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Abstract

Linear time-invariant systems are ordinary differential equation systems that
arise in control engineering where they are used to model e.g. signal pro-
cessing, chemical processing and economics. A study is conducted on linear
time-invariant systems, their solution and three key properties they have:
Observability, reachability and stability. Three algorithms, Gaussian elimi-
nation, singular value decomposition and QR decomposition, are studied for
their effectiveness to determine whether a system is reachable and/or observ-
able, and examples are given to show why the singular value decomposition
is the preferred method.
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Populärvetenskaplig
Sammanfattning

Linjära tids-invarianta system är ordinära differential ekvation system som
förekommer inom Reglerteknik där de används för att modellera blandt an-
nat signal-processering, kemiska processer och ekonomi. Ett studie utförs
p̊a linjära tids-invarianta system, deras lösningar och tre nyckel egenskaper
som de besitter: Observabilitet, åtkomlighet, och stabilitet. Tre algoritmer,
Gaussian elimination, singular värde dekomposition och QR dekomposition
studeras för att bedömma om ett system är åtkomligt och/eller observer-
bart, och exempel ges för att visa varför singularvärde dekomposition är den
föredragna metoden.
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Introduction

Linear time-invariant systems are mathematical models based on first order
linear differential equations that arise in many fields such as physics, biology
and economics among others. Such systems can e.g. describe the voltage in
an RLC electrical circuit, or how the balance of a bank account with com-
pounded interest evolves over time. The system has three key components,
an input, a state and an output.

A central theme of importance regarding linear time-invariant systems and
their solutions is whether the system is:

• Reachable, that is whether any state in the state space of the system
can be reached from the origin, using a suitable input.

• Observable, i.e. can the system’s initial state be determined simply
by observing the outputs of the system.

• Stable, i.e. is the solution of the system stable.

In this thesis each of these properties is defined and methods are provided to
determine whether a system has them. These properties will be derived for
discrete linear time-invariant systems only, but they are analog for continu-
ous systems and thus the results provided will work for those too. Finally
some algorithms used in the computation of these properties will be studied
along with their effectiveness

Chapter 1 will introduce the linear time-invariant system, what its com-
ponents are and what a general solution to the system is. Chapter 2 will
define reachability and observability and properties that are used to de-
termine them. Chapter 3 introduces the Z-transform, a method to find a
solution to a linear time-invariant system that converts the system to a ra-
tional polynomial equation. Chapter 4 will introduce stability, two of its
many definitions, how stability is determined and how the two definitions
discussed relate to each other. Finally chapter 5 will discuss common al-
gorithms used in numerical methods that are used in the determination of
reachability and observability. Examples will be provided in each chapter
to demonstrate their meaning.
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Chapter 1

The Linear Time-Invariant
System

1.1 The Linear Time-Invariant System Structure

The linear time-invariant system is a system of first order linear differential
or difference equation with constant coefficients. It is often called the State
vector equation. It is of the form [9, p. 2]:

xpk ` 1q “ Axpkq ` bupkq, xp0q “ x0

ypkq “ cxpkq ` dupkq
(1.1)

where:

• A is an nˆ n matrix.

• b and c are n column and row vectors respectively.

• d is a scalar.

• xpkq is an n column vector called the state vector.

• upkq is a scalar called the input.

• ypkq is a scalar called the output.

• upkq and ypkq are often referred to as input and output signals.

• x0 is the initial state of xpkq.

• k is the independent variable.

9



10 CHAPTER 1. THE LINEAR TIME-INVARIANT SYSTEM

The continuous case is noted the same, except it uses t as the independent
variable. Such a system is often denoted pA, b, c, dq. The two most common
inputs are the unit impulse signal and the unit step signal [7, p. 30]:

δpkq “

#

1, if k “ 0

0, otherwise
The unit impulse signal

upkq “

#

0, if k ă 0

1, if k ě 0
The unit step signal

Both signals appear often in physical systems and the unit impulse signal
has the special property that any other input can be written as a sum of
unit impulses.

The system above is called a single-input, single-output system as opposed
to a multi-input, multi-output system where b, c and d can be matrices
(denoted by B,C and D) instead of vectors. Such a system arises as well in
control theory but the focus here will be on the single input, single output
system since the theory discussed here applies to both systems.

