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Abstract

The decay of solutions to the Klein-Gordon equation is studied in two expanding cosmo-
logical spacetimes, namely

• the de Sitter universe in flat Friedmann-Lemâıtre-Robertson-Walker (FLRW) form

• the cosmological region of the Reissner-Nordström-de Sitter (RNdS) model.

Using energy methods, for initial data with finite higher order energies, bounds on the
decay rates of the solution are obtained. Also, a previously established bound on the
decay rate of the time derivative of the solution to the wave equation, in an expanding
de Sitter universe in flat FLRW form, is improved, proving Rendall’s conjecture. A similar
improvement is also given for the wave equation in the cosmological region of the RNdS
spacetime.

Popular science description

One of the most profound realisations of physics of the twentieth century is that space and
time should be considered as a single whole, a four-dimensional geometric object called
spacetime, rather than two separate entities. Gravitation arising from matter manifests
itself as curvature of spacetime, and the motion of matter is described by the straightest
possible curves on this curved spacetime. Theoretically there are many possible spacetimes,
all of which arise as solutions to the so-called Einstein field equations, relating matter
content on the one hand with the curvature of spacetime on the other. While these are
highly nonlinear difficult equations, important insights are achievable by simplifications
obtained by linearising them. These simplifications take the form of the familiar wave
equations one meets in everyday life, for example those used in describing ripples of water
on the surface of a pond, albeit on a curved spacetime. A more general wave equation,
which is satisfied by matter fields on spacetime is the so-called Klein-Gordon equation. It
is a natural question to ask what the qualitative long-term behaviour is, of solutions to
these wave equations. Are they bounded, do they grow, or do they decay? If they decay, at
what rate do they decay? The answers to these questions have played an important role in
recent theoretical developments in general relativity, for example in progress towards the
resolution of the cosmic no-hair conjecture (roughly speaking saying that all solutions to
the Einstein equations with a positive cosmological constant ‘eventually’ look alike, namely
they resemble the so-called de Sitter spacetime). This thesis contributes answers to the
questions of obtaining exact decay rates in two expanding spacetimes for solutions to the
Klein-Gordon equation and to the wave equation.
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1 Introduction

The aim of this thesis is to obtain exact decay rates for solutions to the Klein-Gordon equa-
tion in a fixed background of some expanding cosmological spacetimes. The two spacetimes
we will consider are the de Sitter universe in flat Friedmann-Lemâıtre-Robertson-Walker
(FLRW) form, and the cosmological region of the Reissner-Nordström-de Sitter (RNdS)
model. We give some background and motivation below.

In the theory of general relativity, a spacetime pM, gq is a differentiable Lorentzian manifold
M with a Lorentzian metric g, satisfying the Einstein field equations, given by

Ric´ S

2
g ` Λg “ 8πT,

where Ric denotes the Ricci tensor, S is the scalar curvature, Λ is the cosmological constant,
and T is the energy-momentum tensor of the matter content of spacetime. Gravitation
manifests itself as curvature of spacetime, and the equation of motion for matter is given
by the geodesic equation on pM, gq. The Einstein field equations, which are the core of
general relativity, form a hyperbolic system of partial differential equations (PDEs). The
simplest hyperbolic equations are the familiar wave equations. It is natural to first try
understanding, via PDE theory, the linearised wave equations obtained from the Einstein
equations. The Einstein field equations have been studied extensively from a PDE per-
spective; see for example [7], [30], [31], [32]. In particular, it is now established that the
Einstein field equations allow a formulation as an initial value problem, that is, a Cauchy
problem. In fact, Einstein himself viewed them as a system of evolution equations when
he gave an argument justifying that gravitational waves propagate at the speed of light
[12], [14]. There he essentially studied a linearised problem by considering a metric close
to that of the Minkowski space, and with a special choice of coordinates, derived a wave
equation for the perturbation, which he used to conclude that gravitation waves propagate
at the speed of light.

One can study linear wave equations, such as the Klein-Gordon equation BµBµφ´m2φ “ 0,
on curved spacetimes, by replacing the usual partial derivative Bµ used in flat Minkowski
spacetime, with the covariant derivative ∇µ, derived from the Levi-Civita connection onM
induced by the metric g. The study of wave equations on Lorentzian manifolds is interesting
from several points of view, ranging from the realm of partial differential equations and
differential geometry in pure mathematics, to theoretical physics. Within general relativity,
the Klein-Gordon equation is of interest since it is a proxy for the Einstein equations, and
it also arises in a geometric model for dark matter [5].

From the pure mathematical perspective, analysis of linear wave equations on Lorentzian
manifolds is a natural topic of study within the domain of hyperbolic partial differential
equations and differential geometry. The texts such as [2], [36, §2.7, Chap.6], [6] discuss the
global theory in contrast to [18] and [23], where the emphasis was to present the classical
work of Hadamard and M. Riesz (Lund University) in modern language, using the theory
of distributions and differential geometry.
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The problem we consider is made linear, in that the background spacetime is fixed. This
constitutes a first step towards understanding the more complicated nonlinear coupled
problem, where one also considers the effect of the energy-momentum tensor of the solution
to the Klein-Gordon equation on the Einstein equation. This nonlinear coupled problem
is much more complicated, and usually requires, as a first step, a detailed understanding
of our simpler linear problem.

One may consider the linear wave equations as a proxy for the Einstein equations, with
the ultimate goal of understanding the qualitative behaviour of solutions to the Einstein
equations by slicing spacetime into spacelike hypersurfaces. After this first step, one may
then proceed to consider linearised Einstein equations (which can be reduced to tensor
wave-like linear equations), and finally, the full nonlinear Einstein equations.

In the modern qualitative theory of differential equations, pioneered by Poincaré and Lya-
punov, one studies the behaviour of solutions to differential equations without explicitly
solving them (as the solutions may not be available in the first place, and even if ana-
lytic expressions are available, for example in the form of unwieldy series expansions or
integral expressions, they may be quite useless to answer fundamental questions such as
whether they stay bounded, tend to zero, and what their behavior is for large values of the
argument). Such a qualitative knowledge of the behaviour of solutions may also aid the
development of more accurate numerical schemes for finding approximate solutions using
the computer. In particular, viewing the simplified situation of the field equations, where
one has a linear wave equation, such as the Klein-Gordon equation on a fixed background
spacetime, one may be interested in the behaviour of sections of the solution for large
values of one of the coordinates.

A cosmological constant Λ was first introduced by Einstein in 1917 in [13], to obtain a
static cosmological solution, but he later dismissed it as his ‘biggest blunder’ in view of
Hubble’s galaxy redshift observations. However, it made a triumphant comeback into the
standard model of cosmology in 1998 due to the observation of the accelerated expansion
of the Universe consistent with a positive value of Λ. For late cosmological times, one
expects Λ ą 0 to completely dominate the dynamics, damping all inhomogeneities and
anisotropies. This prompted the ‘cosmic no-hair conjecture’ of Gibbons and Hawking,
from 1977 [19]: Generic expanding solutions of Einstein’s field equations with a positive
cosmological constant approach the de Sitter solution asymptotically.

In our case of the Klein-Gordon equation, the expectation is that the accelerated expansion
from a positive cosmological constant has a dominating effect on the decay of solutions.
Precise estimates on solutions may then prove useful in formulating and proving cosmic
no-hair theorems; see e.g. [3], [8]. For example, the results of [9] (some special cases of
which are improved in this thesis), had provided important insights for the recent analysis
of the cosmic no-hair conjecture in spherically symmetric spacetimes in [8].

The wave equation 2gφ “ 0 in expanding cosmological spacetimes pM, gq has been amply
studied in the literature, see for example [6], [9], [10], [34], and the references therein. It is
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a natural question to also study the Klein-Gordon equation 2gφ´m2φ “ 0, the degenerate
version of which, when m2 “ 0, is the wave equation. For example, in [34, §6], also the
case of the Klein-Gordon equation in the Schwarzschild-de Sitter spacetime is considered.
In [33], the asymptotic behaviour of the solutions to the Klein-Gordon equation near the
Big Bang singularity is studied, while we investigate the asymptotics of the Klein-Gordon
equation in the far future in the case of the de Sitter universe in flat FLRW form, and in the
cosmological region of the Reissner-Nordström-de Sitter solution. Recently, in [11], among
other things, decay estimates for the solutions to the Klein-Gordon equation were obtained
in de Sitter models (see in particular, Corollary 2.1 and the less obvious Proposition 3.1).
However, these results are proved via Fourier transformation (reminiscent of our mode
calculation in Appendix A), and are not as sharp1 as our Theorem 3.2.

The wave equation in the de Sitter spacetime having flat 3-dimensional spatial sections
was considered in Rendall [29]. There it was shown that the time derivative 9φ :“ Btφ
decays at least as e´Ht “ paptqq´1, where H “

a
Λ{3 is the Hubble constant, and Λ ą 0

is the cosmological constant. Moreover, it was conjectured that the decay is of the order
e´2Ht “ paptqq´2. The almost-exact conjectured decay rate of | 9φ| À paptqq´2`δ (where δ ą 0
can be chosen arbitrarily at the outset) follows as a corollary of a result shown recently
in [9, Remark 1.1]. We improve this result, to obtaining full conformity with Rendall’s
conjecture, in our result Theorem 3.2 below.

A naive heuristic indication of the effect of the accelerated expansion on the decay of the
solution, based on physical energy considerations, can be obtained as follows. Considering
an expanding FLRW model with flat n-dimensional spatial sections of radius aptq, we have
on the one hand that the energy density of a solution φ of the Klein-Gordon equation is
of the order of m2φ2. On the one hand, the instantaneous energy is the energy density
over the time slice times the volume paptqqn of space at time t, and hence is given by
m2φ2paptqqn. On the other hand, if the wavelength of the particles associated with φ

follows the expansion, then it is proportional to aptq, and so the instantaneous energy,
varies as

E2 „ m2 ` p2 „ A` B

paptqq2 ,

where A,B ą 0 are constants. Thus the instantaneous energy

m2φ2paptqqn 9
ˆ
A` B

paptqq2
˙
,

giving

m2φ2 „ paptqq´n

ˆ
A` B

paptqq2
˙
.

As 9a ě 0 (expanding FLRW spacetime), the term A ` B
paptqq2 approaches a finite positive

value, and so one may expect
φ „ paptqq´n

2 .

1For example, in [11, Corollary 2.1], when |m| ă n{2, our established decay rate from Theorem 3.2 is
obtained only under the additional assumption that

?
n2 ´ 4m2 P r1, nq while we make no such assumption.
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We will find out that in fact things are much more complicated: this decay rate is valid
only for2 |m| ě n

2
. In order to obtain precise conjectures on the expected decay, we will

consider Fourier modes for spatially-periodic solutions to the Klein-Gordon equation, or
equivalently, consider the expanding de Sitter universe in flat FLRW form with toroidal
spatial sections. This exercise already demonstrates that the underlying decay mechanism
is the cosmological expansion, as opposed to dispersion. The Fourier mode analysis, which
is peripheral to the rest of the thesis, is relegated to Appendix A. We will use ‘energy
methods’ to prove our results, and we give elaborate on the general ideas behind this
technique in Section 2.

In the cosmological region of the Reissner-Nordström-de Sitter spacetimes, the expanding
region is foliated by spacelike hypersurfaces of ‘constant r’. One expects the decay rate
with respect to r, for the solution to the Klein-Gordon equation, in the cosmological region
of the Reissner-Nordström-de Sitter spacetime, to be the same as the one for the de Sitter
universe in flat FLRW form, when et is replaced by r, as is explained in Remark 5.2, 6.2.
We show that this expectation is correct, and a suitable modification of the technique used
in the case of the de Sitter universe in flat FLRW form does enable one to obtain the
expected decay rates also for the case of the Reissner-Nordström-de Sitter spacetime.

Our main results are as follows:

• Theorem 3.2 considers the m “ 0 case (wave equation), and we obtain a decay esti-
mate on Btφ, improving a corollary of [9, Theorem 1], and proving the aforementioned
Rendall’s conjecture.

• Theorem 6.3 again considers the m “ 0 case (wave equation), and improves [9,
Theorem 2]. We obtain a decay estimate on Brφ, using a similar method to the one
we use for proving Rendall’s conjecture.

• Theorem 4.1 gives the decay rate of the solutions φ to the Klein-Gordon equation in
the de Sitter universe in flat FLRW form.

• Theorem 5.3 gives the decay rate of the solutions φ to the Klein-Gordon equation in
the cosmological region of the RNdS model.

The organisation of the thesis is as follows. Theorems 3.2, 4.1, 5.3, 6.3 are stated and
proved in Sections 3, 4, 5, 6, respectively. The Fourier mode analysis for spatially-periodic

2We remark the seemingly odd comparison of m with the dimensionless n{2 done here arises as follows.
Firstly, in geometrised units (c “ 1, G “ 1, and all quantities measured in meters), the cosmological
constant has the dimensions L´2. Then by setting the Hubble constant H “ 1, or equivalently Λ “ 3, we
are choosing the length unit to be the length scale determined by the cosmological constant (roughly the
radius of the cosmological horizon), thus rendering all our quantities dimensionless. In particular, the m2

in the Klein-Gordon equation, which in geometrised units has the dimensions of L´2 (and in conventional

units, one writes m2c2

h2 instead of m2), also becomes dimensionless, and can be compared to n2

4
. More

physically, to say that m ą n
2
, for instance, means that the Compton wavelength λ associated with the

mass m (in conventional units λ “ h
mc

) is smaller than 2

n
times the cosmological radius.
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solutions to the Klein-Gordon equation is given in Appendix A, while Appendix B contains
a technical lemma which is needed in the proof of Theorem 4.1. Finally, in Appendix C,
we establish the sharpness of the bound of one of the key estimates in the proof of the
|m| “ n

2
case of Theorem 4.1.

2 Methods and background

In this section we give a bird’s-eye view of the methods used in order to prove our four
theorems, and also fix some preliminary notation, which will used throughout the thesis.

We will use the standard notation from differential geometry (e.g. [21]), and from the
theory of partial differential equations (e.g. [36]). For a quick introduction to integration
on oriented Lorentzian manifolds and Stokes’ theorem (used in our proofs), we refer the
reader to [37, Appendix B]. For general relativity background, we refer the reader to [17],
[27], and for more mathematical treatments, to [24], [37].

In order to facilitate the smooth transition from the index notation preferred in the physi-
cist’s literature to the index-free notation prevalent in the mathematics world, we give the
table below, to serve as a convenient notational dictionary.

Object Mathematicians Physicists

Vector field X Xµ

Metric g ” x¨, ¨y gµν
Inner product gpX, Y q ” xX, Y y gµνX

µY ν

Associated covector gpX, ¨q Xν :“ gµνX
µ

Covariant derivative ∇XY Xµ∇µY
ν

Covariant derivative tensor ∇X ∇µX
ν :“ BµXν ` Γν

µσX
σ.

Ricci tensor Ric Rµν

Scalar curvature S R

Energy momentum tensor T Tµν
Spatial dimensions n d´ 1

We will use energy methods for getting estimates on the decay rates. While these are
covered in the context of linear PDEs in domains in R

n in most undergraduate books on
the subject, we will work on Lorentzian manifolds. A quick introduction at the graduate
level can be found in [36, Chap. 2 and 6], while a detailed treatment is covered in the
monographs [31], [32]. We give a rough description below.

