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Abstract

We present a comparison of different univariate and multivariate extreme value risk models. Our
focus is on exploring how these can be used to model financial risk. We use simulated as well as
real data and compare deterministic and cross-validation threshold selection methods for the GP
model to a GEV model. For comparison, we carry out a bivariate analysis using copulas. Finally,
an undirected graphical lasso model using n = 45 block maxima of the log-returns from 95 of the
stocks in the FTSE 100 index is combined with copulas and PCA to model the extreme loss risk
within the FTSE 100 index. The contribution of this study lies in exploring some ideas on risk
models in multivariate high-dimensional settings.

Keywords: Block Maxima, Mean Excess Plot, Tail Risk, Cross-Validation Threshold Selection,
Graphical Lasso, Nonparanormal Distribution.
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1. Introduction

In an increasingly uncertain world, the ability to assess risk may very well be one of the core
capabilities of a society. One of the earliest theories of risk is credited to Cramér (1930). Since
then, the modern portfolio theory of Markowitz (1952) was considered an industry standard for
many years with variance as a central measure of risk. The limits of variance in quantifying extreme
unexpected losses caused a wide range of quantile-based measures to emerge as a response.

One such measure is value-at-risk (VaR). It was intended as a measure of extreme risk where the
variance had previously failed. Initially available only to a small group of quantitative analysts,
the RiskMetrics publication made the popularity of VaR to surge (see Longerstaey and Spencer,
1996). The Basel II Accord further positioned VaR as the main measure of risk (Basel Committee
on Banking Supervision, 2004). Expected shortfall (ES) was introduced by Rappoport (1993) at JP
Morgan but was initially neglected in favour of VaR. Although Artzner et al. (1999) formalised the
properties of risk, pointing to the limits of VaR, it was not until the Basel III Accord was published
in the wake of the financial crisis 2008 that ES became a widely accepted risk measure (Basel
Committee on Banking Supervision, 2010).

As a consequence of globalisation and technical advancements, the presence of volatility clustering
has spurred a wide interest in risk models rather than risk measures. The autoregressive conditional
heteroskedasticity (ARCH) model, credited to Engle (1982), was created to address this problem.
The ARCH model and its extensions mainly model volatility. On the other hand, extreme value
theory (EVT) is entirely concerned with the tail risk. Methods to model extreme events go back
to the pioneering work of Fréchet, 1927. Rather than focusing on volatility, extreme value models
describe the behaviour in the tails of a distribution. It has been shown that extreme value models are
better suited than the stochastic volatility models in modelling VaR (Abad et al., 2014).

Even if our knowledge on risk models in the univariate case is fairly well understood, the behaviour
of risk in higher dimensions is still not entirely clear. Considering bivariate risk, copulas provide a
reliable way to model tail dependencies. As extreme events rarely occur, when the dimension scales
up, multivariate extreme value models suffer from the curse of dimensionality. In particular, when
the number of variables is larger than the sample size, expressing the joint distribution is often very
challenging. A promising suggestion is to utilise undirected graphical models to estimate sparse
covariance matrices. One such method is the nonparanormal approach (Liu et al., 2009). While
this method previously has been applied to stock returns it has not yet been tested in modelling the
multivariate dependencies in extreme losses of stock index components.

The aim of this study is to compare some common methods to model financial risk in the univariate
and bivariate case while proceeding to model multivariate risk combining a nonparanormal glasso
model with copulas and principal component analysis.

This study is organised in two parts. Section 2 introduces univariate risk models while Section
3 concerns the multivariate equivalent. We begin with a description of extreme value theory and
then review some methods of univariate risk modelling. A simulation study is then performed
after which a case study of the risk measures of data corresponding to pre- and post-Brexit is
presented. Progressing into the multivariate case, a recap of some classic and some newer theories
of multivariate risk are presented. We then describe the methods used in this study to model
multivariate risk. Finally, a simulation study is performed followed by a case study of the dependence
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between the FTSE 100 and S&P 500 stock indexes. We then model the extreme dependencies of 95
stocks in the FTSE 100 index. Finally, some concluding remarks are presented.

1.1 Stock Returns

Before defining what we mean with risk we must get an understanding of the variable that we wish
to model the risk from. Since this study is concerned with financial risk on the stock market our
focus is on stock returns. The choice in calculating stock returns comes down to using simple or
log-returns.

The advantages of using log transformed prices can be tied to the seminal work of Samuelson
(1965). Security prices are then assumed to follow a Markovian process. Under this assumption the
current price incorporates all useful information in forecasting future values, implying a weak form
of market efficiency. It is reasonable to believe that the increments of stock prices are independent.
Hence, a natural choice would be to model stock prices as a Brownian motion. However, a Brownian
motion is defined for negative values while prices are always positive. Furthermore, it does not
depend on the process value itself, causing small prices to move in increments of similar size as
larger prices. These are unreasonable assumptions. A more reasonable premise is that log-returns
follow a Brownian motion. If this holds true, stock prices move according to a geometric Brownian
motion, and it can be shown that the log-returns are normally distributed.

Let the closing value for the asset at time ¢ be denoted S(z). Then the log-returns for the series are

defined as ¢
i w725

where At is the interval between the last closing value and the present. For our purpose, an interval
is chosen such as Ar = 1 day. The losses L are defined as L := —{R: R < 0}.

1.2 Risk

Although techniques for measuring risk are central to risk management there is no unique definition
of risk. Measuring risk in terms of probability distributions might sound like an attractive idea.
However, mapping from spaces of probability distributions into real numbers provides risk assess-
ment in terms of a single capital amount representing unexpected future losses. Artzner et al. (1999)
argue that instead of defining risk as the change in value between two dates, risk is related only to the
variability of the future value of a position. A better measurement of risk is said to assess whether
the future value belongs to a subset of "acceptable risks", as decided by a supervisor. A suggested
criterion for choosing a risk measure is coherence. Four axioms are given, which if fulfilled imply
that a risk measure is coherent. Following Artzner et al. (1999) we let the number p(L) assigned
by the measure p to the risk L, be the minimum additional cash an agent has to add to the risky
position L to continue his investments. A negative value means that the cash amount —p(L) can be
withdrawn from the position.
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Definition 1.1. A risk measure p, satisfying the following axioms, is called coherent:

Axiom 1. Positive homogeneity. For all loss variables L and constants / > 0 it holds that p(hL) = hp(L)
Axiom 2. Subadditivity. For all loss variables L; and L, it holds that p(L; + L) < p(Ly) + p(L2)
Axiom 3. Monotonicity. For all loss variables L; and L it holds that L; < Ly = p(L;) < p(L,)

Axiom 4. Translation invariance. For all loss variables L and « € R it holds that p(L - @) = p(L) - @

One of the most commonly used risk measures is Value-at-Risk (VaR).