1.2 Solutions to a Discrete Linear Time-Invariant
System

A general solution to the state of (1.1) is found with a simple iterative
process:

xp0q “ x0

xp1q “ Ax0 ` bup0q

xp2q “ Axp1q ` bup1q “ A2x0 `Abup0q ` bup1q

...

xpkq “ Akx0 `
k´1
ÿ

j“0

Ak´j´1bupjq, k ě 1

(1.2)

And in turn, the output is given by:

ypkq “ cAkx0 `
k´1
ÿ

j“0

cAk´j´1bupjq ` dupkq, k ě 1 (1.3)
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1.3 Examples

The cattle Ranch problem

Consider a simplified model for the population of a cattle farm [3, p. 24].
The life stages of the cattle are split into three age categories: calve, mature
cows and old cows. In one year, calves grow into mature cows, and mature
cows into old cows (given they’re not removed from the population). The
mature and old cows reproduce, making a calve over the year. Let:

• x1pkq, x2pkq and x3pkq denote the number of calves, mature cows and
old cows at year k respectively.

• a1 and a2 be the reproduction rate of the mature cows and the old
cows respectively.

• a3, a4, a5 be the survival rate of the calves, mature cows and old cows
respectively, from one year to the next, which can be affected by e.g.
deceases or accidents.

• a6 the proportional number of mature cows removed from the popu-
lation at year k, which in turn gives the output of the ranch.

• upkq is the number of outside calves acquired to be introduced to the
population to ensure genetic diversity in the cattle.

Based on these assumptions the number of cows at each live stage in year
k ` 1 is given by:

• x1pk ` 1q “ a1x2pkq ` a2x3pkq ` upkq

• x2pk ` 1q “ a3x1pkq ´ a6x2pkq

• x3pk ` 1q “ a4x2pkq ` a5x3pkq.

So by letting xpk ` 1q “

»

–

x1pk ` 1q
x2pk ` 1q
x3pk ` 1q

fi

fl, c “
“

0 a6 0
‰

and b “

»

–

1
0
0

fi

fl, the

model can be expressed as:

xpk ` 1q “

»

–

0 a1 a2
a3 ´a6 0
0 a4 a5

fi

flxpkq `

»

–

1
0
0

fi

flupkq

ypkq “
“

0 a6 0
‰

xpkq

Assuming no calves are added into the population, and using (1.2), with an
initial value xp0q “ x0, the state solution is given by:
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xpkq “

»

–

0 a1 a2
a3 ´a6 0
0 a4 a5

fi

fl

k

x0

And in turn the output of the ranch is given by:

ypkq “
“

0 a6 0
‰

»

–

0 a1 a2
a3 ´a6 0
0 a4 a5

fi

fl

k

x0



Chapter 2

Observability and
Reachability

Two important properties of linear control systems are reachability and
observability.

2.1 Reachability

Reachability is the idea that a system, with a zero initial state, can be
manipulated to yield any desired state with a suitable input. For example, an
economist might want to be able to control the rate of inflation by increasing
or decreasing taxes.

Definition: Consider the system (1.1). It is called completely reachable if,
for the initial state xp0q “ 0 and any desired state xf , there exists a finite
positive integer k1 and a discrete scalar input u, such that xpk1q “ xf [9, p.
46].

For a linear time invariant system there is a simple condition that can be
used to determine whether the system is completely reachable or not.

Theorem: Let the nˆn matrixR “ rb|Ab|A2b|...|An´1bs be the reachability
matrix of the system (1.1). Then, the system is completely reachable if and
only if RankpRq “ n [9, p. 46].

Proof: ”ð”. Assume rankpRq “ n. The goal is to find scalar inputs up0q,
up1q, ..., upn ´ 1q, so that any xf can be attained. Let u be the vector of

13
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the scalar inputs in reverse order, u “

»

—

—

—

–

upn´ 1q
upn´ 2q

...
up0q

fi

ffi

ffi

ffi

fl

. By eq. (1.2) the state

vector xpnq is given by:

xpnq “ Anx0
loomoon

“0

`

n´1
ÿ

j“0

An´j´1bupjq

“ An´1bup0q `An´2bup1q ` ...`Abupn´ 2q ` bupn´ 1q

“ rb|Ab|A2b|...|An´1bs

»

—

—

—

–

upn´ 1q
upn´ 2q

...
up0q

fi

ffi

ffi

ffi

fl

“ Ru

ðñ xpnq “ Ru

Since R is of full rank n, it is invertible and the input vector u can be
uniquely determined with matrix inversion. By picking k1 “ n in the def-
inition above any desired state xf can be attained, and thus the system is
completely reachable.

