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Abstract

We present a comparison of different univariate and multivariate extreme value risk models. Our
focus is on exploring how these can be used to model financial risk. We use simulated as well as
real data and compare deterministic and cross-validation threshold selection methods for the GP
model to a GEV model. For comparison, we carry out a bivariate analysis using copulas. Finally,
an undirected graphical lasso model using n = 45 block maxima of the log-returns from 95 of the
stocks in the FTSE 100 index is combined with copulas and PCA to model the extreme loss risk
within the FTSE 100 index. The contribution of this study lies in exploring some ideas on risk
models in multivariate high-dimensional settings.
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Graphical Lasso, Nonparanormal Distribution.
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1. Introduction

In an increasingly uncertain world, the ability to assess risk may very well be one of the core
capabilities of a society. One of the earliest theories of risk is credited to Cramér (1930). Since
then, the modern portfolio theory of Markowitz (1952) was considered an industry standard for
many years with variance as a central measure of risk. The limits of variance in quantifying extreme
unexpected losses caused a wide range of quantile-based measures to emerge as a response.

One such measure is value-at-risk (VaR). It was intended as a measure of extreme risk where the
variance had previously failed. Initially available only to a small group of quantitative analysts,
the RiskMetrics publication made the popularity of VaR to surge (see Longerstaey and Spencer,
1996). The Basel II Accord further positioned VaR as the main measure of risk (Basel Committee
on Banking Supervision, 2004). Expected shortfall (ES) was introduced by Rappoport (1993) at JP
Morgan but was initially neglected in favour of VaR. Although Artzner et al. (1999) formalised the
properties of risk, pointing to the limits of VaR, it was not until the Basel III Accord was published
in the wake of the financial crisis 2008 that ES became a widely accepted risk measure (Basel
Committee on Banking Supervision, 2010).

As a consequence of globalisation and technical advancements, the presence of volatility clustering
has spurred a wide interest in risk models rather than risk measures. The autoregressive conditional
heteroskedasticity (ARCH) model, credited to Engle (1982), was created to address this problem.
The ARCH model and its extensions mainly model volatility. On the other hand, extreme value
theory (EVT) is entirely concerned with the tail risk. Methods to model extreme events go back
to the pioneering work of Fréchet, 1927. Rather than focusing on volatility, extreme value models
describe the behaviour in the tails of a distribution. It has been shown that extreme value models are
better suited than the stochastic volatility models in modelling VaR (Abad et al., 2014).

Even if our knowledge on risk models in the univariate case is fairly well understood, the behaviour
of risk in higher dimensions is still not entirely clear. Considering bivariate risk, copulas provide a
reliable way to model tail dependencies. As extreme events rarely occur, when the dimension scales
up, multivariate extreme value models suffer from the curse of dimensionality. In particular, when
the number of variables is larger than the sample size, expressing the joint distribution is often very
challenging. A promising suggestion is to utilise undirected graphical models to estimate sparse
covariance matrices. One such method is the nonparanormal approach (Liu et al., 2009). While
this method previously has been applied to stock returns it has not yet been tested in modelling the
multivariate dependencies in extreme losses of stock index components.

The aim of this study is to compare some common methods to model financial risk in the univariate
and bivariate case while proceeding to model multivariate risk combining a nonparanormal glasso
model with copulas and principal component analysis.

This study is organised in two parts. Section 2 introduces univariate risk models while Section
3 concerns the multivariate equivalent. We begin with a description of extreme value theory and
then review some methods of univariate risk modelling. A simulation study is then performed
after which a case study of the risk measures of data corresponding to pre- and post-Brexit is
presented. Progressing into the multivariate case, a recap of some classic and some newer theories
of multivariate risk are presented. We then describe the methods used in this study to model
multivariate risk. Finally, a simulation study is performed followed by a case study of the dependence
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between the FTSE 100 and S&P 500 stock indexes. We then model the extreme dependencies of 95
stocks in the FTSE 100 index. Finally, some concluding remarks are presented.

1.1 Stock Returns

Before defining what we mean with risk we must get an understanding of the variable that we wish
to model the risk from. Since this study is concerned with financial risk on the stock market our
focus is on stock returns. The choice in calculating stock returns comes down to using simple or
log-returns.

The advantages of using log transformed prices can be tied to the seminal work of Samuelson
(1965). Security prices are then assumed to follow a Markovian process. Under this assumption the
current price incorporates all useful information in forecasting future values, implying a weak form
of market efficiency. It is reasonable to believe that the increments of stock prices are independent.
Hence, a natural choice would be to model stock prices as a Brownian motion. However, a Brownian
motion is defined for negative values while prices are always positive. Furthermore, it does not
depend on the process value itself, causing small prices to move in increments of similar size as
larger prices. These are unreasonable assumptions. A more reasonable premise is that log-returns
follow a Brownian motion. If this holds true, stock prices move according to a geometric Brownian
motion, and it can be shown that the log-returns are normally distributed.

Let the closing value for the asset at time t be denoted S(t). Then the log-returns for the series are
defined as

R∆t(t) ∶= log( S(t)
S(t − ∆t)

)

where ∆t is the interval between the last closing value and the present. For our purpose, an interval
is chosen such as ∆t = 1 day. The losses L are defined as L ∶= −{R ∶ R < 0}.

1.2 Risk

Although techniques for measuring risk are central to risk management there is no unique definition
of risk. Measuring risk in terms of probability distributions might sound like an attractive idea.
However, mapping from spaces of probability distributions into real numbers provides risk assess-
ment in terms of a single capital amount representing unexpected future losses. Artzner et al. (1999)
argue that instead of defining risk as the change in value between two dates, risk is related only to the
variability of the future value of a position. A better measurement of risk is said to assess whether
the future value belongs to a subset of "acceptable risks", as decided by a supervisor. A suggested
criterion for choosing a risk measure is coherence. Four axioms are given, which if fulfilled imply
that a risk measure is coherent. Following Artzner et al. (1999) we let the number ρ(L) assigned
by the measure ρ to the risk L, be the minimum additional cash an agent has to add to the risky
position L to continue his investments. A negative value means that the cash amount −ρ(L) can be
withdrawn from the position.
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Definition 1.1. A risk measure ρ, satisfying the following axioms, is called coherent:

Axiom 1. Positive homogeneity. For all loss variables L and constants h ≥ 0 it holds that ρ(hL) = hρ(L)

Axiom 2. Subadditivity. For all loss variables L1 and L2 it holds that ρ(L1 + L2) ≤ ρ(L1) + ρ(L2)

Axiom 3. Monotonicity. For all loss variables L1 and L2 it holds that L1 ≤ L2 ⇒ ρ(L1) ≤ ρ(L2)

Axiom 4. Translation invariance. For all loss variables L and α ∈ R it holds that ρ(L − α) = ρ(L) − α

One of the most commonly used risk measures is Value-at-Risk (VaR).

Definition 1.2. (Longerstaey and Spencer, 1996) The Value-at-Risk (VaR) of loss variable L at level
α is given by

VaRα(L) = inf{x ∈ R ∶ P(L ≤ x) ≥ α}, α ∈ (0,1).

However, VaR has received criticism for not adequately capturing the expected loss since, for a
given quantile α, it only conveys information on the minimum loss (McNeil et al., 2005). In most
circumstances, VaR is not subadditive meaning that the risk of a sum of portfolio positions can be
larger than the sum of the portfolio positions individual risk.

Definition 1.3. (Rappoport, 1993) The Expected Shortfall of L at level α is given by

ESα(L) = 1
1 − α ∫

1

α
VaRu(L)du, α ∈ (0,1).

While the mentioned shortcomings of VaR are addressed in the coherent risk measure ES, more
validation data is required to backtest this measure compared to VaR (Emmer et al., 2015).

After giving a summary of definitions in Section 1.3 we will present the theory necessary to extend
risk from being a scalar measure into a model. As our focus is on tail risk, Section 2 will give an
introduction to extreme value theory.

1.3 Notation

We begin with introducing some notation that is used throughout the report.

Table 1: List of Abbreviations and Symbols

Abbreviation or symbol Description

a Parameter of the maximal data information prior.
α In VaR/ES: the particular quantile of choice. In extreme value distri-

butions: the shape parameter and the reciprocal of the tail index ξ, i.e.
α = 1/ξ (not to be confused with the order of the quantile).

an Normalising constant in the GEVD.
a.s. Almost surely.
A2 The Anderson-Darling test statistic.
A∗2 The modified Anderson-Darling test statistic.
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≃ Asymptotic equivalence.
B The number of bootstrap samples.
b The block size.
bn Normalising constant in the GEVD.
β The scale parameter.
β(u) The scale parameter in the generalised Pareto distribution as a function

of the threshold u.
Brexit referendum The United Kingdom European Union membership referendum 2016-

06-23.
c The density of a copula C. Clique in the context of graphs.
C Set of maximal cliques.
C Covariance.
cdf Cumulative distribution function.
CI Confidence interval.
CV Coefficient of variation.
d Dimension.
d.f. Distribution function.
∶= Defined as.
∆ Change.
δn Truncation parameter in the Winzorized estimator of the cdf, used to

estimate high dimensional graphical models.
Differentiable function Function for which the derivative exists for every point in its domain.
E(⋅) Expectation.
E Set of edges in a graph.
e Inverse of the natural logarithm. In the context of graphs ei denotes the

ith node.
ε An arbitrary small number.
ηk The kth moment.
e(u) Mean excess function.
EDF Empirical distribution function.
ES Expected Shortfall.
∃ Logic notation, "exists".
exp Inverse of the natural logarithm.
F Cumulative distribution function.
∀ Logic notation, "for all".
G Graph.
Γ Gamma function.
Gξ,β(u) The generalised Pareto distribution cdf.
GEV Generalised Extreme Value.
GEVD Generalised Extreme Value Distribution.
glasso Graphical least absolute shrinkage and selection operator.
GP Generalised Pareto.
GPD Generalised Pareto Distribution.
H Distribution function of the generalised extreme value distribution.
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Hk The Hill estimator of the tail index parameter for the kth upper order
statistics.

Identifiable density Density where the true values of the parameters are possible to derive
from an infinitely large number of observations.

⇐⇒ If and only if.
i.i.d. Independent and identically distributed.
∈ Is an element of.
i.o. Infinitely often.
k The kth upper order statistic.
κ The shape parameter of the Pareto distribution.
k(n) The kth upper order statistic associated with a particular threshold.
L The losses of a random variable.
Λ Covariance of the uniform r.v.’s corresponding to the copula of the non-

paranormal distribution.
λ The coefficient of tail dependence in the context of copulas. The penalty

parameter in the context of glasso models. The rate parameter for the
exponential distribution.

λl The lower tail dependence coefficient.
λu The upper tail dependence coefficient.
lasso The least absolute shrinkage and selection operator.
lim Limit.
lim sup Limit superior.
log The natural logarithm.
MDA Maximum domain of attraction.
ML Maximum likelihood.
Mn The maximum of n random variables.
↦ Maps to.
MSE Mean square error.
µ The mean of a normally distributed random variable.
n The number of observations.
∇ Gradient.
ν The degrees of freedom of a Student t random variable.
O(⋅) Big-O expresses the limiting value of a function when the argument ⋅

tend to a value.
O(⋅) Little-o expresses the limiting behaviour of a function and is a stronger

statement than O(⋅).
Ω Precision matrix.
p Probability density function.
pu The probability of exceeding u in the binomial-GP model.
P Probability distribution function.
∂ Partial derivative.
PC Principal component.
PCA Principal component analysis.
⊥⊥ Perpendicular, denoting the independence of two random variables.
φ The density of a standard normal random variable.
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Φ The cumulative distribution function of a standard normal random vari-
able.

Φ̄ The complement of the cumulative distribution function of a standard
normal random variable.

πMa Generalized maximal data information prior distribution.
Post-Brexit Period after the Brexit referendum (2016-06-24–2019-05-31).
Pre-Brexit Period before the Brexit referendum (1984-01-03–2016-06-23).
∝ Proportional to.
Ψ Potential function.
Q Sparsity measure.
R Real line.
R Log-return.
R(j)
ni The rank of random variable X(j)

i .
R∆t(t) Log-returns at time t.
ρ The parameter of a bivariate copula.
r.v. Random variable.
S Sample covariance matrix or the closing value of the FTSE 100 index.
Σ Covariance matrix.
σ The standard deviation of a normally distributed random variable.
σ(u) In the context of GPD: a positive measurable function such that Theorem

6 holds, σ(u) = β(u) + ξu.
sgn Sign.
∶ Set builder notation, such that.
sup Supremum.
t Index for a given time point.
⊺ Transpose.
τ The population parameter of Kendall’s tau.
θ Vector of parameters in the context of delta method intervals and

Anderson-Darling test statistic.
→ Tends to.
u The threshold in the GPD model. The inverse CDF in the Anderson-

Darling test statistic. A uniform random variable in the context of
copulas.

u0 The chosen threshold for a GPD using deterministic threshold selection.
u∗0 The chosen threshold for a GPD using cross-validation threshold selec-

tion.
↑ Approaches from below.
V Variance.
V Set of nodes in a graph.
VaR Value-at-Risk.
X/{i, j} All Xs except for Xi and Xj .
ξ The tail index.
Z A standard normal random variable.
Zα The quantile of a standard normal random variable.
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2. Univariate Risk Models

Univariate riskmodels aremainly concernedwith analysing extreme events. In the following section,
we review the theory of extreme values.

2.1 Univariate Extreme Value Theory

Extreme value theory can be categorised into two main branches. Classical extreme value theory
concerns the asymptotic distributional theory for maxima of i.i.d. random variables (Leadbetter
et al., 1983). Later developments focus on exceedances rather than maxima (see e.g. Kratz, 2019).
There are two fundamental limit theorems, one for the mean and the second one for the maxima.
Next, we will give an overview of the latter.

To facilitate the reading experience, we first introduce some definitions used throughout the study.
We begin by defining a sequence of n random variables X = {Xi}ni=1. To avoid excessive use of
notation we apply this definition to i.i.d. random variables from which extreme values are obtained
if otherwise is not stated. Similarly, we let F be the distribution function of this sequence of random
variables.

We consider the limiting behaviour of the maximum of n random variables X ,

Mn ∶= max
1≤i≤n

Xi .

The probability distribution of a maximum can be expressed as a function of the probability distribu-
tion of Xi, where Xi’s are assumed to be i.i.d. with common distribution function F. The resulting
degenerative behaviour follows from the expression below

P[max
1≤i≤n

Xi ≤ x] =
n

∏
i=1
P[Xi ≤ x] = Fn (x) Ð→

n→∞

⎧⎪⎪⎨⎪⎪⎩

0 if F(x) < 1
1 if F(x) = 1

.

However, returning to the initial argument, one might be able to find a linear transformation such
that this degeneracy is avoided. Indeed, it can be proved that there exists a linear transformation, i.e.
one can find sequences {an} and {bn} such that

P [max Xi − bn
an

≤ x] = P [max
1≤i≤n

Xi ≤ anx + bn] = Fn(anx + bn) ≃
n→∞

H(x),

where the normalising constants an > 0 and bn ∈ R are the normalising sequence, and H(x) is a non
degenerated distribution of the rescaled sample extreme.

Definition 2.1. (Pickands, 1967) Given a nondegenerate distribution function H, its maximum
domain of attraction MDA(H) is defined as the set of all distributions F, such that for i.i.d Xi ∼ F
and Mn = maxi Xi, we have

lim
n→∞
P[a−1

n (Mn − bn) ≤ x] = H(x),

for all X on the continuity set of H.
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2.1.1 Limit Distributions of The Maxima

In contrast to the central limit theorem, there is not one but three different asymptotic distributions
of the initial distribution F. These distributions are described in the theorem below.

Theorem 1 (The ‘three-types theorem’; Fréchet, 1927; Fisher and Tippett, 1928; Gnedenko, 1943). The
rescaled sample extreme (max renormalised) has a limiting distribution H that can only be of three types:

Type 1 (Fréchet): H1,α(x) ∶= exp{−x−α}I(x>0), α > 0
Type 2 (Weibull): H2,α(x) ∶= I(x≥0) + exp{−(−x)α}I(x<0), α > 0
Type 3 (Gumbel): H3,0(x) ∶= exp{−e−x}, ∀x ∈ R

where α is the inverse of the tail index.

