman [93], Morris method measures the global sensitivity by the usage of a 
set of the local derivatives taken at point sampled throughout the whole parameter design 
space. In the method both the variance and mean of the elementary effects are assessed. The 
method is suitable for applications with moderate computational cost in comaprison to other 
global methods [2]. The method is aiming to identify the least influential parameters and as a 
result lead to ranking of all the inputs. Due to reduced computational time, method is widely 
used in the building performance simulation research, since it compromises time efficiency 
with the accuracy of datasets and it’s suitable for an extensive dataset [2, 11, 25]. Factorial 
sampling in Morris method belongs to OAT category, previously mentioned in Section 2.2.3.1 
[26]. According to Morris [94], method is based on approach of efficient parameter screening 
alongside the factorial sampling strategy, which directly leads to pointing out the fixed 
parameters not influencing the results. Parameter space is discretized by transforming the 
input parameters into the variables (dimensionless) which fall into (0;1) interval. Then each 
parameter is divided into a number of p levels, which are forming a grid in the unit length 
hypercube Hk [94]. Location of the sampling starting point in the design space is randomly 
chosen. Moreover, for each sample, only one coordinate is variated in relation to the previous 
sample [26]. 

2) Variance based methods 

Sobol Sensitivity Indices: 

Sobol’ method for sensitivity analysis is a global, variance-based method which is very 
computationally demanding. It attributes the variance in the outputs to each set parameter and 
includes interactions between the parameters [93]. The method is described by the following 
Equation 3: 
 

𝐷(𝑓) =  ෍ 𝐷𝑖

௜

+ ෍ 𝐷𝑖𝑗 + ෍ 𝐷𝑖𝑗𝑘

௜ழ௝ழ௞௜ழ௝

+ 𝐷12. . 𝑝, (3) 

 
 D(f): the total variance of the output metric f 
 Di: first-order variance contribution of the i-th parameter 
 Dij: second-order contribution of the interaction between parameters i and j  
 D12...p: contains all interactions higher than third-order, up to p total parameters [93]. 

In Sobol’s method, two measures can be derived for each parameter: first-order index, which 
describes the contribution of the parameter to the variance in response and total effect index 
which is a total contribution including interactions of a parameter to the response variance. 
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Fourier amplitude sensitivity test: 

FAST is a method which originally was designed for analyzing the sensitivity of chemical 
reactions to rate the coeffients, however further has been adapted for use in different scientific 
problems [95]. FAST method explores the space of the input variables with a periodic curve 
by using different variables frequencies. The classical FAST method does not account for the 
interaction between parameters (considers only non-linear effects) [21]. The extended FAST 
method leads to the computation of the higher-order effects. Capozzoli [7] describes the FAST 
method as based on the transformation that converts the Y variable variance (k-dimensional 
integral), to the single-dimensional integral with respect to a scalar variable s. This process is 
conducted by transformation of each input factor Xi into the form presented in Equation 4 [33]: 
 

𝑋௜ = 𝐺௜(sin(𝜔௜𝑠)) (4) 
 

3) Meta-model methods 

Meta-model sensitivity method included two steps. The first step is to create meta-modelling 
(machine learning numerical model) based on results from thousands of simulation according 
to the global design space or building performance databases [35]. The second step is to 
conduct a variance-based sensitivity method such as Sobol’ on this meta-modelling. Tian [30] 
has stated that meta-modelling is easier, cheaper and faster to get the predictive results and it 
is especially suitable when the simulation of building performance is complex and 
computationally intensive. It has been found by Tian [53] that the speed of getting convergent 
is faster in meta-modelling Sobol’ method in comparison with SRC method.  
 
Predictive validation of the meta-modelling will be judged if it has a high coefficient of 
determination (R2) and a low Root-Mean-Square-Error (RMSE) [35]. However, it is only 
valid for the specific regions where the training data distributed within. Tian [30] has argued 
that the accuracy of sensitivity analysis will significantly depend on the meta-model. 
Nevertheless, meta-model not only can be implemented to perform quantitative sensitivity 
analysis but also be favorable for design space exploration and optimization [35]. For example, 
Østergård [35] used meta-model to solve what-if questions, answering how the output changes 
when the input has been changed by a specific value, and therefore benefits the informed 
decision-making. 
  



Sensitivity and Uncertainty Analysis of the Building Parameters  

 

101 
 

Appendix B: Python script for IES VE 

1) Overwrite values of input parameters 

import xlrd 
from xlrd import open_workbook 
workbook=open_workbook('sampletorun0429.xlsx') #remember to put excel file in the same 
folder of your ies model 
sheet =workbook.sheet_by_index(0)# get sheet 1 
import iesve 
import pprint 
import time 
b=47 
 # manually to change number here to loop different columns of data 
# select this to execute and then open database, double click one wall construction and close 
it and save changes 
     