The basic idea behind the so-called energy methods in the mathematics literature (alterna-
tively called Lyapunov methods in the engineering community) is as follows. Given a PDE
and a solution ψ, one constructs a suitable scalar function Eptq, which is nonnegative for
all t, and is typically given by an integral over the spatial dimensions of ψ and its partial
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derivatives. One then studies the evolution in time of E along a solution to the PDE by
considering 9Eptq obtained by differentiating with respect to t under the integral sign, and
using the PDE, typically in combination with a version of Stokes’ theorem, one obtains a
differential inequality for the energy function. A suitable integration with respect to the t
variable then gives a bound on the energy function, which the results in estimates for the
norms of the partial derivatives of the solution in suitable function spaces.

For an interval I Ă R, we define C1pIq :“ ta : I Ñ R : a is continuously differentiable on Iu.
Also,

L8pRnq :“
"
ϕ : Rn Ñ R : }ϕ}L8pRnq :“ sup

xPRn

|ϕpxq| ă `8
*
.

For preliminaries on Sobolev spaces, we refer the reader to [36, Chap. 4] or [16, Chap. 5],
although we recall the definitions and the results we use in the text of the thesis.

3 Decay in the de Sitter universe in flat FLRW form;

m “ 0

In this section, we will prove Rendall’s Conjecture in Theorem 3.2 below. But before we
explain the statement of Rendall’s Conjecture, we recall [9, Theorem 1], since it gives the
hitherto best known estimate in connection with Rendall’s Conjecture.

Theorem 3.1.

Suppose that

‚ δ ą 0,

‚ I Ă R is an open interval of the form pt˚,`8q, t0 P I,

‚ ap¨q P C1pIq with 9aptq ě 0 for t ě t0, and ǫ ą 0 is such that

ż 8

t0

1

paptqqǫdt ă `8,

‚ n ě 2,

‚ pM, gq is an expanding FLRW spacetime with flat n-dimensional sections,

given by I ˆ R
n, with the metric g “ ´dt2 ` paptqq2 ppdx1q2 ` ¨ ¨ ¨ ` pdxnq2q ,

‚ k ą n
2
` 2, φ0 P HkpRnq, φ1 P Hk´1pRnq, and

‚ φ is a smooth solution to the Cauchy problem

$
&
%

2gφ “ 0, pt ě t0, x P Rnq,
φpt0,xq “ φ0pxq px P Rnq,

Btφpt0,xq “ φ1pxq px P Rnq.

Then for all t ě t0, }Btφpt, ¨q}L8pRnq À paptqq´2`ǫ`δ
.
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Here, the symbol À is used to mean that there exists a constant Cpδq, independent of ǫ,
such that

}Btφpt, ¨q}L8pRnq ď Cpδq paptqq´2`ǫ`δ
.

We also use the standard notation HkpRnq for the Sobolev space,

}φ}2HkpRnq :“
ż

Rn

ÿ

|α|ďk

pBαφq2dnx ă `8 for φ P HkpRnq,

where α “ pα1, . . . , αnq P N
n
0 , N0 is the set of nonnegative integers, |α| :“ α1 ` ¨ ¨ ¨ ` αn,

and Bα :“ pBx1
qα1 ¨ ¨ ¨ pBxn

qαn ; see for example [37, p.249] or [36, Chap. 4].

In Theorem 3.1, in particular, if aptq “ eHt, where H is the Hubble constant, then as ǫ ą 0
can be taken to be arbitrarily small, we obtain }Btφpt, ¨q}L8pRnq À paptqq´2`δ “ e´p2´δqHt,
and this is in agreement with Rendall’s conjecture up to the small quantity δ ą 0. We will
show below that in fact one gets the exact rate paptqq´2 when n ą 2. There is no loss of
generality in assuming that H “ 1. Our result is the following.

Theorem 3.2.

Suppose that

‚ I Ă R is an open interval of the form pt˚,`8q, t0 P I,
‚ n ą 2,

‚ pM, gq is the expanding de Sitter universe in flat FLRW form, with flat n-dimensional

sections, given by I ˆ R
n, with the metric g “ ´dt2 ` e2t ppdx1q2 ` ¨ ¨ ¨ ` pdxnq2q ,

‚ k ą n
2
` 2, φ0 P HkpRnq, φ1 P Hk´1pRnq, and

‚ φ is a smooth solution to the Cauchy problem$
&
%

2gφ “ 0, pt ě t0, x P Rnq,
φpt0,xq “ φ0pxq px P Rnq,

Btφpt0,xq “ φ1pxq px P Rnq.
Then for all t ě t0, }Btφpt, ¨q}L8pRnq À paptqq´2 “ e´2t.

Proof. We proceed in several steps.

Step 1: Bound on ∆φ.

We will follow the preliminary steps of the proof of [9, Theorem 1] in order to obtain a
bound on ∆φ, which will be needed in the proof of our Theorem 3.2. We repeat this
preliminary step here from [9, §2.2] for the sake of completeness and for the convenience
of the reader. Also, we divide this somewhat long step further into subparts (a)-(d).

(a) In this part rewrite the wave equation using the pt,xq-coordinates. For a vector field
X “ XµBµ, it can be shown that

∇µX
µ “ 1?´gBµp

?´gXµq,
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where g :“ detrgµνs is the determinant of the matrix rgµνs describing the metric in the
coordinate system/chart. Then it follows that

2gφ “ ∇µpBµφq “
1?´gBµp

?´g Bµφq.

Thus 2gφ “ 0 can be rewritten as Bµp
?´g Bµφq “ 0. With the metric for the de Sitter

universe in flat FLRW form given by g “ ´dt2 ` paptqq2 ppdx1q2 ` ¨ ¨ ¨ ` pdxnq2q , the wave
equation can be rewritten as BµpanBµφq “ 0, that is,

´:φ´ n 9a

a
9φ` 1

a2
δijBiBjφ “ 0.

(b) In this part, we will construct an appropriate current J (for use in the application of the
divergence theorem later in part (d) below) by using the energy-momentum tensor T and
a suitable multiplier X . We recall (see e.g. [37, Appendix E]) that the energy-momentum
tensor for the wave equation is

Tµν “ BµφBνφ´
gµν

2
BαφBαφ. (1)

Then it can be shown that ∇µT
µν “ 0. From (1), we have in particular that

T00 “
1

2

´
9φ2 ` a´2δijBiφBjφ

¯
.

Define the vector field3

X “ a2´n B
Bt.

Then X is future-pointing (gpX, Btq ă 0) and causal4 (X is time-like since gpX,Xq ă 0).
We form the current J , given by Jµ “ TµνX

ν. Then it can be shown that

J “ pX ¨ φqgrad φ´ 1

2
gpgrad φ, grad φqX.

(Here X ¨φ means the application of the vector field X on φ, and grad φ is the vector field
obtained from the one-form dφ by ‘raising indices’5.) It follows that gpJ, Jq ď 0, so that

3Let C8pMq denote the real vector space (with pointwise operations of addition and scalar multi-
plication) of all smooth maps f : M Ñ R. We recall that a tangent vector v at a point p P M

is a map v : C8pMq Ñ R such that it is linear and obeys the Leibniz product rule, that is,
vpf ¨ gq “ fppqvpgq ` gppqvpfq for all f, g P C8pMq. The vector space of all tangent vectors at p is
denoted by TpM . Having constructed a differentiable structure for the tangent bundle TM “ Ť

pPM

TpM

of M (see e.g. [21, Exercise 4.8]), with the natural projection map π : TM Ñ M defined by πpvq “ p for
v P TpM , a vector field χ :M Ñ TM is a smooth map such that π ˝ χ “ idM , the identity map on M .

4We call a vector field causal if it is timelike or null.
5In geometric parlance, the operation of ‘raising indices’ corresponds to using the musical/canonical

isomorphism between the tangent bundle TM and the cotangent bundle T ˚M induced by the metric g.
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J is causal. Also, J is past-pointing. To see this, we choose E1, . . . , En orthogonal and
spacelike such that tX,E1, . . . , Enu forms an orthogonal basis in each tangent space. Then
expressing grad φ “ c0X ` c1E1 ` ¨ ¨ ¨ ` cnEn, we obtain

gpJ,Xq “ pgpX, grad φqq2 ´ 1

2
gpgrad φ, grad φq ¨ gpX,Xq

“ pc0q2
2
pgpX,Xqq2´ 1

2

`
pc1q2gpE1, E1q`¨ ¨ ¨`pcnq2gpEn, Enq

˘
¨ gpX,Xqě0.

(c) In this part, we define an associated energy Eptq with the time slice at time t, and also
show that ∇µJ

µ ě 0 everywhere.

Set N “ B
Bt , the future unit normal vector field. We define the energy E by

Eptq “
ż

ttuˆRn

JµN
µ “

ż

Rn

a2T00d
nx “

ż

Rn

1

2

´
a2 9φ2 ` δijBiBjφ

¯
dnx.

The deformation tensor Π associated with the multiplier X is

Π :“ 1

2
LXg “ ´dtLXdt` 9aa3´nδijdx

idxj .

(Here LX denotes the Lie derivative in the direction of the vector field X . We refer
the reader to [37, Appendix C.2, p.439-441] or [21, p.33, 71] for the definition of the
Lie derivative and its properties.) It can be shown that LXdt “ p2 ´ nq 9aa1´ndt. Thus
Π “ pn ´ 2q 9aa1´ndt2 ` 9aa3´nδijdx

idxj .

Claim: ∇µJ
µ “ T µνΠµν .

We have

Πµν “ 1

2
pLXgqpBµ, Bνq “

1

2
pLXpgµνq ´ gpLXBµ, Bνq ´ gpBµ,LXBνqq

“ 1

2
pXpgµνq ´ gprX, Bµs, Bνq ´ gpBµ, rX, Bνsqq .

(Here, by the commutator rY, Zs of two vector fields Y, Z, we mean the vector field defined
by rY, Zsf :“ Y ¨ pZ ¨ fq ´ Z ¨ pY ¨ fq, for f P C8pMq, the space of all smooth functions
f :M Ñ R on the manifold M .) But by the definition of the Levi-Civita connection ∇,

gp∇BµBν , Xq “
1

2
pBµpgpBν, Xqq ` BνpgpBµ, Xqq ´XpgpBµ, Bνqq

`gprX, Bµs, Bνq ` gprX, Bνs, Bµq ` gpX, rBµ, Bνsqq

“ 1

2
pBµpgpBν, Xqq`BνpgpBµ, Xqqq´

1

2
pXpgµνq´gprX, Bµs, Bνq´gpBµ, rX, Bνsqq .
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So

Πµν “ 1

2
pXpgµνq ´ gprX, Bµs, Bνq ´ gpBµ, rX, Bνsqq

“ 1

2
pBµpgpBν, Xqq ` BνpgpBµ, Xqqq ´ gp∇µBν , Xq.

Writing X “ kB0, where kptq :“ paptqq2´n, we have

Πµν “
1

2
pBµpkgν0q ` Bνpkgµ0qq ´ gp∇µBν , kB0q “ ´ 9kδµ0δν0 ` kΓ0

µν .

We have ∇µXν “ ∇µp´kδν0q “ ´ 9kδµ0δν0 ` kΓ0
µν . So Πµν “ ∇µXν , and consequently,

∇µJ
µ “ ∇µpT µνXνq “ 0` T µν∇µXν “ T µνΠµν .

This completes the proof of our claim that ∇µJ
µ “ T µνΠµν .

So the ‘bulk term’ is

∇µJ
µ “ T µνΠµν

“ pn´ 2q 9aa1´n 9φ2 ` n´ 2

2
9aa1´nBαφBαφ` 9aa´1´nδijBiφBjφ´

n

2
9aa1´nBαφBαφ

“ pn´ 1q 9aa1´n 9φ2 ě 0.

(d) In this part, we use the divergence theorem on a suitable domain with the current J
in order to get our uniform-in-time bound on }∆φpt, ¨q}L8pRnq. For each R ą 0, define the
set B0 :“ tpt0,xq P I ˆR

n : xx,xyRn ď R2u. The future domain of dependence of B0 is the
set

D`pB0q :“
!
p PM

ˇ̌
ˇ Every past inextendible causal curve through p intersects B0.

)
.

Here by a causal curve, we mean one whose tangent vector at each point is a causal vector.
A curve c : pa, bq Ñ M which is smooth and future directed (that is, 9c is future-pointing)
is called past inextendible if lim

tÑa
cptq does not exist.

Let t1 ą t0. We will now apply the divergence theorem to the region

R :“ D`pB0q X tpt,xq PM : t ď t1u.

See Figure 3. For preliminaries on the divergence theorem in the context of a time-oriented
Lorentzian manifold, we refer the reader to [37, Appendix B]. We have

ż

R

p∇µJ
µqǫ “

ż

BR
J ⌟ ǫ,

where BR denotes the boundary of R, ǫ is the volume form on M induced by g, and ⌟
denotes contraction in the first index.
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t0

t1

B0

B1

CR

Figure 1: The region R with its boundary BR.

Since J is past-pointing, the boundary integral over the null portion C of the boundary
BR is nonpositive. Also, because ∇µJ

µ is nonnegative, we have that the volume integral
over R is nonnegative. This gives an inequality on the two boundary integrals, one over
B0, and the other over B1 :“ D`pB0q X tt “ t1u, as follows:

ż

B0

1

2
pa2 9φ2 ` δijBiφBjφqdnx ě

ż

B1

1

2
pa2 9φ2 ` δijBiφBjφqdnx.

Passing the limit R Ñ 8 yields Ept0q ě Ept1q. As the choice of t1 ą t0 was arbitrary, we
have for all t ě t0, Eptq ď Ept0q ă 8. The finiteness of Ept0q follows from our assumption
that φ0 P HkpRnq and φ1 P Hk´1pRnq for a k satisfying k ą n

2
` 2 ě 1. From here, it

follows that for all t ě t0,
ż

Rn

9φ2dnx À 1

a2
, and

ż

Rn

δijBiφBjφdnx À 1.

But since each partial derivative Biφ is also a solution of the wave equation, and as k ě 2,
we obtain, by applying the above to the partial derivatives Biφ, that also

ş
Rnp∆φq2dnx À 1.

In fact, since k ą n
2
` 2, we also obtain that for a k1 ą n

2
, }∆φ}Hk1 pRnq À 1. Finally, by the

Sobolev inequality (see e.g. [20, (7.30), p.158]), we obtain

}∆φpt, ¨q}L8pRnq À 1. (2)

This completes Step 1 of the proof of Theorem 3.2.

Step 2: The wave equation in conformal coordinates.

The key point of departure from the earlier derivation of the estimates from [9] is the usage
of ‘conformal coordinates’, which renders the wave equation in a form where it becomes
possible to integrate, leaving essentially just the time derivative of φ with other terms (e.g.
∆φ) for which we have a known bound. An application of the triangle inequality will then
deliver the desired bound.

Define τ “
ż t

t0

1

apsqds. Then
dτ

dt
“ 1

aptq and aptq d
dt
“ d

dτ
.

With a slight abuse of notation, we write apτq :“ aptpτqq. Then dt “ apτqdτ . So

g “ ´dt2 ` paptqq2
`
pdx1q2 ` ¨ ¨ ¨ ` pdxnq2

˘
“ papτqq2

`
´dτ 2 ` δijdxidxj

˘
.
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The wave equation 2gφ “ 0 can be rewritten as Bµp
?´g Bµφq “ 0, which becomes

Bµpan`1Bµφq “ 0.

Separating the partial derivative operators with respect to the τ and x coordinates, we
obtain the wave equation in conformal coordinates Bτpan´1Bτφq “ an´1∆φ, where ∆ is the
usual Laplacian on R

n. This completes Step 2 of the proof of Theorem 3.2.

Step 3: n ą 2 and aptq “ et.