The distributions used in this study and their respective MDA limiting distributions are summarised
in Table 2. We can see that for these initial distributions the limiting distributions are of two kinds,
mainly the Gumbel and Fréchet distributions with light and heavy tails, respectively.

Table 2: MaximumDomain of Attraction Examples

Sample cdf MDA

Exponential Gumbel
Gaussian Gumbel
Student t Fréchet
Pareto Fréchet

Note: We refer to the exponential distribution with parameter λ for
x > 0, and distribution function F(x) = 1 − e−

x
λ . Likewise, the

Pareto distribution is specified with parameter β > 0 for x ≥ 1, and
distribution function F(x) = 1 − x−β .

Let us go back historically to one of the first results of Pickands (1967). As an example, we show how
the limiting distribution for the maximum of standard i.i.d. Gaussian sequences can be defined. Let
X be a stationary Gaussian stochastic process with E(Xn) = 0, E(X2

n) = r0 = 1 and E(XiXi+n) = rn.
The following theorems are important to show that the limiting distribution of a standard Gaussian
maximum is indeed exp{−e−x}, the Gumbel distribution function (for a proof, see Appendix A).

Theorem 2 (Gnedenko, 1943). Let {Xn} be an i.i.d. sequence. Let 0 ≤ ζ ≤ ∞ and suppose that {mn} is a
sequence of real numbers such that

n(1 − F(mn))→ ζ as n →∞. (1)

Then
P(Mn ≤ mn)→ e−ζ as n →∞. (2)

Conversely, if (2) holds for some ζ, 0 ≤ ζ ≤∞, then so does (1).

Theorem 3 (Pickands, 1967). Let Xi be i.i.d. standard normal, then the asymptotic distribution of Mn satisfies

Mn√
2 log n

Ð→
n→∞

1 a.s.

A proof of Theorem 3 can be found in Appendix A.1.
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Theorem 4 (Gnedenko, 1943; Cramér, 1946). If {Xi} is an i.i.d. standard normal sequence of r.v.’s then the
asymptotic distribution of Mn = max(X1, . . . ,Xn) is of type H3,0. Specifically

P(an−1(Mn − bn) ≤ x)→ exp(e−x), as n→∞, (3)

where
an = (2 log n)−1/2,

and
bn = (2 log n)1/2 − 1

2
(2 log n)−1/2(log log n + log 4π).

A proof of Theorem 4 can be found in Appendix A.2.

2.1.2 The Generalised Extreme Value Distribution

The Fréchet, Weibull and Gumbel distributions mentioned in Theorem 1 are generalised into a parametric
distribution referred to as the generalised extreme value distribution (GEVD).

Theorem 5 (Jenkinson, 1955; von Mises, 1936). If F ∈ MDA(G) then necessarily, G is of the same type as
the GEV cdf, Hξ (i.e. G(x) = Hξ(ax + b), a > 0), defined by

Hξ(x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

exp [−(1 + ξx)
− 1

ξ

+ ] if ξ ≠ 0

exp (−e−x) if ξ = 0
(4)

where y+ = max(0, y). The parameter ξ is referred to as the tail or extreme-value index and determines the
nature of the tail distribution: if ξ > 0 then Hξ is Frechét, if ξ = 0 then Hξ is Gumbel and if ξ < 0 then Hξ is
Weibull.

We define the three parameter cdf as
Hξ,µ,β ∶= Hξ((x − µ)/β) (5)

where µ ∈ R is the location parameter and β > 0 the scale parameter (see McNeil et al., 2005).

2.1.3 The Generalised Pareto Distribution

TheGeneralised ParetoDistribution is commonly used tomodel tail behaviour in a broader sense than
just its maximum. This concept is referred to as ’threshold exceedances’ where all data exceeding a
certain threshold is utilised (see e.g. Embrechts et al., 1997).

Theorem 6 (Pickands, 1975; Balkema and de Haan, 1974). If F belongs to one of the maximum domains of
attraction (i.e. the limiting distribution of max Xi is a GEV), then for a sufficiently high threshold u, ∃β(u) > 0
and ξ real number such that the Generalised Pareto Distribution (GPD) Gξ,β(u), defined as

Ḡξ,β(u)(y) ∶= 1 −Gξ,β(u)(y) = (1 + ξ y

β(u)
)
−1/ξ

I(ξ≠0) + e−y/β(u)I(ξ=0), (6)

is a very good approximation of the excess cdf Fu(⋅) ∶= P[X − u ≤ ⋅ ∣ X > u]

lim
u↑x+

F

sup
0≤y≤x+

F
−u

∣ Fu(y) −Gξ,σ(u)(y) ∣= 0,

x+F denoting the upper endpoint of F.

12



Multivariate Risk

2.2 Methodology

Next, the methods of the block maxima and mean excess plot are described in Section 2.2.1 and
2.2.2. The Hill estimator is defined in Section 2.2.3. In Section 2.2.4 we present the univariate risk
models while Section 2.2.5 and 2.2.6 give the methods for point estimates and intervals. Finally, the
evaluation methods are summarised in Section 2.2.7.

2.2.1 The Method of Block Maxima

The GEVD defined in section 2.1.2 forms the basis of a model for the distribution of the block
maxima (Coles et al., 2001). The block maxima (BM) procedure consists in partitioning the data
into blocks of equal length. The maximum value in each block is then extracted. In the second step,
GEV parameters are fitted to a series of block maxima.

However, choosing a block size can be problematic as it reflects a trade-off between bias and variance
(Coles et al., 2001). Furthermore, this method only makes use of information on maxima whereas
observations below the largest value are disregarded. Nevertheless, there are situations when the BM
method is particularly valuable. This technique has proved to be useful when modelling extremes in
periodic time series where dependence appears within but not between blocks (Ferreira and de Haan,
2015). Moreover, in many situations block periods appear naturally such that the BM method may
be easier to implement. Annual dependencies in financial time series data have been known for a
long time, such as the January effect (see Rozeff and Kinney Jr, 1976). Hence, we partition the
data into blocks b of size n/250, where n is the size of the return losses and 250 corresponds to the
number of trading days per year. This amounts to a block size of 16 for the pre-Brexit period and 17
for the full sample period.

2.2.2 The Mean Excess Plot

The mean excess plot (MEP) is attributed to Davison and Smith (1990). An MEP is used to pick a
threshold u and to validate a generalised Pareto distribution for the excess distribution. For a r.v. X
the ME function is defined as

e(u) ∶= E[X − u ∣ X > u].

The mean excess function can be evaluated for any r.v. X with finite expectation. If X is GPD with
parameters ξ < 1 and β > 0 where E(X) <∞, the ME function is given by

e(u) = [ β

1 − ξ
+ ξ

1 − ξ
u] I(β+uξ>0).

If the data from which a threshold is to be determined is from a GPD, by Theorem 6 the MEP should
be roughly linear. The empirical mean excess function is defined such as

ê(u) =
∑n

i=1(Xi − u)I[Xi>u]

∑n
i=1 I[Xi>u]

, u ≥ 0.

13
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The procedure starts with ordering the data into order statistics X(1) ≥ X(2) ≥, . . . ≥ X(n). Then,
one proceed plotting {(X(k), ê(X(k))) ∶ 1 < k ≤ n} determining for which value of u the MEP is
approximately linear. Finally, a maximum likelihood estimation is performed to evaluate the tail
index ξ and scale parameter β.

The threshold selection is a crucial choice in extreme value modelling. Much like the choice of block
size in the block maxima method, the choice of threshold u0 boils down to a bias-variance trade-off.
A low threshold leads to a biased estimate while a too high cause the variance of the estimates to be
too large. Picking the threshold u0 in a deterministic manner, as the observation

√
n in the ordered

set of sample values X(1) ≥ X(2) ≥, . . . ,≥ X(n) has proved to be a suitable choice for financial data
(Ferreira et al., 2003; Blum and Dacorogna, 2002).

Northrop et al. (2017) suggested an alternative method to address the difficulties of threshold
selection, utilizing Bayesian cross-validation methods on wave height data. Although there are
plenty of suggested threshold diagnostic methods, a common shortcoming of these methods is that
these often assume one single chosen threshold. As such, they ignore the uncertainty in the threshold
selection. Instead, the threshold can be viewed as a parameter included in the model. The number
of exceedances above a threshold u is assumed to follow a binomial distribution Bin(n, pu) where
pu is the probability of exceeding u. This translates into a binomial-GP model BGP(pu, β(u), ξ)
(see Coles et al., 2001). A leave-one-out cross validation approach is then performed. To increase
the computational efficiency, importance sampling is used to estimate the cross validation predicted
densities. The package threshr is used for applying this methodology in the statistical computing
environment r (R Core Team, 2019; Northrop and Attalides, 2019).

The prior for pu is chosen as,
pu ∼ beta(1/2,1/2),

and a generalised maximal data information prior is used for the GP parameters,

πMa(β(u), ξ; a)∝ β(u)−1a exp{−a(ξ + 1)}, β(u) > 0, ξ ≥ −1, a > 0,

where a = 0.6.

This prior showed good properties using simulated and real data as the chances of obtaining unrea-
sonable estimates for high thresholds was lower than for other priors (see Northrop et al., 2017). We
compare both threshold selection methods to see which performs better in financial risk analysis.

2.2.3 The Hill Estimator

A popular estimator of the tail index ξ whenever ξ > 0 (i.e. Fréchet domain of attraction), is the
Hill estimator (see e.g. Hill, 1975; Embrechts et al., 1997). Under the condition that k(n)→∞ and
n/k(n)→∞ it is defined as

Ĥk(n) =
1

k(n)

k(n)−1

∑
i=1

log(
X(k(n)−i)

X(k(n))

) . (7)

The form of (7) is the same as theML estimate of ξ, allowing the threshold u0 to be a random variable.
For a large enough number of exceedances and a sufficiently high threshold, the Hill estimate Ĥk
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converges to ξ. When ξ > 0 the GPD is equal to a Pareto distribution with scale κ = β(u)/ξ and
letting κ = u we can find the estimate of the scale as β̂(u) = uĤk .

2.2.4 Risk Models

Three types of univariate extreme value models are compared, the GEVDmodel and the GPDmodel
using a deterministic and cross-validation threshold. Table 3 list the extreme value models used in
the preceding section and the abbreviations we use for these models in figures and tables.

Table 3: List of extreme value models.

Model Estimation Additional parameters Notation

GEV Maximum likelihood Block size (deterministic) b
GPD Hill estimator Threshold (deterministic) u0
GPD∗ Maximum likelihood Threshold (cross-validation) u∗0

The risk is then modelled as VaR and ES using Definition 1.2 and 1.3. Quantiles are chosen as
α = 0.99 for VaR estimates and α = 0.975 for ES estimates such as advocated by the Basel III
regulation (Basel Committee on Banking Supervision, 2013).
The GEV models are defined according to eq. (5) for a location µ ∈ R and scale β > 0 and using
Definition 1.2, VaR for the GEV model is calculated as

V̂aRGEV,α(L) = Ĝ−1(α) =
⎧⎪⎪⎨⎪⎪⎩

µ̂ − β̂

ξ̂
[1 − (−n log (α))−ξ̂] , for ξ̂ ≠ 0

µ̂ − β̂ log (−n log (α)) , for ξ̂ = 0,
(8)

where n is the number of block maxima used when fitting the model. Through Definition 1.3 we
deduce the following expression for ES,

ÊSGEV,α(L) = 1
1 − α ∫

1

α
V̂aRGEVD,v(L)dv =

⎧⎪⎪⎨⎪⎪⎩

µ̂ − β̂

ξ̂
+ β̂

ξ̂
1

1−α ∫
1
α (−n log(v))−ξ̂dv, for ξ̂ ≠ 0

µ̂ − β̂ 1
1−α ∫

1
α log(−n log(v))dv, for ξ̂ = 0.

(9)

The GPD models are defined according to (6) for a threshold u and scale β(u) > 0. Using Definition
1.2, VaR for the GPD model is calculated as

V̂aRGPD,α(L) = Ḡ−1
ξ̂ ,β̂

(α) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

u + β̂(u)

ξ̂

⎡⎢⎢⎢⎣
( 1−α

ˆ̄F(u)
)
−ξ̂

− 1
⎤⎥⎥⎥⎦
, for ξ̂ ≠ 0, β̂(u) > 0

u − β̂(u) log( 1−α
ˆ̄F(u)

), for ξ̂ = 0, β̂(u) > 0,
(10)

and we estimate F̄(u) = P(X > u) as ˆ̄F(u) = n/N where N is the total number of observations
(negative returns) and n is the number of observations larger than the threshold u. An expression of
ES is given by

ÊSGPD,α(L) = 1
1 − α ∫

1

α
V̂aRGPD,v(L)dv =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

u + β̂(u)

ξ̂

⎡⎢⎢⎢⎣
1

1−ξ̂ ( 1−α
ˆ̄F(u)

)
−ξ̂

− 1
⎤⎥⎥⎥⎦

for ξ̂ ≠ 0, β̂(u) > 0

u − β̂(u) [log( 1−α
ˆ̄F(u)

) − 1] for ξ̂ = 0, β̂(u) > 0.
(11)
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2.2.5 Parameter Estimation

As a first step, we perform data analysis using descriptive statistics. While most of these measures
need no introduction, we give a brief note on how skewness and kurtosis are calculated. The sample
coefficient of skewness η̂3 is estimated as follows. We let

mk =
1
n

n

∑
i=1

(xi − x̄)k,

and
s2 = 1

n − 1
Σ
n
i=1(xi − x̄)2.

Using the unbiased estimator of the third moment and unbiased estimator for variance, the sample
skewness is defined as

η̂3 =
n2

(n − 1)(n − 2)
m3

s3 .

The sample coefficient of excess kurtosis η̂4 is calculated using the unbiased estimator of the fourth
moment and unbiased estimator for variance,

η̂4 =
n(n2 − 2n + 3)

(n − 1)(n − 2)(n − 3)
m4 −

3n(2n − 3)
(n − 1)(n − 2)(n − 3)

s4 − 3.

For simplicity, we refer to excess kurtosis as kurtosis in the further sections. We use the EnvStats
library for these calculations (see Millard, 2018).

The GEV and GP models are fitted to simulated and real data using maximum likelihood estimation
as well as the Hill estimator for the GP model. For the ML estimates we use the r package fExtremes
(Diethelm Wuertz, 2017).

2.2.6 Interval Estimates

Asymptotic normal intervals for ξ can be constructed since the ML estimator is approximately
normal (see Coles et al., 2001). The interval is then

ξ̂ ± Z0.975

√
V(ξ̂),

where
V(ξ̂) =MSE(ξ̂).

For the Hill estimator the interval is,

Ĥk ± Z0.975

√
V(Ĥk),

where

V(Ĥk) =
Ĥ2
k

k
.
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Asymptotic normal confidence intervals for VaR and ES in the GEV case can be found using the
delta method (see e.g. Coles et al., 2001). If

√
n(θ̂ − θ) DÐ→ N(0,Σ), where n is the number of

observations and Σ is a symmetric positive covariance matrix and θ = {µ, β, ξ} then by Taylor
approximation, VaR(θ̂) ≈ VaR(θ) +∇VaR(θ)⊺(θ̂ − θ), where

∇VaR(θ) = [∂VaR(θ)
∂µ

,
∂VaR(θ)

∂β
,
∂VaR(θ)

∂ξ
]
⊺

.

The variance of VaR(θ̂) can then be approximated as,

V(VaR(θ̂)) ≈ ∇VaR(θ)⊺Σθ∇VaR(θ).

Similarly, the variance of ES(θ̂) can be estimated as,

V(ES(θ̂)) ≈ ∇ES(θ)⊺Σθ∇ES(θ).