for i in range(b,b+1): 
    # get each cell value(every time the same row) 
    aps_sample_name=sheet.cell(i,0).value #aps.name 
    wallinsul=sheet.cell(i,1).value # wall insulation thickness 
    roofinsul=sheet.cell(i,2).value # roof insulation thickness 
    groundinsul=sheet.cell(i,3).value #ground insulation thickness 
    infil=sheet.cell(i,4).value # infiltration index  
    auxi=sheet.cell(i,5).value # auxiliary ventilation index 
    hpt=sheet.cell(i,6).value # hpt is heating set point degree 
    cpt=sheet.cell(i,7).value # cpt is cooling set point degree 
    occupancy=sheet.cell(i,8).value #occupancy gain index, remember to remove it before next 
simulation 
    light=sheet.cell(i,9).value #light gain index, remember to remove it before next simulation 
    equipment=sheet.cell(i,10).value #equipment gain index, remember to remove it before 
next simulation 
    glz=sheet.cell(i,11).value 
    office_profile=sheet.cell(i,12).value 
    inlet_profile=sheet.cell(i,13).value 
    hsb=sheet.cell(i,17).value 
    csb=sheet.cell(i,18).value 
     
    veproject = iesve.VEProject.get_current_project() 
    db = iesve.VECdbDatabase.get_current_database() 
    projects = db.get_projects() 
    project_list = projects[0] 
    project = project_list[0] 
    c_class = iesve.construction_class.opaque 
    ids = project.get_construction_ids(c_class) 
 
    # if we know construction id, 20130014-Uvalue0.699,20130017-Uvalue0.715,20130020-
Uvalue0.706 
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    # we know the top roof id is 20130007, we know ground floor id is 20130005 
    # insulation layer index is 2 for 3 types of wall construction, index 1 for roof, index for 
ground 
    # we get index now 
    # then we get index_1=12, index_2=14, index_3=15, index_4=7, index_5=5 
    wall_1_construction = project.get_construction(ids[12], c_class) 
    wall_2_construction = project.get_construction(ids[14],c_class) 
    wall_3_construction = project.get_construction(ids[15],c_class) 
    roof_1_construction = project.get_construction(ids[7],c_class) 
    ground_1_construction = project.get_construction(ids[5],c_class) 
 
    if wall_1_construction.is_editable: 
        wall_layers_1 = wall_1_construction.get_layers() 
        insulation_layer_1=wall_layers_1[2] 
        insulation_layer_1.set_properties({'thickness': wallinsul})#mind here: the thickness 
here is meter. 
         
    if wall_2_construction.is_editable: 
        wall_layers_2 = wall_2_construction.get_layers() 
        insulation_layer_2=wall_layers_2[2] 
        insulation_layer_2.set_properties({'thickness': wallinsul}) 
         
    if wall_3_construction.is_editable: 
        wall_layers_3 = wall_3_construction.get_layers() 
        insulation_layer_3=wall_layers_3[2] 
        insulation_layer_3.set_properties({'thickness': wallinsul}) 
         
    if roof_1_construction.is_editable: 
        roof_layers_1 = roof_1_construction.get_layers() 
        insulation_layer_roof=roof_layers_1[0] 
        insulation_layer_roof.set_properties({'thickness': roofinsul}) 
         
    if ground_1_construction.is_editable: 
        ground_layers_1=ground_1_construction.get_layers() 
        insulation_layer_ground=ground_layers_1[3] 
        insulation_layer_ground.set_properties({'thickness': groundinsul}) 
 
    #change outpane glazing properties  
    veproject = iesve.VEProject.get_current_project() 
    db = iesve.VECdbDatabase.get_current_database() 
    projects = db.get_projects() 
    project_list = projects[0] 
    project = project_list[0]     
    c_class_1 = iesve.construction_class.glazed 
    ids_1 = project.get_construction_ids(c_class_1) 
    transmittance=[0,0.871,0.710,0.30,0.470,0.350] 
    outside_reflectance=[0,0.078,0.2,0.6,0.38,0.4] 
    inside_reflectance=[0,0.078,0.2,0.6,0.38,0.4] 
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    d=[0,4,5,6] 
    for i in d: 
        base= project.get_construction(ids_1[i], c_class_1) 
        if base.is_editable: 
            layers= base.get_layers() 
            outlayer=layers[0] 
            material = outlayer.get_material(False) 
            
material.set_properties({'transmittance':transmittance[int(glz)],'outside_reflectance':outside_
reflectance[int(glz)],'inside_reflectance':inside_reflectance[int(glz)]}) 
 
    project = iesve.VEProject.get_current_project() 
    office_daily_profile = project.daily_profile("DAY_0003") 
    canteen_daily_profile= project.daily_profile('DAY_0077') 
    inlet_temperature_daily_profile=project.daily_profile('DAY_0079')  
    heating_operation_daily_profile=project.daily_profile('SYS_0207') 
    cooling_operation_daily_profile=project.daily_profile('DAY_0087') 
     
    heating_operation_list=[0, 
    [[0, hsb, '-'], [6, hsb, '-'], [6, hpt, '-'], [17, hpt, '-'], [17, hsb, '-'],[24, hsb, '-']], 
    [[0, hsb, '-'], [6, hsb, '-'], [6, hpt, '-'], [17, hpt, '-'], [17, hsb, '-'],[24, hsb, '-']], 
    [[0, hsb, '-'], [6, hsb, '-'], [6, hpt, '-'], [17, hpt, '-'], [17, hsb, '-'],[24, hsb, '-']], 
    [[0, hsb, '-'], [7, hsb, '-'], [7, hpt, '-'], [18, hpt, '-'], [18, hsb, '-'],[24, hsb, '-']], 
    [[0, hsb, '-'], [7, hsb, '-'], [7, hpt, '-'], [18, hpt, '-'], [18, hsb, '-'],[24, hsb, '-']], 
    [[0, hsb, '-'], [7, hsb, '-'], [7, hpt, '-'], [18, hpt, '-'], [18, hsb, '-'],[24, hsb, '-']], 
    [[0, hsb, '-'], [7.5, hsb, '-'], [7.5, hpt, '-'], [18.5, hpt, '-'], [18.5, hsb, '-'],[24, hsb, '-']], 
    [[0, hsb, '-'], [7.5, hsb, '-'], [7.5, hpt, '-'], [18.5, hpt, '-'], [18.5, hsb, '-'],[24, hsb, '-']], 
    [[0, hsb, '-'], [7.5, hsb, '-'], [7.5, hpt, '-'], [18.5, hpt, '-'], [18.5, hsb, '-'],[24, hsb, '-']]] 
     
