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Abstract

As transistors in integrated circuits (ICs) are becoming smaller, faster and more,
it has become harder to avoid malfunctioning. Embedded instruments are increas-
ingly used to test, tune, and configure the transistors in ICs. IEEE Std.1149.1-2013
and IEEE Std.1687 standardize the access to these embedded instruments. IEEE
Std.1687 enables reconfigurable scan networks which allow only desirable instru-
ments to be included in the active scan-path. Reconfigurable scan networks can
become faulty, which may lead to the situation there will be no possibility left to
test, trim and configure the IC. In this thesis, we focused on the test and repair
of the faulty scan registers. We have introduced two solutions, based on the hard-
ware and software, to test the reconfigurable scan network, to identify faulty scan
registers, and repair the network by excluding the faulty scan register from the
network. We did two experiments to measure the overhead in terms of area and
data. Here, the data overhead is the data needed to be sent to IC for testing and
repairing the reconfigurable network. From these experiments, we found both the
solutions have unique advantages. The software solution does not use hardware
area, while the hardware solution results in low data overhead.
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Popular Science Summary

The integrated circuits (ICs) consist of transistors, which are the basic components
of an electronic circuit. Nowadays, transistors in integrated circuits become smaller
and smaller, which increases the impact of errors in the design and manufacturing
process.

Facing this problem, it becomes an important task for designers to monitor the
errors of various instruments of electronic devices. In order to achieve this goal, a
solution has been developed that integrate IC monitoring, testing and debugging
components in the manufacturing process. These basic components are called
on-chip instruments.

Since the instrument is built into the chip, additional infrastructure is needed
to make the environment accessible. This is called the reconfigurable scan network.
This kind of network connects with instruments through registers, which are called
scan registers. Scan registers can become faulty, which may lead to the situation
there will be no possibility left to test, trim and configure the IC.

In this thesis, we have introduced two solutions, based on the hardware and
software, to test the reconfigurable scan network, to identify faulty scan registers,
and repair the network by excluding the faulty scan register from the network.
Both solutions have unique advantages. The software solution does not use hard-
ware area, while the hardware solution results in terms of low data exchanged
between the chip and environment(known as data overhead).
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Chapter 1
Introduction

1.1 Motivation

As transistors in integrated circuits (ICs) are becoming smaller, faster and more,
it has become harder to avoid malfunctioning. Embedded instruments are increas-
ingly used to test, tune, and configure the transistors in ICs. IEEE Std.1149.1-2013
and IEEE Std.1687 standardize the access to these embedded instruments. IEEE
Std.1687 enables reconfigurable scan networks which allow only desirable instru-
ments to be included in the active scan-path. Reconfigurable scan networks can
become faulty, which may lead to the situation there will be no possibility left to
test, trim and configure the IC. The goal of this thesis is to study test methods of
the reconfigurable scan networks and repair these faults. Furthermore, we will ad-
dress the communication with the scan network. Instead of using a dedicated test
port, for example IEEE Std. 11491.1, we will make use of a functional I/O-port,
namely Universal Asynchronous Transmitter (UART).

1.2 Thesis organization

In Chapter 2, we will introduce the background of the system, UART and IEEE
Std.1687. In addition, parameters that affect the performance are discussed. In
Chapter 3, the details of both the solutions will be introduced. In Chapter 4,
experiments will be conducted to test the performance and the results and related
analyses will be stated in the following parts. In Chapter 5, we will summarize
the whole work we have done in this thesis and suggestions will be given for future
work.

1
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Chapter 2
Background

In this chapter, we discuss the system, UART, IEEE Std.1687, design from [3].

2.1 System

Figure 2.1 shows an overview of the system. The embedded instruments are cou-
pled with the scan registers and connected as a reconfigurable scan network based
on IEEE Std.1687. The Test Access Port (TAP) of IEEE Std.1149.1 is used to
connect the reconfigurable scan network and the outside world. Instead of using
dedicated test port, IEEE Std.1687.1 introduces a way to access the scan network
with the functional ports. In this thesis, the UART will be used as the functional
port. Figure 2.2 is an overview of the system using UART.

2.2 UART

The UART is a computer hardware device for asynchronous serial contact that
includes a transmitter and a receiver. The transmitter is essentially a special shift
register that loads data in parallel and then shifts the data out at a specific rate.
On the other hand, the receiver shifts the data and then reassembles the data.
When the serial line is idle, it is "1". The transfer starts with a start bit of ’0’,
then 5-8 data bits an optional parity bit, and ends with a stop bit of "1". An
optional parity bit is used for error detection. For odd parity, when the number
of 1s of data bits is an odd number, it is set to "0". For even parity, when the
number of 1s of data bits is an even number, it is set to "0". The number of stop
bits can be 1 or 2. Figure 2.3 shows a transmission with 8 data bits, 1 parity
bit and 1 stop bit. No clock information is conveyed through the serial line [3].
Commonly used baud rates are 2400, 4800, 9600, 19200 and 115200 BPS.

Since the transmitter does not transmit clock information, the receiver can only
retrieve the data bits using predetermined parameters. Oversampling schemes are
used to overcome this problem. According to this scheme, the middle point of the
transmitted bits is estimated and the receiver polls the channel at these points.
The oversampling rate depends on the baud rate and clock period of the receiver.

3
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4 Background

Figure 2.1: Overview of the system with TAP.
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Figure 2.2: Overview of the system with UART.

