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Abstract  
The summer of 2017 was climatically close to normal in southern Sweden, whereas the following 

summer was unusually warm and dry. These two years therefore make an interesting case study for 

investigating the impact of severe drought on vegetation, particularly when considering that climate 

change is predicted to lead to an increased frequency of drought events in the study area. 

 

The comparison was done by calculating vegetation indices (VI) based on satellite imagery. The 

calculated indices are Normalised Vegetation Index (NDVI), Enhanced Vegetation Index (EVI) and 

Normalised Difference Water Index (NDWI) based on four Sentinel-2 images from 2017 and four 

images from 2018. Rain Use Efficiency (RUE) was calculated based on NDVI and EVI and a 

precipitation data set from PERSIANN-CCS, in an attempt to measure drought resilience. The data 

was extracted for different land covers and crop types to determine where the largest differences were 

seen in the study area.  

 

It was found that the land cover with the smallest decreases (and some increases) in VI values between 

the two years was mixed forest. Both coniferous and deciduous forest had more negative changes 

between the two years; this suggests that the combination of tree types could increase the drought 

resilience. The land cover with the largest decrease was agricultural land which had decreasing values 

for all VI’s, suggesting that this might be the least drought resilient land cover. 

 

The break-down of the changes by crops showed that part of the decrease in VI values between 2017 

and 2018 in agricultural land could be explained by a shift from winter crops to spring crops due to 

the late harvest in 2017. It could also be a result of the satellite imagery from the different years being 

taken at different dates, and capturing different stages of the growing cycle which would affect the 

results of cereal crops and rapeseed in particular. The largest decrease in VI values were seen in 

winter wheat and spring barley which indicates that these might be more drought sensitive. Both RUE 

and the standard deviation of RUE increased for the whole study area between the two years, which 

is likely a result of the large amount of precipitation amounts in 2017. 
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Abstract (Swedish) 
Sommaren 2017 uppfattades av många som ovanligt blöt och kall, men var i själva verket nära det 

normala i södra Sverige, medan sommaren efter (2018) var ovanligt varm och torr. Dessa två år utgör 

därför en intressant fallstudie för att undersöka hur extrem torka påverkar vegetationen i södra 

Sverige. Jämförelsen är särskilt intressant eftersom klimatförändringarna bland annat förväntas leda 

till en ökad frekvens av torka i området. 

 

Jämförelsen mellan de två åren gjordes genom att räkna ut vegetations index (VI) baserat på 

satellitbilder för att mäta vegetationens hälsa och vätskeinnehåll. Uträkningarna baserades på åtta 

bilder från Sentinel-2, fyra från 2017 och fyra från 2018. De index som användes är Normalised 

Vegetation Index (NDVI), Enhanced Vegetation Index (EVI) och Normalised Difference Water Index 

(NDWI). Rain Use Efficiency (RUE) räknades ut baserat på NDVI och EVI samt nederbördsdata från 

PERSIANN-CCS, i ett försök att mäta hur resistent vegetationen var mot torka. Data extraherades 

för olika marktäcken och grödor för att undersöka var de största skillnaderna mellan åren kunde ses.  

 

Marktäcket med minst minskning i (och viss ökning) i vegetations index (VI) värden mellan de två 

åren var blandad barr- och lövskog. Både barrskog och lövskog hade större negativa skillnader än 

blandad skog; vilken pekar mot att kombinationen av barr- och lövskog skulle kunna öka resistensen 

mot torka. Marktäcket med den största minskningen i VI värden var odlad mark, där värdena var lägre 

för alla VI, vilket indikerar att det är det marktäcke som är mest känsligt mot torka. 

 

Vidare undersökning av skillnaderna i VI värden för olika grödor visade att en del av de skillnader 

som sågs i odlad mark kan förklaras med att det odlades mer vårgrödor 2018 än 2017 på grund av 

den sena skörden 2017. Men skillnaderna kan också bero på att satellitbilderna är tagna vid olika 

tidpunkter under de två åren, och därför kan ha fångat växterna i olika utvecklingsskeden. Det här 

skulle framförallt kunna påverka resultaten för spannmål och raps. Den största minskningen av VI 

värden kunde ses i höstvete och vårkorn, vilket skulle kunna indikera att de är mer känsliga mot torka 

än andra grödor. Både RUE och standardavvikelsen i RUE ökade i hela studieområdet, vilket troligen 

beror på den stora mängden nederbörd under 2017. 
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1. Introduction 
The summer of 2017 was perceived by many in Sweden as wet and cold (Aftonbladet, 2017a, 2017b), 

but was in fact climatically close to a normal Swedish summer (SMHI, 2017). The summer of 2018 

stood in stark contrast to 2017, particularly in light of the severe drought that swept across Europe 

and caused of loss of income to farmers in Sweden (LRF, 2018). Scania, which has large area of 

farmland in Sweden, was particularly affected (Länsstyrelsen, 2018). 

Climate change will likely result in higher temperatures, larger amounts of precipitation in southern 

Sweden (Maracchi et al., 2005), and a prolonged growing season (Wiréhn, 2018). This is largely 

predicted to have a positive impact on vegetation in norther Europe as temperature and the length of 

the growing seasons both are limiting factors (Maracchi et al., 2005; Olesen et al., 2007). However, 

climate change will also increase the likelihood of extreme events such as heavy rainfall days and 

severe droughts (Trnka et al., 2011) with high losses and economic damages (Trnka et al., 2014). 

The last drought to severely impact the agricultural sector in Europe was in 2003, where significant 

reduction in rainfall and extreme heat resulted in large losses in crop yield (Ciais et al., 2005). 

However, recent analysis from Buras et al. (2019) found that the 2018 drought was even more severe 

than 2003. Previous studies have shown that difference land covers and vegetation types respond 

differently to drought (Buras et al., 2019; Zaitchik et al., 2006) and that the impact of summer 

droughts can be particularly severe due to the combination of drought and heat stress (Mittler, 2006). 

Agricultural land and pasture are often affected negatively by drought earlier and to a larger extent 

than other land covers (Buras et al., 2019; Zaitchik et al., 2006). Particularly intense events such as 

the one seen during the summer of 2003 and 2018 make interesting case studies as we can see how 

different types of vegetation can react to, and mitigate against, extreme temperatures and lack of 

rainfall. 

Satellite remote sensing data will be used in order to observe the differences between the 2017 and 

2018, as it allows data to be collected in a consistent way, over larger areas and with higher temporal 

resolution than other types of remote sensing (Niemeyer, 2008). The high temporal resolution makes 

it possible to study changes over time, through time series analysis, and with remotely-sensed data 

we can more easily detect spatial variability in vegetation. 

 

The aim of this study is to quantify the effects of the particularly severe drought of 2018 on the 

vegetation in southern Sweden in comparison to the relatively normal summer of 2017. The objective 

is to find if there are land cover or crop types that are especially vulnerable to extreme drought in this 

area. The study consists of two main sections; a literature study and analysis of satellite data covering 

the study area for the summers of 2017 and 2018. The literature study will focus on the effect of 

climate change on vegetation, vegetation response to drought and remote sensing of vegetation. The 

second part of the study will be based on analysis of gridded spatial data over the study area. Here 

the impact of drought on vegetation will be investigated by calculating the vegetation indices: 

Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI) and Normalized 

Difference water Index (NDWI) for four dates for each of the growing seasons in 2017 and 2018, 
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based on satellite data from Sentinel-2. The values will then be extracted based on vegetation land 

covers from Naturvårdsverket (Ahlkrona et al., 2018) and crop data from Jordbruksverket (2018a) 

and compared between the two years. Rain use efficiency (RUE) will be calculated based on NDVI 

and EVI and precipitation data from PERSIANN-CCS (Nguyen et al., 2019) in an attempt to measure 

drought resilience. These values will also be extracted based on land covers and crops, to see if there 

are any differences. 

2. Background 

2.1. Climate change and vegetation 

Both temperature and precipitation is expected to increase in northern Europe due to climate change 

(Maracchi et al., 2005). This will likely result in milder winters and longer summers in Sweden 

(Maracchi et al., 2005; Olesen et al., 2007). Although precipitation is projected to increase, summer 

droughts are also expected to become more common (Trnka et al., 2011), as is heavy rainfall days 

(Wiréhn, 2018) and extreme weather events (Kovats et al., 2014)  which could result in losses in yield 

(Rötter et al., 2013). 

  

In northern Europe crop productivity is limited by temperature and the short length of the growing 

season (Maracchi et al., 2005). Climate change, with higher temperatures and longer growing seasons, 

in combination with higher CO2  levels is largely predicted to have a positive impact on agriculture 

in northern Europe (Alcamo et al., 2007; Maracchi et al., 2005; Olesen et al., 2007).  The winter wheat 

yield is expected to increase (Olesen et al., 2007), as well as onion, (Maracchi et al., 2005) sugar beets 

and potato, although potato yields are sensitive to large temperature increases, and yields could 

decrease with continued climate change (Supit et al., 2012). 

 

However, a changing climate does of course present some challenges. Secondary effects of climate 

change could also affect crop health and yield. Milder winters increase the risk for plant diseases, 

insects, weeds and fungus in the soil, as more of these will survive the winter in a warmer climate 

(Kovats et al., 2014). Higher temperatures could also result in quicker maturity and lower yield 

especially for cereal crops such as winter wheat (Maracchi et al., 2005). Crop varieties that are better 

suited to longer growing seasons could be introduced to decrease the impact of increasing temperature 

on cereal crop yield (Olesen et al., 2012). However, increasing temperatures also present an 

opportunity to introduce new crop varieties and crops like maize could be farmed at a larger scale 

than what is currently possible (Olesen et al., 2007). 

  

Although crop yield is generally expected to increase due to climate change, precipitation variability 

and drought is projected to become more common, leading to higher event-based losses and economic 

damages across these events (Trnka et al., 2014). Drought is more difficult to prepare for than a 

gradual increase in temperature and affects plants and crops more acutely. In particular, harsh 

droughts associated with the increase in extreme climatic events in some projections (Li et al., 2009; 

Spinoni et al., 2018) could be especially harmful given the difficulty in predicting drought events 
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(Grasso & Singh, 2011) and the difficulty in adapting to irregular fluctuations (Toreti et al., 2019). 