In the GPD case we must also estimate the uncertainty in ˆ̄F(u) (see Coles et al., 2001). We simply
exchange the parameter vector to θ = {ζu, β, ξ}, where ζ̂u = ˆ̄F(u). Then V(ζ̂u) = ζ̂u(1 − ζ̂u)/n. We
assume that there is no covariance between ζu and the remaining parameters and the threshold u is
considered a constant.

Confidence intervals are then calculated as,

VaR(θ̂) ± Z0.975

√
∇VaR(θ̂)⊺Σ̂θ∇VaR(θ̂)

and
ES(θ̂) ± Z0.975

√
∇ES(θ̂)⊺Σ̂θ∇ES(θ̂).

In the standard ML case, we use fExtremes to estimate the covariance matrix Σθ (Diethelm Wuertz,
2017). For the Hill estimator we construct Σ̂θ by deriving,

V(β̂) = V (uĤk) =
(uĤk)2

k

and

C(β̂, Ĥk) = C(uĤk, Ĥk) =
uĤ2

k

k
.

Then,

Σ̂θ =
⎡⎢⎢⎢⎢⎣

(uĤk)
2

k

uĤ2
k

k
uĤ2

k

k

Ĥ2
k

k

⎤⎥⎥⎥⎥⎦
.

These asymptotic normal intervals are not suitable when the sampling distribution of the estimator
is not normal. An alternative is bootstrap methods.

Bootstrap is a method for estimating the error of a statistic using resampling (see Efron, 1982).
In naive methods, a sample of size n is drawn from an original i.i.d. sample Xn = {X1, . . . ,Xn}
with replacement B times. The sampling distribution of Xn can then be approximated by drawing
X∗

n = {X∗
1 , . . . ,X

∗
n} samples with replacement from the original sample. There are however examples
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where naive bootstrap approaches fail. For instance, for the maximum order statistics of a random
variable the probability of obtaining the maxima is equal to 1 − e−1, and bootstrap sampling fail to
work (see Bickel and Freedman, 1981). Another example arises when bootstrap is applied to the
mean of a variable with infinite variance or no fourth moment (Athreya, 1987). An improvement
in cases where the original bootstrap failed was discovered when the resample size m is smaller
than the original sample size n (Swanepoel, 1986). Choosing m as 2n/3 was reducing the coverage
error in percentile-t intervals. The procedure of resampling less than n observations is formalised as
m-out-of-n bootstrap in Bickel et al. (1997) and is found to work well in most examples of bootstrap
failure. We make use of m-out-of-n percentile intervals letting m = 2n/3 for the estimates of the
descriptive statistics. The empirical sample-based estimates are given with m-out-of-n percentile
bootstrap intervals using the package distillery as this bootstrap method is suitable for heavy-tailed
data (see Gilleland, 2019).
For a description of our software implementation extreme.risk with a link to the code on GitHub see
Appendix B.

2.2.7 Model Evaluation

Goodness-of-fit (GoF) tests are performed to evaluate the fit of our estimated models.
Classical empirical distribution function (EDF) test statistics are constructed as the distance between
an empirical distribution function Fn and a modelled distribution function F̂. One such test statistic
is the Anderson-Darling test (Anderson and Darling, 1952).
We are interested in testing the composite null hypothesis

H0 ∶ Fn ∈ Fθ(x),

where F is known while θ is unknown. If the distance is too large we reject H0.
While there are many EDF tests, the Anderson-Darling test statistic employs a distance of the form,

A2 = n∫
∞

−∞

(Fn(x) − Fθ̂(x))2

Fθ̂(x)(1 − Fθ̂(x))
dFθ̂(x). (12)

With some analytical work, one can express (12) as

A2 = −n − 1
n

n

∑
i=1

((2i − 1) log(ui) + (2n + 1 − 2i) log(1 − ui)) , (13)

where ui = Φ((yi − µ̂)/σ̂), yi = Φ−1(vi) and vi = Fθ̂(xi, θ̂).
Finally, a modification of the test statistic in eq. (13) is performed according to Stephens (1986).

A∗2 = A2(1 + 0.75/n + 2.25/n2) (14)

We rely on the modified Anderson-Darling test in eq. (14), since a goodness-of-fit test based on this
test statistic put a larger weight on the observations in the tails and has shown good power properties
when applied to extreme value distributions (Laio, 2004). An r implementation of this test can be
found in the package gnFit (Saeb, 2018).
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A graphical evaluation is carried out using the mean excess plot. We use the mePlot function in the
fExtremes package for r to extract the mean excesses for the corresponding thresholds and plot the
results (Diethelm Wuertz, 2017). To assess the fit for high quantiles cdfs are plotted for α ≥ 0.975.
The empirical cdfs are fitted using the ecdf function in the stats package. These are plotted along
with the fitted cdfs using the parameter estimates of our extreme.risk script with the pgpd and pgev
functions in the fExtremes package.

2.3 Simulation Study I

2.3.1 Description of Simulated Data

We perform 50 000 simulations each from four distributions. Table 4 shows the distributions
simulated and the functions used to generate the random numbers.

Table 4: Description of the simulated distributions.

Distribution Parameters Function r Package Author

Half-normal {µ = 0.399, θ = 0.301} rtruncnorm rtruncnorm Mersmann et al., 2018
Half-t ν = 2 rtrunct stats∗ R Core Team, 2019
Exponential λ = 2 rexp stats R Core Team, 2019
Pareto {κ = 2, β = 2} rpareto EnvStats Millard, 2018

* A function truncating the simulation at zero was created.
Note: If X ∼ N(0, σ2) and Y = ∣X∣, then Y ∼ HN(µ, θ) where µ = σ

√
2π−1 and θ =

√
σ2(1 − 2π−1). Similarly, if X ∼ t(ν)

where ν denotes the degrees of freedom, then Y ∼ HT(ν). The density of the exponential distribution has the form f (x) = λe−λx

where λ is the ratio. We use a Pareto density on the form f (x) = βκβ x−(β+1), κ > 0, β > 0, x ≥ κ where β is the scale and κ is the
shape.

The first of these is the half-normal distribution, generated from a normal distribution with µ = 0
and σ = 0.5, where µ and σ are the mean and standard deviation of the normal distribution. Then
we simulate from a half-t distribution with ν = 2 degrees of freedom. Lastly, we simulate from the
exponential distribution with rate, λ = 2 and Pareto distribution with scale and shape equal to two.
This allows us to see how our models compare for different types of data. Table 5 show a summary
of descriptive measures for the simulations.

We begin with a comparison of the Student t and Pareto distributions. The theoretical distribution
of the Student t and Pareto extremes is the Fréchet distribution (ξ > 0). The half-t and Pareto
distributions with degrees of freedom and shape equal to 2 have a variance that is infinitely large in
theory. Both of these distributions have a finite theoretical first moment. We expect that the order of
the GEV tail index ξ is larger than 0 and less than 1 as the kthmoment exist when ξ < 1/k for positive
r.v.’s (see McNeil et al., 2005). The sample estimates of the standard deviation are 2.6 (half-t) and
5.7 (Pareto). Compared to the Student t sample, the estimated kurtosis (1289) and skewness (25.96)
is larger for the Pareto sample while the coefficient of variation (1.41) is slightly lower. The Pareto
sample maximum value (400.1) is slightly larger than the half-t (137.7) but more information can be
gained through studying the quantiles of the distributions. The VaR (20.1) and ES (25.4) measures
show that the tails of the Pareto distribution are indeed heavier than the tails of the half-t distribution
with a VaR of 9.9 and ES 11.8.
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We continue to compare the sample estimates of the half-normal and exponential distributions. The
half-normal and exponential distributions both have finite moments of all positive orders and are in
the maximum domain of attraction of the Gumbel distribution (ξ = 0). The half-normal has standard
deviation θ =

√
σ2(1 − 2π−1) and mean µ = σ

√
2π−1. We note that the half-normal maxima (1.953)

is close to the theoretical maxima of a normal random variable with a variance and mean equal to
θ and µ, an =

√
2 log n ⋅ θ + µ =

√
2 log (50000) ⋅

√
0.52(1 − 2π−1) + 0.399 = 1.801 (see Appendix

A.1). Although the Gumbel class of MDA is associated with light tails, a large variety in the shape
of the tails can be observed. The normal distribution is lighter in the tails than the exponential
while both are considered in the MDA of the Gumbel distribution. We can see that the kurtosis and
skewness indicate that the exponential sample has heavier tails than the half-normal (Table 5). The
VaR and ES are larger for the exponential distribution at approximately 2.3. We expect the tail index
of the exponential sample to be larger than for the half-normal sample but close to zero.

Table 5: Descriptive statistics of simulated data.

Half-normal Half-t Exponential Pareto

Mean 0.399[0.396,0.402] 1.393[ 1.367, 1.422]0.498[0.492,0.503] 4.001[ 3.941, 4.066]
Median 0.336[0.332,0.340] 0.819[ 0.807, 0.829]0.343[0.338,0.349] 2.838[ 2.824, 2.852]
Max 1.953 137.664 5.496 400.094
Std. Dev. 0.302[0.300,0.305] 2.574[ 2.288, 2.868]0.498[0.490,0.506] 5.650[ 4.576, 6.758]
CV 0.757[0.751,0.763] 1.848[ 1.667, 2.042]1.001[0.992,1.012] 1.412[ 1.162, 1.669]
Skewness1.019[0.991,1.045] 15.585[ 10.253, 19.720]2.002[1.918,2.090] 25.962[ 13.745, 33.206]
Kurtosis 0.921[0.804,1.043]490.402[215.112,749.742]5.916[5.202,6.680]1289.003[348.888,1847.689]
VaR.99 1.300[1.280,1.319] 9.912[ 9.378, 10.398]2.314[2.269,2.371] 20.121[ 19.030, 21.217]
ES.975 1.304[1.288,1.319] 11.842[ 11.111, 12.672]2.346[2.299,2.394] 25.364[ 23.389, 27.413]

Note: Estimates are calculated for 50 000 observations generated from a normal distribution with µ = 0 and
σ = 0.5, Student t distribution with ν = 2, exponential distribution with λ = 2 and Pareto distribution with
shape and scale equal to 2. The abbreviation CV denotes the coefficient of variation. The normal and Student
t simulations are truncated at zero. Bootstrap percentile intervals using B = 1000 resamples with a resample
size of m = 33 333 and confidence level 0.95 are given in squared brackets.

2.3.2 Estimated Extreme Value Models

We fit three extreme value models to the simulated data using the extreme.risk script (see Appendix
B). Table 6 show the fit of the GEV models. While the exponential sample has a tail index close
to zero, the half-normal sample is negative. This is clearly not correct as we know that the true
tail index of the underlying distribution is zero. However, the A∗2 statistic shows that the fitted
distribution function is significantly different from the empirical one. The tail index of the half-t
and Pareto simulations are positive while not as large as we expected in our initial analysis. The tail
index of the Pareto sample is slightly larger than that of the Student t sample.

The fit of the GPD models with a deterministic threshold selection using the Hill estimator is given
in Table 7. The tail index of the exponential sample is larger and there is no significant difference
between the fitted and empirical distribution function. The half-normal sample has a tail index that
is positive and closer to zero, but the fitted GP distribution function is significantly different from
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the empirical one. The tail index of the half-t is larger than that of the Pareto sample. However, the
difference is not large enough to capture any substantial differences in the tails.

A summary of the fit of the GPD models with a cross-validation threshold selection and ML
estimation is represented in Table 8. The tail index of the half-normal sample is negative and there is
no significant difference between the fitted density and the empirical one. This is unexpected since
it corresponds to a distribution with a finite right tail. The exponential sample tail index is close to
zero and the test statistic shows that the fitted density is close to the empirical one. The tail indexes
of the half-t and Pareto samples differ in size to a greater extent than those of the GEV and GPD
model with deterministic threshold selection.

To assess the fit of the GPD models we study the MEP in Figure 1. The GPD model using
deterministic threshold selection and Hill estimator appear to be roughly linear except for the
exponential sample. The GPD∗model, using cross-validation threshold selection andML estimation
appears to be linear for all samples. The threshold is so low that the mean excesses used for the
model fit are containing the majority of observations in the sample except for the half-normal case.

To get a clearer picture of the fit in the tails we compare the fitted cumulative distribution functions
(cdf) to the empirical one (Figure 2). The empirical cdf (grey) is fitted to the block maxima for the
GEV case, and exceedances in the GPD and GPD∗ models. The empirical cdf is almost identical
for the GEV and GPD models. We can see that the distance of the fitted distributions to their
empirical counterparts is smallest for the GPD∗ model for all samples. The GEV distribution and
the GPD models appear to have a smaller distance to their empirical cdfs in the Pareto case. For the
half-normal and exponential samples, the GEV model is closer to the empirical cdf. The Student
t sample appears to be better modelled with the GPD than the GEV distribution. One should note
that the fitted distribution’s closeness to their empirical distributions is not a perfect measure of how
well the tail is modelled. A perfect fit of the main body of the distribution does not necessarily
translate into a good fit of the extremes. And the answer is greatly determined by what we define as
extremes to begin with. A suggestion is to analyse the tail distance between the fitted and empirical
distribution function over a particular threshold to gain additional insights on the fit of the tail of the
distribution.
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Table 6: GEV models.

µ β ξ A∗2 Sig.

Half-normal 1.445 0.160 −0.212 424.36 .000
Half-t 14.701 7.189 0.416 491.46 .000
Exponential 2.696 0.456 0.030 541.28 .000
Pareto 31.624 16.357 0.429 2707.62 .000

Note: Models are fitted using ML estimation. A block size of b = 224 and a sample size of
n = 224 block maxima was used for all models. Significance levels of the A∗2 statistics are given
for each model.

Table 7: GPD models with deterministic threshold selection.

u0 β ξ A∗2 Sig.

Half-normal 1.437 0.126 0.088 1.186 .004
Half-t 14.076 6.970 0.495 0.461 .260
Exponential 2.719 0.406 0.149 0.289 .616
Pareto 30.920 14.788 0.478 0.193 .895

Note: Models are fitted using the Hill estimator. A sample size of n = 224 exceedances is used
to fit the models. The threshold is denoted u0. Significance levels of the A∗2 statistics are given
for each model.

Table 8: GPD models with cross-validation threshold selection

u0 β ξ A∗2 Sig. n

Half-normal 0.642 0.278 −0.158 0.278 .651 9904
Half-t 1.778 1.215 0.439 0.448 .279 10894
Exponential 0.057 0.498 0.001 0.270 .677 44550
Pareto 2.020 1.014 0.499 0.556 .151 49005

Note: Models are fitted using ML estimation. The threshold is denoted u0. The sample size n, is
the number of exceedances used when fitting the model. Significance levels of the A∗2 statistics
are given for each model.
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(a)Mean excesses of half-normal distributed r.v’s. (b) Mean excesses of half-t distributed r.v’s.

(c)Mean excesses of exponential distributed r.v’s. (d) Mean excesses of Pareto distributed r.v’s.

Figure 1: Mean excess plot of fitted GPDwith deterministic threshold u0 selection (dotted)
and cross-validation threshold u∗0 selection (dash-dotted). The GPDmodel using threshold
u∗0 is denoted GPD∗.
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(a) Fitted models to simulated half-normal dis-
tributed r.v’s.
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(b) Fitted models to simulated half-t distributed
r.v’s.
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(c) Fitted models to simulated exponential dis-
tributed r.v’s.
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(d) Fitted models to simulated pareto distributed
r.v’s.

Figure 2: Empirical distribution functions (grey), with fitted cdfs (black). Fitted GEV
(dashed), GPD with deterministic threshold u0 selection (dotted) and cross-validation
threshold u∗0 selection (dash-dotted) in log-log scale. The GPD model using threshold u∗0
is denoted GPD∗. The extremes of 50 000 simulated data points from each distribution
are fitted to the three extreme value models.
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2.3.3 Risk Models

One way to assess these models’ abilities to capture the tail behaviour of the sampled distributions
is to study quantile measures such as VaR and ES. This could give us a clearer picture of what to
expect in a worst-case scenario. While not disclosed in this study, an even deeper understanding of
the fit of the tails can be obtained through graphical methods such as the QQ plot.