Figure 2.3: Break down of UART transmission [5].
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6 Background

2.3 IEEE Std.1687 (IJTAG)

In this section, the IEEE Std.1687, also known as internal JTAG, is introduced.
The IJTAG standard [6] is a methodology for accessing on-chip instrumentations
through the reconfigurable scan network. There are different network architectures
such as flat networks, hierarchical networks, multiple networks, and daisy-chained
networks. In this thesis, all the designs are based on flat architecture. Figure 2.4
shows an example of the flat reconfigurable network.

Figure 2.4: Flat IEEE Std.1687 network with three instruments.

2.3.1 Segment Insertion Bit (SIB)

The segment insertion bit (SIB) is used to include or exclude instruments in the
reconfigurable network . Figure 2.5 shows the schematic of a SIB.

Figure 2.5: Detailed SIB schematic [3].

There are three control signals (shift en, update en and capture en) to control
a SIB. At the beginning, the control bit in the U flip-flop is ’0’. Therefore, the
MUX H will be connected to the TDI port, and the instruments are excluded from
the network. If the SIB unit is in shift mode, the shift en becomes ’1’ and MUX
K1 will be connected to MUX H. Data will be shifted from the TDI into the S
flip-flop at the rising edge of the CLK signal. When the SIB unit is not in shift
mode, the shift en becomes ‘0’ and the S flip-flop remains its value through the
feedback from K1.
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If the SIB unit is in update mode, update en becomes ’1’ and MUX K2 is
connected to the S flip-flop. In this way, the U flip-flop gets the values saved in
the S flip-flop. When the SIB unit is not in update mode, update en becomes
’0’ and the U flip-flop keeps its value through the feedback from K2. If the value
in the U flip-flop is ’0’, the instrument will be excluded and MUX H will receive
the value directly from TDI. If the value stored in the U flip-flop is ’1’, the MUX
H will be connected to the FSO port and the instrument select signal ToSel will
enable the instrument network and the instrument will be included in the scan
path.

To be noticed, only one of these control signals will be activated at one time.
In addition, the function of the capture en and the update en is to enable par-
allel loading of data between instrument and shift register and shift register and
instrument respectively.

2.3.2 Description languages

The IEEE Std.1687 standard introduces two description languages, Instrument
Connectivity Language (ICL) and Procedural Description Language (PDL). The
purpose of PDL is to describe the operations of the instruments. The ICL is used
to describe the characteristics of the instruments such as data length and position
within the network and the requirements for interfacing them [1].

2.4 Basics of design

Our design are based on the design from [3]. The UART are used as a interface
to comunicate with the reconfigurable network in their thesis.

2.4.1 Hardware description

Figure 2.6 shows their full-featured case we used in our thesis, which consists
of UART, network controller and reconfigurable scan network. When the test
controller want to access the reconfigurable network, the test controller will first
send the PDL commands to the UART which will transfer these commands to the
network controller. The network controller will control the reconfigurable network
according to these commands. The network controller consists of 4 parts: the
IEEE 1687 FSM, the SIB control register (SCR), the instrument length memory
and the discard unit. The IEEE 1687 FSM is for controlling the shift, update and
capture signals. The SCR stores information about which instruments are part
of the active scan path and what command is to be executed on them. The ILM
holds information about the data lengths of the instruments in the network and
the position of each instrument. The Discard Unit was introduced to allow the
controller to discard garbage bits that are outputted by the network during the
CSU cycles.
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Figure 2.6: Full-featured case.
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2.4.2 iApply group

iApply groups include a set of commands to specify the way to operate on an
instrument such as reading from or writing to the hardware. Such commands are
called Level-0 PDL commands, it consists of two types of commands, the setup and
action commands[3]. Both the commands are sent by the test controller outside
the device under test. The action commands is iApply command. Setup com-
mands such as iRead or iWrite will be lined up and wait for the action commands.
Algorithm 1 and 2 show the setup and action commands.

In the iRead command, the setup bits "00000000 00000000" which specifies
the iRead commands will be given. In order to get the data from the network, the
iRead function will insert the dummy bits into the network to push out the useful
data.

In the iWrite command, the setup bits which specifies the iWrite commands are
"01000000 00000000", the data bits for instruments ’10101010’ will be generated.

In the iApply command, firstly, it will judge the setup commands. If the
commands are iRead, the iApply commands will send the sequence in the order
of the setup bits, dummy bit size, and dummy bits. If the commands are iWrite,
it will send the sequence in the order of the setup bits, data bit size, and data
bits. Figure 2.7 shows an example of bit sequences of the writing and reading
process. The first two bytes is the iWrite and iRead commands. The blue blocks
sepecifying the address of the instruments will be accessed. Then the iApply
command follows, which specifies the number of bytes that are required to be sent
to the scan network. The last byte shows the data byte and the dummy bits.

