
MASTER’S THESIS 2019

Improving E�ciency of
Surveillance Footage Processing
through Application of a
Container Based Approach in a
Computer Cluster
Jonas Alfredsson, Anton Friberg

ISSN 1650-2884
 LU-CS-EX 2019-28

DEPARTMENT OF COMPUTER SCIENCE
 LTH | LUND UNIVERSITY

MASTER’S THESIS

Computer Science

LU-CS-EX: 2019-28

Improving E�ciency of Surveillance
Footage Processing through Application of

a Container Based Approach in a
Computer Cluster

Jonas Alfredsson, Anton Friberg

Improving E�ciency of Surveillance
Footage Processing through Application of

a Container Based Approach in a
Computer Cluster

Jonas Alfredsson
jonas.alfredsson@pm.me

Anton Friberg
anton.friberg@outlook.com

October 9, 2019

Master’s thesis work carried out at Axis Communications AB.

Supervisors: Alma Orucevic Alagic, alma.orucevic-alagic@cs.lth.se
Christian Colliander, christian.colliander@axis.com

David Wessman, david.wessman@axis.com

Examiner: Martin Höst, martin.host@cs.lth.se

mailto:jonas.alfredsson@pm.me
mailto:anton.friberg@outlook.com
mailto:alma.orucevic-alagic@cs.lth.se
mailto:christian.colliander@axis.com
mailto:david.wessman@axis.com
mailto:martin.host@cs.lth.se

Abstract

Complex hardware and software solutions are often needed in order to process
large amounts of media files in parallel. The complexity can make it di�cult for
teams to scale data processing e�orts without additional support or use of cloud
based solutions. However, thanks to e�orts from some large software companies,
like Google and Apple, and open source communities, solutions are now starting
to become available outside cloud environments.

A case study has been performed at amajor international video surveillance com-
pany in order to identify existing bottlenecks and to improve data processing
e�ciency. An object storage solution is introduced and tested alongside a con-
tainer based system in an e�ort to improve software management and collabo-
ration.

Finally, a proof of concept solution is presented, which utilizes a GPU cluster in
order to allow easier scheduling, distribution and management of data science
experiments.

Keywords: StorageManagement, Containers, Graphical Processing Units, Cluster Com-
puting, Data Models

2

Acknowledgements

First and foremost we would like to thank our supervisor Alma Orucevic Alagic, LTH, for
providing excellent guidance and feedback regarding the content of the report, as well as
general advice on how to conduct industry relevant research based on empirical data. Her
passion for the subject really shone through and was reflected in the discussions throughout
the project.

Further thanks are to be extended to our supervisors at Axis Communications. Johan Sand-
ström, for helping us arrange the thesis work at the company together with providing domain
expertise on development tools, together with Kenan Kule, Christian Colliander and David
Wessman who granted us access to their work and provided us with the necessary hardware
and software we needed to complete our research. Additionally, all persons we had to talk to
at Axis in di�erent departments have met us with great enthusiasm and interest in what our
research would lead to, so we would like to thank them all.

Finally, we want to thank Flavius Gruian, at LTH, who has designed the template used in
this report and Martin Höst our examiner and the author of an excellent book on how to
structure a thesis work and report.

3

4

Contents

1 Introduction 9

2 Background 11

2.1 Data Processing Methods . 11

2.1.1 Methods for Data Storage & Retrieval 12

2.1.2 Processing Data . 13

2.1.3 Data-Driven Computing . 14

2.1.4 Multimedia Processing Complexities 15

2.2 Deep Learning Workflow . 16

2.2.1 Preprocessing . 17

2.2.1.1 Data Collection . 17
2.2.1.2 Data Augmentation . 18

2.2.2 Training . 19

2.2.3 Validation . 20
2.3 Related Work . 21

2.3.1 Adam — Distributed Training on CPUs 21

2.3.2 Nvidia Docker — GPUs Inside Containers 22
2.3.3 TensorFlow — Library for Distributed Training 22

2.3.4 Horovod — E�cient GPU Communication 22
2.3.5 Kubernetes — Orchestration of GPU Resources 23
2.3.6 Alchemist — End-to-End Implementation 24

2.4 Case Company . 25

2.5 Problem Description . 27

2.6 Scope . 28

5

CONTENTS

2.7 Contributions . 29
2.8 Storage Technologies . 29

2.8.1 File Storage . 30

2.8.2 Block Storage . 31

2.8.3 Object Storage . 32

2.8.4 Database . 33

3 Research Questions & Methodology 35

3.1 Thesis Goals . 35
3.2 Research Questions . 36

3.3 Methodology . 37

3.4 Approach . 38

3.4.1 Suitable Metrics . 39
3.4.2 The Process . 39
3.4.3 Threats to Validity . 40

3.5 Contribution Statement . 41

4 Analysis 43

4.1 Preparations . 43

4.1.1 Hardware . 44
4.1.2 Software . 45
4.1.3 Datasets . 46

4.2 Current Workflow . 46
4.2.1 Storage . 47

4.2.1.1 Current Storage Solution 47

4.2.1.2 Current Data Retrieval Method 48
4.2.2 Preprocessing . 49

4.2.3 Scheduling & Training . 51

4.2.3.1 Hardware . 51
4.2.3.2 Software . 51
4.2.3.3 Training . 52

4.2.3.4 Scheduling . 53

4.2.4 Summary of Current Workflow . 55

4.3 Proposed Solutions . 55

4.3.1 Storage . 55

4.3.1.1 Desired Features . 56

6

CONTENTS

4.3.1.2 Researched Solutions . 58

4.3.1.3 Implemented Solutions 60

4.3.1.4 Storage Solution Summary 61

4.3.2 Preprocessing . 62

4.3.3 Scheduling & Training . 63

4.3.3.1 Software . 63

4.3.3.2 Scheduling & Training 66

4.3.3.3 Hardware . 68

5 Results 69

5.1 Storage . 69

5.1.1 Speed Improvements . 70

5.1.2 Size Improvements . 72

5.2 Preprocessing . 74

5.3 Scheduling & Training . 75

5.3.1 Software . 75

5.3.2 Scheduling & Training . 77

5.3.3 Hardware . 82

6 Discussion 83

6.1 Storage . 83

6.2 Preprocessing . 85

6.3 Scheduling & Training . 86

6.3.1 Docker . 86

6.3.2 Kubernetes & Polyaxon . 88

6.4 Combination of Solutions . 90

6.5 Thesis Goals & Research Questions . 90

6.6 Ethical Aspects . 91

6.7 Future Work . 92

7 Conclusion 93

Appendix A Polyaxon Screenshots 113

7

CONTENTS

Appendix B Installation Procedures & Version Info 121

B.1 Install Docker CE for Debian . 121
B.2 Install docker-compose for Debian . 122

B.3 Install the Minikube Environment . 123
B.3.1 Install a Hypervisor . 123

B.3.2 Install kubectl . 124
B.3.3 Install Minikube . 124
B.3.4 Verify the Minikube Installation 124

B.3.5 Remove Minikube . 125
B.4 Install & Configure Minio . 125

B.5 Install & Configure AWS CLI . 126

B.6 Install & Configure rclone . 126

B.7 Install Git & the LFS Extension . 127
B.8 Install Nvidia Driver, CUDA & cuDNN . 128

Appendix C Host OS Modifications 129

C.1 Increase ulimit . 129

Appendix D Experiment Setup 131

D.1 Storage . 131

D.2 Preprocessing . 132

D.3 Scheduling & Training . 133

D.3.1 Software . 133
D.3.2 Scheduling & Training . 134

D.3.3 Hardware . 134

8

Chapter 1

Introduction

Large scale data processing requires complex hardware and software solutions in addition to
large amounts of available storage space [1]. This complexity can make it harder for teams
who are trying to expand their data processing e�orts, particularly in the case of multime-
dia files [2], [3] or when implementing data-driven learning based algorithms [4], [5]. These
di�culties can be due to limitations in the surrounding IT infrastructure, and to overcome
these challenges it is often necessary to obtain support from a software engineering teams or,
as an alternative, migrate into the locked-in services of a cloud provider [6]–[8].

Today such large scale data processing, often called Big Data Analysis, already drive many
aspects of our society, including retail, manufacturing and financial services [9]. For a long
time, the analysis or computational model development were made by domain experts with
the help of access to the data itself. Today, however, more and more models are developed by
learning based algorithms. This is evident in the areas of computer vision [10]–[12], speech
recognition [13], [14], machine translation [15], [16] and bioinformatics [17], [18] among oth-
ers. As a result of the value demonstrated, many companies are starting to look into how
to expand their own e�orts, with respect to large data collection, in order to draw knowl-
edge or intelligence from it at a later stage. The goal is that, with large scale data analysis in
place, decisions can be made from tangible information which previously were often based
on guesswork [1], [4].

As such, there exists many tools and frameworks which help teams train computational mod-
els at scale by utilizing solutions from the field of large scale data analysis [19]–[21]. Similarly,
solutions exists that ease the set up and operation of complex software environments [22],
[23] and ease the management of data storage [24]–[28]. In combination these solutions can
be leveraged in order to build complete computational systems dedicated to the single pur-
pose of training state of the art computational models [6]–[8], [29]. Such systems have mainly
been developed and used by large international data-driven software companies (i.e. Google,

9

1. Introduction

Microsoft, Apple, Uber and others) that have the cross-domain expertise that is required in
order to maintain all the hardware and software components. Unfortunately such complete
systems are often out of reach for teams that do not have the expertise, or are not yet oper-
ating at a scale where dedicated systems can be economically motivated. Additionally, there
seems to be a lack of documented solutions into the middle ground, i.e. how to move from
small scale manual model development towards automated system solutions incrementally.

A real-world model development system needs to facilitate e�cient training of computa-
tional models at scale. This requires significant infrastructure engineering in order to handle
the changing software requirements, large amounts of required training data and tight de-
pendency on hardware, such as graphical processing units (GPUs), across a growing number
of compute nodes. As a consequence, of not having any documented solutions on how to
scale up e�orts towards systematic model development, it is common to see teams grow into
large amounts of technical debt. This can result in considerable e�ort having to be spent
maintaining both the computational and storage infrastructure, greatly reducing the pace at
which models can be developed [30].

This report focuses on identifying infrastructure problems related to the training of compu-
tational models for problems in the field of computer vision, and explores a variety of possible
solutions. The work has been carried out as a case study, at a large international company, in
collaboration with a small team that is experiencing di�culties expanding their training ef-
forts. Further details, about the case company, is later presented in Section 2.4. In this report
we are not addressing the algorithmic or computational challenges of training computational
models, how to distribute or select the model itself or select the best model parameters [5],
[31]–[33]. Instead, the focus will be on how tomove beyond development on a single machine,
towards running experiment jobs on a scalable compute cluster i.e. how to manage compute
and data resources, software and dependencies and how to make the experiments easy to
monitor while also making the system flexible to allow diverse use-cases.

Previous research, which have looked at the infrastructural challenges, havemainly been look-
ing at a much larger scale [21], [29], [34] or utilized cloud environments [6]–[8]. Instead, this
paper will be exploring cost e�ective scalable solutions from the open source community,
that can be deployed on-premise, and already available solutions from within the company.
In order to evaluate our work a deep learning example is developed which trains di�erent
image classification models in a predictable matter. This example is then utilized to evalu-
ate possible solutions on how to alleviate the problems experiences by the team and serves
as a good representation of the kind of model development that is carried out in the daily
operation.

The report is structured as follows. In Chapter 2, Background, further details about both the
case company and their challenges is given. In Chapter 3, Research Questions and Method-
ology, we list the research questions and methodology of choice. Following this in Chapter 4,
Analysis, the description and evaluation of the current workflow will be presented, to then
iterate through possible improvements in Chapter 5. Finally, we present our thoughts and
final results within the Discussion and Conclusion chapters.

10

Chapter 2

Background

2.1 Data Processing Methods

Data processing, or more specifically electronic data processing, is generally defined as the
aggregation and manipulation of data by a computer in order to produce new meaningful
information [35]. For example, a common operation would be to predict sale volumes of
di�erent products from historic financial data. In many cases it may not be feasible for a
human to sift through all the available information in a reasonable amount of time, and often
the operations performed on the data is suitable for a computer. Such computer applications
would then provide the company with valuable indications on how it may set its current price
in order to gain optimal profits, or predict how many units to manufacture in preparation
for the holidays.

Initially the type of data being analyzed was comprised almost entirely of large amounts of
numerical records, such as in accounting and inventory software, since this type of data is
easy for computers to process. Later, the success of these early systems paved way for the
continued development of both compute power and storage, which in time made it possible
to process other forms of information. As a result of those advancements it is now possible
to perform extensive data mining on even the most complex forms of data, such as images
and video. [36], [37]

At the same time, information gathering devices and storage solutions has continued to de-
crease in cost, allowing the rate of data collection to grow rapidly. A consequence of this is
the increasing complexity of the processing techniques, which is motivated by a need to keep
up with the vast amounts of incoming data. These developments were later summed up in
a new concept, called Big Data [1], which has not yet reached a consensus regarding its exact
definition. However, it is most commonly used when referring tomanipulation of sets of data

11

2. Background

that are considered too large or complex for traditional data storage and processing methods
to handle. Such datasets require significant infrastructural engineering to accommodate all
the incoming information, and to allow processing within a tolerable amount of time. This
has all been particularly true for multimedia data formats, such as images and video, which
do not fit within the traditional processing methods easily. The heterogeneity of such data
proved to be themain cause of di�culty, as it did not conformwith the storagemodel used up
until this point [2], [3]. This growing need for computational power and surrounding infras-
tructure leads towards further parallelization of computing, as more and more applications
outgrow single tenant solutions.

2.1.1 Methods for Data Storage & Retrieval

Figure 2.1: Di�erent kinds of data store models.

As increasing amounts of data is consolidated into centralized storage systems, the data pro-
cessing systems also evolve into new forms. A major driver is the fact that real economic
value can be extracted by connecting di�erent data points which previously were spread
across multiple systems. These new Big Data systems are what put particular high demands
on the infrastructural requirements, since the amount of data to be processed was suddenly
many times larger than the normal day-to-day operations. Similarly, companies realize that
the size of the data itself makes it di�cult and expensive to store and sync across multiple
locations, which in turn lead to more data being transferred around in the system [1].

Traditional data processing solutions make use of database systems with data structured in
fixed formats or fields, often in tables. These started out as spreadsheet applications and later
developed into relational database systems with extensive querying capabilities. In general, as
long as the data was homogeneous and structured, these solutions worked well and were able
to keep up with the increasing amounts of data by simply utilizing more powerful hardware,
such asmultiprocessor architectures and solid state storage drives. However, to scale beyond a
single machine proved more problematic since relational databases are known to be di�cult
to manage in a distributed setting, which still remain true today [36], [38]–[41].

12

2.1 Data Processing Methods

At the start of the 21st century, alternative data storage and processing techniques appeared,
which aimed to o�set the limitations experienced with the traditional methods, i.e. the di�-
culty of handling unstructured data and scale beyond single node deployments. The alterna-
tive database solutions, called NoSQL in contrast to the relational models’ querying language
SQL, explored di�erent non-relational data models. The data stores that emerged where
column-oriented databases [42]–[44], graph databases, key-value stores [45], and document-
/object-based stores. These data stores are visualized in Figure 2.1.

Due to significant di�erences from the relational databases, these alternatives were at first
only adopted by users with specific use cases, but later managed to grow into more general
adoption [41]. In time, these solutions proved to handle unstructured and heterogeneous data
much more e�ciently, and also showed better suitability for distributed environments [40].
Today, when discussing Big Data, it is often these kinds of storage solutions that are leveraged
in combination with advancements in distributed file systems, such as the Google File System
[24] and the Hadoop Distributed File System [25]. Most importantly, it was these advancements
in storage models that made way for the large scale data processing that we see today.

2.1.2 Processing Data

OutputInput
REDUCE()

REDUCE()
MAP()

MAP()

Figure 2.2: Drawing showing the main tasks of the MapReduce pro-
gramming model.

In similarity to the development of the storage of data, advances have been made in process-
ing of the large datasets. Data processing is a task that includes the structuring and filtering
of collected information, which is an important part of gaining knowledge and insight. Early
systems utilized strict methods that cleaned, loaded and refreshed incoming data in a con-
trolled fashion in order to limit di�culties processing the data later in the pipeline [46].
Such architectures where scalable, but hard to maintain since they required very intricate
knowledge of each site’s configuration in order to avoid sever communication, processing
and memory bottlenecks.

These solutions were also often di�cult to integrate with new data inputs, and a need arose
for solutions that could handle vast amounts of unstructured data without needing to change
the already established systems. In response, a new programming model was developed at
Google, facilitating easier processing and generation of large data sets, called MapReduce [47]
and shown in Figure 2.2. This new programming model allowed programmers to more easily
utilize parallel and distributed system resources. For many tasks this new approach lead to
processing times decreasing by significant amounts [48]. Interestingly, this model was pre-
sented just one year after Google had introduced its distributed file system and depends on
the functionality introduced by it.

13

2. Background

2.1.3 Data-Driven Computing

Figure 2.3: The transformation of data into decision inside a large
data processing systems.

In parallel with the progressmadewith large scale data processing, there was also the arrival of
data-driven deep computing which utilized advanced learning-based algorithms to be able to
make knowledge based decisions [4], [49]. This include machine learning and deep learning,
and while such algorithms are not the focus of this thesis, it is still important to show how
these di�er from other forms of data processing to be able to understand how they a�ect the
entire system and surrounding infrastructure. An overview of the steps involved in taking
the data and transforming it into decisions is presented in Figure 2.3.

Learning-based models where first conceived in the late 1950s, but did not see wide range
adoption until recent years when an increase in computational power, large scale data pro-
cessing and commercial interest merged with increased algorithmic solutions and large aca-
demic interest [49]. In combination, they proved to be a powerful way to extract actual knowl-
edge, intelligence and even decisions from large and complex sets of data.

In particular, deep learning-basedmodels quickly grew into themost e�ective learning-based
approach for multiple application domains including, but not limited to, computer vision
[10]–[12], speech recognition [13], [14], machine translation [15], [16] and bioinformatics [17],
[18]. These algorithms and more general machine learning techniques enable computers to
learn by example in a similar fashion to humans, and with enough available data some mod-
els, such as one for tra�c sign classification, have even managed to demonstrate accuracy
comparable to, or exceeding, those of human experts [50].

Deep learning algorithms gain their e�ectiveness by utilizing artificial neural networks to
learn how to perform a task by analyzing large amounts of training examples. Increasing the
amount of training data, and/or creating models with larger neural networks, is often the
most e�ective way of increasing prediction accuracy. Unfortunately, this also means that as
the complexity of the tasks increases, so does the size of the neural network. Larger neural
networks generally require more training data than smaller models and also takes signifi-
cantly longer for each training step. This can produce additional challenges when trying to
implement these algorithms as solutions to complex problems, such as driving a car or an-
alyzing multimedia files, at scale [3], [5], [19]. Figure 2.4 shows a very simplified process of
how a neural network identifies the contents of a picture from features it has learned are
important.

14

2.1 Data Processing Methods

Figure 2.4: Overview of how deep learning models extract features
in order to make a decision.

The challenges involved can be divided into distinct parts [29]. Firstly, the networks pose
a significant computational challenge during training and, in some cases, even during ap-
plication on new data [31]. This means that large amounts of raw computational power is
needed. Secondly, they pose an algorithmic challenge for the reason that when the workload
is broken apart into small batches, the model’s ability to generalize often degrades [51] and
the additional compute nodes add significant communication overhead [21]. Lastly, a real-
world deep learning system at scale requires a significant infrastructure engineering e�ort
to facilitate the ever-changing software requirements among the distributed compute nodes,
the transport and storage of large amounts of training data, and the often tight dependency
on specific hardware requirements such as graphical processing units (GPUs). These all con-
tribute towards technical debt as the system scales up [30], [52].

Even though the above mentioned challenges can be reduced by applying certain techniques
[5], [29], [30], they still pose a large obstacle for small to medium-sized teams looking to scale
up their e�orts into data-driven computing. This is true for all kinds of large scale data pro-
cessing systems [3], especially for those handling complex forms of data such as multimedia
files, e.g. images and video. For these forms of data the infrastructural challenges are partic-
ularly prominent [3].

2.1.4 Multimedia Processing Complexities

Figure 2.5: Common examples of multimedia data formats.

Multimedia data formats, examples displayed in Figure 2.5, have been proven to be particu-
larly challenging for both Big Data analysis and as training input for learning-based models
[2], [3]. As such, the di�culties needs to be taken into careful consideration during the entire
thesis work since the team currently work with images and wants to move into the processing
of video files.

15

2. Background

Multimedia data is unstructured and heterogeneous by nature and, in the case of video with
sound, even multimodal. Additionally, the handling of large amounts of multimedia data
also entails the need for considerably more resources in order to acquire, store, transmit,
present and process the data, which includes, in some instances, a need for a GPU. Even with
application of compression and e�cient storage techniques the volume of media files takes
significantly more space than storage of text or numerical files. In most real-world scenarios
it is simply not possible to store all the generated multimedia data for long. [2], [3]

In addition to the di�culties in managing the characteristics of the multimedia data itself,
there is also a lot of problems surrounding themere handling of the data due to the sometimes
sensitive nature of the information. Audio recordings, pictures and recorded video is much
more regulated than traditional forms of data, and handling it comes with both security and
trust concerns. This is especially true within the European Union after the introduction of
the General Data Protections Regulations [53] (GDPR), which require companies to facilitate
a process where a user may demand the removal of any personally identifiable information
that is stored [53]. These additional legal considerations limit teams ability to move into
cloud based solutions and a�ects the choice of solutions throughout this thesis.

2.2 Deep Learning Workflow

Figure 2.6: A diagram showing a generalized deep learning work-
flow.

Deep learning model development di�ers significantly from the development of traditional
mathematical models and is usually divided into three distinct steps: Preprocessing, Training
and Validation. However, alongside preprocessing there is also the matter of storing the data,
which is to be processed, persistently. This is a separate problem which will be touched upon
further in Section 2.8. An overview of the development life cycle is visible in Figure 2.6. Data
is collected by for instance a camera and put into storage, which is then processed before being
used as training data for the deep learning model. The model is then trained and evaluated
on separate batches of data and after su�cient training the resulting model is validated. The
model is then either put into production or discarded depending on how it performs.

16

2.2 Deep Learning Workflow

2.2.1 Preprocessing

The part of the deep learning workflow denominated as preprocessing, is a broad definition
which includes multiple di�erent procedures that are applied to the data before it is used to
train the actual algorithms [54]. Because of this broad definition there does not seem to be a
consensus of what is specifically included, as it may be interpreted to encompass tasks from
the very early stages, when data is collected and assembled to a dataset, to slight alterations
done within milliseconds before being used in the training step [54]–[57].

2.2.1.1 Data Collection

Normally the first step within data preprocessing involves the collection of data. Here it
is important that the data provides an honest representation of situation that the model
will be expected to act upon. What this means is that if the model is intended to be able
to recognize human faces, training it on a collection of pictures depicting only vehicles will
yield unsatisfactory results [54].

The data may be newly created for this particular training, or can make use of previously pre-
pared large collections of images. However, these may require removal of invalid data, adding
missing data and/or structuring it to conform to the desired annotation method of the learn-
ing algorithms used [55], [56]. This structure varies between di�erent implementations, but is
required by the algorithm for it to be able to successfully learn the desired features. In Figure
2.7 one method of annotation is illustrated, where the objects of interest are highlighted by
having the coordinates of the colored boxes written in an accompanying text file.

Figure 2.7: Annotating the input data may be done by placing coor-
dinates around the parts of the image that are of importance.

These preparatory steps are usually only performed once, and the remaining structured data
is what is stored, in a persistent manner, as the dataset that is to be used during training.
How it is stored is not a concern of the preprocessing step, but, depending on the type of
data in use, there may exist many solutions which can vary in how e�ciently it is able to save
the data for later retrieval.

17

2. Background

2.2.1.2 Data Augmentation

One might think that the most accurately annotated training data results in the most accu-
rate models. However, it has been shown that the amount of input given to the algorithms
have significantly greater impact than the quality of it [34]. Researchers [58] trained a convo-
lutional neural network, specialized in fine grained recognition (i.e. identify species of birds),
firstly on a well annotated set of data and then again after having extended this set by adding
“noisy” data.

Noisy data, in this regard, is data that has not been verified to actually contain what it is
annotated as. In this particular case the researchers used a Google image search for the all
the di�erent species included in the well annotated set, and then downloaded all the results
without confirming that they actually contained the correct species of bird (between 35% and
90% of the images were actually of the subject depending on the search). The result was an
increase in accuracy of the trained model from 84% to 93%, which is close to how well human
experts perform [59].

As these algorithms prefer volume over quality of data, research has been conducted into ef-
ficient methods of extending datasets that already exist. Advanced solutions for this is avail-
able, such as using Generative Adversarial Networks [60], but those remain outside the scope
of this report. However, the following three simple methods of alterations, also illustrated in
Figure 2.8, are enough to significantly extend image datasets and increase the accuracy [61],
[62]. The e�ectiveness of the data augmentation methods are well-known and all three of
the mentioned augmentations below are utilized by the case company in combination with
others when needed. The data augmentations are particularly important for deep learning
techniques since the augmentations increase the trained models’ ability to generalize to un-
seen data and makes it more robust against over-fitting [54], [61], [62].

1. Cropping
Cropping images needs to be done with care, as to still retain the object of interest
inside the remaining area. If the images are small, cropping tomake them smallermight
cause a problem for the network as it expects aminimum size of the input. Hence, there
are methods that keep the crop size the same as the original picture size, but move the
picture and pad the empty area using the average color of the image or more content
aware techniques [63].

2. Rotating
Rotation of pictures is done to make networks able to identify objects that are not
perfectly aligned. Having rotational diversity is desirable, however, it is important to
keep the rotation parameters relevant for the data to be analyzed. A 180 degree rotated
picture of a stop sign might not be of relevance for a self-driving car, and a picture of
the number “9” will create confusion as it is dangerously similar to the number “6”.

3. Flipping
As in the case of rotations, flipping will also help in generalizing the identification of
objects, but care needs to be taken to consider how the direction a�ects the meaning
of the input. A horizontal flip of the letter “b” might be identified as a “d”.

18

2.2 Deep Learning Workflow

Figure 2.8: Examples of preprocessing augmentations used to artifi-
cially inflate a dataset.

These alterations may be done at the same time as the preparation of the dataset, and then
stored to maintain a static setup of any changes that has been made. However, this requires
additional disk space which may not be available. Therefore, some deep learning frameworks
have built-in methods that allow for the above mentioned transformations to be performed
when the image is being read from the long term storage. As this is performed just before the
neural network is allowed to learn from it, it is still considered preprocessing.

2.2.2 Training

Entering the step where the training of the network is to be performed, the need for deeper
knowledge about the actual algorithms becomes prominent, however this is not within the
scope of the thesis. This description will instead remain at a high level, by not emphasizing
the type of neural network that is trained. The reason for this is that neural networks exist
in many shapes and forms that have di�erent areas where they perform optimally. It may be
possible to train a general image classifier network to di�erentiate between trucks and cars,
but it can not identify which brand it is. Other, more specialized networks, may then be able
to tell you what brand a car is, but have no understanding of objects beyond the car brands
it knows. The exact science behind these networks are beyond the scope of this thesis work,
and the network used will be mostly irrelevant for the training process as it is explained here.

Nevertheless, there is usually a large amount of code associated with the training of the neural
network model. To alleviate the necessity for everyone to write their own unique code, a
number of frameworks have been implemented to abstract many of the more tedious parts
of training, and make it easier to set up a new experiment session. These frameworks are
mostly agnostic to the neural network being used and make it easy to ingest di�erent forms
on input data with only minor alterations to the underlying code.

These frameworks are mainly responsible for loading the data, which the network is to be
trained on, from persistent storage into memory and apply augmentations to improve the
results. It is also possible to tune the hyperparameters, which define how the network is
learning, in an easier and more observable way through the framework. However, this is a
topic complex enough to warrant its own paper and hence beyond the scope of this thesis
work.

19

2. Background

Some examples of well-known, free and open source frameworks are:

• TensorFlow [64]
This is the most popular machine learning framework and is o�cially supported by
Google. It has distributed training support, scalable production methods and support
for many devices, such as Android and iOS, as well as a large established community.
It provides Python and C++ implementations and has excellent support for Compute
Unified Device Architecture (CUDA), allowing e�cient utilization of Nvidia GPUs
in order to accelerate training.

• PyTorch [65]
One of the newest open source deep learning frameworks which has gained popularity
due to its simplicity and ease of use. It provides both Python and C++ implementations
and has excellent CUDA support.

• Keras [66]
This framework is growing quickly in popularity due to its light-weight and quick im-
plementation and its ability to make it simpler to run other deep learning frameworks
such as TensorFlow. It provides only a Python implementation and has CUDA support.

• Darknet [67]
A deep learning framework in the C programming language that is fast and easy to
install. It is popular among embedded devices programmers since it is entirely imple-
mented in C.

• Ca�e [68]
A deep learning framework implemented in C++ and Python, and developed by the
University of Berkeley. It is one of the oldest and most widely supported frameworks
and is popular choice to enable embedding of deep learning models into embedded
devices and also provides great CUDA support.

In this thesis the primary focus will be spent on the PyTorch [65] framework, which currently
have support for distributed training and GPU acceleration, and provides many excellent ex-
amples of object detection training available under MIT license. Its style of the coding is
more compact and use function names that are descriptive, which will make it easier for
the reader to follow the process without having to understand all the underlying mathemat-
ics. The reason for choosing this framework was mainly because it allows for quick iterative
modifications, due to its simplicity, and that our supervisors at the case company already
have experience from using it.

2.2.3 Validation

The training of a neural network is an iterative process which may be continued forever if
so is desired. However, the goal is usually to arrive at a state where the performance of the
network is deemed to be satisfactorily, and then halt any further computations. At the case
company, it is currently up to the engineers to manually monitor the output metrics of the
experiments, and then decide whether to complete the training based on what is presented.

20

2.3 Related Work

The exact circumstances required for making these educated decisions is left to the engineers,
and are outside the scope of this thesis report.

There are however issues with a manual monitoring processes. The close attention required
to monitor the outputs means that productive hours of the days are wasted. The alternative
however, is to risk degradation of the model’s performance as the training continues beyond
the most optimal point. Aborting too early will result in an underperforming model, while
continuing to train on the same data for too long will cause it to become overfitted.What this
means is that the network has iterated over the training data somany times that it remembers
every single detail, and not only the identifying features. This will result in an almost perfect
accuracy score when the network is analyzing the training data itself, but will perform poorly
when it is to be deployed in production on unseen data.