    cooling_operation_list=[0, 
    [[0, csb, '-'], [6, csb, '-'], [6, cpt, '-'], [17, cpt, '-'], [17, csb, '-'],[24, csb, '-']], 
    [[0, csb, '-'], [6, csb, '-'], [6, cpt, '-'], [17, cpt, '-'], [17, csb, '-'],[24, csb, '-']], 
    [[0, csb, '-'], [6, csb, '-'], [6, cpt, '-'], [17, cpt, '-'], [17, csb, '-'],[24, csb, '-']], 
    [[0, csb, '-'], [7, csb, '-'], [7, cpt, '-'], [18, cpt, '-'], [18, csb, '-'],[24, csb, '-']], 
    [[0, csb, '-'], [7, csb, '-'], [7, cpt, '-'], [18, cpt, '-'], [18, csb, '-'],[24, csb, '-']], 
    [[0, csb, '-'], [7, csb, '-'], [7, cpt, '-'], [18, cpt, '-'], [18, csb, '-'],[24, csb, '-']], 
    [[0, csb, '-'], [7.5, csb, '-'], [7.5, cpt, '-'], [18.5, cpt, '-'], [18.5, csb, '-'],[24, csb, '-']], 
    [[0, csb, '-'], [7.5, csb, '-'], [7.5, cpt, '-'], [18.5, cpt, '-'], [18.5, csb, '-'],[24, csb, '-']], 
    [[0, csb, '-'], [7.5, csb, '-'], [7.5, cpt, '-'], [18.5, cpt, '-'], [18.5, csb, '-'],[24, csb, '-']]] 
    
    office_profile_list=[0, 
    [[0, 0, '-'], [7, 0, '-'], [7, 1, '-'], [12, 1, '-'], [12, 0.2, '-'],[13, 0.2, '-'],[13, 1, '-'], [17, 1, '-'], [17, 
0, '-'],[24, 0, '-']], 
    [[0, 0, '-'], [7, 0, '-'], [7, 0.5, '-'], [8, 0.5, '-'], [8,1,'-'],[12,1,'-'],[12, 0.2, '-'],[13, 0.2, '-'],[13, 1, 
'-'], [16,1,'-'],[16,0.5,'-'],[17,0.5,'-'], [17, 0, '-'],[24, 0, '-']], 
    [[0, 0, '-'], [7, 0, '-'], [7, 1, '-'], [12, 1, '-'], [12,0.4,'-'],[14,0.4,'-'],[14, 1, '-'],[17, 1, '-'],[17, 0, 
'-'],[24, 0, '-']], 
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    [[0, 0, '-'], [8, 0, '-'], [8, 1, '-'], [12, 1, '-'], [12, 0.2, '-'],[13, 0.2, '-'],[13, 1, '-'], [18, 1, '-'], [18, 
0, '-'],[24, 0, '-']], 
    [[0, 0, '-'], [8, 0, '-'], [8, 0.5, '-'], [9, 0.5, '-'], [9,1,'-'],[12,1,'-'],[12, 0.2, '-'],[13, 0.2, '-'],[13, 1, 
'-'], [17,1,'-'],[17,0.5,'-'],[18,0.5,'-'], [18, 0, '-'],[24, 0, '-']], 
    [[0, 0, '-'], [8, 0, '-'], [8, 1, '-'], [12, 1, '-'], [12,0.4,'-'],[14,0.4,'-'],[14, 1, '-'],[18, 1, '-'],[18, 0, 
'-'],[24, 0, '-']],     
    [[0, 0, '-'], [8.5, 0, '-'], [8.5, 1, '-'], [12, 1, '-'], [12, 0.2, '-'],[13, 0.2, '-'],[13, 1, '-'], [18.5, 1, '-
'], [18.5, 0, '-'],[24, 0, '-']], 
    [[0, 0, '-'], [8.5, 0, '-'], [8.5, 0.5, '-'], [9, 0.5, '-'], [9,1,'-'],[12,1,'-'],[12, 0.2, '-'],[13, 0.2, '-'],[13, 
1, '-'], [17.5,1,'-'],[17.5,0.5,'-'],[18.5,0.5,'-'], [18.5, 0, '-'],[24, 0, '-']], 
    [[0, 0, '-'], [8.5, 0, '-'], [8.5, 1, '-'], [12, 1, '-'], [12,0.4,'-'],[14,0.4,'-'],[14, 1, '-'],[18.5, 1, '-
'],[18.5, 0, '-'],[24, 0, '-']]] 
   