1 Algorithm1 Setup commands
2
3 de f iRead ( ScanRegister_address =0):
4 s e tupBi t s = (0 << 15) V ScanRegisterAddress
5 dummyBits = (0 << 7)
6 re turn setupBits , dummyBits
7
8 de f iWrite ( ScanRegister_address =0):
9 s e tupBi t s =(1 << 14) V ScanRegisterAddress

10 dataBit s = ’ 10101010 ’
11 re turn setupBits , dataBits

1 Algorithm2 Action commands
2
3 de f iApply (command ) :
4 i f command == iRead :
5 dummySIZE=(1 << 15) V ( l ength (dummyBits )/8)
6 s e r i a l S h i f t ( s e tupBi t s )
7 s e r i a l S h i f t ( dummySize )
8 s e r i a l S h i f t (dummyBits )
9 incomingData = se r i a lCap tu r e ( b u f f e r S i z e )

10 e l i f command == iWrite :



“output” — 2019/10/14 — 10:12 — page 10 — #22

10 Background

11 dataS ize =(1 << 15) V ( l ength ( dataBits )/8)
12 s e r i a l S h i f t ( s e tupBi t s )
13 s e r i a l S h i f t ( dataS i ze )
14 s e r i a l S h i f t ( dataBit s )
15 re turn apply_cmd

Figure 2.7: Example of writing and reading process.
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Chapter 3
Methodology

In this chapter we propose a hardware solution and a software solution to perform
test and repair of reconfigurable networks. The solutions can handle any number
of faults in the reconfigurable networks.

3.1 Hardware solution

Figure 3.1 shows the hardware solution which consists of the test block and the
repair component in the network controller. The UART and network controller
are from [3]. The testing of the reconfigurable network is initiated by an iTest
command being sent from the test controller. The iTest command will enable
the test block. After the testing process ends, the test block will get faulty scan
registers locations. When the test controller sends the iRepair command to the
UART, the faulty scan registers’ locations will be sent to the repair component in
the network controller. After that, when the test controller wants to access the
faulty scan registers in the network, the repair component will check the address
with the faulty scan registers’ location. If the addresses are the same, the access
process will be bypassed.

Figure 3.2 shows the bit sequence for both commands, and both commands
will consist of 16 bits. The first byte ’0111 1111’ of iTest bit sequence specify the
iTest command and the the first byte ’0111 1110’ of iRepair bit sequence specify
the iRepair command.

3.1.1 Test Function

When the test controller send the iTest command to the device under test, the
test function will be enabled. The overall idea of the test function is to detect and
localize faulty scan registers. It has two processes, the FULLTEST and ONEBY-
ONE process. First, the FULLTEST process will be executed to test if there are
any faults in the the scan registers. If there are faults, the ONEBYONE process
will be executed to test the scan registers one by one, which will localize the loca-
tions of the faults. Figure 3.3 shows the test block, which includes the sequence
generator, the shift-update (SU) controller and the sequence detector.

Figure 3.4 shows the sequence generator, which has 4 parts controlled by an
FSM. They are control bits generator, FULLTEST generator, ONEBYONE gener-

11
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Figure 3.1: Connection diagram of the hardware solution.
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Figure 3.2: Bit sequence for iTest and iRepair commands.

Figure 3.3: The overview of test block.
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ator and repair register. The control bits generator is for generating the control bits
for both FULLTEST and ONEBYONE processes. The FULLTEST and ONEBY-
ONE generators is for generating the test sequences for both processes. The repair
register stores the faulty scan register locations. The details of this block can be
found in Appendix 1.

Figure 3.4: The overview of sequence generator.

Figure 3.5 shows the SU Controller. The SU Controller is for controlling the
reconfigurable network. It has two components controlled by an FSM. The shift
and update control the shift and update signals of the reconfigurable network.
After all the control bits and the test data are shifted into the network, the test
bits should be pushed out from the network to the sequence detector. Therefore
the dummy bits generator will be enabled to send the dummy bits(0s) into the
network. The details of this block can be found in Appendix 1.

Figure 3.5: The overview of the SU controller.

Figure 3.6 shows the sequence detector, which consists of two parts, the delayer
and the fault detector. The used delayer is to delay the original test sequence to
match with the output of the reconfigurable network. When the sequences arrive,
the fault detector compares them one bit by one bit until it finds a different bit,
and the fault detector will send the test result to the sequence generator. The
details of this block can be found in Appendix 1.
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Figure 3.6: The overview of sequence detector.

Figure 3.7 (a) shows an example of a flat reconfigurable network with 3 SIBs
and 3 scan registers where the length of the scan registers is 8 bit. we will illustrate
the test function with this network. For illustration, we inject a fault in the second
scan register, which is controlled by the second SIB. The test function operates as
follows:

• The sequence generator will generate control bits and test sequence for the
FULLTEST process, shown in Figure 3.7(b). In this example, the control bits
should be ’111’, which will make the network include all the scan registers into
the scan path. Then the FULLTEST sequence will be serially shifted into the
network. As the scan registers are of length 8 bit, the complete test sequence is
’10101010 10101010 10101010’. This sequence is shifted through the scan path.
In case of no fault, the shift out sequence is the same as the shift in sequence.
However, if there is a fault, for example a stuck at fault, the shift-in sequence and
the shift-out sequence will not match.

• After the SU controller transfers the control bits and the FULLTEST test
sequence to the SIB network, the SU controller will generate the dummy bits
’00000000 00000000 00000000’ into the SIB network. In this way, the test data
can be pushed out from the network.

• After the two steps above, the sequence detector will receive the output data
from the SIB network and the sequence detector will compare this data with the
original test data. In this example, the sequence detector will find that the shift-in
sequence and the shift-out sequence do not match. A fault prompt signal will be
sent to the sequence generator.