Table 9 shows the shape parameter, tail index, VaR and ES for the normal sample. The tail index
estimate is significantly different from zero in all of the models according to the interval estimates.
As observed in the previous section, only in the GPD∗ case the fitted cdf is matching the empirical
one. These results are surprising since Gaussian extremes should be distributed according to a
Gumbel distribution. The incorrect tail index estimates for the GEV and GPD models could be
explained by these models sensitivity to the choice of block size and threshold. Proceeding to
manual analysis to fine-tune these parameters should result in tail index estimates in line with the
true parameter value (ξ = 0). Despite unexpected tail index estimates the GEV and GPD∗ VaR and
ES interval estimates both cover the empirical estimates.

The risk models of the Student t sample appears to capture the empirical risk well (Table 10). The
tail index estimates are significantly different from zero and have the right sign. All of the VaR and
ES interval estimates cover the empirical estimate. Even though the GEV model is significantly
different from the empirical distribution (see Table 6), the GEV model VaR and ES estimate come
closer to the empirical estimates.

In the exponential case, the tail index is as suspected not significantly different from zero in the GEV
and GPD∗ models (Table 11). Even if the GEV model is not significant (see Table 6), it manages
to model tail loss fairly well. The most surprising finding is that the GPD model tail index estimate
is significantly different from zero when we know that in theory, it should be indistinguishable
from zero. Further fine-tuning is needed to assure that the tail index estimate is coherent with the
theoretical one (ξ = 0). While the VaR intervals cover the empirical estimate, there is a significant
difference between the GPD model ES estimate and the empirical one.

The Pareto sample tail index estimates are closer in size than for the other distributions (Table 12).
All of the tail index estimates are significantly different from zero and none of the VaR and ES model
estimates is significantly different from the empirical estimate. The GPD model estimates of VaR
and ES deviate from the empirical estimate more than the other model estimates do.

As a concluding remark, we observe in our study that the estimates are not good for the GPD model
in the case of the Gumbel domain of attraction (ξ = 0). This is also true for the GPD∗ model of
the exponential extremes. Further study could be performed, in particular, implementing manually
the MEP method to compare the results with those obtained using the deterministic and R-package
threshold selection rules. A more precise inference on the tail index using extreme value-based tests
rather than asymptotic normal intervals might lead to results more in line with the theory. Finally,
we note that the risk estimates, despite the incorrect tail index estimates, are overall fairly close to
the empirical ones. Further analysis is needed to assure that these results are valid.
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Table 9: Summary of estimates, half-normal distribution.

ξ α VaR.99 ES.975

GEV −0.212 −4.708 1.303 1.301
[ −0.316, −0.109 ] [ 1.277, 1.329 ] [ 1.225, 1.377 ]

GPD 0.088 11.374 1.339 1.355
[ 0.076, 0.099 ] [ 1.319, 1.359 ] [ 1.336, 1.373 ]

GPD∗ −0.158 −6.312 1.303 1.305
[ −0.175, −0.142 ] [ 1.292, 1.314 ] [ 1.293, 1.317 ]

Empirical 1.300 1.304
[ 1.280, 1.319 ] [ 1.288, 1.319 ]

Note: Intervals at a 0.95 level for ξ, VaR0.99 and ES0.975 are given in square brackets below each
estimate. Tail index ξ is fitted with asymptotic normal intervals. Intervals for model VaR and ES
are performed using the delta method. Intervals for the empirical sample are fitted using m-out-of-n
percentile bootstrap with B = 1000 resamples and a resample size of m = 33 333.

Table 10: Summary of estimates, half-t distribution.

ξ α VaR.99 ES.975

GEV 0.416 2.402 9.751 11.846
[ 0.303, 0.530 ] [ 9.047, 10.454 ] [ 10.916, 12.776 ]

GPD 0.495 2.020 9.458 11.901
[ 0.430, 0.560 ] [ 8.673, 10.244 ] [ 11.105, 12.697 ]

GPD∗ 0.439 2.280 9.708 11.760
[ 0.412, 0.465 ] [ 9.375, 10.041 ] [ 11.143, 12.376 ]

Empirical 9.912 11.842
[ 9.378, 10.398 ] [ 11.111, 12.672 ]

Note: Intervals at a 0.95 level for ξ, VaR0.99 and ES0.975 are given in square brackets below each
estimate. Tail index ξ is fitted with asymptotic normal intervals. Intervals for model VaR and ES
are performed using the delta method. Intervals for the empirical sample are fitted using m-out-of-n
percentile bootstrap with B = 1000 resamples and a resample size of m = 33 333.
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Table 11: Summary of estimates, exponential distribution.

ξ α VaR.99 ES.975

GEV 0.030 33.532 2.331 2.375
[ −0.076, 0.136 ] [ 2.270, 2.392 ] [ 1.244, 3.505 ]

GPD 0.149 6.706 2.349 2.473
[ 0.130, 0.169 ] [ 2.240, 2.458 ] [ 2.418, 2.528 ]

GPD∗ 0.001 1880.287 2.294 2.336
[ −0.009, 0.010 ] [ 2.261, 2.328 ] [ 2.300, 2.373 ]

Empirical 2.314 2.346
[ 2.269, 2.371 ] [ 2.299, 2.394 ]

Note: Intervals at a 0.95 level for ξ, VaR0.99 and ES0.975 are given in square brackets below
each estimate. Tail index ξ is fitted with asymptotic normal intervals. Intervals for model VaR
and ES are performed using the delta method. Intervals for the empirical sample are fitted using
m-out-of-n percentile bootstrap with B = 1000 resamples and a resample size of m = 33 333.

Table 12: Summary of estimates, Pareto distribution.

ξ α VaR.99 ES.975

GEV 0.429 2.331 20.415 25.323
[ 0.321, 0.538 ] [ 18.829, 22.000 ] [ 23.274, 27.373 ]

GPD 0.478 2.091 21.061 26.043
[ 0.416, 0.541 ] [ 19.371, 22.750 ] [ 24.384, 27.702 ]

GPD∗ 0.499 2.004 20.001 25.273
[ 0.486, 0.512 ] [ 19.379, 20.623 ] [ 24.159, 26.387 ]

Empirical 20.121 25.364
[ 19.030, 21.217 ] [ 23.289, 27.413 ]

Note: Intervals at a 0.95 level for ξ, VaR0.99 and ES0.975 are given in square brackets below
each estimate. Tail index ξ is fitted with asymptotic normal intervals. Intervals for model VaR
and ES are performed using the delta method. Intervals for the empirical sample are fitted using
m-out-of-n percentile bootstrap with B = 1000 resamples and a resample size of m = 33 333.

2.4 Case Study I: The Univariate Risk of the FTSE 100 Index

2.4.1 The FTSE 100 Data

A description of the data used in this study is presented in Table 13. To gain insights on the market
risk in the United Kingdom we use the FTSE 100 index. The FTSE 100 is consisting of the 100
companies with the highest market capitalisation on the London Stock Exchange.

A large data set is required to have a sufficient number of extremes to model. The full series spans
from 1984-01-03 to 2019–05–31 while the subset comprising the period before Brexit ranges from
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1984-01-03 to 2016-06-23. A difficulty in studying the period after Brexit is the limited sample size.
Hence, we compare the pre-Brexit and the full series to help us draw conclusions on the impact of
the Brexit referendum on the tail risk.

Table 13: Description of the FTSE 100 stock index data.

Data Type n
pre-Brexit full sample

S Closing Value 8283 9027
R∆t Log-Return 8282 9026
L Return Loss 3886 4240

Note: The table shows the number of data points for the series S of closing values for FTSE 100, log-returns
R and the number of losses in the log-returns L. The number of observations is given for the period before the
Brexit referendum (1984-01-03 – 2016-06-23) as well as the full series (1984-01-03 – 2019–05–31).

2.4.2 Volatility of The British Stock Market

A sometimes overlooked property of securities is that the price volatility does not reflect the return
risk. A change in price between two successive trading days reflects an absolute change in the
cumulative geometric returns. Returns are defined as the relative change in price between two
succeeding days and are assumed to be independent of preceding returns. It is problematic to assess
risk based on prices as risk is measured as the deviation from the expectation. As such, returns yield
more reliable information on return risk. The FTSE 100 index is used to illustrate this circumstance
(Figure 3).

We inspect the upper graph of Figure 3 to compare the movements in closing values for different
events. The losses in closing values at the Great Recession and around the Brexit referendum seems
larger than during the Black Monday. Moreover, the loss at the Dot-com bubble appears to be larger
than during the Great Recession.

The lower graph of Figure 3 is showing the log-returns for the FTSE 100 index from 1984 to 2019.
At the time of the Black Monday, we see the largest negative spike of the entire period. The largest
drawdown in relation to the early 90s Recession occurs after the event. At the year of the Brexit
referendum, the largest drawdown does not take place at the time of the referendum. A loss of
around −0.05 is present at the end of March. After the referendum, the return series reverts into a
less volatile state. This implies that the behaviour of the market at various events is not constant.
Bräutigam et al. (2018) calculated a rolling window annualised volatility of the FTSE all-share index.
Their one-year rolling window volatility shows patterns close to ours.

2.4.3 The British Stock Market Losses

We carry out a descriptive analysis of the losses to get a preliminary view of the shape of the left tail.
As the losses are positive, the distribution of the tails can only be of the type Fréchet or Gumbel.
Thus, whether the tails are considered as heavy (ξ > 0) or light (ξ = 0) reduces to testing if the tail
index ξ is larger than zero. Before conducting a formal test, we analyse the data to get an idea of
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Historic Market Risk of Great Britain
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Figure 3: Closing values and log-returns of FTSE 100 starting at 1984–01–03 and ending
at 2019–05–30.

the shape of the tail. As the extremes of a normal distribution converge to a Gumbel distribution,
a simulation is performed for reference. Table 14 shows a summary of the descriptive statistics for
the return losses.

The central tendency estimates are larger for the pre-Brexit period compared to the full sample.
However, differences are negligible as indicated by the confidence intervals. Neither the estimates
of the mean nor the median is within the interval of the truncated normal sample. This indicates a
different central tendency compared to a normal distribution.

The maximum value is the same for both periods and it occurs before the Brexit referendum. The
size of the maxima for both periods is substantially larger than the truncated normal maxima. This
suggests that the distribution of the return losses have a longer tail than the losses of a normally
distributed random variable.

While the standard deviation is larger in the pre-Brexit sample compared to the full sample, the
coefficient of variation is lower. The estimates of the coefficient of variation for the pre-Brexit and
full sample are roughly equal while differing from the simulated normal estimates. This might
indicate a slightly heavier tail since the density is more dispersed around its mean.

The skewness and kurtosis estimates are larger for the full sample compared to the pre-Brexit sample.
The estimates are not differing by a considerable amount between the sample periods. As the kurtosis
is larger than zero, the distributions of the return loss in both series are leptokurtic. Both skewness
and kurtosis differ from the simulated normal sample by a substantial amount. This indicates that the
tails of the return loss samples are heavier than that of the simulated truncated normal distribution.
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The VaR estimate for the pre-Brexit sample is slightly larger than the full sample estimate. The
intervals show that the differences are negligible. As these estimates exceed the upper bound of
the simulated truncated normal distribution VaR, a comparably heavier tail is expected. The ES
estimates result in a similar analysis.

To conclude, most of these estimates suggest a tail index slightly larger than zero for both return
loss samples. A Fréchet distribution is likely (ξ > 0), while not certain without further analysis.
Differences in the tail shape for the pre-Brexit and full series are not consistent. Judging by the
confidence intervals these differences are negligible. The estimates of the mean, standard deviation,
skewness and kurtosis imply the existence of four moments. For the GEV we know that the kth
moment exits if ξ < 1/k. Consequently, we expect a tail index of ξ < 0.25. Altogether this analysis
suggests the presence of moderately heavy tails in both return loss samples. To determine if the
return losses follow a Fréchet distribution we conduct a formal test in the following section.

Table 14: Descriptive Statistics of Losses And Simulated Normal r.v.’s.

Pre-Brexit Full Normal (truncated)
Est. 95% CI Est. 95% CI Est. 95% CI

Mean 0.801 [ 0.770, 0.835 ] 0.780 [ 0.752, 0.814 ] 0.865 [ 0.841, 0.887 ]
Median 0.576 [ 0.547, 0.613 ] 0.558 [ 0.530, 0.586 ] 0.739 [ 0.707, 0.764 ]
Max. 13.029 13.029 3.923
Std. Dev. 0.842 [ 0.762, 0.933 ] 0.822 [ 0.744, 0.914 ] 0.647 [ 0.627, 0.667 ]
CV 1.051 [ 0.973, 1.142 ] 1.054 [ 0.977, 1.142 ] 0.748 [ 0.728, 0.767 ]
Skewness 3.605 [ 2.290, 4.858 ] 3.632 [ 2.343, 4.974 ] 0.992 [ 0.887, 1.094 ]
Kurtosis 27.906 [ 8.176, 46.805 ] 28.611 [ 8.224, 48.196 ] 0.909 [ 0.456, 1.368 ]
VaR.99 3.875 [ 3.453, 4.741 ] 3.689 [ 3.271, 4.339 ] 2.747 [ 2.623, 2.868 ]
ES.975 4.155 [ 3.655, 4.681 ] 4.064 [ 3.609, 4.567 ] 2.786 [ 2.663, 2.902 ]
Sample size 3886 4240 4240
Note: Descriptive statistics are calculated from the losses L, at the period before the Brexit referendum (1984-01-03 – 2016-06-23)
as well as the full series (1984-01-03 – 2019–05–31). Descriptives of simulated normal r.v’s are supplied for comparison reasons.
The simulation is performed using a mean and standard deviation similar to the full return series and the left tail is truncated at zero.
The abbreviation CV denotes the coefficient of variation. The calculations of kurtosis and skewness are defined in Section 2.4.1.
Estimates (Est.) of VaR and ES are calculated as described in Section 1.2. Percentile bootstrap confidence intervals (CI) are given
in brackets. Intervals are calculated using 1000 bootstrap resamples at a resample size of m = 2591 for the pre-Brexit sample and
m = 2827 for the full and truncated normal samples.

30



Multivariate Risk

2.4.4 Modelling the British Extreme Return Losses

Extreme value models are fitted to determine if there is a difference in extreme losses during the
pre-Brexit period when compared to the post-Brexit period. Three types of models are fitted to
the FTSE 100 return losses pre-Brexit referendum and the full sample period. First, a GEV model
is fitted using the block maxima method. We then fit a GPD model using deterministic threshold
selection to the two sample periods. Finally, a GPDmodel using cross-validation threshold selection
is fitted, denoted GPD∗ (Section 2.2.4). Before presenting the estimates, we proceed with a graphical
analysis of the model fits.

Figure 4 shows the mean excess plot for the full sample as well as the pre-Brexit sample. The
mean excess function of an exponential distribution is constant, while that of a Pareto distribution
tends to infinity for high values of u (Embrechts et al., 1997). Since the extremes of an exponential
distribution converge into a Gumbel distribution we expect the mean excess function of a distribution
with ξ = 0 to be flat or increasing with a decaying speed. For both samples, the mean excesses are
increasing with u, a sign that ξ > 0 is to be expected.

Examining the 0.975 quantile cdf plots we see that the GEVmodels using the block maxima method
are overestimating the frequency of the losses in comparison to the empirical cdf for values below
7.6 (Figure 5). The GPD models using deterministic threshold selection appear to overestimate
the frequency of the losses to an even greater extent. The GPD∗ models using a cross-validation
threshold selection seem to fit the empirical cdf best. There is no visible difference in the model fit
between the pre-Brexit and full sample models.

The estimates for the GEV models are evident in Table 15. We can see that the tail index estimate
indeed, is less than 0.25. The A∗2 statistic for both sample periods rejects the null hypothesis that the
return losses follow a GEV distribution. The estimates appear to be very close for the two considered
sample periods.

Table 16 shows the estimates for the GPD models using deterministic threshold selection. None
of the A∗2 statistics rejects a GPD fit of the FTSE 100 extreme losses. The tail index estimates of
the models with deterministic threshold selection are considerably higher than those of the GEV
models. There is not a large difference in estimates between the sample periods.