Definition 1.2. (Longerstaey and Spencer, 1996) The Value-at-Risk (VaR) of loss variable L at level
a is given by
VaR, (L) =inf{x e R: P(L < x) > a}, a € (0,1).

However, VaR has received criticism for not adequately capturing the expected loss since, for a
given quantile a, it only conveys information on the minimum loss (McNeil et al., 2005). In most
circumstances, VaR is not subadditive meaning that the risk of a sum of portfolio positions can be
larger than the sum of the portfolio positions individual risk.

Definition 1.3. (Rappoport, 1993) The Expected Shortfall of L at level « is given by
1 1
ES (L) = —— f VaR,(L)du,  a<(0,1).
l-a Jo

While the mentioned shortcomings of VaR are addressed in the coherent risk measure ES, more
validation data is required to backtest this measure compared to VaR (Emmer et al., 2015).

After giving a summary of definitions in Section 1.3 we will present the theory necessary to extend
risk from being a scalar measure into a model. As our focus is on tail risk, Section 2 will give an
introduction to extreme value theory.

1.3 Notation

We begin with introducing some notation that is used throughout the report.

Table 1: List of Abbreviations and Symbols

Abbreviation or symbol Description

a Parameter of the maximal data information prior.

o In VaR/ES: the particular quantile of choice. In extreme value distri-
butions: the shape parameter and the reciprocal of the tail index &, i.e.
a = 1/& (not to be confused with the order of the quantile).

an Normalising constant in the GEVD.

a.s. Almost surely.

A? The Anderson-Darling test statistic.

A*? The modified Anderson-Darling test statistic.
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Asymptotic equivalence.

The number of bootstrap samples.

The block size.

Normalising constant in the GEVD.

The scale parameter.

The scale parameter in the generalised Pareto distribution as a function
of the threshold u.

The United Kingdom European Union membership referendum 2016-
06-23.

The density of a copula C. Clique in the context of graphs.

Set of maximal cliques.

Covariance.

Cumulative distribution function.

Confidence interval.

Coefficient of variation.

Dimension.

Distribution function.

Defined as.

Change.

Truncation parameter in the Winzorized estimator of the cdf, used to
estimate high dimensional graphical models.

Function for which the derivative exists for every point in its domain.
Expectation.

Set of edges in a graph.

Inverse of the natural logarithm. In the context of graphs e; denotes the
ith node.

An arbitrary small number.

The kth moment.

Mean excess function.

Empirical distribution function.

Expected Shortfall.

Logic notation, "exists".

Inverse of the natural logarithm.

Cumulative distribution function.

Logic notation, "for all".

Graph.

Gamma function.

The generalised Pareto distribution cdf.

Generalised Extreme Value.

Generalised Extreme Value Distribution.

Graphical least absolute shrinkage and selection operator.
Generalised Pareto.

Generalised Pareto Distribution.

Distribution function of the generalised extreme value distribution.
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The Hill estimator of the tail index parameter for the kth upper order
statistics.

Density where the true values of the parameters are possible to derive
from an infinitely large number of observations.

If and only if.

Independent and identically distributed.

Is an element of.

Infinitely often.

The kth upper order statistic.

The shape parameter of the Pareto distribution.

The kth upper order statistic associated with a particular threshold.

The losses of a random variable.

Covariance of the uniform r.v.’s corresponding to the copula of the non-
paranormal distribution.

The coefficient of tail dependence in the context of copulas. The penalty
parameter in the context of glasso models. The rate parameter for the
exponential distribution.

The lower tail dependence coeflicient.

The upper tail dependence coefficient.

The least absolute shrinkage and selection operator.

Limit.

Limit superior.

The natural logarithm.

Maximum domain of attraction.

Maximum likelihood.

The maximum of n random variables.

Maps to.

Mean square error.

The mean of a normally distributed random variable.

The number of observations.

Gradient.

The degrees of freedom of a Student t random variable.

Big-O expresses the limiting value of a function when the argument -
tend to a value.

Little-o expresses the limiting behaviour of a function and is a stronger
statement than O(-).

Precision matrix.

Probability density function.

The probability of exceeding u in the binomial-GP model.

Probability distribution function.

Partial derivative.

Principal component.

Principal component analysis.

Perpendicular, denoting the independence of two random variables.
The density of a standard normal random variable.
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The cumulative distribution function of a standard normal random vari-
able.

The complement of the cumulative distribution function of a standard
normal random variable.

Generalized maximal data information prior distribution.

Period after the Brexit referendum (2016-06-24-2019-05-31).

Period before the Brexit referendum (1984-01-03-2016-06-23).
Proportional to.

Potential function.

Sparsity measure.

Real line.

Log-return.

The rank of random variable Xl.(j ),

Log-returns at time ¢.

The parameter of a bivariate copula.

Random variable.

Sample covariance matrix or the closing value of the FTSE 100 index.
Covariance matrix.

The standard deviation of a normally distributed random variable.

In the context of GPD: a positive measurable function such that Theorem
6 holds, o-(u) = B(u) + £u.

Sign.

Set builder notation, such that.

Supremum.

Index for a given time point.

Transpose.

The population parameter of Kendall’s tau.

Vector of parameters in the context of delta method intervals and
Anderson-Darling test statistic.

Tends to.

The threshold in the GPD model. The inverse CDF in the Anderson-
Darling test statistic. A uniform random variable in the context of
copulas.

The chosen threshold for a GPD using deterministic threshold selection.
The chosen threshold for a GPD using cross-validation threshold selec-
tion.

Approaches from below.

Variance.

Set of nodes in a graph.

Value-at-Risk.

All Xs except for X; and X;.

The tail index.

A standard normal random variable.

The quantile of a standard normal random variable.
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2. Univariate Risk Models

Univariate risk models are mainly concerned with analysing extreme events. In the following section,
we review the theory of extreme values.