It is therefore important to have all monitoring metrics of the training easily accessible, and
presented in clearly and easily understood way, for the engineers to be able to make quicker
and better decisions on how to proceed. Fully automated systems may be implemented to
trigger when there are indications on when the model is about to become overfitted, and
pause further computations, but human intervention will be necessary for the final verdict
concerning whether to implement the model into production.

2.3 Related Work
There have been a lot of research conducted on how to handle data processing tasks in a dis-
tributed environment, however, from our extensive research it seems like it is mainly in the
last four years when papers regarding how to scale the training of deep learning models have
begun to surface. Unfortunately the proposed systems are often presented without details,
and utilize complex infrastructure and software that needs a large team of software engi-
neers to implement and maintain. It has only been very recently that the solutions, proposed
in these systems, has become available to smaller teams with less resources [23], [29], [69],
[70]. The unique infrastructural and algorithmic challenges, related to the deep learning sub
field of data processing, seems to have been solved in small steps. Hence, it is not until now
that any complete, and working, system solutions have been made available outside cloud
environment as open source software. In the following subsections some of the incremental
solutions which have contributed significant advances are presented in chronological order.

2.3.1 Adam — Distributed Training on CPUs

One of the early advocates of the need to distribute the training of deep learning models,
in addition to Google, was Microsoft. Microsoft implemented a distributed system called
Adam [19] on top of traditional CPUs without the support of GPUs. At the time, one could
not utilize more than four GPUs in parallel for the training of deep learning models, which
limited the size of the model that could be trained. The authors showed that larger deep neu-
ral networks increase the accuracy of the model, but require significant amounts of training
data and the amount of computing cycles, to train the model, becomes proportional to the
product of model size and the training data volume.

21

2. Background

As proposed, the implemented system utilized a distribution method similar to Google’s Dis-
Belief [20] shown two years earlier which used parameter servers to allow distributed training
by keeping track and propagating network parameters. This solved the challenge of needing
the knowledge learned by the computations available to all without causing too much de-
lay. In Figure 2.9a an overview is presented in how parameter servers share the calculated
results from each processing unit. An interesting observation from this paper was that the
models’ accuracy when trained asynchronously increased rather than decreased, which was
contrary to what many people believed. Unfortunately, the parameter server still needed ex-
pensive hardware to facilitate the communication overhead introduced which did not scale
well above 20-30 processing units.

2.3.2 Nvidia Docker — GPUs Inside Containers
In November 2015, Nvidia open sources experimental software bindings [69] tomake it easier
to utilizeGPUs in a container environments [71] such asDocker [22]. Container environments
had been popularized years earlier and provides an e�cient way of isolating applications and
handling software dependencies without relying on virtualization techniques. This contribu-
tion allowed the complex software and hardware requirements of deep learning model devel-
opment to be managed much easier. Although, a full release would not arrive until February
2016.

2.3.3 TensorFlow — Library for Distributed Training

In November 2015, a year after Microsoft’s paper on Adam [19], Google open sources Ten-
sorFlow [72] which is a framework for machine learning (including deep learning) model de-
velopment. It utilizes Nvidia’s CUDA technology [73] to enable e�cient training on GPUs,
and quickly received support for NVIDIA Collective Communications Library [74] (NCCL).
NCCL optimizes the communications between Nvidia GPUs, allowing more units to work in
parallel.

The TensorFlow library allowed for much easier development of machine learning models
and was quickly adopted across both the academic and commercial sector. Unfortunately, it
was still di�cult to train models across multiple compute nodes due to the use of parameter
servers, which required expensive network hardware due to communication overhead, and
a need for major changes in the training software (the models themselves needed to be fully
aware of the distribution environment).

2.3.4 Horovod — Efficient GPU Communication
Uber Technologies Inc. presented, and open sourced, its library called Horovod [21] in late
2017, which allows the training of deep learning models to scale better across multiple GPUs
and compute nodes. They utilized earlier research from Facebook [32] and Baidu [75] to im-
prove the existing distribution methods supported by the TensorFlow [64] library. The ad-
vances removed the need for dedicated parameter servers and reduced the communication

22

2.3 Related Work

overhead by instead utilizing a strategy called ring-allreduce, displayed in Figure 2.9b. This
meant that the GPU scaling improved to upwards of 70% from the earlier TensorFlow im-
plementations which only reached around 30-50% in the best case above a certain number
of nodes. Details of how this ring communication is set up is considered out of scope, but is
available in the original paper [21] and in the source code they provide.

The software has, since its publication, been further developed to include distribution meth-
ods for both Keras [66] and PyTorch [65] frameworks. The library does introduce some com-
plexity since it depends on the installation of external software and changes to the training
code itself to allow distributed training. But importantly the reduced communication over-
head of the ring-allreduce strategy meant that teams could integrate more nodes into the
computation without needing to invest in expensive network hardware.

GPU GPU GPU GPU

(a) Centralized parameter server.

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

(b) Horovod’s ring-allreduce.

Figure 2.9: High level overview of the di�erences between the ring
architecture used by Horovod, and the old method of using central-
ized parameter servers.

2.3.5 Kubernetes — Orchestration of GPU Resources

Kubernetes is a container orchestration system which aims to reduce the complexity of man-
aging containers [71] across clusters of hosts in diverse network environments [23]. Originally
released in 2015 it has quickly grown into the most popular method of managing container
orchestrations in both cloud and on premise environments. At the start of this thesis work,
in September 2018, the Kubernetes device plugin functionality was o�cially released. This
allows engineering teams to much easier set up a computational cluster environments with
GPUs as long as the software environment is packaged in a container environment such as
Docker. The included scheduling and cluster networking features within Kubernetes finally
provides a robust solution for common infrastructure problems experienced by many engi-
neering teams which have not yet developed solutions of their own.

23

2. Background

2.3.6 Alchemist — End-to-End Implementation

In parallel to the Kubernetes device plugin release, research by Apple Inc. discussed the de-
sign and implementation of an internal service called Alchemist which was built to provide
easy, fast and scalable distributed deep learning training [29]. Case studies have been pro-
vided, showing how internal adoption lead to a 10X reduction in training times on very large
datasets in the development of autonomous systems. The authors [29] recognize that train-
ing deep neural networks quickly, and at scale, still pose significant challenges despite their
widespread adoption, and that these can be divided into computational, algorithmic and
infrastructure engineering challenges.

In order to address the computational challenge they propose a method to parallelizing the
computation across multiple GPUs, hosted across multiple compute instances, as the only
viable scalable method since the development of hardware has not seen fast enough advance-
ments. The algorithmic challenges have, according to the authors [29], already been mostly
solved and the algorithms are able to be distributed over multiple nodes. This is possible by
utilizing either the older method of parameter servers, used by the TensorFlow framework,
or a more recent approach of utilizing the previously mentioned Horovod library.

The infrastructure engineering challenge is recognized as needing the most work and is fur-
ther divided into four distinct areas:

1. Interacting with compute resources:
As the training moves from an interactive environment to a dedicated training envi-
ronment there is a need to keep track of IP addresses, starting and stopping processes
on multiple machines, managing synchronization of multiple processes and handling
storage space.

2. Interacting with data resources:
Large datasets, that are shared and modified between users and teams, needs to be
stored on something that is both performant and is easily accessible by multiple dif-
ferent frameworks [29]. There is also regulations related to storage of data, which com-
panies must comply with [53].

3. Managing software and dependencies:
Deep learning requires maintaining a complex software stack ranging from low-level
GPU libraries (CUDA) to high level machine learning frameworks (PyTorch, Keras,
TensorFlow). The required software needs to be deployed to the correct compute node
and the training environment needs to be the same as the interactive environment i.e.
the cluster environment should closely match the environment of the developers own
workstation in order to make the software easier to debug.

4. Availability of monitoring tools:
The user that sets up the training requires an ability to monitor metrics, both on the
application level and the system level, in order to confidently decide when the training
has completed and see how it performs.

24

2.4 Case Company

It was to address these four infrastructural challenges that the Alchemist systemwas built. The
system is portable between private and public cloud and supports multiple training frame-
works and distributed training paradigms. It is managed by Kubernetes [23] and employs a
container based approach [71] to handle the software environment. The storage is handled
by distributed file systems and object storage depending on the size of the dataset. The dis-
tributed training is either handled by separate parameter servers or by Horovod jobs. They
conclude that distribution withHorovod scales much better without needing dedicated com-
munication nodes.

Using Alchemist the training time was able to be reduced from days down to a few hours,
which significantly accelerated the development cycle of the algorithms. Unfortunately for
us, the paper lacks any implementation details or runnable code, making it impossible to
reproduce the results. The hardware nodes are also made up of state-of-the-art components
with 64 virtual CPU cores, 488 GB of memory and 8NVIDIATesla V100GPUs that commu-
nicate over a 25GbE network, minimizing possibilities of communication bottlenecks. The
paper is still interesting and relevant since it provides details regarding more aspects of the
infrastructural challenges of training deep neural networks, and discusses solutions in areas
often neglected, such as storage and dependency management.

2.4 Case Company

This thesis work has been carried out at Axis Communications AB [76], at their main head-
quarters in Lund, Sweden. The company is a market leader in network video, with its main
source of revenue coming from video surveillance solutions.

Axis has utilized machine learning technology for many years in order to equip their camera
technology with analytical capabilities, such as recognition of persons in a video stream to
alert observers about potentially undesired activities, as well as high order of storage com-
pression. It is within the company’s interest to continue to expand and scale the e�orts re-
garding machine learning research in order to maintain a competitive edge within the video
surveillance business, especially within the subfield of deep learning.

There are currently machine learning e�orts expanding at multiple departments simultane-
ously, using various forms of data, but the main e�orts are primarily related to images and
video. Due to the sensitive nature of themajority of the data being stored, it is important to be
able to maintain strict control over its storage location considering recent GDPR [53] legis-
lation. Axis has worked hard to secure compliance, but the current deep learning projects are
experiencing di�culties adhering to the centralization requirements of sensitive data which
removes the possibility of storing image data in multiple places.

The day to day deep learningworkflowdi�ers greatly depending on thematurity of themodel
implementation and the experience of the development team but an overview of the included
steps are presented in Figure 2.10. However, it is common, during the early stages of a deep
learning model construction, to only experiment on a small subset of the available input data.
This is to quickly be able to test with di�erent configuration options, preprocessing steps
and parameter selections in an interactive environment which will return a result quickly.

25

2. Background

This environment could be the command line of the engineer’s personal workstation, inside
a Docker [22] container or in a Jupyter notebook [77]. The input data is usually temporary
stored locally and inspected manually to explore particular features and interpret the result.
This fast changing training environment is usually referred to as interactive training and is
displayed in Figure 2.11a.

Figure 2.10: Current machine learning development workflow.

During later stages of the model construction, the amount of input data is increased in order
to improve the accuracy. This often means more preprocessing steps and many times more
data. The training is executed on dedicated training computers, which are much faster, and
monitored manually to evaluate how they perform and when to stop the training process.
These separate training computers is available for use through a manual process that includes
making an entry into a calendar booking system. Additionally, the transfer of all the required
data, as well as properly configuring the code for the new environment, are also manual
processes. This separate training environment is referred to as batch training and displayed in
Figure 2.11b. Compared to readily available cloud-based solutions from Amazon or Google,
this manual process is ine�cient and the engineers are looking for alternatives to better scale
their current e�orts.

(a) Interactive training. (b) Batch training via booking system.

Figure 2.11: The di�erent training environments used for machine
learning development at the case company.

There is no unified workflow between the departments, used to streamline the process, and
di�erent solutions are used by everyone. There is a strong desire to create a case of best
practices that can be used as guidelines for new projects, to significantly reduce the cost of
initial setup. A unified, and centrally controlled, data repository is also something that has
been actively discussed for a long time to further ease the task of GDPR compliance.

26

2.5 Problem Description

2.5 Problem Description
To help us identify the specific problems, experienced during the deep learning experiments
at the case company, a preliminary unstructured interview was conducted with employees
in one department which conducts machine learning model development. At this depart-
ment they are mainly focused on training neural networks to be able to identify objects in
video feeds coming from surveillance cameras. Concerns and problemsmentioned heremight
therefore be centered on this department, but most of these are shared with other projects.

Marcus Skans is Lead Engineer at aforementioned department, and has summarized the prob-
lems most commonly expressed by the engineers that he manages.

1. The experiments are highly dependent on the hardware and software.
When the engineers set up their experiments, specific configurations need to be made
to ensure that the machine learning network can run on their computer. What this en-
tails is that the code is not easily portable between machines, as other engineers needs
to spend a considerable amount of time re-configuring the network for it to be compat-
ible with their hardware. Furthermore, sometimes di�erent software versions may be
incompatible with each other, and replacement of an entire hardware driver might be
necessary. A method of automating these necessary modifications would significantly
reduce setup time and cooperation abilities.

2. The experiments are di�cult to scale.
This is partially related to problem number 1. If additional, better performing, hard-
ware is introduced to the machine running the calculations, the configuration needs
to be modified for it to take advantage of these new resources. Using larger datasets
has also proven to require more than desired manual labor to adapt to these new con-
ditions. An easy method of scaling both up and down would provide better allotment
of compute resources between the experiments.

3. The data sets are not easily transferred from storage.
The manner in which the data is currently stored requires the engineers to download
everything to their local computer before being able to select the subset of files that
are of interest. It is desirable to be able to download the data sets in a composable
(modular) way as this would significantly reduce the time preparing the experiments.

4. There are problems versioning the data sets.
The current method of keeping a journal of modifications to the datasets is ine�cient
and does not enforce the researcher to record what version they are using. This cause
confusion to what exact files were used during a previous experiment andmakes repro-
ducibility di�cult. When conducting research it is important to be able to reproduce
the results at a later time, which is why a solution to this problem is necessary.

5. There is no link between footage metadata and the corresponding data sets.
There needs to be a standardized way to link metadata with corresponding data sets
in order to easier facilitate future automation. If possible, it would be desirable to
combine the actual data with the corresponding metadata information in a robust
way.

27

2. Background

6. It is not possible to prioritize or schedule long-running calculation tasks.
The data processing tasks take a long time to complete and there is currently nomethod
implemented that allows to prioritize and schedule these tasks. To be able to prioritize
critical steps to finish during business hours would enable the engineers to catch errors
on the same day instead of the morning after. This would allow a more e�cient use of
the active workday and much better hardware utilization.

The problems expressed mainly revolve around the batch training environment where the
computers are shared and larger datasets are regularly downloaded and manipulated in addi-
tion to the problems revolving around the data storagemethod. Thewish is to introduce some
form of automated system to handle the data and compute assets and the complex software
environments involved with machine learning development. In comparison, the interactive
environment should be kept mostly intact, i.e. as flexible as possible, while focusing on mak-
ing the data resources easier to access with a focus on modularity. The changes are visible in
Figure 2.12.

(a) Interactive training. (b) Batch training via automated system.

Figure 2.12: The di�erent training environments where instead of
a booking system and manual processes the batch environment is
handled by automated processes.

2.6 Scope
This thesis work is limited to analyzing a single example of deep learning experiments from
the work being conducted at the video analytics department at the case company. From this
example proposed solutions to workflow ine�ciencies is evaluated. It is presumed that this
single example of deep learning development is not deviating significantly from other exper-
iments being conducted, and that solutions which improve the situation in our experiment
will also improve them for all deep learning experiments. This is important as it is our in-
tention to provide solutions that could be used by other departments in to improve their
turnover time as well.

Furthermore, improvements to the experiment is limited to modifying and/or replacing the
software around the neural network currently in use, as optimization to the core algorithms
are complex enough to warrant a separate thesis work. Our pre-configured example is there-
fore approved by the engineers who are experts in said area. However, higher level settings,
such as defining GPU instead of CPU processing, needs to be adjusted to allow for specific
software to be compatible with said network.

28

2.7 Contributions

Proposed solutions aremainly of open source nature, but corporate policies and incompatible
licenses did in some cases require proprietary alternatives. Solutions that are readily available
at the case company, but not currently used by the projects, was also prioritized as this allows
for faster integration into the daily workflow since the infrastructure or licenses are already in
place. However, this still requires careful consideration to weigh the preexisting tool’s feature
set to what is available on the market, and decide if it satisfies the needs expressed.

2.7 Contributions

In recent years companies have begun to prioritize the establishment of departments that
are dedicated to deep learning research, in order to keep up with the trends of the industry.
However, most of these companies soon realize that there are a lot of problems regarding
the logistics necessary to facilitate a system capable at performing at a competitive level, and
thus have a hard time scaling up the research.

There are papers published regarding how to set up a prototype experiment on a single local
computer, and detailed explanations of the largest compute clusters that are maintained by
the industry leading experts, such as Google and Amazon. However, there does not seem to
exist any good information about the incremental growth procedure, from single computer
to large datacenter.

It is our intention to provide an analysis to what di�culties a medium to large sized company
will have to undertake when the experimental deep learning divisions are to be scaled up, if
starting from similar circumstances as the case company. The workload of these projects are
unlike other large scale data processing tasks, and the requirements on the underlying in-
frastructure di�ers significantly. This work aim to give an indication to what is necessary to
facilitate on-premises development, and provide solutions to some of the more fundamen-
tal requirements, such as storage solutions and software management. Further details of the
research question this paper answers is listed in Section 3.2.

Furthermore, there does not seem to be a unified method of sharing fully trained networks or
configuration files used when setting up these experiments. While improving the e�ciency
of the workflow at the case company, our hope was that software solutions solution could
be outlined and establish best practices which would be useful for the internal projects, but
might also be helpful for the deep learning community at large.

2.8 Storage Technologies

Apple’s Alchemist paper [29] mentions that the issue of interacting with the data resources is
an important part of themachine learningworkflow, and is something that has a performance
impact proportional to the size of the datasets being used. The engineers at the case company
have already experienced serious issues with the currently employed storage solution, even
though the overall data in use is relatively small, and therefore find this to be a high priority
issue.

29

2. Background

At the foundation of any storage solution there will be a hard disk or a solid state drive that is
ultimately tasked with storing the data in a persistent manner, and will allow for recovery in
case of loss of power. These two types of drives use di�erent technologies to physically store
the data, but both may be referred to as block devices, since the core functionality of them is
to store blocks of data [78]. These low level di�erences are not relevant for the use cases of this
thesis work, but instead it is the abstraction layer used, when interacting with these block
devices, which is of interest.

When saving a file on the computer, it is written to the storage device as a collection of many
smaller blocks, and it is the task of the abstraction layer to signify that a cluster of blocks
constitutes that specific file. The drive itself does not track how the blocks are related to each
other [79], [80], and without an abstraction layer it becomes di�cult to locate and retrieve
the data of interest from the device.

As technologies evolve, di�erent methods of interacting with the physical devices have been
created to optimize for various workloads. While one alternative might be able to read and
write data to the disks e�ciently, it may be limited in how many files it is able to store
without becoming prohibitively slow. It might therefore be possible to achieve significant
performance gains by changing method of storage to one that is more suitable for the task at
hand. For this thesis work, the following four storage technologies have been researched to
later determine which is optimal for our use case:

• File Storage
• Block Storage
• Object Storage
• Databases

At the foundation of all alternatives presented here, there will be a hard disk drive or a solid
state drive that is ultimately tasked with storing the raw data bits of interest. However, it
is the interface the user interacts with, to store and retrieve data, which di�er significantly
between these alternatives. It is important to choose a solution that implements the best
interface for the type, and the amount, of data that will be used by the engineers at the case
company, in order to provide the fastest and most reliable access to the data.

Additional care will also have to be taken to not introduce a solution that has an interface
that is too di�cult to use, or even incompatible, with the current workflow. A short de-
scription of the fundamental functionality will therefore be presented for each of the storage
technologies, with notes on the main advantages and disadvantages.

2.8.1 File Storage
This is the most common method used to abstract how data is physically stored on a device,
and is used by almost every desktop computer. Opening the operating system’s native file
explorer will present the block device as a tree structure of folders, inside which files can be
placed or further sub-folders can be introduced to add additional levels into the structure.
To obtain a file the computer will have to traverse the path through all the folders to reach
the one that contains the requested data [81].

30

2.8 Storage Technologies

Figure 2.13: Example of a
basic folder structure in a
file system.

A popular analogy to visualize this system is to imagine the
block devices as normal physical cabinets that contain manila
folders, which in turn contain paper files. This is, for humans, a
logical way of storing items, but will become unwieldy when the
amount of data increases. The cabinets can only house a limited
number of files, and if the folders needs expanding the solution
is to move them to separate cabinets that are larger [81], [82]. A
simple illustration of this can be seen in Figure 2.13.

Advantages of this storage technology is that it is trivial to
set up, and has wide adoption, through operating systems’ file
managers, have made the general population understand how it
works and feel comfortable using it. There also exist well-known
and tested protocols to share these file based storage systems
across a network (NFS and SMB/CIFS [83]).

The disadvantages are limitations to the folder structure, and how the storage space should
be distributed. Without additional tools used to disperse the data, a file will only exist as one
instance on one drive with all the redundancy and speed implications that entails. Storing
files this way will work for smaller projects, but will be di�cult to scale towards multiple
millions of files [80], [81].

For the engineers at the case company it is primarily the limitations to the number of files
that makes this a bad choice of storage. The backend storage servers, in use today, are already
struggling with the number of files in each dataset, and this will only increase in the future.

2.8.2 Block Storage

Figure 2.14: A controller
exposes a collection of
disks as a single block
device.

Block storage solutions are, as the name suggests, closely related
to raw block storage devices, as it presents the computer with an
interface very similar to normal storage drives [79], [81]. How-
ever, the drive interface is an abstraction created by a storage
controller that has access to multiple physical drives, on which
it may address all data blocks individually [80]. The controller
then expose this collection of blocks outwards, trough protocols
such as iSCSI [84], which allows computers to directly access
them over a network. See Figure 2.14 for a simplified visualiza-
tion of this.

What this entails is that it is possible to create a virtual block
device that can bemounted to an external computer as a normal
hard drive [85]. Furthermore, as was mentioned in the introduc-
tion of this chapter, since block devices are agnostic to the type
of data it stores it is then possible to apply a file system on top
of the drive. This gives it the same ease of use benefits as the
file storage method mentioned above [86], while also being able

31

2. Background

to distribute the data over multiple drives at the controller, which allows for more avail-
able storage and faster transfer speeds. It is also possible to create backup copies of the data
transparently for the user.

Furthermore, as the blocks are addressed directly on the underlying storage devices, it allows
for fast and granular access to writing and reading to the disks, and incremental updating
of files is possible [87]. Applications that do a substantial amount of reading and writing
benefit greatly from this type of storage, e.g. databases of which some prefers access to the
blocks directly [88].

Disadvantages with this technology are that complexity grows quickly if the underlying phys-
ical block devices become numerous, and even worse if they are located in di�erent data cen-
ters that are miles apart. Applications that have their file systems placed on drives that are
far away may experience too high latencies when reading or writing files and may start to
misbehave [81], [87], [88].

For the use case of storing large amounts of multimedia data, which is usually only saved once
but read multiple times in the case of machine learning, the main benefits of this solution
is not utilized. The complexities related to the use of many storage drives also makes this
expensive if the total storage size grows large. This price premium will have to be weighed
against cheaper, possibly slower, options.

2.8.3 Object Storage

Figure 2.15: Object stor-
age allows for a flat address
structure, and theRESTful
API make requesting data
easy.

In contrast to block and file storage, object storage does not di-
rectly expose neither files nor blocks towards the users. Commu-
nication with this storage solution is more akin to either down-
loading or uploading a file through a web browser, as the server
side software responsible for the physical storage usually imple-
ment a RESTful API [89] over HTTP as the interface towards
the clients [81], [90]. The most common API is Amazon S3 [91],
which allows clients to download a file by navigating to a URL
inside the web browser, or commence batch transfers using pro-
grams [92] that are installed on the computer.

Furthermore, this technology implements the feature of assign-
ing a unique identifier to each object, which the storage software
uses to locate where the object is physically located. Because of
this identifier, the objects can be stored in something that is
called a flat address structure or a flat memory structure [90]. The
user then only sees the available storage as a big “bucket”, where
the unique URL allows for direct and immediate retrieval re-
gardless where this object is physically located, see Figure 2.15
for an illustration.

When a file is uploaded to the storage solution, it is written to
the backend storage devices as an object. An object is a self-
contained piece of information that consists of the main data of

32

2.8 Storage Technologies

the file uploaded, as well as whatever metadata that is desired to be added to it. This metadata
may include information such as a human readable name of the file, time stamps, permissions
and tags to what the file includes [81].

Having a flat address structure can be equated to storing all objects in a single root folder,
with the unique identifier ensuring that there are no name conflicts. Saving files, using this
method, enables the storage software to treat every drive connected as an expansion of the
same root folder, and thereby spread the data over the available storage space. In contrast to
block storage solutions, object storage has the ability tomore easily scale as the design of most
server software allows for distribution and coordination over multiple physical computers.
Using multiple system, connected as a cluster, can then increase the storage space or balance
the load of requests between them by duplicating the data which also adds the benefit of
redundancy [87], [90].

The disadvantage with this is that the system is not designed to handle applications that
require fast read and write operations [88]. The reason for this is that it does not support in-
cremental updating of objects, so any modification requires the entire file to be re-uploaded.
Instead, this is more suited to store a massive amount of files that are downloaded often and
written once [80], [81], [85]. This is close to the use case of the machine learning workflow at
the case company, where the datasets are uploaded once to a central repository, for long term
storage, and then downloaded many times to the di�erent workstations. What might be a
concern is that the RESTful API, used to communicate with the servers, is a new concept for
the engineers, and may need some time to fully learn.

2.8.4 Database

Figure 2.16: Visualization
of a key-value database.

The final technology to be discussed is databases. These usually
provide excellent performance that is faster than storing the in-
formation as files directly on a physical drive [93]. However, the
caveat with using databases is that it is important to di�erenti-
ate those who are fully relational (SQL) from those who are also
able to handle non-relational data (NoSQL). The former has the
capability to beACID (Atomicity, Consistency, Isolation, Dura-
bility) compliant [94], which means there will not be any in-
consistencies between data entries when there are many queries
coming to the database. However, these capabilities place strict
requirements on the data that is to be stored, as it needs to be
structured in rows and columns, and every row must have the
same number of columns. This does not allow for new data for-
mats which do not conform to this schema [95].

To move beyond this limitation, NoSQL databases o�er schema design that allows for the
input data to be non-uniform. These types of databases sacrifice the strict consistency ca-
pability for the ability to store larger structures of data that may di�er significantly from
each other [96]. This schema design also allows for sharding of the database, which means
that it is able to be split over multiple storage locations and/or multiple services. This will

33

2. Background

then allow for significantly better scalability than its counterpart [97]. Figure 2.16 is a simple
visualization of a key-value database structure which highlights the simplicity of the model
that makes it easy to place the keys and values across multiple computers.

This might be the deciding factor when considering a database as storage solution. If the
input data vary greatly in both size and in attached metadata a NoSQL schema design will
be required. Furthermore, this feature is necessary if the database is to be e�ciently sharded
over multiple drives and/or nodes and allow for cost-e�ective expansion and redundancy
[97].

Disadvantages with databases are that, when storing a large amount of files of various formats,
the general recommendation would be to store the large binary files in a normal file system
and only store the links andmetadata inside the database [98], [99]. This requires two separate
solutions which might not always be desirable. Another disadvantage, in similarity to object
storage, is that the database usually has its own query language that needs to be used when
interacting with it [100], [101].

The data used by the engineers vary greatly in both size and type, which is not ideal for a
database storage solution. It is also not as easy as object storage to scale in size, which makes
it di�cult to see this as a good suggestion for storage solution.

34

Chapter 3

Research Questions & Methodology

In this chapter the goals of the thesis project will be presented, alongside the research ques-
tions that are to be answered throughout this report. The reasoning behind the choice of
methodology will also be mentioned, together with a description on how the problems are
approached in order to obtain relevant results.

3.1 Thesis Goals

In conjunction with recent e�orts into expanding themachine learningmodel developments,
at the case company, the previously manageable ine�ciencies of the current workflows have
become more obtrusive, and the overall productivity have su�ered as a consequence. In order
for the case company to remain competitive, the turnover time for each experiment needs
to be reduced, so that the researchers can iterate through di�erent input parameters and
develop more accurate models faster.

The list presented in Section 2.5 was expressed by the lead engineer of the video analytics
department, and it provides a description of what the a�ected employees believe to be the
most prominent problems. These statements were later used as the foundation when defining
the research questions of this thesis report. It was our intention that, by providing answers to
these questions, we would be able to reduce the problems expressed with the current work-
flow, and thus decrease the turnover time of the experiments.

As of today, the engineers at the video analytics department did not have a well-defined and
organized documentation of the workflow. Hence, there was no easy method of analyzing
which of the steps that are actually causing the most significant ine�ciencies. The desired

35

3. Research Questions & Methodology

outcome of this thesis work was therefore to provide the engineers with a structured analysis
of the current workflow, and present our findings of the most prominent bottlenecks.

The goal was to research what software solutions are available which can be used to alleviate
the problems expressed in Section 2.5. The ambition was that improvements for multiple
steps of the workflow could be solved with either a small collection of software solutions,
or a system solution which would tie together a collection of useful tools in a user-friendly
way. An implementation of such a system was considered less complicated and preferable
to developing our own software solutions and did turn out to solve a lot of the identified
problems.

Focus was put towards actually implementing the solutions found into the workflow to show-
case actual improvement results and not only provide a case study of the possibilities that are
available. Our desire was that our suggestions would be viable to be deployed into production
at the case company, and that they should benefit not only the video analytics department
but all similar development e�orts being conducted at the case company.

3.2 Research Questions

This thesis work has been conducted at a large international company that is industry leading
in the field of video surveillance. The research questions have therefore been formulated so
that focus is put towards solving the problems specific to this company, and more precisely
the problems identified at a single department. However, care has been taken in order to
make these questions generic as to make the research relevant for a wider audience.

Our belief is that the following questions provide a good balance between academic and
corporate interests. Research of these issues will touch upon general problems of machine
learning workflows, while at the same time inciting solutions that solve concrete problems
currently present at the case company. Answering these research questions will alleviate the
issues outlined by the engineers in Section 2.5.