The 2018 heatwave brought substantial agricultural (LRF, 2018) and social (Åström et al., 2019) 

damages, and drought present a significant challenge as the world’s climate alters further. 

 

2.2. Drought and vegetation 

Plants are exposed to different types of stress on a daily basis. These can include heat, low 

temperature, drought, frost, insects, mineral deficits, flooding, and disease (Lichtenthaler, 1996; 

Mittler, 2006). Drought is one of the plant stresses with the largest adverse effects (Shao et al., 2009) 

and the plant responses to these events are highly complex (Chaves et al., 2003). The response to a 

combination of different stresses is different to the response to the same stresses happening one at a 

time, and cannot always be predicted based on responses to singular stresses (Mittler, 2006; Rizhsky 

et al., 2004). The impacts on plant health have been found to be more severe in cases where droughts 

are combined with high heat (Mittler, 2006). Common plant responses to drought are closed stomata, 

decreasing photosynthesis, decreased plant productivity (Mittler, 2006; Shao et al., 2009) but 

different plant types have different coping mechanisms (Barnabás et al., 2008; Chaves et al., 2003). 

The impact on the plant will also depend on the timing, length and severity of the drought (Bartels & 

Souer, 2004). It is also interesting to note that there is a difference between crop yield and plant 

survival. Bruce et al. (2002) and Quarrie et al. (1999) both point out that a short reaction time to 

drought might be good for plant survival but not necessarily for crop yield. 

 

There are three main types of coping mechanisms; escape, avoidance and tolerance (Turner, 1986). 

Escape strategies are when the plant will speed up the growing cycle to finish the reproductive stage 

before it is adversely affected by drought (Chaves et al., 2003). This is a common coping mechanism 

in cereal crops and relies on the plant having enough reserves stored to produce fruit (Bruce et al., 

2002). Avoidance strategies are coping mechanisms where the plant will attempt to decrease the effect 

of drought as much as possible, by minimising water loss and maximising water uptake (Chaves et 

al., 2003). This is done by closing the stomata (Barnabás et al., 2008), and decreasing the leaf area 

through rolling leaves (Kadioglu & Terzi, 2007), adjusting the leaf angle, and shedding old leaves, 

and growing roots (Barnabás et al., 2008; Chaves et al., 2003). Avoidance strategies are seen in a 

wide range of plant types ranging from grasses (Kadioglu & Terzi, 2007), to deciduous (Varela et al., 

2010) and coniferous trees (Martínez-Ferri et al., 2000). Tolerance involves the plant developing 

ways in which it can be more resistant to drought conditions, such as developing smaller, thicker 

leaves, that are better at coping with low precipitation and high temperature (Larcher, 2000). 

Tolerance strategies are commonly seen trees in the Mediterranean area (Larcher, 2000; Martínez-

Ferri et al., 2000).  

 

A plant can use a combination of different strategies to cope with drought (Price et al., 2002). Rice, 

for example, combines avoidance, tolerance and escape mechanisms; it can speed up its growing 

cycle associated with escape strategies, develop deeper roots associated with drought avoidance, and 

make osmotic adjustments associated with tolerance strategies (Price et al., 2002).  
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Drought resilience can also be affected by plant composition in the area. It is not yet understood how 

mixed forests are coping with drought compared to forests with just one kind of tree species (Pretzsch 

et al., 2013). But it is suggested that mixed forest stands could gain from niche complementarity and 

therefore be more resilient to drought (Morin et al., 2011). Similar results have been seen before by 

Pretzsch et al. (2013) who studied Norway spruce, sessile oak and European beech, and found that 

although the drought resistance of sessile oak and Norway spruce did not change between pure and 

mixed forests, European beech became more resilient when mixed with especially oak. Gazol and 

Camarero (2016) found improved resilience in forests with silver fir, scots pine and European beech. 

However, Merlin et al. (2015) found no improvement in drought resilience when scots pine and sessile 

oak were mixed.  

 

2.3. Satellite-based spectral indices 

In order to communicate and compare the severity of droughts, they need to be quantified. There are 

a vast amount of indices and indicators that can be used for this purpose, focusing on many different 

factors (AghaKouchak et al., 2015; Niemeyer, 2008; Zargar et al., 2011). Vegetation indices (VI) 

used for quantifying agricultural droughts often focus on vegetation health (Hazaymeh & Hassan, 

2017), soil moisture (AghaKouchak et al., 2015) and evaporation (Glenn et al., 2010). 

Historically drought indices have been based on in situ measurements of precipitation, soil moisture 

and evaporation (AghaKouchak et al., 2015). With in situ measurements the results will be very 

accurate at a local scale, and you can measure the factors that directly affect the vegetation. However, 

it is difficult to cover larger areas, and creating spatial data relies on interpolating between the 

measuring stations, which has some limitations (Du et al., 2013; Rhee et al., 2010).   

Satellite imagery allows data to be collected in a consistent way, over larger areas and with higher 

temporal resolution than other types of remote sensing (Niemeyer, 2008). The high temporal 

resolution makes it possible to study changes over time, through time series analysis, and with 

remotely-sensed data we can more easily detect spatial variability. However, remote sensing data also 

has its limitations. There is no spectral wavelength that can in itself directly tell us about soil moisture 

or evaporation (Glenn et al., 2010). Therefore, these parameters must be estimated by combining 

different spectra and empirically testing them. In this way, different indices can be used to quantify 

drought impacts using remotely-sensed data.  

It is also important to acknowledge that there is a difference between vegetation status and vegetation 

water content. Using vegetation status indices as a drought index assumes that the vegetation health 

and the greenness of plants are correlated to the moisture content of the plant (Ceccato et al., 2001). 

This is mostly true, and drought is one of the environmental stresses with the most severe negative 

impacts on crops (Shao et al., 2009) but many other factors can affect the greenness and vegetation 

health, such as the plant stressors mentioned before (Mittler, 2006). In studying drought it could 

therefore be useful to look at indices for both vegetation status and vegetation water content (Gao, 

1996) or combine different types of indices (Hazaymeh & Hassan, 2017).  
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As noted before different types of vegetation, plants and ecosystems have different responses to 

drought. Previous studies have therefore used remotely sensed images together with land cover and 

climate data sets to find how the responses vary. Buras et al. (2019) compared the impacts of drought 

on different ecosystems during the droughts in 2003 and 2018. They found that the drought in 2018 

was more severe than the drought in 2003, but also that forested land covers were impacted less than 

grassland and agricultural land. A similar study by Zaitchik et al. (2006) also came to the same 

conclusion. Both of these studies used vegetation and land cover data of relatively low resolution and 

used data which grouped agricultural land, pastures and grassland together as a class (Buras et al., 

2019; Zaitchik et al., 2006). This could be misleading since the crops grown at a certain location can 

vary, and the choice of crop at a particular location can depend on the weather the previous year 

(Holmblad et al., 2019), and what has been growing in that location before (Jordbruksverket, 2018b). 

Incorporating crop data could further improve the results. 

3. Method 

3.1. Study area 

 

Figure 1. The study area and its land cover based on data from Naturvårdsverket (Ahlkrona et al., 2018). 

The study area is Vellinge municipality located at the southwestern tip of Sweden, in the county of 

Scania (Figure 1). Scania is known for its relatively mild climate and has the mildest winters and the 

longest summers in Sweden (SMHI, 2016). The mean temperatures during the winter months are 

about 0°c and the mean temperature over the summer months is about 17°C (SMHI, 2016). The area 

is relatively flat, and the soil is arable. This combined with the mild climate makes Scania a large 

producer of agricultural products. Vellinge was chosen as a study area both because of the large areas 

of agricultural lands, but also because it had more cloud free satellite images than other areas during 

the growing seasons of 2017 and 2018. The majority of the study area is used for crops, but there are 

also some smaller built up areas, and areas of forest, wetlands, and coastal vegetation.  
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3.2. Data 

The main datasets used to this project can be see seen in Table 1. 

Table 1. The resolution, dates and references for the main datasets used in this study 

Datasets Resolution Dates Reference 

Sentinel-2 10 m 2017 (30/4, 27/5, 19/6, 25/8)  

2018 (02/5, 30/5, 04/7, 23/8) 

Gatti et al. (2015) 

Crop data 10 m 2017 and 2018 Jordbruksverket (2018a) 

Land cover data 10 m 2018 Ahlkrona et al. (2018) 

Precipitation Originally 0.04° 

resampled to 10m 

Monthly 2008-2018 Nguyen et al. (2019) 

Precipitation  Measuring station Monthly 1980-2018 SMHI (2019a) 

Temperature Measuring station Monthly 1980-2018 SMHI (2019b) 

 

3.2.1. Sentinel-2 

The data analysis part of the project will primarily be based on raster data from the Sentinel-2 

Multispectral Instrument. Eight Sentinel-2 scenes were used, with four each covering the 2017 and 

2018 growing seasons, respectively. The Sentinel-2 data were downloaded from the Copernicus Open 

Access Hub in L2A processing format, which means that they are atmospherically-corrected surface 

reflectance measurements. All the satellite data were from Sentinel-2A except for May 30th, 2018 

which was from Sentinel-2B. Sentinel-2 has 13 bands and a number of R, NIR and  SWIR bands that 

are particularly useful for monitoring vegetation (Table 2) (Suhet, 2015).  

 

Table 2. Details about Sentinel-2 bands with a resolution of 10-20m adapted from Suhet (2015). Bands with 

a coarser resolution are not shown. 