2.1 Univariate Extreme Value Theory

Extreme value theory can be categorised into two main branches. Classical extreme value theory
concerns the asymptotic distributional theory for maxima of i.i.d. random variables (Leadbetter
et al., 1983). Later developments focus on exceedances rather than maxima (see e.g. Kratz, 2019).
There are two fundamental limit theorems, one for the mean and the second one for the maxima.
Next, we will give an overview of the latter.

To facilitate the reading experience, we first introduce some definitions used throughout the study.
We begin by defining a sequence of n random variables X = {X;}",. To avoid excessive use of
notation we apply this definition to i.i.d. random variables from which extreme values are obtained
if otherwise is not stated. Similarly, we let F' be the distribution function of this sequence of random
variables.

We consider the limiting behaviour of the maximum of n random variables X,

M,, := max X;.
1<i<n
The probability distribution of a maximum can be expressed as a function of the probability distribu-
tion of X;, where X;’s are assumed to be i.i.d. with common distribution function F. The resulting
degenerative behaviour follows from the expression below

0if F(x) <1

P[maxX,- < x] = HP[Xi < X] = F" (x) e {1 if F(x) =1

1<i< .
<isn l:l

However, returning to the initial argument, one might be able to find a linear transformation such
that this degeneracy is avoided. Indeed, it can be proved that there exists a linear transformation, i.e.
one can find sequences {a, } and {b, } such that

X; - b
P[M < x] = P[maX X; < Clnx"'bn] = F"(anx+bn) = H(x)’
n—oo

an 1<i<n

where the normalising constants a,, > 0 and b, € R are the normalising sequence, and H(x) is a non
degenerated distribution of the rescaled sample extreme.

Definition 2.1. (Pickands, 1967) Given a nondegenerate distribution function H, its maximum
domain of attraction MDA(H) is defined as the set of all distributions F, such that for i.i.d X; ~ F
and M,, = max; X;, we have

lim P[a,' (M, - b,) < x] = H(x),

n—>oo

for all X on the continuity set of H.

10
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2.1.1 Limit DiSTRIBUTIONS OF THE MAXIMA
In contrast to the central limit theorem, there is not one but three different asymptotic distributions
of the initial distribution F. These distributions are described in the theorem below.

Theorem 1 (The ‘three-types theorem’; Fréchet, 1927; Fisher and Tippett, 1928; Gnedenko, 1943). The
rescaled sample extreme (max renormalised) has a limiting distribution H that can only be of three types:

Type 1 (Fréchet): Hj o(x) := exp{—x""}(x0), a>0
Type 2 (Weibull):  H; o (x) = I(x50) +exp{~(=x)? }I(x<0)» @ >0
Type 3 (Gumbel): H; o(x) :=exp{-e™*}, VxeR

where « is the inverse of the tail index.

The distributions used in this study and their respective MDA limiting distributions are summarised
in Table 2. We can see that for these initial distributions the limiting distributions are of two kinds,
mainly the Gumbel and Fréchet distributions with light and heavy tails, respectively.

Table 2: Maximum Domain of Attraction Examples

Sample cdf MDA

Exponential Gumbel
Gaussian Gumbel
Student t Fréchet
Pareto Fréchet

Note: We refer to the exponential distribution with parameter A for

x > 0, and distribution function F(x) = 1 — e~ 1. Likewise, the
Pareto distribution is specified with parameter § > 0 for x > 1, and
distribution function F(x) =1 — x5,

Let us go back historically to one of the first results of Pickands (1967). As an example, we show how
the limiting distribution for the maximum of standard i.i.d. Gaussian sequences can be defined. Let
X be a stationary Gaussian stochastic process with E(X,,) =0, E(X,%) =ro=1and E(X; Xj4n) = 7n.
The following theorems are important to show that the limiting distribution of a standard Gaussian
maximum is indeed exp {—e ™}, the Gumbel distribution function (for a proof, see Appendix A).

Theorem 2 (Gnedenko, 1943). Let {X,,} be an i.i.d. sequence. Let 0 < ¢ < oo and suppose that {m,} is a
sequence of real numbers such that

n(l-F(m,)) > ¢ asn— oo, ()

Then
P(M, <m,) - e % asn— co. 2)

Conversely, if (2) holds for some {, 0 < { < oo, then so does (1).

Theorem 3 (Pickands, 1967). Let X; be i.i.d. standard normal, then the asymptotic distribution of M,, satisfies

M,
— 1la.s.

\/2logn n=ee

A proof of Theorem 3 can be found in Appendix A.1.

11
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Theorem 4 (Gnedenko, 1943; Cramér, 1946). If {X;} is an i.i.d. standard normal sequence of r.v.’s then the
asymptotic distribution of M,, = max(Xy,...,X,) is of type Hs . Specifically

P(a,~' (M, - by) < x) > exp(e™), asn — oo, (3)

where

an = (2logn)™'/?,

and

1
by = (2logn)1/2 - 5(210gn)_1/2(10g10gn +logdn).

A proof of Theorem 4 can be found in Appendix A.2.

2.1.2 THE GENERALISED EXTREME VALUE DISTRIBUTION

The Fréchet, Weibull and Gumbel distributions mentioned in Theorem 1 are generalised into a parametric
distribution referred to as the generalised extreme value distribution (GEVD).

Theorem 5 (Jenkinson, 1955; von Mises, 1936). If F € MDA(G) then necessarily, G is of the same type as
the GEV cdf, He(i.e. G(x) = Hg(ax +b), a > 0), defined by

exp[-(1+€x)7] e <0
exp (~e) =0

Hg(x) = “4)

where y, = max(0, y). The parameter & is referred to as the tail or extreme-value index and determines the
nature of the tail distribution: if ¢ > 0 then Hg is Frechét, if & = 0 then Hg is Gumbel and if € < 0 then Hg is
Weibull.

We define the three parameter cdf as
He = He ((x - p1)/B) (5)

where u € R is the location parameter and 8 > 0 the scale parameter (see McNeil et al., 2005).

2.1.3 THE GENERALISED PARETO DISTRIBUTION

The Generalised Pareto Distribution is commonly used to model tail behaviour in a broader sense than
just its maximum. This concept is referred to as "threshold exceedances’ where all data exceeding a
certain threshold is utilised (see e.g. Embrechts et al., 1997).