1. What are the current processes (in analytics) for data storage and processing at the case
company?

2. Which parts of the company process cause the most significant ine�ciencies?

3. What approach, including method and tools, could be applied in order to minimize
the identified ine�ciencies?

4. Which of the improvement proposals would be most applicable to this problem space
and why?

5. How does the improvement proposals identified, under question number 4, improve
the actual process e�ciency?

36

3.3 Methodology

3.3 Methodology

Through careful consideration it was decided that action researchwas themost suitablemethod-
ology for us to follow in order to be able to answer our questions in a formal and scientific
manner. The methodology centers around four main steps - studying, planning, action and
learning [102]. These are then continuously repeated, as is illustrated in Figure 3.1, for each
change that is made until the final desired outcome is reached.

Figure 3.1: The four basic parts of action research methodology.

The methodology states that the researcher should be an active user of the process that is to
be studied, before beginning to investigate any improvement options. By experiencing the
process firsthand, the researcher will have a better grasp of what actions would change the
workflow the most, and will also have an easier time planning how these modifications may
be best implemented.

When a plan has been devised, it is time to take action and implement the suggested changes
into the actual process. Since the researcher is familiar with the previous performance, it
should be immediately noticeable if the modifications provided any significant improve-
ments. By observing the outcome it should also be possible to learn what parts had the most
significant impact, and help identify if more modifications can be introduced. The cycle then
repeats.

By continuously going through the entire process numerous times during the research, imme-
diate feedback can be obtained and suggested solutions can be discarded or approved rapidly.
Keeping the changes small will also allow for more iterations, and a higher chance of finding
the best solution for the problem at hand.

Iterating through the workflow multiple times with small alterations every time yield fast
results, but this iterative process can go on for a long time. Because of this, it is of great
importance to keep a detailed journal of the di�erences experienced by any of the modifica-
tions. This will help in the step where these are to be studied, as any regression of features
will become apparent immediately, and a rollback to a previous iteration can be done.

By following this method it should, towards the end, be straightforward to understand the
evolution of the project and how it reached its final state. Along the way any solutions that
was tested should bementioned and explained as towhy theywere discarded or implemented,
but the focus should be on how much the process improved as the result of the applied mod-
ifications. A comparison is then made between the final product and the original, where the
modifications that made the largest di�erences are highlighted.

37

3. Research Questions & Methodology

3.4 Approach

In line with the action research methodology, the approach to solving the overarching prob-
lem, of an ine�cient workflow, was initiated by breaking it down into smaller more manage-
able pieces that could be analyzed in isolation. As such, the e�ect each individual piece had
on the overall process was more easily measured, and could be iterated through more quickly.

After an initial semi-structured interview with the engineers, who are the ones performing
the machine learning experiments, a better overview was received on how the entire process
is structured. The workflow of the current development cycle included in machine learning
model development was from that information divided into five individual components, as
shown in Figure 3.2.

Figure 3.2: Simplified schema of the primary components that the
current machine learning workflow consists of.

The storage section consists of solutions that are responsible for physically storing the data
of interest in the long term, as well as the methods used to move this data from di�erent
locations. In the preprocessing step, the input data is selected in order to later be transformed
and modified though various techniques which both extends the data set, and formats it
according to the preferences of the machine learning framework and models chosen.

The scheduling and training steps are closely related, and even though it is di�cult to dis-
cuss one without mentioning the other, there is a necessity to distinguish between them. The
scheduler is responsible for taking the computational tasks, from the succeeding step, and
plan when and on which compute resources those are to be executed. Having taken these de-
cisions, it is now possible for the training step to start. This is often the most time-consuming
part of the workflow, since the algorithms will need to iterate trough a minimum amount of
input data before the output metrics shows how it may perform in a real world scenario. This
is, of course, highly dependent on how fast the compute resources are.

Finally, in the validation part of the workflow, the results are evaluated to check whether the
model performs according to the engineer’s expectations. If not, one might want to reiterate
with di�erent input data or training parameters and start the process oncemore. If themodel
performs according to expectations and requirements it is stored for future integration in a
production environment.

From studying the process performed by the engineers, the infrastructural components that
were a�ected during each step were identified, along with software solutions currently used.
It was then possible to measure performance metrics and test new solutions that reduced the
friction experienced.

38

3.4 Approach

Since the process was divided in such a way that it was possible to introduce alternative tools
without a�ecting the other parts, multiple iterations of changes was made in parallel in order
to more quickly find better solutions. However, it was important to define how a solution is
deemed to be more e�cient than the one currently in use.

3.4.1 Suitable Metrics

Since the majority of the thesis work revolves around evaluating software based solutions,
there needs to be a template that can be used to help determine which of the proposed alter-
natives is the better choice. This thesis utilized an o�cial ISO standard [103], as it provides
general guidelines on how to assess features of a particular software, and define them in a
way which allows for quantifiable comparisons between di�erent solutions. This standard
describes software by six characteristics, which may be further sub-divided if necessary:

• Functionality

• Reliability

• Usability

• E�ciency

• Maintainability

• Portability

Through these six categories, it should be easier to analyze the options in a more objective
manner. Even though Usabilitymight be subjective, it should be easier to quantify the feature
as better or worse than the other alternatives. Depending on the use case, the points presented
here may also have di�erent order of importance. An interface designated for the end user
might rank usability over e�ciency, while an evaluation of a database might value reliability
over everything else.

However, since the main goal of this project was to decrease the lead time of the machine
learning processes at the case company, it was the characteristic of e�ciency which was the
main point of our focus. To be even more specific, the primary unit of measurement was how
long it took to complete a task (wall-clock time), with some regard to how easy it was to
execute. Even if execution of the new solution is faster, the process required to make it work
might be overly complicated and would make it slower overall. It is therefore necessary to be
very specific when defining the moment a task begin, and when it ends.

Since elapsed real time is an objective point of reference, it was easy to use it to compare the
current process to our modified ones. Faster set up and execution was immediately noticed,
and showed a distinct and measurable e�ect regarding the turnover time for the experiments
at the video analytics department.

3.4.2 The Process

In order to be able to collect the metrics of relevance, work began by observing the engineers
conduct an example of the machine learning workflow from beginning to end. During this
process any thoughts and comments the engineers had were recorded regarding which tasks

39

3. Research Questions & Methodology

were necessary and what software and data needed to be used. This was done in order to un-
derstand how the engineers preferred to work, so that this could be taken into account when
evaluating alternative solutions. Introducing solutions that would be incompatible with the
current way of working would most likely cause more harm than good with regard to the
goals of this thesis work.

This information allowed us to quickly filter out any of our solutions that had obvious fea-
tures missing, due to being incompatible with the current workflow, and priorities those
which was both compatible and improved the situation the most. It was therefore important
to get time measurements on all the tasks that were performed during the machine learning
process, in a way that followed the structure defined in Figure 3.2. The most natural break-
points, signifying when to start and when to stop the timer, was decided through discussions
with the machine learning engineers at the company.

When we felt confident about a recommendation for an alternative solution, we notified
the persons that would be a�ected and had a short semi-structured meeting with them, to
make sure the solution would be approved before a more in depth analysis commenced. This
eliminated the probability of us implementing anything that would immediately be dismissed
by the engineers at a later stage. A time measurement was then taken on the new software
solution, to be able use this as an improvement metric. The starting and stopping points was
kept as similar as possible to the original process, to make the comparison as valid as possible.

In regard to the storage solution, which needed to be replaced, we had to perform some ad-
ditional steps beyond the normal procedure. Several semi-structured meetings with decision
makers at the IT department were conducted, since an alternative storage solutions would
replace a company wide service. As expected, this required more afterthought and planning
from our side, as well as from the IT department, who were keen on ensuring the chosen
option would be compatible with the local network infrastructure. For this reason we were
provided with stricter feature criteria, which needed to be fulfilled, as it would be deployed
for large scale production in an enterprise environment.

3.4.3 Threats to Validity

In regard to the validity of the time measurements that have been performed, there were usu-
ally some small variations in the timings between otherwise identical runs. Our belief is that
this is because the software is running on hardware that has the ability to dynamically change
its performance if the power supply is powerful enough, and the thermals are within reason-
able limits. This did not a�ect the tests performed on the local workstation significantly, but
would prove to be more of an issue with the multi-GPU node. However, for the proof of con-
cept measurements that was made, where these issues played a role, the thermal limitations
is clearly expressed as an important factor which degraded the results significantly.

Regarding the local workstation used, we made sure that the hardware setup was as close
as possible to what the engineers are working with on a day-to-day basis, to better reflect a
real-world scenario. However, since not every engineer had identical hardware, our computer
was instead composed of representative hardware of the general case. Therefore, the results

40

3.5 Contribution Statement

provided will not be representative for every unique situation, but should provide a valid
comparison to the average case.

Throughout this report there have also been a strong bias towards software solutions that
are open source. This was an active choice for the reason that it allowed a greater possibility
to explore in depth how the solutions worked, and that these would be much quicker to
have up and running to show real world performance metrics. Open source solutions are also
important as without them the reproducibility of our results would become much harder.

There is also an overall positive attitude towards open source solutions at the case company,
which meant that our suggested solutions were usually well-received when presented to the
engineers. The overall impressions were that it was mostly the amount of support that dif-
fered from closed versus open source solutions, which only became a significant issue when
it came to the discussions about deploying a production ready solution. It was primarily in
the case of deciding the type of storage solution, which greatly involved the IT department,
when compromises to this preference had to be made. Service agreements with third parties
made a proprietary solution the easiest one to actually deploy at the case company.

3.5 Contribution Statement

This thesis work was created as a joint e�ort between two departments at the case company,
since the di�culties experienced by one is within the responsibility domain of the other.
Anton Friberg was working part-time at the latter, and was therefore able to help shape this
project into fulfilling the requirements of a master thesis work. Jonas Alfredsson was working
at another department at the time, and was therefore not present in the very initial stages,
but joined soon after the main goals were outlined.

However, from that point onward the workload was split as evenly as possible, with many of
the steps requiring the presence and attention of both the thesis workers. Since interviews
and workshops required knowledge about all the components of the process, to be able to
keep up with the discussion, sharing all of our knowledge between us have been paramount.
This was necessary, as otherwise we would not have been able to provide the employees with
credible arguments to why our solutions were motivated.

Nevertheless, it is ine�cient to have two persons always working on the same item, hence
there are subjects in the report that have been researched more by one student than the other.
Jonas has a great interest in computer storage, as well as networking, while Anton found
the art of distributing computation exciting. It was therefore natural to having the former
putting more time into researching storage solutions, while the latter placed a greater e�ort
into finding tools to ease the distribution of the computational tasks.

As new information was surfaced by one of us, the other was soon after informed. Decisions
regarding what solutions would be best to implement, were therefore taken together after
careful reasoning and discussion originating from the information we had gathered.

41

3. Research Questions & Methodology

42

Chapter 4

Analysis

In this chapter the current machine learning workflow, at the video analytics department, is
presented and described in a detail. The tools and methods mentioned during this process
demonstrate the current circumstances, and will be the performance and usability baseline
to which proposed e�ciency improvements are to be compared against.

The subsequent section presents research into possible solutions to the problems outlined in
Section 4.2. The reasoning behind the decisions to implement one or more of our suggested
solutions are also explained, however, how it impacted performance will be presented first
in Chapter 5.

To follow the action research methodology, outlined in Chapter 3, the report will be focus-
ing on evaluating steps of the workflow in isolation. The idea is to evaluate problems and
solutions for each part of the workflow and in the end present the overreaching result of the
proposed solutions.

4.1 Preparations

During the thesis work di�erent software solutions have been tested and compared in order
to see how much they increase the e�ciency of the workflow in comparison to the current
alternatives. In order for these measurements to be valid representations of a real world sce-
nario, both the hardware and software setup used needs to be as identical as possible to what
the engineers are currently using. Therefore, the components, version numbers and other
specification used is carefully defined and will remain static throughout the testing. This
information will be of interest if one would like to reproduce the tests performed in this
thesis.

43

4. Analysis

4.1.1 Hardware

The most common setup of a workstation, used by the engineers, is an Intel CPU paired with
a top of the line consumer grade Nvidia GPU. This is complemented with a large amount of
system memory and fast NVMe storage. The collection of hardware that was deemed to be a
good representation of the average machine is listed in more detail in Table 4.1.

Table 4.1:Hardware specifications of the local workstation used for
taking time measurements.

Component Brand Version Specification
CPU Intel i7 8700K 6x3.7GHz
GPU Nvidia GTX 1080Ti 1 531 MHz, 11GB
RAM Corsair DDR4 2x8GB, 2666MHz
PSU Corsair CX750 750W
Storage Intel 660p NVMe SSD 1TB
Motherboard Gigabyte H370 HD3 rev 1.0
Network Intel I219-V 1GbE

In the later part of the thesis work we will also run some experiments on a more powerful
multi-GPU compute node. These are shared between many engineers, and are not used in
the day-to-day workflow. In comparison to the normal workstation, this compute node has a
more powerful CPU from AMD, more system memory, more storage and four GPUs instead
of one. The complete hardware setup of the node is listed in Table 4.2.

Table 4.2:Hardware specifications of the multi-GPU compute node
used during measurements.

Component Brand Version Specification
CPU AMD Threadripper 1900X 8x3.8GHz
GPU (x4) Nvidia GeForce GTX 1080 Ti 1 531 MHz, 11GB
RAM Corsair DDR4 4x16GB, 3200MHz
PSU EVGA Supernova T2 1600W
Storage Samsung 970 EVO NVMe SSD 2TB
Storage (x2) Western Digital 7200 rpm 4TB
Motherboard Gigabyte X399 Designare EX rev 1.0
Network Intel I211-AT 1GbE

44

4.1 Preparations

4.1.2 Software

As was mentioned in Section 2.6, the central training software used during measurements is
limited to a single machine learning example. Our example is based on a common supervised
deep learning task, that was suggested by the engineers, which is the training of a model for
object recognition on the CIFAR-10 [104] dataset.

Supervised deep learning is themost common type ofmachine learning task that is performed
by the engineers, and the general workflow of this was introduced in Section 2.2. This object
recognition task provides a suitable starting point, since implementations exists as a part of
the o�cial documentation for most of the machine learning frameworks, including PyTorch
[105] and TensorFlow [106]. Another advantage is that this example works on the same kind
of input data as the engineers themselves normally work on, i.e. binary images, which comes
with additional challenges in comparison to text based information, as was mentioned in
Section 2.1.

However, our example modifies the original PyTorch implementation in order to increase
the computational complexity and make it easier to configure input parameters. This was
mainly done to better represent the real world scenario, of having the actual training itself
being the most demanding task, but also to put additional stress on the infrastructure. The
increase in computational complexity was achieved by replacing the CIFAR-10 dataset with
a drop-in replacement called CINIC-10 [107]. This increased the number of input images in
the dataset from 60,000 to 270,000.

The addition of letting the training example be configured via command line arguments
was done to make it easier and faster to set up and configure the experiment for di�er-
ent scenarios. The complete written implementation has been made available on GitHub
[108], and has mainly been tested with Python 3. All Python dependencies are outlined in
the requirements.txt file inside the repository.

The machine learning frameworks, used by the video analytics department, all utilize the
included functionality of being GPU accelerated thorough the Nvidia CUDA API [73]. This
requires both the base Nvidia graphics driver and two CUDA add-ons to be installed in order
to have full functionality. The complete software rundown used during testing is displayed
in Table 4.3.

Table 4.3: The name and version of the relevant software that was
installed on the machines used for training.

Software Native Version Docker Version
Linux Distro Ubuntu 16.04 Ubuntu 16.04
Nvidia Driver 384.130 410.78
Nvidia CUDA 8.0.61 10.0.130
Nvidia cuDNN 6.0.21 7.5.0

PyTorch 1.0.0 1.0.0
TorchVision 0.2.1 0.2.1

Python 3.5.2 3.6.7

45

4. Analysis

4.1.3 Datasets

In addition to the CINIC-10 dataset, utilized by our machine learning example, two addi-
tional datasets were also used in order to stress the storage and data transfer infrastructure.
One is called CUHK03 [109], which contains a collection of JPEG images of full body shots of
people walking along streets. The other dataset is called OpenImagesV3 [110] and is one of
the largest datasets that is both openly available for download, and being actively used by the
department. This dataset contains multiple di�erent categories with thousands of pictures
in each of them. This was suggested as an example of a set of data that should prove itself to
be very di�cult to download to the local computer. Relevant data about the datasets used
are shown in Table 4.4.

Table 4.4: The number of files in each dataset, as well as di�erent
size measurements of them.

Dataset Nbr of Files Size on Disk Real Size Average File Size
OpenImagesV3 1,759,154 531,516 MB 528,081 MB 300 kB

CINIC-10 270,003 1,208 MB 727 MB 2.7 kB
CUHK03 28,193 218 MB 167 MB 5.9 kB

Something that should be noted, in Table 4.4, is that there are two sizes given to the datasets,
some of which di�ers significantly from each other. The reason behind this is related to how
physical disk drives work, and how files are stored in sectors on the drive. A disk sector is the
smallest size a single disk can write, and if a file is smaller it will simply be padded with zeroes
to fill up the additional space. With larger files the amount of storage wasted is negligible,
but with many smaller files this adds up to a significant amount.

The disk used, during testing, has sectors of 4 KB, and the average size of the files in the
CINIC-10 dataset is around 2.7 KB, which would waste about 32% of the sector size. This can
be compared to OpenImagesV3 and CUHK03 which waste 0.7% and 25% respectively.

When measuring transfer speeds, these calculations will be based on the real size, since this
will be closer to what is actually transferred over the network. However, when comparing the
storage size of the datasets, the size on disk will instead be used to represent the actual storage
space required to host them.

4.2 Current Workflow

Following the action research methodology, outlined in Chapter 3, the initial step is to per-
form a baseline experiment in order to obtain results that can be used to verify if a suggested
solution really do improve the workflow. Thus, we will begin by performing the entire work-
flow once, just as the engineers are usually doing it, with the subsections being named in
accordance to the general structure shown in Figure 3.2. This is done to make it easier for the
reader to understand what part of the process that is being discussed.

46

4.2 Current Workflow

4.2.1 Storage

The first step the engineers perform, when a new project is started, is to choose what set of
data that should be used when training the machine learning algorithms, and then proceed to
download this to the local computer. Relating this part to a segment in Figure 3.2, would place
this inside the part called Store, with the process of downloading being closer to preprocessing.

All the relevant details about the datasets, which we had at our disposal, are listed in Sec-
tion 4.1.3. We were recommended, by the engineers, to try to download both CHUK03 and
OpenImagesV3, with the former being an example of a small and easy dataset to obtain and
the latter being a large and di�cult one.

4.2.1.1 Current Storage Solution

Before proceeding with downloading of these two datasets, a short explanation of how the
current storage solution works is needed to fully understand what goes wrong later. Cur-
rently, all the datasets used are stored on an on-premise hosted version of Gerrit Code Review
[111], which is a version control system that extends the usual Git [112] software. However,
while Git is e�cient at tracking small text files, it is not the optimal solution when it comes
to tracking larger binary files. To mitigate this limitation there exist the Git LFS extension
[113], which allows for the binary files to be saved on an external storage solution, while the
main Git repository only retains a small text file with a pointer to where the real data can be
downloaded from.

Figure 4.1 displays how this dual storage solution works. The local client keeps a folder struc-
ture consisting of both small text files, e.g. code, and images that have been manually marked
as large binary files via the LFS extension. When committing changes and uploading them to
the remote repository server, these binary files are replaced with pointer files, while the real
data is being uploaded to a separate storage service that is better suited for storing binary
files. The procedure in reverse has the LFS extension interpret the text inside these pointer
files as links, and downloads the correct files from the file storage. The files used as links are
then replaced with the intended binary files as they are downloaded to the client.

Large File Storage

Local Computer

Remote

code text image.jpg

image.jpg

link

Figure 4.1:A diagram on how the LFS extension integrates with Git.

47

4. Analysis

The external storage solution, used by the LFS extension within the case company, is an Ar-
tifactory [114] instance running on a separate server. Artifactory is an object storage solution
which has native support for the LFS protocol [115], and is currently only in use as there was
an absence of other alternatives at the time of introduction.

4.2.1.2 Current Data Retrieval Method

Due to some commands using file paths that might be considered confidential, these will be
replaced with generic statements. However, it should be simple to understand how to modify
the command to work if it were to be executed outside the case company’s network. A high
level overview of how the files are requested, when using Git LFS, is shown in Figure 4.2.

To begin with we tried to clone the repository containing the dataset OpenImagesV3 to the
local computer. However, execution of the following download command failed fatally after
about an hour.

1 git lfs clone <repository>

The reason for the failure was a combination of the large amount of files that needed to be
downloaded, optimizations done by recent Git LFS versions (>2.3.0), and rate limit settings
on the Artifactory server. When Artifactory initiates these rate limits it notifies the client
responsible by responding with the HTTP 500 status code, however, it seems these are not
handled as expected by the LFS extension. After multiple attempts, with the same 500 re-
sponse, the client comes to the conclusion that the requested resources do not exist and then
fail with an undescriptive error message.

To be able to e�ectively troubleshoot the issue further, we shifted the focus to try to download
the CHUK03 dataset instead. Downgrading the client used, and tweaking parameters related
to simultaneous transfer streams, the download managed to complete in about 17 minutes.
However, this is a relatively small collection consisting of less than 30 thousand image files
that collectively take up around two hundredmegabytes of disk space. The challenge of down-
loading the large dataset still remained.

Figure 4.2: Overview of the current download procedure where Git
LFS communicate with two storage services to obtain one file.

48

4.2 Current Workflow

Despite the previous workarounds implemented, we were still not able to get the transfer of
OpenImagesV3 to complete in one continuous process. Instead, this had to be downloaded in
multiple smaller batches, which also failed multiple times and had to be restarted. It took us
slightly more than seven working days to finally have a complete copy of this dataset on our
local computer. Out of this time, the client was only actively downloading data for about 19
hours, the rest was wasted on troubleshooting or restarts.

One of the workarounds was to only download the absolute most recent version of the
dataset, since otherwise Git would include the history of all the files that have been changed.
Even though this was done, the folder occupied 1.1 terabytes of disk space when the dataset
itself was expected to be around 530 gigabytes. Similar increases could be seen on CHUK03 as
well, which took up 505 megabytes on disk while it should only be 218.

This storage overhead is introduced by Git and the LFS extension, which also seems to in-
flate the total number of files that are located inside the repository folder. OpenImagesV3
increased from almost two million to around four million files. This meant more than half of
our retrieved data was superfluous.

The engineers themselves were surprised by this revelation, and expressed concern that this
problem had not been identified sooner. The employees at the case company, that are tasked
with maintaining Gerrit and Artifactory, noticed the significant strain the download at-
tempts had put on the respective systems, and expressed concern about it a�ecting the rest
of the company. All the a�ected parties agreed that this is not a sustainable solution, espe-
cially since the sets of data are expected to grow significantly in the near future.

4.2.2 Preprocessing

In Section 2.2.1 a number of tasks which are part of the preprocessing step is discussed. The
datasets used in this thesis have already been filtered and assigned metadata in a chosen
structure. As such, the initial part of the preprocessing step is complete, and the input data
is ready to be used by the machine learning frameworks of interest.

At the time of writing there is also no process in place to produce internally sourced sets of
data with standardized structuring of metadata. The engineers are currently actively testing
di�erent methods, which would allow easier management of metadata, but these e�orts are
outside the scope of this thesis project and are therefore not discussed further.

Regarding extending the dataset used during training, the engineers at the video analytics de-
partment do use all the simple augmentation methods mentioned in Section 2.2.1, and more
where deemed appropriate. The major improvements possible, with these simple modifica-
tions, are widely known [61], [62] and, since both the TensorFlow and PyTorch framework
have includes native support for such augmentations, these are almost always utilized. The
minimal additional work needed to gain added accuracy and robustness is considered a fair
trade-o�.

However, in the training example constructed, only horizontal flipping and cropping of im-
ages will be applied. It was decided to limit the number of augmentations to keep the code
simple and easier to understand. For the sake of simplicity only PyTorch will be discussed,

49

4. Analysis

as the procedure in TensorFlow is much more verbose. The two mentioned alterations are
implemented by simply including line 2 and 3 as shown below.

1 train_transform = transforms.Compose([
2 transforms.RandomCrop(32, padding=4),
3 transforms.RandomHorizontalFlip(),
4 transforms.ToTensor(),
5 transforms.Normalize(mean=cinic_mean, std=cinic_std)
6])

In order to analyze if there might be any settings that are improperly configured, a closer look
at the internal functionality was taken. It was noticed that the PyTorch framework is designed
so that, when its internal DataLoader class reads the original image from disk, it applies
the desired alterations randomly just before loading this new image into GPU memory. The
altered file is never stored on disk, and this randomness creates additional diversity of the
input data, since reading the same file twice should yield a slightly di�erent result of the final
image that is used for the training.

An interesting feature of the DataLoader class is its asynchronous and threadable nature,
which allows for multiple instances of it to load and prepare images in parallel. Executing
the training computations on a GPU would then make it possible for the augmentation tasks
to be o�oaded to the CPU, to fully utilize all available resources. However, for this to be
viable it is important to have storage that is fast enough to support multiple simultaneous
file reads.

Furthermore, there needs to be enough augmentation workers to successfully provide the
GPU(s) with su�cient amounts of input data to keep them fully utilized. As most of the
experiments are done on the engineers’ local machines, with only one GPU, multithreaded
data loadingmight not be of benefit. The engineers have not experimented with anything else
than default settings, which only use a single worker, and thus the e�ect of this parallelism
is unknown as of yet. However, if experiments are to be distributed to the multi-GPU work-
stations it may become a significant bottleneck, and it should be analyzed how this a�ects
overall performance on a training batch.

As was stated earlier, it is known that it is beneficial to extend the datasets by augmenting
them through processes that involve randomness. However, this use of random parameters
cause a concern regarding the reproducibility of the experiments, since the data used to train
the network is not stored after being altered. The original pictures on disk are randomly
modified before being handed over to the neural network, which means that the experiment
will not be able to be reproduced with the exact same result. This will become a problem if it
is a requirement to be able to have reproduce experiments, and a solution should be found.

Since all the relevant preprocessing tasks are executed at runtime of the training code, we can
not provide a specific time it takes to execute at this point in the process. Impact comparisons,
in both time and accuracy, by using di�erent techniques are discussed further in 4.3.2, with
results presented in 5.2.

50

4.2 Current Workflow

4.2.3 Scheduling & Training

The next step was to explore the most time-consuming part of the workflow, i.e. the schedul-
ing and training of the deep learning tasks. Utilizing the example code, that was constructed
by the engineers, the training experiment was run on both the personal workstation and on
the more powerful multi-GPU compute node, in order to fully experience both methods of
scheduling and training.

However, before this is done, it is necessary to discuss the thoughts and issues the engineers
have with the hardware and software that is used. Version numbers and specifications are
presented in detail in Section 4.1, and are therefore absent from this section.

4.2.3.1 Hardware

For deep learning tasks it is primarily the graphics cards that are of interest, since these
allow for faster and more e�cient computations of these workloads [116]. If it is desirable to
perform the training in a shorter time span, the solution has been to equip the machines with
more and/or faster GPUs. However, since it is only possible to fit four graphics cards inside
most computers, this kind of vertical scaling is limited in how much that can be achieved.

Furthermore, the most powerful hardware is disproportionately expensive for the perfor-
mance o�ered, especially in comparison to the consumer grade equipment that is used in the
current workstations [117]. If all engineers are to be given equally powerful computers, it be-
comes prohibitively expensive in the long run. This is one of the reasons why there exist only
a few shared nodes that has the additional compute power. Having the hardware running at
full utilization is also more economical than allowing them to idle, which would happen if
personal multi-GPU workstation where provided.

The engineers are not worried about the current computational limitations of the local work-
stations, since it is more desirable to perform long running experiments on the powerful
nodes either way. Additionally, having this work o�oaded to another computer allows the
engineers to continue to use the local one for further experimentation in the meantime. In-
stead, it is mainly the storage requirements that has become a larger problem.

From Section 4.2.1.2 it was noted that the entire dataset is downloaded with a significant
overhead, in both size and number of files, because of the Git history and the LFS protocol.
In the case of OpenImagesV3, it occupied around twice the expected disk space, and only half
of the files were actually of interest in the experiment code. This results in low utilization of
expensive high performance storage, while also causing unnecessary delays and is annoying
for the users. Either larger disks are needed on all workstations, and/or there needs to be a
more e�cient method of storing the datasets.

4.2.3.2 Software

What was noticed, during the configuration of the software environment, was that the instal-
lation of the CUDA components is not a trivial task, and helping instructions are available

51

4. Analysis

in B.8. This is also a prominent problem that was brought up by the engineers, as both up-
grading and downgrading the versions is a di�cult and often problematic experience. This
is a more significant issue than what it may seem at first glance, and the reason is that the
machine learning framework in use is required to be compiled with the version of CUDA
that is currently installed. This means that these software components needs to be removed
and reinstalled when a new experiment, using another framework, is to be tested. For the
shared multi-GPU compute nodes this cause significant friction each time the environment
needs to be reconfigured.

Furthermore, the software repositories used by di�erent versions of Linux do not necessarily
provide the same versions of all the programs o�ered. For example, the default version of
Python on Ubuntu versus Debian is not equal, which can cause incompatibility when code
is to be transferred between workstations and the instructions written by the engineers only
state that Python was used.

These problems are also the cause of the current situation where reproducibility of experi-
ments is severely limited. There are too many parameters to keep track of to recreate the en-
vironment used during development. Often the external dependencies of the software used
is not recorded, hence uncertainty arise when time comes to install older versions again.

The issue of reproducibility is something that the engineers have been discussing for a while,
but have not yet agreed on the best solution. One alternative proposed was just to record
all the version numbers of all the software all the time, but the fast and agile development
process used does not encourage the user to do so. The obligation to constantly write in a
journal would easily be forgotten by the engineers, or it may risk slowing down the develop-
ment. Furthermore, if the version of the software used is not available on the current OS’s
repositories, it is unfeasible to expect that the engineers should compile it themselves. There-
fore, another method of packaging the current environment is needed, one that constantly
saves the state and can be e�ortlessly saved for the future if reproducibility is needed.

4.2.3.3 Training

To better understand the scheduling part of this section, which will be presented later, we
will evaluate the training procedure before mentioning how time is allocated for these exper-
iments.

As a first step, the machine learning engineers conduct something often called interactive
training, by themselves on their own workstations. During this part of the training procedure,
the local environment is configured as the engineer prefers, and the training code is being
actively modified. Usually only a small subset of the entire dataset is utilized at this stage, to
get preliminary training results faster. This is conducted to have as short of a turnover time
as possible, and to be able to fine tune the parameters used and make sure the network is
performing optimally.