    canteen_profile_list=[0, 
    [[0,0,'-'],[12,0,'-'],[12,1,'-'],[13,1,'-'],[13,0,'-'],[24,0,'-']], 
    [[0,0,'-'],[12,0,'-'],[12,1,'-'],[13,1,'-'],[13,0,'-'],[24,0,'-']], 
    [[0,0,'-'],[12,0,'-'],[12,0.8,'-'],[14,0.8,'-'],[14,0,'-'],[24,0,'-']], 
    [[0,0,'-'],[12,0,'-'],[12,1,'-'],[13,1,'-'],[13,0,'-'],[24,0,'-']], 
    [[0,0,'-'],[12,0,'-'],[12,1,'-'],[13,1,'-'],[13,0,'-'],[24,0,'-']], 
    [[0,0,'-'],[12,0,'-'],[12,0.8,'-'],[14,0.8,'-'],[14,0,'-'],[24,0,'-']], 
    [[0,0,'-'],[12,0,'-'],[12,1,'-'],[13,1,'-'],[13,0,'-'],[24,0,'-']], 
    [[0,0,'-'],[12,0,'-'],[12,1,'-'],[13,1,'-'],[13,0,'-'],[24,0,'-']], 
    [[0,0,'-'],[12,0,'-'],[12,0.8,'-'],[14,0.8,'-'],[14,0,'-'],[24,0,'-']]] 
     
    inlet_temperature_profile_list=[0, 
    [[0,14,'-'],[24,14,'-']], 
    [[0,15,'-'],[24,15,'-']], 
    [[0,16,'-'],[24,16,'-']], 
    [[0,17,'-'],[24,17,'-']], 
    [[0,18,'-'],[24,18,'-']]] 
 
    office_daily_profile_data = office_profile_list[int(office_profile)] 
    canteen_daily_profile_data = canteen_profile_list[int(office_profile)] 
    heating_operation_daily_profile_data= heating_operation_list[int(office_profile)] 
    inlet_temperature_daily_profile_data = inlet_temperature_profile_list[int(inlet_profile)] 
    cooling_operation_daily_profile_data= cooling_operation_list[int(office_profile)] 
 
    office_daily_profile.set_data(office_daily_profile_data) 
    canteen_daily_profile.set_data(canteen_daily_profile_data) 
    heating_operation_daily_profile.set_data(heating_operation_daily_profile_data) 
     
    inlet_temperature_daily_profile.set_data(inlet_temperature_daily_profile_data) 
    cooling_operation_daily_profile.set_data(cooling_operation_daily_profile_data) 
     
    project = iesve.VEProject.get_current_project() 
    casual_gains = project.casual_gains() 
    templates = project.thermal_templates(False) 
    templates_iter = templates.values() 
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    alltemplates=list(templates.values()) 
    # then only change the templates called office, office is index 12 template 
    alltemplates[12].add_gain(casual_gains[int(occupancy)]) # data from sample excel 
    alltemplates[12].add_gain(casual_gains[int(light)]) # data from sample excel 
    alltemplates[12].add_gain(casual_gains[int(equipment)]) # data from sample excel 
    alltemplates[12].apply_changes()  
    # now add infiltartion rate,loop each template 
    air_exchanges = project.air_exchanges() 
    for template in templates_iter: 
        template.add_air_exchange(air_exchanges[int(infil)])# data from sample excel 
        template.apply_changes() 
    # now add ventilation rate,loop determinated templates, index 9,10,11,12,13,14 
    c=[9,10,11,12,13,14] 
    newarray = [alltemplates[int(i)] for i in c ] 
    for template in newarray: 
        template.add_air_exchange(air_exchanges[int(auxi)])# data from sample excel 
        template.apply_changes()  
     
project = iesve.VEProject.get_current_project() 
real_building = project.models[0] 
templates = project.thermal_templates(False) 
templates_iter = templates.values() 
alltemplates=list(templates.values()) 
 