We have

τ “
ż t

t0

1

es
ds “ e´t0 ´ 1

et
“ e´t0 ´ 1

a
, (3)

and so apτq “ 1

e´t0 ´ τ . We note that τ P r0, e´t0q. Also, apτ “ 0q “ 1

e´t0
“ et0 “ apt “ t0q.

Integrating Bτ pan´1Bτφq “ an´1∆φ from τ “ 0 to τ , we obtain

an´1Bτφ´ apt0qn´1 Bτφ|τ“0 “
ż τ

0

∆φ
1

pe´t0 ´ τqn´1
dτ,

and so an´1aBtφ “ apt0qn´1apt0q Btφ|t“t0
`

ż τ

0

∆φ
1

pe´t0 ´ τqn´1
dτ , that is,

Btφ “ paptqq´n

ˆ
apt0qnφ1 `

ż τ

0

∆φ
1

pe´t0 ´ τqn´1
dτ

˙
.

Hence, using the bound from (2), namely }∆φpt, ¨q}L8pRnq ď C for all t ě t0, we obtain

}Btφpt, ¨q}L8pRnq ď paptqq´n

ˆ
apt0qn}φ1}L8pRnq `

ż τ

0

}∆φpt, ¨q}L8pRnq
1

pe´t0 ´ τqn´1
dτ

˙

ď paptqq´n

ˆ
apt0qn}φ1}L8pRnq`

C

n ´ 2

`
pe´t0´τq2´n´ pe´t0q2´n

˘̇

ď paptqq´n

ˆ
apt0qn}φ1}L8pRnq`

C

n ´ 2

`
paptqqn´2´ papt0qqn´2

˘̇

ď paptqq´npaptqqn´2

ˆ
apt0qn}φ1}L8pRnq

paptqqn´2
` C

n ´ 2

ˆ
1´

´apt0q
aptq

¯n´2
˙̇

ď 1

paptqq2
ˆ
apt0qn}φ1}L8pRnq
papt0qqn´2

` C

n ´ 2
p1´0q

˙
.

Hence }Btφpt, ¨q}L8pRnq ď
1

paptqq2
ˆ
papt0qq2}φ1}L8pRnq`

C

n´ 2

˙
, and so

}Btφpt, ¨q}L8pRnq À paptqq´2.

This completes the proof of Theorem 3.2.
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Remark 3.3. The case when n “ 2 and aptq “ et:

Integrating Bτ paBτφq “ a∆φ from τ “ 0 to τ , we obtain

aBτφ´ apt0q Bτφ|τ“0 “
ż τ

0

∆φ
1

e´t0 ´ τ dτ,

and so Btφ “ paptqq´2

ˆ
apt0q2φ1 `

ż τ

0

∆φ
1

e´t0 ´ τ dτ
˙
. Hence

}Btφpt, ¨q}L8pR2q ď paptqq´2

ˆ
apt0q2}φ1}L8pR2q `

ż τ

0

}∆φpt, ¨q}L8pR2q
1

e´t0 ´ τ dτ
˙

ď paptqq´2
´
apt0q2}φ1}L8pR2q`C

´
´ logpe´t0´τq

ˇ̌
ˇ
τ

0

¯̄

ď paptqq´2plog aptqq
ˆ
apt0q2}φ1}L8pR2q

log aptq `C
´
1´ log apt0q

log aptq
¯̇

ď paptqq´2plog aptqq
ˆ
apt0q2}φ1}L8pR2q

t0
`C

˙
,

and so }Btφpt, ¨q}L8pRnq À paptqq´2 log aptq.
This can be viewed as an improvement to [9, Theorem 1] in the special case when aptq “ et

and n “ 2, since log aptq “ t À eδt “ 1` δt` ¨ ¨ ¨ .

Using a similar method, one can also obtain an improvement to [9, Theorem 2]. But we
will postpone this discussion until after Section 5, and prove this result as Theorem 6.3 of
Section 6, since we will need some preliminaries about the RNdS spacetime, which will be
established in Section 5.

4 Decay in the de Sitter universe in flat FLRW form

In this section, we will obtain decay rates on }φpt, ¨q}L8pRnq for a solution the the Klein-
Gordon equation in the de Sitter universe in flat FLRW form, that is, we will prove Theo-
rem 4.1, stated below.

Recall that the Klein-Gordon equation is 2gφ´m2φ “ 0, that is,

1?´gBµp
?´g Bµφq ´m2φ “ 0.

In the case of the de Sitter universe in flat FLRW form, we obtain

´ :φ´ n 9a

a
9φ` 1

a2
δijBiBjφ´m2φ “ 0. (4)

The result we will show in this section is the following.
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Theorem 4.1.

Suppose that

‚ I Ă R is an open interval of the form pt˚,`8q, t0 P I,
‚ m P R,
‚ n ą 2,

‚ pM, gq is the expanding de Sitter universe in flat FLRW form, with flat n-dimensional

sections, given by I ˆ R
n, with the metric g “ ´dt2 ` e2t ppdx1q2 ` ¨ ¨ ¨ ` pdxnq2q ,

‚ k ą n
2
` 2, φ0 P HkpRnq, φ1 P Hk´1pRnq, and

‚ φ is a smooth solution to the Cauchy problem

$
&
%

2gφ´m2φ “ 0, pt ě t0, x P Rnq,
φpt0,xq “ φ0pxq px P Rnq,

Btφpt0,xq “ φ1pxq px P Rnq.

Then for all t ě t0, with aptq :“ et, we have

}φpt, ¨q}L8pRnq À

$
’’&
’’%

a´n
2 if |m| ą n

2
,

a´n
2 log a if |m| “ n

2
,

a´n
2

`
b

n2

4
´m2

if |m| ă n
2
.

We arrive at the guesses for the specific estimates given in Theorem 4.1 above, based on
an analysis using Fourier modes, assuming spatially periodic solutions. This Fourier mode
analysis is given in Appendix A.

4.1 Preliminary energy function and estimates

In this subsection, we will obtain preliminary bounds on the norms } 9φpt, ¨q}Hk´1pRnq and
}Biφpt, ¨q}Hk´1pRnq, which will be needed in the subsequent steps for proving Theorem 4.1.

Define the energy-momentum tensor T by Tµν “ BµφBνφ´
1

2
gµνpBαφBαφ`m2φ2q.

Then ∇µT
µν “ 0. Also, in particular, T00 “

1

2

ˆ
9φ2 ` 1

a2
|∇φ|2 `m2φ2

˙
“ T 00.

Set X “ a´n B
Bt . Then X is time-like and hence causal, and X is future pointing.

Define J by Jµ “ T µνXν . Then J is causal and past-pointing.
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Let N “ B
Bt . Define the energy E by

Eptq “
ż

ttuˆRn

JµN
µ “

ż

Rn

1

2

ˆ
9φ2 ` 1

a2
|∇φ|2 `m2φ2

˙
dnx.

Define Π “ 1
2
LXg “ ´dtLXdt ` a´n`1

9a ppdx1q2 ` ¨ ¨ ¨ ` pdxnq2q. As LXdt “ ´na´n´1
9adt,

we have Π “ na´n´1
9adt2 ` a´n`1

9a ppdx1q2 ` ¨ ¨ ¨ ` pdxnq2q. Hence

∇µJ
µ “ T µνΠµν “

a´n´1
9a

2

ˆ
2n 9φ2 ` 2

a2
|∇φ|2

˙
ě 0.

For R ą 0, define B0 :“ tpt0,xq P I ˆ R
n : xx,xyRn ď R2u. The future domain of

dependence of B0 is denoted by D`pB0q.
Let t1 ą t0. We will now apply the divergence theorem to the region

R :“ D`pB0q X tpt,xq PM : t ď t1u.

We have

ż

R

p∇µJ
µqǫ “

ż

BR
J ⌟ ǫ. Using

• ∇µJ
µ ě 0, and

• the fact that the boundary contribution on C, the null portion of BR, is nonpositive
(since J is causal and past-pointing),

we obtain the inequality
ż

B0

1

2

ˆ
9φ2` 1

a2
|∇φ|2`m2φ2

˙
dnx ě

ż

B1

1

2

ˆ
9φ2` 1

a2
|∇φ|2`m2φ2

˙
dnx.

Passing the limit RÑ 8 yields Ept1q ď Ept0q ă `8. As t1 ą t0 was arbitrary, we obtain
for all t ě t0,

Eptq “
ż

Rn

1

2

ˆ
9φ2 ` 1

a2
|∇φ|2 `m2φ2

˙
dnx ď Ept0q ď 8.

From here, it follows that for all t ě t0,
ż

Rn

9φ2dnx À 1,

ż

Rn

|∇φ|2dnx À a2, and

ż

Rn

φ2dnx À 1 pif m ‰ 0q.

But since each partial derivative pBx1qi1 ¨ ¨ ¨ pBxnqinφ is also a solution of the Klein-Gordon
equation, it follows from φ0 P HkpRnq and φ1 P Hk´1pRnq for a k ą n

2
` 2, that also

φpt, ¨q P HkpRnq and Btφpt, ¨q P Hk´1pRnq, and moreover

} 9φ}Hk1 pRnq À 1, }Biφ}Hk1 pRnq À a, and }φ}Hk1pRnq À 1 pif m ‰ 0q,

where k1 :“ k ´ 1.
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4.2 The auxiliary function ψ and its PDE

In this subsection, we introduce the auxiliary function ψ constructed from the solution φ
to the Klein-Gordon equation, and also derive a PDE satisfied by ψ.

Motivated by the decay rate we anticipate for φ, we define the auxiliary function ψ by

ψ :“ aκφ,

where

κ :“
#

n
2

if |m| ě n
2
,

n
2
´

b
n2

4
´m2 if |m| ď n

2
.

Then, using (4), it can be shown that ψ satisfies the equation

:ψ ` pκ2 ´ nκ`m2qψ ` pn´ 2κq 9ψ ´ 1

a2
∆ψ “ 0. (5)

4.3 The case |m| ą n
2

In this subsection, we will give the proof of Theorem 4.1 in the case when |m| ą n
2
.

We have κ “ n
2
, so that n´ 2κ “ 0, while κ2 ´ nκ`m2 “ m2 ´ n2

4
, and thus (5) becomes

:ψ ´ 1

a2
∆ψ `

ˆ
m2 ´ n2

4

˙
ψ “ 0.

We note that if φ P HℓpRnq and 9φ P Hℓ´1pRnq for some ℓ, then ψ P HℓpRnq too, and also

9ψ “ n

2
a

n
2

´1
9aφ` an

2 9φ P Hℓ´1pRnq.

Define the new energy E , associated with the ψ-evolution, by

Eptq :“ 1

2

ż

Rn

ˆ
9ψ2 ` 1

a2
|∇ψ|2 `

´
m2 ´ n2

4

¯
ψ2

˙
dnx ě 0.

Then using the fact that a “ et “ 9a ą 0, and also equation (5), we obtain

9Eptq “
ż

Rn

ˆ
9ψ :ψ ´ a 9a

a4
|∇ψ|2 ` 1

a2
x∇ψ,∇ 9ψy `

´
m2 ´ n2

4

¯
ψ 9ψ

˙
dnx

ď
ż

Rn

ˆ
9ψ :ψ ` 1

a2
x∇ψ,∇ 9ψy `

´
m2 ´ n2

4

¯
ψ 9ψ

˙
dnx

ď
ż

Rn

ˆ
9ψ
´ 1

a2
∆ψ ´

´
m2 ´ n2

4

¯
ψ

¯
` 1

a2
x∇ψ,∇ 9ψy `

´
m2 ´ n2

4

¯
ψ 9ψ

˙
dnx.
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But
ż

Rn

ˆ
9ψ
´ 1

a2
∆ψ ´

´
m2 ´ n2

4

¯
ψ

¯
` 1

a2
x∇ψ,∇ 9ψy `

´
m2 ´ n2

4

¯
ψ 9ψ

˙
dnx.

“ 1

a2

ż

Rn

´
9ψ∆ψ ` x∇ψ,∇ 9ψy

¯
dnx “ 1

a2

ż

Rn

∇ ¨ p 9ψ∇ψqdnx.

For a fixed t, and for a ball Bp0, rq Ă R
n, where r ą 0, it follows from the divergence

theorem (since 9ψ and ∇ψ are smooth), that

ż

Bp0,rq
∇ ¨ p 9ψ∇ψqdnx “

ż

BBp0,rq
9ψ x∇ψ,nydσr,

where dσr is the surface area measure on the sphere Sr “ BBp0, rq, and n is the outward-
pointing unit normal. The right hand side surface integral tends to 0 as r Ñ `8, by an
application of Lemma B.1, given in Appendix B.

So for t ě t0, we have E 1ptq ď 0, which yields Eptq ď Ept0q. In particular, for all t ě t0,
}ψpt, ¨q}L2pRnq À C, that is, }an

2 φpt, ¨q}L2pRnq À C, and so6 }φpt, ¨q}L2pRnq À a´n
2 . Then

with enough regularity on φ0, φ1 at the outset, that is, if φ0 P HkpRnq and φ1 P Hk´1pRnq
for a k ą n

2
` 2, and by considering pBx1qi1 ¨ ¨ ¨ pBxnqinφ as a solution to the Klein-Gordon

equation, we arrive at7 }φpt, ¨q}Hk1pRnq À a´n
2 , where k1 :“ k ´ 2 ą n

2
. Using the Sobolev

inequality, we then obtain for all t ě t0, }φpt, ¨q}L8pRnq À a´n
2 . This completes the proof of

Theorem 4.1 in the case when |m| ą n
2
.

4.4 The case |m| ă n
2

In this subsection, we will give the proof of Theorem 4.1 in the case when |m| ă n
2
.

We have κ “ n

2
´

c
n2

4
´m2, n ´ 2κ “ 2

c
n2

4
´m2 ą 0, and κ2 ´ nκ`m2 “ 0.

Equation (5) becomes :ψ ` 2
´c

n2

4
´m2

¯
9ψ ´ 1

a2
∆ψ “ 0.

Defining

rEptq :“ 1

2

ż

Rn

ˆ
9ψ2 ` 1

a2
|∇ψ|2

˙
dnx ě 0,

6We note that to reach this conclusion, we used Lemma B.1, and needed 9ψpt, ¨q,∇ψpt, ¨q P H1pRnq, which
means that it is sufficient that the initial conditions for φ are such that ϕ0 P H2pRnq and ϕ1 P H1pRnq.

7Note that in order to use the estimate }φpt, ¨q}L2pRnq ď a´ n

2 , for Dφ :“ pBx1qi1 ¨ ¨ ¨ pBxnqinφ re-
placing φ, where |pi1, . . . , inq| “: k1, we must ensure that the initial conditions for Dφ, namely

pDφpt0, ¨q, D 9φpt0, ¨qq is in pH2pRnq, H1pRnqq, which is guaranteed if the initial condition for φ, namely
pφ0, φ1q is in pHkpRnq, Hk´1pRnqq, with k ´ k1 “ 2.
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we obtain

9rEptq “
ż

Rn

ˆ
9ψ :ψ ´ 9a

a3
|∇ψ|2 ` 1

a2
x∇ψ,∇ 9ψy

˙
dnx

“
ż

Rn

˜
9ψ
´
´2

´c
n2

4
´m2

¯
9ψ` 1

a2
∆ψ

¯
´ 9a

a3
|∇ψ|2` 1

a2
x∇ψ,∇ 9ψy

¸
dnx

“ ´2
´c

n2

4
´m2

¯ ż

Rn

9ψ2dnx´ 9a

a3

ż

Rn

|∇ψ|2dnx.