Theorem 6 (Pickands, 1975; Balkema and de Haan, 1974). If F belongs to one of the maximum domains of
attraction (i.e. the limiting distribution of max X; is a GEV), then for a sufficiently high threshold u, 38(u) >0
and & real number such that the Generalised Pareto Distribution (GPD) G¢ g(,,), defined as

-1/¢
_ y - u
Gepu)(¥) =1-Gepuy(y) = (1 +§,8(u)) L(gz0) + € yIBC )I[(§=o), (6)

is a very good approximation of the excess cdf F,,(-) =P[X —u <-| X > u]

lim sup |F,(y)- Gf,a(u)(y) =0,

+
utxp O<y<xf—u

X} denoting the upper endpoint of F.

12
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2.2 Methodology

Next, the methods of the block maxima and mean excess plot are described in Section 2.2.1 and
2.2.2. The Hill estimator is defined in Section 2.2.3. In Section 2.2.4 we present the univariate risk
models while Section 2.2.5 and 2.2.6 give the methods for point estimates and intervals. Finally, the
evaluation methods are summarised in Section 2.2.7.

2.2.1 THE METHOD OF BLOCK MAXIMA

The GEVD defined in section 2.1.2 forms the basis of a model for the distribution of the block
maxima (Coles et al., 2001). The block maxima (BM) procedure consists in partitioning the data
into blocks of equal length. The maximum value in each block is then extracted. In the second step,
GEV parameters are fitted to a series of block maxima.

However, choosing a block size can be problematic as it reflects a trade-off between bias and variance
(Coles et al., 2001). Furthermore, this method only makes use of information on maxima whereas
observations below the largest value are disregarded. Nevertheless, there are situations when the BM
method is particularly valuable. This technique has proved to be useful when modelling extremes in
periodic time series where dependence appears within but not between blocks (Ferreira and de Haan,
2015). Moreover, in many situations block periods appear naturally such that the BM method may
be easier to implement. Annual dependencies in financial time series data have been known for a
long time, such as the January effect (see Rozeft and Kinney Jr, 1976). Hence, we partition the
data into blocks b of size n/250, where n is the size of the return losses and 250 corresponds to the
number of trading days per year. This amounts to a block size of 16 for the pre-Brexit period and 17
for the full sample period.

2.2.2 Tue MEaN Excgss PLoTt

The mean excess plot (MEP) is attributed to Davison and Smith (1990). An MEP is used to pick a
threshold u and to validate a generalised Pareto distribution for the excess distribution. For a r.v. X
the ME function is defined as

e(u) =E[X -u| X >u].

The mean excess function can be evaluated for any r.v. X with finite expectation. If X is GPD with
parameters & < 1 and 8 > 0 where E(X) < oo, the ME function is given by

e(u) = |:1"%§ + lgju] Lgsug>0)-

If the data from which a threshold is to be determined is from a GPD, by Theorem 6 the MEP should
be roughly linear. The empirical mean excess function is defined such as

i1 (Xi = ) [ x, 5]

é(u) =
( ) Z:L:l H[X[>M]

, u>0.

13
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The procedure starts with ordering the data into order statistics X(1y > X(3) 2,... > X(;,). Then,
one proceed plotting {(X(x),é(X(xy)) : 1 < k < n} determining for which value of u the MEP is
approximately linear. Finally, a maximum likelihood estimation is performed to evaluate the tail
index ¢ and scale parameter S3.

The threshold selection is a crucial choice in extreme value modelling. Much like the choice of block
size in the block maxima method, the choice of threshold 1 boils down to a bias-variance trade-off.
A low threshold leads to a biased estimate while a too high cause the variance of the estimates to be
too large. Picking the threshold u in a deterministic manner, as the observation /7 in the ordered
set of sample values X(1) > X(3) 2,...,2 X(,) has proved to be a suitable choice for financial data
(Ferreira et al., 2003; Blum and Dacorogna, 2002).

Northrop et al. (2017) suggested an alternative method to address the difficulties of threshold
selection, utilizing Bayesian cross-validation methods on wave height data. Although there are
plenty of suggested threshold diagnostic methods, a common shortcoming of these methods is that
these often assume one single chosen threshold. As such, they ignore the uncertainty in the threshold
selection. Instead, the threshold can be viewed as a parameter included in the model. The number
of exceedances above a threshold u is assumed to follow a binomial distribution Bin(n,p, ) where
pu is the probability of exceeding u. This translates into a binomial-GP model BGP(p,,B(u),&)
(see Coles et al., 2001). A leave-one-out cross validation approach is then performed. To increase
the computational efficiency, importance sampling is used to estimate the cross validation predicted
densities. The package threshr is used for applying this methodology in the statistical computing
environment r (R Core Team, 2019; Northrop and Attalides, 2019).

The prior for p,, is chosen as,
pu ~beta(1/2,1/2),

and a generalised maximal data information prior is used for the GP parameters,

nva (B(u).£1a) o< B(u)~'aexp {~a(& + 1)}, B(u) >0, 2 -1, a>0,

where a = 0.6.

This prior showed good properties using simulated and real data as the chances of obtaining unrea-
sonable estimates for high thresholds was lower than for other priors (see Northrop et al., 2017). We
compare both threshold selection methods to see which performs better in financial risk analysis.

2.2.3 THE HiLL EsTiIMATOR

A popular estimator of the tail index & whenever ¢ > 0 (i.e. Fréchet domain of attraction), is the
Hill estimator (see e.g. Hill, 1975; Embrechts et al., 1997). Under the condition that k(n) — oo and
n/k(n) — oo it is defined as

k(n)-1

= 1 Xk (n)-i)
Hey = —— Y log | Zm=0) | 7

The form of (7) is the same as the ML estimate of &, allowing the threshold ug to be a random variable.
For a large enough number of exceedances and a sufficiently high threshold, the Hill estimate Hj
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converges to £&. When & > 0 the GPD is equal to a Pareto distribution with scale x = 8(u)/& and
letting k = u we can find the estimate of the scale as S(u) = uHy.

2.2.4 Risk MoODELS

Three types of univariate extreme value models are compared, the GEVD model and the GPD model
using a deterministic and cross-validation threshold. Table 3 list the extreme value models used in
the preceding section and the abbreviations we use for these models in figures and tables.