office_id_list = ['AIM50770', 'AIM23400', 'AIM39070', 'AIM75380', 'L0000018', 
'AIM53640', 'AIM57610', 'AIM50450', 'AIM48520', 'AIM42260', 'L0000009', 'AIM44460', 
'AIM23670', 'AIM59890', 'AIM61760', 'AIM21190', 'AIM21390', 'AIM64450', 'AIM69010', 
'AIM44230', 'L0000003', 'AIM65820', 'AIM21870', 'AIM43090', 'AIM28200', 'AIM69740', 
'AIM30500', 'AIM72360', 'AIM75480', 'AIM47240', 'AIM29140', 'AIM29370', 'AIM32180', 
'AIM53350', 'AIM63510', 'AIM45370', 'AIM49800', 'AIM74800', 'AIM36760', 'AIM22070', 
'AIM19080', 'AIM37530', 'AIM34260', 'AIM36950', 'L1000000', 'AIM69670', 'AIM60210', 
'L0000005', 'AIM32980', 'AIM22450', 'AIM57200', 'AIM67360', 'AIM35220', 'AIM56250', 
'AIM53780', 'AIM21040', 'AIM65180', 'AIM41390', 'AIM34230', 'AIM45870', 'AIM71080', 
'AIM74210', 'AIM33620', 'AIM25490', 'AIM62740', 'AIM61200', 'AIM45190', 'AIM43690', 
'AIM45230', 'AIM43880', 'AIM22530', 'AIM44420', 'AIM71720', 'AIM37390', 'AIM48430', 
'AIM42150', 'AIM30050', 'AIM29320', 'AIM43650', 'AIM76680', 'AIM72020', 'AIM68900', 
'AIM66320', 'AIM21230', 'AIM45960', 'AIM20170', 'AIM24810', 'AIM62170', 'AIM67460', 
'AIM54920', 'AIM24120', 'AIM27080', 'AIM33480', 'AIM71290', 'AIM55330', 'AIM40230', 
'AIM39800', 'AIM27010', 'AIM28150', 'AIM22780', 'AIM51070', 'AIM40570', 'AIM19940', 
'AIM48790', 'AIM52500', 'AIM24020', 'AIM23250', 'AIM33640', 'AIM19230', 'AIM31190', 
'AIM18890', 'AIM25400', 'AIM66730', 'AIM23460', 'AIM25040', 'AIM74280', 'AIM20850', 
'AIM70880', 'AIM20280', 'AIM28080', 'AIM59390', 'AIM64280', 'AIM26520', 'AIM31640', 
'AIM21740', 'AIM63310', 'AIM24730', 'AIM42920', 'AIM22880', 'AIM46700', 'AIM61030', 
'AIM26300', 'AIM40180', 'AIM76650', 'AIM61970', 'AIM22250', 'AIM38260', 'AIM47650', 
'AIM37270', 'AIM28230', 'AIM21920', 'AIM38300', 'AIM65590', 'L1000002', 'AIM27440', 
'AIM55920', 'AIM42880', 'AIM49600', 'AIM49160', 'AIM17980', 'AIM32780', 'AIM73070', 
'AIM40800', 'AIM42340', 'AIM70790', 'AIM67370', 'AIM23590', 'AIM29360', 'AIM58300', 
'AIM77620', 'AIM25870', 'AIM54190', 'AIM40610', 'AIM39030', 'AIM23360', 'AIM22680', 
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'AIM58750', 'AIM38490', 'AIM45650', 'AIM56470', 'AIM54410', 'AIM73630', 'AIM70150', 
'AIM28760', 'AIM51910', 'AIM51500', 'L1000001', 'AIM73000', 'AIM62810', 'AIM60620', 
'AIM27090', 'AIM25950', 'AIM49710', 'AIM41570', 'AIM49070', 'AIM58200', 'AIM47550', 
'AIM66230', 'AIM54780', 'AIM35540', 'AIM60530', 'AIM72430', 'AIM31650', 'AIM47880', 
'AIM41950', 'AIM73160', 'AIM24290', 'AIM53050', 'AIM28910', 'AIM55400', 'AIM64040', 
'L0000004', 'AIM24840', 'AIM58340', 'AIM67870', 'AIM68600', 'AIM48540', 'AIM19790', 
'L0000002', 'AIM75840', 'AIM74200', 'AIM39260', 'AIM61670', 'AIM34510', 'AIM41480', 
'AIM41380', 'AIM20660', 'AIM22740', 'AIM56060', 'AIM49930', 'L0000001', 'AIM21310', 
'AIM57060', 'AIM76420', 'AIM30130', 'AIM57310', 'AIM59150', 'AIM47150', 'AIM38530', 
'AIM37720', 'AIM35020', 'AIM43110', 'AIM25160', 'AIM18400', 'AIM32290', 'AIM33170', 
'L0000006', 'AIM36250', 'AIM24350', 'AIM21810', 'AIM63950', 'AIM20930', 'AIM52210', 
'AIM36210', 'AIM47790', 'AIM35990', 'AIM33380', 'AIM27770', 'AIM27640', 'AIM65090', 
'AIM20600', 'AIM24330', 'AIM66590', 'L0000000', 'AIM42110', 'AIM46600', 'AIM62900', 
'AIM68130', 'AIM45640', 'AIM40030', 'AIM70440', 'AIM46510', 'AIM35110', 'AIM33920', 
'AIM30510', 'AIM39670', 'AIM71930', 'AIM41340', 'AIM39840', 'AIM28720', 'AIM44650', 
'AIM30400', 'AIM68510', 'AIM65050', 'AIM40810', 'AIM27190', 'AIM23210', 'AIM52640', 
'AIM51440', 'AIM50440', 'AIM69650', 'AIM25960', 'AIM26630'] 
heated_id_list = ['AIM53910', 'AIM32460'] 
notheated_id_list =['AIM84890', 'AIM50600', 'AIM63820', 'AIM81550', 'AIM14150', 
'AIM66080', 'AIM61260', 'AIM87660', 'AIM83450', 'AIM10590', 'AIM00660', 'AIM43280', 
'AIM60890', 'AIM87490', 'AIM86720', 'AIM08440', 'AIM11560', 'AIM36390', 'AIM14790', 
'AIM17820', 'AIM08740', 'AIM10470', 'AIM09610', 'AIM10750', 'AIM16190', 'AIM08770', 
'AIM59200', 'AIM08920', 'AIM83110', 'AIM84290', 'AIM11330', 'AIM11890', 'AIM62040', 
'AIM33100', 'AIM08160', 'AIM58480', 'L000001E', 'AIM65870', 'AIM62440', 'AIM61080', 
'AIM86450', 'AIM14490', 'L0000008', 'L000001A', 'AIM80260', 'AIM65570', 'AIM64610', 
'AIM12730', 'L0000010', 'AIM09380', 'AIM80830', 'AIM62760', 'AIM86080', 'AIM84300', 
'AIM62360', 'AIM61930', 'L000000F', 'AIM82730', 'AIM65520', 'AIM51720', 'AIM63130', 
'AIM02630', 'AIM10550', 'AIM58760', 'AIM08660', 'AIM17330', 'AIM85550', 'AIM08860', 
'L000001D', 'AIM60700', 'AIM41310', 'L0000020', 'AIM59620', 'AIM13220', 'AIM46360', 
'AIM14540', 'AIM84580', 'AIM61510', 'L000001B', 'AIM65040', 'AIM13340', 'AIM09350', 
'AIM65120', 'AIM47950', 'AIM09300', 'AIM61640', 'AIM13020', 'AIM12700', 'AIM62230', 