 Band number 
 

Central 
wavelength 
(nm) 

Bandwidth 
(nm) 

Resolution (m) 

Blue 2 490 65 10 

 Green 3 560 35 

Red 4 665 30 

Near infrared 8 842 115 

Vegetation red edge (1) 5 705 15 20 

Vegetation red edge (2) 6 740 20  
Vegetation red edge (3) 7 783 20 

Narrow NIR 8a 865 20 

SWIR (1) 11 1610 90 

SWIR (2) 12 2190 180 

There is a difference in spatial resolution between some of the bands used in this study. For example, 

the R and NIR bands are both at a 10-meter resolution whereas two of the SWIR bands (11 and 12) 

have a resolution of 20 meters. These bands have been resampled so that they have the same resolution 

and spatial extent as the 10-meter bands. 
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In Figure 2 we can see the distribution of Sentinel-2 images over the growing season. The first, second 

and fourth image of each year are taken at roughly the same dates each year, however the third date 

differs between the years as it was difficult to find cloud free images of the study area between July 

and August in 2017. This also means that there is a large gap between the third and fourth image in 

2017. 

 

 
Figure 2. The dates of the Sentinel-2 images used in this study for 2017 and 2018. 

 

3.2.2. Land cover data 

The land cover data comes from Naturvårdsverket and is based on remotely sensed data from both 

Sentinel-2 and light detection and ranging (LIDAR) data that has been classified into land cover types 

(Ahlkrona et al., 2018). It is assumed that the spatial distribution of land cover has not changed much 

between the years, and therefore only land cover data from 2018 will be used. The areas of all land 

cover types in the study area can be seen in Appendix A, Figure A1. There are many land cover types 

in the area, and many of them are not vegetation types, or cover very small areas.  

 

Table 3. The areas of the vegetation land covers used in this study in percentages of the whole study area and 

ha 2018 based on the land cover data from Naturvårdsverket (Ahlkrona et al., 2018). 

 Area 2018 (ha) Area 2018 (%) 

Open wetland 242 2 

Agricultural land 8673 61 

Open vegetation 2797 20 

Coniferous forest 416 3 

Mixed forest 87 1 

Deciduous forest 570 4 

 

For the analysis in this project, all non-vegetated categories such as roads, sea, and buildings were 

removed, and the forest categories were grouped into broad forest classes; coniferous forest, mixed 

forest and deciduous forest. The spatial distribution of all land covers can be seen in Figure 1, and 

Table 3 shows the areas of the grouped vegetation types used for this project. 
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3.2.3. Crop data 

The crop data was requested from Jordbruksverket (2018a) and are based on a crop census 

(Jordbruksverket, 2019a). These data are very important to consider when comparing year to year 

vegetation/drought indices, as crops are often rotated and not farmed in the same place every year 

(Jordbruksverket, 2018a). In total there are 44 different crops being farmed in the study area over 

these two years. All crops farmed in in the study area during 2017 and 2018 can be seen in Appendix 

A, Figure A2. This is a large number of categories to compare and analyse. Therefore, only the crops 

that were cultivated over the largest area in both years were chosen. However, before this was done 

four different types of pasture were grouped together (“Slåtter och betesvall på åkermark med en  

vallgröda som ej är godkänd för miljöersättning”, “Slåtter och betesvall på åker”, “Slåtteräng (ej 

åker)” and ”Betesmark (ej åker)”), as they had very similar spectral values and properties.  

 

Table 4. The areas of the six most common crops in percentage cropland covered and ha for 2017 and 2018 

based on the crop data from Jordbruksverket (2018a) 

 Area 2017 (ha) Area 2018 (ha) Area 2017 (%) Area 2018 (%) 

Wheat (winter) 2758 2386 29 25 

Barley (spring) 1572 2113 16 22 

Pasture 1447 1419 16 15 

Rapeseed (winter) 1393 1019 15 11 

Sugar beet 1088 1233 11 13 

Vegetables 423 449 4 5 

 

 

 

 Figure 3. The spatial distribution of the six most common crops farmed in the study area in 2017 and 2018 

based on the data from Jordbruksverket (2018a) 

 

Then the selection of crops was done by calculating the percentage of the areas for each crop in each 

year. The crops were then sorted based on the percentage of the agricultural area each crop covered, 

and the crops that covered roughly 90% of the area were chosen. This resulted in six different crops, 

and the areas in percentages and hectares are presented in Table 4 and their spatial distribution is 
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shown in Figure 3. The six most common crops were the same for both years although their areal 

coverage varied slightly. The wheat and rapeseed varieties discussed here are planted in the 

autumn/winter, and the barley and sugar beet are spring crops. These crops will be referred to as just 

wheat, rapeseed, barley and sugar beet.  There is a shift from winter crops to spring crops between 

2017 and 2018 because of the late harvest in 2017 (Holmblad et al., 2019). Pasture is not farmed the 

same way as other crops, but will be included here since it covers a large part of the study area and 

therefore interesting to the results, but also since it is included in the crop data Jordbruksverket 

(2018a). 

 

3.2.4. Precipitation data 
In this project two types of precipitation data are used. A time series dataset based on in situ 

measurements and gridded dataset for the whole study area. The time series data from SMHI (2019a) 

has monthly temporal resolution and allows us to get reliable continuous data at one point in the study 

area. The data was collected from SMHI open data portal, and comes from a measuring station in 

Falsterbo, at the very southwestern corner of the study area. This measuring station was chosen as it 

is the only active measuring station in the area that can provide data for 2017 and 2018. Data from 

the years 1980-2018 were used in this study. 

 

The gridded rainfall comes from a dataset called PERSIANN-CCS which is based on machine 

learning and classifying clouds based on temperature, geometry and texture (Nguyen et al., 2019). 

This dataset also has a monthly temporal resolution. The original projection of this data is WGS84 

and it has a resolution of 0.04°. This data was re-projected, resampled and cropped to the same 

resolution as the other datasets (10-m) using a nearest neighbour resampling method. 

 

3.2.5. Temperature data 
Temperature time series data based on in situ measurements was also used. The temperature data 

(SMHI, 2019b) comes from the same measurement station (Falsterbo) as the precipitation data. It has 

a monthly temporal resolution and measurements from 1980 until 2018 were used in this study. This 

data was used together with the precipitation data from the same source to put the other datasets in a 

climate perspective since this precipitation and temperature time series data goes further back than 

the gridded data sets. 

 

3.3. Calculation of vegetation indices 

In this study two greenness related indices and one vegetation water content index will be used to 

give a better picture of the vegetation response to the two years. These indices are described in the 

following sections. 
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3.3.1. Normalized Difference Vegetation Index (NDVI) 

Vegetation absorbs large amounts of radiation in the red spectrum, and less in the near infrared band 

(Zargar et al., 2011). The larger the normalized difference, the healthier the vegetation. NDVI  (Rouse 

et al., 1974; Rouse et al., 1973) uses the difference in reflection in the near infrared (NIR, 842 nm) 

and red (R, 665 nm) bands to quantify vegetation health (Equation 1).   

𝑁𝐷𝑉𝐼 =  
𝑁𝐼𝑅−𝑅

𝑁𝐼𝑅+𝑅
      Equation 1 

It has been shown that NDVI has a high correlation with green biomass (Tucker et al., 1985). NDVI 

is commonly used to observe vegetation health as it is relatively easy to calculate and it has also been 

used to estimate the severity of droughts (AghaKouchak et al., 2015; Niemeyer, 2008). Li et al. (2002) 

found that there is a relationship between rainfall and NDVI but that the strength of the relationship 

varies spatially. The variation could be affected by annual rainfall, vegetation type and irrigation (Li 

et al., 2002) but the relationship is also influenced by soil type (Nicholson & Farrar, 1994) and 

topography (Chamaille‐Jammes et al., 2007). 

3.3.2. Normalized Difference Water Index (NDWI) 

NDWI (Gao, 1996) was developed to better measure the water content in vegetation and uses the NIR 

and the shortwave infrared (SWIR, 1610 nm) bands. Many versions of this index have been developed 

with slight differences in the wavelengths used and with different names (Ji et al., 2011) The formula 

for NDWI is provided in Equation 2. 

𝑁𝐷𝑊𝐼 =  
𝑁𝐼𝑅−𝑆𝑊𝐼𝑅

𝑁𝐼𝑅+𝑆𝑊𝐼𝑅
     Equation 2 

Whereas in NDVI the bands R and NIR have very different absorbance for vegetation, the difference 

in absorption in the two bands used for NDWI is relatively small. Liquid water does not absorb much 

in the NIR spectrum, and it only absorbs a small amount of radiation in the SWIR band (Gao, 1996). 

There is also less atmospheric interference in these bands making it less sensitive to atmospheric 

pollution than NDVI (Gao, 1996). Gu et al. (2007) found that the NDWI responded quicker and was 

more sensitive to drought than NDVI. 

3.3.3. Enhanced Vegetation Index (EVI) 

While both NDVI and NDWI are affected by soil background (Gao, 1996),  EVI was developed to 

be less sensitive to both soil background and atmospheric disturbances (Jiang et al., 2008). Boegh et 

al. (2002) studied an agricultural area in Denmark, using NDVI and EVI and found EVI to have a 

higher correlation with leaf area index. EVI has a higher sensitivity than NDVI for dense vegetation 

and high leaf biomass making it possible to observe spatial differences in high biomass regions in 

greater detail than what is possible with NDVI (Jiang et al., 2008; Mondal, 2011). It utilises the R, 

NIR and blue (B) bands where the B band is used to correct for atmospheric scattering. The formula 

for EVI can be seen in Equation 3. 

𝐸𝑉𝐼 =
2.5∗(𝑁𝐼𝑅−𝑅)

𝑁𝐼𝑅+6∗𝑅−7.5∗𝐵+1
     Equation 3 
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3.3.4. Rain-use Efficiency (RUE) 
RUE is the ratio between vegetation productivity and rainfall (Equation 4), 

𝑅𝑈𝐸 =
𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦

𝑅𝑎𝑖𝑛𝑓𝑎𝑙𝑙
     Equation 4 

RUE is a measure of the sensitivity of aboveground net primary productivity (ANPP) to variations in 

rainfall (Huxman et al., 2004) and drought (Ponce-Campos et al., 2013). It was originally used by 

LeHouerou (1984) and is often used as an indicator of land degradation and desertification in semiarid 

areas where relationship between vegetation productivity and precipitation is generally quite stable 

(Bai et al., 2008; Higginbottom & Symeonakis, 2014). Although NDVI is most commonly used as a 

proxy for ANPP (Bai et al., 2008; Fensholt & Rasmussen, 2011), RUE has also been calculated using 

EVI as proxy for ANPP in previous studies (Ponce-Campos et al., 2013; Zhao et al., 2018).  