The exact details of what is being done during this step requires more in depth knowledge
about how neural networks work, and how they are best trained. This thesis work does not
go into detail about how these are tuned, instead the parameters used were given to us by the
engineers and the software were set up to make these easily configurable. Our benchmark

52

4.2 Current Workflow

uses the PyTorch framework to be able to train a couple of state of the art neural networks
from scratch in order to make them able to classify images as belonging to one of ten object
categories [105].

This was confirmed to be a good benchmark that would properly stress the hardware, while
still being fast enough to allow us to iterate trough it multiple times to test with di�erent
settings. Tweaking input parameters, such as how many preprocessing augmentations that
should be applied and how many epochs (iterations of input data) the network should be
trained for, gave us a glance of the work that the engineers do and allowed us to explore the
di�cult relationship between these parameters. However, no further details of this will be
given as it is not within the scope of this thesis work.

Referring back to the issues discussed regarding the software used, it was noted that all the
working environments of the engineers di�ers significantly.We experienced di�culties prop-
erly setting up and configuring the training example on our workstation, since it was not
entirely identical to the environment from which we got the training example. Further di�-
culties with drivers and CUDA made the setup process take almost a week in total before it
worked as intended. However, when the network was finally able to run, the training proce-
durewas quite simple and the results of interest were easy to read. Changing the preprocessing
parameters yielded significant changes in the final accuracy of the network, and increasing
the number of DataLoader workers in the framework made a clear di�erence in execution
time.

After iterating trough di�erent settings of the neural network setup, during the interactive
training, the engineers usually reach a point where it is of interest to run a much larger test to
get more conclusive results. For these long-running experiments it is often a requirement to
o�oad them to the more powerful multi-GPU compute nodes. This is mostly due to higher
requirements on GPU memory, but also to allow the training to complete faster. This of-
floading to di�erent hardware is usually called batch training and is normally what produces
the final results which is put into a product.

During batch training, the complete dataset is often used and the experiment will be allowed
to continue uninterrupted for multiple days, if necessary. The model’s accuracy at the end of
the training will then be an indication into how it will perform in a real world scenario, and a
more informed decision can be made regarding how to proceed. At this step a flaw might be
noticed or it might not perform as expected, and the process will have to return to either the
step of interactive training, or as far back as to change the dataset in the preprocessing step.
The uncertainty of where the problem might originate from, require the steps performed up
until now to be well documented and allow an engineer to return to any point of interest.

4.2.3.4 Scheduling

During interactive training the majority of the experiments are executed on the engineers’
local computers. This limits the scheduling to simply keeping track of what is currently being
run on one’s ownmachine. Starting and aborting training sessions in this environment can be
done as pleased, and the setup of the experiment can be quickly modified if it is noticed that

53

4. Analysis

the result is diverging in an undesired direction. In order to notice when the model is diverg-
ing, the engineer usually monitors the terminal which outputs the performance numbers, or
external software may be used to log the performance into graphs visible in the browser.

After further discussion with the engineers, it was understood that it is common for them to
have a good idea of what the output is expected to be from training sessions. As such, they
usually make a note of what succeeding training sessions are to be prepared, and then, de-
pending on the result of the currently running session, they immediately know which to run
next. However, it is also not uncommon for the first session to take longer than expected, and
the engineer forgetting their train of thought of what should follow. This causes unnecessary
delays along with annoyance and wasted time. As such, a method to automatically execute
an entire matrix of training experiments and easily abort bad performers is highly desired.

In regard to the sharedmulti-GPUwork nodes, there are additional scheduling issues present.
As these nodes are limited in numbers, a booking system was put into place in order to allow
the resources to be shared between users and to give the ability to reserve resources for a
specified amount of time. The booking system is implemented by letting the work nodes
have a dedicated calendar, where users create events to signal that the computer is occupied.
A simple visualization of this system is presented in Figure 4.3.

The engineers themselves have noted that this method is sub-optimal. Users forgets to sched-
ule an event and instead just makes sure to use an available node not currently being used,
blocking the user that have scheduled the time. This, among other issues with the booking
system, results in under-utilized hardware, risk of losing of training results and communica-
tion di�culties among the engineers which gets worse as the team grows in size.

Figure 4.3: The powerful compute nodes are booked by entering an
“event” into a shared calendar that was set up for this specific pur-
pose.

This issue can be traced back to the original problem where the engineers are making a sub-
jective decision regarding if a training has reached a satisfying target. Instead, amethodwhich
is able to queue more tasks, and stop them based on performance, would solve many of the
expressed problems. In the current situation, experiments that finished early will idle the
computer until the booked time slot expires or a new user comes along.

54

4.3 Proposed Solutions

4.2.4 Summary of Current Workflow

The current situation has now been explained in detail, and an answer to the first research
question from Chapter 3, i.e. what are the current processes for data storage and data pro-
cessing, can be summarized with the following items.

1. Assemble dataset along with metadata.
2. Upload dataset with Git LFS to Artifactory and keep metadata in Git.
3. Install software dependencies for training.
4. Download dataset and metadata using Git LFS.
5. Perform preprocessing (if separate from training).
6. Select training parameters.
7. Start training.
8. Monitor performance and stop manually.
9. Upload resulting model if satisfactory or reiterate from previous step.

These processes di�er depending on if one is performing interactive training on the personal
workstations or batch training on the dedicated computation nodes. But overall these are
the discrete steps that are performed in end-to-end training of a machine learning model
currently.

Additionally, an answer to the second research question, i.e. which parts of processes listed
cause significant ine�ciencies, is also starting to become clear since some of the above steps
are more time-consuming and cause more busywork than others. Currently, for the day to
day work, the upload and download method and the training and scheduling cause very large
ine�ciencies which are presented in Chapter 5.

4.3 Proposed Solutions

The current machine learning process has now been performed from the beginning to the
end, with no modifications, just as the engineers are used to doing it. This section discusses
possible solutions to the problems outlined in Section 4.2, and describes which alternative
solutions that can be implemented at the case company. Like with Section 4.2, the naming of
the subsections follow the structure defined by Figure 3.2. Solutions, and information about
them, are to be presented in the order of the workflow, with the results of the improvements
announced in Chapter 5.

4.3.1 Storage

After the di�culties discussed regarding the versioning and storage of the datasets, from
Section 4.2.1.2, it is clear that the current storage solution is incapable of managing these large
sets of data, and needs to be replaced. Currently, the amount of load the data retrieval process

55

4. Analysis

place on the network and backend servers negatively impacts other departments, which is
why the engineers have requested that focus is placed on finding a sustainable solution to
this issue.

Additionally, a new storage solution would also directly a�ect the ease of introducing other
improvements. In fact, some of the researched solutions require certain storage technologies,
andmight contributemore significantly to the overall improvement than the storage solution
itself.

4.3.1.1 Desired Features

To limit the search scope of potential storage solutions, the initial research only looked at
three primary points of interest. Our hope was to locate a limited number of solutions that
fulfilled all the requirements, which could then be more thoroughly tested to see how much
the overall e�ciency improved.

First, and most importantly, the desired functionality of the storage solution had to be de-
cided. The second point of consideration was maintainability. The engineers at the video
analytics department is not expected to maintain their own storage, which meant that the
solution either requires low degrees of maintenance or allows the IT department to take over
operation. Finally, the usability of the storage client itself was evaluated to make sure that it
was able to be integrated with the training environment. In addition, both storage reliability
and cost e�ciency was also taken into consideration due to being fundamental parts of a
long term solution.

1. Functionality
The functionality evaluation started with looking into the most suitable type of stor-
age technology. In Section 2.8 the four major storage technologies of relevance are
presented. Analyzing the structure of the given datasets it was noted that they contain
large amounts of files of which most are smaller than half a megabyte in size. How-
ever, in conjunction there are a few files in these that are approaching the gigabyte size
range, which is expected to grow as the department starts processing more video. Ad-
ditionally, there is no standard form of naming convention or file structure between
the data, as it is usually only enforced by the one constructing the dataset.

This variation of data composition made a database storage solution a poor fit, es-
pecially concerning the scalability of storage space. The unstructured nature of the
datasets could be better handled by NoSQL type database systems, which would allow
for easier sharding and distribution of the database. However, sharding is a non-trivial
task and some of the more promising alternatives, such as Cassandra [118], have limits
on item sizes which can be stored. This combination could lead to undesired restric-
tions in the future.

Block storage provides the best available performance when accessing the data repeat-
edly with small reads and writes. However, the datasets are usually only uploaded once
in its entirety, and then repeatedly downloaded, making this performance increase less
of a factor in our case. More importantly, block storage solutions have a tendency to

56

4.3 Proposed Solutions

become prohibitively expensive as the data grows making it an unattractive option in
the long run.

In contrast, object storage solutions looks to be the most promising considering the
functionality o�ered. Firstly, it allows easy distribution of data across multiple ma-
chines. Secondly, this technology allows diverse types of data, with the added benefit
of allowing metadata to be integrated inside the object itself [91] [119]. Comparing this
technology to classical file storage systems it has much greater possibility to scale to
future functionality and storage needs.

Since the engineers see themselves using all the storage space available to them, scal-
ing of storage space becomes the most important factor regarding choice of solution.
Additionally, since the data used is usually only written once to the long term storage,
but read multiple times, object storage was deemed the best fit of the explored storage
technologies.

2. Maintainability
Maintainability is the second point of interest. The engineers have extensive knowledge
regarding machine learning and other forms of data modeling, however, they lack ex-
periences in maintaining storage solutions. A better use of resources would be to assign
the storage solution to the IT department. Another option could also be to utilize a
cloud storage service. However, this exposes new problems related to GDPR and other
legal issues. As such, an on-premise hosted storage solution is therefor currently the
only available option and should, in the best case, be operated by the IT department.
With this said, it is important to look into how easy the recommended solution would
be to maintain and what the IT department demands of a solution to be willing to take
over daily operation.

3. Usability
Regarding usability, we equate this to evaluating the client or API. With this we mean
the interface provided by the storage solution, to allow external programs to commu-
nicate with it and obtain desired data assets. If the data of interest is stored on a file
system, as it is with file storage, the APIwould mean the assignment of the desired file’s
path inside the program that would like to obtain the data. This would also be the case
with block storage, since the most common solution is to place a file system on top of
the virtual block device that is created.

Using file paths, as a method of obtaining data, is what most people are familiar with
and are comfortable using. Of the machine learning frameworks that have been stud-
ied, all expect the data to be available on a local file system by default. This makes
file storage solutions the most compatible method in this regard, since a NFS share
would allow for easy mounting of the remote file system. However, this is not a very
sustainable model for expanding the storage capacity in the future as a large number
of files would potentially slow down the system or hit limits in the file system or block
devices.

In the case of object storage there exist multiple di�erent interfaces that are less known
than the file system. The threemajor cloud storage providers, which o�er object storage
solutions (Amazon, Google and Microsoft), implement their own RESTful API [89]
which use HTTPmethods such as PUT, GET and DELETE to interact with objects stored.

57

4. Analysis

Between these, the Amazon S3 API [91] has grown to become more or less the de facto
standard [120] when it comes to cloud storage. Python, the preferred language used for
machine learning at Axis, has an o�cial software development kit [121] which allows
simple interaction with data assets stored on solutions o�ering S3 API access. As a
result, object storage solution that o�ers S3 API will bemore valuable for the engineers
than other less widely used APIs. An S3 API also has the added benefit of making
migration of solutions into the cloud easier, if this should become a possibility in the
future [122].

Databases are another form of data storage that provides implementation specific in-
terfaces, often called query languages [123], that are used to ask the database to find,
update or retrieve specific data. StructuredQuery Language (SQL) is the language used
to interact with popular relational databases, such asMySQL or PostgreSQL, while the
column based Cassandra database has its own language called The Cassandra Query Lan-
guage (CQL). These query languages allow more advanced data retrieval options, but
also require more setup and knowledge to interface with. In conclusion, it is therefore
in our opinion better to focus on the S3 API, instead of these query languages, as this
allows easy scripting without any database knowledge.

To summarize, it was decided that an object storage solution, with S3 API support, would pro-
vide the best features to combat the current storage problem. Such a solution would scale
to however much storage would be required while also allowing easy migration to the cloud.
However, it will be necessary to coordinate with the IT department, at the case company, to
make sure they are able, and willing, to deploy and maintain our suggested solutions.

4.3.1.2 Researched Solutions

Originating from the three most prominent feature specifications outlined in Section 4.3.1.1,
the following storage solutions have been researched and evaluated:

• Arvados [124]
• Cassandra [125]
• Ceph [26]
• GlusterFS [126]

• Minio [28]
• MooseFS [127]
• Pithos [128]
• RiakCS [129]

• RiakKV [130]
• SeaweedFS [131]
• Swift [27]
• Proprietary Solution

Before proceeding, a clarification is required here regarding the Proprietary Solution, which is
mentioned at the very end of the list above. At the case company there is currently a di�erent
storage solution deployed, and maintained, by a third party company whose real name was
requested to be omitted. This company also o�ers a closed source object storage solution.
Since all other alternatives we have researched are open source, this particular solution will
henceforth be referred to as either Proprietary Solution or simply Proprietary.

58

4.3 Proposed Solutions

Preliminary analysis of the advertised capabilities of these solutions made them all seem
promising. However, the most desired feature we were searching for was an object storage
solution. Looking in Table 4.5, the feature set of all the aforementioned solutions are listed.

Table 4.5: Storage technology feature comparison.

Storage Storage Technology
Solution File Block Object Database
Arvados x x

Cassandra x
Ceph x x x

GlusterFS x
Minio x

MooseFS x
Pithos x1

RiakCS x2

RiakKV x
SeaweedFS x

Swift x
Proprietary x

Eliminating any solution that does not provide object storage functionality leaves seven possi-
ble alternatives. Out of those remaining Pithos will be discarded, as this project prominently
displays a notice that it is not under active development [132]. Similarly, one should be wary
against the two Riak solutions since the parent company has recently declared bankruptcy
[133].

The remaining solutions o�er a varying set of interface options, which are displayed in Table
4.6. Filesystem refers to access to the storage solution via a direct interface into to the client’s
filesystem using either NFS or CIFS/SMB. Block Device allows the storage solution to expose
the available space as raw block devices, which allows for similar manipulation as a disk
volume attached to the client system. Amazon S3 and Swift API are RESTful APIs that are
used to communicate with supported object storage solutions. These RESTful APIs provide
easy interaction with the stored items with not just the o�cially supported SDKs, but every
HTTP capable solution.

In Table 4.6, all the solutions that claim to support Amazon S3 are listed. However, none
of them follow the o�cial specifications perfectly, with even Amazon themselves having de-
viations from what they have defined as their API [134]. However, the ones listed indicate
where they di�er from the o�cial documentation [135]–[137], Arvados does not, which is
why it will be discarded.

1Uses RiakKV as backend.
2Uses Cassandra as backend.

59

4. Analysis

Table 4.6: API availability comparison.

Storage API/Interface
Solution Filesystem Block Device Amazon S3 Swift API
Arvados x x

Ceph x x x x
Minio x
Swift x x

Proprietary x x

ComparingMinio to the remaining alternatives unfortunately place it at a disadvantage. The
reason is that the philosophy of the Minio project is to be a single tenant service. This means
that the recommendation is to limit each Minio server to a limited amount of people or a
single application [138]–[140]. This is often the preferred solution in a cloud environment,
which is why Minio considers itself to be cloud-native [141]. Unfortunately, it is less suitable
when one does not have any ability to abstract away the hardware infrastructure as easily as
in a cloud environment. For now this will provide too large of an obstacle to maintain as a
standalone service.

With the remaining three solutions it was finally important to evaluate the considerations
from the IT department in order to make sure they had the ability to take over the daily
operation. One important aspect put forward was to consider what kind of support could be
expected in case of problems or issues. In this area both Ceph and the Proprietary Solution
have the development and support of large respectable companies while Swift is developed
and supported by the OpenStack Foundation [142] [143]. As such they are all actively main-
tained and well-supported with an advantage to the Proprietary Solution as its surrounding
infrastructure and support agreements are already in place at the case company.

4.3.1.3 Implemented Solutions

Having limited our search of possible storage solutions down to two alternatives, which we
felt confident in recommending, we contacted the main person responsible for the storage
at the case company. During discussion, it was then revealed that an S3 compatible object
storage solution had been requested by multiple departments before, but, due to other more
critical issues, no investigation into a possible solution had yet begun.

With help from our research a consensus was formed that the testing of the proprietary solu-
tion would be made a higher priority. Negotiations with the third party storage company was
immediately initiated, and a fully functional trial version of their object storage solution was
deployed at the case company. Important to note is that the hardware allocated for this trial is
below the minimal recommended configuration for a production environment. The storage
company informed us that their solution will not perform optimally in this configuration,
but should provide an opportunity to ensure that all features necessary are present.

At the time of writing it seems likely that the Proprietary Solution will be available as a
production ready o�ering operated by the IT department in the coming six months. It is
both a highly requested feature and the solution that can be deployed in the least amount

60

4.3 Proposed Solutions

of time, in addition to having the best support of all options analyzed. A figure showing the
function of the production ready setup is visible in Figure 4.4. The multiple backend storage
servers would theoretically allow for a higher throughput.

Figure 4.4:Overview of the production ready object storage solution
with the Proprietary Solution.

However, continued discussion with additional people inside the IT department have raised
concern that this proprietary storage may become unnecessary expensive for the storage re-
quirements that are expected in the future. Based on the recommendations from our research,
there is therefor also a project in place which aim to implement and evaluate a Ceph storage
cluster in parallel to the proprietary solution. This is a larger task, compared to the externally
supported proprietary solution, and no functional implementation was able to be brought
up for testing before the end of this thesis work. However, their preliminary evaluation does
indicate that, over time, it would be a more economical solution for large data storage that
does not require the same amount of external support.

Due to not having the ability to test against a Ceph based solution a temporary solution in-
volving Minio was instead utilized. This is to provide comparable numbers regarding what
transfer speeds an object storage solution on real hardware, is capable of, since the Propri-
etary Solution will be somewhat limited in its current setup. Additionally, our Minio setup
disregards data integrity and redundancy in favor of faster access and transfer speeds to better
represent the performance of a full production setup.

Another reason to utilize Minio for additional testing is to extend the results with the dif-
ferences between methods of retrieving the data. Object storage solutions require the use
of a client software to download the data assets and, as can be seen in the Results chapter,
a significant improvement in download times can be achieved by using another client and
tweaking the settings. Thus, Minio will be used as a side comparison to more thoroughly test
the clients’ performance allowing us to issue a recommendation regarding the client setup as
well.

4.3.1.4 Storage Solution Summary

Our research and testing suggest that the deployment of either Minio, Ceph or Proprietary
Solution at the case company would solve half of the problems raised by the engineers in
2.5d. In our experience the transfers to and from the long term storage has been much easier
and faster, while also completing without errors. These solutions introduce no extra storage
overhead on the clients meaning the disk size required is drastically reduced.

61

4. Analysis

By using the Amazon S3 API specifications, it is also possible for the clients to attach the
metadata of the images into the data item that is uploaded. This could be an appreciated
feature when data is to be annotated in the future. Furthermore, the suggested solutions can
be configured to allow for easy versioning of the objects stored. Importantly, when a new item
is uploaded with the same path as an already existing one, the old data will not be deleted,
but rather hidden and replaced and may be accessed by specifying version number in the GET
request. There is also no method of performing partial rewrites of uploaded items as each
change requires the entire item to be replaced further enforcing simpler versioning of the
files.

4.3.2 Preprocessing

Without diving too deep into the training code itself, it was found that there is notmuch to be
altered in the current process regarding the preprocessing tasks. Onemethod which improves
the accuracy and robustness of an image classifier model is to artificially inflate the training
data through simple, or advanced, augmentations [62]. The most common augmentations,
presented in Section 2.2.1, are both known and used by the engineers, meaning that our only
suggestion is to continue with the current processes.

Having studied the PyTorch implementation in particular, the available augmentation func-
tions are applied just after the original data has been read from disk. This significantly re-
duces the amount of physical storage space needed, with the important drawback being that
the exact data used by the network is random in nature and reproducibility is lost. This is a
known problem, and to combat this PyTorch allows a seed to be set for the generator used to
create randomness. From this seed the random generator will produce the same sequence of
numbers on succeeding runs. This will allow for reproducibility if the input seed is used, but
may di�er between di�erent versions of PyTorch [144]. Future experiments should therefor
record both the seed and the PyTorch version to be able to be able to accurately trace how
their resulting network came to be. Similar functionality is also available in the TensorFlow
framework meaning our recommendation is also valid there.

Furthermore, both of these frameworks support batch loading of the data from disk into
GPU memory, with asynchronous processes allowing multiple batches to be preprocessed
simultaneously by the CPU.What needs to be assured is that there are enough worker threads
to saturate the bandwidth to the GPU(s). There are no guidelines regarding this, but a forum
post suggest four worker threads per graphics card used [145]. Our results with di�erent
amount of workers are presented in 5.2, but needs to be evaluated more in depth for the case
where multiple GPUs per computer are involved.

Regarding preprocessing tasks that are done in the early creation stages, such as collecting
and sanitizing the datasets, these are left for future projects to improve. The reason for this
is that there is currently no consensus on how data should be collected and annotated, and
creating such a workflow is too complicated to be completed in the time for this thesis work.

62

4.3 Proposed Solutions

4.3.3 Scheduling & Training

From the beginning of this thesis work, our most ambitious goal have been to make it pos-
sible for the machine learning tasks to be automatically scheduled and run in parallel on
a distributed compute cluster. To allow such automation one requires the tasks themselves
to be both schedulable and agnostic towards the underlying hardware and software setup,
which are two of the problems expressed by the engineers in Section 2.5. Our hope was that
solutions in these areas would also allow easier ability to run the training tasks in a compute
cluster.

The engineers have been looking at complete system solutions which would allow better
distributed training e�orts for a long time and were surprised that no solution outside cloud
environments seemed to exist. Our research did not find a complete answer to this but the
many di�culties with large scale data processing, particularly with multimedia data, has
been outlined in greater detail in Chapter 2. One thing is however clear, the components
of a system solution seems to have surfaced very recently as is indicated by the solutions
outlined by the related works in Section 2.3. Thankfully many of the solutions presented
in the background chapter have been made available by open source e�orts finally allowing
complete system solutions to become available to the general public.

A good indication of how far the e�orts have come is Alchemist [29], i.e. the system allowing
easy, fast and scalable distributed deep learning by Apple previously presented in Section 2.3.
Published in November 2018, it arose at the later stage of our research into possible solutions
and outlined a complete end-to-end system for easy training of deep neural networks. In
this paper the authors utilize object storage in combination with container technology to
create reproducible and portable training jobs. This is then combined with the scalability
and management capabilities of Kubernetes to allow easy scheduling and distribution of the
jobs across a compute cluster. In the end a full system is presented almost entirely built from
open source components.

Luckily, the case company had recently deployedKubernetes cluster of their own allowing the
possibility to test similar solutions. In order to be able to test the training example needed to
be package in a container allowing us to explore howwell that solves the problems of software
versioning and what performance penalty could be expected.

4.3.3.1 Software

From Section 4.2.3 it was identified that themost trouble and delays, associated with schedul-
ing and training, stems from incompatibility issues between all the software components. The
engineers mentioned that the most frustrating part is managing the software dependencies
which are necessary for the GPU acceleration of the training frameworks. As these dependen-
cies require a reboot after reinstallation of a di�erent version they are both time-consuming
and limits any ability to run di�erent versions in parallel.

Since the engineers prefer to use di�erent frameworks, and those frameworks require di�er-
ent versions of CUDA, it is easy to understand the time wasted on reinstalls do eventually

63

4. Analysis

add up. If the department is to continue to scale up their e�orts in the future, this will be-
come prohibiting factor, as the shared computers will have to be reconfigured more often.
The incompatibilities also makes it di�cult to collaborate with colleagues, since they may
require disruptive modifications to the local environment in order to run.

On a similar note, it was noticed that the software dependencies are often not recorded along
with the training code in the version control system. Unfortunately, it is the interactive train-
ing that is partly to blame for this, as it encourages quick and small incremental changes
without enforcing that all required parts are in place in the version control system itself.
This allows a lot of flexibility for the engineers themselves, but makes it di�cult to recre-
ate the experiments on the powerful workstations and collaborate on the same experiment.
Consequentially this also results in poor, or nonexistent, methods of reproducing the results
of earlier versions.

These issues could be solved by utilizing a solution that can create isolated environments
for each experiment, and allow them to run in isolation without modifying the local envi-
ronment. These environments should also be able to be portable between computer hosts,
and/or stored for long periods of time, to better satisfy the requirement of reproducibility.

One solution, that fulfills the above mentioned requirements, would be to use virtual ma-
chines. This is a well know and proven technology that creates a virtual environment, iso-
lated from themain system, inside which it possible to install a completely separate operating
system. Having multiple virtual machines running in parallel would allow for many di�erent
software environments to coexist on the same hardware. These virtual machines can be stored
and transferred to a new host without modifying the guest system. This allows for very good
reproducibility and portability, however, such a solution infers computational overhead, as
an entire virtual operating system is running in addition to the programs themselves. Fur-
thermore, this solution will generate a significant amount of additional data that needs to be
stored, since each virtual image has all the files of an entire operating system included.

A more modern method, with similar results, would instead be to use containerization tech-
nologies [71]. These create isolated environments on a program level, instead of the operating
system level, making the overhead smaller at the sacrifice of compatibility regarding the un-
derlying system. This means is that the programs running inside the container must be able
to run on the operating system that is installed on the host machine, i.e. a Windows native
program can not run inside a container on a Linux system without some form of translation
layer in between. See Figure 4.5 for a simplification on how the di�erent isolation solutions
works.

Examples of such containerization solutions are LXC [146], LXD [147], OpenVz [148] and
Docker [22]. Out of these, Docker has risen to become the most popular, while also being
one of the best supported solutions to deploy on a Kubernetes cluster. The wide adoption
of this open source tool makes for isolated environment with relatively low overhead. The
setup consists of install the Docker daemon on the host system (instructions in Appendix B.1),
and all containers compatible with the native operating system should be able to run without
issues. Additionally, isolation on application level makes it possible to have two containers,
running in parallel on the same host, which are running on completely di�erent software
environments. When a container finishes it can be completely removed from the host, which
subsequently removes any trace of it.

64

4.3 Proposed Solutions

Hardware Hardware
OS

Hypervisor

OS

Bins/Lib Bins/Lib

App 2

App 2

App 1
Bins/Lib Bins/Lib

App 1

Guest
OS

Guest
OS

Figure 4.5: Visualization of the principle behind a program running
inside a virtual machine (to the left) and a program running in a
container (to the right).

One of the best features of Docker in our opinion is the method of how this isolated con-
tainer environment is created by the user. The Docker daemon builds the entire container
from instructions that are explicitly written inside a recipe file, which in this case is called the
Dockerfile. Thus, the engineers will have to write down all installation steps, and all mod-
ifications performed, into this file to be able to have the desired environment in which the
experiments should run. Even though this may require additional e�orts by the engineers,
it will be a significant improvement regarding both reproducibility and portability result-
ing in much easier collaboration. The Dockerfile is also suitable for inclusion along with
the code itself in the version control system used since it is essentially a simple text file. By
including this Dockerfile in the same repository as the experiment code, the issue about
reproducibility and portability would be almost entirely solved.

Another positive aspect of using Docker is that Nvidia provides o�cial support of having
the GPU dependencies themselves also be isolated in the container environments [69]. The
host will still be required to have the GPU drivers installed, but since CUDA is essentially
a runtime binary utilizing the hardware via the drivers it has no problem being isolated in
the container environment. This means two experiments, using di�erent frameworks that
require di�erent CUDA versions, may run in parallel on the same host machine. Making it
possible for multiple containers, that require GPU accelerated computations, to coexist on a
single powerful multi-GPU node, which may be included in a Kubernetes cluster.

Through this single feature, one of themost irritating and time-consuming steps, of setting up
the training environment, has been removed. The only thing thatmight be of a concern is how
much of an overhead this containerization technology introduce on the experiments. The
isolation methods used by the Docker daemon may make the execution of the experiments
slower, however, we believe that this overhead will be severely outweighed by the advantages
o�ered. Furthermore, this solution allows one improve the training processes further through
distribution with a Kubernetes cluster. But, for this to be possible, it is also necessary for the
code, running inside the containers, to be autonomous enough to both be started by another
program, and have a clear termination point. Otherwise, the container will continue to live
indefinitely on the cluster.

65

4. Analysis

4.3.3.2 Scheduling & Training

Even at the relatively small scale, at which the engineers are currently working at, the issues
of having to manually schedule experiments have become noticeable. During the interactive
training phase the experiments are started without any triggers determining completion, and
it is up to the engineer to continuously monitor training metrics and manually terminate
training once satisfactorily values has been reached. This is a prominent source of wasted
resources, since either the engineer is occupied with monitoring the output or the training
will continue longer than necessary, risking degrading the models’ ability to generalize while
prohibiting the system to be utilized by other experiments.

To allow the experiments to be able to run in a distributed environment, and be automati-
cally scheduled, the first step is to prohibit the manual intervention in the termination of the
training e�orts. Additionally, some method of automated monitoring, and triggers on cer-
tain metrics, would allow the engineers to focus their attention on other areas. Examples of
metrics that are important to monitor are the current epoch and the accuracy of the model.
An automated system could potentially stop the model when it reaches a certain number of
epochs, or earlier if a certain level of accuracy is achieved, thus allowing other experiments
to run. The next experiment should ideally be started as quickly as possible, to increase the
overall utilization of the expensive hardware.

In searching for solutions to the above mentioned issues, taking guidance from the Apple
paper [29] discussed in Section 2.3, an open source solution called Polyaxon [70] was found.
This framework is, in the words of the creators, “a platform for reproducing and managing
the whole life cycle of machine learning and deep learning applications”. It is deployed on to a
Kubernetes cluster, and acts as an abstraction layer from the otherwise complicated command
line interface of pure Kubernetes management, even going as far as abstracting away most of
the container implementation as well and implementing its own recipe files.

In order to o�er a complete end-to-end solution, to the workflow of the machine learning
experiments, Polyaxon is composed of multiple smaller services in a microservice architec-
ture, utilizing the many features available in both Docker and Kubernetes. In contrast to pure
Kubernetes, it only exposes a simple command line interface along with a good-looking web
interface towards the end users. The web interface allows the ability to log in andmonitor, or
stop, currently running tasks, and get results of completed experiments. A complete system
overview is visible in Figure 4.6, and a full set of screen captures are available in Appendix A.