• When the sequence generator receives the fault prompt signal, the ONEBY-
ONE process will start, which are illustrated in Figure 3.7(c). The test sequence
and the control bits for testing the first scan register will be generated. In this
example, the control bit will be ’100’ to only include the first instrument and the
test sequence will be ’10101010’. The scan path is shown in red in Figure 3.7(c).

• Then the SU controller continue generates dummy bits into the network. In
this step, the dummy bits should are ’00000000’

• The sequence detector receives the output data from the network and the
original test data. In this example, since the first scan register is not faulty, the
fault prompt signal will not be enables.

• To include the second scan register in the scan path, the sequence generator
generates the control bits “010” and the test sequence ’10101010’. The scan path
is shown in yellow in Figure 3.7(c).
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• when the sequence detector receives both sequences, the mismatch will be
detected, and the fault prompt signal will be enabled. The sequence generator
saves the location of the faulty scan register into the repair register.

• The test block continues to work until all the scan registers have been tested.
In this example the information in the repair register should be ’010’, which indi-
cate the second scan register is faulty.

Table 3.1 shows the overall data for this example.

Figure 3.7: (a) 3-SIBs Network, (b) FULLTEST dataflow, (c)
ONEBYONE dataflow.

3.1.2 Repair Function

The idea of the repair function is to bypass the faulty scan registers. When the
iRepair commands are applied, the repair component will be enabled to save the
faulty scan registers location from the repair register of sequence generator. After
that, when the test controller wants to access faulty scan registers, the repair
component will check the faulty scan register locations and automatically exclude
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FULLTEST ONEBYONE
Control bits Test bits Dummy bits Control bits Test bits Dummy bits

3 24 24 9 24 24

Table 3.1: Data for the reconfigurable network with 3 SIBs and 3
scan registers each of length 8.

them from the scan path.
Figure 3.8 shows the ASMD diagram of the repair component. We will use

the reconfigurable network with 3 SIBs and 3 scan registers of length 8 bit(Figure
3.7(a)) to explain the repair component.

Before we explain this ASMD, it’s necessary to mention that the FAULTScanRegister reg
is a register array of 8 bits-std logic vector type registers. In this example, the
number of std logic vector registers. The FAULTScanRegister counter is a 8 bits-
std logic vector type counter and the SCR counter is a integer type counter.

First, in the IDLE state, reset puts everything in default values. When the
repair component starts, the state machine will go to the S0 state.

In the S0 state, the component will check the first bit of SCR test in signal,
which is the signal that transfers the faulty scan registers location from the repair
register of sequence generator. As we discussed in the last subsection, the infor-
mation in the repair register is ’010’. Since the first scan register is not faulty,
nothing will be saved in the first register of FAULTScanRegister reg array. After
that, in the next rising edge of the clock cycle, the state machine will move to the
S1 state.

In S1 state, the SCR counter adds 1, which will make the S0 state check the
second bit of the repair register. The FAULTScanRegister counter will also add 1,
which will transform the second scan register location to binary type(00000001).
If there is a faulty scan register location in the next state, the fault location will
be saved at the second vector of the FAULTScanRegister reg array.

Then the state machine go to S0 state again, since the second bits of repair
register is ’1’, the faulty scan register location will be saved as "0000 0001" in the
second register of FAULTScanRegister reg array.

The component will stop until every bits of repair register has been checked.
As expected, the component will only save the second scan register location into
the FAULTScanRegister reg array.

3.2 Software solution

Figure 3.9 shows the software solution. The test and repair functions are imple-
mented in the test controller and nothing will be modified in the device under
test. By applying the iTest and iRepair commands, the test and repair functions
will be enabled. First, the iTest command will be applied to enable the test func-
tion. During the test process, the faulty scan registers locations will be detected
and saved into a file. After that, the iRepair command will be applied to enable
the repair function. During the repair process, when the test controller wants to



“output” — 2019/10/14 — 10:12 — page 18 — #30

18 Methodology

Figure 3.8: ASMD diagram of the FSM for repair component.
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send the iWrite or iRead commands which related to the faulty scan registers,
the iRepair commands will check the faults location file and the iWrite or iRead
commands will be bypassed.

3.2.1 Test function

We will use the same reconfigurable network as Figure 3.7(a) to explain the test
process of software solution. Figure 3.10 shows the work flow of the test process.
The test function first applies the ALLWrite command to write test data ’10101010’
into all scan registers one by one. Figure 3.11 shows the bit sequence of the
ALLWrite process.

Then the ALLRead command will be applied to send the dummy bits ’00000000’
to the scan network so that all the test data can be pushed out from the scan net-
work back to the test controller. In this example, since the second scan register
is an inverter which is considered as a fault, the second incoming data should be
’01010101’. Figure 3.12 shows the bit sequence of the ALLRead process.

The data flow of ALLWrite and ALLWrite process are shown in Figure 3.13.
After that, the iTest function will look for the same data as incoming data in

the original data buffer. If there is same data, the corresponding scan register is
not faulty. If not, the corresponding scan register has a fault and the address of
the scan register will be stored in the FaultScanRegisters file. In this example the
second scan register’s location will be saved into this file. The algorithm of iTest
commands can be found in Appendix 1.