The GPD∗ models tail index estimates are close to those of the GEV models (Table 17). In
comparison, the A∗2 statistic is lower for the GPD∗ models, indicating a lack of evidence of
differences between the fitted distribution and the empirical distribution. Just as for the previously
considered models, the GPD∗ model estimates do not show any large differences between the sample
periods.
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(a) Empirical MEF for the pre-Brexit sample. (b) Empirical MEF for the full sample.

Figure 4: Empirical MEFs with selected deterministic threshold u0 (dotted line) and cross-
validation threshold u∗0 (dash-dotted line). The mean excesses and threshold u are given
in percentage units.
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(a) Fitted models to the pre-Brexit return losses.
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(b) Fitted models to the full sample return losses.

Figure 5: Empirical distribution functions (solid), fitted GEV (dashed), GPD with de-
terministic threshold u0 selection (dotted) and cross-validation threshold u∗0 selection
(dash-dotted). The GPD model using threshold u∗0 is denoted GPD∗.
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Table 15: GEV models.

µ β ξ A∗2 Sig. n

Pre-Brexit 1.646 0.691 0.2124 13.883 .000 243
Full Sample 1.635 0.674 0.2164 16.619 .000 250

Note: Models are fitted to the pre-Brexit sample (1984-01-03 – 2016-06-23) as well as the full
sample (1984-01-03 – 2019-05-31) using ML estimation. The block size is 16 for the pre-Brexit
model and 17 for the full sample model. Sample size n is the number of block maxima used when
fitting the model. The values of µ and β are given in percentage units.

Table 16: GPD models with deterministic threshold selection.

u0 β ξ A∗2 Sig. n

Pre-Brexit 3.24 1.099 0.3391 0.377 .409 62
Full Sample 3.21 1.072 0.3343 0.382 .400 65

Note: Models are fitted to the pre-Brexit sample (1984-01-03 – 2016-06-23) as well as the
full sample (1984-01-03 – 2019-05-31) using the Hill estimator. The threshold is denoted u0.
Significance levels of the A∗2 statistics are given for each model. The sample size n is the number
of exceedances used when fitting the model. The values of u0 and β are given in percentage units.

Table 17: GPD models with cross-validation threshold selection.

u0 β ξ A∗2 Sig. n

Pre-Brexit 1.13 0.660 0.1924 0.219 .838 885
Full Sample 1.08 0.620 0.2043 0.222 .830 1008

Note: Models are fitted to the pre-Brexit sample (1984-01-03 – 2016-06-23) as well as the
full sample (1984-01-03 – 2019-05-31) using the ML estimator. The threshold is denoted u0.
Significance levels of the A∗2 statistics are given for each model. The sample size n, is the number
of exceedances used when fitting the model. The values of u0 and β are given in percentage units.
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2.4.5 Risk Models of the FTSE 100 losses

We proceed our analysis to the risk of the FTSE 100 return losses. A summary of estimates for the
pre-Brexit and full sample period is given in Table 18 and 19. The tail index estimate is larger than
zero for all models but as was previously mentioned the fitted GEVD density is significantly different
from the empirical one (see Table 15). The tail index estimates of the GPDmodel significantly differs
from the GEV and GPD∗ model estimates for both sample periods.

None of the VaR and ES interval estimates supports a significant difference in risk between the
two sample periods. The GEV model VaR and ES estimates are significantly different from the
empirical, GPD and GPD∗ ones. This highlights the difficulties in choosing the correct block size
to obtain accurate tail loss risk estimates. We can not find evidence of a significant difference in the
GPD and GPD∗ model VaR and ES estimates.

As a concluding remark, there is evidence of moderately heavy tails in the FTSE 100 return losses.
Overall, the GEV model using block maxima failed to capture the tail risk in both sample periods.
This likely stems from using a too small block size to adequately capture risk far out in the tail.
No evidence was found of a significant difference in modelling tail risk using a GPD model with
the Hill estimator and deterministic threshold selection in comparison to the ML estimator with
cross-validation threshold selection method. Both models appear to capture the tail behaviour of the
FTSE 100 log-returns well. Next, we will describe how to model risk in a multivariate setting.

Table 18: Summary of estimates, pre-Brexit sample.

ξ α VaR.99 ES.975

GEV 0.2124 4.708 1.085 1.204
[ 0.112, 0.313 ] [ 1.009, 1.160 ] [ 1.009, 1.400 ]

GPD 0.3391 2.949 3.799 4.213
[ 0.255, 0.424 ] [ 3.447, 4.150 ] [ 3.695, 4.730 ]

GPD∗ 0.1924 5.198 3.949 4.187
[ 0.115, 0.269 ] [ 3.650, 4.248 ] [ 3.796, 4.578 ]

Empirical 3.875 4.155
[ 3.453, 4.741 ] [ 3.655, 4.681 ]

Note: Estimates of VaR and ES are given in percentage units. Intervals at a 0.95 level for ξ,
VaR0.99 and ES0.975 are given in square brackets below each estimate. Tail index ξ is fitted with
asymptotic normal intervals. Intervals for model VaR and ES are performed using the delta
method. Intervals for the empirical sample are fitted using m-out-of-n percentile bootstrap with
B = 1000 resamples and a resample size of m = 2827 for the full sample and m = 2591 for the
pre-Brexit sample.
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Table 19: Summary of estimates, full sample.

ξ α VaR.99 ES.975

GEV 0.2164 4.621 1.071 1.189
[ 0.118, 0.315 ] [ 0.999, 1.143 ] [ 0.999, 1.378 ]

GPD 0.3343 2.991 3.669 4.091
[ 0.253, 0.416 ] [ 3.374, 4.024 ] [ 3.619, 4.562 ]

GPD∗ 0.2043 4.895 3.856 4.102
[ 0.130, 0.278 ] [ 3.571, 4.142 ] [ 3.723, 4.481 ]

Empirical 3.689 4.064
[ 3.271, 4.339 ] [ 3.609, 4.567 ]

Note: Estimates of VaR and ES are given in percentage units. Intervals at a 0.95 level for ξ,
VaR0.99 and ES0.975 are given in square brackets below each estimate. Tail index ξ is fitted with
asymptotic normal intervals. Intervals for model VaR and ES are performed using the delta
method. Intervals for the empirical sample are fitted using m-out-of-n percentile bootstrap with
B = 1000 resamples and a resample size of m = 33 333.

3. Multivariate Risk Models

Multivariate risk modelling is a concept that is still evolving. While copulas are a mainstay of
multivariate risk theory, graphical models are emerging as a way to overcome some of the difficulties
as dimensions scale up. The next section presents some of the main theories on the subjects as well
as more recent developments.

3.1 Multivariate Extreme Value Theory

3.1.1 Copulas

Every joint distribution function of a pair of random variables contains information on their marginal
behaviours as well as dependence structure. Copulas supply a simple way tomodel these dependence
structures.

Definition 3.1. A copula is a multivariate distribution function C ∶ [0,1]d → [0,1] with standard
uniform marginals, i.e. C(1, . . . ,1,ui,1, . . . ,1) = ui,∀i ∈ {1, . . . ,d},ui ∈ [0,1].

The appeal of copulas is illustrated in the traditional results of Sklar (1959). The following theorem
shows that all multivariate cdf’s can be expressed as copulas which may be constructed using
univariate marginals.

Theorem 7 (Sklar’s theorem, 1959). Let F be a joint cdf with marginals F1, . . . ,Fd. Then there
exists a copula C such that,

F(x1, . . . , xd) = C(F1(x1), . . . ,Fd(xd)), ∀xi ∈ R, i = 1, . . . ,d. (15)

35



Erik Oldehed

If the marginals are continuous, then C is unique. Conversely, if C is a copula and (Fi,1 ≤ i ≤ d)
are univariate d.f., then F defined above is a multivariate df with marginals F1, . . . ,Fd .

We proceed to define the density function of a copula if existing.

Definition 3.2. The density function c of a copula C is defined as

c(u1, . . . ,ud) =
∂dC(u1, . . . ,ud)
∂u1 . . . ∂ud

.

Consequently, a bivariate joint density is the product of the marginal densities and the density c of
the copula,

f (x1, x2) = c(F(x1),F(x2)) f1(x1) f2(x2).
Two examples of elliptical copulas commonly used in financial models are defined next.

Definition 3.3. A bivariate Gaussian copula with parameter ρ ∈ (−1,1) is defined as,

CGa
ρ (u, v) = 1

2π
√

1 − ρ2 ∫
Φ−1(u)

−∞
∫
Φ−1(v)

−∞
exp{− x2 − 2ρxy + y2

2(1 − ρ2)
}dxdy,

where Φ denotes the standard Gaussian cdf.

Definition 3.4. A bivariate t-copula with parameter ρ ∈ (−1,1) and degrees of freedom ν ≥ 2 is
defined as,

Ct
ρ(u, v) = Γ(ν/2 + 1)

Γ(ν/2)νπ
√

1 − ρ2 ∫
t−1
ν (u)

−∞
∫

t−1
ν (v)

−∞
(1 + x2 − 2ρxy + y2

ν(1 − ρ2)
)
−(ν+2)/2

dxdy,

where t−1
ν denotes the inverse of the Student t cdf.

Another family of copulas is the Archimedean copula. Two examples from the Archimedean copula
family are defined next, the Gumbel copula, being an extreme value copula and the Clayton copula.

Definition 3.5. A bivariate Gumbel copula is defined as,

CGu
ρ (u, v) = exp{− ((− log u)ρ + (− log v)ρ)1/ρ}, ρ ≥ 1.

Definition 3.6. A bivariate Clayton copula is defined as,

CCl
ρ (u, v) = (u−ρ + v−ρ − 1)−1/ρ, ρ > 0,

These copulas are capable of handling independence, where Cρ(u, v) = uv, as well as perfect
dependence, Cρ = min(u, v). In the Gumbel case, when ρ = 1, independence is present. Perfect
dependence corresponds to a ρ approaching zero. For the Clayton copula, as ρ goes to +0, u and
v are independent. Perfect dependence is associated with a ρ approaching infinity in the Clayton
copula.
Although being widely used in bivariate models, copulas can be computationally expensive in high
dimensional settings. Furthermore, estimating a d × d covariance matrix Σ as the number of assets
increases to thousands can be challenging. Since financial risk management is concerned with
current risks, using data from many years ago may provide a false image of today’s risk. An
interesting way to overcome these shortcomings is to utilise a graphical model with a sparse inverse
covariance matrix. In the next chapter, the theoretical foundation for such models is presented.
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3.1.2 Probabilistic Graphical Models

Let X = (X1, . . . ,Xp) be a random vector with distribution N(µ,Σ), precision matrix Ω = Σ−1 and
sample covariance matrix Σ̂ = S. We denote a graph G consisting of a set of nodes V and edges
E . If the nodes are labelled distinct from each other the graph is called a labelled graph. While
each node is associated with a random variable Xi, the edges represent the probabilistic interactions
between these variables. For each ordered pair (i, j) there is an edge between Xi and Xj if (i, j) ∈ E .
Furthermore, we use the notation X/{i, j} to denote the variables contained in X that are neither Xi

or Xj . Figure 6 visualises three types of graphical models. The set of nodes in Figure 6 a, is written
V = {A,B,C} while the set of edges can be written E = {e1,e2}.

Conditional independence is a main concept in graph theory. An edge is absent only if Xi is
conditionally independent of Xj given the other variables X/{i, j}. We write this as Xi ⊥⊥ Xj ∣X/{i, j}

and note that this can only be true if p(Xi,Xj ∣X/{i, j}) = p(Xi, ∣X/{i, j})p(Xj, ∣X/{i, j}). An important
result is that, if we can write the joint probability distribution p(Xi,Xj,X/{i, j}) in terms of some
functions f and g, conditional independence exists.

Definition 3.7. (Factorisation criterion)

Xi ⊥⊥ Xj ∣ X/{i, j} ⇐⇒ p(Xi,Xj,X/{i, j}) = f (Xi,X/{i, j})g(Xj,X/{i, j}), (16)

for some functions f and g, and for all X/{i, j} with p(X/{i, j}) > 0.

In a directed graph, each edge has a direction represented by an arrow (Figure 6, a). A directed
cyclic graph has a structure where the dependencies are chained together in a loop (Figure 6, b).
The complex dependence structure in directed cyclic graphs makes this model problematic to use in
practice. We say that a graph is acyclic if there is no way to move from a node e1, . . . ,ek at a directed
path such that ek = e1. A Bayesian network is an example of a directed acyclic graph.

Undirected graphs are useful for describing interactions between variables, where no natural direc-
tionality exists. The edges E in an undirected graph has no direction (Figure 6, c). A crucial feature
of undirected graphical models is that, if the variables modelled possess the Markov property, they
can be represented as a Markov random field. To determine whether a distribution satisfies the
Markov property we first need to introduce the notion of the clique.

A set of nodes where all nodes are neighbours of each other’s is referred to as a clique (Murphy,
2012). As an example, the nodes A and B in Figure 6 c, possess the clique property. If we would
include node A, B and C in a clique, the clique property is lost as the nodes A and C are not
neighbours. A clique where the number of neighbours cannot be made larger without losing the
clique property is called a maximal clique. We let c denote a clique with potential function Ψc(Xc)
where the set of maximal cliques is C. The potential function is a concept in physics and relates to
energy rather than probability (Murphy, 2012).
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Figure 6: Different types of probabilistic graphical models. (a) A sample directed acyclic
graph. (b) A sample directed cyclic graph. (c) A sample undirected cyclic graph.

The Hammersley-Clifford theorem states that if a positive distribution p factorises over an undirected
graph G this distribution satisfies theMarkov property. It turns out that being able to express the joint
density in terms of a number of functions rather than knowing all marginals’ and their relationships
have many advantages. Mainly, it allows us to express a high-dimensional distribution in terms of a
smaller number of factors.

Theorem 8. (Hammersley and Clifford, 1971) A positive distribution p(X) > 0 satisfies the CI
properties of an undirected graph G if and only if p can be represented as a product of factors, one
per maximal clique,

p(X) = 1
Z
∏
c∈C

Ψc(Xc),

where C is the set of all the (maximal) cliques of G, and Z is the normalising constant given by

Z ∆=∑
X

∏
c∈C

Ψc(Xc).

An example of the Hammersley-Clifford theorem in practice is the Gaussian Markov random field.
For multivariate Gaussian distributions, conditional independence such as defined in (17) means
that the precision matrix Ωi j = 0.

Theorem 9. Let X be a normal distributed r.v. with mean µ and precision matrix Ω > 0. Then for
i ≠ j,

Xi ⊥⊥ Xj ∣ X/{i, j} ⇐⇒ Ωi j = 0. (17)

Definition 3.8. A random vector X = (X1, . . . ,Xp)⊺ ∈ Rp is called a Gaussian Markov random field
with respect to a labelled graph G = (V,E) with mean µ and precision matrix Ω > 0 if and only if its
density has the form

pX(x) = (2π)−p/2 ∣ Ω ∣1/2 exp{−1
2
(X − µ)⊺Ω(X − µ)} (18)

and
Ωi j ≠ 0 ⇐⇒ {i, j} ∈ E for all i ≠ j .
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Proof. [Theorem 9] (Rue and Held, 2005) We partition X as (Xi,Xj,X/{i, j}) and then use the
multivariate factorisation criterion on pX(Xi,Xj,X/{i, j}). We fix i ≠ j and assume µ = 0 without
loss of generality. From (18) we get

pX(Xi,Xj,X/{i, j})∝ exp
⎛
⎝
−1

2∑k ,l
XkΩklXl

⎞
⎠

∝ exp
⎛
⎝
−1

2
XiXj(Ωi j +Ωji) −

1
2 ∑

{k ,l}≠{i, j}

XkΩklXl

⎞
⎠
.