The workflow promoted by Polyaxon is constructed to allow very flexible interactive training,
just like it was previously, i.e. the engineers manage their own personal environment and iter-
ate andmodify the code as they wish while monitoring it in the terminal. Themain di�erence
is how the batch training is managed, executed and monitored.

Explained in short, the Polyaxon framework utilizes its own version of a recipe file called
polyaxonfile.ymlwhich specifies how to run the experiment or group of experiments. Here
one specifies if performing a group or single experiment, resources to request (Compute node,
CPUs, memory, GPUs, etc.), data sources and outputs, what command line arguments to
pass to the application, what Docker environment to use as a base, what extra dependencies
to install and how to execute the experiment. With the experiment or experiment group
thoroughly defined it is then uploaded to the Polyaxon scheduler. The scheduler makes sure

66

4.3 Proposed Solutions

that a container is built according to the specification and made available, a compute node
that meets the resource request is found and retrieves the built container and as a final step
is started according to the inputs given.

Figure 4.6: Image providing an overview of the architecture of
Polyaxon from the o�cial documentation [70].

If the requested resources are unavailable or simply missing the experiment is placed in a
queue, waiting to be built and transferred, until a matching node is made available. When
running, the Polyaxon Client will continuously report back to the scheduler how the moni-
tored variables are progressing, until the cuto� point is reached this is done by utilizing the
o�cial Python Module and telling Polyaxon which values to monitor in the training code
itself. All the metrics are then displayed, in almost real time, with graphs on the user facing
web interface, making it easy for engineers to see how the training progresses over time. This
provides a better overview of how the di�erent parameters change the overall results of the
model, and allows for faster comparisons between di�erent training sessions. Furthermore,
it is possible specify an entire experiment group in the recipe file directly, making it much
easier to schedule the entire set of input parameters one wishes to evaluate. Polyaxon will
then schedule all specified combinations of the parameter intervals defined. An example use
case which benefited our own evaluation was to test how the number of DataLoder worker
threads, from 1 to 4, a�ects both a large and a small dataset. This can be setup by simply
defining the range of 1-4 as the specified DataLoder and the two datasets as input varia-
tions. From this it will automatically create eight experiments to encompass all the possible
combinations.

This will significantly speed up the testing methodology for the engineers, as this is a process
that is often undertaken developing new machine learning models. As a good example of
how this could improve testing in the future, we decided to test how well di�erent neural

67

4. Analysis

networks could be trained on the CINIC-10 image set. Initially we started each test manually,
and waited until it had finished before starting another. Then we tested the same procedure
again, but this timewith Polyaxon as being responsible for starting all the tests. Unexpectedly,
this was much more e�ective as is seen in the results of Chapter 5.

With the monitoring and scheduling now having a working solution for batch training one
wonders if similar systems could be set up to provide more control over the interactive training
as well. Currently, this is not possible but the authors of Polyaxon has started development of
the ability to run major parts of Polyaxon without having any Kubernetes dependency. This
would allowmany monitoring and scheduling features to work in a single node environment.

4.3.3.3 Hardware

One of the most significant aspects a�ecting the training process is the hardware being used.
The classical method of making the training task faster is to invest in faster and more pow-
erful hardware. However, this is costly to do every time a new revision is released, and having
to do it for every engineer’s workstation will force compromises on the budget. At the same
time this hardware is mostly underutilized, since when the engineers are not actively train-
ing, the hardware is sitting idle. This is known and as such there are a few very powerful,
multi-GPU workstations that are shared by the entire department which they have to book
in a calendar to be able to use.

By leveraging Kubernetes a much more robust infrastructure could be constructed as the
inclusion of new hardware, either on premise or in the cloud, would be very fast and only
requires network access to the master node of the cluster. This means that all the hardware
utilized for batch training could be managed by the IT department instead of the engineers
themselves. This would potentially make it easier to make sure that the hardware is both
properly cooled and placed physically closer to the storage servers, further decreasing the
turnaround time of each experiment. The one in charge of the hardware could also be allowed
to monitor the degree of utilization and order more hardware as the queue of experiments
starts to become too long. The Co-locating tasks that are CPU intensive with those who are
GPU intensive on the same node would also allow for maximum utilization of the available
computational power.

Another added benefit of the cluster solution is that it allows easier distribution and paral-
lelization of the training computation across multiple GPUs and even multiple nodes. The
main factor that simplifies such horizontal scaling of hardware is that Kubernetes handles
the network configuration, managing its own internal network with virtual IPs and domain
names, completely separate from the outside network. This makes it much simpler to connect
nodes together and as the machines themselves can be located elsewhere they can be placed
in data centers with higher bandwidth communication between them.

68

Chapter 5

Results

Chapter 4 began with a thorough analysis of the machine learning process at the case com-
pany, in order to delineate the current workflow and thus answering the first and second
research question when the most prominent bottlenecks were identified. In Section 4.3 an
investigation into possible solutions for these identified problems was initiated, with a fo-
cus on finding alternatives that would be feasible to implement at the case company. The
solutions that were identified as the most suitable were subsequently deployed, which would
answer research question 3 and 4, and allowed further tests regarding their impact on per-
formance.

This Chapter will answer the final research question, on how much the implemented solu-
tions increase the e�ciency of the current workflow. Similarly, to the previous chapter, the
results of the improvements are divided into the sections presented in Figure 3.2. However,
the Discussion, in Chapter 6, will follow up with additional points regarding the subjective
thoughts of improvements from the engineers.

5.1 Storage

The Proprietary Solution was running on less performant virtualized hardware during test-
ing, which means that the measurements obtained will not reflect the performance of a prop-
erly configured system. Therefore, its transfer times will be complimented with the results
from a Minio setup on dedicated hardware, to showcase how a single node best case scenario
would look like for a similar storage system.More information regarding how the experiment
was set up, and what commands that were issued, can be found in Appendix D.1.

69

5. Results

5.1.1 Speed Improvements

The first measurements made were the time it took to upload and download the datasets to
and from the di�erent server solutions. Since the client software is a part of the variables,
both the aws-cli and the rclone clients, presented in Appendix D.1, were used to observe
how those impacted transfer rates. The current storage solution requires the use of the Git
client, with the Git LFS extension, which is why no other clients were tested with this.

All the transfer times obtained are presented in Table 5.1, and these are all measured from
a single computer to the server solution in question. This was to keep outside variables to a
minimum. To better illustrate the di�erences, the download and upload times were plotted
in a bar graph for each dataset. These can be observed in Figure 5.1, 5.2 and 5.3.

Table 5.1: Transfer times to and from the di�erent solutions with
di�erent clients. Time format is HH:MM:SS.

OpenImagesV3 CINIC-10 CHUK03
Storage Solution Download Upload Download Upload Download Upload

Git LFS 18:37:00 x 02:15:00 ∼3 days 00:12:37 00:09:24
Propr. (awscli) 04:27:00 07:58:00 00:09:09 00:23:28 00:00:58 00:02:42
Propr. (rclone) 03:40:00 09:11:00 00:04:46 00:18:59 00:00:43 00:02:41
Minio (awscli) 02:41:00 04:12:00 00:09:39 00:10:05 00:00:59 00:01:04
Minio (rclone) 01:29:00 03:57:00 00:01:59 00:03:11 00:00:05 00:00:15

0 100 200 300 400 500 600 700 800 900 1,000 1,100 1,200

Do
wn
lo
ad

Up
lo
ad

89

237

161

252

220

551

267

478

1,117

Time (minutes)

OpenImagesV3

Git LFS
Propr. (awscli)
Propr. (rclone)
Minio (awscli)
Minio (rclone)

Figure 5.1: Bar graph displaying, in minutes, how long it took to
download and upload the OpenImagesV3 dataset to the di�erent
storage solutions with the di�erent clients. Please note that the up-
load bar for Git LFS is absent, since it was impossible for us to com-
plete that transfer.

70

5.1 Storage

0 20 40 60 80 100 120 140

Do
wn
lo
ad

Up
lo
ad

2

3.2

9.7

10.1

4.8

19

9.2

23.5

135

4,320

Time (minutes)

CINIC-10

Git LFS
Propr. (awscli)
Propr. (rclone)
Minio (awscli)
Minio (rclone)

Figure 5.2: Bar graph displaying, in minutes, how long it took to
download and upload the CINIC-10 dataset to the di�erent storage
solutions with the di�erent clients. Please note that the bar for the
Git LFS upload has been significantly scaled to fit on the page.

0 100 200 300 400 500 600 700 800 900

Do
wn
lo
ad

Up
lo
ad

5

15

59

64

43

161

58

162

757

564

Time (seconds)

CUHK03

Git LFS
Propr. (awscli)
Propr. (rclone)
Minio (awscli)
Minio (rclone)

Figure 5.3: Bar graph displaying, in seconds, how long it took to
download and upload the CUHK03 dataset to the di�erent storage
solutions with the di�erent clients.

71

5. Results

5.1.2 Size Improvements

Beyond the time e�ciency measurements, it was noted that the storage overhead introduced
by the Git LFS extension was significant. Due to failure in uploading the largest dataset with
Git LFS, the other two dataset are instead used to visualize how much extra data the LFS
extension contributes. The following sunburst diagrams have been created with the program
duc [149], which is able to calculate the total size of a folder on a computer, and then display
this along with the sizes of any existing subfolders.

In Figure 5.4a, a visualization of the sizes of the two subfolders cam_0 and cam_1, that to-
gether compose the CHUK03 dataset, can be seen. In total these two folders occupy 217.8 MB
of disk space, and out of this the cam_0 folder is responsible for 96 MB, while cam_1 takes up
121.7 MB. The circular sectors, that are adjacent to the folder names in the figure, are then
representing the percentage of the total size each folder is responsible for. In this case cam_0
is responsible for ∼44%, while cam_1 contributes ∼56% of the total size. The exact percentage
numbers are not important, as these diagrams just serve as visual aid for the reader.

After downloading the same dataset from Git LFS the 287.4 MB large .git folder is added
inside the root folder, which can be seen as the blue part in Figure 5.4b, and brings the total
size on disk up to 505.2 MB. The circular sectors are then shrunk to indicate that cam_0 is
now only responsible for ∼19% of the total size, and cam_1 is ∼24%, with the .git folder now
being responsible for ∼57% of the total space taken up on disk.

Inside the .git folder there are two further subfolders, called lfs and objects, whose names
aremore easily discerned in Figure 5.5b. These are visualized by adding a circular layer further
out from the center. The circular sectors of these subfolders are then also proportional to the
percentage of the total size of the root folder.

In Figure 5.4 the visualization of the relative sizes of each folder that compose CHUK03 can
be seen, while Figure 5.5 shows the CINIC-10 dataset. The names on most of the subfolders
have been omitted in favor of more easily readable diagrams.

(a) The raw size on disk. (b) Size on disk after Git LFS.

Figure 5.4:A visualization on the relative sizes of the folders that are
included in the CHUK03 dataset before and after being downloaded
from Git LFS.

72

5.1 Storage

1.2GB

train
399.5MB test

401.2MB

valid
400.6MB

(a) The raw size on disk. (b) Size on disk after Git LFS.

Figure 5.5:A visualization on the relative sizes of the folders that are
included in the CINIC-10 dataset before and after being downloaded
from Git LFS.

As can be seen, the total size of the folder containing the dataset has almost tripled in both
cases, after the dataset was downloaded fromGit LFS, with the .git folder being the culprit.
This folder contains information about the versioning of the files and will store the history
of changes, which means it can only be expected to grow in size as more versions of the data
are tracked. In Figure 5.6, a stacked bar graph is presented of the number of files inside each
of the main folders before it was uploaded and then after it was downloaded from Git LFS.

raw git-lfs
0

1

2

3

4

5

·104

3

25,515

14,353 14,353

13,840 13,840

N
um

be
ro

fF
ile
s

cam_0 cam_1 .git other

(a) Number of files in CHUK03.

raw git-lfs
0

1

2

3

4

5

·105

3

5

2.64 · 105

90,000 90,000

90,000 90,000

90,000 90,000

N
um

be
ro

fF
ile
s

test train valid .git other

(b) Number of files in CINIC-10.

Figure 5.6: A stacked bar graph of the number of files inside the
folders that are included in the CHUK03 and CINIC-10 dataset, before
and after being downloaded from Git LFS.

73

5. Results

For both datasets the total number of files almost doubled, with the .git folder being the
one responsible. Comparing this to the object storage solutions, the downloaded data only
contains the raw data itself, from the chosen version of the dataset, and none of the overhead
is present on the client side. However, on the server side the files uploaded are encapsulated
inside an object which is slightly inflated as it incorporates accompanying metadata. Fur-
thermore, the service may want to store multiple copies of the objects, to guarantee high
availability and integrity, which will multiply the total storage requirements. This is trans-
parent for the user, and will only be a concern for the server maintainers.

5.2 Preprocessing

As the number of alterations done to the data, before it is being trained on, was limited
to two simple augmentations, the results here might not be completely representative of all
forms ofmodifications. Some augmentations notmentionedmay inflict a significantly higher
performance impact, but those studied are still deemed to be representative of the current
situation at the case company. The method used to isolate the impact of these preprocessing
steps can be read in D.2.

The only parameter tuned, during this testing, was the number of worker threads used when
loading and augmenting the input data. The training example was then left to iterate over
the entire CINIC-10 dataset, for the default of 300 epochs, after which the final accuracy
was recorded along with the time it took for the training task to complete. Our results are
presented in Table 5.2.

Table 5.2: Time to complete 300 epochs of training for the VGG16
object classifier network, on the CINIC-10 dataset, with di�erent
amount of worker threads. Last column is the resulting accuracy.

Nbr of workers TTC Accuracy (%)
1 04:13:00 84.82
2 03:12:00 84.74
3 03:25:00 84.83
4 03:16:00 84.50

To demonstrate how these small augmentations to the input data impacts the accuracy of
the trained model, another training process was done without any augmentation to the input
data. In Table 5.3 it is possible to compare how much the accuracy was impacted when these
augmentations are turned o�. Both of these tests were performed with two worker threads
for loading and augmenting the input data.

74

5.3 Scheduling & Training

Table 5.3: Accuracy of the VGG16 object classifier network after 300
epochs with and without preprocessing augmentations to the input
data. Both are using two worker threads for data loading.

Augmentation TTC Accuracy (%)
None 03:22:00 76.14

Rotation & Cropping 03:12:00 84.74

5.3 Scheduling & Training

It is necessary to preface this section by mentioning that improving the scheduling and train-
ing required adjustment of multiple variables that interact with each other in intricate ways.
These dependencies, on other components, make it unfair to judge the performance of every
individual alteration, introduced in Section 4.3.3, by itself since some may make one part of
the process slightly slower while then making the process significantly more e�cient when
combined with another tool.

The improvement results are therefore presented here as isolated as possible, to then be dis-
cussed in Chapter 6 in their entirety. The order of how the results are presented is kept the
same as in Section 4.3.3, and information about how the measurements were made can be
found in Appendix D.3.

5.3.1 Software

Introducing Docker to the engineers provided a major change to the workflow, as it required
the engineers to learn a new tool that a�ects how one develops and deploys the model train-
ing. At first, this is expected to cause longer development times, until enough experience has
been gained and the benefits of the tool becomes noticeable.

Modifying an environment without Docker, by following the guide written in Appendix B.8,
took about 30 minutes. Comparing this to having the Docker daemon download and build
the same environment inside a container only took about 5 minutes resulting in a six times
decrease in environment setup time.

Running the code inside a container does a�ect the time it takes to execute. In Table 5.4
are time measurements of how long it took for di�erent object classification models to com-
plete 300 epochs running on the bare metal (Native) versus inside a container (Docker). The
percentage di�erence, how much slower/faster the containerized code is, is presented in the
final column where a positive number equals more time added, i.e. slower. These di�erences
are also presented in a bar graph in Figure 5.7, where the total execution time is converted
into minutes.

75

5. Results

Table 5.4: Comparison of the training times of di�erent models, us-
ing the CINIC-10 dataset, running on the native operating system
versus inside a Docker container.

Training Time
Model Accuracy Native Docker Di�erence
VGG16 84.74% 03:12:00 03:40:00 +15.6%

ResNet18 87.45% 04:41:00 04:24:00 -6.0%
ResNet50 88.40% 15:12:00 15:27:00 +1.6%
ResNet101 88.42% 24:57:00 25:19:00 +1.4%

MobileNetV2 83.99% 06:19:00 14:50:00 -2.4%
ResNeXt29(32x4d) 88.67% 14:21:00 14:59:00 +4.4%
ResNeXt29(2x64d) 89.09% 14:06:00 14:47:00 +4.8%

DenseNet121 88.58% 16:34:00 17:03:00 +2.9%
PreActResNet18 87.01% 04:19:00 04:19:00 +0.0%

DPN92 88.18% 38:33:00 43:19:00 +12.3%

VG
G1
6

Re
sN
et1
8

Re
sN
et5
0

Re
sN
et1
01

Mo
bile

Ne
tV2

Re
sN
eX
t29

(32
x4d

)

Re
sN
eX
t29

(2x
64d

)

De
nse

Ne
t12
1

Pre
Ac
tRe

sN
et1
8
DP

N9
2

0

1,000

2,000

3,000

19
2 28
1

91
2

1,
49

7

37
9

86
1

84
6 99

4

25
9

2,
31

3

22
0

26
4

92
7

1,
51

9

37
0

89
9

88
7 1,
02

3

25
9

2,
59

9

T
im

e
(m

in
ut
es
)

Native Operating System
Docker Container

Figure 5.7: Bar graph displaying, in minutes, how long it took for
the di�erent network models to complete 300 epochs of training on
the CINIC-10 dataset, running on the native operating system and
inside a Docker container.

76

5.3 Scheduling & Training

What should also bementioned in this section are the improvements in portability and repro-
ducibility, however, these can not bemeasured in quantifiable time. Instead this is considered
to be more of a binary result, since previous solutions did not o�er easy portability or repro-
ducibility, while the suggested improvements does. These features have been shown to allow
both easier collaboration and troubleshooting, meaning it can potentially save a lot of time
in the long run.

5.3.2 Scheduling & Training

Adding up the raw numbers, of how long each Docker experiment fromTable 5.4 took to run,
the minimum time it would be possible to complete all of them is 8,967 minutes, or slightly
more than 6 days. Since it was impossible for us to align the beginning of the next experiment
perfectly with the end of the previous, the actual process of completing that table stretched
on for 12 days. This included using a remote connection on weekends to start experiments
from home, which is probably not something the full time employees are interested in during
their free time.

Defining each and every experiment, previously run with manual scheduling, in a way that
would be schedulable by Polyaxon, allowed us to complete everything in about the time it
took for the two longest running experiments to finish, i.e. just under 3 days. A simple graph
of the total di�erence in completing the experiments is available in Figure 5.8.

Polyaxon

Manual 12 days

3 days

Figure 5.8: Time to execute all containerized training experiments,
from Table 5.5, by manually scheduling versus utilize Polyaxon’s
scheduler.

The reason to why Polyaxon is able to complete it under the theoretical minimum time is
because it has access to five GPUs, which is further explained in the setup procedure in Ap-
pendix D.3. This was not considered a problem, but rather a display of how much more ef-
ficient the process can be made with a software scheduler instead of manually starting each
experiment.

The time it took each individual experiment to complete is visible in Table 5.5, together with
the previous results of running them as a single instance on a single computer within a Docker
container. Here it is important to point out that some experiments took significantly longer
to complete within the Polyaxon environment, which turned out to be because of thermal
limitations with the computer used for batch training (i.e. the one outlined in Table 4.2)
due to having too many GPUs without adequate cooling. The results from ResNet101 and
DPN92 where scheduled on the less powerful computer (i.e. the one in Table 4.1) and did not
experience thermal issues and as such performed much better.

77

5. Results

Table 5.5: Comparison of the training times of di�erent models, us-
ing the CINIC-10 dataset, running on inside a Docker container on
a single host versus in the Polyaxon proof-of-concept solution on
multiple hosts.

Training Time
Model Docker Polyaxon Di�erence Thermal Issue
VGG16 03:40:00 05:01:00 +36.8% yes

ResNet18 04:24:00 05:03:00 +14.8% yes
ResNet50 15:27:00 21:28:00 +38.9% yes
ResNet101 25:19:00 25:58:00 +2.6% no

MobileNetV2 06:10:00 07:23:00 +19.7% yes
ResNeXt29(32x4d) 14:59:00 26:13:00 +75.0% yes
ResNeXt29(2x64d) 14:47:00 32:13:00 +117.9% yes

DenseNet121 17:03:00 31:05:00 +82.3% yes
PreActResNet18 04:19:00 06:23:00 +47.9% yes

DPN92 43:19:00 46:22:00 +7.0% no

Something that is also important to point out is that, for each experiment running on Polyaxon
on the Kubernetes cluster, the CINIC-10 dataset was downloaded each and every time a new
test was started. This was done to simulate that the nodes in the cluster will not always have
this data locally cached, and will need to fetch it from a central storage solution.

To show the impact that the download procedure may have on the process, the download
times are combined with the training times for all experiments and visualized in Figure 5.9.
The left bar for each experiment is the time it took to download the CINIC-10 dataset with
Git LFS and run the training with a normal Docker container setup. The right bar is the
time it took to download the same dataset with rclone on our Minio setup (which is not
even visible due to taking < 3 minutes) and train on the Polyaxon cluster. Once more it is
noted that all experiments except ResNet101 and DPN92 had thermal issues as mentioned
previously.

Furthermore, the Polyaxon framework also keeps track of input arguments, used to define
the experiments, as well as record all the output created by the tests, with the ability to
review them through the web interface. This means it is possible to return to old experiments
to see how those compared to new ones. This will also provide easier cooperation between
colleagues as results are more easily accessible by everyone.

Screenshots on how the overview of running, stopped and finished experiments looks is vis-
ible in Figure 5.10 and the single experiment view in Figure 5.11. Additional screenshots are
located in Appendix A.

78

5.3 Scheduling & Training

VG
G1
6

Re
sN
et1
8

Re
sN
et5
0

Re
sN
et1
01

Mo
bil
eN
etV
2

Re
sN
eX
t29
(32
x4
d)

Re
sN
eX
t29
(2x
64
d)

De
ns
eN
et1
21

Pr
eA
ctR
esN

et1
8

DP
N9
20

500

1,000

1,500

2,000

2,500

3,000

T
im

e
(m

in
ut
es
)

Docker
Git-LFS

0

500

1,000

1,500

2,000

2,500

3,000

T
im

e
(m

in
ut
es
)

Polyaxon
Rclone

Figure 5.9: Bar graph displaying, in minutes, downloading with Git
LFS [113] and training with Docker [22] versus downloading with
Rclone [150] and running with the Polyaxon [70] proof of concept.

79

5. Results

Figure
5.10:Experim

entsview
ofthe

Polyaxon
fram

ew
ork

[70].

80

5.3 Scheduling & Training

Fi
gu
re

5.
11
:O

ve
rv
ie
w
of

a
si
ng
le
ex
pe
ri
m
en
ti
n
th
e
Po
ly
ax
on

fr
am

ew
or
k
[7
0]
.

81

5. Results

5.3.3 Hardware

Hardware is a more di�cult topic to define a time measurement on. The most concrete ex-
ample of improvement here would be how the hardware is sourced. As it is now, the video
analytics department have to order the computers via the IT departments which retrieves
the hardware and sets up the initial environment. The hardware is then moved by the engi-
neers to their own o�ces where additional setup is performed. This entire process could be
much improved and streamlined if the IT department handled the entire process of order-
ing, setup and integration into the cluster while the engineers simply specify their hardware
requirements in a few lines of code, which should be possible with Kubernetes.

Having the powerful hardware included in a Kubernetes cluster would also allow for other
departments to take advantage of the available compute resources, which means pooling of
compute resources allowing better handling of spike utilization. By o�oading the mainte-
nance of the cluster to the IT department will also entail that the machines used are included
in a shared budget possibly allowing for fewer but more powerful nodes, instead of multiple
less powerful ones for each department doing machine learning.

However, no concrete results are able to be presented here as they would require more thor-
ough investigation and discussion between departments.

82

Chapter 6

Discussion

In the Analysis chapter, the current workflow was thoroughly analyzed and the most promi-
nent ine�ciencies were identified. Possible solutions to these were researched, and subse-
quently implemented in order to obtain measurements on how these a�ected the turnover
time of the training experiments. The succeeding results were then presented in Chapter 5,
with the explanation on how these were obtained in Appendix D.

This chapter will start out with a discussion about the results from Chapter 5 and continue
with a recap of the research questions and goals of the thesis work.

6.1 Storage

The first component of the machine learning process that was analyzed was the storage solu-
tion for the input data. The current Git LFS solution was not able cope with the amount of
files and data that was being stored, which was very noticeable during transfers. A replace-
ment was considered high importance by both the engineers at the video analytics depart-
ment and the maintainers of the current storage infrastructure.

Multiple alternative solutions were researched, andmany of them seemed promising initially.
However, it soon became clear that the storage space the engineers required, for the current
datasets, would be the limiting factor. The amount of data is also expected to increase sub-
stantially in the near future, which is why the aspect of scalability became themost important
aspect to focus on. From this it was concluded that the only storage technology that would
be able to scale to arbitrary capacities, without becoming prohibitively expensive, is object
storage solutions.

83

6. Discussion

The fact that other departments, at the case company, had also expressed desire for a company
wide object storage solution helped when our suggestions were expressed to the IT depart-
ment. It was important that solutions, intended for long term usage, could be deployed and
maintained by this department for it to retain full support in the future. This is why the
Proprietary Solution had the best chance of being implemented the quickest.

Research papers and industry leaders [6]–[8], [29] recommended that these types of solutions
allow communication and data management of assets over an HTTP interface, preferably
the Amazon S3 API, an argument which is further reinforced by the wide use of this API
by the machine learning frameworks themselves. The S3 specifications defines desirable fea-
tures, such as metadata integrated into the objects, easy version management and powerful
permission controls. Referring back to the problem description in Section 2.5, the engineers
specifically commented on the issues with versioning the datasets and not having a strong
link between the metadata and the actual data. These two problems are possible to solve
with an Amazon S3 capable object storage solution, which also has the additional benefit of
being a centralized solution capable of restricting access on the object level, thus allowing
better compliance with GDPR legislation.

Another point that was brought up by the engineers was the di�cult in uploading and down-
loading the current datasets by using the current Git LFS solution. During testing of our sug-
gested object storage solutions, not a single transfer had trouble completing or experienced
any errors, something that could not be said about the current Git LFS solution. The reliabil-
ity aspect alone makes the suggested storage solution highly preferable over the current one,
and the suggested solution have been proved to solve the issue of transferring the datasets
from storage, thus solving the issue with the highest priority expressed by the engineers.

However, a negative aspect of our suggested solutions is that there is a significant di�erence in
transfer speeds between the client solutions tested, with each client’s individual settings also
playing a significant role. Without any of our special modifications to rclone, mentioned in
B.6, the download of CINIC-10 would take almost 28 minutes. This is 14 times slower than
what is presented in Figure 5.2 and three times slower than the tweaked aws-cli. This means
that the clients themselves do not perform optimally out of the box, and instead requires some
additional tweaks which increases complexity.

The performance di�erence between client configurations was mainly relevant for datasets
containing many small files as the di�erence was significantly less pronounced with datasets
containing fewer larger files. However, since the overwhelming majority of the datasets used
are composed of mainly small files, modifications are recommended as it provides much bet-
ter performance in most machine learning situations.

What is most noteworthy is the upload times of the larger datasets to Git. The relatively
small CINIC-10 required us to upload it in batches over three whole days, even though it is
only around an order of magnitude larger than CHUK03. The transfer times does not seem to
have a linear correlation towards size, which is why we will not be able to speculate on how
long OpenImagesV3 would theoretically have taken to upload. It is therefore di�cult to say
exactly how much an object storage solution improves the transfer times over the current
git LFS solution, since the failure of uploading OpenImagesV3 would equate to an infinite
speedup. However, this would not be representative of the average use case, which is why we
will base our improvement statistics on the transfer times of the CINIC-10 dataset from the

84

6.2 Preprocessing

Proprietary Solutionwith the rclone client. Even though the trial setup is in an underperform-
ing configuration, the current download time is reduced from around two hours to a mere
five minutes, a 28 times speedup. This is very respectable, andmaymove towards the 67 times
speedup Minio was able to achieve, for the same test, with a more optimal configuration.

This improvement is also coupled with a significant reduction in the size that the dataset
takes up once downloaded to the client. The .git folder, used by the Git LFS client, inflated
the size of everything three times the raw values, and doubled the amount of files. The object
storage solutions, and their clients, do not add anything on top of the raw data of inter-
est, which makes for a much better user experience. This will also allow easier use of larger
datasets in the future.

Besides the obvious improvements in reliability, scalability and transfer speeds, this type of
solution has also opened up the possibilities for other quality of life improvements for the
engineers, which we are not able to quantify in time. Themost impressive example is aDataset
Browser that was developed, by the engineers, after it became clear that an Amazon S3 object
storage solution would be deployed. This tool indexes available images, along with attached
metadata, and allows for significantly faster searches over the datasets than the older file sys-
tem based approach, with additional tagging functionality. This software hasmade it possible
to, for example, find all images of cars, provide the download links and then compose a new
specialized dataset based on these results. The search service is accessed via a web browser,
and the images that match the search query are displayed on the same page for the engineer
to check that the metadata is actually correct. This feature is made possible thanks to the fact
that the storage solution use an HTTP interface, and the web browser can access the stored
data through the same interface as all other assets on the page. Solutions such as these greatly
improve the workflow of the engineers and the new storage solution allows more possibilities
over the current solution.

The flexibility of this solutionwill make a significant di�erence, not only for the departments
performing machine learning, but for any developer that is interested in long term storage
of vast amounts of data. Similar solutions has been highly anticipated, and it seems certain
that an object storage solution will be rolled out to be available to all engineers at the case
company in the future, especially among the teams performing Big Data analysis.

6.2 Preprocessing
As was stated in Section 4.2.2, preprocessing is a wide topic that include a large amount of
tasks that can be performed on the data before it is being trained on. However, the scope was
limited to only show how two augmentations could be used to extend the dataset and how
these impacted the performance of the training.

In accordance with other research [34], [58], our experiments showed that by only using two
simple augmentations a significantly better accuracy could be obtained. Table 5.3 shows that
the accuracy fell more than eight percentage points when all augmentation were turned o�.
Comparing the time it took to complete the tests it can also be noted that the two alterations
that are made have no discernible impact on the computation time. The minor di�erences
between the two runs may be attributed to the dynamic speed of the CPU and GPU based on

85

6. Discussion

thermal and power limitations, or what kind of random alterations are made. The di�erences
are deemed to be within the margin of error and augmentations should therefore be used
simply for the improvements in accuracy gained.