3.2.2 Repair Function

The idea of the repair function is to check what PDL commands use. If PDL
commands want to access a faulty scan register, the repair function will exclude
this PDL command from the iApply group. Hence, the scan path will be modified
such that the defective scan register is excluded. For example in Figure 3.13, the
commands where the second scan register is bypassed, and the test controller only
send the commands which is related to the normal scan registers. The algorithm
of iRepair commands can be found in Appendix 1.
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Figure 3.9: Connection diagram of the software solution.
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Figure 3.10: Example of test process of software solution.
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Figure 3.11: Bit sequence of AllWrite process for 3-SIBs network.
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Figure 3.12: Bit sequence of ALLRead process for 3-SIBs network.

Figure 3.13: Data flow of ALLWrite and ALLRead process.
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Figure 3.14: Example of the repair process.



“output” — 2019/10/14 — 10:12 — page 25 — #37

Chapter 4
Experimental results

4.1 Experimental setup

We performed two types of experiments to test the performance of hardware and
software solutions. In experiment 1, we have prepared three flat reconfigurable
networks with 50, 100 and 150 SIBs where each scan register is of length 8 bits. For
each network, we inject one fault in the first scan register and measured the area
consumption and data overhead of both solutions. In experiment 2, we prepared a
flat reconfigurable network with 150 SIBs and inject the different number of faults
in the scan registers of the reconfigurable network. The data overhead is measured
for both solutions.

For the FPGA board, we chose a Digilent Nexys 4 DDR board, which is
based on the latest Artix FPGA from Xilinx. The baud rate we used is 115200.
For coding, synthesis, and implementation we used VHDL and the Xilinx Vivado
2019.1 EDA tool.

For the test controller part, we used the Python programming language. For
the Python tools, we chose Pycharm.

4.2 Experimental methodology

For area consumption, we used the resource utilization from the report in Vivado.
We used Configurable Logic Block (or logic block, LB for short) which consists of
two logic slices (Slice M and Slice L) and represents fundamental building block
of the Xilinx FPGA fabric [8]. The equation for calculating CLB is:

CLB = 8× LUT + 16× FF (4.1)

Look-up Table (LUT) is a collection of gates hardwired on the FPGA. An LUT
stores a predefined list of outputs for every combination of inputs. A flip-flop (FF)
is the smallest storage resource on the FPGA. Each flip-flop in a CLB is a binary
register used to save logic states between clock cycles on an FPGA circuit [8].

The data overhead is the data exchanged between the test controller and the
device under test.

25
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4.3 Results of experiment 1

Table 4.1 shows the results of experiment 1. For the hardware solution, the area
consumption increases linearly with the number of SIBs. For the software solution,
no additional area is needed, since the solution is implemented with software.
Table 4.2 shows the area consumption for the hardware solution. We see that the
CLB of all blocks increases with the size of the reconfigurable network because
the hardware solution need to handle more data with the increasing number of
SIBs. In addition, the area consumption of the sequence generator is the largest
among the three blocks, since all the test sequences are generated here. The area
consumption of the reconfigurable network with different sizes are shown in Figure
4.1, we only included the scan registers into the reconfigurable network. Compares
the area of the reconfigurable and the proposed hardware solution, the area of the
proposed hardware solution is much lower than that of the reconfigurable network.
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Number of SIBs
Hardware solution Software solution Area

of
reconfigurable network

Test bits without both solutionsTest Repair Area Data comparison(%) Test Repair Area Data comparison(%)Data overhead Data overhead CLB Data overhead Data overhead CLB
50 16 16 83 0.19 2432 0 0 29.62 145 18500
100 16 16 130 0.06 4832 0 0 18.17 250 67000
150 16 16 161 0.03 7232 0 0 13.17 433 98900

Table 4.1: Result of experiment 1
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Number of SIBs
Hardware solution

Sequence generator Sequence Detector Test SIB controller Total
FF LUT CLB FF LUT CLB FF LUT CLB FF LUT CLB

50 10 280 36 34 166 23 5 186 24 49 632 83
100 11 489 62 35 239 32 5 282 36 51 1010 130
150 12 548 69 36 324 43 5 387 49 53 1295 161

Table 4.2: Area consumption for the three blocks in the hardware
solution
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Figure 4.1: Area comparison.

For the hardware solution, the data overhead of the test and repair process
is 16 bits each. The reason is that the test controller only sends the commands
(iTest or iRepair) with 16 bits to the device under test, and the device under
test will automatically start the test or repair process. Actually, independently
of the size of the network and the number of the faulty scan registers, the data
overhead of the hardware solution will always be the constant, which is shown in
the experiment2.

For the software solution, the data overhead of the test process increases lin-
early with the number of SIBs. This is because the test controller needs to generate
more test sequences when the number of SIBs increases. During the repair process,
when these scan registers are faulty, the test controller will ignore these commands
related to faulty scan registers. Therefore, nothing will be send to the device under
test when the test controller want to access the faulty scan registers.

We also measured the test bits which test the reconfigurable network without
proposed solutions. Figure 4.2 shows the calculation process of the test bits for
the network with 50 SIBs. During the FULLTEST process, the 50 control bits
will be firstly generated. Then the data bits for testing will be generated for each
8-bits scan registers. The 50 data bits for filling the shift flip-flops in the SIBs
will be generated at the same time. After that, the dummy bits for both shift
flip-flops and the scan registers will be generated. The total number of bits for the
FULLTEST process is 950. During the ONEBYONE process, when testing the
one scan register, the 50 control bits will be generated. Then the 8 data bits for
scan register will be generated, and the 50 data bits for filling the shift flip-flops
will be generated as well. The dummy bits will also be generated, which is the
same as the data bits. The total number of bits for the ONEBYONE process
should be 8300. Therefore, the bits exchanged for TDI or TDO should be 9250,
and the total bits exchanged should be 18500.