Using a “ et “ 9a, we obtain

9rEptq “ ´4
´c

n2

4
´m2

¯ 1

2

ż

Rn

9ψ2dnx´ 2
1

2

ż

Rn

1

a2
|∇ψ|2dnx

ď ´min

#
4
´c

n2

4
´m2

¯
, 2

+
¨ 1
2

ż

Rn

ˆ
9ψ2 ` 1

a2
|∇ψ|2

˙
dnx “ ´ θ ¨ rEptq,

where θ :“ min

#
4
´c

n2

4
´m2

¯
, 2

+
ą 0. So

9rEptq ` θ ¨ rEptq ď 0.

Multiplying throughout by eθt ą 0, we obtain
d

dt

´
eθt ¨ rEptq

¯
ď 0.

Integrating from t0 to t yields eθt ¨ rEptq ď eθt0 ¨ rEpt0q, that is, rEptq À e´θt.

In particular, } 9ψpt, ¨q}L2pRnq ď
b

2 rEptq À e´ θ
2
t.

We have ψpt,xq “ ψpt0,xq `
ż t

t0

pBtψqps,xqds, and so

}ψpt, ¨q}L2pRnq ď }ψpt0, ¨q}L2pRnq `
ż t

t0

}pBtψqps, ¨q}L2pRnqds,

À A`
ż t

t0

Be´ θ
2
sds “ A`Be

´ θ
2
t0 ´ e´ θ

2
t

θ{2 À C.

Thus for all t ě t0, we have }φpt, ¨q}L2pRnq “ a´κ}ψpt, ¨q}L2pRnq À a´κ. By considering
pBx1qi1 ¨ ¨ ¨ pBxnqinφ, and using the Sobolev inequality, we have for all t ě t0,

}φpt, ¨q}L8pRnq À a´κ “ a´pn
2

´
b

n2

4
´m2 q.

This completes the proof of Theorem 4.1 in the case when |m| ă n
2
.

4.5 The case |m| “ n
2

Finally, in this section, we will give the proof of Theorem 4.1 in the remaining case, namely
when |m| “ n

2
.
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We have κ “ n
2
, and equation (5) becomes :ψ ´ 1

a2
∆ψ “ 0.

Defining the same energy as we used earlier in the case when |m| ă n
2
,

rEptq :“ 1

2

ż

Rn

ˆ
9ψ2 ` 1

a2
|∇ψ|2

˙
dnx ě 0,

we obtain

9rEptq “
ż

Rn

ˆ
9ψ :ψ ´ 9a

a3
|∇ψ|2 ` 1

a2
x∇ψ,∇ 9ψy

˙
dnx

“
ż

Rn

ˆ
9ψ
1

a2
∆ψ´ 9a

a3
|∇ψ|2` 1

a2
x∇ψ,∇ 9ψy

˙
dnx“´ 9a

a3

ż

Rn

|∇ψ|2dnx ď 0.

So rEptq ď rEpt0q for t ě t0. In particular, } 9ψpt, ¨q}L2pRnq À B for t ě t0.

Again, ψpt,xq “ ψpt0,xq `
ż t

t0

pBtψqps,xqds, gives

}ψpt, ¨q}L2pRnq ď }ψpt0, ¨q}L2pRnq `
ż t

t0

}pBtψqps, ¨q}L2pRnqds,

À A1 `
ż t

t0

Bds À A `Bt À log a.

Thus for all t ě t0, we have8 }φpt, ¨q}L2pRnq “ a´κ}ψpt, ¨q}L2pRnq À a´κ log a. Hence (by
considering pBx1qi1 ¨ ¨ ¨ pBxnqinφ, and using the Sobolev inequality)

@t ě t0, }φpt, ¨q}L8pRnq À a´n
2 log a. (6)

This completes the proof of Theorem 4.1.

5 Decay in the cosmological region of the RNdS space-

time

In this section, we will obtain decay rates on }φpr, ¨q}L8pRˆSn´1q for a solution to the Klein-
Gordon equation in the cosmological region of the Reissner-Nordström-de Sitter (RNdS)
spacetime, that is, we will prove Theorem 5.3, stated below. We will begin with introducing
the RNdS spacetime, and collecting some technical facts which will be used while proving
Theorem 5.3.

8One can show that this bound is sharp; see Appendix C.
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The Reissner-Nordström-de Sitter spacetime pM, gq is a solution to the Einstein-Maxwell
equations with a positive cosmological constant, and it represents a pair9 of antipodal
charged black holes in a spherical10 universe which is undergoing accelerated expansion.
The Reissner-Nordström-de Sitter metric in n` 1 dimensions is given by

g “ ´ 1

V
dr2 ` V dt2 ` r2dΩ2,

where V “ r2 ` 2M

rn´2
´ e2

rn´1
´ 1, and dΩ2 is the unit round metric on Sn´1.

The constants M and e are proportional to the mass and the charge, respectively, of the
black holes, and the cosmological constant is chosen to be

Λ “ npn ´ 1q
2

by an appropriate choice of units.

Consider the polynomial

pprq :“ rn´1V prq “ rn`1 ´ rn´1 ` 2Mr ´ e2.

As pp0q “ ´e2 ă 0 and as pprq rÑ8ÝÑ 8, it follows that p will have a real root in p0,`8q,
and the largest real root of p, which we denote by rc, must be positive. If r ą rc, then
clearly pprq ą 0, and so also V prq ą 0.

It can also be seen that p has at most three distinct positive roots. Suppose, on the
contrary, that p has more than three distinct positive roots: r1 ă r2 ă r3 ă r4. Applying
Rolle’s theorem to p on rri, ri`1s (i “ 1, 2, 3), we conclude that p1 must have three distinct
roots r1

i P pri, ri`1q (i “ 1, 2, 3). Applying Rolle’s theorem to p1 on rr1
i, r

1
i`1s (i “ 1, 2), we

conclude that p2 must have two distinct roots r2
i P pr1

i, r
1
i`1q (i “ 1, 2). But

p2 “ rn´3npn` 1q
´
r2 ´ pn´ 1qpn´ 2q

npn` 1q
¯
,

which has only one positive root, a contradiction.

The ‘subextremality’ assumption on the RNdS spacetime made in Theorem 5.3, refers to
a nondegeneracy of the positive roots of p: we assume that there are exactly three positive
roots, r´, r` and rc, and

0 ă r´ ă r` ă rc.

9We note that there is no solution analogous to RNdS but with only one black hole. This is analogous
to (but much more complicated than, and still not fully understood) the fact that one cannot have a single
electric charge on a spherical universe (Gauss’s law requires that the total charge must be zero). In fact,
the fundamental solution of the Laplace equation on the sphere gives a unit positive charge at some point
and a unit negative charge at the antipodal point. One can have more than two black holes, for instance
the so-called Kastor-Traschen solution [26].

10“Spherical” here means that the Cauchy hypersurface (that is, “space”) is an n-sphere.
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These describe the event horizon r “ r`, and the Cauchy ‘inner’ horizon r “ r´. It can
be seen that the subextremality condition then implies p1prcq ą 0. (Indeed, p1prcq cannot
be negative, as otherwise p would acquire a root larger than rc since pprq rÑ8ÝÑ 8. Also,
if p1prcq “ 0, then Rolle’s theorem implies again that p1 would have three positive roots,
ones in pr´, r`q and pr`, rcq, and one at rc, which is impossible, as we had seen above.)
p1prcq ą 0 implies that V 1prcq ą 0. We will also assume that

V 2prcq ą 0.

Our assumptions give following, which will be used in our proof of Theorem 5.3.

Lemma 5.1 (Global redshift). V 1prq ą 0 for all r ě rc.

Proof. We have V 1prq “ rp1prq ´ pn´ 1qpprq
rn

“ 2rn`1 ` 2p3´ nqMr ` pn ´ 1qe2
rn

“: qprq
rn

.

As V 1prcq ą 0, we have qprcq ą 0. Also V 2prcq ą 0 and so V 1 is increasing near rc. But
then qprq “ rnV 1prq is also increasing near rc, and in particular, q1prcq ě 0. Let us suppose
that there exists an r˚ ą rc such that V 1pr˚q “ 0, and let r˚ be the smallest such root.
Then qpr˚q “ 0 too. We note that q1 “ 2pn`1qrn`2p3´nqM , and so q1 can have only one

nonnegative root, namely
´

pn´3q
n`1

M
¯ 1

n ě 0. We consider separately the two cases where

either r˚ is a simple root of q, or the case that r˚ is a repeated root of q.

1˝ r˚ is a repeated root of q. Then q1pr˚q “ 0.

If in addition q1prcq “ 0, then we arrive at a contradiction, since q1 then has two
positive roots (at rc and at r˚), which is impossible.

If q1prcq ą 0, then we arrive at a contradiction as follows. As q is increasing near rc,
and since qprcq ą 0 “ qpr˚q, it follows by the intermediate value theorem that there
is some r1

c P prc, r˚q such that qpr1
cq “ qprcq. But by Rolle’s theorem applied to q on

rrc, r1
cs, there must exist an r1

˚ P prc, r1
cq such that q1pr1

˚q “ 0. Again q1 acquires two
zeros (at r˚ and at r1

˚), which is impossible.

2˝ r˚ is a simple root of q. But as qprq rÑ8ÝÑ 8, it follows that there must be at least one
more root r˚˚ ą r˚ of q. By Rolle’s theorem applied to q on rr˚, r˚˚s, it follows that
q1pr1

˚˚q “ 0 for some r1
˚˚ P pr˚, r˚˚q.

If in addition q1prcq “ 0, then we arrive at a contradiction, since q1 then has two
positive roots (at rc and at r1

˚˚), which is impossible.

If q1prcq ą 0, then, as in the last paragraph of 1˝, there exists an r1
˚ P prc, r1

cq Ă prc, r˚q
such that q1pr1

˚q “ 0. Thus q1 again gets two positive roots (at r1
˚ and at r1

˚˚), which
is impossible.

This shows that our assumption the V 1 is zero beyond rc is incorrect.
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In the cosmological region, where r ą rc, the hypersurfaces of constant r are spacelike
cylinders with a future-pointing unit normal vector field N “ V

1

2
B
Br , and volume element

dVn “ V
1

2 rn´1dtdΩ.

The global structure of a maximal spherically symmetric extension of this metric can
be depicted by a conformal Penrose diagram shown below, repeated periodically; see for
example [8].

i`i`

i´
i´

R5 R5

R1

R2

R3

R4

R6R6

. . .. . .

C
H

`
1 pr

“
r
c q C

H

`
2

pr
“
r c

q

I ` pr“8q I ` pr“8q

I ´ pr“8q I ´ pr“8q

r
“
r`

r
“
r`

r
“
r
`

r
“
r
`

r
“
r´

r
“
r´

r
“
r
´

r
“
r
´

r
“
r c

r
“
r c

r
“
r
c

r
“
r
c

C
H

´
1 pr

“
r
c qC

H

´
2

pr
“
r c

q

Figure 2: Conformal diagram of the Reissner-Nordström-de Sitter spacetime.

We are interested in the behaviour of the solution to the Klein-Gordon equation in the
cosmological region R5 of this spacetime (see Figure 2), bounded by the cosmological
horizon branches CH`

1 , CH
`
2 , the future null infinity I `, and the point i`. In particular,

we want to obtain estimates for the decay rate of φ as r Ñ 8. We guess the decay rates
simply by substituting r instead of et in the estimates we had obtained for the decay rate
of φ with respect to t in the case of the de Sitter universe in flat FLRW form from the
previous Section 4, and the rationale behind this expectation is elaborated in the remark
below.

Remark 5.2. We note that for large r the metric of the RNdS spacetimes looks like

´ 1

r2 ´ 1
dr2 ` pr2 ´ 1qdt2 ` r2dΩ2. (7)

Defining τ by τ “ t` 1

2
logpr2 ´ 1q, we have dτ “ dt´ r

1´ r2dr.

The metric from (7) in the pr, τ, . . .q-coordinates is given by

´dτ 2 ` dr2 ´ 2rdrdτ ` r2dτ 2 ` r2dΩ2.

Now define x via the relation r “ eτx. Then dr “ eτdx` eτxdτ , and this yields

dx “ 1

eτ
dr ´ r

eτ
dτ.
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So the metric from (7) in the px, τ, . . .q-coordinates takes the form

´dτ 2 ` peτdxq2 ` peτxq2dΩ2 “ ´dτ 2 ` e2τ pdx2 ` x2dΩ2q,

which we recognise as the de Sitter metric in flat FLRW form. A free-falling ‘galaxy’ in
these coordinates corresponds to an observer of constant x and constant Ω, with proper
time τ “ t. For observers with fixed x one then has r „ eτ “ et. This justifies our guess
that the same estimates from Theorem 4.1 for de Sitter spacetime in flat FLRW form ought
to work in the cosmological region of RNdS, if we replace et by r. See also Remark 6.2.

We will prove the following result.

Theorem 5.3.

Suppose that

‚ ǫ ą 0,

‚ m P R,
‚ M ą 0,

‚ e ą 0,

‚ n ą 2,

‚ pM, gq is the pn` 1q-dimensional subextremal Reissner-Nordström-de Sitter solution

given by the metric g “ ´ 1

V
dr2 ` V dt2 ` r2dΩ2, where V “ r2 ` 2M

rn´2
´ e2

rn´1
´ 1,

and dΩ2 is the metric of the unit pn´ 1q-dimensional sphere Sn´1,

‚ k ą n
2
` 2, and

‚ φ is a smooth solution to 2gφ´m2φ “ 0 such that

}φ}HkpCH`
1

q ă `8 and }φ}HkpCH`
2

q ă `8,

where CH`
1 » CH`

2 » R ˆ Sn´1 are the two components of the future cosmological

horizon, parameterised by the flow parameter11 of the global Killing vector field
B
Bt .

Then there exists a r0 large enough so that for all r ě r0,

}φpr, ¨q}L8pRˆSn´1q À

$
&
%

r´n
2

`ǫ if |m| ą n
2
,

r´n
2

`
b

n2

4
´m2 `ǫ if |m| ď n

2
.

11An integral curve γ“pλ ÞÑγpλqq of a vector field X is a curve, which for all parameter values λ, satisfies
that the velocity vector vγpλq at the point γpλq of the curve is such that vγpλq “Xγpλq. The parameter
(‘time’) of the integral curve is determined up to an additive constant; see for instance [15, Box 3.1, p.49].
We remark that the flow parameter along the cosmological horizon is replacing the time coordinate t,
which is not defined on the cosmological horizon.
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5.1 Preliminary energy function

In this section, we introduce some convenient notation, and also introduce a preliminary
energy function r ÞÑ Eprq, which will play an important role in the Subsection 5.5 on the
red-shift estimates.

For a φ defined in the cosmological region R5, we define φ1 :“ BφBr and 9φ :“ BφBt .

We will also use the following notation:

{̊∇φ gradient of φ on Sn´1 with respect to the unit round metric,

| {̊∇φ| norm with respect to the unit round metric,

{̊∆φ Laplacian of φ on Sn´1 with respect to the unit round metric,

{̊g determinant of the unit round metric.

Suppose that φ satisfies the Klein-Gordon equation 2gφ´m2φ “ 0.

The energy-momentum tensor associated with φ is Tµν “ BµφBνφ´
1

2
gµνpBαBαφ`m2φ2q.

Recall that N “ V
1

2

B
Br . Thus

T pN,Nq “
ˆ
φ12 ´ 1

2

p´1q
V

´
φ12p´V q ` 9φ2 1

V
` 1

r2
| {̊∇φ|2 `m2φ2

¯˙
V

“ 1

2

ˆ
V φ12 ` 1

V
9φ2 ` 1

r2
| {̊∇φ|2 `m2φ2

˙
.