 

2.1. Data analysis 

The means of the vegetation indices over the growing season were calculated for each pixel in the 

gridded data and used as measure of each season’s productivity (i.e. ANPP). The mean VI for the 

whole season was calculated by calculating the area under the line created by the VI values from the 

four dates each season for each pixel (Figure 4), and then dividing this by the number of days between 

the first and last image each year. It is calculated this way to better account for the difference in dates 

of the images for both years. RUE was calculated in a similar way by calculating the mean 

precipitation per day between April and August based on the monthly gridded precipitation data set 

and dividing the mean daily NDVI and EVI by the mean daily precipitation. 

 

 

Figure 4. A conceptual model visualizing a VI and the area used to calculate the mean over the growing season 

(in green) and the precipitation data (in blue) used together with the VI mean to calculate RUE. 

These values were extracted for the regrouped land covers and crops. The data was then visualised 

and presented in maps, and boxplots to show the distribution both spatially and in terms of values. 

The changes in means and standard deviation (SD) of NDVI, EVI, NDWI, RUENDVI and RUEEVI 

were calculated for the whole area and for each land cover and crop category. All tables in the main 
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text show relative changes which are calculated as in Equation 5, where x is either the median or the 

SD. 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑐ℎ𝑎𝑛𝑔𝑒 =
𝑥2018−𝑥2017

|𝑥2017|
    Equation 5 

Statistical tests were used to test differences in medians and distribution of values between the two 

years. A two-sample Wilcoxon signed rank test (Wilcoxon et al., 1970) was used to test if there is a 

difference in medians between the values of 2017 and 2018. For changes in distribution of values a 

median-adjusted two-sample Ansari-Bradley test was used (Ansari & Bradley, 1960). These tests 

were chosen because the distribution of the VI values for most crop and land cover categories are not 

normally distributed, and non-parametric hypothesis tests are therefore the appropriate choice 

(McCrum-Gardner, 2008). A number of different tests were used to determine if the samples were 

normally distributed, including a one-sample Kolmogorov-Smirnov test (Massey Jr, 1951), an 

Anderson-Darling test (Anderson & Darling, 1954), and the null hypothesis of normal distribution 

was rejected for all land cover and crop categories at a significance level of 0.05. The Wilcoxon 

signed rank test and Ansari-Bradley test were tested for all land cover and crop categories at a 

significance level of 0.05. 

4. Results 

4.1. Drought severity 

4.1.1. Climate 
The average monthly temperature and precipitation for 2017 and 2018, and a reference period 1980-

2010 are shown in Figure 5. Here the temperatures in 2017 follow the reference period quite closely 

for most of the year whereas the temperatures in 2018 are higher during the growing season. In terms 

of precipitation 2017 is generally wetter than the reference period for most months, whereas 2018 is 

dryer.  

 

Figure 5. The average temperature and precipitation in 2017, 2018 and a reference period 1980-2010.  
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Figure 6. The average monthly temperature and precipitation per year during April-August 1980-2018. 

 

The yearly mean temperatures and precipitation in 2018 stand out by being both one of the warmest 

years in the study area, but also one of the driest since 1980 (Figure 6).  

 

4.2. Vegetation response 

4.2.1. Whole study area 

The VI values are higher in 2017 than in 2018 for most dates (Figure 7). The values are quite similar 

in 2017 and 2018 for first, second and fourth image each year and the largest differences can be seen 

in between mid-June and mid-July. The indices capturing vegetation health (NDVI and EVI) show 

similar patterns to each other but differ slightly from NDWI which has a smaller decrease between 

the second and third image in 2018 than NDVI and EVI. 

Figure 7. The medians presented as lines, and the 25th-75th percentiles presented as shaded areas of the 

NDVI, EVI and NDWI during the growing season for the study area for 2017(blue) and 2018 (red) 
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Figure 8 shows the difference in averages between 2017 and 2018 in NDVI, EVI and NDWI. The 

change between the two years is generally negative for most of the area, but there are small areas 

where increases occur. It also seems like the areas with the negative and positive change between the 

two years are the same for different VI’s. The relative differences are larger for NDWI than for NDVI 

and EVI. 

 

 

 
 

Figure 8. The relative change in mean NDVI, EVI and NDWI between the growing seasons of 2017 

and 2018. 

 

Table 5 is summarising the changes in NDVI, EVI, NDWI, Precipitation, RUENDVI, RUEEVI for the 

whole study area. The median VI values seem to have decreased between 2017 and 2018, with the 

largest decrease seen in NDWI. There is also a decrease in precipitation (by almost 50%) and a large 

increase in mean RUENDVI and RUEEVI between the two years. The standard deviation is showing 

similar patterns; there has been a decrease in standard deviation for all VI’s, but the largest decrease 

is seen in NDWI. There is also a decrease in standard deviation for precipitation, and a large increase 

in standard deviation for RUE. 
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Table 5. The relative difference in medians and standard deviation in variables between the growing seasons 

in 2017 and 2018 for the whole study area NDVI, EVI, NDWI, Precipitation, RUENDVI and RUEEVI. All 

differences are statistically significant at a 0.05 significance level. Negative changes are shaded. Values for 

each year and actual changes can be found Appendix B (Table B1 & B2). 

 NDVI EVI NDWI Prec RUENDVI RUEEVI 

Δ median -0,248 -0,264 -0,594 -0,492 0,993 0,993 
Δ SD -0,099 -0,178 -0,187 -0,061 2,312 2,086 

 

4.2.2. By land cover 

Figure 9 shows the medians and the 25th-75th percentile of the vegetation indices per land cover over 

the growing seasons 2017 and 2018.  Different land cover classes appear to have different growing 

patterns. Agricultural land for example, has increasing values in the beginning of the season, and then 

a decrease at the end of season, whereas the other land covers have more similar VI values throughout 

the season. For agricultural land the VI values are lower in 2018 at the very beginning of the season 

and around July, the values in June and late August are quite similar. The temporal growing pattern 

for wetland and open vegetation are similar to each other, with a slight increase in VI values in spring, 

and then quite stable values during the rest of the season in 2017, but in 2018 there is a decrease in 

VI values over time after the two first images. The forest land cover types display much more stable 

VI values over time, especially the coniferous forest. For the mixed and the deciduous forest, the 

values are a bit lower at the beginning the season both years, but increase and remain quite stable for 

the rest of the season in 2017. In 2018 there is a decrease in VI towards the end of the season. The 

decrease is larger in deciduous forest than in mixed and coniferous forest. 
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Figure 9. The medians of each image for each land cover class presented as lines, and the 25th-75th 

percentiles presented as shaded areas of the NDVI, EVI and NDWI during the growing season for the study 

area for 2017(blue) and 2018 (red). 
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Figure 10. Boxplot showing the distribution of seasonal means of NDVI, EVI and NDWI for each land cover 

class during the growing seasons in 2017 and 2018. The box shows the 25th to the 75th percentile, and the 

line in the box represents the median. The whiskers include values up to +/-2.7σ. 

  

The distribution of the mean VI values for the aggregated land cover types is showed in Figure 10. 

The values in 2018 are generally lower for all VI’s. The largest negative differences are found in 

agricultural land, and the smallest changes are seen in mixed and coniferous forest. The changes in 

medians for the land cover types between the 2017 and 2018 are displayed in Table 6. The change in 

medians between the two years is negative for almost all land covers classes and VI’s apart from and 

NDVI and EVI in mixed forest and EVI in coniferous forest which have a positive change between 

the two years. The largest decreases for all VI’s are seen in agricultural land and open vegetation.  
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Table 6. Relative change in median NDVI, EVI and NDWI for each land cover type between 2017 and 2018. 

The bold values are not statistically significant using a two sample Wilcoxon signed rank test at a 0.05 level. 

Negative changes are shaded. Values for each year and actual changes can be found Appendix B (Table B3 

& B4). 

 Open wetland Agricultural 
land 

Open 
vegetation 

Coniferous 
forest 

Mixed forest  Deciduous 
forest 

Δ NDVI -0,079 -0,261 -0,168 -0,046 0,005 -0,062 
Δ EVI  -0,026 -0,300 -0,134 0,021 0,044 -0,034 

Δ NDWI -0,363 -0,635 -0,627 -0,081 -0,012 -0,231 

 

Table 7. Relative change in standard deviation of NDVI, EVI and NDWI for each land cover type between 

2017 and 2018. All changes are statistically significant using a two sample Ansari-Bradley test at a 0.05 

level. Negative changes are shaded. Values for each year and actual changes can be found Appendix B 

(Table B5 & B6).  

 Open wetland Agricultural 
land 

Open 
vegetation 

Coniferous 
forest 

Mixed forest  Deciduous 
forest 

Δ NDVI 0,060 -0,152 -0,070 0,083 0,128 0,130 
Δ EVI  -0,135 -0,195 -0,161 -0,037 0,052 0,043 

Δ NDWI 0,039 -0,278 -0,105 0,060 0,062 0,070 

 

Table 7 shows the difference in SD for the land cover types between the two years. Interestingly, 

there has been an increase in SD for most forest land cover classes apart from EVI in coniferous forest 

and a decrease in SD for agricultural land and open vegetation. The change in SD for wetland is a bit 

more mixed; there is an increase in in NDVI and NDWI and a decrease in EVI.  

 

Figure 11. Boxplot showing the distribution of RUENDVI and RUEEVI for each land cover class during the 

growing seasons in 2017 and 2018. The box shows the 25th to the 75th percentile, and the line in the box 

represents the median. The whiskers include values up to +/-2.7σ. 
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The median RUENDVI and RUEEVI values for all land covers have increased, but there is also a larger 

span of values in 2018 than in 2017 (Figure 11). The largest relative increase in median for both 

RUENDVI and RUEEVI is seen coniferous forest by followed by wetland and open vegetation. The 

smallest change in both relative and actual values is found in agricultural land (Table 8 and Appendix 

B, Table B8). Table 9 shows the relative changes in standard deviation between 2017 and 2018, and 

the SD has increased significantly for all land covers. The largest differences are seen in forested 

areas and the smallest are seen in agricultural land and wetlands. 