The result of data overhead for the test process of both the solutions and the
test bits without proposed the solutions also shows in Table 4.1. Figure 4.3 shows
the data overhead with the method without proposed solutions. The hardware
solution saves more significant data compared to the software solution.
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Figure 4.2: Test bits calculation of the SIB network with 50 SIBs.

Figure 4.3: Data comparison.
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4.4 Results of experiment 2

Table 4.3 shows the results of this experiment. The data overhead for proposed
solutions will not change with the number of faults. For the hardware solution, as
we discussed in experiment 1, the data overhead of the test process is always 16
bits. For the software solution, the data overhead of the test process is also fixed,
because the number of bits of the test data is the same regardless of the number
of faulty scan registers. From the result, the data overhead of test process for the
software solution is higher than the overhead of the hardware solution.

For the repair process, the data overhead of the hardware solution is 16 bits.
For the software solution, the data overhead is 0 bits.
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Faults
Hardware solution Software solution

Test Repair Test Repair
Data overhead Data overhead Data overhead Data overhead

1 16 16 7232 0
2 16 16 7232 0
3 16 16 7232 0
4 16 16 7232 0
5 16 16 7232 0
25 16 16 7232 0
50 16 16 7232 0
100 16 16 7232 0
150 16 16 7232 0

Table 4.3: Result of experiment 2
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Chapter 5
Conclusion

In this thesis, we proposed and compared two solutions for detecting and repair-
ing faulty scan registers in reconfigurable network, two experiments were done to
compare area and data overhead. The results show that both the solutions have
their individual advantages. The hardware solution has the advantage of low data
overhead and the software solution has the advantage of low area consumption.

In this thesis, we only explored the test and repair system on flat reconfigurable
network. In the future, we think the test and repair functions could be made
on other kinds of networks like hierarchical networks, multiple networks, daisy-
chained network, etc. We could also explore the way in which the same function
can be made based on other functional port interfaces like I2C and others.

33
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Chapter 6
Appendix 1

6.1 Sequence generator

Figure 6.1 shows the sequence generator. The signals will be explained in the
following parts:

INPUT PORTS:
• clk: Clock signal
• test en: The enable signal from UART, when it becomes ’1’, the test function

start to work.
• test out: The fault prompt signal from sequence detector. If the sequence

detector detects fault scan registers, the signal becomes ’1’, otherwise becomes ’0’.
• enable from detector: The enable signal from sequence detector. When the

sequence detector finishes its work, the signal becomes ’1’, which enable the FSM
in the sequence generator for continuing to send control bits and test sequence for
the subsequent scan register.

OUTPUT PORTS:
• data to detector1: The signal which send the FULLTEST test sequence to

sequence detector.
• data to SIB1: The signal which send the FULLTEST test sequence to SU

Controller.
• data to detector2: The signal which send the ONEBYONE test sequence

to sequence detector.
• data to SIB2: The signal which send the ONEBYONE test sequence to SU

Controller.
• detector en: The enable signal which enables the sequence detector.
• control en: The enable signal which enables the SU Controller.
• SCR control: The signal which send the SIB control bits to SU Controller.
• network en: The enable signal which enables the SIB Network.
• fulltest: The signal which tells other blocks the current test mission for

testing all scan registers in the SIB network.
• onebyone: The signal tells other blocks the current test mission for testing

scan registers one by one.
• SCR test: this signal sends the fault scan registers’ locations to the repair

component in the network controller from [3].

35
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• repair: this signal informs the network controller from [3] that there are fault
scan registers in the network, and need to repair them. If there are fault locations
in the SCR test signal, it becomes ’1’, if not , it becomes ’0’.

Figure 6.1: Sequence generator.
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Figure 6.2 shows the simplified FSM of the sequence generator for operating
with the flat reconfigurable network in Figure 3.7 (a).

In the IDLE state, every signal will be set to the default value. When the
test en signal becomes ’1’, the sequence generator starts working. At the rising
edge of the clk signal, the state machine jumps to the test fault state. In this state,
the SU controller, SIB network and sequence detector will be enabled to work. The
fulltest signal becomes ’1’ to inform other blocks that the current mission is testing
all scan registers together. The corresponding signals of other blocks will be set
up accordingly.

After sending the test sequence, the state machine will be waiting for the
response of the sequence detector. When the sequence detector finish its work
and then the enable from detector signal will become ’1’, the state machine will
continue working. At the same time, the block will check the test out signal. If
it is ’0’, which means there are not faulty scan registers in the network, the state
machine jumps to the finish state and the Test function finish. If the test out
signal is ’1’, the ONEBYONE test process begins in next clock cycle. In this
example, this signal is ’1’.

Besides, the first bit of SCR control signal will be set to ’1’, which will control
the first SIB of the network to be open. Then the state machine will jump to the
localization state. In this state, the onebyone signal, control en, detector en, and
the network en become ’1’ which makes another blocks switch to the ONEBYONE
test mode.