”ñ”. Now, consider the case where the system is completely reachable but
assume rank(Rq ă n. Then the columns of R are not linearly independent,
and there exists a state xf that is not in the column space of R, which is
a contradiction to the assumption that the system is completely reachable.
Thus the rank of R must equal n.

Note: The desired state might be reached before the time k1, but it is
guaranteed to be reached when k1 “ n.

Example:

Consider the cattle ranch problem from chapter 1. The reachability matrix
is given by:

R “ rb|Ab|A2bs “

»

–

1 0 a1a3
0 a3 ´a3a6
0 0 a3a4

fi

fl

If the survivability of the calves drops to zero, then rankpRq “ 1 and if the
survivability of the mature cows drops to zero, then rankpRq “ 2 and in
either case the system will not be reachable.
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On a final note, reachability must not be confused with the concept of con-
trollability, which is the idea of a system being able to reach the zero state
from any given initial state.

Definition:

The system (1.1) is called completely controllable if for any initial state
xp0q “ x0, there exists a finite, positive integer k1 and input upkq, k “
0, 1, ..., k1 ´ 1 such that xpk1q “ 0 [9, p. 56].

In the continuous case reachability and controllability are equivalent, how-
ever in the discrete case there exist systems that can be controllable but
not reachable. But as Rugh notes [10, p. 463], there exist systems that are
controllable but highly trivial such as:

xpk ` 1q “ 0xpkq ` 0upkq

xp0q “ x0

and the fact that a system might fail to be reachable because the interval for
k might be simply too short or that the matrix A might not be invertible.
Because of this reachability is usually considered rather than controllability
when discrete systems are analysed.

2.2 Observability

Observability is the idea that one can observe any given state of a system
only from its output.

Definition: Consider again the system (1.1), and let upkq “ 0 for all k ě 0.
The system is called completely observable if there exists a finite positive
integer k1 such that knowledge of yp0q, yp1q, ..., ypk1 ´ 1q is sufficient to
uniquely determine the initial state x0 [9, p. 48].

In the linear time invariant case, there is a simple condition that can be
used to determine if a system is completely observable.

Theorem: Let the nˆn matrix O “

»

—

—

—

–

c

cA
...

cAn´1

fi

ffi

ffi

ffi

fl

be the observability matrix

of the system (1.1). Then, the system is completely observable if and only
if rankpOq “ n [9, p. 48].

Proof:
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”ð”. Assume that rankpOq “ n, let upkq “ 0, k ě 0, and y “

»

—

—

—

–

yp0q
yp1q

...
ypn´ 1q

fi

ffi

ffi

ffi

fl

be a vector of the outputs. Using eq. (1.3), the output is given by ypkq “
cAkx0 for k “ 0, 1, ..., n´ 1. Then:

y “

»

—

—

—

–

yp0q
yp1q

...
ypn´ 1q

fi

ffi

ffi

ffi

fl

“

»

—

—

—

–

cx0
cAx0

...
cAn´1x0

fi

ffi

ffi

ffi

fl

“

»

—

—

—

–

c

cA
...

cAn´1

fi

ffi

ffi

ffi

fl

x0 “ Ox0

Since O is of full rank n and thus invertible, and assuming all the outputs
in y are known, any initial state x0 can be uniquely determined by picking
k1 “ n in the definition and performing matrix inversion. Thus the system
is completely observable.

”ñ”. Proof by contradiction. The goal here is to show that if O is not
of full rank n, then two different initial states x0 can be found from the
outputs of the system. Assume the system is completely observable but the
rankpOq ă n. Then, since O is not invertible, there exists a vector x0 ‰ 0
such that Ox0 “ y “ 0.

However, the initial vector x0 “ 0 also gives the output vector y “ 0, i.e.
two different vectors x0 exist that can be derived from y “ 0. This is a
contradiction to the assumption that the system is completely observable.
Thus the rank of O has to equal n.