Only the first term involve XiXj if and only if Ωi j ≠ 0.We see from (16) in Definition 3.7 that

pX(Xi,Xj,X/{i, j}) = f (Xi,X/{i, j})g(Xj,X/{i, j})

for some functions f and g, if and only if Ωi j = 0. �

The estimation of graphical models can be a challenging task. When the number of parameters p,
is considerably smaller than the number of observations n, maximum likelihood estimation of Σ is
a viable alternative. However, when p > n the estimate Σ̂ is not positive definite such that the joint
density is undefined. A remedy is to use lasso methods and estimate Σ by minimising

− `(Ω) + λ∑
j≠k

∣ Ωjk ∣ (19)

where λ is the regularisation parameter,

`(Ω) = 1
2
(log ∣ Ω ∣ −tr(ΩS) − p log(2π))

the log-likelihood and S the sample covariance matrix. While many estimation methods of Ω have
been proposed, an efficient estimator is the glasso algorithm (Friedman et al., 2008). The glasso
algorithm is a block coordinate descent algorithm, meaning that it successively minimises (19) along
the coordinate directions until convergence.

3.1.3 The Nonparanormal

This section connects the preceding ones, giving an example of how copulas and graphical models
relate to each other. The nonparanormal distribution was introduced by Liu et al. (2009) as a means
to estimate undirected graphs in high dimensional settings. It can be shown that the nonparanormal
under some restrictions is equivalent to a semi-parametric Gaussian copula but first we define the
nonparanormal distribution.

Definition 3.9. (Liu et al. (2009)) If there exist functions { fj}pj=1 for a random vector X =
(X1, . . . ,Xp)⊺ such that Z = f (X) ∼ N(µ,Σ), where f (X) = ( f1(X1), . . . , fp(Xp)), then X has
a nonparanormal distribution

X ∼ NPN(µ,Σ, f ).
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If each function fj is monotone and differentiable the joint density can be expressed such as

pX(x) = 1
(2π)p/2 ∣ Σ ∣1/2 exp{−1

2
( f (x) − µ)⊺Σ−1( f (x) − µ)}

p

∏
j=1

∣ f ′j (xj) ∣ . (20)

To see how the non-paranormal relates to copulas, consider the Lemma given next.

Lemma 1. (Liu et al. (2009)) When the functions fj are monotone and differentiable the nonpara-
normal distribution NPN(µ,Σ, f ) is a Gaussian copula.

Proof. (Liu et al. (2009)) As was shown in Theorem 7 (Sklar, 1959) any joint distribution can be
expressed in terms of a copula C such as

F(x1, . . . , xp) = C{F1(x1), . . . ,Fp(xp)}.

In the nonparanormal case

F(x1, . . . , xp) = Φµ,Σ(Φ−1(F1(x1)), . . . ,Φ−1(Fp(xp)))

where Φµ,Σ is the multivariate cdf and Φ is the univariate standard Gaussian cdf. The copula
corresponding to the nonparanormal distribution becomes,

C(u1, . . . ,up) = Φµ,Σ(Φ−1(u1), . . . ,Φ−1(up)).

We can see that this is a Gaussian copula with parameters µ and Σ. Consequently, if each function
fj is differentiable the density of X has the form of (20). �

The density in (20) is identifiable under the condition that the mean and variance of fj equal that of
Xj such as,

µj = E(Z j) = E(Xj) and σ2
j = Σj j = V(Z j) = V(Xj). (21)

We can then write the marginal distribution function Fj(x) of Xj

Fj(x) = P(Xj ≤ x) = P(Z j ≤ fj(x)) = Φ(
fj(x) − µj

σj
) ,

where the form of fj then can be derived as

fj(x) = µj + σjΦ
−1(Fj(x)). (22)

Lemma 2. (Liu et al. (2009)) If X ∼ NPN(µ,Σ, f ) is nonparanormal and each fj is differentiable,
then Xi ⊥⊥ Xj ∣ X/{i, j} if and only if Ωi j = 0, where Ω = Σ−1.

Proof. (Liu et al. (2009)) The density in (20) factors with respect to the graph of Ω and according
to Theorem 8 therefore obey the global Markov property of the graph. �

Lemma 3. (Liu et al. (2009)) Define

hj(x) = Φ−1(Fj(x))

and let Λ be the covariance matrix of h(x). Then Xj ⊥⊥ Xk ∣ X/{j ,k} if and only if Λ−1
jk = 0.
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Proof. (Liu et al. (2009)) Writing the covariance matrix as

Σjk = C(Z j,Zk) = σjσkC(hj(Xj),hk(Xk)),

we can express the covariance matrix such as Σ = DΛD and Σ−1 = D−1Λ−1D−1, with D being the
diagonal matrix with diagonal elements σ1,σ2, . . . ,σp. Hence, we have established that the zero
pattern of Λ−1 is equal to that of Σ−1. �

As a consequence of Lemma 3, we do not need to estimate the means or standard deviations to
estimate the graph.

3.2 Methodology

Next, copula models and probabilistic graphical models are described in Section 3.2.1 and 3.2.2. In
Section 3.2.3 we present the multivariate risk model while the evaluation methods are summarised
in Section 3.2.4.

3.2.1 Copula Models

Consider a realisation of i.i.d. randomvectors xi, i ∈ {1, . . . ,n} of the randomvectorsXi, i ∈ {1, . . . ,n}
from a joint distribution H, with marginals Fj and copula C. Assuming known marginals, ui j =
Fj(xi j), i ∈ {1, . . . ,n}, j ∈ {1, . . . ,n} is a sample from C. However, in most applications marginals
are not known. While parametric and non-parametric methods to estimate the marginals exist, a
non-parametric approach using pseudo-observations is most commonly used. We follow the same
procedure, estimating the pseudo-observations such as

ûi j =
n

n + 1
F̂n, j(xi j) =

ri j
n + 1

, (23)

where F̂n, j is the EDF for the j ∶ th margin and ri j the rank of xi j ∈ {1, . . . ,n}.We use a maximum-
likelihood estimator for the copula parameters as this estimator has shown good properties even in
high dimensional settings regardless if the marginals are known (Hofert et al., 2013). For details on
the estimation, see Nagler (2019).

Kendall’s tau is a measure of the strength of association in large values among two random variables.
The population parameter is defined as

τ = E[sgn((X1 − X ′
1)(X2 − X ′

2))],

where (X ′
1,X

′
2)⊺ is an independent pair of random vectors with the same distribution as (X1,X2).

The corresponding sample estimate for the random sample Ui = (Ui1,Ui2)⊺ can be found as

τ̂n = (n
2)

−1

∑
1≤i≤j≤n

sgn[(Ui1 −Uj1)(Ui2 −Uj2)]. (24)
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To get an estimate of the dependence specific of the tails we calculate the coefficient of upper tail
dependence as

λu(X1,X2) = lim
α→1
P[X2 > VaRα(X2) ∣ X1 > VaRα(X1)]

= lim
α→1

1 − 2α +C(α,α)
1 − α

,
(25)

and the lower tail dependence

λl(X1,X2) = lim
α→0
P[X2 ≤ VaRα(X2) ∣ X1 ≤ VaRα(X1)]

= lim
α→0

C(α,α)
α

.
(26)

The empirical tail dependence coefficient is now described. The method of Schmidt and Stadtmüller
(2006) is utilised in our analysis (see also Drees and Huang, 1998). A software implementation
for r is available using the tdc function in the FRAPO package (Pfaff, 2016). Assume that n two-
dimensional random vectors (X(1)

1 ,X(1)
2 ), . . . ,(X(n)

1 ,X(n)
2 ) are i.i.d. with distribution function F

and marginal distribution functions G, H, and copula C.We define the empirical copula Cn as

Cn(u, v) = Fn(G−1
n (u),H−1

n (v)), (u, v)⊺ ∈ [0,1]2,

where Fn, Gn, Hn is the empirical distribution functions corresponding to F, G, H and

Fn(x1, x2) =
1
n

n

∑
j=1
I
{X
( j)
1 ≤x1,X

( j)
2 ≤x2}

.

Let R(j)
n1 and R(j)

n2 denote the rank of X(j)
1 and X(j)

2 , j = 1, . . . ,n, respectively. The empirical upper
tail coefficient is then estimated as

λ̂u,n(x1, x2) ∶=
n
k

C̄n (
k x1

n
,

k x2

n
) ≈ 1

k

n

∑
j=1
I
{R
( j)
n1 >n−kx1,R

( j)
n2 >n−kx2}

. (27)

and the lower empirical tail coefficient is estimated as

λ̂l,n(x1, x2) ∶=
n
k

Cn (
k x1

n
,

k x2

n
) ≈ 1

k

n

∑
j=1
I
{R
( j)
n1 ≤kx1,R

( j)
n2 ≤kx2}

. (28)

We choose a value on the threshold as k =
√

n.
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3.2.2 Probabilistic Graphical Models

We follow the method of Liu et al. (2009) to estimate the undirected graphs. For the software
implementation in r to estimate and visualise these graphs see Jiang et al. (2019). Let X(1), . . . ,X(n)

be a sample of size nwith X(i) = (X(i)
1 , . . . ,X(i)

p )⊺ ∈ Rp. We define the estimator of hj, j ∈ {1, . . . , p},

ĥj(x) = Φ−1(F̃j(x))
where F̃j is an estimator of Fj . To estimate F̃j , the truncated Winsorized estimator is used,

F̃j(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

δn if F̂j(x) < δn
F̂j(x) if δn ≤ F̂j(x) ≤ 1 − δn
(1 − δn) if F̂j(x) > 1 − δn,

where the choice of the truncation parameter δn results in a variance-bias trade-off. Liu et al.
(2009) suggest that a good convergence rate in the estimate of a high dimensional precision matrix
is achieved with a truncation parameter of

δn =
1

4n1/4
√
π log n

.

The transformation function estimate is then given by,

f̃j(x) = µ̂j + σ̂j h̃j(x)

where
h̃j(x) = Φ−1(F̃j(x)),

and the samplemean is µ̂j = 1
n ∑

n
i=1 X(i)

j ,while the sample standard deviation is σ̂j =
√

1
n ∑

n
i=1(X(i)

j − µ̂j)2.

We can then proceed to define the sample covariance matrix Sn( f̃ ) and sample mean µn( f̃ ) of
f̃ (X(1)), . . . , f̃ (X(n)),

Sn( f̃ ) = 1
n

n

∑
i=1

( f̃ (X(i)) − µn( f̃ ))( f̃ (X(i)) − µn( f̃ ))⊺

µn( f̃ ) = 1
n

n

∑
i=1

f̃ (X(i)).

The maximum likelihood estimator of the precision matrix Ω can be found as Ω̂ML
n = Sn( f̃ )−1. The

`1-regularised estimator is the solution to the optimisation problem

Ω̂n = arg min
Ω

{tr (ΩSn( f̃ )) − log ∣ Ω ∣ +λ ∣∣ Ω ∣∣1} (29)

with λ being the regularisation parameter and ∣∣ Ω ∣∣1= ∑j≠i ∣ Ωjk ∣ . Finally, the graph is estimated
such as Ĝn = {( j, k) ∶ Ω̂jk ≠ 0}.
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3.2.3 Risk Model

To quantify the risk within the FTSE 100 index from the estimated graphical model we perform
dimension reduction by an eigenvalue decomposition of the covariance matrix. Bivariate t-copulas
are then estimated between the nonparanormally transformed monthly block maxima of the return
losses for each stock and the principal components. Finally, the coefficient of tail dependence is esti-
mated for each stock. We visualise the result using the igraph package (Csárdi, 2020). To extract the
main cluster the clusters and induced.subgraph commands are utilised. The layout.kamada.kawai
command is applied to the resulting graph. For an introduction to network inference see Vialaneix
(2015). The stocks are labelled according to their tickers and sector classification is made according
to the Industry Classification Benchmark standard (FTSE Russell, 2019).

Procedure to estimate the extreme tail risk within the FTSE 100 index.

1. Extract the block maxima LBM from the return losses of the stocks in
the index.

2. Obtain the transformed block maxima Lnpn according to Section 3.2.2.

3. Fit the undirected graphicalmodel Ĝnpn to the transformed blockmaxima
Lnpn using glasso.

4. Extract the covariance matrix as Σ̂npn = Ω̂−1
npn.

5. Perform an eigenvalue decomposition of the estimated covariance struc-
ture Σnpn in the previous step and obtain the matrix of eigenvectors
v.

6. The components are now calculated as Y = Lnpn ⋅ v.

7. Fit a bivariate Student t copula between each vector of the transformed
losses Lnpn and the vectors in Y .

8. Estimate the upper coefficient of tail dependence for each copula in the
previous step.

9. Visualise the graph scaling the size of the nodes according to the upper
coefficient of tail dependence.
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3.2.4 Model Evaluation

To compare the fit of bivariate copulas, the Bayesian information criterion (BIC) is used (see
Schwarz, 1978). We also compare the tail coefficients of the fitted copula with the empirical ones.

When the dimension is large in relation to the sample size, BIC has shown to perform poorly. Model
evaluation for high-dimensional graphical models, therefore, requires different methods. Several
suggestions to account for this shortcoming have been made. These include the modified rotation
information criterion (RIC), the stability approach for regularisation selection method (StARS) and
the extended Bayesian information criterion (EBIC) (Lysen, 2009; Liu et al., 2010; Foygel and Drton,
2010). We evaluate the fit using all of these criteria and compare the impact on the sparsity of the
precision matrix.

Sparsity can be measured in many ways, we use the following definition,

Q =
∑ I{Ωi j=0,i≠j}

∑ I{Ωi j ,i≠j}

.

Note that the standard measure used in the huge package (see Jiang et al., 2019) is counting the
non-zero off-diagonal elements while our definition is the sum of the number of zero elements in
comparison to the total number of off-diagonal elements.

3.3 Simulation Study II

Before proceeding to a real data set, we perform some simulations to get an idea of the behaviour of
some common copulas. We can easily see the symmetric appearance of the elliptical copulas from
the normal and Student t distributions (Figure 7). These distributions do not allow for an asymmetry
in the tail dependencies where the upper and lower tails differ. The Archimedean copulas allow for
different dependence structures in the upper and lower tails. This is clear judging by the ranked scatter
of the Gumbel and Clayton copulas. The Gumbel distribution has a strong upper tail dependence
while the Clayton copula shows an even stronger lower tail dependence. Since a common assumption
in financial risk theory is that the lower tail is heavier than the upper tail, a Clayton copula should
be the best choice. We continue our analysis with a case study of the dependence between the FTSE
100 and S&P 500 indexes to see if this is true.

3.4 Case Study II: The Dependence Between the FTSE 100 and S&P 500 Indexes

3.4.1 FTSE 100 and S&P 500 Data

A description of the data used in this study is presented in Table 20. To gain insights on the tail
dependences between the FTSE 100 and S&P 500 indexes, log-returns are calculated for further
analysis using copulas. In the final graphical analysis, 946 daily log-returns for 95 of the 100 stocks
in the FTSE 100 index are calculated during the period 2015-09-23 to 2019-05-30. Five stocks
were excluded because of missing data. Then, monthly block maxima are calculated resulting in 45
observations for each component.
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Figure 7: Two thousand simulated bivariate observations from the (a) Normal,
(b) Student t, (c) Gumbel and (d) Clayton copulas. Parameters are chosen such
that Kendall’s tau is 0.8.
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Table 20: Description of the FTSE 100 and S&P 500 stock index data.

Data Type n
pre-Brexit full sample

S Closing Value 8285 9134
R∆t Log-Return 8284 9133

Note: The table shows the number of data points for the series S of closing values for FTSE 100 and S&P 500
log-returns R. The number of observations is given for the period before the Brexit referendum (1984-01-03 –
2016-06-23) as well as the full series (1984-01-03 – 2019–05–31).

3.4.2 Dependence Between the British and US Stock Markets

To assess the dependence structures between the British and US markets before and after Brexit
we estimate Pearson correlation and Kendall’s tau for the pre-Brexit and full sample period. Both
correlation measures are slightly lower during the full series compared to the pre-Brexit period
(Table 21). The estimated linear dependencies using a Clayton copula is much higher during the
pre-Brexit period and lower during the full sample period compared to the empirical estimate. The
Gumbel copula is closer to the empirical estimate than the other copulas. Examining the non-linear
dependencies we can tell that the Clayton copula still deviates more from the empirical estimate.
Again, the Gumbel copula seems to coincide with the empirical estimate more closely than the other
copulas. However, these correlation measures only consider the strength of dependence and not its
structure. We proceed to examine the ranked scatter plots of the empirical pseudo-observations and
simulations based on fitted copulas.