Define X :“ V
1

2

rn´1
N “ V

1

2

rn´1
V

1

2

B
Br “

V

rn´1

B
Br . We define the energy

Eprq :“
ż

RˆSn´1

T pX,NqdVn “
1

2

ż

RˆSn´1

ˆ
V 2φ12 ` 9φ2 ` V

r2
| {̊∇φ|2 `m2V φ2

˙
dtdΩ.

5.2 The auxiliary function ψ and its PDE

In this subsection, we introduce the auxiliary function ψ constructed from the solution φ
to the Klein-Gordon equation, and also derive a PDE satisfied by ψ.

The Klein-Gordon equation 2gφ´m2φ “ 0 can be rewritten as:

1?´g Bµp
?´g Bµφq ´m2φ “ 0, ô 1

rn´1

b
{̊g
Bµ

ˆ
rn´1

b
{̊g gµνBνφ

˙
´m2φ “ 0.

This becomes

1

rn´1

b
{̊g

ˆ
Br

´
rn´1

b
{̊g p´V qBrφ

¯
` Bt

´
rn´1

b
{̊g
1

V
Btφ

¯
`
rn´1

b
{̊g

r2
{̊∆φ

˙
´m2φ “ 0
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that is,

´pV φ1q1 ´ pn´ 1q
r

V φ1 `
:φ

V
` 1

r2
{̊∆φ´m2φ “ 0,

ô φ2 ` pn´ 1q
r

φ1 ` V 1

V
φ1 ´

:φ

V 2
´ 1

r2V
{̊∆φ` m2

V
φ “ 0.

Define
ψ :“ rκφ,

where

κ “

$
’&
’%

n

2
if |m| ě n

2
,

n

2
´

c
n2

4
´m2 if |m| ď n

2
.

Then, using the PDE for φ, it can be shown that

ψ2 `
ˆ
V 1

V
` n´ 1

r
´ 2κ

r

˙
ψ1 ´

:ψ

V 2
´ 1

r2V
{̊∆ψ ` θψ “ 0, (8)

where

θ :“ m2

V
` κ

r

ˆ
1

r
´ V 1

V

˙
´ κ

r2
pn´ 1´ κq.

5.3 The case |m| ą n
2

In this subsection, we will consider the case |m| ą n
2
of Theorem 5.3.

Then κ “ n
2
, and (8) becomes

ψ2 `
ˆ
V 1

V
´ 1

r

˙
ψ1 ´

:ψ

V 2
´ 1

r2V
{̊∆ψ ` θψ “ 0, (9)

where θ :“ ´n
2

´n
2
´ 1

¯ 1

r2
` m2

V
` n

2r

ˆ
1

r
´ V 1

V

˙
.

We will use an energy function to obtain the required decay of ψ for large r, and in order to
do so, we will need to keep careful track of the limiting behaviour of the various functions
appearing in the expression for θ and the coefficients of the PDE (9). We will do this
step-by-step in a sequence of lemmas.

Lemma 5.4. Given any ǫ ą 0, there exists an r0 large enough so that for all r ě r0,

2` ǫ
r

ě V 1

V
ě 2´ ǫ

r
.
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Proof. This follows immediately from

lim
rÑ8

r
V 1

V
“ lim

rÑ8
r ¨ 2r ´

2pn´2qM
rn´1 ` e2pn´1q

rn

r2 ` 2M
rn´2 ´ e2

rn´1 ´ 1
“ lim

rÑ8

2´ 2pn´2qM
rn

` e2pn´1q
rn`1

1` 2M
rn
´ e2

rn`1 ´ 1
r2

“2.

Lemma 5.5. There exists r0 large enough so that for r ě r0, we have θ ą 0.

(We note that the proof uses the fact that |m| ą n
2
, and so this result is specific to this

subsection.)

Proof. We have lim
rÑ8

r2

V
“ lim

rÑ8

1

1` 2M
rn
´ e2

rn`1 ´ 1
r2

“ 1, and so there exists a r1
0 such that

r2

V
ě 1´ ǫ

for r ě r1
0. Also, by the previous lemma, there exists a r0 ą r1

0 such that

V 1

V
ď 2` ǫ

r

for all r ě r0. Then we have for r ą r0 that

θ “ 1

r2

ˆ
´n
2

´n
2
´ 1

¯
`m2 r

2

V
` n

2

´
1´ V 1

V
r
¯˙

ě 1

r2

ˆ
´n

2

4
` n

2
`m2p1´ ǫq ` n

2

´
1´ p2` ǫq

r
r
¯˙

“ 1

r2

ˆ
δ ´ ǫ

´
δ ` n

2
` n2

4

¯˙
,

where

δ :“ m2 ´ n2

4
ą 0.

Taking ǫ at the outset small enough so as to satisfy

0 ă ǫ ă δ

δ ` n
2
` n2

4

,

we see that θ ą 0 for r ě r0.

Define the energy

Eprq :“ 1

2

ż

RˆSn´1

ˆ
ψ12 ` 1

V 2
9ψ2 ` 1

r2V
| {̊∇ψ|2 ` θψ2

˙
dtdΩ.
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(We assume for the moment that this is finite for a sufficiently large r0. Later on, in the
subsection on redshift estimates, we will see how our initial finiteness of Sobolev norms of
φ on the two branches CH`

1 , CH
`
2 of the cosmological horizon guarantees this.)

We now proceed to find an expression for E 1prq, and to simplify it, we will use (9), and the

divergence theorem, to get rid of the terms involving :ψ and {̊∆ψ, the spherical Laplacian
of ψ:

E 1prq “
ż

RˆSn´1

ˆ
ψ1ψ2 ` 1

2

´ 1

V 2

¯1
9ψ2 ` 1

V 2
9ψ 9ψ1 ` 1

2

´ 1

r2V

¯1
| {̊∇ψ|2

` 1

r2V
x {̊∇ψ, p {̊∇ψq1y ` θ1

2
ψ2 ` θψψ1

˙
dtdΩ

“
ż

RˆSn´1

ˆ
ψ1

ˆ
´

´V 1

V
´ 1

r

¯
ψ1 ` 1

V 2
:ψ ` 1

r2V
{̊∆ψ ´✚✚θψ

˙

` 1

2

´ 1

V 2

¯1
9ψ2 ` 1

V 2
9ψ 9ψ1 ` 1

2

´ 1

r2V

¯1
| {̊∇ψ|2

` 1

r2V
x {̊∇ψ, p {̊∇ψq1y ` θ1

2
ψ2 `✟✟✟θψψ1

˙
dtdΩ

“
ż

RˆSn´1

ˆ
´

´V 1

V
´ 1

r

¯
ψ12 `

✚
✚
✚
✚1

V 2
:ψψ1 `

✚
✚
✚
✚1

V 2
9ψ 9ψ1 ` 1

r2V

´
❍❍❍❍ψ1 {̊∆ψ `

❳❳❳❳❳❳❳x {̊∇ψ, p {̊∇ψq1y
¯

`1

2

´ 1

V 2

¯1
9ψ2 ` 1

2

´ 1

r2V

¯1
| {̊∇ψ|2 ` θ1

2
ψ2

˙
dtdΩ.

We note that in the above, getting rid of the spherical Laplacian by using the divergence
theorem is allowed because the compact sphere Sn´1 has no boundary. For the second
time derivative, however, there is a boundary at infinity (with two connected components),
namely

lim
tÑ`8

ż

Sn´1

9ψψ1dΩ´ lim
tÑ´8

ż

Sn´1

9ψψ1dΩ,

which can be seen to be equal to 0, by Lemma B.3 from Appendix B. Thus

E 1prq “
ż

RˆSn´1

ˆ
´

´V 1

V
´ 1

r

¯
ψ12 ` 1

2

´ 1

V 2

¯1
9ψ2 ` 1

2

´ 1

r2V

¯1
| {̊∇ψ|2 ` θ1

2
ψ2

˙
dtdΩ.

Let ǫ ą 0 be given. Then there exists an r0 large enough such that:

(a)
V 1

V
´ 1

r
ě 2´ ǫ

r
´ 1

r
“ 1´ ǫ

r
,

(b)
´ 1

V 2

¯1
“ ´2V

1

V

1

V 2
ď ´2p2´ ǫq

r

1

V 2
,

(c)
´ 1

r2V

¯1
“ ´ 1

r2V

´2

r
` V 1

V

¯
ď ´ 1

r2V

´2

r
` 2´ ǫ

r

¯
“ ´ 1

r2V

p4´ ǫq
r

,

(d)
θ1

θ
“ 1

r

´´n
2
pn
2
´ 1qp´2q´ m2V 1

r3V 2 ´ n
2r5
p1
r
´ V 1

V
q ` n

2r4
p´ 1

r2
´ V 2V ´V 12

V 2 q
´n

2
pn
2
´ 1q ` m2

r2V
` n

2r3
p1
r
´ V 1

V
q

¯
ď 1

r
p´2` ǫq.
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Hence, using (a)-(d) above, we obtain

E 1prq “
ż

RˆSn´1

ˆ
´

´V 1

V
´ 1

r

¯
ψ12 ` 1

2

´ 1

V 2

¯1
9ψ2 ` 1

2

´ 1

r2V

¯1
| {̊∇ψ|2 ` θ1

2
ψ2

˙
dtdΩ

ď
ż

RˆSn´1

ˆ
´p1´ ǫq

r
ψ12 ` 1

2

p´2qp2´ ǫq
rV 2

9ψ2 ` 1

2

p´1q
r2V

p4´ ǫq
r

| {̊∇ψ|2

` 1

2

1

r
p´2` ǫqθψ2

˙
dtdΩ

“ ´1

r

1

2

ż

RˆSn´1

ˆ
2p1´ ǫqψ12 ` 2p2´ ǫq 1

V 2
9ψ2 ` p4´ ǫq 1

r2V
| {̊∇ψ|2

` p2´ ǫqθψ2

˙
dtdΩ

ď ´2p1´ ǫq
r

Eprq.

Using Grönwall’s inequality (see e.g. [16, Appendix B(j)]), we obtain

Eprq ď Epr0qe
şr
r0

´ 2p1´ǫq
r

dr “ Epr0q
´ r

r0

¯´2p1´ǫq
À r´2`2ǫ.

Thus

ż

RˆSn´1

θψ2dtdΩ ď 2Eprq À r´2`2ǫ, and so

ż

RˆSn´1

ψ2dtdΩ À r2ǫ

r2θ
À r2ǫ

r2 1
r2

“ r2ǫ.

Hence }ψpr, ¨q}L2pRˆSn´1q À rǫ. Consequently, }φpr, ¨q}L2pRˆSn´1q À r´n
2

`ǫ.

Recall that Sn´1 admits npn´1q
2

independent Killing vectors, given by Lij “ xi B
Bxj ´ xj B

Bxi ,
for i ă j (under the usual embedding Sn´1 Ă R

n). As B
Bt and Lij are Killing vector fields, it

follows that 9φ and Lij ¨φ are also solutions to 2gφ´m2φ “ 0. Commuting with the Killing
vector fields B

Bt and Lij , if we assume for now12 that at r0 we have }φpr0, ¨q}Hkptr“r0uq ă `8,

then we also obtain for all r ě r0 that }φpr, ¨q}Hk1pRˆSn´1q À r´n
2

`ǫ, where k1 “ k ´ 2 ą n
2
.

By the Sobolev inequality13, }φpr, ¨q}L8pRˆSn´1q À r´n
2

`ǫ.

This completes the proof of Theorem 5.3 in the case when |m| ą n
2
(provided we show the

aforementioned finiteness of energy, which will be carried out in Subsection 5.5 on redshift
estimates).

5.4 The case |m| ď n
2

In this subsection, we will consider the remaining case of Theorem 5.3, namely the case
when |m| ď n

2
.

12This will be proved later in the subsection on redshift estimates.
13The part of the Sobolev embedding theorem concerning inclusion in Hölder spaces holds for a complete

Riemannian manifold with a positive injectivity radius and a bounded sectional curvature; see for example
[25, §3.3, Thm.3.4] or [4, Ch.2].
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Let ǫ1 ą 0 be given. Define rEprq “ 1

2

ż

RˆSn´1

ˆ
ψ12 ` 1

V 2
9ψ2 ` 1

r2V
| {̊∇ψ|2 ` ǫ1

r2
ψ2

˙
dtdΩ.

We now proceed to find an expression for rE 1prq, and we will simplify it using (8) and the

divergence theorem, in order to get rid of the terms involving :ψ and the spherical Laplacian
of ψ:

rE 1prq “
ż

RˆSn´1

ˆ
ψ1ψ2 ` 1

2

´ 1

V 2

¯1
9ψ2 ` 1

V 2
9ψ 9ψ1 ` 1

2

´ 1

r2V

¯1
| {̊∇ψ|2

` 1

r2V
x {̊∇ψ, p {̊∇ψq1y ´ ǫ1

r3
ψ2 ` ǫ1

r2
ψψ1

˙
dtdΩ

“
ż

RˆSn´1

˜
ψ1

ˆ
´

´V 1

V
` n ´ 1

r
´ 2κ

r

¯
ψ1 `

✁
✁
✁:ψ

V 2
`

❩
❩
❩
❩❩

1

r2V
{̊∆ψ ´ θψ

˙

` 1

2

´ 1

V 2

¯1
9ψ2 `

✚
✚
✚
✚1

V 2
9ψ 9ψ1 ` 1

2

´ 1

r2V

¯1
| {̊∇ψ|2 `

❳❳❳❳❳❳❳❳❳

1

r2V
x {̊∇ψ, p {̊∇ψq1y

´ ǫ1

r3
ψ2 ` ǫ1

r2
ψψ1

¸
dtdΩ

“
ż

RˆSn´1

ˆ
´

´V 1

V
`n´ 1

r
´ 2κ

r

¯
ψ12` 1

2

´ 1

V 2

¯1
9ψ2` 1

2

´ 1

r2V

¯1
| {̊∇ψ|2´ ǫ1

r3
ψ2

˙
dtdΩ

`
ˆ
ǫ1

r2
´ θ

˙ ż

RˆSn´1

ψψ1dtdΩ.

Again, for getting rid of the spherical Laplacian, we use the divergence theorem, noting
that the sphere Sn´1 has no boundary. For handling the second time derivative, as before,
we note that there is a boundary at infinity (with two connected components), which can
be seen to be equal to 0, by Lemma B.3 from Appendix B. Thus

rE 1prq “
ż

R Ŝn´1

ˆ
´

´V 1

V
`n´1

r
´ 2κ

r

¯
ψ12` 1

2

´ 1

V 2

¯1
9ψ2` 1

2

´ 1

r2V

¯1
| {̊∇ψ|2´ ǫ1

r3
ψ2

˙
dtdΩ

`
ˆ
ǫ1

r2
´ θ

˙ ż

RˆSn´1

ψψ1dtdΩ.

Now there exists an r0 large enough such that for all r ě r0, we have:

(i)
V 1

V
`n´ 1

r
´2κ

r
ě 2´ ǫ1

r
`n´ 1

r
´2κ

r
“ 1´ ǫ1 ` pn ´ 2κq

r
ě 1´ ǫ1

r
, using n´2κ ě 0.

(ii)
´ 1

V 2

¯1
ď ´2p2´ ǫ1q

r
¨ 1

V 2
.