Another discovery, was that the default settings, in the PyTorch framework, only used one
worker thread to read data from disk and apply the specified augmentations. This was not
enough to saturate one GPU and more than two did not showing any additional benefits
according to the numbers presented in Table 5.2. However, by going from the default settings,
to using two worker threads, gave about a 33% increase in execution speed, which reduced
the time to complete with 25%. Interestingly, the saturation level of the GPU could easily be
monitored as the GPU utilization increased close to 100%.

Since this process contain randomness, small variations in the final accuracy and time to
completion is expected, but it is the di�erence in the execution time between one and two
worker threads that is of interest. That di�erence is significant, which is why our recommen-
dation is that this setting should be changed from the default. Details on how the di�erence
scales with more GPUs will have to be more thoroughly researched in the future.

The main concern related to this topic was how reproducibility can be ascertained when
randomness is involved. This was solved through the use of a seed to the random number
generator that is built into the frameworks used. This will make sure that the stream of “ran-
domness” is repeated identically between runs using the same seed.

6.3 Scheduling & Training
It is necessary to preface this section by mentioning that improving the scheduling and train-
ing has required adjustment of multiple variables that all interact with each other in intricate
ways. These dependencies, on other components, make it unfair to judge the performance of
every individual alteration, introduced in this section, by itself.

A prime example of such a case would be our recommendation to run the training code inside
Docker containers, even though it will result in a slower execution time than running on bare
metal. It is still worth recommending as it opens up the possibility to run the experiments, in
a more e�cient way, on a Kubernetes cluster. Furthermore, in the future, when experiments
needs to be reproduced, the container environments make up a significant amount of time
that previously was spent installing dependencies and debugging run-time errors.

6.3.1 Docker

In the problem description, Section 2.5, it was mentioned that a major issue with the current
experiments is that they are highly dependent on the hardware and software setup, and thus
not easily transferable between systems. This was also clearly noticed when trying to import
the example machine learning task, given to us by the engineers, onto our local workstation.
Many conflicting versions of software had to be removed and installed again, with the GPU
dependencies causing the majority of the di�culties.

86

6.3 Scheduling & Training

It was noted that the current methods of working did not provide adequate portability and
reproducibility, which are paramount to allow collaboration and give legitimacy to the re-
search being conducted. Our suggestion was therefore to introduce Docker containers, since
these make the transfers of experiments between compute nodes much easier. Additionally,
the fact that the environments needs to bemeticulously defined in a Dockerfile significantly
improves reproducibility, which can be further improved by saving a copy of the produced
Docker image that contains all needed components of the experiment.

The introduction of Docker alone solved the mentioned issue of portability, from the list in
Section 2.5, and provides an important component for solving the issue of scaling the training
tasks. The fact that the GPU dependencies are able to be isolated to the container, makes it
possible to transport the experiment setup with minimal friction to remote compute nodes
that have access to much more powerful hardware. This is a prerequisite for being able to
distribute these tasks on to a Kubernetes cluster.

Containerization is an established technology and continues to see an increase in use due to
the popularity of microservice architectures for complex software solutions. Docker is not
just the most widely known, but was also required by Polyaxon, the scheduling framework
that is evaluated later, which is why it was preferred over alternative container solutions. As
shown in the Table 5.4, there is a very slight performance impact when it comes to execution
times, but since the performance impact is small it can easily be motivated by the portability
and reproducibility gained by adopting container solutions.

Something noteworthy was that two models had faster execution time inside the Docker en-
vironment, versus running on the native machine. This was unexpected but shows that it the
overall performance impact of the Docker isolation may be less than the random execution
time di�erences that are inherent to each experiment. The average performance penalty, with
all networks included, was ∼3.5%, but this is increased to ∼5.4% if the outliers of ResNet18
and MobileNetV2 are ignored. The worst performing experiment model, VGG16, was actually
the one used as default for the preprocessing measurements, being 15.6% slower inside the
container environment.

According to previous research [151] the performance impact should not be greater than 1%
after the initial epochs where the impact could, in the worst case, be as high as 75% due to
startup overhead. The initial performance impact shown by previous research could explain
why the model with the shortest overall runtime also performed the worst. The large dif-
ference measured in our worst performing model could also be attributed to a di�erence
in ambient temperature between times of measurements, since the GPUs processor speed
dynamically change depending on thermal situation.

The results of the Docker performance impact are presented without taking into account
the 33% increase in speed that was gained by defining the use of two worker threads, instead
of the default one, during the preprocessing step. This speedup o�sets even the worst case
scenario here, but the limited testing with other frameworks makes us hesitant of stating that
this gain will be consistent across all possible combinations.

Introducing Docker to the engineers was highly appreciated, and was immediately applicable
to the current situation by eliminating the need to reconfigure the shared compute nodes
every time the machine learning framework changed. The total time savings related to the

87

6. Discussion

increase of this portability is di�cult to appraise, as it will most likely have an even greater
impact when more people are employed and actively using the shared nodes. The process
of reconfiguring the environment is, with Docker, only the time it takes for the daemon to
build the container, which is measured in seconds instead of the tens of minutes it takes do
reinstalls and reboots.

Additionally, the software environment can be recorded explicitly by having the Dockerfile
version controlled alongside the experimental code itself allowing much better reproducibil-
ity. However, the engineers did express that working with Docker introduces a significant
change to how they usually work, which will require some time to get adjusted to. However,
from our own experience it should not take more than a couple of days to become proficient.
A compromise would be to still run everything outside of containers on the local worksta-
tions, for interactive training, when the machine learning framework itself is often kept the
same. But utilize Docker for any experiment that is moved to batch training on the shared
compute nodes. This ensures that the benefits of Docker is used where it has the most impact,
i.e. in the collaborative and shared compute environment, while still enforcing the documen-
tation of software environment to ensure reproducibility in the long run.

6.3.2 Kubernetes & Polyaxon
Themost ambitious task undertaken during this thesis work, was the deployment of Polyaxon
on the Kubernetes cluster that is present at the case company. From the research presented
in the related works, Section 2.3, it was clear that the only sustainable method of scaling the
machine learning tasks is by distributing them over an orchestrated compute cluster.

At the leading tech companies, outlined in Section 2.3, similar infrastructures have been
leveraged to allow single experiments to be distributed across multiple compute nodes, but
such an implementation would require additional e�orts during both setup and cluster con-
figuration. Instead, a middle ground was studied, where themachine learning tasks are sched-
uled across the entire compute cluster, but not distributed in such a way that allowed compu-
tations to utilize more than a single node’s resources. This significantly reduces the complex-
ity to a level that was manageable during the given time, but still include the most vital parts
that are necessary for enabling the distribution and scaling of training tasks. With the infor-
mation gained from our solution it should be easier to transition to an even higher degree of
distributed computing in the future.

We would like to clarify is that the work conducted in this thesis report did not include
the setup of the Kubernetes cluster itself, but instead relied on previous e�orts at the case
company. Deploying a production ready cluster requires large e�orts during initial setup,
and it is a complicated piece of software to both maintain and for developers to interact
with. In order to be a solution to the scaling di�culties experienced by the engineers at the
video analytics department, it is necessary to make the interaction with the cluster as easy as
possible.

With that inmind, there are a few solutions available that aim to decrease the complexities for
the end user by reducing the flexibility and featureset exposed by Kubernetes itself. Usually
these solutions are targeted towards specific workflows, such as web development, and for a
long time no such solutions existed for machine learning development. This was true until

88

6.3 Scheduling & Training

the arrival of Polyaxon, which provides a machine learning developer just the functionality
needed from Kubernetes, while reducing the complexity to acceptable levels. The potential
of this framework is substantial, but in its current early state there are still some breaking
bugs which was experienced by us when running it on an on-premise environment. From
open source community discussion it seems like it works better when deployed on a cloud
environment provided by either Google, Microsoft or Amazon.

However, after being able to circumvent the problems (with the help of the author of the
framework and the open source community) and deploying it on the cluster, both we and
the engineers were impressed by how much of the desired functionality was provided by this
solution. The method of having the experiment setup declared in a recipe file, similar to
a Dockerfile, and having the environment automatically be built and placed in a queue to
later be started on an available compute nodewas exactly what was desired. The web interface
allows easy access from any computer, and the queue is easily managed. In the recipe file it
is possible to define what type of compute resources are required by the experiment, and
Polyaxon will let Kubernetes find the first available compute node that is free and fulfills
these requirements. Thus, the need for the user to manage the hardware and scheduling itself
is completely removed.

The automatic scheduling significantly reduced the friction when runningmany di�erent ex-
periments after each other. To illustrate the power of this automatic and distributed schedul-
ing, all the tasks from Table 5.4 was run, one after the other, on our local workstation with a
single GPU first without the help of Polyaxon and Kubernetes. This took a long time, mostly
due to the manual monitoring to see when the tasks had finished. This shows that there are
di�culties managing the scheduling of the current solution with even a single compute node.

In contrast, Polyaxon was given five graphics cards across two nodes to schedule the same
tasks, and was able to execute all the specified experiments as specified with minimal down-
time in between. This level of e�ciency is only possible with automated systems, which is
why this is highly recommended to be introduced if the department wishes to scale more
easily. The twelve days it took us to successfully work though the full list of experiments
was completed in just three days by having them scheduled over more hardware. This is a
four time speedup, and would be even greater if the longest running experiments had been
scheduled to execute in the beginning.

Unfortunately, Polyaxon does not currently fix the situation of scheduling experiments on
the local workstation itself. However, this is less of an issue since the interactive training en-
vironment of the local workstation is mainly used for quick experimentation where the need
for automated scheduling is less crucial. Nevertheless, the developers behind Polyaxon have
said that they plan to allow the entire solution to run outside Kubernetes by only utilizing
Docker itself. Such a solution would allow the same functionality for the local workstation
without needing to connect it to the cluster.

Still, the fast and agile development cycle used during the interactive training was deemed
ill-suited for the strict scheduling restrictions that are put in place by Polyaxon. Our belief is
that there needs to be a higher degree of freedom for the engineers to make more widespread
changes to their local experiments with as little fiction as possible during the interactive
training, to encourage exploration and curiosity. This was also something that resonated well
with the engineers themselves.

89

6. Discussion

Referring back to the high priority issues stated in Section 2.5, Polyaxon can be seen as the so-
lution to the scheduling troubles, and by relying on the functionality provided by Kubernetes
and Docker it is also able to take the first steps towards massively scaling the training across
the entire compute cluster. Polyaxon is still in early stages, but our work provides a proof of
concept of what benefits it brings to machine learning development teams that would have
access to such a solution. We see this as a great opportunity to continue the research, and see
what possibilities will arise as the Polyaxon framework slowly grows into a mature product.

6.4 Combination of Solutions
All the components introduced have overall made each and every part of the workflow faster.
To create a final verdict, on how much the actual turnover time has decreased, the entire
process of running the CINIC-10 benchmark in both the old and the new method will be
quickly summarized.

First the CINIC-10 dataset needs to be downloaded, which was reduced to fiveminutes, using
the object storage and rclone, compared to the two hours it took with Git LFS. After this it
would be necessary to properly configure the environment the experiment is to run in, which
used to require a significant amount of e�ort, but is now reduced to a simple build command
given to the Docker daemon. This was a reduction from about half an hour to five minutes,
which is not that significant for a single experiment, but will add up over time.

Running the training code on the computer natively is slightly faster than from inside a
Docker container on average, but by using two worker threads during the preprocessing step
still managed to save an additional hour over the almost four hours it took to complete nor-
mally. This would mean that the total time of downloading the dataset and executing the
experiment could be finished in three and a half hour instead of six, a speedup of 71%.

This is without the added benefits of scheduling, which is di�cult to summarize with a single
experiment. A comparison could be that during a workday the engineers would be able to
start two of the slow experiments manually before it is time to go home, while Polyaxon
would be able to schedule and execute seven of our optimized tasks during a 24-hour period.
This would then make a complete implementation of all our solution three times more time
e�cient than what the process is today.

In addition, our solutions assures that the input data is stored in a centralized solution in
accordance with GDPR legislation. It also provides much better reproducibility by making
sure that the seed parameter and entire software environment is documented alongside the
code itself before being able to run on the compute cluster. With Polyaxon the results are
available for all developers that has access and together with the other mentioned benefits
the entire development process provides much easier collaboration and a better ability to
scale with both additional computational hardware and additional colleagues.

6.5 Thesis Goals & Research Questions
At the beginning of the thesis work, five research questions were defined, in Section 3.2, in
order to be able to identify and improve the ine�ciencies outlined by the engineers in Section

90

6.6 Ethical Aspects

2.5. From these questions the thesis goals were outlined, in Section 3.1, where it was stated
that our minimum expectations were to at least document the current workflow, identify
the most prominent ine�ciencies and implement a working solution to one of them. The
ambition was to be able to provide suggestions of solutions to all the identified issues, with
the final goal being to successfully complete a fully working example of the training process
with multiple of our alternative solutions implemented.

To be able to achieve the goals that were set up, we found that action research was the most
suitable methodology, which works by dividing the entire process into smaller, more man-
ageable, parts. Using this approach, the di�erent issues were able to be isolated into separate
problem realms, thus limiting the scope of the research necessary and making the discussion
more focused.

The methodology also state that the researcher should be an active user of the process that
is to be improved, which is why the workflow first needed to be documented in its entirety
(Section 4.2) without any improvements. After this it was easier to both understand and
identify the most significant ine�ciencies, thus answering research question 1 and 2.

Since the issues experienced during the current workflow had already been divided into iso-
lated problem spaces, it was straightforward to split the work into separate investigations of
possible solutions for each of these. Through thorough analysis of the feature sets of the tools
found, it was not di�cult to identify which one that would be the most promising solution.
However, the engineers had further requirements, in addition to the limitations of company
resources, which needed to be taken into consideration when deciding on which solution to
actually deploy. Each of the solutions presented during Section 4.3 would therefore be an
answer to question 3 and 4.

Ultimately, the Results chapter answer question number 5, by providing factual time im-
provements, wherever possible, from the solutions that were implemented, thus wrapping
up the processes of answering all the research questions of the thesis work.

6.6 Ethical Aspects
The field of machine learning is still a relatively new area of research, which is why there are
many social and ethical aspects of the technology that have not yet been thoroughly discussed
and had their dangers assessed [152]. There are currently valid concerns about engineers ac-
cidentally, and unexpectedly, inserting biases into the algorithms by not being careful when
selecting the training data. An example would be cases were there have been e�orts to re-
move the biased humans from the hiring process, of a company, by using an automatic filter-
ing algorithm. However, the historical input data may have indicated that men have a higher
probability of being promoted, which is then interpreted as a preferable trait in a candidate,
and now the algorithm has suddenly become discriminatory against women. This is a real is-
sue, and today there are already papers being written about what measurements that should
be taken to prevent this [153].

Another topic, that is also a cause for concern, is the advancements of facial recognition tech-
nologies and the surveillance applications that are made possible with this. When algorithms

91

6. Discussion

can identify a person on surveillance footage, and has the ability to track them when they
are moving from camera to camera, it becomes di�cult to remain anonymous when roaming
public places. While there are preferable aspects with this technology, such as pickpocketers
being identified and tracked across the city, human rights activists, inmore totalitarian states,
might be tracked and prosecuted using the same methods [154]. The technology can be used
for both purposes, and it is up to the country to decide what is allowed and what is deemed
illegal. But there are currently little regulation for making companies liable for their inven-
tions, so Microsoft have publicly called for government intervention in this field in order to
stop the bad practices before it becomes too late to easily impose new regulations [155].

These are all valid concerns and issues that needs to be considered by the engineers working
with such technologies, however, it is not something we feel is within the scope of this thesis
to discuss further. While we have worked alongside a team that do research with image recog-
nition, we have not involved ourselves with the actual algorithms and their final use cases.
We have studied tools and methods that would allow a better workflow for the engineers
that work with large amounts of image data, which is not limited to just machine learning
and image recognition.

We do not feel there are any questionable ethical issues with the implementation of the object
storage solution, Docker containers, Kubernetes or Polyaxon. While we did make the train-
ing and preprocessing steps of the learning algorithms faster, the settings changed were not
specific for just image recognition, and these can be used to speed up other learning tasks as
well.

6.7 Future Work
A limitation of the proposed object storage solution is that the input data needs to be stored
intermittently on the computer during training. A better solution would be to stream the
input data directly as it is being used on the GPUs. The functionality needed is already imple-
mented by the machine learning frameworks TensorFlow and PyTorch, but how this would
be implemented and how it would a�ect the training time compared to the current setup is
left to future work.

Additional testing of Polyaxon and similar solutions is also left as future work. Especially
concerning distributing the execution of experiments across multiple GPUs and nodes while
limiting the amount of communication overhead and infrastructure di�culties. Kubernetes
and solutions such as Polyaxon should help alleviate some di�culties butmorework is needed
to properly test howwell such distributionmethods scale and how easy they are to implement
on given experiments.

Additionally, more methods of producing the underlying datasets in an automated fashion
are needed and solutions to this problem which leverage the benefits of object storage solu-
tions have been di�cult to find. Exploring such possibilities are also left for future work.

92

Chapter 7

Conclusion

At the case company there has recently been significant e�orts into expanding the depart-
ments that are conducting research in the area of computer vision. However, amid the in-
crease in both employees and computer hardware, it became clear that the current infras-
tructure is not able to support this sudden surge in resource demands. It was realized that it
would be necessary to introduce alternative solutions that are able to manage the needs of
today, while also allowing for future scaling.

Together with the engineers at the video analytics department, six high priority issues were
identified that needed to be solved as soon as possible. Three of these could be alleviated by
introducing an object storage solution with an Amazon S3 API. The specific choice of API
was because of the version management and access controls that are defined in its specifica-
tions, and that native clients are available for most scripting languages. Even though it was
not the fastest alternative researched, our suggested solution still reduced the download time
by a factor of 28 for the CINIC-10 dataset, which represents a di�cult task for most storage
solutions due to the large amounts of files. In concrete numbers this equated to a reduction
from slightly more than two hours down to five minutes.

Data processing of multi-media files is complicated to e�ectively scale up. Vertical scaling
of compute resources is the easiest method of decreasing the execution time for the relevant
tasks, but this will reach a limit when there are no faster components available to buy. To be
able to reach beyond this limit it is necessary to instead scale horizontally, which is why this
was another point of interest explored in this thesis work.

It was not until recently that open source e�orts, along with new research into this subject,
made it possible for teams outside the industry leading companies, such as Apple or Google,
to deploy on-premise solutions that could compete with cloud based alternatives. One of
the important open source components, used to enable this capability, is Kubernetes, which

93

7. Conclusion

obtained the ability to orchestrate clusters withGPUnodes first in 2018. The fact that Kuber-
netes were already available at the case company allowed us to test the possibility of running
machine learning tasks with GPU acceleration in a distributed and parallel fashion.

A machine learning management system, called Polyaxon, was located and deployed on the
on-premise Kubernetes cluster. This framework leverages Kubernetes and abstracts the com-
plexities of running computations on a cluster. This allowed easy scheduling of tasks, which
was not just a desired feature by the engineers, but a requirement for us to be able to provide
e�cient distributed computing. After our testing and demonstration of the capabilities in-
cluded in this system, both the requirements for scalability and schedulability expressed by
the engineers in the initial problem description was considered satisfied.

However, a prerequisite which was necessary in order to utilize the capabilities of Kubernetes
was Docker. This tool removes the hardware and software dependencies of the tasks that are
to be executed, and allows for much easier transportation of experiments between di�erent
computers. This portability is required by Polyaxon, and a necessity when deploying any
application on Kubernetes, since the programs needs to be easily transferred between nodes
and isolated from each other. Docker will not only be useful in the future, but saw immediate
adoption by the engineers as it significantly reduced the friction on the transportation of code
between the computers at the department. This was another of the initial issue expressed by
the engineers which reduced collaboration and slowed down development time. Removing
the need for reinstallation of incompatible software every time a new experiment is to be
run might not be too significant for each instance, but these small improvements will add up
over time.

Additional speedups were possible to achieve by tuning the default settings of the machine
learning frameworks used. These parameters do not have anything to do with the actual
network, but rather how data is loaded and transported. With simple modifications the exe-
cution times decreased with as much as 25%, and these settings will be used in future training
sessions.

Through the process of solving the issues expressed by the engineers, our thesis goals were
satisfied and all the research questions outlined in the beginning of the work were able to
be answered. With all our solutions combined we were able to reduce the turnover time of
a standard experiment from six to only three and a half hours, i.e. a 71% speedup. This is a
significant amount of time saved, which may be increased even further in the future when
the solutions mature a bit more.

94

Bibliography

[1] A. Labrinidis and H. V. Jagadish,
Challenges and Opportunities with Big Data, PVLDB - The Proceedings of the Very
Large Data Bases Endowment, vol. 5, no. 12, pp. 2032–2033, 2012.

[2] W. Zhu, P. Cui, Z. Wang, and G. Hua,
Multimedia Big Data Computing, IEEE MultiMedia, vol. 22, no. 3, p. 96, 2015.

[3] Z. Wang, S. Mao, L. Yang, and P. Tang,
A survey of multimedia big data,
China Communications, vol. 15, no. 1, pp. 155–176, 2018.

[4] A. L’Heureux, K. Grolinger, H. F. ElYamany, and M. A. M. Capretz,
Machine Learning With Big Data: Challenges and Approaches,
IEEE Access, vol. 5, pp. 7776–7797, 2017.

[5] T. Ben-Nun and T. Hoefler,
Demystifying Parallel and Distributed Deep Learning: An In-Depth Concurrency
Analysis, Computing Research Repository (CoRR), vol. abs/1802.09941, 2018.

[6] Google. (2018).
Cloud AI products,
[Online]. Available: cloud.google.com/products/ai (visited on 2018-11-30).

[7] Amazon.com, Inc. (2018).
Machine Learning on AWS, [Online]. Available:
aws.amazon.com/machine-learning (visited on 2018-11-30).

[8] Microsoft Corporation. (2018).
Azure AI,
[Online]. Available: azure.microsoft.com/en-us/overview/ai-platform
(visited on 2018-11-30).

[9] O. Y. Al-Jarrah, P. D. Yoo, S. Muhaidat, G. K. Karagiannidis, and K. Taha,
E�cient Machine Learning for Big Data: A Review,
Big Data Research, vol. 2, no. 3, pp. 87–93, 2015.

95

cloud.google.com/products/ai
aws.amazon.com/machine-learning
azure.microsoft.com/en-us/overview/ai-platform

BIBLIOGRAPHY

[10] A. Krizhevsky, I. Sutskever, and G. E. Hinton,
ImageNet classification with deep convolutional neural networks,
Commun. ACM, vol. 60, no. 6, pp. 84–90, 2017.

[11] K. Simonyan and A. Zisserman,
Very Deep Convolutional Networks for Large-Scale Image Recognition,
Computing Research Repository (CoRR), vol. abs/1409.1556, 2014.

[12] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich,
Going Deeper with Convolutions,
Computing Research Repository (CoRR), vol. abs/1409.4842, 2014.

[13] E. Battenberg, J. Chen, R. Child, A. Coates, Y. Gaur, Y. Li, H. Liu, S. Satheesh,
A. Sriram, and Z. Zhu,
Exploring neural transducers for end-to-end speech recognition,
in 2017 IEEE Automatic Speech Recognition and Understanding Workshop, ASRU 2017,
Okinawa, Japan, December 16-20, 2017, IEEE, 2017, pp. 206–213.

[14] A. Y. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos, E. Elsen, R. Prenger,
S. Satheesh, S. Sengupta, A. Coates, and A. Y. Ng,
Deep Speech: Scaling up end-to-end speech recognition,
Computing Research Repository (CoRR), vol. abs/1412.5567, 2014.

[15] I. Sutskever, O. Vinyals, and Q. V. Le,
Sequence to Sequence Learning with Neural Networks,
in Advances in Neural Information Processing Systems 27: Annual Conference on Neural
Information Processing Systems 2014, December 8-13 2014, Montreal, Quebec, Canada,
Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, Eds.,
2014, pp. 3104–3112.

[16] S. Jean, K. Cho, R. Memisevic, and Y. Bengio,
On Using Very Large Target Vocabulary for Neural Machine Translation,
Computing Research Repository (CoRR), vol. abs/1412.2007, 2014.

[17] M. K. K. Leung, H. Y. Xiong, L. J. Lee, and B. J. Frey,
Deep learning of the tissue-regulated splicing code,
Bioinformatics, vol. 30, no. 12, pp. i121–i129, 2014.

[18] M. Helmstaedter, K. L. Briggman, S. C. Turaga, V. Jain, H. S. Seung, and W. Denk,
Connectomic reconstruction of the inner plexiform layer in the mouse retina,
Nature, vol. 500, no. 7461, p. 168, 2013.

[19] T. M. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanaraman,
Project Adam: Building an E�cient and Scalable Deep Learning Training System,
in 11th USENIX Symposium on Operating Systems Design and Implementation, OSDI ’14,
Broomfield, CO, USA, October 6-8, 2014., J. Flinn and H. Levy, Eds.,
USENIX Association, 2014, pp. 571–582.

96

BIBLIOGRAPHY

[20] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, Q. V. Le, M. Z. Mao, M. Ranzato,
A. W. Senior, P. A. Tucker, K. Yang, and A. Y. Ng,
Large Scale Distributed Deep Networks, in Advances in Neural Information Processing
Systems 25: 26th Annual Conference on Neural Information Processing Systems 2012.
Proceedings of a meeting held December 3-6, 2012, Lake Tahoe, Nevada, United States.,
P. L. Bartlett, F. C. N. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, Eds.,
2012, pp. 1232–1240.

[21] A. Sergeev and M. D. Balso,
Horovod: fast and easy distributed deep learning in TensorFlow,
Computing Research Repository (CoRR), vol. abs/1802.05799, 2018.

[22] Docker Inc. (2019).
Docker - Homepage, [Online]. Available: docker.com (visited on 2019-02-18).

[23] Kubernetes Contributers. (2014).
Kubernetes: Production-Grade Container Orchestration,
[Online]. Available: kubernetes.io (visited on 2018-11-07).

[24] S. Ghemawat, H. Gobio�, and S. Leung,
The Google file system, in Proceedings of the 19th ACM Symposium on Operating Systems
Principles 2003, SOSP 2003, Bolton Landing, NY, USA, October 19-22, 2003,
M. L. Scott and L. L. Peterson, Eds., ACM, 2003, pp. 29–43.

[25] K. Shvachko, H. Kuang, S. Radia, and R. Chansler,
The hadoop distributed file system, in IEEE 26th Symposium on Mass Storage Systems
and Technologies, MSST 2012, Lake Tahoe, Nevada, USA, May 3-7, 2010,
M. G. Khatib, X. He, and M. Factor, Eds., IEEE Computer Society, 2010, pp. 1–10.

[26] Red Hat, Inc. (2018).
Ceph - Homepage, [Online]. Available: ceph.com (visited on 2018-11-12).

[27] The OpenStack Foundation. (2018).
OpenStack - Homepage,
[Online]. Available: openstack.org (visited on 2018-11-15).

[28] Minio, Inc. (2018).
Minio - Homepage, [Online]. Available: minio.io (visited on 2018-10-09).

[29] M. Ma, H. P. Ansari, D. Chao, S. Adya, S. Akle, Y. Qin, D. Gimnicher, and D. Walsh,
Democratizing Production-Scale Distributed Deep Learning,
arXiv preprint arXiv:1811.00143, 2018.

[30] D. Sculley, G. Holt, D. Golovin, E. Davydov, T. Phillips, D. Ebner, V. Chaudhary,
M. Young, J. Crespo, and D. Dennison,
Hidden Technical Debt in Machine Learning Systems,
in Advances in Neural Information Processing Systems 28: Annual Conference on Neural
Information Processing Systems 2015, December 7-12, 2015, Montreal, Quebec, Canada,
C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, Eds., 2015,
pp. 2503–2511.

[31] X. Xu, Y. Ding, S. X. Hu, M. Niemier, J. Cong, Y. Hu, and Y. Shi,
Scaling for edge inference of deep neural networks,
Nature Electronics, vol. 1, no. 4, pp. 216–222, 2018.

97

docker.com
kubernetes.io
ceph.com
openstack.org
minio.io

BIBLIOGRAPHY

[32] P. Goyal, P. Dollár, R. B. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola,
A. Tulloch, Y. Jia, and K. He,
Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour,
Computing Research Repository (CoRR), vol. abs/1706.02677, 2017.

[33] T. Li, J. Zhong, J. Liu, W. Wu, and C. Zhang,
Ease.ml: Towards Multi-tenant Resource Sharing for Machine Learning Workloads,
PVLDB - The Proceedings of the Very Large Data Bases Endowment, vol. 11, no. 5,
pp. 607–620, 2018.

[34] C. Sun, A. Shrivastava, S. Singh, and A. Gupta,
Revisiting Unreasonable E�ectiveness of Data in Deep Learning Era,
in IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October
22-29, 2017, IEEE Computer Society, 2017, pp. 843–852.

[35] C. S. French,
Data Processing and Information Technology (10th ed.)
Cengage Learning Business Press, 1996, p. 2.

[36] H. Garcia-Molina, J. D. Ullman, and J. Widom,
Database systems - the complete book (2. ed.) Pearson Education, 2009.

[37] R. Kee,
Data processing technology and accounting: A historical perspective,
Accounting Historians Journal, vol. 20, no. 2, pp. 187–216, 1993.

[38] M. Stonebraker and L. A. Rowe,
The Design of Postgres, in Proceedings of the 1986 ACM SIGMOD International
Conference on Management of Data, Washington, DC, USA, May 28-30, 1986.,
C. Zaniolo, Ed., ACM Press, 1986, pp. 340–355.

[39] A. Silberschatz, M. Stonebraker, and J. Ullman,
Database systems: Achievements and opportunities,
Communications of the ACM, vol. 34, no. 10, pp. 110–120, 1991.

[40] N. Leavitt,
Will NoSQL Databases Live Up to Their Promise?,
IEEE Computer, vol. 43, no. 2, pp. 12–14, 2010.

[41] R. Cattell,
Scalable SQL and NoSQL data stores,
SIGMOD Record, vol. 39, no. 4, pp. 12–27, 2010.

[42] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack, M. Ferreira, E. Lau,
A. Lin, S. Madden, E. J. O’Neil, P. E. O’Neil, A. Rasin, N. Tran, and S. B. Zdonik,
C-Store: A Column-oriented DBMS, in Proceedings of the 31st International Conference
on Very Large Data Bases, Trondheim, Norway, August 30 - September 2, 2005,
K. Böhm, C. S. Jensen, L. M. Haas, M. L. Kersten, P. Larson, and B. C. Ooi, Eds.,
ACM, 2005, pp. 553–564.