 

Table 8. The relative change in median RUENDVI and RUEEVI for each land cover type between 2017 and 

2018. All changes are statistically significant using a two sample Wilcoxon signed rank test at a 0.05 level. 

Values for each year and actual changes can be found Appendix B (Table B7 & B8). 

 Open wetland Agricultural 
land 

Open 
vegetation 

Coniferous 
forest 

Mixed forest  Deciduous 
forest 

Δ RUENDVI 1,280 0,897 1,236 1,285 1,159 1,065 

Δ RUEEVI  1,318 0,895 1,263 1,358 1,187 1,106 

 

Table 9. Relative change in standard deviation of RUENDVI and RUEEVI for each land cover type between 

2017 and 2018. All changes are statistically significant using a two sample Ansari-Bradley test at a 0.05 

level. Values for each year and actual changes can be found Appendix B (Table B9 & B10). 

 Open wetland Agricultural 
land 

Open 
vegetation 

Coniferous 
forest 

Mixed forest  Deciduous 
forest 

Δ RUENDVI 2,307 1,825 2,745 4,914 3,918 3,242 

Δ RUEEVI  1,823 1,624 2,387 4,347 3,373 2,938 

 

 

4.2.3. By crop 

There are larger differences in growing patterns over the season between crops than between land 

cover types (Figure 12). The VI values for cereal crops seem to have an increasing slope in the 

beginning of the season and a decreasing slope at the end of the season. Barley has lower initial VI 

values, with a sharper increase between the first and second image both years, compared to wheat. 

The VI values for the cereal crops are quite similar for both years during the first, second and fourth 

date, but have lower values in the third image of 2018. For rapeseed, the largest difference is also 

seen in the third images of each year. Other crops like sugar beets, and vegetables have an increasing 

trend throughout the season. Sugar beets and vegetables both have similar VI patterns. As opposed 

to the cereal crops and rapeseed, the largest decrease between 2017 and 2018 is not during the third 

date, but during the fourth. The values for the first and second image are quite similar between the 

years for both sugar beets and vegetables. But the VI values are higher for vegetables in 2018 than in 

2017 during the third image. It is also interesting to note, that there is a difference between how 

different indices respond; there is a decrease in the NDVI and EVI values for third image for the 

cereal crops and rapeseed in 2018 compared to 2017, but this decrease is smaller in NDWI. 
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Figure 12. The medians of each image for each crop type presented as lines, and the 25th-75th percentiles 

presented as shaded areas of the NDVI, EVI and NDWI during the growing season for the study area for 

2017(blue) and 2018 (red) 
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Figure 13. Boxplot showing the distribution of seasonal means of NDVI, EVI and NDWI for each crop type 

during the growing seasons in 2017 and 2018. The box shows the 25th to the 75th percentile, and the line in the 

box represents the median. The whiskers include values up to +/-2.7σ. 

 

The distribution VI’s for the crop types can be seen in Figure 13. Once again it can be seen that the 

values are generally lower in 2018 than in 2017, apart from for vegetables which have higher values 

for NDVI and EVI. Table 10, displays the changes in median VI values for the crops between 2017 

and 2018. The largest decreases are seen in wheat, barley and rapeseed for all VI’s except NDWI, 

where larger decreases can be seen in pasture. Interestingly, the only crop type that has any increasing 

VI values between the years is vegetables, where there is an increase in NDVI and EVI. However, 

the water content index NDWI have lower values but this change is not statistically significant. 
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Table 10. Relative change in median NDVI, EVI and NDWI for each crop type between 2017 and 2018. The 

bold values are not statistically significant using a two sample Wilcoxon signed rank test at a 0.05 level. 

Negative changes are shaded. Values for each year and actual changes can be found Appendix B (Table B11 

& B12). 

 Wheat 
(winter) 

Barley 
(spring) 

Rapeseed 
(winter) 

Sugar beet Vegetables Pasture 

Δ NDVI -0,290 -0,306 -0,178 -0,119 0,078 -0,157 

Δ EVI  -0,312 -0,350 -0,221 -0,140 0,035 -0,141 

Δ NDWI -0,528 -0,635 -0,400 -0,548 -0,172 -0,667 

Table 11. Relative change in standard deviation of NDVI, EVI and NDWI for each crop type between 2017 

and 2018. All changes are statistically significant using a two sample Ansari-Bradley test at a 0.05 level. 

Negative changes are shaded. Values for each year and actual changes can be found Appendix B (Table B13 

& B14). 

 Wheat 

(winter) 

Barley 
(spring) 

Rapeseed 

(winter) 

Sugar beet Vegetables Pasture 

Δ NDVI 0,890 0,288 0,228 -0,125 -0,092 -0,081 

Δ EVI  0,169 -0,060 0,154 -0,136 0,019 -0,237 

Δ NDWI 0,214 -0,044 0,463 -0,148 -0,096 -0,155 

 

 

The changes in SD for the chosen crops and VI’s between 2017 and 2018 can be seen in Table 11. 

The changes in SD show less clear patterns than the changes observed in medians in Table 10. For 

wheat and rapeseed there is an increase in SD. The increase is larger in NDVI and EVI for wheat, and 

in NDWI for rapeseed. For barley, there is a decrease in SD for all VI’s except NDVI. For the other 

crops the SD has generally decreased, apart from in EVI for vegetables.  

 

RUE has generally increased for all the crops (Figure 14) as it has for the whole study area. The 

smallest increases in median are seen in barley for both RUENDVI and RUEEVI, followed by vegetables 

and larger increases are seen in sugar beets, and pastures (Table 12). Table 13 shows the difference 

in SD between 2018 and 2017. The largest increase in SD of RUE is seen in pasture and sugar beet, 

and the smallest increase is seen in rapeseed for RUENDVI and in barley for RUEEVI. 
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Figure 14. Boxplot showing the distribution of RUENDVI and RUEEVI for each crop type during the growing 

seasons in 2017 and 2018. The box shows the 25th to the 75th percentile, and the line in the box represents the 

median. The whiskers include values up to +/-2.7σ. 

 

Table 12. Relative change in median RUENDVI and RUEEVI for each crop type between 2017 and 2018. All 

changes are statistically significant using a two sample Wilcoxon signed rank test at a 0.05 level. Values for 

each year and actual changes can be found Appendix B (Table B15 & B16). 

 Wheat 
(winter) 

Barley 
(spring) 

Rapeseed 
(winter) 

Sugar beet Vegetables Pasture 

Δ RUENDVI 0,976 0,599 0,935 1,217 0,858 1,297 

Δ RUEEVI  0,970 0,488 1,177 1,278 0,693 1,319 

 

Table 13. Relative change in standard deviation of RUENDVI and RUEEVI for each crop type between 2017 

and 2018. All changes are statistically significant using a two sample Ansari-Bradley test at a 0.05 level. 

Values for each year and actual changes can be found Appendix B (Table B17 & B18). 

 Wheat 
(winter) 

Barley 
(spring) 

Rapeseed 
(winter) 

Sugar beet Vegetables Pasture 

Δ RUENDVI 2,269 1,721 1,663 2,916 1,723 2,951 

Δ RUEEVI  2,038 1,090 1,917 2,701 1,593 2,044 
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5. Discussion 

5.1. Vegetation response 

5.1.1. The whole study area 
Based on the in situ data we could see that 2018 was an unusually warm and dry summer. Although 

some summers have been similarly dry, no other summer has had the combination of such high 

temperatures and such low precipitation since 1980.  

 

The results show that the dry weather has most likely affected the vegetation, as the vegetation indices 

show lower values in 2018 for most of the area. There are some small patches where the VI’s had 

higher values in 2018. However, comparing field by field would be misleading, as the increase in a 

VI in particular field might just be the result of a difference in crops farmed in that location between 

the two years. Although the decrease in VI values is probably largely attributed to the dry weather, 

other things could also have affected the results, such as the cold and wet spring of 2018. The majority 

of the study area is agricultural land, and the differences between the two years are most likely 

enhanced by differences between the cereal crops which are discussed further in section 5.1.3. 

 

The change in RUE for the whole area was positive, which could indicate that most of the vegetation 

has some resilience against lower precipitation. The large difference in RUE between the two years 

is likely a result of the unusually high precipitation in 2017 (see Figure 5). Similar results have been 

seen in previous studies; Ponce-Campos et al. (2013) found the lowest RUE values across different 

biomes during the wettest years. During high precipitation not all precipitation is available to the plant 

as some will disappear as runoff, recharging of groundwater, and an increased amount of precipitation 

is stored by the soil (Fensholt & Rasmussen, 2011; Ponce-Campos et al., 2013).  

 

RUE is based on the assumption that there is a relationship between precipitation and vegetation 

productivity, as has been found in arid areas where precipitation is a limiting actor for vegetation 

growth (Higginbottom & Symeonakis, 2014). However, this relationship is not linear (Fensholt & 

Rasmussen, 2011; Higginbottom & Symeonakis, 2014), and often becomes weaker with higher 

precipitation as it is no longer a limiting factor for vegetation health (Ponce-Campos et al., 2013). 

Precipitation is normally not considered a limiting factor for vegetation in southern Sweden (Roerink 

et al., 2003), especially not during wet years such as 2017, which means that the assumption made 

might not have been correct. The fact that the relationship between vegetation and precipitation is 

likely very weak in the study area during these years, mean that changes in RUE most likely cannot 

be used as a measure of drought resilience, as the results are mostly a result of decreasing 

precipitation. 

 

5.1.2. By land cover 
The largest decrease in VI values between 2017 and 2018 was seen in agricultural land, and the 

smallest decreases were seen in the forest land cover types, especially coniferous and mixed forests.  