(iii)
´ 1

r2V

¯1
ď ´ 1

r2V

´2

r
` 2´ ǫ1

r

¯
.
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Using (i), (ii) and (iii), it can be seen that

rE 1prq ď
ż

RˆSn´1

ˆ
´p1´ǫ

1q
r

ψ12´ 1

2

2p2´ǫ1q
rV 2

9ψ2´ 1

2

1

r2V

´2

r
` 2´ǫ1

r

¯
| {̊∇ψ|2´ ǫ1

r3
ψ2

˙
dtdΩ

`
ˆ
ǫ1

r2
´ θ

˙ ż

R Ŝn´1

ψψ1dtdΩ

ď ´1

r

1

2

ż

RˆSn´1

ˆ
2p1´ǫ1qψ12`2p2´ǫ1q 1

V 2
9ψ2`p4´ ǫ1q 1

r2V
| {̊∇ψ|2` 2ǫ1

r2
ψ2

˙
dtdΩ

`
ˆ
ǫ1

r2
´ θ

˙ ż

RˆSn´1

ψψ1dtdΩ.

Hence rE 1prq ď ´2p1´ ǫ1q
r

rEprq `
´ ǫ1

r2
´ θ

¯ ż

RˆSn´1

ψψ1dtdΩ.

We have θ “ m2

V
` κ

r

´1

r
´ V 1

V

¯
´ κ

r2
pn´1´κq “ 1

r2

˜
m2

V
r2

` κ
´
1´ V 1

V
r
¯
´ κpn´ 1´ κq

¸
.

As
V

r2
rÑ8ÝÑ 1 and

V 1

V
r

rÑ8ÝÑ 2, r2θ
rÑ8ÝÑ m2

1
` κp1´ 2q ´ κpn´ 1´ κq “ m2 ´ κn` κ2 “ 0.

Thus, given ǫ1 ą 0, there exists an r0 such that for r ě r0, |r2θ| ă ǫ1, that is, |θ| ă ǫ1

r2
. So

rE 1prq ď ´2p1´ ǫ1q
r

rEprq `
´ ǫ1

r2
´ θ

¯ ż

RˆSn´1

ψψ1dtdΩ

ď ´2p1´ ǫ1q
r

rEprq `
´ ǫ1

r2
` ǫ1

r2

¯ ˇ̌
ˇ̌
ż

RˆSn´1

ψψ1dtdΩ

ˇ̌
ˇ̌ .

The Cauchy-Schwarz inequality applied to the last integral gives

ˇ̌
ˇ̌
ż

RˆSn´1

ψψ1dtdΩ

ˇ̌
ˇ̌ ď

dż

RˆSn´1

ψ2dtdΩ ¨
dż

RˆSn´1

ψ12dtdΩ

ď
c

2r2

ǫ1
rEprq ¨

b
2 rEprq “ 2r?

ǫ1
rEprq.

So we obtain rE 1prq ď ´2p1´ ǫ1q
r

rEprq ` 2ǫ1

r2
2r?
ǫ1

rEprq “ p´2` 2ǫ1 ` 4
?
ǫ1q1
r

rEprq.

By Grönwall’s inequality, rEprq ď rEpr0qe
şr
r0

p´2`2ǫ1`4
?
ǫ1q 1

r
dr “

rEpr0q
r´2`2ǫ1`4

?
ǫ1

0

r´2`2ǫ1`4
?
ǫ1
. So

ż

RˆSn´1

ψ2dtdΩ “ 2r2

ǫ1
1

2

ż

RˆSn´1

ǫ1

r2
ψ2dtdΩ ď 2r2

ǫ1
rEprq

ď 2r2

ǫ1

rEpr0q
r´2`2ǫ1`4

?
ǫ1

0

r´2`2ǫ1`4
?
ǫ1 “ 2rEpr0q

ǫ1r´2`2ǫ1`4
?
ǫ1

0

r2ǫ
1`4

?
ǫ1
.
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Thus }ψpr, ¨q}L2pRˆSn´1q ď

d
2rEpr0q
ǫ1

1

r´1`ǫ1`2
?
ǫ1

0

rǫ
1`2

?
ǫ1
, and so

}φpr, ¨q}L2pRˆSn´1q ď

d
2rEpr0q
ǫ1

1

r´1`ǫ1`2
?
ǫ1

0

r´κ`ǫ1`2
?
ǫ1
.

Given ǫ ą 0, arbitrarily small, we take ǫ1 “ ǫ1pǫq ą 0 small enough so that ǫ1 ` 2
?
ǫ1 ă ǫ at

the outset, so that }φpr, ¨q}L2pRˆSn´1q À r´κ`ǫ. Again assuming at the moment that at r0
we have }φpr0, ¨q}Hkptr“r0uq ă `8, and by commuting with the Killing vector fields B

Bt and
Lij , then we also obtain for all r ě r0 that

}φpr, ¨q}Hk1pRˆSn´1q À r´pn
2

´
b

n2

4
´m2 q`ǫ,

where k1 “ k ´ 2 ą n
2
. By the Sobolev inequality, this yields

}φpr, ¨q}L8pRˆSn´1q À r´pn
2

´
b

n2

4
´m2 q`ǫ.

This completes the proof of Theorem 5.3 in the case when |m| ď n
2
(provided we show

the finiteness of energy, which will be carried out in the subsection on redshift estimates
below).

5.5 Redshift estimates

In this subsection, we complete the last remaining step, namely to use redshift estimates
to transfer finiteness of the energies along the branches CH`

1 and CH`
2 of the cosmological

horizon to finiteness at r “ r0, justifying the finiteness of the energies Epr0q and rEpr0q
assumed in the previous two subsections. We divide this rather long subsection into parts
(a)-(e) for ease of readability.

(a) In this first step we introduce two new coordinates u, v. Moreover, we define some
vector fields (K, Y ), and also express (the earlier defined) vector fields X,N using the new
coordinates.

Define the new coordinate u by u “ t `
ż r

r˚

1

V
dr, where r˚ ą rc is arbitrary, but fixed.

Then du “ dt` 1

V
dr. The Reissner-Nordström-de Sitter metric can be rewritten using the

coordinates pu, r, . . .q, instead of the old pt, r, . . .q-coordinates, as follows

g “ ´ 1

V
dr2 ` V dt2 ` r2dΩ2 “ V

´
´ 1

V 2
dr2 ` dt2

¯
` r2dΩ2

“ ´V
´ 1

V
dr ` dt

¯´ 1

V
dr ´ dt

¯
` r2dΩ2

“ ´V du
´
´ du` 2

V
dr

¯
` r2dΩ2 “ V du2 ´ 2dudr ` r2dΩ2.
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The matrix of the metric in the pu, r, . . .q-coordinate system is

rgµνs “

»
–

V ´1
´1 0

˚

fi
fl .

Since

det

„
V ´1
´1 0


“ ´1,

this coordinate system extends across the cosmological horizon r “ rc (where V “ 0). The
hypersurfaces of constant u are null and transverse to the cosmological horizon. Thus only
one of the branches of the cosmological horizon, namely CH`

1 , is covered by the pu, r, . . .q-
coordinates. (In order to cover the other branch CH`

2 , where u “ ´8, we can introduce

v :“ ´t `
ż r

r˚

1

V
dr,

and use the pv, r, . . .q-coordinate chart. See Figure 5.5.)

i`i`

u
“ c

on
st
.u

“ c
on
st
.u

“ c
on
st
. v “

const.v “
const.v “

const.

r “ const.

r “ const.
CH `

1 pr“
r
c q CH

`
2
pr“

r c
q

I
` pr “ 8q

Figure 3: Coordinates u and v.

We will only consider CH`
1 in the remainder of this subsection, since CH`

2 can be treated
in an analogous manner.

The Killing vector field

K “ B
Bu “

B
Bt

is well-defined across CH`
1 , and is null on the cosmological horizon CH`

1 , even though the
t-coordinate is not defined there. Consider the vector field in the pu, r, . . .q-coordinate chart
given by

Y “
ˆ B
Br

˙

u

.
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The subscript u means that the integral curves of Y in the pu, r, . . .q-coordinate chart have
a constant u-coordinate. Then we have dupY q “ 0 and drpY q “ 1, and so in the old
pt, r, . . .q-coordinate chart, the vector field Y can be expressed as

Y “ B
Br ´

1

V

B
Bt.

Let the vector field X be defined by

X “ V
1

2

rn´1
N “ V

rn´1

B
Br

in the old pt, r, . . .q-coordinate chart. To find the expression for X in the pu, r, . . .q-
coordinate chart induced basis vectors, we first find

N “ ´ grad r

|grad r|

in the pu, r, . . .q-coordinate chart induced basis vectors. Since

„
V ´1
´1 0

´1

“ 1

´1

„
0 1
1 V


“

„
0 ´1

´1 ´V


,

we have xgrad r, grad ry “ xdr, dry “ ´V .

If ω :“ ´ 1?
V
dr, then N “ gµνων “

1?
V

´ B
Bu ` V

B
Br

¯
. So

X “
?
V

rn´1
N “ 1

rn´1

´ B
Bu ` V

B
Br

¯
.

(b) In this step we will define the energy rE.
Recall that in Subsection 5.1, we had defined the preliminary energy function E. We have

Eprq “
ż

RˆSn´1

T pX,NqdVn “ 1

2

ż

RˆSn´1

´
V 2φ12 ` 9φ2 ` V

r2
| {̊∇φ|2 `m2V φ2

¯
dtdΩ

rÑrcÝÑ 1

2

ż

RˆSn´1

pCH`
1

q

pK ¨ φq2dudΩ` 1

2

ż

RˆSn´1

pCH`
2

q

pK ¨ φq2dvdΩ

(since V prcq “ 0). So Eprq ‘loses control’ of the transverse and angular derivatives as

r Ñ rc. To remedy this problem, we define a new energy rE, by adding Y to X , obtaining

rEprq :“ Eprq `
ż

RˆSn´1

T pY,NqdVn.
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In the old pt, r, . . .q-coordinates, N “
?
V Br, and so

T pY,Nq“T pBr, Nq´
1

V
T pBt, Nq“

1?
V
T pN,Nq´ 1?

V
T pBt, Brq“

1?
V
pT pN,Nq´T pBt, Brqq .

We have T pBt, Brq “ 9φφ1. So

rEprq “ Eprq`
ż

R Ŝn´1

˜
1?
V

1

2

´
V φ12`

9φ2

V
`|
{̊∇φ|2
r2

`m2φ2
¯
´ 1?

V
9φφ1

¸
?
V rn´1dtdΩ

“ Eprq`
ż

RˆSn´1

1

2

ˆ
V

´
φ1 ´ 1

V
9φ
¯2

` 1

r2
| {̊∇φ|2`m2φ2

˙
rn´1dtdΩ

“ Eprq`
ż

RˆSn´1

1

2

ˆ
V pY ¨ φq2` 1

r2
| {̊∇φ|2`m2φ2

˙
rn´1dtdΩ.

We now have

rEprcq “ Eprcq `
rn´3
c

2

ż

RˆSn´1

pCH`
1

q

| {̊∇φ|2dudΩ` rn´3
c

2

ż

RˆSn´1

pCH`
2

q

| {̊∇φ|2dvdΩ

` m2rn´1
c

2

ż

RˆSn´1

pCH`
1

q

φ2dudΩ` m2rn´1
c

2

ż

RˆSn´1

pCH`
2

q

φ2dvdΩ,

so that using rE instead of E allows us to regain some control of the angular derivatives as
r Ñ rc. We note that rEprcq is equivalent to }φ}2H1pCH`

1
q ` }φ}

2

H1pCH`
2

q.

(c) In this step, we will compute the deformation tensor Ξ corresponding to Y .

We have

•
”
´ 1

V
Bt, Br

ı
“ ´V

1

V
Bt,

• LBrg “
V 1

V
dr2 ´ 2

V
drLBrdr ` V 1dt2 ` 2rdΩ2 “ V 1

V
dr2 ` V 1dt2 ` 2rdΩ2,

• L´ 1

V
Btg “ ´

2

V
drL´ 1

V
Btdr ` 2V dtL´ 1

V
Btdt “ 2V dt

´
´ V 1

V 2

¯
dr.

Hence

Ξ “ 1

2
LY g “

1

2
LBr´ 1

V
Btg “

1

2
LBrg `

1

2
L´ 1

V
Btg “

1

2

V 1

V 2
dr2 ` V 1

2
dt2 ` rdΩ2 ` V 1

V
dtdr

“ 1

2
V 1

´
dt` 1

V
dr

¯2

` rdΩ2 “ 1

2
V 1du2 ` rdΩ2.
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(d) In this step, we will prove an important inequality, namely the estimate from below
for T µνΞµν given in (12) below.

We have

dupBrq “
´
dt` 1

V

¯
Br “

1

V
, and dupBtq “ 1,

and on the other hand,

´gpY, Brq “ ´g
´
Br ´

1

V
Bt, Br

¯
“ 1

V
, and ´ gpY, Btq “ ´g

´
Br ´

1

V
Bt, Bt

¯
“ 1,

showing that
du “ ´gpY, ¨q.

Also, we recall that

Tµν “ BµφBνφ´
gµν

2

`
BαφBαφ`m2φ2

˘
“

ˆ
dφb dφ´ 1

2
xdφ, dφyg ´ 1

2
m2φ2g

˙

µν

.

It follows that

T µνΞµν “ ΞµνTµν “
1

2
V 1pY ¨ φq2 ` 1

r3
| {̊∇φ|2 ´ n´ 1

2r
xdφ, dφy ´ n´ 1

2r
m2φ2. (10)

We have dφpBµq “ Bµφ. So

xdφ, dφy “ gαβpdφqαpdφqβ “ gαβpBαφqpBβφq “ pBαφqpBαφq “ φ12p´V q ` 9φ2 1

V
` 1

r2
| {̊∇φ|2.

Also, ´2pK ¨ φqpY ¨ φq ´ V pY ¨ φq2 “ ´2 9φ
´
φ1 ´ 1

V
9φ
¯
´ V

´
φ1 ´ 1

V
9φ
˘2 “ 1

V
9φ2 ´ V φ12. So

xdφ, dφy “ ´2pK ¨ φqpY ¨ φq ´ V pY ¨ φq2 ` 1

r2
| {̊∇φ|2. (11)

Combining (10) and (11), we obtain

T µνΞµν “
´V 1

2
`n´1

2r
V

¯
pY ¨φq2`n´1

r
pK ¨φqpY ¨φq´n´3

2r3
| {̊∇φ|2´n´1

2r
m2φ2

“ V 1

2

´
Y ¨φ`n´1

rV 1 pK ¨φq
¯2

´pn´1q2
2r2V 1 pK ¨φq

2´n´3

2r3
| {̊∇φ|2´n´1

2r
m2φ2.

Now as V 1prq ą 0 for r ě rc (global redshift), it follows that the first summand in the last
expression is nonnegative, and so we obtain the inequality

T µνΞµν ě ´
pn´ 1q2
2r2V 1 pK ¨ φq2 ´ n ´ 3

2r3
| {̊∇φ|2 ´ n´ 1

2r
m2φ2. (12)

(e) In this final step, we obtain the desired red-shift estimates, and complete the proof of
Theorem 5.3.
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Suppose that r0 is fixed. As r2V 1prq ą 0 for all r P rrc, r0s, we have min
rPrrc,r0s

r2V 1prq ą 0.

Thus ´pn´ 1q2
2r2V 1 ě ´ pn ´ 1q2

min
rPrrc,r0s

r2V 1prq “: ´C1pr0q.

Similarly, for r P rrc, r0s,
1

r3
ď 1

r3c
, and so ´n´ 3

2r3
ě ´n´ 3

2r3c
“: ´ rC2prcq.

Also, for r P rrc, r0s, ´
pn´ 1q

2r
m2 ě ´pn´ 1q

2rc
m2 “: ´C3prcq.