Table 21: Bivariate correlation between the marginals of simulated copulas as well as the empirical
pseudo observations of the FTSE 100 and S&P 500 indexes.

pre-Brexit full sample
Pearson Kendall’s Tau Pearson Kendall’s Tau

Normal 0.423 0.290 0.435 0.298
Student t 0.418 0.297 0.409 0.290
Gumbel 0.409 0.284 0.414 0.286
Clayton 0.591 0.420 0.378 0.259
Empirical 0.407 0.288 0.406 0.286

Note: We first calculate the empirical pseudo observations of the full log-return series of FTSE 100 and
S&P 500 stock indexes according to (23). Then, normal, Student t, Gumbel and Clayton copulas are fitted
to these pseudo observations. The parameter estimates are used to simulate new data from the mentioned
copulas. Finally, Pearson and Kendall’s tau correlation coefficients are calculated, where Kendall’s tau is
estimated as in (24).
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3.4.3 Tail Dependence Between the British and US Stock Markets

As we study the ranked scatter plot of the empirical and simulated copulas some properties become
clear (Figure 8). There is no apparent difference in the dependence structure before and after Brexit.
Furthermore, the normal and Gumbel copulas do not capture the lower dependence of the British
and US stock markets well. Instead, the Student t and Clayton copulas appear to reflect the empirical
copula more closely. We see a slightly higher lower dependence structure in the Clayton copula
compared to the empirical copula. The t-copula more closely matches the empirical copulas in both
tails of the distribution. The Gumbel copula seems to capture the upper dependence structure fairly
close to the empirical distribution. In the next chapter, we present the model fit and tail dependence
estimates.

3.4.4 Modelling the Tail Dependence Between the British and US Stock Markets

As shown in section 3.2.1 the tail dependence coefficients are closely related to value at risk.
Knowing the relation between two financial indexes can provide more information on the index of
interest. As an example of an application, given new information in an open market, one can assess
the risk in a closed market before it opens. Since extreme outcomes rarely occur, we can also utilise
more information by considering several indexes at once.

Table 22 show the estimates of the fitted copulas as well as the tail dependence coefficients for the
empirical distribution. We can see that the lower empirical tail dependence coefficient is slightly
larger pre-Brexit (0.29) than for the full sample (0.27). This indicates that the dependence in the
return losses during the aftermath of the Brexit referendum was slightly lower. The t-copula appears
to capture the lower tail dependences well for both sample periods. The Clayton copula that in theory
should capture the lower tail dependence more accurately yield estimates that are much higher than
the empirical estimates. Considering the upper tail of the distribution, the Gumbel copula most
closely reflects the empirical estimate. The best overall fit is achieved using a t-copula according to
the BIC evaluation measure. As a concluding remark, the Student t copula does not seem to be able
to differentiate between the dependence structure of the pre-Brexit and full sample period.

A shortcoming of copulas is that the estimates in high dimensional models tend to be computationally
expensive and in some cases inaccurate. Next, some ideas on how to extend multivariate risk to
higher dimensions using graphical models are presented.
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Figure 8: Standardised ranks for FTSE 100 and S&P 500 log-returns as well as
simulated normal, Student t, Gumbel and Clayton copulas with the lower ranks,
{y, x} ∈ [0,0.1] magnified. Copulas are simulated based on estimates fitted to
the empirical pseudo-observations for the full sample period. The number of
observations for the empirical copulas amounts to 8284 for the pre-Brexit period
and 9133 for the full series and the simulations.
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Table 22: Estimates and tail dependence coefficients for the fitted copulas and empirical observa-
tions.

pre-Brexit full sample
ρ̂ ν λl λu BIC ρ̂ ν λl λu BIC

Normal 0.445 0.000 0.000 -1809.832 0.444 0.000 0.000 -1993.426
Student t 0.436 3.35 0.256 0.256 -2377.183 0.438 3.36 0.256 0.256 -2621.591
Gumbel 1.401 0.000 0.360 -1915.640 1.402 0.000 0.361 -2116.459
Clayton 0.677 0.359 0.000 -1736.844 0.674 0.357 0.000 -1901.032
Empirical 0.286 0.385 0.274 0.358

Note: We first calculate the empirical pseudo observations of the pre-Brexit and full log-return series of
FTSE 100 and S&P 500 stock indexes according to (23). Then the normal, Student t, Gumbel and Clayton
copulas are fitted to the empirical pseudo observations. The upper tail dependence coefficient, λu is estimated
according to (25) and the lower tail dependence coefficient λl as in (26). For comparison, the upper empirical
tail dependence coefficient is estimated according to (27) and the lower as in (28). The first copula parameter
is estimated for all four distributions while the Student t copula has a second parameter ν,which denotes the
estimated degrees of freedom.

3.5 Case Study III: The Dependence Structure within the FTSE 100 index

3.5.1 The Precision Matrix of the FTSE 100 Index

Figure 9 shows a graphical lasso representation of the covariance structure of 95 of the stocks in
the FTSE 100 index. Evaluating the models according to the RIC, the best fit was achieved using a
smoothing parameter of approximately λ = 0.53. Using the StARS criterium with a threshold of 0.1
resulted in an optimal penalty parameter of λ = 0.47. The EBIC criterion indicates that choosing
the smoothing parameter to λ = 1 gives the best model for all values of gamma. For this data set, it
seems that the EBIC criterion is too conservative, resulting in a completely sparse graph structure.
A reasonable conclusion is that setting lambda to approximately λ = 0.5 result in a good trade-off
between sparsity and complexity.

We can see that increasing the imposed structure results in a sparser dependence structure (Figure
10). A sparser dependence structure results in a decreasing likelihood. Consequently, there is a
trade-off between sparsity and model accuracy. However, it is challenging to judge the quality of the
estimated graphs as the true dependence structure is not known. Although simulation studies can
give some insights, real data often behave differently. Different criteria to assess the optimal model
complexity gives different answers.
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Figure 9: Graphical representation of the dependence structure between
the FTSE 100 components extreme losses using 45 monthly block maxima
spanning from 2015-09-23 to 2019-05-30. Log-returns for 95 of the FTSE
100 stocks were fitted using an `1-regularised nonparanormal graphical
model for 12 different values of the smoothing parameter λ.
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3.5.2 The Tail Dependence Within the FTSE 100 Index

Figure 11 visualises the inferred undirected graphical network using a penalty of λ = 0.5 by industry.
We can see that the most connected cluster is composed of financials, basic materials, industrials and
consumer goods/services. The healthcare companies are conditionally dependent on the financial
and utilities sectors and the telecommunications and utilities sectors are dependent on the main
cluster only through two companies, GLEN and GSK.

To gain insights on the actual risk in the FTSE 100 index we need to quantify the strength of the
dependencies. For this purpose, an eigenvalue decomposition was performed on the covariance
structure estimated in the previous section with λ = 0.5. For each stock, the nonparanormally
transformed block maximums and the principal components were fitted to t-copulas. We then
estimated the upper coefficient of tail dependence to quantify how strong the extreme tail risk is for
each of the FTSE 100 stocks. While there are conditional dependencies between many of the stocks
in the graphical model in Figure 11 the strength of these dependencies are not equal.

Figure 12 shows the graphical model with the upper coefficient of tail dependence between the
individual stocks and the four first principal components. The node size is proportional to the size
of the upper tail dependence coefficient with an absence of a node indicating a coefficient equal to
zero. Only a few of the dependencies are strong enough to be considered a substantial risk. Most
of the financial stocks that are highly connected have low tail dependence coefficients. The third
principal component appears to capture the strongest tail dependencies. For estimates, see Appendix
C. It is clear that the linear combination of extreme losses in the direction of the largest variance is
not the most informative. The higher order of the components seems to capture the more extreme
dependencies of the network.
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Figure 11: Inferred network of the dependence structure between 56 of the FTSE 100 stocks extreme
losses by industry using 45 monthly block maxima spanning from 2015-09-23 to 2019-05-30.
Nodes are labelled with the stocks tickers and color-coded according to the Industry Classification
Benchmark standard. Log-returns for the FTSE 100 stocks were fitted using an `1-regularised
nonparanormal graphical model with smoothing parameter λ = 0.5.
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Figure 12: Graphical representation of the tail dependence in the FTSE 100 extreme losses. An
eigenvalue decomposition was performed after which bivariate t-copulas were fitted between each
stock and the principal components of the covariance structure in Figure 11. The upper row shows
component 1 and 2 and the lower row shows component 3 and 4 from left to right. The node size is
adjusted for the strength of the upper coefficient of tail dependence.
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4. Conclusions

In this study, we have reviewed some methods to model multivariate risk. First, we compared some
univariate risk models using simulated data and stock returns of the FTSE 100 index.

Using simulated data we found that the selection of block size and threshold requires a great deal
of care in order for the models to capture the true underlying tail index. Overall, the extreme value
models appeared to be capable of modelling risk, as measured by VaR and ES well, even when the
tail index estimates had the wrong sign. Further studies are needed before any definitive conclusions
can be given on these contradictory results.

Performing a case study where the British stock market risk pre-Brexit and post-Brexit were com-
pared, we found no substantial difference, although the risk was slightly lower after the Brexit
referendum. This highlights the difficulties in modelling rare events in short time windows even in
the univariate case. No significant difference in the methods was detected when using real stock
market return data.

Secondly, a study of bivariate risk using copulas was conducted using simulated data and stock
returns of the FTSE 100 and S&P 500 indexes. The t-copula was most capable of modelling the
lower tail dependence while the Gumbel extreme value copula fared better in the upper tail. The
empirical tail dependencies were slightly lower post-Brexit in both tails. However, the estimated
copulas were not able to capture these differences.

Finally, a multivariate analysis of the tail dependencies of the components in the FTSE 100 index
was performed. Although the glasso model is a common choice for estimating sparse undirected
graphical models, normality assumptions make it problematic for highly skewed data. A non-
paranormal transformation was performed on the block maxima of the FTSE 100 index to impose
normality. The estimated high-dimensional graphical model (p > n) showed that the financial sector
is overrepresented in the network both in terms of the number of edges and nodes.

The severity of the dependencies of the extreme losses within the index was then quantified using
a combination of copulas, PCA and undirected graphical models. We found that the extreme risk,
as measured by the coefficient of tail dependence, was only associated with a few of the stocks in
the network. Furthermore, the first component was not as informative as the succeeding three in
capturing the extreme tail dependencies of the FTSE 100 index. Further research may focus on
adding a temporal dimension to be able to quantify risk in both space and time.
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Appendix A.

This section is intended to guide the reader through the mathematical foundations of Theorem 3 and
4 by adding some details often left out in standard textbooks.

A.1

A remarkable property of a standard Gaussian process X = {X1, . . . ,Xn} with probability distribu-
tion P and the support X ∈ R, is that its maximum Mn asymptotically tends to a finite normalising
constant an. We start this section by presenting a proof of Theorem 3 in Section 2.1.1.

Theorem 3 (Durrett, 2005) The ratio of the maximum of a standard Gaussian process and its
normalising constant tends to one such as

Mnan Ð→
n→∞

1 a.s.

where an = (2 log n)−1/2.

Proof. (Durrett, 2005) It can be shown that,

(6x)−1e−x
2/2 ≤ P(Xi ≥ x) ≤ (2x)−1e−x

2/2, x > 2.

Letting ε > 0, then

∑
n≥

P
⎛
⎝

Mn√
2 log n

≥
√

1 + ε
⎞
⎠
= ∑

n≥3
P (Mn ≥

√
2(1 + ε) log n)

≤ ∑
n≥3

1
2
√

2(1 + ε) log n
exp (−2(1 + ε)(log n)/2) ≤ ∑

n≥3
n−(1+ε) <∞,

where log n > 1 when n ≤ 3

Using the Borel-Cantelli I Lemma,

P
⎛
⎝

Mn√
2 log n

≥
√

1 + ε i.o.
⎞
⎠
= 0,

so that P(lim supn Mn/
√

2 log n >
√

1 + ε) = 0.

Hence, lim supn Mn/
√

2 log n ≤
√

1 + ε a.s., and letting ε ↓ 0 shows that lim supn Mn/
√

2 log n ≤ 1
a.s.

Now we consider the opposite direction.

∑
n≥2
P
⎛
⎝

Mn√
2 log n

≥ 1
⎞
⎠
= ∑

n≥2
P (Mn ≥

√
2 log n) ≥ ∑

n≥2

1
6
√

2 log n
exp (−(2 log n)/2)
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= 1
6
√

2
∑
n≥2

1
n
√

log n
≥ 1

6
√

2 ∫
∞

2

1
m
√

log m
dm =∞.

Using Borel-Cantelli II lemma suggest that,

P
⎛
⎝

Xn√
2 log n

≥ 1 i.o.
⎞
⎠
= 1,

such that lim supn(Mn/
√

2 log n) ≥ 1 a.s. Since P(
√

1 − ε < Mn√
2 log n

<
√

1 + ε i.o.) = 1, as ε Ð→ 0

we have proven that Mn/
√

2 log n → 1 a.s. �

A.2

Let {Xi} be an i.i.d. standard normal sequence of r.v.’s with maximum Mn = max(X1, . . . ,Xn)
and a sequence of real numbers {mn} such that n(1 − F(mn)) → ζ as n → ∞ for 0 ≤ ζ ≤ ∞.
Furthermore, we let Φ denote the standard normal distribution and φ the standard normal density.
The convergence probabilities in Definition 2.1 can be reformulated from P(an−1(Mn − bn) ≤ x)
to P(Mn ≤ mn) where mn(x) = anx + bn. This example is helpful in showing the intuition of the
asymptotic distribution of extremes and can be extended to more complex sequences. We now give
two helping lemmas after which a proof of Theorem 4 in Section 2.1.1 is presented.

Lemma 4 (Adler and Taylor, 2007). In the limit as x tends to infinity Φ̄(mn) is bounded such as

( 1
mn

− 1
m3

n

) φ(mn) < Φ̄(mn) <
1

mn
φ(mn). (30)

Proof. The upper bound in eq. (30) is due to the following inequality,

∫
−∞

mn

e−u
2/2du ≤ ∫

−∞

mn

u
mn

e−u
2/2du = [ d−1

du−1 ( u
mn

e−u
2/2)]

−∞

mn

= [−m−1
n e−u

2/2]
−∞

mn

= [ lim
u→ −∞

(−m−1
n e−u

2/2) − (−m−1
n e−mn

2/2)]

= m−1
n e−mn

2/2.

Similarly, one can derive the lower bound by substituting u ↦ mn + v/mn such as,

∫
−∞

0
e−u

2/2du = ∫
∞

0
e−(mn

2+2v+v2/mn
2)/2mn

−1dv

= mn
−1e−mn

2/2∫
∞

0
e−(2v+v2/mn

2)/2dv

= mn
−1e−mn

2/2∫
∞

0
e−ve−(v

2/mn
2)/2dv
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≥ mn
−1e−mn

2/2∫
∞

0
e−v(1 − v2/(2mn

2))dv

by using the property that ∀z ≥ 0, e−z > 1 − z letting z = v2/2mn
2. We complete the final step by

noting that the remaining integral can be written as a gamma function,

∫
∞

0
e−v(1 − v2/(2mn

2))dv = ∫
∞

0
e−vdv − ∫

∞

0
e−vv2/(2mn

2)dv

= 1 − 1
2mn

2 ∫
∞

0
e−vv2dv

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Γ(3)=2

= 1 − 1
mn

2 ,

which by using the previous expression gives us,

mn
−1e−mn

2/2 (1 − 1
mn

2 ) = ( 1
mn

− 1
mn

3 ) e−mn
2/2.