The lower VI values for agricultural land in the beginning of the season observed in 2018 could be 

due to the cold spring, and late sowing of both winter and spring crops in this season (Holmblad et 
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al., 2019) as a wet spring can make sowing more difficult (Wiréhn, 2018).  However, only rapeseed 

and wheat had lower values for all VI’s at the beginning of the season in 2018, and the differences in 

winter wheat were rather small. The lower values in the beginning of the season could also be due to 

a shift from winter crops towards spring crops as response to the late harvest in 2017. Both winter 

wheat and winter rapeseed decreased by 4% each in area between the years, whereas spring barley 

and sugar beets increased in area by 6% and 2% respectively.  Regardless of what caused this 

difference and to what extent, it results in a difference even before the summer drought, which affect 

the results for the whole season.  

 

This shift could also have affected the VI values for the whole area, as the majority of the area is used 

for agriculture. This points towards the importance of considering the difference in crops and areal 

distribution of crops between the years, when comparing land covers with a varied composition, either 

by taking the composition into account, or by breaking the agricultural land cover class down into 

smaller categories or individual crops with similar temporal growing patterns. The largest difference 

in agricultural land between the two years are seen in the third image, and similar to the decreases in 

values seen in wheat, barley and rapeseed seen at the same time. The results for individual crops and 

how they have affected the results for the whole area and the agricultural land cover class will be 

discussed in the next section. 

 

In previous droughts it has been observed that the decreases in VI values for crop land and pastures 

are larger and have an earlier onset than the decreases in forest land covers (Zaitchik et al., 2006). 

Although, we do not have enough images to comment on the onset of the drought response, the 

decreases in VI values were larger in open vegetated areas than in the forest land covers. The decrease 

in seasonal VI seen in wetland between 2017 and 2018 were smaller than for agricultural land and 

open vegetation. It is possible that the higher initial water content meant that the decrease is a bit 

smaller. 

 

The forest land cover classes generally had a smaller decrease in VI values than other land covers. 

These results are similar to the findings of Buras et al. (2019) and Zaitchik et al. (2006). Mixed forest 

had the smallest decrease and largest increases for all VI’s. This suggests that the combination of 

coniferous and deciduous species are more drought resilient than the two forest types grown 

separately and in line with the findings of Gazol and Camarero (2016) and Pretzsch et al. (2013). In 

this study the land cover forest types were grouped together into the classes deciduous, coniferous, 

and mixed forest and it is therefore difficult to make further species-specific comparisons to literature. 

 

In terms of changes in SD, there was a decrease in all non-forest land cover types, with the largest 

decrease in the agricultural land, followed by open vegetation. This is probably because drought 

conditions will make these land covers either get closer to the colour of bare soil, or become more 

uniformly brown. The changes in standard deviation for the forest land covers are generally positive, 

except for EVI for coniferous forest where a slight decrease can be seen. This could point to a larger 

patchiness of the forest areas, or an uneven response to drought. 
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RUE is significantly higher for all land covers in 2018 compared to 2017. The largest actual change 

in RUE us seen in mixed forest, but in terms of relative changes both wetland and open vegetation 

had larger increases in RUE than mixed forest. Agricultural land had the smallest actual and relative 

increase in RUE between 2017 and 2018 and is probably the least drought resilient land cover. 

Although this could indicate that agricultural land is the least drought resilient land cover and that 

mixed forest is not the most drought resilient land cover, the weak relationship between productivity 

and precipitation in this area, means that it is difficult to draw conclusions about drought resilience 

based on RUE. 

 

5.1.3. By crop 
It is clear from the results and previous studies (Wardlow et al., 2007) that different crops have 

different temporal growing patterns. In the results section we could see that winter wheat and rapeseed 

that were sown the autumn before had high VI values at the beginning of the season, but low at the 

end of the season; the spring barley which was planted in spring, had a similar pattern but had slightly 

lower VI values in the beginning of the season.  

 

The largest decreases in VI values between 2017 and 2018 could be seen in the cereal crops (wheat 

and barley) and rapeseed for most VI’s. These results seem to agree with Jordbruksverket (2018a) 

reporting yields 33% lower than usual for winter wheat and rapeseed, and 40% lower than usual for 

spring barley (Holmblad et al., 2019). In terms of actual changes between the two years wheat had 

the largest negative change, but in relative values the largest negative changes were seen in barley, in 

line with Holmblad et al. (2019).  

 

Cereal crops commonly use escape strategies during heat and drought stress, which result in an earlier 

maturation of plants, and often a lower yield (Barnabás et al., 2008), both of which was reported in 

2018 (Holmblad et al., 2019). This behaviour can make it difficult to measure drought of cereal crops 

with just a few satellite images per year, as it might be difficult to know what phenological state is 

being captured. It is likely that the last satellite image in late august is in fact just capturing bare soil 

in the areas where cereal crops and rapeseed is grown, but the differences in the VI values for these 

dates will still affect the overall result.  

 

The difference in timing between the pictures means that we are missing out on crucial parts of the 

growing stages, and in this case the difference in cereals and rapeseed between 2017 and 2018 is 

enhanced. The third image in 2018 is likely capturing either partially harvested fields or maturing 

crops, whereas these three crops probably have not reached the same stage in the third image from 

2017, as the VI values are still quite high at this point. The cereal crops 2017 reached maturity a bit 

later in the season (Holmblad et al., 2017), but this decrease in VI values which probably happened 

between the third and fourth image in 2017 (Wardlow et al., 2007) is not shown. The VI values for 

the cereal crops and rapeseed in 2018 are most likely still lower than 2017, but not as much lower as 

the results in this study suggest. Winter wheat, rapeseed and barley make up approximately 60 % of 

the agricultural land, and 40% of the whole study area. This means that the impact of the enhanced 
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difference due to lack of data is large both on the whole study area, and on the agricultural land cover 

class.  

 

The VI values for sugar beets decreased less than the cereal crops and it was seen in the results that 

they have a different growing pattern compared to the cereal crops. They start growing a bit later in 

the season, but were planted unusually late both in 2017 and 2018 (Holmblad et al., 2019; Holmblad 

et al., 2017). This means that none of these years are normal for sugar beets. Sugar beets use avoidance 

and tolerance strategies as a response to drought, which include growing more roots as a response to 

drought (Romano et al., 2013). This could be one explanation to the smaller decrease in VI values for 

sugar beets between the two years. Although sugar beets are expected to gain from warmer and earlier 

springs in northern Europe, drought losses are still expected to increase, especially since breeding of 

sugar beets so far has not been focused on drought tolerance (Jones et al., 2003). 

 

Vegetables was the only crop category with higher values in 2018 than in 2017 for EVI and NDVI, 

however the difference is relatively small compared to the other crops.  Although higher values were 

seen in 2018, the reported yields were lower (Jordbruksverket, 2019b). The higher values for the 

growing season in 2018 are probably a result of higher values in July, but the values at the end of the 

season were lower in 2018, which could have affected the yield negatively. The category called 

vegetables contains many different plant species and types such as onion, carrots, salad and cabbage 

(Jordbruksverket, 2015) which makes it difficult to compare to other data and literature. We also do 

not know how the composition of vegetables and how it changed between the two years. 

 

As opposed to the other crops mentioned above, pasture is not a farmed crop which is sown or 

harvested in the same way, and it therefore seems to have a bit more stable values over the season, 

especially in 2017. Decreases in yield (Smit et al., 2008) and VI values (Zaitchik et al., 2006) of 

grasslands and pasture have been observed in previous droughts such as in the drought in Europe 

2003. 

 

The SD has less clear patterns for crops than for other land covers. It could be that the responses are 

different for different crops, and the VI values for pasture becomes more uniformly low, whereas for 

rapeseed there could be an increased patchiness resulting in higher SD. There could also be a 

connection to whether the crops are winter or spring crops, as there was a decrease in SD for most 

VI’s for sugar beets, vegetables, and barley which are all spring crops, whereas for rapeseed and 

wheat which are winter crops there was an increase in SD for most VI’s between 2017 and 2018. 

 

Both RUE and SD of RUE increased for all crop types between the years. Vegetables had the second 

lowest increase in RUE after barley even though vegetables had the largest positive change in VI’s 

between the two years. This could mean that despite the larger increase in VI values in vegetables, 

vegetables might not be more drought resilient than wheat which had the second largest decrease in 

VI values between the two years. The largest increase in RUE was seen in pasture and sugar beets. 

However, as noted in previous sections, the RUE values should be interpreted with caution.  
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5.2. Differences between indices 

NDVI and EVI are two of the most commonly used indices for measuring vegetation health and did 

generally show similar patterns for most land covers and crops in the results. However, NDVI 

generally had higher values than EVI and larger changes between the two years, and also showed 

larger differences between the two years in actual numbers. This could be due to NDVI reaching 

higher values and having a steeper increase in values than EVI as a response to the same change in 

vegetation (Jiang et al., 2008). As mentioned in the background, this is a trait that makes EVI more 

suitable for measuring differences in areas of high biomass, where NDVI has often reached its 

maximum value (Jiang et al., 2008) but in this study area the vegetation is not very dense; NDVI 

might therefore be more useful for spotting changes. 

 

The changes in relative values have been larger for NDWI than for the other VI values, which could 

partially be explained by the fact that NDWI generally has lower values, and more values closer to 

zero than the other indices. However, NDWI did also have larger differences between the two years 

in actual numbers for some crops and landcovers.  

 

There are also differences in the behaviour between the vegetation health/greenness indices (NDVI 

and EVI) and NDWI. For example, for the crop types wheat, barley and rapeseed in 2018, there is a 

sharp decrease between the second and third image in NDVI and EVI and then a very small change 

between the third and the fourth image. The fourth image of the season is most likely bare soil for 

these crops, in the third image in 2018 NDVI and EVI have similar values to the fourth. NDWI for 

these crops have a different pattern, with a smaller drop in values between the second and third image, 

and another drop in values between the third and fourth image. This could be interpreted as crops 

reaching maturation and therefore being drier and less green, resulting in lower NDVI and EVI, 

especially since NDVI can’t distinguish between dry vegetation and bare soil (Delegido et al., 2015) 

but it might still not be as dry as bare soil, and therefore having a smaller decrease in water content 

index NDWI. An index such as the Green Brown Vegetation Index (GBVI) which can also measure 

dry vegetation, and distinguish between bare soil and vegetation (Delegido et al., 2015) could have 

given more information about the ground cover during the different dates. 