Table 3: List of extreme value models.

Model Estimation Additional parameters Notation
GEV Maximum likelihood Block size (deterministic) b

GPD Hill estimator Threshold (deterministic) uo
GPD* Maximum likelihood Threshold (cross-validation) uy

The risk is then modelled as VaR and ES using Definition 1.2 and 1.3. Quantiles are chosen as
a = 0.99 for VaR estimates and @ = 0.975 for ES estimates such as advocated by the Basel III
regulation (Basel Committee on Banking Supervision, 2013).

The GEV models are defined according to eq. (5) for a location u € R and scale 8 > 0 and using
Definition 1.2, VaR for the GEV model is calculated as

a- g [1 - (-nlog (a))_é], foré 0
4 - Blog(-nlog(a)), for £ = 0,

where n is the number of block maxima used when fitting the model. Through Definition 1.3 we
deduce the following expression for ES,

VaRgey.o(L) = G (a) = { ®)

— 1 1 - B
ESGEV,H(L) = ﬁ . VaRGEVD,v(L)dU =1 ;’;
_ f-

l-a

: fal log(-nlog(v))dv, for £ = 0.

l-a

B_1 I -é .
tz J, (—nlog(v))™*dv, for&+0 ©)

The GPD models are defined according to (6) for a threshold u and scale 8(u) > 0. Using Definition
1.2, VaR for the GPD model is calculated as

F(u)

u—ﬁ(u)log(l_—"), for £ =0, B(u) >0,

F(u)

) -¢
u+ﬁ(€u)|:(1—a) _]], for £ 0, B(u) >0

VaRgpp,a(L) = G‘;’lﬁ(a) = (10)

and we estimate F(u) = P(X > u) as F (u) = n/N where N is the total number of observations
(negative returns) and # is the number of observations larger than the threshold u. An expression of
ES is given by

R W X X
. 1 1 u+3(g)[llé(%“’) —1] for £ 0, f(u) >0
ESGpp,a(L) = T-a f VaRgpp,,(L)dv = ' §AF) (11)
_ a [ 1
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2.2.5 PARAMETER ESTIMATION

As a first step, we perform data analysis using descriptive statistics. While most of these measures
need no introduction, we give a brief note on how skewness and kurtosis are calculated. The sample
coeflicient of skewness 7j3 is estimated as follows. We let

1 & %
mg ==y (xi— %),
niz1

and .
2 -\2
s = mEf‘:l(xi—x) .
Using the unbiased estimator of the third moment and unbiased estimator for variance, the sample

skewness is defined as

. n? ms

N

The sample coefficient of excess kurtosis 74 is calculated using the unbiased estimator of the fourth
moment and unbiased estimator for variance,

. n(n® - 2n+3) 3n(2n-13) 4

M == D=3

For simplicity, we refer to excess kurtosis as kurtosis in the further sections. We use the EnvStats
library for these calculations (see Millard, 2018).

The GEV and GP models are fitted to simulated and real data using maximum likelihood estimation
as well as the Hill estimator for the GP model. For the ML estimates we use the r package fExtremes
(Diethelm Wuertz, 2017).

2.2.6 INTERVAL ESTIMATES

Asymptotic normal intervals for & can be constructed since the ML estimator is approximately
normal (see Coles et al., 2001). The interval is then

&+ Zpo15\/ V(£),

V(£) = MSE(¢).

where

For the Hill estimator the interval is,
Hy + Zo.o75\/ V(Hy),

_ . H}
V(Hy) = Tk

where
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Asymptotic normal confidence intervals for VaR and ES in the GEV case can be found using the

delta method (see e.g. Coles et al., 2001). If \/n(d - 0) 2, N(0,%), where n is the number of
observations and X is a symmetric positive covariance matrix and 6 = {g, B, £} then by Taylor
approximation, VaR(6) ~ VaR(6) + VVaR(8)"(d - 6), where

dVaR(0) dVaR(0) oVarR(6)]'

VVaR(0) = on TR

The variance of VaR(#) can then be approximated as,
V(VaR(f)) ~ VVaR(60)"ZgVVaR(8).
Similarly, the variance of ES(f) can be estimated as,
V(ES()) ~ VES(6) "2 VES(6).

In the GPD case we must also estimate the uncertainty in F (u) (see Coles et al., 2001). We simply
exchange the parameter vector to 6 = {£,,3,£}, where £, = ﬁ(u) Then V(£,) = £.(1 - £,) /n. We
assume that there is no covariance between ¢, and the remaining parameters and the threshold u is
considered a constant.

Confidence intervals are then calculated as,

VaR(8) + Zy 975/ VVaR () TS 7 VaR (8)

and

ES(0) + Zo 9757/ VES(6)T$4VES(6).

In the standard ML case, we use fExtremes to estimate the covariance matrix £y (Diethelm Wuertz,
2017). For the Hill estimator we construct 2y by deriving,

. _ uH,)?
V() =V (uHy) = %
and _,
A o~ — uH,
C(B,Hy) = C(uHy, Hy) = Tk
Then,
R (uHy)?  wHE
k k

These asymptotic normal intervals are not suitable when the sampling distribution of the estimator
is not normal. An alternative is bootstrap methods.

Bootstrap is a method for estimating the error of a statistic using resampling (see Efron, 1982).
In naive methods, a sample of size n is drawn from an original i.i.d. sample X,, = {Xj,..., X, }
with replacement B times. The sampling distribution of X, can then be approximated by drawing
X; = {X;,..., X, } samples with replacement from the original sample. There are however examples
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where naive bootstrap approaches fail. For instance, for the maximum order statistics of a random
variable the probability of obtaining the maxima is equal to 1 — e~!, and bootstrap sampling fail to
work (see Bickel and Freedman, 1981). Another example arises when bootstrap is applied to the
mean of a variable with infinite variance or no fourth moment (Athreya, 1987). An improvement
in cases where the original bootstrap failed was discovered when the resample size m is smaller
than the original sample size n (Swanepoel, 1986). Choosing m as 2n/3 was reducing the coverage
error in percentile-f intervals. The procedure of resampling less than n observations is formalised as
m-out-of-n bootstrap in Bickel et al. (1997) and is found to work well in most examples of bootstrap
failure. We make use of m-out-of-n percentile intervals letting m = 2n/3 for the estimates of the
descriptive statistics. The empirical sample-based estimates are given with m-out-of-n percentile
bootstrap intervals using the package distillery as this bootstrap method is suitable for heavy-tailed
data (see Gilleland, 2019).