Also, if we set

Π :“ 1

2
LXg,

then from Step 1 of the proof of [28, Theorem 5.3], we have for r ą rc that

T µνΠµν ě ´
ˆ
1` n

2
` e2

2rn´1
c

˙
1

rn`2
| {̊∇φ|2

ě ´
ˆ
1` n

2
` e2

2rn´1
c

˙
1

rn`2
cloooooooooooooomoooooooooooooon

“:
ĂĂC2prcq

| {̊∇φ|2.

Set C2prcq :“ rC2prcq ` rrC2prcq. We have

T µνΠµν ` T µνΞµν

ě ´ rrC2prcq| {̊∇φ|2 ´ C1pr0qpK ¨ φq2 ´ rC2prcq| {̊∇φ|2 ´ C3prcqφ2

“ ´C1pr0qpK ¨ φq2 ´ C2prcq| {̊∇φ|2 ´ C3prcqφ2

ě ´maxtC1pr0q, C2prcq, C3prcqulooooooooooooooooomooooooooooooooooon
“:Cprc,r0qą0

¨
´
pK ¨ φq2 ` | {̊∇φ|2 ` φ2

¯
.

For r1 P prc, r0q, and T ą 0, define D “ tr “ r1u X t´T ď t ď T u. We now apply
the divergence theorem, with the current J corresponding to the multiplier X ` Y , in the
region T “ D`pDq X tr ď r0u. Noticing that the flux across the future null boundaries is
less than or equal to 0, we obtain, after passing the limit T Ñ8, that

rEpr1q ´ rEpr0q ě ´
ż r0

r1

ż

RˆSn´1

Cpr0, rcq
´
pK ¨ φq2 ` | {̊∇φ|2 ` φ2

¯
rn´1dtdΩdr. (13)

But

rEprq “ 1

2

ż

RˆSn´1

ˆ
V 2φ12 ` 9φ2 ` V

r2
| {̊∇φ|2 `m2V φ2

˙
dtdΩ

`1

2

ż

RˆSn´1

ˆ
V pY ¨ φq2 ` 1

r2
| {̊∇φ|2 `m2φ2

˙
rn´1dtdΩ.
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In particular,ż r0

r1

ż

RˆSn´1

pK ¨ φq2rn´1dtdΩdr ď
ż r0

r1

ż

RˆSn´1

9φ2rn´1
0 dtdΩdr

ď
ż r0

r1

2 rEprqrn´1
0 dr “ 2rn´1

0

ż r0

r1

rEprqdr.

Also,

ż r0

r1

ż

RˆSn´1

| {̊∇φ|2rn´1dtdΩdr ď
ż r0

r1

ż

RˆSn´1

| {̊∇φ|2
r2

rn´1r2dtdΩdr

ď
ż r0

r1

2 rEprqr20dr “ 2r20

ż r0

r1

rEprqdr.

Finally,

ż r0

r1

ż

RˆSn´1

φ2rn´1dtdΩdr ď
ż r0

r1

ż

RˆSn´1

m2φ2rn´1 1

m2
dtdΩdr

ď
ż r0

r1

2 rEprq 1

m2
dr “ 2

m2

ż r0

r1

rEprqdr.

Using the above three estimates, it follows from (13) that

rEpr1q ´ rEpr0q ě ´
ż r0

r1

Cpr0, rcq
ˆ
2rn´1

0 ` 2r20 `
2

m2

˙
rEprqdr “ ´

ż r0

r1

kpr0, rcq rEprqdr, (14)

where

kpr0, rcq :“ Cpr0, rcq
ˆ
2rn´1

0 ` 2r20 `
2

m2

˙
.

Now suppose that r2 is such that rc ă r1 ă r2 ă r0. If we redo all of the above steps in
order to obtain (14), but with r2 replacing r0, we obtain

rEpr1q ´ rEpr2q ě ´
ż r2

r1

kpr2, rcq rEprqdr, (15)

where

kpr2, rcq “ Cpr2, rcq
ˆ
2rn´1

2 ` 2r22 `
2

m2

˙
.

But

kpr2, rcq “ Cpr2, rcq
ˆ
2rn´1

2 ` 2r22 `
2

m2

˙
ď Cpr2, rcq

ˆ
2rn´1

0 ` 2r20 `
2

m2

˙

“ maxtC1pr2q, C2prcq, C3prcqu ¨
ˆ
2rn´1

0 ` 2r20 `
2

m2

˙
.

We have C1pr2q “
pn´ 1q2

min
rPrrc,r2s

r2V 1prq ď
pn ´ 1q2

min
rPrrc,r0s

r2V 1prq “ C1pr0q, since rrc, r2s Ă rrc, r0s. Hence

kpr2, rcq ď maxtC1pr2q, C2prcq, C3prcqu¨
ˆ
2rn´1

0 ` 2r20 `
2

m2

˙

ď maxtC1pr0q, C2prcq, C3prcqu¨
ˆ
2rn´1

0 ` 2r20 `
2

m2

˙
“ kpr0, rcq.
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So from (15), we get rEpr1q ´ rEpr2q ě ´
ż r2

r1

kpr2, rcq rEprqdr ě ´
ż r2

r1

kpr0, rcq rEprqdr.

Consequently, for all r2 P rr1, r0q, rEpr2q ď rEpr1q `
ż r2

r1

kpr0, rcq rEprqdr.

By the integral form of Grönwall’s inequality (see e.g. [35, Thm. 1.10]), we obtain for

all r2 P rr1, r0q that rEpr2q ď rEpr1qe
şr2
r1

kpr0,rcqdr “ rEpr1qekpr0,rcq¨pr2´r1q. Passing the limit as

r2 Õ r0 yields rEpr0q ď rEpr1qekpr0,rcq¨pr0´r1q, and this holds for all r1 P prc, r0q. Now passing

the limit as r1 Œ rc, we obtain rEpr0q ď rEprcqekpr0,rcq¨pr0´rcq. Consequently,

Epr0q ď rEpr0q ď rEprcqekpr0,rcq¨pr0´rcq À rEprcq À }φ}2H1pCH`
1

q ` }φ}
2

H1pCH`
2

q ă `8.

Commuting with the Killing vector fields B
Bt and Lij , we see that the hypothesis from

Theorem 5.3, namely, }φ}HkpCH`
1

q ă `8 and }φ}HkpCH`
2

q ă `8, for some k ą n
2
` 2, yields

also that }φ}Hkptr“r0uq À }φ}HkpCH`
1

q ` }φ}HkpCH`
2

q ă `8. We now show that this justifies
the assumption used in the previous two subsections. For simplicity, we only consider one
of the energies

Eprq “ 1

2

ż

RˆSn´1

ˆ
ψ12 ` 1

V 2
9ψ2 ` 1

r2V
| {̊∇ψ|2 ` θψ2

˙
dtdΩ.

(The proof of the finiteness of rEpr0q is entirely analogous.) As ψ “ rκφ, we obtain finiteness
of the last summand, namely

ż

RˆSn´1

θpr0q pψpr0, ¨qq2 dtdΩ “ θpr0qr2κ0
ż

RˆSn´1

pφpr0, ¨qq2 dtdΩ

ď θpr0qr2κ0 }φpr0, ¨q}2H1ptr“r0uq ă `8.

We have
ż

RˆSn´1

pφ1pr0, ¨qq2 dtdΩ “
1

pV pr0qq2
ż

RˆSn´1

pV pr0, ¨qφ1pr0, ¨qq2 dtdΩ ď
2Epr0q
pV pr0qq2

ă `8.

Using ψ1pr0, ¨q “ κrκ´1
0 φpr0, ¨q ` rκ0φ

1pr0, ¨q and φpr0, ¨q P H1ptr “ r0uq, we conclude that
ψpr0, ¨q P L2pRˆ Sn´1q, that is,

ż

RˆSn´1

pψ1pr0, ¨qq2 dtdΩ ă `8.

We also have

ż

RˆSn´1

p 9ψpr0, ¨qq2
pV pr0qq2

dtdΩ “ r2κ0
pV pr0qq2

ż

RˆSn´1

p 9φpr0, ¨qq2dtdΩď
r2κ0

pV pr0qq2
}φpr0, ¨q}2H1ptr“r0uqă8.
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Finally,

ż

RˆSn´1

| {̊∇ψpr0, ¨q|2
r20V pr0q

dtdΩ “ r2κ0
r20V pr0q

ż

RˆSn´1

| {̊∇φpr0, ¨q|2dtdΩ À }φpr0, ¨q}2H1ptr“r0uq ă 8.

Thus each summand in the expression for Epr0q is finite.
This completes the proof of Theorem 5.3.

6 Decay in RNdS when m “ 0, the wave equation

In this section, we will prove Theorem 6.3. This will be done by using a similar method to
the one used to prove Rendall’s Conjecture (Theorem 3.2) in Section 3. Our Theorem 6.3
is an improvement to [9, Theorem 2], which we recall below.

Theorem 6.1.

Suppose that

‚ δ ą 0,

‚ M ą 0,

‚ e ě 0,

‚ n ą 2,

‚ pM, gq is the pn` 1q-dimensional subextremal Reissner-Nordström-de Sitter solution

given by the metric g “ ´ 1

V
dr2 ` V dt2 ` r2dΩ2, where V “ r2 ` 2M

rn´2
´ e2

rn´1
´ 1,

and dΩ2 is the metric of the unit pn´ 1q-dimensional sphere Sn´1,

‚ k ą n
2
` 2, and

‚ φ is a smooth solution to 2gφ “ 0 such that

}φ}HkpCH`
1

q ă `8 and }φ}HkpCH`
2

q ă `8,

where CH`
1 » CH`

2 » R ˆ Sn´1 are the two components of the future cosmological

horizon, parameterised by the flow parameter of the global Killing vector field
B
Bt.

Then there exists a r0 large enough so that for all r ě r0, }Brφpr, ¨q}L8pRˆSn´1q À r´3`δ.

Using a method similar to the one we used to show Rendall’s conjecture in Theorem 3.2,
we can improve the almost-exact bound of r´3`δ to r´3.

42



Remark 6.2. As observed in [9, Remark 1.4], this decay rate bound of r´3 for Brφ is in
fact the decay rate one would expect in light of Rendall’s conjecture. We had noted in
Remark 5.2, that one may compare the RNdS metric in the cosmological region with large
r in the pr, t, . . .q-coordinates with the metric of de Sitter spacetime in flat FLRW form
in pτ, x, . . .q-coordinates, with r „ eτ . Having settled Rendall’s Conjecture in de Sitter
spacetime in flat FLRW form, namely by Theorem 3.2, we know that Bτφ „ e´2τ . Also,

dr

dτ
“ eτ .

Thus we expect that

Brφ „
Bτφ
Bτr

„ e´2τ

eτ
“ e´3τ “ pe´τ q3 „ 1

r3
.

Thus our improved version of Theorem 6.1 is the following result.

Theorem 6.3.

Suppose that

‚ M ą 0,

‚ e ě 0,

‚ n ą 2,

‚ pM, gq is the pn` 1q-dimensional subextremal Reissner-Nordström-de Sitter solution

given by the metric g “ ´ 1

V
dr2 ` V dt2 ` r2dΩ2, where V “ r2 ` 2M

rn´2
´ e2

rn´1
´ 1,

and dΩ2 is the metric of the unit pn´ 1q-dimensional sphere Sn´1,

‚ k ą n
2
` 2, and

‚ φ is a smooth solution to 2gφ “ 0 such that

}φ}HkpCH`
1

q ă `8 and }φ}HkpCH`
2

q ă `8,

where CH`
1 » CH`

2 » R ˆ Sn´1 are the two components of the future cosmological

horizon, parameterised by the flow parameter of the global Killing vector field
B
Bt.

Then there exists a r0 large enough so that for all r ě r0, }Brφpr, ¨q}L8pRˆSn´1q À r´3.

Proof. We have the following estimates. There exists an r0 large enough so that for all
r ě r0,

}:φpr, ¨q}L8pR,Sn´1q À 1, and } {̊∆φpr, ¨q}L8pR,Sn´1q À 1.

These can be showed by following [9, §3.2]. For the details, we refer the reader to Step 1
of the proof of [28, Theorem 5.3].
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Next, we will write the wave equation in new coordinates which ‘equalises’ the magnitude
of the coefficient weights for the r and t coordinates in the matrix of the metric. To this

end, we define ρ “
ż r

r0

1

V prqdr. Then
dρ

dr
“ 1

V prq and V prq
d

dr
“ d

dρ
.

With a slight abuse of notation, we write V pρq :“ V prpρqq. We have

g “ ´ 1

V
dr2 ` V dt2 ` r2dΩ2 “ ´V dρ2 ` V dt2 ` prpρqq2dΩ2.

The wave equation 2gφ “ 0 can be rewritten as Bµp
?´g Bµφq “ 0, which becomes

BµpV rn´1Bµφq “ 0. Separating the differential operators with respect to the pρ, t, . . .q
coordinates, we obtain Bρprn´1Bρφq “ rn´1 :φ` V rn´3 {̊∆φ. Integrating from ρ0 :“ ρpr0q “ 0
to ρ “ ρprq, we obtain

rn´1Bρφ´ rn´1
0 pBρφq|ρ“ρ0

“
ż ρ

0

´
rn´1 :φ` V rn´3 {̊∆φ

¯
dρ,

and so rn´1V Brφ “ rn´1
0 V pr0q pBrφq|r“r0

`
ż ρ

0

´
rn´1 :φ` V rn´3 {̊∆φ

¯
dρ, that is,

Brφ “
´r0
r

¯n´1V pr0q
V prq pBrφq|r“r0

` 1

rn´1V

ż ρ

0

´
rn´1 :φ` V rn´3 {̊∆φ

¯
dρ.

Hence

}Brφpr, ¨q}L8pRˆSn´1q ď
´r0
r

¯n´1V pr0q
V prq }pBrφqpr0, ¨q}L8pRˆSn´1q

` 1

rn´1V

ż ρ

ρ0

´
rn´1}:φpr, ¨q}L8pRˆSn´1q`V rn´3} {̊∆φpr, ¨q}L8pRˆSn´1q

¯
dρ.

Using the fact that V „ r2 for r ě r0, with r0 large enough, and the estimates from Step
1 above, we obtain

}Brφpr, ¨q}L8pRˆSn´1q À
A

rn`1
` B

rn`1

ż ρ

ρ0

prpρqqn´1
dρ À A

rn`1
` B

rn`1

ż r

r0

rn´1 1

V prqdr

À A

rn`1
` B1

rn`1

ż r

r0

rn´3dr.

Recalling that n ą 2, we have }Brφpr, ¨q}L8pRˆSn´1q À
A

rn`1
` B1

rn`1

1

pn´ 2qpr
n´2´rn´2

0 q À 1

r3
.

This completes the proof of Theorem 6.3.

7 Conclusions and outlook

In this thesis, we obtained exact decay rates for solutions to the Klein-Gordon equation
in two expanding cosmological spacetimes, namely the de Sitter universe in flat FLRW
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form, and the cosmological region of the RNdS model. This was achieved by using energy
methods, assuming that initial data for the Cauchy problem has finite higher order energies.
We also improved a previously established decay rate of the time derivative of the solution
to the wave equation, in an expanding de Sitter universe in flat FLRW form, proving
Rendall’s conjecture. A similar improvement was also given for the wave equation in the
cosmological region of the RNdS spacetime.

A natural question for future investigation that arises is whether we can obtain similar
results assuming weaker regularity, in terms of the order of the Hk-norm, of the initial
data.

A Fourier modes (de Sitter in flat FLRW form)

In this appendix, we give the details of the Fourier modal analysis that motivates the
specific estimates given in Theorem 4.1, starting with spatially periodic solutions to the
Klein-Gordon equation.