 

5.3. Limitations and possible improvements 

5.3.1. Data 
There are some problems with this study out of which the timing of the Sentinel-2 data is the most 

important. The first, second and fourth images are taken on similar dates on both years, just a few 

days apart. However, the third image of each seasons are approximately two weeks apart.  This is a 

long time, and means that there is a an almost two month gap between the third and fourth image in 

2017. These dates were chosen as especially the summer of 2017 was very cloudy, but having more 

images for each year, at more similar dates between June and August would have given more 

information about the differences between the two years. 

 

In section 5.1.3, it is discussed how the lack of images for each year cause an enhanced difference 
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between the two years. This would be resolved if data of much higher temporal resolution would have 

been used as this is needed to capture the different stages in the growing cycle of different crops. The 

selection of images was made based on completely could free images, however, it would have been 

possible to also use partially cloudy images, and mask out the cloudy areas to produce a time series 

with more dates, but less available pixels per date (Gómez-Chova et al., 2017). This approach might 

have filed in the gaps and given more information about how the values changed over the season. 

 

There is also a problem with the difference in spatial and temporal resolution between datasets. All 

imagery used in this study has been resampled to 10 by 10-meter resolution for pixel by pixel analysis 

to be possible. However, the initial resolution of the gridded rainfall dataset is very coarse in 

comparison with to the other datasets. The coarse resolution creates very sharp boundaries between 

grid shaped areas of high precipitation and other grid shaped areas of low precipitation, whereas in 

reality precipitation gradients are often more continuous, although there can still be large spatial 

variations. It is impossible to know how the rainfall is distributed in each cell, and a possible source 

of error that needs to be considered for the calculations where it has been used together with datasets 

of higher spatial resolution, as it not only affects the results, but also the distribution and variation of 

values. 

 

The possible dates of the satellite imagery are limited to the frequency of which the satellite is passing 

the study area, and the usefulness of the images is dependent on many different factors such as 

cloudiness, aerosols among others. Other datasets such as the gridded and in situ precipitation data 

sets, don’t have the same date limitations, and are therefore using standardised timescales, such as 

precipitation per month. In this study it was assumed that the precipitation each month was uniform, 

although this is most likely not the case, and the precipitation of the full months were used in 

calculations. Future studies could gain from using data of higher and/or matching temporal resolution, 

to reduce the sources of error caused by differences in time scale.  

 

The land cover data is based on classification of Sentinel-2 data from 2018 and lidar data.  In 

classification of remote sensing data there is a risk of pixels being misclassified. Some pixels contain 

mixed land covers, and have been classified as one or the other, or a different land cover (Ahlkrona 

et al., 2018). This means that there could be a slight error in the results, especially in land covers that 

cover very small and disconnected areas, and in borders between land cover classes (Ahlkrona et al., 

2018). The same land cover dataset was used for both years as it is assumed that there are no large 

changes between the years, however, there are still some changes, which mean that there could be an 

added error in the VI data for land cover data in 2017.  

 

As mentioned in the method the crop data is based on crop census data (Jordbruksverket, 2018a). It 

is continuously verified with comparisons with aerial imagery, and in some cases when the data is 

difficult to verify based on images, Jordbruksverket are doing visits to check that the data provided 

is correct (Jordbruksverket, 2019a). The reliability is therefore very high. However, this data is 

originally in vector form and has been transformed into raster data of the same resolution as the other 
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datasets. This adds another source of error, especially at the edges of each field where mixed pixels 

might occur as a result of the transformation.  

 

5.3.2. Methods 
As discussed in the previous sections the current method with just four images taken each year is not 

suitable for comparing crops such as cereals which have a varying timing of maturity and very clear 

stages in the growing cycle during which it has different spectral properties (Wardlow et al., 2007). 

It works better for the land cover classes which tend to have more stable VI values over the season 

such as the forest land covers, or where there is a clear trend such as in sugar beets. In these cases 

even with fewer images, the deviations will more likely point to the effect of changed growing 

conditions for the plants. 

 

For the time series visualisations in this study, it is assumed that the change between the dates is 

linear. This is not the case for most crops for crops like winter wheat, corn and sorghum (Wardlow et 

al., 2007). In previous studies it has been seen that the VI patterns for crops like wheat looks more 

like a curve with low values int the beginning and end of the growing cycle and higher values in the 

middle (Jonsson & Eklundh, 2002; Wardlow et al., 2007). With a larger number of images, fitting a 

curve to the points could therefore have given a better estimate of the VI values but also given more 

information about the growing season (Jonsson & Eklundh, 2002) and different stages of the growing 

cycle (Sakamoto et al., 2005), 

 

In this study only two years are used; one dry year and one wet year. The wet year is representing a 

slightly more normal year, as the temperature is more normal. But adverse effects have been reported 

in 2017 as well, due to other reasons, such as the large amounts of precipitation, the cold spell in late 

spring and the unstable weather (Holmblad et al., 2017). By using data from more years with more 

available dates, reference data could be created with typical temporal curves for different crops, which 

could be compared to years of drought in order to see the impacts of drought during a year more 

clearly. In this study we can see how the years relate to each other, but not how the VI values of these 

years fit in the bigger picture. The choice of two consecutive years also means that they are not 

completely separate, as the vegetation in 2018 is affected by the precipitation (Reichmann et al., 2013) 

and crops (Jordbruksverket, 2018b) the year before. 
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6. Conclusion 
The summer of 2018 stood out as one of the warmest and driest summers in the study area since 1980. 

The precipitation was almost 50% lower than the summer before. As a result there was a decrease in 

NDVI, EVI and NDWI and an increase in RUENDVI and RUEEVI for most of the study area between 

the growing seasons in 2017 and 2018. It was found that the land cover with the least negative changes 

in VI values was mixed forest. Both coniferous and deciduous forest had more negative changes than 

mixed forest. This suggests that the combination of tree types might increase the drought resilience 

of mixed forests. However, the standard deviation of the forest classes also increased, pointing to a 

varied response to drought. The land cover with the largest decrease was agricultural land and it is 

likely the least drought resilient land cover in the study area. The break-down of the changes by crops 

showed that although the difference between the two years is likely attributed to drought, part of the 

decrease in VI values between the years in agricultural land could be explained by a shift from winter 

crops to spring crops due to the late harvest in 2017. It could also be a result of the satellite imagery 

from the different years being taken at different dates, and capturing different stages of the growing 

cycle which would affect the cereal crops and rapeseed in particular. The crop with the largest 

decrease in VI values was winter wheat and spring barley, pointing towards these crops being less 

drought resilient than sugar beet and vegetables which had smaller differences between 2017 and 

2018. 

 

Both RUE and the standard deviation of RUE increased for the whole study area between the two 

years. This could partially be due to the wet summer of 2017 causing very low RUE values that year 

and therefore enhancing the difference in RUE between 2017 and 2018. RUE was used in an attempt 

to measure drought resilience; the land cover class with the largest actual change in RUE was 

coniferous forest and mixed forest, but both wetland and open vegetation had a larger relative increase 

than mixed forest. For the crops the largest increase in RUE was seen in pasture and sugar beets, and 

not in vegetables which had largest increase in VI values. However, there is no strong relationship 

between precipitation and vegetation productivity in the study area, and these results should therefore 

be interpreted with caution. 

 

The study has some weaknesses; the main one being the small number of satellite images for each 

year, which means that crucial information about the growing cycle is missing. There is also a 

difference in temporal and spatial resolution between the different data, which makes them more 

difficult to combine and which causes an error in RUE. The use of just two different years means that 

all results are relative to each other, and the differences could be a result of anomalous values either 

of these years.  

 

The 2018 drought was shown to have a marked impact on the vegetation in the study area in Vellinge, 

Sweden. To better predict and prepare for future drought events, more research in the area would be 

beneficial. Future studies could gain from using more images for each year to better capture changes 

over the season, and using data for more than just two years in order to put the results into a historical 

perspective. 
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Appendices 

Appendix A – All land covers and crops 
This section shows all different land covers and crop types that were present in the study area during 

2017 and 2018. 

 

 

Figure A1. The distribution of land covertypes in the study area, based on land cover data from 

Naturvårdsverket (Ahlkrona, Cristvall, Jönsson, Mattisson, and Olsson, 2018) 

 

 

Figure A2. The crops farmed in the study area in hA in 2017 and 2018 based on the data from Jordbruksverket 

(2018a) 
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Appendix B – Vegetation Index and Rain use efficiency values 
This section contains tables with vegetation index, precipitation and rain use efficiency values for 

2017 and 2018, and the actual changes in values between the two years, for all landcover and crop 

type categories. 

 

Table B1. Median and standard deviation in NDVI, EVI, NDWI, Precipitation, RUENDVI and RUEEVI in 2017.  

 NDVI EVI NDWI Prec RUENDVI RUEEVI 

 2017 2018 2017 2018 2017 2018 2017 2018 2017 2018 2017 2018 

Median 0,663 0,509 0,478 0,360 0,246 0,114 305,0 150,0 0,248 0,497 0,175 0,351 

SD  0,197 0,177 0,149 0,123 0,162 0,131 40,44 37,96 0,091 0,303 0,063 0,194 

 

Table B2. Actual change in medians and standard deviation of NDVI, EVI, NDWI, Precipitation, RUENDVI and 

RUEEVI for the whole study area. All differences are statistically significant, the change in median was tested 

with a two sample Wilcoxon signed rank test, and the change in SD was tested with a two sample Ansari-

Bradley test. The negative changes are shaded. 

 NDVI EVI NDWI Prec RUENDVI RUEEVI 

Δ median -0,154 -0,118 -0,132 -155,0 0,249 0,176 

Δ SD -0,020 -0,027 -0,030 -2,479 0,212 0,131 

 

Table B3. Median NDVI, EVI and NDWI for each land cover type in 2017 and 2018. 