For a description of our software implementation extreme.risk with a link to the code on GitHub see
Appendix B.

2.2.7 MobEeL EvaLuAaTION

Goodness-of-fit (GoF) tests are performed to evaluate the fit of our estimated models.

Classical empirical distribution function (EDF) test statistics are constructed as the distance between
an empirical distribution function F,, and a modelled distribution function #. One such test statistic
is the Anderson-Darling test (Anderson and Darling, 1952).

We are interested in testing the composite null hypothesis
H() : Fn € Fg(x),
where F is known while 6 is unknown. If the distance is too large we reject Hy.

While there are many EDF tests, the Anderson-Darling test statistic employs a distance of the form,

2 (Fa(x) - F(x))?
A’=n dF;(x). (12)
S« Rt Rty )
With some analytical work, one can express (12) as
2 1 &5, .
A% =—n——=>((2i —1)log(u;) + (2n+1-2i)log(1 —u;)), (13)
nic

1

where u; = ®((y; - 2)/6), yi = @' (v;) and v; = Fy(x;,6).
Finally, a modification of the test statistic in eq. (13) is performed according to Stephens (1986).

A = A*(1+0.75/n +2.25/n%) (14)

We rely on the modified Anderson-Darling test in eq. (14), since a goodness-of-fit test based on this
test statistic put a larger weight on the observations in the tails and has shown good power properties
when applied to extreme value distributions (Laio, 2004). An r implementation of this test can be
found in the package gnFit (Saeb, 2018).
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A graphical evaluation is carried out using the mean excess plot. We use the mePlot function in the
JExtremes package for r to extract the mean excesses for the corresponding thresholds and plot the
results (Diethelm Wuertz, 2017). To assess the fit for high quantiles cdfs are plotted for @ > 0.975.
The empirical cdfs are fitted using the ecdf function in the stats package. These are plotted along
with the fitted cdfs using the parameter estimates of our extreme.risk script with the pgpd and pgev
functions in the fExtremes package.

2.3 Simulation Study I
2.3.1 DESCRIPTION OF SIMULATED DATA

We perform 50 000 simulations each from four distributions. Table 4 shows the distributions
simulated and the functions used to generate the random numbers.

Table 4: Description of the simulated distributions.

Distribution  Parameters Function r Package Author

Half-normal  {x=0.399,0=0.301} rtruncnorm rtruncnorm  Mersmann et al., 2018

Half-z v=2 rtrunct stats” R Core Team, 2019
Exponential A =2 rexp stats R Core Team, 2019
Pareto {k=2,8=2} rpareto EnvStats Millard, 2018

* A function truncating the simulation at zero was created.

Note: If X ~ N(0,0?) and Y = |X|, then Y ~ HN (u, 0) where u = o271 and 6 = \/o2(1 - 2x~1). Similarly, if X ~ t(v)
where v denotes the degrees of freedom, then ¥ ~ HT (v). The density of the exponential distribution has the form f(x) = de™*
where A is the ratio. We use a Pareto density on the form f(x) = ,Bkﬁx’(ﬂ“) , k>0, >0, x >k where 8 is the scale and « is the
shape.

The first of these is the half-normal distribution, generated from a normal distribution with y = 0
and o = 0.5, where y and o are the mean and standard deviation of the normal distribution. Then
we simulate from a half-# distribution with v = 2 degrees of freedom. Lastly, we simulate from the
exponential distribution with rate, 4 = 2 and Pareto distribution with scale and shape equal to two.
This allows us to see how our models compare for different types of data. Table 5 show a summary
of descriptive measures for the simulations.

We begin with a comparison of the Student t and Pareto distributions. The theoretical distribution
of the Student t and Pareto extremes is the Fréchet distribution (¢ > 0). The half-r and Pareto
distributions with degrees of freedom and shape equal to 2 have a variance that is infinitely large in
theory. Both of these distributions have a finite theoretical first moment. We expect that the order of
the GEV tail index £ is larger than 0 and less than 1 as the kzh moment exist when & < 1/k for positive
r.v.’s (see McNeil et al., 2005). The sample estimates of the standard deviation are 2.6 (half-f) and
5.7 (Pareto). Compared to the Student t sample, the estimated kurtosis (1289) and skewness (25.96)
is larger for the Pareto sample while the coefficient of variation (1.41) is slightly lower. The Pareto
sample maximum value (400.1) is slightly larger than the half-¢ (137.7) but more information can be
gained through studying the quantiles of the distributions. The VaR (20.1) and ES (25.4) measures
show that the tails of the Pareto distribution are indeed heavier than the tails of the half-¢ distribution
with a VaR of 9.9 and ES 11.8.
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We continue to compare the sample estimates of the half-normal and exponential distributions. The
half-normal and exponential distributions both have finite moments of all positive orders and are in
the maximum domain of attraction of the Gumbel distribution (¢ = 0). The half-normal has standard
deviation @ = \/02(1 — 2x~!) and mean u = o2~ 1. We note that the half-normal maxima (1.953)
is close to the theoretical maxima of a normal random variable with a variance and mean equal to
0 and y, a, =+/2logn- 6 + = \/21og (50000) - 1/0.52(1 - 27~1) +0.399 = 1.801 (see Appendix
A.1). Although the Gumbel class of MDA is associated with light tails, a large variety in the shape
of the tails can be observed. The normal distribution is lighter in the tails than the exponential
while both are considered in the MDA of the Gumbel distribution. We can see that the kurtosis and
skewness indicate that the exponential sample has heavier tails than the half-normal (Table 5). The
VaR and ES are larger for the exponential distribution at approximately 2.3. We expect the tail index
of the exponential sample to be larger than for the half-normal sample but close to zero.

Table 5: Descriptive statistics of simulated data.