After the localization, the sequence generator will be still waiting for the
enable from detector signal. When it changes to ’1’, in this example, since the
first scan register is not the faulty one, the test out signal will get the value of
’0’. The sequence generator will test the next scan register, This time the faulty
scan register will be detected and the test out changes to ’1’. The state machine
jumps to the repair state.

In the repair state, the location of the fault scan register will be stored in
SCR reg signal. The value of SCRunderline reg signal is "010". After that the
system starts checking the last scan register, the test out signal will get ’0’ as
expected.

From now, all the scan registers have been tested, and the repair signal will
become ’1’ and the SCR reg signal gives its value to SCR test port. when the
repair function starts to work, the repair component in the Network Controller
will get the value of the repair signal and the faulty scan register information of
the SCR test port.

Above all is how the sequence generator works with a flat reconfigurable net-
work (Figure 3.7 (a)).
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Figure 6.2: ASMD diagram of the main FSM for sequence generator.

6.2 Sequence detector

The detect function consists of two parts, the delayer and the sequence generator,
which connected with each other in the top block like Figure 6.3. The correspond-
ing ports will be explained below:

Figure 6.3: Sequence detector top block.
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INPUT PORTS:
• clk: Clock signal.
• detector en: The enable signal from sequence generator which enables the

whole detector module to work.
• test in1: The signal which receive the FULLTEST sequence from sequence

generator .
• test in2: The signal which receive the ONEBYONE sequence from sequence

generator .
• SIB in: The signal which receives the data from the SIB network.
• fulltest: The signal which receives the FULLTEST signal from sequence

generator .
• onebyone: The signal which receives the ONEBYONE signal from sequence

generator .
OUTPUT PORTS:
• generator en: The enable signal that allows the sequence generator continue

working.
• test out: The signal which shows if the sequence is the same or not. If the

sequence detector detects fault scan registers, the signal becomes ’1’, otherwise it
becomes ’0’.

The reason of using a delayer is that, when the generator sends the test data to
the SIB network and sequence detector, the data from the test in1and the test in2
will arrive immediately. However, the output data from the SIB network will not
arrive at the same time. Therefore the detector module will be waiting for the
output data(SIB in) for few clock cycles. In this way, all test data will arrive at
the detector at the same time. Figure 6.4 is the delayer. we will explain how it
works in details below:

Figure 6.5 is the simplified ASMD diagram of the delayer in the case of the
3-SIBs network. we will explain how it works with this example.

In the IDLE state, every signal will be set to the default value. The state
machine will keep in this state until the detector en becomes ’1’. At the same
time, the delayer and the SIB network receive the test sequence.

After the delayer enabled, the FULLTEST process will start first. Therefore,
the state machine jumps to the FULLTEST branch.

The first arriving sequence is the control bits, in our case is 3 bits("111"), so
the count for control state need to wait for 3 clock cycles.

Next is the actual data, as mentioned in the previous section, the data bits is
3("101"). Therefore, the state machine keeps in count for data1 state for 3 clock
cycles.

From now the SU Controller will send 3 dummy bits into the SIB network to
controlling the SIB network shift out the data. This time the state machine jumps
to count for dummy1 state and wait for 3 clock cycles. In every clock cycle of
this state, the data out signal will output the data one bit by one bit. At the same
time, the enable signal enables the sequence detector to receive the output data
one bit by one bit.

In the end, all test sequence for FULLTEST has been shifted to the sequence
detector. The state machine moves to the finish state.
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Figure 6.4: Delayer.

After the FULLTEST process finishes, in this example, since the second scan
register is the faulty one, the system starts to test scan registers one by one. From
the state machine we can see that the only different between ONEBYONE and
FULLTEST is the state machine need to wait 1 clock cycles in count for data2
state and count for dummy2 state.

Above all are how the delayer works with the flat reconfigurable network (Fig-
ure 3.7 (a)). Next, the details of the sequence detector will be introduced.

Sequence detector is the block that detects the faulty scan register in the
reconfigurable network, Figure 6.6 shows the block diagram of it.

Figure 6.7 shows the ASMD diagram of the FSM for the sequence detector.
We will still use the network in Figure 3.7 (a) to explain the FSM.

In the IDLE state, all signals are set to ’0’. When the enable signal becomes
’1’, the whole block start to work. In the FULLTEST process. The detector will
compare every bit come from the SIB network and the delayer one by one. The
FSM keep in the datatest full state until it found a different bit. If there is no
fault in the network, the test out signal and the generator en signal will become
’0’ and ’1’ respectively to inform the sequence generator finishes the test function.
In this example, the second scan register is a faulty one. So both the test out
signal and the generator en signal will become ’1’. Then the sequence generator
starts the ONEBYONE process. The detector continues to test the scan registers
one by one until all scan registers have been tested.
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Figure 6.5: ASMD diagram of the main FSM for delayer.



“output” — 2019/10/14 — 10:12 — page 42 — #54

42 Appendix 1

Figure 6.6: Sequence detector.

6.3 SU controller

The SU controller will shift the test sequence and generate the dummy bits into
the SIB network. It controls the network by enabling the shift and update signals
of the SIB network. Figure 6.8 shows the block diagram of the test network
controller. The discussion about the SU controller will be made below:

Figure 6.9 shows the ASMD diagram of the FSM for The SU Controller. we
will still use the network in Figure 3.7 (a) to explain how the SU controller works.