'AIM34930', 'AIM08990', 'AIM19830', 'AIM61720', 'AIM24520', 'AIM10870', 'AIM39160', 
'AIM88760', 'AIM05650', 'L000000A', 'AIM65250', 'AIM06670', 'AIM03900', 'AIM16390', 
'AIM53230', 'AIM08430', 'AIM14130', 'AIM12500', 'AIM86980', 'L0000017', 'AIM10640', 
'AIM41790', 'AIM66210', 'AIM09680', 'AIM26240', 'AIM27040', 'AIM05390', 'AIM59940', 
'AIM64560', 'AIM12360', 'AIM27990', 'AIM82390', 'AIM63050', 'AIM08470', 'AIM09320', 
'AIM11030', 'AIM09780', 'AIM11840', 'AIM53710', 'AIM86230', 'AIM11610', 'AIM07960', 
'AIM33820', 'AIM66690', 'AIM59930', 'AIM08320', 'AIM09330', 'AIM07300', 'AIM60950', 
'AIM82270', 'AIM82960', 'AIM86650', 'AIM81790', 'AIM10390', 'AIM62380', 'AIM61980', 
'AIM35670', 'AIM11640', 'L0000007', 'AIM79660', 'AIM13570', 'AIM81150', 'AIM52490', 
'AIM04590', 'AIM80950', 'AIM63360', 'L000001C', 'AIM64910', 'AIM31580', 'AIM60340', 
'AIM44980', 'AIM84940', 'AIM59640', 'L000000E', 'AIM10140', 'AIM25600', 'AIM59570', 
'AIM61450', 'AIM44160', 'AIM10220', 'AIM07200', 'AIM11530', 'AIM14530', 'AIM07230', 
'AIM41420', 'AIM09120', 'AIM82040', 'AIM42590', 'AIM59440', 'AIM59160', 'L000000D', 
'AIM64640', 'AIM65730', 'AIM09910', 'L0000011', 'AIM83680', 'L0000012', 'AIM18900', 
'AIM09490', 'AIM28570', 'AIM12120', 'AIM60330', 'AIM09880', 'AIM07630', 'AIM13160', 
'AIM64130', 'AIM61100', 'AIM10160', 'AIM33600', 'AIM61820', 'AIM32190', 'AIM86760', 
'AIM66000', 'AIM12090', 'AIM60710', 'AIM16850', 'AIM57350', 'AIM14290', 'AIM58800', 
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'L000000B', 'AIM00320', 'AIM14260', 'AIM11760', 'AIM09970', 'AIM14550', 'AIM85270', 
'AIM11050', 'AIM84820', 'AIM07680', 'AIM06820', 'AIM07150', 'AIM85710', 'AIM07910', 
'AIM84170', 'AIM48670', 'AIM05280', 'AIM58040', 'AIM65600', 'AIM87500', 'AIM88230', 
'AIM63340', 'AIM85590', 'AIM64480', 'AIM07730', 'AIM61160', 'L0000022', 'AIM08630', 
'AIM13450', 'AIM10110', 'AIM81670', 'AIM62700', 'AIM08820', 'AIM58880', 'AIM59480', 
'AIM15500', 'AIM12320', 'AIM62670', 'AIM08260', 'AIM85990', 'AI 
M38680', 'AIM15180', 'AIM39930', 'AIM60390', 'AIM23110', 'AIM63450', 'L000001F', 
'AIM83770', 'AIM09940', 'AIM12930', 'AIM63100', 'AIM07570', 'L0000014', 'L000000C', 
'AIM62920', 'AIM65390', 'AIM45670', 'AIM32880', 'AIM64430', 'AIM13560', 'AIM63790', 
'AIM66350', 'AIM09600', 'AIM06290', 'AIM15270', 'AIM63610', 'AIM58670', 'AIM60170', 
'AIM58420', 'AIM18050', 'AIM34370', 'AIM11310', 'AIM06510', 'AIM10360', 'L0000021', 
'L0000013', 'AIM01260', 'AIM83840', 'L0000015', 'AIM09550', 'AIM47180', 'AIM64140', 
'AIM80430', 'AIM08880', 'AIM51080', 'AIM87180', 'L0000016', 'AIM61480', 'AIM11070', 
'AIM10840'] 
skylounge_id_list= ['L1000003'] 
auditorium_id_list=['AIM07690', 'AIM06330', 'AIM09370'] 
canteen_id_list=['AIM19380', 'AIM36310', 'AIM29560', 'AIM17210', 'AIM17940', 
'AIM12370', 'AIM18440', 'AIM17560', 'AIM20390', 'AIM17250', 'AIM29550', 'AIM17070', 
'AIM16870', 'AIM17900', 'AIM16380', 'AIM18590', 'AIM17340', 'AIM19270', 'AIM15960', 
'AIM18840', 'AIM16650', 'AIM19100', 'AIM18250', 'AIM18460', 'AIM17060', 'AIM17750', 
'AIM17760', 'AIM20060', 'AIM19480', 'AIM19910', 'AIM20700', 'AIM18630', 'AIM21370'] 
atrium_id_list=['L0000023', 'AIM03440', 'L0000026', 'RM000000', 'L0000024', 'L0000025', 
'RM000002', 'RM000001'] 
meeting_id_list=['AIM52250', 'AIM54560', 'AIM52220', 'AIM34900', 'AIM78900', 
'AIM54500', 'AIM57240', 'AIM56270', 'AIM56020', 'AIM56480', 'AIM55600', 'AIM56440', 
'AIM52940', 'AIM39460', 'AIM55680', 'AIM42180', 'AIM54160', 'AIM77690', 'AIM38420', 
'AIM37220', 'AIM52480', 'AIM54880', 'AIM55470', 'AIM55220', 'AIM45590', 'AIM53200', 
'L0000019', 'AIM51510', 'AIM51470', 'AIM52190', 'AIM79750', 'AIM53840', 'AIM78080', 
'AIM54240', 'AIM78810', 'AIM35620', 'AIM31520', 'AIM34100', 'AIM47060', 'AIM55720', 
'AIM32770', 'AIM56080', 'AIM52690', 'AIM36180', 'AIM40260', 'AIM77850', 'AIM49380', 
'AIM55000', 'AIM52430', 'AIM55280', 'AIM40980', 'AIM53150', 'AIM51530', 'AIM53410', 
'AIM44660', 'AIM54960', 'AIM56400', 'AIM54030', 'AIM78540', 'AIM48020', 'AIM77120', 
'AIM43460', 'AIM54750', 'AIM50820'] 
auditorium_gardarobe_id_list=['AIM15660', 'AIM15210', 'AIM15020', 'AIM15850', 
'AIM20680', 'AIM15700', 'AIM14380', 'AIM13960', 'AIM14870', 'AIM15240', 'AIM15060', 
'AIM16490', 'AIM16340', 'AIM16530', 'AIM14600', 'AIM15250', 'AIM17190', 'AIM15510', 
'AIM16150', 'AIM15890'] 
print_id_list=['AIM83200', 'AIM58520', 'AIM57550', 'AIM59080', 'AIM57120', 'AIM57860', 
'AIM79500', 'AIM57920', 'AIM57880', 'AIM57300', 'AIM52550', 'AIM58320', 'AIM56720', 
'AIM57040', 'AIM53270', 'AIM58240', 'AIM56660', 'AIM80140', 'AIM56910', 'AIM57360', 
'AIM78930', 'AIM57760', 'AIM57680', 'AIM81400', 'AIM80710', 'AIM82510', 'AIM58110', 
'AIM79620'] 
 