98

BIBLIOGRAPHY

[43] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows,
T. Chandra, A. Fikes, and R. Gruber,
Bigtable: A Distributed Storage System for Structured Data (Awarded Best Paper!),
in 7th Symposium on Operating Systems Design and Implementation (OSDI ’06), November
6-8, Seattle, WA, USA, B. N. Bershad and J. C. Mogul, Eds.,
USENIX Association, 2006, pp. 205–218.

[44] D. J. Abadi, S. Madden, and N. Hachem,
Column-stores vs. row-stores: how di�erent are they really?,
in Proceedings of the ACM SIGMOD International Conference on Management of Data,
SIGMOD 2008, Vancouver, BC, Canada, June 10-12, 2008, J. T. Wang, Ed., ACM, 2008,
pp. 967–980.

[45] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin,
S. Sivasubramanian, P. Vosshall, and W. Vogels,
Dynamo: amazon’s highly available key-value store,
in Proceedings of the 21st ACM Symposium on Operating Systems Principles 2007, SOSP
2007, Stevenson, Washington, USA, October 14-17, 2007,
T. C. Bressoud and M. F. Kaashoek, Eds., ACM, 2007, pp. 205–220.

[46] S. Chaudhuri and U. Dayal,
An Overview of Data Warehousing and OLAP Technology,
SIGMOD Record, vol. 26, no. 1, pp. 65–74, 1997.

[47] J. Dean and S. Ghemawat,
MapReduce: Simplified Data Processing on Large Clusters,
in 6th Symposium on Operating System Design and Implementation (OSDI 2004), San
Francisco, California, USA, December 6-8, 2004, E. A. Brewer and P. Chen, Eds.,
USENIX Association, 2004, pp. 137–150.

[48] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt, S. Madden, and
M. Stonebraker,
A comparison of approaches to large-scale data analysis,
in Proceedings of the ACM SIGMOD International Conference on Management of Data,
SIGMOD 2009, Providence, Rhode Island, USA, June 29 - July 2, 2009,
U. Çetintemel, S. B. Zdonik, D. Kossmann, and N. Tatbul, Eds., ACM, 2009,
pp. 165–178.

[49] Y. LeCun, Y. Bengio, and G. Hinton,
Deep learning, Nature, vol. 521, no. 7553, p. 436, 2015.

[50] D. C. Ciresan, U. Meier, J. Masci, and J. Schmidhuber,
Multi-column deep neural network for tra�c sign classification,
Neural Networks, vol. 32, pp. 333–338, 2012.

[51] N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P. T. P. Tang,
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp
Minima, Computing Research Repository (CoRR), vol. abs/1609.04836, 2016.

[52] D. Sculley, G. Holt, D. Golovin, E. Davydov, T. Phillips, D. Ebner, V. Chaudhary, and
M. Young,
Machine learning: The high interest credit card of technical debt, 2014.

99

BIBLIOGRAPHY

[53] European Union,
Regulation (EU) 2016/679 of the European Parliament and of the Council of 27
April 2016 on the protection of natural persons with regard to the processing of
personal data and on the free movement of such data, and repealing Directive
95/46/EC (General Data Protection Regulation),
O�cial Journal of the European Union, vol. L119, pp. 1–88, 2016.

[54] S. Garcia, J. Luengo, and F. Herrera,
Data Preprocessing in Data Mining, ser. Intelligent Systems Reference Library.
Springer, 2015, vol. 72.

[55] J. Brownlee. (2013).
How to Prepare Data For Machine Learning,
[Online]. Available: machinelearningmastery.com/how-to-prepare-data-
for-machine-learning (visited on 2019-01-04).

[56] N. S. Gill. (2017).
Data Preparation, Preprocessing and Wrangling in Deep Learning,
[Online]. Available: xenonstack.com/blog/data-science/preparation-
wrangling-machine-learning-deep (visited on 2019-01-04).

[57] F. Chollet. (2016).
Building powerful image classification models using very little data, [Online].
Available: blog.keras.io/building-powerful-image-classification-
models-using-very-little-data.html (visited on 2019-01-07).

[58] J. Krause, B. Sapp, A. Howard, H. Zhou, A. Toshev, T. Duerig, J. Philbin, and F. Li,
The Unreasonable E�ectiveness of Noisy Data for Fine-Grained Recognition,
Computing Research Repository (CoRR), vol. abs/1511.06789, 2015.

[59] S. Branson, G. Van Horn, C. Wah, P. Perona, and S. Belongie,
The Ignorant Led by the Blind: A Hybrid Human–Machine Vision System for
Fine-Grained Categorization,
International Journal of Computer Vision, vol. 108, 2014-05.

[60] O. Carey. (2018).
Generative Adversarial Networks (GANs) - A Beginner’s Guide,
[Online]. Available: towardsdatascience.com/generative-adversarial-
networks-gans-a-beginners-guide-5b38eceece24 (visited on 2019-01-07).

[61] T. N. Minh, M. Sinn, H. T. Lam, and M. Wistuba,
Automated Image Data Preprocessing with Deep Reinforcement Learning,
Computing Research Repository (CoRR), vol. abs/1806.05886, 2018.

[62] L. Perez and J. Wang,
The E�ectiveness of Data Augmentation in Image Classification using Deep
Learning, Computing Research Repository (CoRR), vol. abs/1712.04621, 2017.

[63] J. Hays and A. A. Efros,
Scene completion using millions of photographs,
Commun. ACM, vol. 51, no. 10, pp. 87–94, 2008.

100

machinelearningmastery.com/how-to-prepare-data-for-machine-learning
machinelearningmastery.com/how-to-prepare-data-for-machine-learning
xenonstack.com/blog/data-science/preparation-wrangling-machine-learning-deep
xenonstack.com/blog/data-science/preparation-wrangling-machine-learning-deep
blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html
blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html
towardsdatascience.com/generative-adversarial-networks-gans-a-beginners-guide-5b38eceece24
towardsdatascience.com/generative-adversarial-networks-gans-a-beginners-guide-5b38eceece24

BIBLIOGRAPHY

[64] TensorFlow Contributers. (2015).
TensorFlow Homepage,
[Online]. Available: tensorflow.org (visited on 2018-12-14).

[65] PyTorch Contributers. (2016).
PyTorch Homepage, [Online]. Available: pytorch.org (visited on 2018-11-30).

[66] Keras Contributers. (2015).
Keras Homepage, [Online]. Available: pytorch.org (visited on 2018-12-14).

[67] Darknet Contributers. (2015).
Darknet Repository on GitHub,
[Online]. Available: github.com/pjreddie/darknet (visited on 2018-12-14).

[68] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama,
and T. Darrell,
Ca�e: Convolutional Architecture for Fast Feature Embedding,
arXiv preprint arXiv:1408.5093, 2014.

[69] NVIDIA Corporation. (2019).
NVIDIA Container Runtime for Docker, [Online]. Available:
github.com/NVIDIA/nvidia-docker (visited on 2019-02-19).

[70] M. Mourafiq,
Polyaxon: A platform for reproducible and scalable machine learning and deep
learning on kubernetes, Web Page, 2017.
[Online]. Available: github.com/polyaxon/polyaxon.

[71] Red Hat Inc. (2019).
What’s a Linux container?, [Online]. Available:
redhat.com/en/topics/containers/whats-a-linux-container (visited
on 2019-02-18).

[72] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,
G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G. Murray,
B. Steiner, P. A. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and X. Zheng,
TensorFlow: A System for Large-Scale Machine Learning,
in 12th USENIX Symposium on Operating Systems Design and Implementation, OSDI 2016,
Savannah, GA, USA, November 2-4, 2016., K. Keeton and T. Roscoe, Eds.,
USENIX Association, 2016, pp. 265–283.

[73] NVIDIA Corporation. (2018).
CUDA FAQ,
[Online]. Available: developer.nvidia.com/cuda-faq (visited on 2019-02-14).

[74] ——, (2019).
NVIDIA Collective Communications Library (NCCL),
[Online]. Available: developer.nvidia.com/nccl (visited on 2019-02-20).

[75] Baidu Research. (2017).
TensorFlow AllReduce,
[Online]. Available: github.com/baidu-research/tensorflow-allreduce
(visited on 2018-12-17).

101

tensorflow.org
pytorch.org
pytorch.org
github.com/pjreddie/darknet
github.com/NVIDIA/nvidia-docker
github.com/polyaxon/polyaxon
redhat.com/en/topics/containers/whats-a-linux-container
developer.nvidia.com/cuda-faq
developer.nvidia.com/nccl
github.com/baidu-research/tensorflow-allreduce

BIBLIOGRAPHY

[76] Axis Communications AB. (2018).
Axis Communications Homepage,
[Online]. Available: axis.com (visited on 2018-11-09).

[77] Jupyter Contributers. (2019).
Jupyter - Homepage, [Online]. Available: jupyter.org (visited on 2019-04-07).

[78] A. Wittig and M. Wittig,
Amazon Web Services in Action, in. Manning Publications, 2015, pp. 204–206,
isbn: 1617292885.

[79] DigitalOcean Inc. (2018).
An Introduction to Storage Terminology and Concepts in Linux, [Online].
Available: digitalocean.com/community/tutorials/an-introduction-
to-storage-terminology-and-concepts-in-linux (visited on 2018-11-20).

[80] M. Nuncic. (2018).
The Evolution of Storage: File Storage vs. Block Storage vs. Object Storage – Part 1,
[Online]. Available: ontrack.com/blog/2018/02/22/the-evolution-of-
storage-file-storage-vs-block-storage-vs-object-storage-part-1
(visited on 2018-11-08).

[81] Red Hat, Inc. (2018).
File storage, block storage, or object storage?, [Online]. Available:
redhat.com/ko/topics/data-storage/file-block-object-storage
(visited on 2018-11-08).

[82] Cloudian Inc. (2018).
Object Storage vs. File Storage: What’s the Di�erence?,
[Online]. Available: cloudian.com/blog/object-storage-vs-file-storage
(visited on 2018-11-20).

[83] Red Hat, Inc. (2018).
What is network-attached storage?, [Online]. Available:
redhat.com/en/topics/data-storage/network-attached-storage
(visited on 2018-11-20).

[84] M. Rouse. (2014).
iSCSI (Internet Small Computer System Interface), [Online]. Available:
searchstorage.techtarget.com/definition/iSCSI (visited on 2018-11-20).

[85] Nitheesh Poojary. (2018).
Understanding Object Storage and Block Storage use cases, [Online]. Available:
cloudacademy.com/blog/object-storage-block-storage (visited on
2018-11-08).

[86] Techopedia Inc. (2018).
Block Storage, [Online]. Available:
techopedia.com/definition/31924/block-storage (visited on 2018-11-08).

[87] Druva. (2014).
Object Storage versus Block Storage: Understanding the Technology Di�erences,
[Online]. Available: druva.com/blog/object-storage-versus-block-
storage-understanding-technology-differences (visited on 2018-11-20).

102

axis.com
jupyter.org
digitalocean.com/community/tutorials/an-introduction-to-storage-terminology-and-concepts-in-linux
digitalocean.com/community/tutorials/an-introduction-to-storage-terminology-and-concepts-in-linux
ontrack.com/blog/2018/02/22/the-evolution-of-storage-file-storage-vs-block-storage-vs-object-storage-part-1
ontrack.com/blog/2018/02/22/the-evolution-of-storage-file-storage-vs-block-storage-vs-object-storage-part-1
redhat.com/ko/topics/data-storage/file-block-object-storage
cloudian.com/blog/object-storage-vs-file-storage
redhat.com/en/topics/data-storage/network-attached-storage
searchstorage.techtarget.com/definition/iSCSI
cloudacademy.com/blog/object-storage-block-storage
techopedia.com/definition/31924/block-storage
druva.com/blog/object-storage-versus-block-storage-understanding-technology-differences
druva.com/blog/object-storage-versus-block-storage-understanding-technology-differences

BIBLIOGRAPHY

[88] NetApp, Inc. (2018).
Block Storage Vs. Object Storage in the AWS Cloud, [Online]. Available:
cloud.netapp.com/blog/block-storage-vs-object-storage-cloud
(visited on 2018-11-08).

[89] Margaret Rouse. (2014).
RESTful API, [Online]. Available:
searchmicroservices.techtarget.com/definition/RESTful-API (visited
on 2018-11-20).

[90] Contel Bradford. (2018).
Storage Wars: File vs Block vs Object Storage, [Online]. Available:
blog.storagecraft.com/object-storage-systems (visited on 2018-11-08).

[91] Amazon Web Services, Inc. (2018).
Amazon S3 REST API Introduction, [Online]. Available:
docs.aws.amazon.com/AmazonS3/latest/API (visited on 2018-10-23).

[92] ——, (2018).
AWS Command Line Interface,
[Online]. Available: aws.amazon.com/cli (visited on 2018-11-30).

[93] The SQLite Consortium. (2018).
35% Faster Than The Filesystem,
[Online]. Available: sqlite.org/fasterthanfs.html (visited on 2018-11-30).

[94] Techopedia Inc. (2018).
Atomicity Consistency Isolation Durability (ACID),
[Online]. Available: techopedia.com/definition/23949/atomicity-
consistency-isolation-durability-acid (visited on 2018-11-30).

[95] Neon Rain Interactive. (2018).
MySQL vs. MongoDB: Looking At Relational and Non-Relational Databases,
[Online]. Available: neonrain.com/blog/mysql-vs-mongodb-looking-at-
relational-and-non-relational-databases (visited on 2018-11-30).

[96] Alon Brody. (2018).
SQL Vs NoSQL: The Di�erences Explained, [Online]. Available:
blog.panoply.io/sql-or-nosql-that-is-the-question (visited on
2018-11-30).

[97] MongoDB, Inc. (2018).
Relational Vs Non Relational Database, [Online]. Available:
mongodb.com/scale/relational-vs-non-relational-database (visited
on 2018-11-30).

[98] Abu Thahir. (2018).
Which is Better ? Saving Files in Database or in File System,
[Online]. Available: habiletechnologies.com/blog/better-saving-files-
database-file-system (visited on 2018-11-30).

103

cloud.netapp.com/blog/block-storage-vs-object-storage-cloud
searchmicroservices.techtarget.com/definition/RESTful-API
blog.storagecraft.com/object-storage-systems
docs.aws.amazon.com/AmazonS3/latest/API
aws.amazon.com/cli
sqlite.org/fasterthanfs.html
techopedia.com/definition/23949/atomicity-consistency-isolation-durability-acid
techopedia.com/definition/23949/atomicity-consistency-isolation-durability-acid
neonrain.com/blog/mysql-vs-mongodb-looking-at-relational-and-non-relational-databases
neonrain.com/blog/mysql-vs-mongodb-looking-at-relational-and-non-relational-databases
blog.panoply.io/sql-or-nosql-that-is-the-question
mongodb.com/scale/relational-vs-non-relational-database
habiletechnologies.com/blog/better-saving-files-database-file-system
habiletechnologies.com/blog/better-saving-files-database-file-system

BIBLIOGRAPHY

[99] Christian Smith. (2018).
What is the di�erence between a file system and a database?, [Online]. Available:
quora.com/What-is-the-difference-between-a-file-system-and-a-
database/answer/Christian-Smith-2 (visited on 2018-11-30).

[100] Abuthahir Sulaiman. (2018).
File System vs. Database, [Online]. Available: dzone.com/articles/which-is-
better-saving-files-in-database-or-in-fil (visited on 2018-11-09).

[101] Jacqueline Homan. (2018).
Relational vs. non-relational databases: Which one is right for you?, [Online].
Available: pluralsight.com/blog/software-development/relational-
non-relational-databases (visited on 2018-11-09).

[102] M. Höst, B. Regnell, and P. Runeson,
Att genomföra examensarbete, swe. Studentlitteratur AB, 2006.

[103] ISO Central Secretary,
Systems and software engineering – Systems and software Quality Requirements
and Evaluation (SQuaRE) – System and software quality models, en,
International Organization for Standardization, Geneva, CH,
Standard ISO/IEC 25010:2011, 2011.

[104] A. Krizhevsky and G. Hinton,
Learning multiple layers of features from tiny images, Citeseer,
Tech. Rep. CIFAR-10, 2009.

[105] Torch Contributors. (2018).
Training a Classifier, [Online]. Available:
pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html
(visited on 2019-02-18).

[106] TensorFlow Contributors. (2018).
Advanced Convolutional Neural Networks, [Online]. Available:
tensorflow.org/tutorials/images/deep_cnn (visited on 2019-02-18).

[107] L. N. Darlow, E. J. Crowley, A. Antoniou, and A. J. Storkey,
CINIC-10 is not ImageNet or CIFAR-10,
Computing Research Repository (CoRR), vol. abs/1810.03505, 2018.

[108] A. Friberg. (2018).
Train CINIC-10 with PyTorch, [Online]. Available:
github.com/AntonFriberg/pytorch-cinic-10 (visited on 2019-02-14).

[109] W. Li, R. Zhao, T. Xiao, and X. Wang,
DeepReID: Deep Filter Pairing Neural Network for Person Re-identification,
in Conference on Computer Vision and Pattern Recognition (CVPR), 2014.

[110] I. Krasin, T. Duerig, N. Alldrin, V. Ferrari, S. Abu-El-Haija, A. Kuznetsova, H. Rom,
J. Uijlings, S. Popov, A. Veit, S. Belongie, V. Gomes, A. Gupta, C. Sun, G. Chechik,
D. Cai, Z. Feng, D. Narayanan, and K. Murphy,
OpenImages: A public dataset for large-scale multi-label and multi-class image
classification. Dataset available from https://github.com/openimages, 2017.

104

quora.com/What-is-the-difference-between-a-file-system-and-a-database/answer/Christian-Smith-2
quora.com/What-is-the-difference-between-a-file-system-and-a-database/answer/Christian-Smith-2
dzone.com/articles/which-is-better-saving-files-in-database-or-in-fil
dzone.com/articles/which-is-better-saving-files-in-database-or-in-fil
pluralsight.com/blog/software-development/relational-non-relational-databases
pluralsight.com/blog/software-development/relational-non-relational-databases
pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html
tensorflow.org/tutorials/images/deep_cnn
github.com/AntonFriberg/pytorch-cinic-10

BIBLIOGRAPHY

[111] Gerrit. (2018).
Gerrit Code Review,
[Online]. Available: gerritcodereview.com (visited on 2018-10-22).

[112] Git. (2018).
GIT - Homepage, [Online]. Available: git-scm.com (visited on 2018-11-29).

[113] The Git LFS Team. (2018).
Git Large File Storage,
[Online]. Available: git-lfs.github.com (visited on 2018-10-22).

[114] JFrog Ltd. (2018).
Artifactory,
[Online]. Available: jfrog.com/artifactory (visited on 2018-10-22).

[115] ——, (2018).
Artifactory, [Online]. Available:
jfrog.com/confluence/display/RTF/Git+LFS+Repositories (visited on
2018-11-05).

[116] D. Strigl, K. Kofler, and S. Podlipnig,
Performance and Scalability of GPU-Based Convolutional Neural Networks,
in 2010 18th Euromicro Conference on Parallel, Distributed and Network-based Processing,
2010, pp. 317–324.

[117] T. Dettmers. (2019).
Which GPU(s) to Get for Deep Learning: My Experience and Advice for Using
GPUs in Deep Learning, [Online]. Available:
timdettmers.com/2018/11/05/which-gpu-for-deep-learning (visited on
2019-02-21).

[118] Datastax, Inc. (2018).
Blob type, [Online]. Available:
docs.datastax.com/en/cql/3.3/cql/cql_reference/blob_r.html
(visited on 2019-01-14).

[119] The OpenStack Foundation. (2018).
Object Storage API overview, [Online]. Available:
docs.openstack.org/swift/latest/api/object_api_v1_overview.html
(visited on 2018-11-15).

[120] Cloudian Inc. (2018).
S3 API & Extensions for Enterprise Object Storage,
[Online]. Available: cloudian.com/blog/s3-api-extensions-for-
enterprise-object-storage (visited on 2018-11-21).

[121] Amazon Web Services, Inc. (2018).
Boto 3 - The AWS SDK for Python,
[Online]. Available: github.com/boto/boto3 (visited on 2018-11-21).

[122] Marc Staimer. (2018).
Using the RESTful API as an onramp to object storage,
[Online]. Available: searchstorage.techtarget.com/tip/Using-the-
RESTful-API-as-an-onramp-to-object-storage (visited on 2018-11-09).

105

gerritcodereview.com
git-scm.com
git-lfs.github.com
jfrog.com/artifactory
jfrog.com/confluence/display/RTF/Git+LFS+Repositories
timdettmers.com/2018/11/05/which-gpu-for-deep-learning
docs.datastax.com/en/cql/3.3/cql/cql_reference/blob_r.html
docs.openstack.org/swift/latest/api/object_api_v1_overview.html
cloudian.com/blog/s3-api-extensions-for-enterprise-object-storage
cloudian.com/blog/s3-api-extensions-for-enterprise-object-storage
github.com/boto/boto3
searchstorage.techtarget.com/tip/Using-the-RESTful-API-as-an-onramp-to-object-storage
searchstorage.techtarget.com/tip/Using-the-RESTful-API-as-an-onramp-to-object-storage

BIBLIOGRAPHY

[123] Techopedia Inc. (2018).
Query Language, [Online]. Available:
techopedia.com/definition/3948/query-language (visited on 2018-11-21).

[124] Veritas Genetics, Inc. (2018).
Arvados - Homepage, [Online]. Available: arvados.org (visited on 2018-10-10).

[125] The Apache Software Foundation. (2018).
What is Cassandra?,
[Online]. Available: cassandra.apache.org (visited on 2018-10-24).

[126] Red Hat, Inc. (2018).
What is Gluster ?,
[Online]. Available: docs.gluster.org/en/v3/Administrator%20Guide/
GlusterFS%20Introduction (visited on 2018-11-13).

[127] Core Technology Sp. z o.o. (2018).
MooseFS - Homepage, [Online]. Available: moosefs.com (visited on 2018-12-17).

[128] Exoscale. (2018).
The Pithos Guide, [Online]. Available: pithos.io (visited on 2018-12-17).

[129] Basho Technologies, Inc. (2018).
Riak CS,
[Online]. Available: docs.basho.com/riak/cs/2.1.1/tutorials/fast-
track/what-is-riak-cs (visited on 2018-01-15).

[130] ——, (2018).
Riak KV,
[Online]. Available: basho.com/products/riak-kv (visited on 2018-01-15).

[131] The SeaweedFS Contributors. (2018).
SeaweedFS,
[Online]. Available: github.com/chrislusf/seaweedfs (visited on 2018-12-17).

[132] Exoscale. (2018).
Pithos: Cassandra object storage,
[Online]. Available: github.com/exoscale/pithos (visited on 2018-11-13).

[133] Basho Technologies, Inc. (2018).
Riak KV 2.2.5 Release Notes, [Online]. Available:
github.com/basho/riak/blob/riak-2.2.5/RELEASE-NOTES.md (visited on
2018-11-14).

[134] R. Johnson. (2018).
RGW S3: Features Vs Deep Compatibility - Robin Johnson,
[Online]. Available: youtu.be/pYf_27YR2P0?t=360 (visited on 2019-01-30).

[135] The OpenStack Foundation. (2018).
S3/Swift REST API Comparison Matrix,
[Online]. Available: docs.openstack.org/swift/latest/s3_compat.html
(visited on 2018-11-15).

106

techopedia.com/definition/3948/query-language
arvados.org
cassandra.apache.org
docs.gluster.org/en/v3/Administrator%20Guide/GlusterFS%20Introduction
docs.gluster.org/en/v3/Administrator%20Guide/GlusterFS%20Introduction
moosefs.com
pithos.io
docs.basho.com/riak/cs/2.1.1/tutorials/fast-track/what-is-riak-cs
docs.basho.com/riak/cs/2.1.1/tutorials/fast-track/what-is-riak-cs
basho.com/products/riak-kv
github.com/chrislusf/seaweedfs
github.com/exoscale/pithos
github.com/basho/riak/blob/riak-2.2.5/RELEASE-NOTES.md
youtu.be/pYf_27YR2P0?t=360
docs.openstack.org/swift/latest/s3_compat.html

BIBLIOGRAPHY

[136] Minio, Inc. (2018).
Minio Server Limits Per Tenant, [Online]. Available:
docs.minio.io/docs/minio-server-limits-per-tenant (visited on
2019-01-30).

[137] Red Hat, Inc. (2018).
Ceph Object Gateway S3 API, [Online]. Available:
docs.ceph.com/docs/master/radosgw/s3 (visited on 2019-01-30).

[138] nitisht. (2017).
How can I extend the storage size after deployment?, [Online]. Available:
github.com/minio/minio/issues/4364#issuecomment-302471048 (visited
on 2018-11-21).

[139] fwessels. (2017).
How can I extend the storage size after deployment in same instance ?,
[Online]. Available:
github.com/minio/minio/issues/4712#issuecomment-318525347 (visited
on 2018-11-21).

[140] Minio, Inc. (2018).
Multi-tenant Minio Deployment Guide, [Online]. Available:
docs.minio.io/docs/multi-tenant-minio-deployment-guide.html
(visited on 2018-10-09).

[141] ——, (2018).
Minio Deployment Quickstart Guide, [Online]. Available:
docs.minio.io/docs/minio-deployment-quickstart-guide (visited on
2018-11-21).

[142] OpenStack Foundation. (2018).
OpenStack - Homepage,
[Online]. Available: openstack.org (visited on 2019-01-30).

[143] SwiftStack Inc. (2019).
SwiftStack - Homepage,
[Online]. Available: swiftstack.com (visited on 2019-01-30).

[144] PyTorch Contributors. (2018).
Reproducibility, [Online]. Available:
pytorch.org/docs/stable/notes/randomness.html (visited on 2019-01-10).

[145] H. Vardhan. (2018).
Guidelines for assigning num_workers to DataLoader,
[Online]. Available: discuss.pytorch.org/t/guidelines-for-assigning-
num-workers-to-dataloader/813 (visited on 2019-01-10).

[146] The Linux Container Project Contributors. (2019).
LXC - Homepage, [Online]. Available:
linuxcontainers.org/lxc/introduction (visited on 2019-02-18).

[147] ——, (2019).
LXD - Homepage, [Online]. Available:
linuxcontainers.org/lxd/introduction (visited on 2019-02-18).

107

docs.minio.io/docs/minio-server-limits-per-tenant
docs.ceph.com/docs/master/radosgw/s3
github.com/minio/minio/issues/4364#issuecomment-302471048
github.com/minio/minio/issues/4712#issuecomment-318525347
docs.minio.io/docs/multi-tenant-minio-deployment-guide.html
docs.minio.io/docs/minio-deployment-quickstart-guide
openstack.org
swiftstack.com
pytorch.org/docs/stable/notes/randomness.html
discuss.pytorch.org/t/guidelines-for-assigning-num-workers-to-dataloader/813
discuss.pytorch.org/t/guidelines-for-assigning-num-workers-to-dataloader/813
linuxcontainers.org/lxc/introduction
linuxcontainers.org/lxd/introduction

BIBLIOGRAPHY

[148] Virtuozzo. (2019).
OpenVz - Homepage, [Online]. Available: openvz.org (visited on 2019-02-18).

[149] I. Doornekamp. (2019).
duc - Homepage, [Online]. Available: duc.zevv.nl (visited on 2019-02-13).

[150] N. Craig-Wood. (2017).
Rclone - Homepage, [Online]. Available: rclone.org (visited on 2019-01-31).

[151] P. Xu, S. Shi, and X. Chu,
Performance Evaluation of Deep Learning Tools in Docker Containers, in 2017 3rd
International Conference on Big Data Computing and Communications (BIGCOM),
2017-08, pp. 395–403.

[152] O. Torres. (2018).
7 Short-Term AI ethics questions,
[Online]. Available: towardsdatascience.com/7-short-term-ai-ethics-
questions-32791956a6ad (visited on 2019-08-18).

[153] W. Ben-Hassine, N. Bueno, P. M. Chaudhary, M. Coninsx, S. Crown, P. Dawson,
T. Ermacora, M. Gorbis, P. Hicks, A. Koenig, S. Kumar, E. Piraces, A. Popper,
M. H. Posner, E. Santow, and A. Webb,
How to Prevent Discriminatory Outcomes in Machine Learning,
Global Future Council on Human Rights, World Economic Forum, Tech. Rep.,
2018.

[154] Y. Kuflinski. (2019).
How Ethical Is Facial Recognition Technology?,
[Online]. Available: towardsdatascience.com/how-ethical-is-facial-
recognition-technology-8104db2cb81b (visited on 2019-08-18).

[155] Microsoft Corporation. (2018).
Facial recognition: It’s time for action, [Online]. Available:
blogs.microsoft.com/on-the-issues/2018/12/06/facial-
recognition-its-time-for-action (visited on 2019-08-18).

[156] Docker Inc. (2018).
Get Docker CE for Debian,
[Online]. Available: docs.docker.com/install/linux/docker-ce/debian
(visited on 2018-09-26).

[157] ——, (2018).
Releases,
[Online]. Available: github.com/docker/compose (visited on 2018-11-28).

[158] ——, (2018).
Release Versions, [Online]. Available: github.com/docker/compose/releases
(visited on 2018-11-28).

[159] The Kubernetes Authors. (2018).
Running Kubernetes Locally via Minikube, [Online]. Available:
kubernetes.io/docs/setup/minikube (visited on 2018-10-05).

108

openvz.org
duc.zevv.nl
rclone.org
towardsdatascience.com/7-short-term-ai-ethics-questions-32791956a6ad
towardsdatascience.com/7-short-term-ai-ethics-questions-32791956a6ad
towardsdatascience.com/how-ethical-is-facial-recognition-technology-8104db2cb81b
towardsdatascience.com/how-ethical-is-facial-recognition-technology-8104db2cb81b
blogs.microsoft.com/on-the-issues/2018/12/06/facial-recognition-its-time-for-action
blogs.microsoft.com/on-the-issues/2018/12/06/facial-recognition-its-time-for-action
docs.docker.com/install/linux/docker-ce/debian
github.com/docker/compose
github.com/docker/compose/releases
kubernetes.io/docs/setup/minikube

BIBLIOGRAPHY

[160] ——, (2018).
Overview of kubectl, [Online]. Available:
kubernetes.io/docs/reference/kubectl/overview (visited on 2018-10-05).

[161] ——, (2018).
Minikube,
[Online]. Available: github.com/kubernetes/minikube (visited on 2018-10-05).