 Open wetland Agricultural 
land 

Open 
vegetation 

Coniferous 
forest 

Mixed forest Deciduous 
forest 

 2017 2018 2017 2018 2017 2018 2017 2018 2017 2018 2017 2018 

NDVI 0,757 0,699 0,654 0,489 0,717 0,606 0,744 0,711 0,841 0,845 0,792 0,746 

EVI  0,501 0,488 0,498 0,354 0,472 0,411 0,365 0,372 0,453 0,472 0,483 0,468 

NDWI 0,249 0,167 0,282 0,118 0,198 0,088 0,219 0,202 0,306 0,302 0,255 0,200 

 

Table B4. Actual change in median NDVI, EVI and NDWI for each land cover type between 2017 and 2018. 

The bold values are not statistically significant at a 0.05 level using a two sample Wilcoxon signed rank test. 

The negative changes are shaded. 

 Open wetland Agricultural 
land 

Open 
vegetation 

Coniferous 
forest 

Mixed forest  Deciduous 
forest 

Δ NDVI -0,058 -0,165 -0,111 -0,033 0,004 -0,046 
Δ EVI  -0,012 -0,144 -0,061 0,008 0,019 -0,016 

Δ NDWI -0,083 -0,164 -0,110 -0,017 -0,003 -0,055 

 

Table B5. Standard deviation in NDVI, EVI and NDWI for each land cover type in 2017 and 2018. 

 Open wetland Agricultural 
land 

Open 
vegetation 

Coniferous 
forest 

Mixed forest Deciduous 
forest 

 2017 2018 2017 2018 2017 2018 2017 2018 2017 2018 2017 2018 

NDVI 0,110 0,117 0,119 0,101 0,179 0,166 0,137 0,149 0,144 0,162 0,156 0,177 

EVI  0,134 0,116 0,113 0,091 0,160 0,134 0,089 0,085 0,105 0,110 0,123 0,128 

NDWI 0,129 0,134 0,141 0,102 0,138 0,124 0,103 0,109 0,123 0,131 0,120 0,128 
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Table B6. Actual change in standard deviation of NDVI, EVI and NDWI for each land cover type between 

2017 and 2018. All changes are statistically significant at a 0.05 level using a two sample Ansari-Bradley 

test. The negative changes are shaded. 

 Open wetland Agricultural 
land 

Open 
vegetation 

Coniferous 
forest 

Mixed forest  Deciduous 
forest 

Δ NDVI 0,007 -0,018 -0,013 0,011 0,018 0,020 
Δ EVI  -0,018 -0,022 -0,026 -0,003 0,005 0,005 

Δ NDWI 0,005 -0,039 -0,015 0,006 0,008 0,008 

 

Table B7. Median RUENDVI and RUEEVI for each land cover type in 2017 and 2018. 

 Open wetland Agricultural 
land 

Open 
vegetation 

Coniferous 
forest 

Mixed forest Deciduous 
forest 

 2017 2018 2017 2018 2017 2018 2017 2018 2017 2018 2017 2018 

RUENDVI 0,311 0,718 0,236 0,452 0,283 0,628 0,348 0,776 0,420 0,866 0,372 0,748 

RUEEVI  0,218 0,507 0,171 0,329 0,195 0,441 0,182 0,429 0,235 0,501 0,233 0,485 

 

Table B8. Actual change in median RUENDVI and RUEEVI for each land cover type between 2017 and 2018. 

All changes are statistically significant at a 0.05 level using a two sample Wilcoxon signed rank test. 

 Open wetland Agricultural 
land 

Open 
vegetation 

Coniferous 
forest 

Mixed forest  Deciduous 
forest 

Δ RUENDVI 0,407 0,215 0,345 0,428 0,446 0,376 

Δ RUEEVI  0,289 0,158 0,245 0,247 0,266 0,252 

 

Table B9. Standard deviation of RUENDVI and RUEEVI for each land cover type in 2017 and 2018. 

 

Table B10. Actual change in standard deviation of RUENDVI and RUEEVI for each land cover type between 

2017 and 2018. All changes are statistically significant at a 0.05 level using a two sample Ansari-Bradley 

test. 

 Open wetland Agricultural 
land 

Open 
vegetation 

Coniferous 
forest 

Mixed forest  Deciduous 
forest 

Δ RUENDVI 0,171 0,103 0,237 0,374 0,332 0,305 

Δ RUEEVI  0,111 0,080 0,161 0,193 0,195 0,200 

 

 

 

 

 

 Open wetland Agricultural 
land 

Open 
vegetation 

Coniferous 
forest 

Mixed forest Deciduous 
forest 

 2017 2018 2017 2018 2017 2018 2017 2018 2017 2018 2017 2018 

RUENDVI 0,074 0,245 0,057 0,160 0,086 0,323 0,076 0,451 0,085 0,417 0,094 0,399 

RUEEVI  0,061 0,172 0,049 0,129 0,067 0,228 0,044 0,237 0,058 0,253 0,068 0,268 
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Table B11. Median NDVI, EVI and NDWI for each crop type in 2017. 

 Wheat 
(winter) 

Barley 
(spring) 

Rapeseed 
(winter) 

Sugar beet Vegetables Pasture 

 2017 2018 2017 2018 2017 2018 2017 2018 2017 2018 2017 2018 

NDVI 0,703 0,500 0,618 0,431 0,660 0,540 0,564 0,498 0,366 0,395 0,758 0,643 

EVI  0,522 0,360 0,467 0,307 0,574 0,446 0,418 0,361 0,252 0,261 0,545 0,470 

NDWI 0,335 0,161 0,231 0,091 0,419 0,252 0,169 0,080 -0,016 -0,020 0,247 0,101 

 

Table B12. Actual change in median NDVI, EVI and NDWI for each crop type between 2017 and 2018. The 

bold values are not statistically significant at a 0.05 level using a two sample Wilcoxon signed rank test. The 

negative changes are shaded. 

 Wheat 
(winter) 

Barley 
(spring) 

Rapeseed 
(winter) 

Sugar beet Vegetables Pasture 

Δ NDVI -0,202 -0,187 -0,120 -0,066 0,029 -0,116 

Δ EVI  -0,162 -0,160 -0,128 -0,057 0,009 -0,075 

Δ NDWI -0,174 -0,140 -0,167 -0,089 -0,004 -0,147 

 

Table B13. Standard deviation of NDVI, EVI and NDWI for each crop type in 2017 and 2018. 

 Wheat  
(winter) 

Barley 
(spring) 

Rapeseed 
(winter) 

Sugar beet Vegetables Pasture 

 2017 2018 2017 2018 2017 2018 2017 2018 2017 2018 2017 2018 

NDVI 0,036 0,069 0,054 0,070 0,059 0,072 0,086 0,075 0,130 0,118 0,104 0,096 

EVI  0,051 0,060 0,061 0,057 0,063 0,073 0,072 0,062 0,113 0,115 0,128 0,098 

NDWI 0,052 0,063 0,064 0,061 0,062 0,091 0,070 0,059 0,130 0,117 0,131 0,111 

 

Table B14. Actual change in standard deviation of NDVI, EVI and NDWI for each crop type between 2017 

and 2018. All changes are statistically significant at a 0.05 level using a two sample Ansari-Bradley test. The 

negative changes are shaded. 

 Wheat 
(winter) 

Barley 
(spring) 

Rapeseed 
(winter) 

Sugar beet Vegetables Pasture 

Δ NDVI 0,032 0,016 0,013 -0,011 -0,012 -0,008 

Δ EVI  0,009 -0,004 0,010 -0,010 0,002 -0,030 

Δ NDWI 0,011 -0,003 0,029 -0,010 -0,013 -0,020 

 

Table B15. Median of RUENDVI and RUEEVI for each crop type in 2017 and 2018. 

 

 

 Wheat 
(winter) 

Barley 
(spring) 

Rapeseed 
(winter) 

Sugar beet Vegetables Pasture 

 2017 2018 2017 2018 2017 2018 2017 2018 2017 2018 2017 2018 

RUENDVI 0,229 0,451 0,250 0,399 0,246 0,478 0,211 0,468 0,211 0,395 0,290 0,672 

RUEEVI  0,165 0,325 0,189 0,282 0,176 0,388 0,149 0,341 0,153 0,261 0,209 0,491 



v 

 

Table B16. Actual change in median RUENDVI and RUEEVI for each crop type between 2017 and 2018. All 

changes are statistically significant at a 0.05 level using a two sample Wilcoxon signed rank test. 

 Wheat 
(winter) 

Barley 
(spring) 

Rapeseed 
(winter) 

Sugar beet Vegetables Pasture 

Δ RUENDVI 0,222 0,149 0,232 0,257 0,183 0,382 

Δ RUEEVI  0,160 0,093 0,212 0,192 0,108 0,282 

 

Table B17. Standard deviation of RUENDVI and RUEEVI for each crop type in 2017 and 2018. 

 

Table B18. Actual change in standard deviation of RUENDVI and RUEEVI for each crop type between 2017 

and 2018. All changes are statistically significant at a 0.05 level using a two sample Ansari-Bradley test. 

 Wheat 
(winter) 

Barley 
(spring) 

Rapeseed 
(winter) 

Sugar beet Vegetables Pasture 

Δ RUENDVI 0,110 0,082 0,075 0,114 0,098 0,176 

Δ RUEEVI  0,083 0,051 0,071 0,084 0,080 0,106 

 

 Wheat 
(winter) 

Barley 
(spring) 

Rapeseed 
(winter) 

Sugar beet Vegetables Pasture 

 2017 2018 2017 2018 2017 2018 2017 2018 2017 2018 2017 2018 

RUENDVI 0,049 0,159 0,048 0,130 0,045 0,120 0,039 0,153 0,057 0,156 0,060 0,235 

RUEEVI  0,041 0,123 0,046 0,097 0,037 0,108 0,031 0,115 0,050 0,130 0,052 0,159 