Half-normal Half-¢ Exponential Pareto

Mean  0.399[0.396,0.402] 1.393[ 1367, 1.422]0.498[0.492,0.503] 4.001[ 3.941, 4.066]

Median 0.336[0.332,0.340] 0.819[ 0.807, 0.829]0.343[0.338,0.349]  2.838[ 2.824, 2.852]

Max 1953 137.664 5.496 400.094

Std. Dev. 0.302[0.300,0.305] 2.574[ 2.288, 2.868]0.498[0.490,0.506] 5.650[ 4.576, 6.758]

cv 0.757[0.751,0.763] 1.848[ 1.667, 2.042]1.001[0.992,1.012] 1412[ 1.162, 1.669]

Skewness 1.019[0.991,1.045] 15.585[ 10.253, 19.720]2.002[1.918,2.090] 25.962[ 13.745, 33.206]
[ ] [ ] ( ] [ ]
[ ] [ ] [ ] [ }

Kurtosis 0.921]0.804,1.0431490.402[215.112,749.7425.916(5.202,6.680 | 1289.003 | 348.888,1847.689
VaR g9 1.300[1.280,1.319] 9.912] 9.378, 10.398]2.314[2.269,2.371] 20.121[ 19.030, 21.217
ESg75  1.304[1.288,1.319] 11.842[ 11.111, 12.672]2.346[2.299,2.394] 25.364[ 23.389, 27.413

Note: Estimates are calculated for 50 000 observations generated from a normal distribution with u = 0 and
o = 0.5, Student t distribution with v = 2, exponential distribution with 4 = 2 and Pareto distribution with
shape and scale equal to 2. The abbreviation CV denotes the coefficient of variation. The normal and Student
t simulations are truncated at zero. Bootstrap percentile intervals using B = 1000 resamples with a resample
size of m = 33 333 and confidence level 0.95 are given in squared brackets.

2.3.2 ESTIMATED EXTREME VALUE MODELS

We fit three extreme value models to the simulated data using the extreme.risk script (see Appendix
B). Table 6 show the fit of the GEV models. While the exponential sample has a tail index close
to zero, the half-normal sample is negative. This is clearly not correct as we know that the true
tail index of the underlying distribution is zero. However, the A*? statistic shows that the fitted
distribution function is significantly different from the empirical one. The tail index of the half-¢
and Pareto simulations are positive while not as large as we expected in our initial analysis. The tail
index of the Pareto sample is slightly larger than that of the Student t sample.

The fit of the GPD models with a deterministic threshold selection using the Hill estimator is given
in Table 7. The tail index of the exponential sample is larger and there is no significant difference
between the fitted and empirical distribution function. The half-normal sample has a tail index that
is positive and closer to zero, but the fitted GP distribution function is significantly different from
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the empirical one. The tail index of the half-7 is larger than that of the Pareto sample. However, the
difference is not large enough to capture any substantial differences in the tails.

A summary of the fit of the GPD models with a cross-validation threshold selection and ML
estimation is represented in Table 8. The tail index of the half-normal sample is negative and there is
no significant difference between the fitted density and the empirical one. This is unexpected since
it corresponds to a distribution with a finite right tail. The exponential sample tail index is close to
zero and the test statistic shows that the fitted density is close to the empirical one. The tail indexes
of the half-r and Pareto samples differ in size to a greater extent than those of the GEV and GPD
model with deterministic threshold selection.

To assess the fit of the GPD models we study the MEP in Figure 1. The GPD model using
deterministic threshold selection and Hill estimator appear to be roughly linear except for the
exponential sample. The GPD”* model, using cross-validation threshold selection and ML estimation
appears to be linear for all samples. The threshold is so low that the mean excesses used for the
model fit are containing the majority of observations in the sample except for the half-normal case.

To get a clearer picture of the fit in the tails we compare the fitted cumulative distribution functions
(cdf) to the empirical one (Figure 2). The empirical cdf (grey) is fitted to the block maxima for the
GEV case, and exceedances in the GPD and GPD* models. The empirical cdf is almost identical
for the GEV and GPD models. We can see that the distance of the fitted distributions to their
empirical counterparts is smallest for the GPD* model for all samples. The GEV distribution and
the GPD models appear to have a smaller distance to their empirical cdfs in the Pareto case. For the
half-normal and exponential samples, the GEV model is closer to the empirical cdf. The Student
t sample appears to be better modelled with the GPD than the GEV distribution. One should note
that the fitted distribution’s closeness to their empirical distributions is not a perfect measure of how
well the tail is modelled. A perfect fit of the main body of the distribution does not necessarily
translate into a good fit of the extremes. And the answer is greatly determined by what we define as
extremes to begin with. A suggestion is to analyse the tail distance between the fitted and empirical
distribution function over a particular threshold to gain additional insights on the fit of the tail of the
distribution.
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Table 6: GEV models.

u B £ A*? Sig.
Half-normal 1.445 0.160 -0.212 424.36 .000
Half-r 14.701 7.189 0.416 491.46 .000
Exponential 2.696 0.456 0.030 541.28 .000
Pareto 31.624 16.357 0.429 2707.62 .000

Note: Models are fitted using ML estimation. A block size of b = 224 and a sample size of
n = 224 block maxima was used for all models. Significance levels of the A*? statistics are given
for each model.

Table 7: GPD models with deterministic threshold selection.

Uy B 2 A*? Sig.
Half-normal 1.437 0.126 0.088 1.186 .004
Half-t 14.076 6.970 0.495 0.461 260
Exponential 2.719 0.406 0.149 0.289 616
Pareto 30.920 14.788 0.478 0.193 895

Note: Models are fitted using the Hill estimator. A sample size of n = 224 exceedances is used
to fit the models. The threshold is denoted ug. Significance levels of the A*? statistics are given
for each model.

Table 8: GPD models with cross-validation threshold selection

ug B £ A*? Sig. n
Half-normal 0.642 0.278 —-0.158 0.278 .651 9904
Half-¢ 1.778 1.215 0.439 0.448 279 10894
Exponential 0.057 0.498 0.001 0.270 .677 44550
Pareto 2.020 1.014 0.499 0.556 151 49005

Note: Models are fitted using ML estimation. The threshold is denoted ug. The sample size n, is
the number of exceedances used when fitting the model. Significance levels of the A*? statistics
are given for each model.
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(c) Mean excesses of exponential distributed r.v’s. (d) Mean excesses of Pareto distributed r.v’s.