real_building.assign_thermal_template_to_rooms(alltemplates[12], office_id_list) 
real_building.assign_thermal_template_to_rooms(alltemplates[7], heated_id_list) 
real_building.assign_thermal_template_to_rooms(alltemplates[13], skylounge_id_list) 
real_building.assign_thermal_template_to_rooms(alltemplates[9], auditorium_id_list) 
real_building.assign_thermal_template_to_rooms(alltemplates[10], canteen_id_list) 
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real_building.assign_thermal_template_to_rooms(alltemplates[6], atrium_id_list) 
real_building.assign_thermal_template_to_rooms(alltemplates[11], meeting_id_list) 
real_building.assign_thermal_template_to_rooms(alltemplates[14], 
auditorium_gardarobe_id_list) 
real_building.assign_thermal_template_to_rooms(alltemplates[8], notheated_id_list) 
real_building.assign_thermal_template_to_rooms(alltemplates[15], print_id_list) 

2) Remove air exchange rate and internal gains 

import xlrd 
from xlrd import open_workbook 
workbook=open_workbook('sampletorun0429.xlsx') #remember to put excel file in the same 
folder of your ies model 
sheet =workbook.sheet_by_index(0)# get sheet 1 
import iesve 
import pprint 
import time 
b=1 # sample number 
 
for i in range(b,b+1): 
    aps_sample_name=sheet.cell(i,0).value #aps.name 
    infil=sheet.cell(i,4).value # infiltration index  
    auxi=sheet.cell(i,5).value # auxiliary ventilation index 
    occupancy=sheet.cell(i,8).value #occupancy gain index, remember to remove it before next 
simulation 
    light=sheet.cell(i,9).value #light gain index, remember to remove it before next simulation 
    equipment=sheet.cell(i,10).value #equipment gain index, remember to remove it before 
next simulation 
    # remove gains remove air exchange before next simulation 
    project = iesve.VEProject.get_current_project() 
    casual_gains = project.casual_gains() 
    templates = project.thermal_templates(False) 
    templates_iter = templates.values() 
    alltemplates=list(templates.values()) 
    alltemplates[12].remove_gain(casual_gains[int(occupancy)]) # data from sample excel 
    alltemplates[12].remove_gain(casual_gains[int(light)]) # data from sample excel 
    alltemplates[12].remove_gain(casual_gains[int(equipment)]) # data from sample excel 
    alltemplates[12].apply_changes()  
    air_exchanges = project.air_exchanges() 
    for template in templates_iter: 
        template.remove_air_exchange(air_exchanges[int(infil)])# data from sample excel 
        template.apply_changes() 
    c=[9,10,11,12,13,14] 
    newarray = [alltemplates[int(i)] for i in c ] 
    for template in newarray: 
        template.remove_air_exchange(air_exchanges[int(auxi)])# data from sample excel 
        template.apply_changes()  
    # get each cell value(every time the same row) 
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3) Read data from aps file 