[162] ——, (2018).
Driver plugin installation,
[Online]. Available: github.com/kubernetes/minikube/blob/master/docs/
drivers.md#kvm2-driver (visited on 2018-10-05).

[163] ——, (2018).
Install and Set Up kubectl,
[Online]. Available: kubernetes.io/docs/tasks/tools/install-kubectl
(visited on 2018-10-05).

[164] ——, (2018).
Minikube, [Online]. Available: github.com/kubernetes/minikube/releases
(visited on 2018-10-05).

[165] NVIDIA Corporation. (2019).
CUDA Toolkit Archive, [Online]. Available:
developer.nvidia.com/cuda-toolkit-archive (visited on 2019-02-21).

[166] ——, (2019).
cuDNN Archive, [Online]. Available:
developer.nvidia.com/rdp/cudnn-archive (visited on 2019-02-21).

[167] ——, (2019).
Nvidia CUDA Installation Guide for Linux,
[Online]. Available: developer.download.nvidia.com/compute/cuda/8.0/
secure/Prod2/docs/sidebar/CUDA_Installation_Guide_Linux.pdf
(visited on 2019-02-21).

[168] ——, (2019).
Deep Learning SDK Documentation,
[Online]. Available: docs.nvidia.com/deeplearning/sdk/cudnn-
install/index.html#installlinux-tar (visited on 2019-02-21).

[169] Zsh Web Page Maintainers. (2019).
Z shell, [Online]. Available: zsh.sourceforge.net (visited on 2019-02-21).

[170] mkasberg. (2018).
Cannot Increase open file limit past 4096 (Ubuntu), [Online]. Available:
superuser.com/questions/1200539/cannot-increase-open-file-
limit-past-4096-ubuntu/1200818#1200818 (visited on 2018-10-15).

109

kubernetes.io/docs/reference/kubectl/overview
github.com/kubernetes/minikube
github.com/kubernetes/minikube/blob/master/docs/drivers.md#kvm2-driver
github.com/kubernetes/minikube/blob/master/docs/drivers.md#kvm2-driver
kubernetes.io/docs/tasks/tools/install-kubectl
github.com/kubernetes/minikube/releases
developer.nvidia.com/cuda-toolkit-archive
developer.nvidia.com/rdp/cudnn-archive
developer.download.nvidia.com/compute/cuda/8.0/secure/Prod2/docs/sidebar/CUDA_Installation_Guide_Linux.pdf
developer.download.nvidia.com/compute/cuda/8.0/secure/Prod2/docs/sidebar/CUDA_Installation_Guide_Linux.pdf
docs.nvidia.com/deeplearning/sdk/cudnn-install/index.html#installlinux-tar
docs.nvidia.com/deeplearning/sdk/cudnn-install/index.html#installlinux-tar
zsh.sourceforge.net
superuser.com/questions/1200539/cannot-increase-open-file-limit-past-4096-ubuntu/1200818#1200818
superuser.com/questions/1200539/cannot-increase-open-file-limit-past-4096-ubuntu/1200818#1200818

BIBLIOGRAPHY

110

Appendices

111

Appendix A

Polyaxon Screenshots

In this appendix you will find a collection of screenshots that are taken from the Polyaxon
web interface, as it looked like when we did our experiments. This is done in order for the
reader to get a better understanding on how the workflow looked like. However, we would
like to inform the reader that the Polyaxon project moves very fast, and these screenshots
might not be representative at the time of reading.

113

A. Polyaxon Screenshots

Figure
A
.1:Projectsview

ofthe
Polyaxon

fram
ew

ork
[70].

114

Fi
gu
re

A
.2
:P
ro
je
ct
O
ve
rv
ie
w
of

th
e
Po
ly
ax
on

fr
am

ew
or
k
[7
0]
.

115

A. Polyaxon Screenshots

Figure
A
.3:Experim

entsview
ofthe

Polyaxon
fram

ew
ork

[70].

116

Fi
gu
re

A
.4
:E
xp
er
im

en
tv

ie
w
of

th
e
Po
ly
ax
on

fr
am

ew
or
k
[7
0]
.

117

A. Polyaxon Screenshots

Figure
A
.5:Experim

entm
etric

view
ofthe

Polyaxon
fram

ew
ork

[70].

118

Fi
gu
re

A
.6
:E
xp
er
im

en
tl
og
sv

ie
w
of

th
e
Po
ly
ax
on

fr
am

ew
or
k
[7
0]
.

119

A. Polyaxon Screenshots

120

Appendix B

Installation Procedures & Version Info

During the course of this project there will be a couple of di�erent computer tools used. Since
these programs continually get updates it is important to record the versions and installation
methods used at the point of time this report is written. This appendix will not contain any
information that is of importance for those who just want to read about the findings, but
might be interesting for those who want to replicate the methods.

B.1 Install Docker CE for Debian

Before starting, it should be verified that the operating system used is supported by the
Docker program.We are using Debian 9.5 Stretch (x86_64), running the Linux 4.9.0-8-amd64
kernel, which is part of supported versions at the moment [156]:

• Buster 10 (Docker CE 17.11 Edge only)
• Stretch 9 (stable) / Raspbian Stretch
• Jessie 8 (LTS) / Raspbian Jessie
• Wheezy 7.7 (LTS)

What is about to follow is a quick installation guide to have Docker up and running on a
similar computer to the one presented above. For detailed information about these steps we
refer to the o�cial installation guide [156].

121

B. Installation Procedures & Version Info

1 sudo apt-get remove docker docker-engine docker.io
2 sudo apt-get update
3 sudo apt-get install \
4 apt-transport-https \
5 ca-certificates \
6 curl \
7 gnupg2 \
8 software-properties-common
9 curl -fsSL https://download.docker.com/linux/debian/gpg | sudo apt-key add -
10 sudo add-apt-repository \
11 "deb [arch=amd64] https://download.docker.com/linux/debian $(lsb_release -cs) stable"
12 sudo apt-get update
13 sudo apt-get install docker-ce

To be able to run docker as the current user, without root privileges, a group called docker
needs to be created, and the username of interest added to it. Otherwise, sudo needs to be
prepended to all Docker commands. Going forward it is expected that the user has been
added to this "docker" group by running the following commands:

1 sudo groupadd docker
2 sudo usermod -aG docker <your-user>

Log out and back in again so that groupmemberships are re-evaluated. The version of Docker
installed at the time of writing is 18.06.1-ce, build e68fc7a. This number can be ob-
tained by running the following after installation.

1 docker --version

If a version number is returned, the o�cial hello-world container should be run to verify
that everything is working correctly.

1 docker run hello-world

This should return a message stating something along the following lines if Docker was cor-
rectly installed.

1 Hello from Docker!
2 This message shows that your installation appears to be working correctly.
3 ...
4 ...

B.2 Install docker-compose for Debian

Docker-Compose is a python script used to simplify a single deployment of multiple Docker
containers and setting up an isolated network environment in which these can communi-
cate with each other. This script relies on a fully functional and up to date Docker daemon.
Installation instruction for this can be found in Section B.1.

Installation of docker-compose requires only two lines of code. The first one downloads
the script from the main GitHub repository [157]. Please note that the following line down-
loads version 1.23.1, for a complete list of releases see their repository [158] and change the
number in the link below.

1 sudo curl -L \
2 "https://github.com/docker/compose/releases/download/1.23.1/\
3 docker-compose-$(uname -s)-$(uname -m)" -o /usr/local/bin/docker-compose

122

B.3 Install the Minikube Environment

Then this file needs to be made executable.
1 sudo chmod +x /usr/local/bin/docker-compose

Verify the installation with the following command.
1 docker-compose --version

B.3 Install the Minikube Environment

Minikube is a tool which enables a Kubernetes cluster to be run on your local computer for
development and testing proposes without the need of multiple machines [159].

There are three parts to this setup that are necessary; first a hypervisor is needed, secondly
kubectl [160] which is the command-line interface tool to manage Kubernetes before finally
the actual Minikube [161] tool. This guide also expect Docker CE to already be installed, if
not the guide in B.1 should be followed before proceeding.

A word of warning is that the projects mentioned here move at a significant speed, and by
the time of reading this there will be newer versions available which may di�er significantly.
This installation will work for the version numbers presented, but not all versions of these
three components are compatible with each other. Unfortunately possible future problems
with this installation guide can not be accounted for since trial and error has been the only
way to find out these conflicting version numbers up until now.

B.3.1 Install a Hypervisor

The Minikube tool can run naively on the computer by utilizing Docker directly, however,
this requires root privileges which is not ideal. The log output from running Minikube with
the option –vm-driver=none will yield the following warning:

1 WARNING: IT IS RECOMMENDED NOT TO RUN THE NONE DRIVER ON PERSONAL WORKSTATIONS
2 The ’none’ driver will run an insecure kubernetes apiserver as root that
3 may leave the host vulnerable to CSRF attacks

To get around this a hypervisor is needed, and for this setup the kvm2 driver is chosen. This is
the one recommended by theMinikube development team and it can be installed accordingly
[162]. The (Intel) VT-x or AMD-v virtualization technologymust be enabled in your computer’s
BIOS before continuing. Install the prerequisites.

1 sudo apt install libvirt-clients libvirt-daemon-system qemu-kvm

Add your user to the libvirt group and update the session.
1 sudo usermod -a -G libvirt <your-user>
2 newgrp libvirt

123

B. Installation Procedures & Version Info

Install the actual driver.
1 curl -Lo docker-machine-driver-kvm2 \
2 https://storage.googleapis.com/minikube/releases/v0.29.0/docker-machine-driver-kvm2
3

4 chmod +x docker-machine-driver-kvm2
5 sudo cp docker-machine-driver-kvm2 /usr/local/bin/
6 rm docker-machine-driver-kvm2

B.3.2 Install kubectl

The command-line interface tool kubectl [160] is available for download via the Debian
package manager, however, a newer version is desired. Here version v1.12.0 is used [163].

1 curl -LO https://storage.googleapis.com/kubernetes-release/release/\
2 v1.12.0/bin/darwin/amd64/kubectl
3

4 chmod +x ./kubectl
5 sudo mv ./kubectl /usr/local/bin/kubectl

B.3.3 Install Minikube

Installation of Minikube can now commence [164]. At the time of writing version v0.29.0
is the latest.

1 curl -Lo minikube https://storage.googleapis.com/minikube/\
2 releases/v0.29.0/minikube-linux-amd64
3

4 chmod +x minikube
5 sudo cp minikube /usr/local/bin/
6 rm minikube

B.3.4 Verify the Minikube Installation

We experienced some boot inconsistencies when launching Minikube which seems to be re-
lated to the networking components in the virshmodule. The default net did not register
properly with Minikube, but a reset of it before first launch solved our troubles. This step
might not be necessary for you.

1 sudo virsh net-destroy default
2 sudo virsh net-define /etc/libvirt/qemu/networks/default.xml
3 sudo virsh net-autostart default
4 sudo virsh net-start default

Verify the installation by first starting Minikube. This step might take a long time if a slow
computer is used, with the step "Starting cluster components" taking the longest. Unfor-
tunately this is also the step that gets stuck if the network problem described above happens,
so one has to judge on their own if it is stuck or to wait a bit longer. Furthermore, there were
more network problems when trying to run version v1.12.0 of Kubernetes inside the virtual
machine, therefore version 1.11.0 is selected in the command below.

124

B.4 Install & Configure Minio

1 minikube start --vm-driver=kvm2 --kubernetes-version=v1.11.0

If the command completes it should be possible to obtain some status information from
kubectl by running the following.

1 kubectl cluster-info

A successful command should produce something along these lines.
1 Kubernetes master is running at https://192.168.39.34:8443
2 CoreDNS is running at https://192.168.39.34:8443/api/v1/namespaces/kube-system\
3 /services/kube-dns:dns/proxy
4

5 To further debug and diagnose cluster problems, use ’kubectl cluster-info dump’.

B.3.5 Remove Minikube

If there are any problems with the install, or a desire to upgrade the Minikube version, we
strongly recommend completely erasing all Minikube dependencies and starting over from
scratch to avoid strange problems. Here is a quick script which will completely wipe anything
Minikube related if the above guide was followed.

Paste the following into a file and run it for quick and easy removal of Minikube.
1 #!/bin/sh
2 echo "=== Running minikube stop ==="
3 minikube config set WantReportErrorPrompt false
4 minikube stop
5 echo "=== Running minikube delete ==="
6 minikube delete
7 echo "=== Deleting local .minikube and .kube folders ==="
8 rm -rf ~/.minikube ~/.kube
9 echo "=== Uninstalling local minikube and kubectl ==="
10 sudo apt purge kubectl minikube -y
11 sudo rm /usr/local/bin/localkube /usr/local/bin/minikube /usr/local/bin/kubectl
12 echo "=== Uninstalling kvm2 and minikube kvm2 driver ==="
13 sudo rm /usr/bin/docker-machine-driver-kvm2
14 sudo apt purge libvirt-clients libvirt-daemon qemu-kvm -y
15 sudo rm -rf /var/lib/libvirt /etc/libvirt
16 echo "=== Cleaning up unused dependencies ==="
17 sudo apt autoremove -y

For good measure it might be good to reboot the computer as well, but it should not be
required. To install Minikube again, just begin form B.3.1 again.

B.4 Install & Configure Minio

The easiest method of installing Minio is to run it from inside a Docker container. The guide
in B.1 should therefore have been completed before continuing here. After this it is very
simple to have a well configured Minio server up and running. Execute the following line in
a terminal, but be careful to change the path of the mounted folder to something that exist
on your system and to not overwrite anything.

125

B. Installation Procedures & Version Info

1 docker run --rm -p 9000:9000 --name minio \
2 -v /path/to/external/folder:/data \
3 --env MINIO_ACCESS_KEY=accesskey \
4 --env MINIO_SECRET_KEY=supersecret \
5 minio/minio server /data

It should now be possible to navigate to http://<hostname>:9000 to reach a webpage for
the server which was just started. Enter the access key and secret key defined in the command
above to be able to log in. Minio should now be ready to be used as a testing environment. If
you are interested in a production ready set up of this, we recommend reading the guides on
the homepage [28].

B.5 Install & Configure AWS CLI

The AWS Command Line Interface tool [92] is the o�cial client, written by Amazon them-
selves, used to communicate with S3 compatible services. Both Debian and Ubuntu should
have it available in the o�cial repositories, and can be installed by simply running the fol-
lowing command.

1 sudo apt install awscli

After this it is important to configure the client to use the correct access key and secret key
for the service to which you are trying to connect to. To edit the configuration file you type
the following into the terminal.

1 aws confgure

If we use the same keys as in B.4, the following options should be set.
1 AWS Access Key ID [None]: accesskey
2 AWS Secret Access Key [None]: supersecret
3 Default region name [None]: us-east-1
4 Default output format [None]:

After this you may use your favorite text editor to open up the file ∼/.aws/config and make
sure it looks like this:

1 [default]
2 region = us-east-1
3 s3 =
4 max_concurrent_requests = 100
5 max_queue_size = 10000
6 multipart_threshold = 64MB
7 multipart_chunksize = 16MB
8 payload_signing_enabled = false

When this is done you will have the same settings as us when we tested the solutions.

B.6 Install & Configure rclone

Rclone [150] is a tool which is compatible with many di�erent protocols, one of which is
Amazon S3. This is usually not available on the normal package repositories and needs to be

126

B.7 Install Git & the LFS Extension

downloaded from an external site. An installation script can be downloaded and piped1 into
bash like this:

1 curl https://rclone.org/install.sh | sudo -E bash

This will then need to be configured to properly connect with the storage service you are
targeting. The configuration procedure may be accessed by typing:

1 rclone config

We will be using the keys and addresses from B.4, and below is how we configured it where
at each new line, after the ">", is what option we chose.

1 New Remote> n
2 name> minio
3 type of storage> 4
4 s3 provider> 6
5 credentials> 1
6 access_key_id> accesskey
7 secret_access_key> supersecret
8 region> us-east-1
9 endpoint> http://<server_hostname>:9000
10 location_constraint>
11 acl> 1
12 advanced> n
13 save> y
14 quit> q

B.7 Install Git & the LFS Extension

This guide will install both git and the lfs extension via the package manager on Debian
9.6. The two necessary programs can be installed by executing the following command:

1 sudo apt install git git-lfs

The lfs extension then needs to be activated inside git as well.
1 git lfs install

The installations can be verified with the following two commands.
1 git version
2 git lfs version

This should result in the following output.
1 git version 2.11.0
2 git-lfs/2.6.0 (GitHub; linux amd64; go 1.10.3)

A note regarding the use of this extension is that if an error stating that “there are too many
files open” is displayed, you may need to follow the guide found in C.1 to be able to continue.

1It is usually a very bad idea to pipe unknown scripts from the internet directly into bash, analyze what you
download.

127

B. Installation Procedures & Version Info

B.8 Install Nvidia Driver, CUDA & cuDNN
In order to recreate the same software environment, as the engineers of the video analytics
department used, we let the IT department of the case company reformat our computer
and install Ubuntu 16.04 LTS on it. This automatically installed some Nvidia drivers, but
we needed to make sure only the specific versions outlined in Table 4.1 were the one to be
installed. Thus, we had to remove anything Nvidia related by running the command below.
This might break the visual output to the screen you are using, so it is advisable to test that
SSH connections are accepted by the host before doing this.

1 sudo apt-get purge ’nvidia-*’

We then updated the remaining packages and installed build dependencies.
1 sudo apt-get update
2 sudo apt-get upgrade
3 sudo apt-get install gcc make g++ build-essential

To install the correct versions of the Nvidia components, we utilized the archive repository
on their o�cial website to obtain the graphics driver, CUDA toolkit [165] and cuDNN [166].
This was then installed using the provided documentation [167], [168]. In order to download
the cuDNN dependencies it was necessary to sign up to their website.

1 # Download CUDA Toolkit
2 wget https://developer.nvidia.com/compute/cuda/8.0/Prod2/local_installers/\
3 cuda-repo-ubuntu1604-8-0-local-ga2_8.0.61-1_amd64-deb -O "cuda-deb"
4

5 # Install CUDA and the Nvidia Driver
6 sudo dpkg -i cuda-deb
7 sudo apt-get update
8 sudo apt-get install cuda
9

10 # Download cuDNN and install it
11 wget https://developer.download.nvidia.com/compute/redist/cudnn/v6.0/\
12 cudnn-8.0-linux-x64-v6.0.tgz -O "cudnn.tgz"
13 tar -zxf cudnn.tgz
14 sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64
15 sudo cp cuda/include/cudnn.h /usr/local/cuda/include/
16 sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libcudnn

We added the needed environment variables and rebooted the system. Please note we are us-
ing the Z shell [169], which make the paths persistent over reboots by including them inside
the .zshrc file. If another shell is used, these commands will need to be changed appropri-
ately.

1 echo "export CUDA_HOME=\"/usr/local/cuda\"" >> ~/.zshrc
2 echo "export LD_LIBRARY_PATH=\"/usr/local/cuda-8.0\":\$LD_LIBRARY_PATH" >> ~/.zshrc
3 echo "export LD_LIBRARY_PATH=\"/usr/local/cuda-8.0/lib64\":\$LD_LIBRARY_PATH" >> ~/.zshrc
4 echo "export PATH=\"/usr/local/cuda-8.0/bin:\$PATH\"" >> ~/.zshrc
5 sudo reboot

Finally we verified that the correct versions were installed.
1 # Nvidia driver info
2 nvidia-smi
3

4 # CUDA version
5 nvcc --version
6

7 # cuDNN location
8 locate libcudnn

128

Appendix C

Host OS Modifications

This appendix contain information regarding specific modifications that were required for
certain parts of the installation process or for a program to perform better. If there are not
specifically addressed in a guide these modifications should be ignored as they could make a
system more unstable.

C.1 Increase ulimit

To increase the limit of maximum number files that is allowed to be open simultaneously, as
shown by the command ulimit -n, three files are needed to be modified [170]. Firstly the
line DefaultLimitNOFILE=65535 should be added to the following two files:

• /etc/systemd/user.conf
• /etc/systemd/system.conf

This setting a�ects sessions using the graphical login, so for non-GUI login the following two
lines:

1 * hard nofile 65535
2 * soft nofile 65535

needs to be added to the file

• /etc/security/limits.conf

After this at least a logout and login again is necessary, but a reboot is recommended. Verify
that this limit has increased by running ulimit -n again.

129

C. Host OS Modifications

130

Appendix D

Experiment Setup

This appendix will provide additional information regrading how the experiments were set
up and performed in order to obtain the results that are presented in Chapter 5. The section
titles will follow the same naming scheme for easy cross-reference.

D.1 Storage
Since it was requested that the information regrading the Proprietary Solution was to be
kept to a minimum, the configuration steps for this can not be disclosed for the readers to
reproduce. These instructions are therefore limited to the Minio server solution used, which
firstly requires Docker to be installed, see Appendix B.1. The guide on how to install Minio
can then be followed in Appendix B.4, to be able to have an identical setup as the one used
in the testing.

The clients, used to download the data assets from the object storage solutions, are comprised
of the aws-cli [92] program, which is written and maintained by Amazon, and the more
versatile rclone [150] program. Additional details on the optimized aws-cli setup used
during testing can be found in Appendix B.5, while the corresponding guide for rclone is
located in Appendix B.6.

The command used to download using aws-cli is presented below. The same command is
also used for uploads, but with the source and destination swapped around.

1 aws --endpoint-url http://<remotehost>:<port> s3 sync s3://<bucket> /<localfolder>

The rclone download command di�ers slightly, and the <remoteService> is the name of
the profile that was created in the setup guide seen in Appendix B.6. To upload, the source
and destination arguments are reversed.

131

D. Experiment Setup

1 rclone copy <remoteService>:<bucket> <localfolder> -v --transfers 100 --checkers 100

Using the time utility, which comes preinstalled with Debian, the above commands are
wrapped with it to report back how long time it took the computer to finish executing them.
This is then the time that is presented in the results.

Something to take note of is that all communications between the Proprietary Solution and the
client was encrypted (HTTPS), which introduces an overhead compared to the non-encrypted
setup used in the Minio instance. The computer hosting the server instance of Minio is the
same machine as the one outlined in Table 4.1. For these experiments the hardware informa-
tion of interest is mainly CPU performance, disk transfer speeds and network transfer speeds
since the other components are sparsely utilized. Importantly, results gained through addi-
tional external testing made sure that the NVMe disk was fast enough to not be a bottleneck
in the tests.

Further tests that were performed, with multiple simultaneous downloads, showed that the
Proprietary Solution was mainly limited by its shared hardware, while the Minio server was
mostly limited by its single gigabit uplink. A single downloading stream from the Minio
solution would therefore instead show the limitations of the client software used.

Regarding the results displaying the improved storage sizes, these were obtained by first stor-
ing the dataset in its raw form, then upload it to Git LFS, for it to be directly downloaded
again to a separate directory on the same computer. Both the size on disk and the number
of files were then documented for the separate folders, which was then plotted in a sunburst
diagram by utilizing the software duc [149] with some minor color changes. The same was
done for both of the object storage solutions, but these did not add any additional data and
are identical to the raw dataset.

D.2 Preprocessing
There is no easy method of testing the time improvements of each of the preprocessing steps
in isolation, which is why the object identification example on the CINIC-10 dataset [108],
introduced in 4.2.3, was utilized in full. In order to be able to identify the performance impact
of any of these steps, all settings, except those involving preprocessing, will remain unchanged
throughout this section. Thus, any variation to time or accuracy should be accounted to these
preprocessing steps.

At the time of writing, the engineers are only using the default configuration of a single
worker thread for the data augmentations. By increasing the number of workers the augmen-
tation workload can be conducted in parallel on the CPU and speed up the time to complete
the training. Changing the number ofworkers are as easy asmodifying the <nbr_of_workers>
parameter in the code below and is in the tested code example exposed as input parameter
to the program. When it came to testing the impact of having no augmentations at all, the
lines of code enabling these were removed.

1 trainloader = torch.utils.data.DataLoader(trainset,
2 batch_size=64,
3 shuffle=True,
4 num_workers=<nbr_of_workers>)

132

D.3 Scheduling & Training

D.3 Scheduling & Training

There are a couple of di�erent measurements that are performed in this section, and these
are divided into the same subsections as in Section 5.3.

D.3.1 Software

The first improvement that was measured was how long it took to tear down an old test
environment and set up a new one. This represents how it currently works with the shared
compute nodes, where engineers conducts experiments that has software dependencies that
are incompatible with the other frameworks used. When a new experiment is to be con-
ducted, it is therefore necessary to remove these old components and reinstall the correct
ones.

Since both the current native reinstallation process, and the Docker process, requires some
practice for the user to become proficient, it is assumed that the engineers have performed
this procedure many times before. It is also expected that both the base Nvidia graphics
driver, and the Docker daemon, is already installed and properly configured on the system.
Since these two prerequisites are a one-time installation occurrence, it was not deemed fair
to include these steps in the measurements. Furthermore, the experiment code, as well as the
dataset, is also already present on the machine.

The native reinstallation is then performed according to the guide written in Appendix B.8.
The timer started when the first command was entered, and ended when the last one com-
pleted execution. The Docker process was only composed of building a new container of
our test environment [108]. However, this does not include the time it takes to create the
Dockerfile in the first place. But similarly, the time it takes to register on the Nvidia home-
page, to be able to download the needed software, is also not included in the other measure-
ments.

To determine how much overhead the Docker isolation layer add to the training time, a cou-
ple of di�erent openly available object classification models were integrated into the devel-
oped CINIC-10 training example [108]. This was quite simple as many examples were readily
available for the PyTorch framework that was being used, and switching between the models
was made simple by creating an input argument where the model name is specified. In sim-
ilarity to the benchmark performed in the preprocessing step, all other settings were set to
the defaults and the network was left to train for 300 epochs on the entire CINIC-10 dataset.

By only changing the model used, the idea was to discern how di�erent computations are
a�ected by running inside a Docker container environment. All the networks are commonly
used as object classifiers, which is why the final accuracy is also included. The native procedure
was conducted in exactly the same fashion, except that there was no simple input argument
that could be changed, so instead the setup code had to be manually changed between each
run.

133

D. Experiment Setup

D.3.2 Scheduling & Training

Regarding scheduling, ourmethod of measuring improvements is to compare the time it took
to run all the containerized tests, presented in Table 5.4, by first manually scheduling every-
thing, and then by letting Polyaxon schedule them on the Kubernetes cluster. Since Polyaxon
will have access to five GPUs in the cluster, it will not be an apples to apples comparison to
the single GPU workstation used to run the manual scheduling. However, it does represent
the current situation where one should benefit by running the experiments on the cluster and
is designed to showcase the power of having a software scheduler instead of doing everything
manually.

To provide a baseline, for how long time manual scheduling takes, one of the Docker tests
from Table 5.4 was started on our local training computer, which still has the setup defined
in Table 4.1. Then the terminal output was intermittently monitored to see if it had finished.
If that was the case, the results were recorded and the next task in line was started. It was
known that some models would take a significantly longer time to train than others which is
why these were chosen to start when we left for the evening in order to complete before the
next morning. This was done to accurately represent the current situation. Unsurprisingly,
this would not always align as well as one would have hoped, leading to long stretches of time
when the hardware was simply not used. The timer stopped when we noticed that the final
experiment had finished.

The dataset used during this time was already present on the training computer, and did
not need to be downloaded for each new network that was used. However, such was not the
case with the Polyaxon experiment. The configuration created, that would properly set up
and distribute the training tasks across the Kubernetes cluster, could not guarantee that the
dataset was cached on the compute note it executed on, andwas therefore forced to download
a new copy each time.

After the Polyaxon scheduler was started, we did not have any control on how and where the
di�erent training tasks were executed. The experiment was deemed over when we noticed
that the every scheduled task was showing up as completed on the web interface of Polyaxon.
It is in this interface it is possible to view old experiments and compare previous results for
similar training tasks.

D.3.3 Hardware

Obtaining hardwarewas an issue that we did not focus on, and the only experiencewe have re-
garding the lead times of ordering hardware is the time it took for our workstation, presented
in Table 4.1, to be assembled. This was also not deemed to be of interest at the moment, by
the engineers, and no further e�orts were made into obtaining concrete time measurements
of this.

134

	Introduction
	Background
	Data Processing Methods
	Methods for Data Storage & Retrieval
	Processing Data
	Data-Driven Computing
	Multimedia Processing Complexities

	Deep Learning Workflow
	Preprocessing
	Data Collection
	Data Augmentation

	Training
	Validation

	Related Work
	Adam — Distributed Training on CPUs
	Nvidia Docker — GPUs Inside Containers
	TensorFlow — Library for Distributed Training
	Horovod — Efficient GPU Communication
	Kubernetes — Orchestration of GPU Resources
	Alchemist — End-to-End Implementation

	Case Company
	Problem Description
	Scope
	Contributions
	Storage Technologies
	File Storage
	Block Storage
	Object Storage
	Database

	Research Questions & Methodology
	Thesis Goals
	Research Questions
	Methodology
	Approach
	Suitable Metrics
	The Process
	Threats to Validity

	Contribution Statement

	Analysis
	Preparations
	Hardware
	Software
	Datasets

	Current Workflow
	Storage
	Current Storage Solution
	Current Data Retrieval Method

	Preprocessing
	Scheduling & Training
	Hardware
	Software
	Training
	Scheduling

	Summary of Current Workflow

	Proposed Solutions
	Storage
	Desired Features
	Researched Solutions
	Implemented Solutions
	Storage Solution Summary

	Preprocessing
	Scheduling & Training
	Software
	Scheduling & Training
	Hardware

	Results
	Storage
	Speed Improvements
	Size Improvements

	Preprocessing
	Scheduling & Training
	Software
	Scheduling & Training
	Hardware

	Discussion
	Storage
	Preprocessing
	Scheduling & Training
	Docker
	Kubernetes & Polyaxon

	Combination of Solutions
	Thesis Goals & Research Questions
	Ethical Aspects
	Future Work

	Conclusion
	Appendix Polyaxon Screenshots
	Appendix Installation Procedures & Version Info
	Install Docker CE for Debian
	Install docker-compose for Debian
	Install the Minikube Environment
	Install a Hypervisor
	Install kubectl
	Install Minikube
	Verify the Minikube Installation
	Remove Minikube

	Install & Configure Minio
	Install & Configure AWS CLI
	Install & Configure rclone
	Install Git & the LFS Extension
	Install Nvidia Driver, CUDA & cuDNN

	Appendix Host OS Modifications
	Increase ulimit

	Appendix Experiment Setup
	Storage
	Preprocessing
	Scheduling & Training
	Software
	Scheduling & Training
	Hardware