Figure 1: Mean excess plot of fitted GPD with deterministic threshold ug selection (dotted)
and cross-validation threshold uy selection (dash-dotted). The GPD model using threshold
u; is denoted GPD™.
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Figure 2: Empirical distribution functions (grey), with fitted cdfs (black). Fitted GEV
(dashed), GPD with deterministic threshold ug selection (dotted) and cross-validation
threshold ug selection (dash-dotted) in log-log scale. The GPD model using threshold u,)
is denoted GPD*. The extremes of 50 000 simulated data points from each distribution
are fitted to the three extreme value models.
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2.3.3 Risk MoDELS

One way to assess these models’ abilities to capture the tail behaviour of the sampled distributions
is to study quantile measures such as VaR and ES. This could give us a clearer picture of what to
expect in a worst-case scenario. While not disclosed in this study, an even deeper understanding of
the fit of the tails can be obtained through graphical methods such as the QQ plot.

Table 9 shows the shape parameter, tail index, VaR and ES for the normal sample. The tail index
estimate is significantly different from zero in all of the models according to the interval estimates.
As observed in the previous section, only in the GPD* case the fitted cdf is matching the empirical
one. These results are surprising since Gaussian extremes should be distributed according to a
Gumbel distribution. The incorrect tail index estimates for the GEV and GPD models could be
explained by these models sensitivity to the choice of block size and threshold. Proceeding to
manual analysis to fine-tune these parameters should result in tail index estimates in line with the
true parameter value (¢ = 0). Despite unexpected tail index estimates the GEV and GPD* VaR and
ES interval estimates both cover the empirical estimates.

The risk models of the Student t sample appears to capture the empirical risk well (Table 10). The
tail index estimates are significantly different from zero and have the right sign. All of the VaR and
ES interval estimates cover the empirical estimate. Even though the GEV model is significantly
different from the empirical distribution (see Table 6), the GEV model VaR and ES estimate come
closer to the empirical estimates.

In the exponential case, the tail index is as suspected not significantly different from zero in the GEV
and GPD* models (Table 11). Even if the GEV model is not significant (see Table 6), it manages
to model tail loss fairly well. The most surprising finding is that the GPD model tail index estimate
is significantly different from zero when we know that in theory, it should be indistinguishable
from zero. Further fine-tuning is needed to assure that the tail index estimate is coherent with the
theoretical one (¢ = 0). While the VaR intervals cover the empirical estimate, there is a significant
difference between the GPD model ES estimate and the empirical one.

The Pareto sample tail index estimates are closer in size than for the other distributions (Table 12).
All of the tail index estimates are significantly different from zero and none of the VaR and ES model
estimates is significantly different from the empirical estimate. The GPD model estimates of VaR
and ES deviate from the empirical estimate more than the other model estimates do.

As a concluding remark, we observe in our study that the estimates are not good for the GPD model
in the case of the Gumbel domain of attraction (¢ = 0). This is also true for the GPD* model of
the exponential extremes. Further study could be performed, in particular, implementing manually
the MEP method to compare the results with those obtained using the deterministic and R-package
threshold selection rules. A more precise inference on the tail index using extreme value-based tests
rather than asymptotic normal intervals might lead to results more in line with the theory. Finally,
we note that the risk estimates, despite the incorrect tail index estimates, are overall fairly close to
the empirical ones. Further analysis is needed to assure that these results are valid.
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Table 9: Summary of estimates, half-normal distribution.

& @ VaR g9 ES 975

GEV -0.212 -4.708 1.303 1.301
[ -0.316, -0.109 ] [ 1.277, 1329 ] [ 1.225, 1.377 ]

GPD 0.088 11.374 1.339 1.355
[ 0.076, 0.099 ] [ 1.319, 1359 ] [ 1.336, 1.373 |

GPD* -0.158 -6.312 1.303 1.305
[ -0.175, -0.142 ] [ 1.292, 1314 ] [ 1.293, 1.317 |

Empirical 1.300 1.304

[ 1.280, 1319 ] [ 1288, 1319 ]

Note: Intervals at a 0.95 level for &, VaRg g9 and ES 975 are given in square brackets below each
estimate. Tail index € is fitted with asymptotic normal intervals. Intervals for model VaR and ES
are performed using the delta method. Intervals for the empirical sample are fitted using m-out-of-n
percentile bootstrap with B = 1000 resamples and a resample size of m = 33 333.

Table 10: Summary of estimates, half-¢ distribution.

& @ VaR 99 ES 975

GEV 0.416 2.402 9.751 11.846
[ 0303, 0.530 ] [ 9.047, 10454 ] [ 10916, 12.776 ]

GPD 0.495 2.020 9.458 11.901
[ 0430, 0.560 ] [ 8.673, 10244 ] [ 11.105, 12.697 |

GPD” 0.439 2.280 9.708 11.760
[ 0412, 0465 ] [ 9375, 10.041 ] [ 11.143, 12.376 |

Empirical 9.912 11.842

[ 9378, 10398 ] [ 11.111, 12.672 ]

Note: Intervals at a 0.95 level for &, VaRg g9 and ESy 975 are given in square brackets below each
estimate. Tail index ¢ is fitted with asymptotic normal intervals. Intervals for model VaR and ES
are performed using the delta method. Intervals for the empirical sample are fitted using m-out-of-n
percentile bootstrap with B = 1000 resamples and a resample size of m = 33 333.
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Table 11: Summary of estimates, exponential distribution.

& @ VaR g9 ES 975

GEV 0.030 33.532 2.331 2.375
[ -0.076, 0.136 ] [ 2270, 2.392 ] [ 1.244, 3.505 ]

GPD 0.149 6.706 2.349 2.473
[ 0.130, 0.169 ] [ 2.240, 2.458 | [ 2418, 2.528 ]

GPD* 0.001 1880.287 2.294 2.336
[ -0.009, 0.010 ] [ 2261, 2.328 ] [ 2.300, 2.373 ]

Empirical 2.314 2.346

[ 2269, 2371 ] [ 2.299, 2.394 ]

Note: Intervals at a 0.95 level for &, VaRg 99 and ESj g75 are given in square brackets below
each estimate. Tail index ¢ is fitted with asymptotic normal intervals. Intervals for model VaR
and ES are performed using the delta method. Intervals for the empirical sample are fitted using
m-out-of-n percentile bootstrap with B = 1000 resamples and a resample size of m = 33 333.

Table 12: Summary of estimates, Pareto distribution.

& @ VaR g9 ES 975

GEV 0.429 2.331 20.415