Let T
n “ R

n{p2πZqn. Suppose that the ‘spatially periodic’ φ : R ˆ T
n Ñ R satisfies the

Klein-Gordon equation (4).

Writing φ “
ÿ

kPZn

ckptqeixk,xy, (4) yields ´:ck ´
n 9a

a
9ck `

1

a2
δpqikpikqck ´m2ck “ 0, that is,

:ck `
n 9a

a
9ck `

k2

a2
ck `m2ck “ 0,

where k2 :“ xk,ky. So
d

dt
pan 9ckq“nan´1

9a 9ck`an:ck“nan´1
9a 9ck`an

ˆ
´n 9a

a
9ck´

´k2
a2
`m2

¯
ck

˙
“´an

ˆ
k2

a2
`m2

˙
ck,

that is,
d

dt
pan 9ckq ` an´2pk2 `m2a2qck “ 0. (16)

Let τ “
ż

1

aptqdt. Then
d

dt
“ 1

a

d

dτ
, and so (16) becomes (with d

dτ
“: 1 )

1

a

ˆ
an

1

a
c1
k

˙1
` an´1pk2 `m2a2qck “ 0,

that is,
pan´1c1

k
q1 ` an´1pk2 `m2a2qck “ 0. (17)

Defining dk by ck “: a´n´1

2 dk, we have c1
k
“ a´n´1

2 d1
k
´ n´ 1

2
a´n´1

2
´1a1dk. (17) yields

ˆ
a

n´1

2 d1
k
´ n´ 1

2
a

n´1

2
´1a1dk

˙1
` an´1

2 pk2 `m2a2qdk “ 0,

45



that is,

d2
k
`

ˆ
k2 `m2a2 ´ pn´ 1q

2

a2

a
´ pn´ 1qpn´ 3q

4

´a1

a

¯2
˙
dk “ 0. (18)

Now if aptq “ et, then we may take τ “ ´e´t, so that ´t “ logp´τq, that is, ´τ “ e´t.
We remark that relative to our earlier use of conformal coordinates in (3) on page 15, we
are taking t0 “ `8 for simplicity.

We then have a “ e´ logp´τq “ ´1

τ
, a1 “ 1

τ 2
, a2 “ ´ 2

τ 3
. Hence (18) becomes

d2
k
`

ˆ
k2`m

2

τ 2
´n ´ 1

2

´
´ 2

τ 3

¯´
´ τ
1

¯
´pn ´ 1qpn´ 3q

4

´ 1

τ 2
p´τq2
1

¯˙
dk“0,

that is,

d2
k
`

´
k2 ´ µ

τ 2

¯
dk “ 0, (19)

where µ :“ n ´ 1 ` pn ´ 1qpn´ 3q
4

´m2. The general solution to this equation is14 given

by
C1

?
τ Jνp|k|τq ` C2

?
τ Yνp|k|τq, (20)

where ν satisfies ν2 “ 1

4
` µ “ n2

4
´m2. Here Jν is the Bessel function of the first kind,

Jνpzq “
8ÿ

m“0

p´1qm
m!Γpm` ν ` 1q

´z
2

¯2m`ν

,

and Yν is the Bessel function of the second kind,

Yνpzq “
Jνpzq cospνπq ´ J´νpzq

sinpνπq ,

where the right hand side is replaced by its limiting value if ν is an integer. Without loss
of generality, in the solution (20), we may only consider ν such that Repνq ě 0.

We note that as t Ñ 8, ´τ “ e´t Œ 0, and so τ Õ 0. We now use the asymptotic
expansions of Jνpzq and Yνpzq as z Õ 0 (see e.g. [1, 9.1.7-9]):

1˝ If ν ‰ 0 (that is, m ‰ ˘n
2
), then as τ Õ 0, we have

Jνp|k|τq “ Cp´τqν `Op|τ |q,
Yνp|k|τq “ Ap´τqν `Bp´τq´ν ` Cp´τq2´ν `Op|τ |q.

So as τ Õ 0 or tÑ8, we have

dk “ Ap´τq 12`ν `Bp´τq 12´ν ` Cp´τq 52´ν `Op|τ |q
“ Aep´ 1

2
´νqt `Bep´ 1

2
`νqt ` Cep´ 5

2
`νqt `Ope´tq.

14See for example [38, p.95]. For the relevant notation, see also [38, pages 82,100,101].
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But ck “ a´n
2

` 1

2dk “ ep´n
2

` 1

2
qtdk, and so

ck “ Aep´n
2

´νqt `Bep´n
2

`νqt ` Cep´n
2

´2`νqt `Ope´n`1

2
tq

as tÑ `8. We recall that Repνq ě 0, and so keeping only the dominating term, we

have |ck| “ C 1e´pn
2

´Repνqqt `Ope´n`1

2
tq as tÑ `8. Thus we expect φ to satisfy

}φpt, ¨q}L8pRnq À
#
a´n

2 if |m| ą n
2
,

a´n
2

`
b

n2

4
´m2

if |m| ă n
2
.

2˝ If ν “ 0 (that is, m “ ˘n
2
), then as τ Õ 0, we have

Jνp|k|τq “ C `Op|τ |q,
Yνp|k|τq “ C logp´τq `Op|τ |q.

This implies that dk “ pA`Btqe´ 1

2
t `Ope´tq as tÑ `8.

Hence |ck| “ pA`Btqe´n
2
t `Ope´n`1

2
tq. Thus we expect φ to satisfy

}φpt, ¨q}L8pRnq À a´n
2 log a if m “ ˘n

2
.

Summarising, φ is expected to have the decay

}φpt, ¨q}L8pRnq À

$
’’’’&
’’’’%

a´n
2 if |m| ą n

2
,

a´n
2 log a if |m| “ n

2
,

a´n
2

`
b

n2

4
´m2

if |m| ă n

2
.

This motivates the decay estimates in Theorem 4.1.

B A technical lemma

In this appendix, we prove the technical result we had used in the proof of Theorem 4.1,
in Section 4.

Lemma B.1. If f, g P H1pRnq, then lim
rÑ`8

ż

Sr

fgdσr “ 0.

Proof. By the Cauchy-Schwarz inequality,

ˇ̌
ˇ̌
ż

Sr

fgdσr

ˇ̌
ˇ̌
2

ď
ż

Sr

|f |2dσr ¨
ż

Sr

|g|2dσr.

So it is enough to show that lim
rÑ8

ż

Sr

|f |2dσr “ 0. Suppose this does not hold.
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Then there exists an increasing sequence prkqk such that rk
kÑ8ÝÑ 8, and there exists an

ǫ ą 0 such that for each k, ż

Srk

|f |2dσrk ą ǫ.

(The plan is to use the trace theorem to fatten these Srk -slices to ‘annuli’ Ak and obtain
}f}2

H1pAkq ą rǫ ą 0 for all k, giving rise to the contradiction that

8 ą }f}2H1pRnq ą
ÿ

k

}f}2H1pAkq ą
ÿ

k

ǫ̃ “ `8.

So we will construct a subsequence prkmqm of prkqk and a sequence pδmqm of positive numbers
such that rk1 ă rk1 ` δ1 ă rk2 ă rk2 ` δ2 ă rk3 ă ¨ ¨ ¨ , and such that for the ‘annuli’
Am :“ tx : rkm ă |x| ă rkm ` δmu, we have }f}2

H1pAmq ą rǫ. We will need to keep track of

the constants in the trace theorems on our annuli Am, and we will use the following [22,
p.41].)

Theorem B.2. Let Ω be a bounded open subset of Rn with a Lipschitz boundary Γ. Then
for f P H1pΩq and for all ǫ P p0, 1q,

}f}2L2pBΩq ď
}µ}C1pΩq

δ

´
ǫ1{2}∇f}2L2pΩq ` p1` ǫ´1{2q}f}2L2pΩq

¯
,

where µ P C1pΩ,Rnq is such that µ ¨ n ě δ on BΩ, n being the outer normal vector.

If Ω is an annulus A “ tx : r ă }x} ă Ru (which is clearly bounded, open, and also it has
the Lipschitz boundaries which are the two spheres Sr and SR), then with µpxq “ x, we
have

µ ¨ n “ }x} “
"
R on SR,

r on Sr

*
ě r “: δ.

Also, if we take ǫ “ 1{4, then }f}2L2pSrq ď }f}2L2pBAq ď 3
}µ}C1pAq

r
}f}2H1pAq. As

}µ}C1pAq “ max
A
}µ} `max

A
|∇ ¨ µ| “ R ` n,

we obtain }f}2L2pSrq ď 3
R ` n
r

}f}2H1pAq. Now we will construct prkmqm and pδmqm.

We choose k1 such that rk1 ą n. Let δ1 be such that 0 ă δ1 ă rk1´n. Then for the annulus
A1 :“ tx : rk1 ă }x} ă rk1 ` δ1u, we have

}f}2H1pA1q ě
rk1{3

prk1 ` δ1q ` n
}f}2L2pSrk1

q ě
1{3

1` δ1`n
rk1

ǫ ą 1{3
1` 1

ǫ “ ǫ

6
“: rǫ.

Suppose rk1, . . . , rkm, δ1, . . . , δm possessing the desired properties have been constructed.
Choose km`1 such that rkm`1

ą rkm ` δm. Let δm`1 be such that 0 ă δm`1 ă rkm`1
´ n.
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Then for the annulus Am`1 :“ tx : rkm`1
ă }x} ă rkm`1

` δm`1u, we have

}f}2H1pAm`1q ą
rkm`1

{3
prkm`1

` δm`1q ` n
}f}L2pSrkm`1

q ě
1{3

1` δm`1`n

rkm`1

ǫ ą ǫ

6
“ rǫ.

This completes the induction step.

So we have arrived at the contradiction that `8 ą }f}2H1pRnq ě
ÿ

m

}f}2H1pAmq ě
ÿ

m

rǫ “ `8.

This shows that our original assumption was incorrect, and so lim
rÑ8

ż

Sr

|f |2dσr “ 0.

An analogous result also holds for the cylinder R ˆ Sn´1. This was used in the proof of
our Theorem 5.3.

Lemma B.3. If f, g P H1pRˆ Sn´1q, then lim
tÑ`8

ż

Sn´1

fgdΩ “ 0 “ lim
tÑ´8

ż

Sn´1

fgdΩ.

Proof. (Sketch.) The proof is based on the same idea as the above, but is somewhat
simpler, since the radius of Sn´1 doesn’t change, and the constants one has in the trace
theorem for a ‘cylindrical band’ of the form pa, bq ˆ Sn´1 already work, as opposed to
having to keep careful track, via Theorem B.2, of the constants in the earlier case when
the radii of the Sn´1

r were changing. Proceeding in the same way as in the previous lemma,
we assume that

 
ˆ

lim
tÑ`8

ż

Sn´1

|f |2dΩ “ 0

˙
,

and so there exists an ǫ ą 0 and a sequence ptkqkPN such that lim
kÑ8

tk “ `8, and

lim
kÑ`8

ż

Sn´1

|fptk, ¨q|2dΩ ą ǫ.

In order to fatten the ‘circle’ ttku ˆ Sn´1 to a cylindrical band I “ ptk, tk ` δq ˆ Sn´1,
while keeping the L2-norm of f on the band uniformly (in k) bigger than a fixed positive
quantity, one can use the inequality }fptk, ¨q}L2pSn´1q ď C}f}H1pIˆSn´1q. This follows from
[36, Prop. 4.5, p.287], by taking Ω “ rtk, tk ` δs ˆ Sn´1. The rest of the proof is along the
same lines.

C Sharpness of bound when |m| “ n
2
in Theorem 4.1

In this appendix, we will show the sharpness of the bound for the key estimate of the proof
of the |m| “ n

2
case of Theorem 4.1 (which was about the decay of the solution to the

Klein-Gordon equation in the de Sitter universe in flat FLRW form).
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Let us recall this bound: for all t ě t0, }φpt, ¨q}L2pRnq À a´n
2 log a.

If |m| “ n
2
, then with ψ :“ a

n
2 φ, we had seen that :ψ ´ 1

a2
∆ψ “ 0.

We will give a solution ψ satisfying }ψpt, ¨q}L2pRnq „ A ` Bt as t Ñ 8, showing that

}φpt, ¨q}L2pRnq „ pA ` Btqa´n
2 as t Ñ 8, and so the bound }φpt, ¨q}L2pRnq À pA ` Btqa´n

2

for all large t cannot be improved.

We want
:ψ ´ 1

e2t
∆ψ “ 0. (21)

Taking the Fourier transform with respect to only the (spatial) x-variable, and denoting

pψpt, ξq :“
ż

Rn

ψpt,xqeixξ,xydnx,

(21) becomes
B2
Bt2

pψpt, ξq ` }ξ}
2

e2t
pψpt, ξq “ 0, (22)

which is a family of ordinary differential equations in t, parameterised by ξ P R
n. For a

fixed ξ P Rn, the general solution to the ODE (22) is given by

pψpt, ξq “ C1pξq ¨ J0p}ξ}e´tq ` C2pξq ¨ Y0p}ξ}e´tq,

where J0 is the Bessel function of first kind and of order 0, and Y0 is the Bessel function
of second kind and of order 0. In order to construct our ψ, we will make special choices of
C1 and C2.

We recall [1, (9.1.7-8)] that J0pzq „ 1, and Y0pzq „
2

π
log z as z Œ 0 (z P R).

Now as tÑ8, e´t Œ 0, and so from the above limiting behaviour of J0 and Y0, we obtain
that as tÑ8,

pψpt, ξq „ C1pξq ¨ 1` C2pξq ¨
ˆ
2

π
logp}ξ}e´tq

˙
“ C1pξq `

2

π
C2pξq log }ξ} ´

2

π
t ¨ C2pξq.

By Plancherel’s identity [36, Prop. 3.2], }pψpt, ¨q}L2pRnq “ }ψpt, ¨q}L2pRnq. Since we want the
linear behaviour in t of }ψpt, ¨q}L2pRnq, we keep C2 nonzero, but may take C1 ” 0. Then as

tÑ8, pψpt, ξq “ C2pξq ¨ Y0p}ξ}e´tq. In order to have pψpt, ¨q (and so also ψpt, ¨q) in L2pRnq
for all t, we choose C2 to have a sufficiently fast decay.

We recall [1, §9.2.2] that Y0pzq “
c

2

πz

ˆ
sin

´
z ´ π

4

¯
`O

´ 1

|z|
¯˙

as z Ñ8 (z P R). So

Y0p}ξ}e´tq “
d

2

π}ξ}e´t

ˆ
sin

´
}ξ}e´t ´ π

4

¯
`O

´ 1

}ξ}e´t

¯˙
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as }ξ} Ñ `8 (and t is kept fixed). So to arrange pψpt, ¨q P L2pRnq for all t, we may take

C2pξq :“
}ξ}

p}ξ}2 ` 1q1`n
4

.

(Also this choice makes ξ ÞÑ C2pξq log }ξ} P L2pRnq, which will be needed below.)

Then pψpt, ¨q P L2pRnq for all t.

Also, as tÑ8, pψpt, ξq „ 2

π

ˆ }ξ}
p}ξ}2 ` 1q1`n

4

log }ξ}
loooooooooooomoooooooooooon

“:fPL2pRnq

´t }ξ}
p}ξ}2 ` 1q1`n

4looooooomooooooon
“:gPL2pRnq

˙
, and

}pψpt, ¨q}L2pRnq ě
2

π

´
t }g}L2pRnqlooomooon

‰0

´}f}L2pRnq

¯
ě 0

for large t.
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