In IDLE state, everything will set to default value, when the control en be-
comes ’1’, the SU controller start to work. The first data the SU controller re-
ceived are the FULLTEST control bits. Therefore, the next state is shift control
state which makes the shift en signal becomes ’1’ and control the reconfigurable
network shift in the control bits. In our case, the number of bits is 3 ("111").
Therefore, the state machine will keep in this state for 3 clock cycles. In next
state, update control state, the shift en signal becomes ’0’ and the update en sig-
nal becomes ’1’ which stops the network shift bit into itself and update the control
bits into the Update flip-flop. Then all the SIBs open.

In shift fulltest state, the SU controller receives the FULLTEST bits ("101")
from sequence generator. The shift en signal changes to ’1’ again and shift the
test data into the shift register and the scan register in the SIB network. After 3
clock cycles, the network gets all test bits.

After that, the test bits need to be shifted out from the network and be tested
by the sequence detector. Therefore, in dummybits full state, the SU controller
will shift 3 dummy bits ("000") into the network. The FULLTEST process finish.

Then the system changed to ONEBYONE process. the SU controller will do
the same work as FULLTEST process except it will shift 1 bits in shift onebyone
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Figure 6.7: ASMD diagram of the FSM for detector.
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Figure 6.8: SU controller.

state and dummy bits one state respectively.

6.4 Algorithm for software solution

Algorithm 3 shows the iTest commands. First, it applies the ALLWrite command
to write the test data into all scan registers one by one. Then the ALLRead
command will be applied to send the dummy bits to the scan network so that all
the test data can be pushed out from the scan network back to the test controller.
After that, the iTest function will look for the same data as incoming data in the
original data buffer. If there is same data, the corresponding scan register is not
faulty. If not, the corresponding scan register has a fault and the address of the
scan register will be stored in the FaultScanRegisters file.

1 Algorithm 3 iTes t
2
3 AllWrite ( )
4 AllRead ( )
5
6 counter= dataBits / 8
7 f o r i in range ( l en ( or i g ina l_data ) ) :
8 i f r e . s earch ( incoming_data [ i ] , o r i g ina l_data ) :
9 pr in t ( f ’Number{ l en ( expected_data)−1− i } i s match ’ )

10 counter −= 1
11 or ig ina l_data = re . sub ( key [ i ] , ’ ’ , o r ig ina l_data , 1)
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Figure 6.9: ASMD diagram of the FSM for SU controller.
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12 e l s e :
13 pr in t ( ’Number{ l en ( or i g ina l_data)−1− i } i s not match ’ )
14 FaultSIBs . append ( l en ( or ig ina l_data)−1− i )
15 i f counter == 0 :
16 f = open ( ’ Fau l tScanReg i s t e r s . txt ’ , ’w ’ )
17 pr in t ( f . name)
18 f . w r i t e l i n e s ( s t r ( FaultSIBs ) )
19 f . c l o s e ( )

Algorithm 4 is the ALLWrite function, the idea of it is to line up the setup
and action command of all scan registers, then send these data to the device under
test. The ALLRead function (algorithm 5) has the same idea except it will save
the incoming data to a buffer, which will be used in iTest command.

1 Algorithm 4 ALLWrite func t i on
2
3 de f Al lWrite ( ) :
4 f o r i in range (TOTAL_ScanRegisters − 1 , −1, −1):
5 send_cmd . append ( iWrite ( i ) )
6 send_cmd . append ( iApply ( iWrite ) )
7 s e r . wr i t e (b ’ ’ . j o i n ( send_cmd ) )
8 f o r i in range ( l en ( t e s t v e c t o r ) ) :
9 s e r . wr i t e ( t e s t v e c t o r [ i ] )

1 Algorithm 5 ALLRead func t i on
2
3 de f AllRead ( ) :
4 f o r i in range (TOTAL_ScanRegisters − 1 , −1, −1):
5 send_cmd . append ( iRead ( i ) )
6 send_cmd . append ( iApply ( iRead ) )
7 s e r . wr i t e (b ’ ’ . j o i n ( send_cmd ) )
8 f o r i in range ( l en ( dummybits ) ) :
9 s e r . wr i t e ( dummybits [ i ] )

10 incoming_data = se r . read (BUFFER_SIZE)

Algorithm 6 is the iRepair command. The idea of the repair function is that,
when the test controller wants to access the faulty scan registers, the iRepair
command will check the FaultScanRegisters file. If the address in the file is the
same, then bypass all the command which related to the faulty scan registers.
Figure 3.13 shows this process, in this example, the commands related to the
second scan register is bypassed, and the test controller only send the commands
which is related to the normal scan registers

1 Algorithm 6 iRepa i r
2
3 f = open ( ’ Fau l tScanReg i s t e r s . txt ’ , ’ r ’ )
4 Fau l tScanReg i s t e r s_locat ion = f . read ( )
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5 f . c l o s e ( )
6 f o r i in range (TOTAL_SIBS − 1 , −1, −1):
7 i f r e . s earch ( s t r ( i ) , s t r ( Fau l tScanReg i s t e r s_locat ion ) ) :
8 pr in t ( f ’The number{ i } ScanReg i s ter has f a u l t ’ )
9 e l s e :

10 send_cmd . append ( iRead ( i ) )
11 send_cmd . append ( iApply ( ’ r ’ ) )
12 s e r . wr i t e (b ’ ’ . j o i n ( send_cmd ) )
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