�

Lemma 5. The ratio of Φ̄(mn) and φ(mn)/mn tends to one as mn goes to infinity.

lim
mn→∞

Φ̄(mn)
φ(mn)/mn

= 1 (31)

Proof. Let f (mn) = 1 −Φ(mn) and g(mn) = φ(mn)/mn. Using L’Hôpital’s rule we know that

lim
mn→∞

f (mn)
g(mn)

= lim
mn→∞

f ′(mn)
g′(mn)

d
dmn

(1 −Φ(mn)
φ(mn)/mn

) = (−1)(1 −Φ(mn)) +mn(−φ(mn))
mnφ(mn)

= (−1)1 −Φ(mn) −mnφ(mn)
mnφ(mn)

= Φ(mn) − 1
mnφ(mn)

+ mnφ(mn)
mnφ(mn)

= 1 + Φ(mn) − 1
mnφ(mn)

Now, the ratio of the derivative for the denominator and numerator in the second term can be written
as

φ(mn)
φ(mn) −m2

nφ(mn)
= φ(mn)
φ(mn)(1 −m2

n)
= 1

1 −m2
n

.

We can clearly see that this ratio tends to zero, and consequently the ratio of Φ̄(mn)/(φ(mn)/mn)
tends to one, or Φ̄(mn) ∼ φ(mn)/mn. �
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Theorem 4 (Leadbetter et al., 1983; Cramér, 1946) If X is an i.i.d. (standard) normal sequence of
r.v.’s then the asymptotic distribution of Mn = max(X1, . . . ,Xn) is of type H3,0. Specifically

P(an−1(Mn − bn) ≤ x)→ exp(e−x),

where
an = (2 log n)−1/2

and
bn = (2 log n)1/2 − 1

2
(2 log n)−1/2(log log n + log 4π).

Proof. (Leadbetter et al., 1983; Cramér, 1946)
Let mn be a transformation of x such that mn = anx + bn. The asymptotic development for φ(mn) =

∫
∞

mn
e−

t2
2 dt is given by φ(mn) ∼ e−

mn
2

2 ( 1
mn

− 1
mn

3 + 3
mn

5 . . .). Moving the first term out of the brackets

and letting the rest be O (− 1
mn

2 ) = O ( 1
mn

2 ) we have that φ(mn) ∼ 1
mn

e−
mn

2
2 (1 + O ( 1

mn
2 )) such

that √
2πζ(mn)

n
= 1

mn
e−

mn
2

2 (1 + O ( 1
mn

2 )) .

The probability of obtaining a sample value larger than mn is

ζ(mn) = n (1 −Φ(mn)) = nΦ̄(mn) = n(2π)−1/2∫
∞

mn

e−
t2
2 dt. (32)

Letting ζ(mn) = e−x in (32) we get that Φ̄(mn) = (1/n)e−x .

We now use the upper bound of the Mill’s ratio derived in Lemma 4 where Φ̄(mn) ∼ φ(mn)/mn

letting
Φ̄(mn)

φ(mn)/mn
∼ (1/n)e−xmn/φ(mn),

As was shown in Lemma 5 this ratio tends to one,

(1/n)e−xmn/φ(mn) Ð→
n→∞

1. (33)

Taking the logarithm of the expression in eq. (33) we see that − log n−x+log mn−log φ(mn)→ log 1
or equivalently,

− log n − x + log mn +
1
2

log 2π + mn
2

2
Ð→

n→∞
0. (34)

Dividing each side by log n we get the expression,

−1 − x
log n

+ log mn

log n
+ log 2π

2 log n
+ mn

2

2 log n
Ð→

n→∞
0.
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Wenote the property that (mn
2/2 log n)Ð→ 1 as n tends to infinity shown inTheorem3. Consequently,

as n tends to infinity, 2 log mn − log 2 − log log n → 0, since (log mn
2/2 log n) = 2 log mn − log 2 −

log log n → log 1 = 0. It follows that,

log mn =
1
2
(log 2 + log log n) + O (1) . (35)

Exchanging log mn in eq. 34 with the expression in eq. (35) we get that,

mn
2

2
= x + log n − 1

2
log 4π − 1

2
log log n + O (1) ,

mn
2 = 2 log n

⎛
⎝

1 −
x − 1

2 log 4π − 1
2 log log n

log n
+ O ( 1

log n
)
⎞
⎠
,

mn = anx + bn + O ((log n)−1/2) = anx + bn + O (an) .

Consequently, if a bounded ζ exists such as described in Theorem 2 we have that, as n tends to
infinity P(Mn ≤ mn) Ð→ exp (−e−x). Then, P(Mn ≤ anx + bn + O (an)) Ð→ exp (−e−x) as n tends to
infinity or equivalently,

P(a−1
n (Mn − bn) + O (1) ≤ x) Ð→

n→∞
exp (−e−x).

�
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Appendix B.

R Script – ’Extreme Risk’

Description

Calculates extreme value parameters and risk estimates from the GEV and GP distributions with confidence
intervals in a single function. Two choices of confidence intervals are available, asymptotic normal intervals
using the delta method for the risk estimates and percentile bootstrap intervals. The parameters are estimated
using either maximum likelihood, probability-weighted moment methods or hills for the GPD. This script
was created using the packages fExtremes for the extreme value model fit and distillery for bootstrap intervals
(Diethelm Wuertz, 2017; Gilleland, 2019). The r code is available on GitHub (see URL).

Usage

extreme.risk(data, block, threshold, distr, type, method, estimate,
p, CI, alpha, N, m)

Arguments

data Numerical vector or a one column data frame of positive values.
block Block size, integer.
threshold Threshold for the GPD model, numeric.
distr The distribution to model. Either "gev" for the generalised extreme value distribution or

"gpd" for the generalised pareto distribution.
type The type of parameter estimation, either maximum likelihood estimation "mle", or the

probability weighted moment method "pwm".
method The method to use for the GP model, the hill estimator (method = "hills") and standard

fit using maximum likelihood of probability weighted moment is available (method =
"standard").

estimate Can be any of the following, beta, xi, VaR, ES and mu if distr = "gev".
p The level at which VaR or ES is computed.
CI The type of interval for estimates of the tail index and risk measures. Percentile bootstrap

intervals (CI = "bootstrap") and asymptotic normal intervals, (CI = "delta") are
supported.

alpha The significance level for the confidence intervals.
N Number of bootstrap resamples to make.
m Resample size for each bootstrap sample.

Value

Returns a scalar when the estimate is beta or mu and a vector of the estimate and lower and upper bounds
when the estimate is xi, VaR or ES. The estimates of VaR and ES are scaled to percentage units for use with
financial return data.

URL

https://github.com/ErikOldehed/extreme.risk
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Appendix C.

Table 23: Coefficient of tail dependence of bivariate t-copulas of the individual stocks and index PCs.

Ticker PCA1 PCA2 PCA3 PCA4

AAL 0.00068 0.00000 0.07674 0.09291
ANTO 0.00000 0.00000 0.14274 0.00267
AV 0.00000 0.00020 0.00120 0.05999
BA 0.05543 0.09464 0.00000 0.00856
BARC 0.00025 0.00005 0.00584 0.00000
BDEV 0.00000 0.00000 0.03841 0.00000
BKG 0.00000 0.00024 0.21810 0.00000
BHP 0.00000 0.00000 0.17848 0.00000
BP 0.03130 0.00000 0.17787 0.00009
BLND 0.00056 0.00233 0.15073 0.03831
BT.A 0.00000 0.02421 0.12931 0.00000
BRBY 0.00775 0.02625 0.04732 0.00000
CPG 0.00000 0.00000 0.00000 0.00038
CRH 0.00000 0.00000 0.00001 0.00000
DCC 0.00000 0.00000 0.00001 0.00002
DLG 0.00000 0.00927 0.00000 0.10512
EVR 0.00000 0.00000 0.00003 0.00000
FERG 0.00000 0.01750 0.00009 0.00001
FRES 0.00000 0.04771 0.00002 0.00008
GSK 0.00000 0.00000 0.13536 0.00338
GLEN 0.00000 0.00000 0.00010 0.22830
HL 0.00480 0.00000 0.11264 0.00000
HSBA 0.00001 0.00609 0.34247 0.00001
IHG 0.00976 0.00229 0.00007 0.00007
ITRK 0.00000 0.00000 0.27078 0.11131
LAND 0.00150 0.00015 0.00161 0.00244
LGEN 0.01040 0.00000 0.12511 0.00001
LLOY 0.03549 0.00000 0.04479 0.00000
MNDI 0.00000 0.06603 0.15367 0.00144
MRW 0.00000 0.00000 0.00008 0.00707
NG 0.00000 0.00000 0.00000 0.00014
NMC 0.00000 0.04414 0.13260 0.00001
PSN 0.00000 0.00110 0.00000 0.00000
PHNX 0.00000 0.00000 0.00000 0.00001
PRU 0.00000 0.01895 0.00598 0.00004
RB 0.00000 0.19134 0.07490 0.00004
REL 0.05267 0.00593 0.03498 0.07984
RIO 0.00000 0.01759 0.00000 0.00173
RMV 0.00000 0.00000 0.02541 0.00000
RR 0.00564 0.08088 0.01580 0.08060
RBS 0.02549 0.00000 0.00108 0.00000
RSA 0.00000 0.00000 0.00000 0.00002
SDR 0.00000 0.00000 0.00000 0.00000
SGRO 0.00000 0.02918 0.00005 0.06267
SVT 0.00000 0.01561 0.04038 0.09392
SMDS 0.00000 0.00059 0.00000 0.00002
SMIN 0.00451 0.00343 0.00056 0.00000
SKG 0.03645 0.00000 0.02572 0.02520
STAN 0.04593 0.00000 0.11848 0.00000
SLA 0.00000 0.01767 0.08550 0.00000
STJ 0.00000 0.00000 0.01012 0.02057
TW 0.00000 0.00002 0.00000 0.00000
TSCO 0.00000 0.00000 0.00000 0.03093
ULVR 0.00000 0.00000 0.00007 0.23484
UU 0.00000 0.00000 0.04553 0.00023
WPP 0.02132 0.00000 0.11400 0.00013
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Table 24: Student t copula parameter estimates between the transformed block maxima and PCAs
of the covariance matrix estimated with a nonparanormal undirected graphical model using λ = 0.5.

Ticker PCA1 PCA2 PCA3 PCA4

AAL -0.888 -0.426 0.217 -0.218
ANTO -0.857 -0.503 0.267 -0.201
AV -0.561 -0.810 0.418 -0.051
BA -0.127 -0.134 -0.131 0.120
BARC -0.487 -0.798 0.559 -0.421
BDEV -0.442 -0.604 -0.494 -0.464
BKG -0.582 -0.667 0.297 -0.579
BHP -0.931 -0.431 0.069 -0.067
BP -0.661 -0.511 0.136 0.211
BLND -0.587 -0.656 0.517 -0.466
BT.A -0.516 -0.264 0.160 -0.082
BRBY -0.615 -0.413 -0.015 -0.119
CPG -0.454 -0.295 -0.061 0.322
CRH -0.355 -0.563 0.019 -0.034
DCC -0.359 -0.412 0.032 0.104
DLG -0.555 -0.378 -0.066 -0.065
EVR -0.798 -0.452 0.135 -0.065
FERG -0.220 -0.459 0.207 0.050
FRES -0.544 -0.556 0.085 -0.283
GSK -0.301 -0.450 0.109 0.319
GLEN -0.785 -0.326 0.218 0.137
HL -0.370 -0.482 0.098 -0.204
HSBA -0.562 -0.563 0.407 -0.198
IHG -0.484 -0.498 0.196 0.190
ITRK -0.485 -0.297 0.402 0.022
LAND -0.484 -0.658 0.444 -0.293
LGEN -0.697 -0.914 0.117 0.023
LLOY -0.420 -0.783 0.135 -0.632
MNDI -0.456 -0.444 0.169 0.003
MRW -0.525 -0.598 0.202 -0.159
NG -0.299 -0.397 -0.077 0.244
NMC -0.139 -0.170 0.129 0.079
PSN -0.483 -0.753 -0.438 -0.386
PHNX -0.448 -0.685 -0.210 0.055
PRU -0.490 -0.692 0.561 0.152
RB -0.060 0.062 0.109 0.150
REL -0.316 -0.439 -0.186 0.135
RIO -0.522 -0.621 -0.065 -0.225
RMV -0.883 -0.367 0.137 -0.098
RR -0.442 -0.323 0.283 -0.248
RBS -0.502 -0.682 0.409 -0.564
RSA -0.389 -0.482 0.004 0.110
SDR -0.491 -0.740 -0.029 -0.056
SGRO -0.384 -0.495 0.170 -0.083
SVT -0.185 -0.159 -0.087 0.230
SMDS -0.277 -0.381 -0.045 0.086
SMIN -0.530 -0.506 0.353 -0.075
SKG -0.292 -0.339 0.102 -0.054
STAN -0.567 -0.460 0.291 -0.268
SLA -0.409 -0.646 0.157 -0.117
STJ -0.648 -0.681 0.074 0.205
TW -0.449 -0.773 -0.385 -0.465
TSCO -0.281 -0.457 -0.171 -0.189
ULVR -0.280 -0.351 0.191 0.254
UU -0.208 -0.182 -0.016 0.282
WPP -0.073 -0.141 -0.082 0.236
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Table 25: Student t copula degrees of freedom estimates between the transformed block maxima
and PCAs of the covariance matrix estimated with a nonparanormal undirected graphical model
using λ = 0.5.

PCA1 PCA2 PCA3 PCA4

AAL 3.37 30.00 5.77 2.43
ANTO 30.00 30.00 4.16 9.28
AV 30.00 5.28 30.00 4.19
BA 3.86 2.77 30.00 11.39
BARC 9.29 6.54 30.00 30.00
BDEV 30.00 30.00 2.53 30.00
BKG 30.00 6.93 2.95 30.00
BHP 13.14 30.00 2.33 30.00
BP 2.00 15.28 2.65 30.00
BLND 6.97 4.67 6.94 2.66
BT.A 30.00 4.52 3.67 30.00
BRBY 3.71 3.45 5.00 30.00
CPG 30.00 30.00 30.00 30.00
CRH 30.00 17.78 30.00 30.00
DCC 30.00 30.00 30.00 30.00
DLG 30.00 5.23 30.00 2.89
EVR 30.00 30.00 30.00 30.00
FERG 30.00 3.73 30.00 30.00
FRES 30.00 2.00 30.00 14.59
GSK 30.00 30.00 3.23 20.12
GLEN 11.23 30.00 30.00 2.00
HL 6.32 30.00 3.64 30.00
HSBA 12.51 4.36 2.00 20.79
IHG 4.35 6.16 30.00 30.00
ITRK 30.00 30.00 2.86 3.21
LAND 6.87 7.56 30.00 8.28
LGEN 2.87 30.00 3.49 30.00
LLOY 2.99 30.00 6.57 30.00
MNDI 30.00 2.04 3.24 14.19
MRW 30.00 30.00 30.00 7.83
NG 30.00 30.00 30.00 30.00
NMC 30.00 4.05 3.40 30.00
PSN 30.00 4.49 30.00 30.00
PHNX 30.00 30.00 30.00 30.00
PRU 30.00 2.33 30.00 30.00
RB 30.00 2.13 4.83 30.00
REL 2.92 5.38 4.39 4.87
RIO 30.00 2.79 30.00 9.81
RMV 30.00 30.00 8.30 30.00
RR 5.43 2.23 12.60 2.54
RBS 3.00 30.00 30.00 30.00
RSA 30.00 30.00 30.00 30.00
SDR 30.00 30.00 30.00 30.00
SGRO 30.00 2.86 30.00 3.89
SVT 30.00 6.19 4.80 5.23
SMDS 30.00 9.52 30.00 30.00
SMIN 4.99 5.55 30.00 30.00
SKG 3.64 30.00 7.81 6.14
STAN 2.00 30.00 5.03 30.00
SLA 30.00 2.65 4.86 30.00
STJ 22.81 30.00 10.09 10.05
TW 30.00 8.00 30.00 30.00
TSCO 30.00 30.00 30.00 4.60
ULVR 30.00 30.00 30.00 2.46
UU 30.00 30.00 5.09 30.00
WPP 6.34 30.00 2.64 30.00
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