import iesve        # the VE api 
import numpy as np  # numeric data series returned as numpy arrays 
import sys 
 
import xlsxwriter 
workbook=xlsxwriter.Workbook('recording341400.xls') 
worksheet=workbook.add_worksheet() 
bold=workbook.add_format({'bold':1}) 
 
def find_variable(vista_display_name, var_level): 
 
    for variable in aps_variables: 
        if variable['display_name'] == vista_display_name and variable['model_level'] == 
var_level: 
            return variable 
    return None 
def convert_units(value, units): 
    return (value / units['divisor']) + units['offset'] 
 
def make_display_string(sum, units): 
    return "{:,.2f}  {}".format( 
        convert_units(sum, units), 
 
        units['display_name'] 
        ) 
for i in range(341,401) here define the samples you want to loop         
    def read_variable(result_reader, result_variable): 
        assert result_variable is not None, "Error: missing variable data" 
 
        units_for_this_variable = aps_units[result_variable['units_type']] 
        units_metric = units_for_this_variable['units_metric'] 
 
        aps_data = result_reader.get_results(result_variable['aps_varname'], 
result_variable['display_name'], result_variable['model_level']) 
 
        if aps_data is None: 
            print("Error reading variable: " + result_variable['display_name'], file=sys.stderr) 
            return 0 
 
        aps_data *= (24 / result_reader.results_per_day) 
         
        annual_total = np.sum(aps_data) 
        worksheet.write_number(i,0,annual_total) 
        del aps_data 
 
    def read_variable_1(result_reader, result_variable): 
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        assert result_variable is not None, "Error: missing variable data" 
 
        units_for_this_variable = aps_units[result_variable['units_type']] 
        units_metric = units_for_this_variable['units_metric'] 
 
        aps_data = result_reader.get_results(result_variable['aps_varname'], 
result_variable['display_name'], result_variable['model_level']) 
 
        if aps_data is None: 
            print("Error reading variable: " + result_variable['display_name'], file=sys.stderr) 
            return 0 
 
        aps_data *= (24 / result_reader.results_per_day) 
         
        annual_heat = np.sum(aps_data) 
        worksheet.write_number(i,1,annual_heat) 
 
    def read_variable_2(result_reader, result_variable): 
        assert result_variable is not None, "Error: missing variable data" 
 
        units_for_this_variable = aps_units[result_variable['units_type']] 
        units_metric = units_for_this_variable['units_metric'] 
 
        aps_data = result_reader.get_results(result_variable['aps_varname'], 
result_variable['display_name'], result_variable['model_level']) 
 
        if aps_data is None: 
            print("Error reading variable: " + result_variable['display_name'], file=sys.stderr) 
            return 0 
 
        aps_data *= (24 / result_reader.results_per_day) 
         
        annual_cool = np.sum(aps_data) 
 
        worksheet.write_number(i,2,annual_cool) 
        del aps_data 
         
    def read_variable_3(result_reader, result_variable): 
        assert result_variable is not None, "Error: missing variable data" 
 
        units_for_this_variable = aps_units[result_variable['units_type']] 
        units_metric = units_for_this_variable['units_metric'] 
 
        aps_data = result_reader.get_results(result_variable['aps_varname'], 
result_variable['display_name'], result_variable['model_level']) 
 
        if aps_data is None: 
            print("Error reading variable: " + result_variable['display_name'], file=sys.stderr) 
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            return 0 
 
        aps_data *= (24 / result_reader.results_per_day) 
         
        annual_light = np.sum(aps_data) 
        worksheet.write_number(i,3,annual_light) 
        del aps_data        
   
    def read_variable_4(result_reader, result_variable): 
        assert result_variable is not None, "Error: missing variable data" 
 
        units_for_this_variable = aps_units[result_variable['units_type']] 
        units_metric = units_for_this_variable['units_metric'] 
 
        aps_data = result_reader.get_results(result_variable['aps_varname'], 
result_variable['display_name'], result_variable['model_level']) 
 
        if aps_data is None: 
            print("Error reading variable: " + result_variable['display_name'], file=sys.stderr) 
            return 0 
 
        aps_data *= (24 / result_reader.results_per_day) 
         
        annual_equip = np.sum(aps_data) 
         
        worksheet.write_number(i,4,annual_equip) 
        del aps_data     
 
    if _name_ == "__main__": 
    # Open APS file:\\Mac\Home\Desktop\05 04 16 RED\vista 
    # \\Mac\Home\Desktop\Final\vista 
 
        with iesve.ResultsReader.open('//Mac/Home/Desktop/Final 
/vista/'+str(i)+'.aps') as results_file_reader: 
            assert results_file_reader is not None, "Error opening results file" 
 
            aps_variables = results_file_reader.get_variables() 
            aps_units = results_file_reader.get_units() 
 
            read_variable(results_file_reader, find_variable('Total energy', 'e')) 
            read_variable_1(results_file_reader, find_variable('Boilers energy', 'e')) 
            read_variable_2(results_file_reader, find_variable('Chillers energy', 'e')) 
            read_variable_3(results_file_reader, find_variable('Lights electricity', 'e')) 
            read_variable_4(results_file_reader, find_variable('Equip electricity', 'e')) 
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