Example:

Consider again the cattle ranch problem from chapter 1. Its observability
matrix is given by:

O “

»

–

0 a6 0
a3a6 ´a26 0
´a3a

2
6 a6pa1a3 ` a

2
6q a2a3a6

fi

fl

Thus, if a2, a3 or a6 equal 0, i.e. if:

• No mature cows are taken from the population.

• The survival rates of the calves drops to zero.

• the reproduction rate of the old cows drops to zero

the system will not be observable.
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While the definitions of reachability and observability, along with the condi-
tions for a system to be completely reachable/observable, were only derived
for discrete linear time invariant systems, the analogous conditions for a
continuous linear time invariant system are the same [9, p. 40, p. 44].
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Chapter 3

The Z-Transform

A fundamental part of discrete linear systems is the determination of a
meaningful solution to a system. While (1.2) gives a general solution it
is not necessarily meaningful. One way to solve such a problem is to use
the Z-transform, which converts a system of functions such as (1.1) into an
infinite power series.

Step by step process of the method is:

1. Taking the Z-transform of a system.

2. Finding a closed form expression of the transform, which yields a ra-
tional polynomial.

3. Simplify the closed form if needed.

The resulting function can then be compared to a table of inverse Z-transforms
to determine its exact form, be it the state or the output. The Z-transform
is the discrete analog of the Laplace transform for continuous functions, and
is often called the generating function.

Definition: Let f : Z Ñ R, be a given discrete function. The unilateral
Z-transform, Zrf spzq of f , is a function F : CÑ C, defined as [2, p. 247]:

Zrf spzq “ F pzq “
8
ÿ

k“0

fpkqz´k

In a similar manner, the bilateral transform has the same definition, except
the summation index starts at ´8 in that case.

To determine the closed form expression of a Z-transform one can e.g. in-
spect the power series generated by the transform.

19



20 CHAPTER 3. THE Z-TRANSFORM

3.1 Power Series Inspection

This method is best described by an example. It revolves around manipu-
lation of the sequence of F pzq to yield a closed form expression.

Example:

Let fpkq “ p´1qk, k ě 0. Then, its Z-transform is given by:

Zrf spzq “ F pzq “
8
ÿ

k“0

p´1qk

zk
“ 1´

1

z
`

1

z2
´

1

z3
` ¨ ¨ ¨

Now consider the sequence:

F pzq `
1

z
F pzq “ F pzq

ˆ

z ` 1

z

˙

“ 1´
1

z
`

1

z2
´

1

z3
` ¨ ¨ ¨ `

ˆ

1

z
´

1

z2
`

1

z3
´

1

z4
` ¨ ¨ ¨

˙

“ 1`
p´1qk

zk`1

The last term in that sequence approaches 0 when |z| ą 1. Thus the sequence
becomes:

F pzq

ˆ

z ` 1

z

˙

“ 1

ðñ F pzq “
z

z ` 1

Which is the generating function for f with region of convergence |z| ą 1.

3.2 Region of Convergence

The importance of the region of convergence of Z-transforms is that without
it the transform can not be uniquely determined. Consider the two functions:

upkq “

#

1, if k ě 0

0, otherwise

and
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vpkq “ ´up´k ´ 1q “

#

´1 , if k ď ´1

0 , otherwise

The Z-transform of both functions is given by Upzq “ V pzq “ z
z´1 but the

regions of convergence is |z| ą 1 for Upzq while the region for V pzq is given
by |z| ă 1. This demonstrates the importance of regions of convergence.
It’s however worth noting that e.g. [9, p. 61] denotes the Z-transform as the
formal power series of the indeterminate z and does not question its region
of convergence or if it converges at all.

3.3 Properties of the Z-transform

The Z-transform has a number of properties that will be listed below without
proof [13].

• Linearity: Zrαf ` βgspzq “ αF pzq ` βGpzq, α, β P R

• Translation:

– Zrfp¨ ´ 1qspzq “ z´1F pzq

– Zrfp¨ ´ nqspzq “ z´nF pzq

– Zrfp¨ ` 1qspzq “ zF pzq ´ zfp0q

– Zrfp¨ ` 2qspzq “ z2F pzq ´ z2fp0q ´ zfp1q

– Zrfp¨ ` nqspzq “ znF pzq ´
řn´1
p“0 z

n´pfppq

• Scaling: Zrαnfp¨qspzq “ F pz{αq, α P Rz0

• powers multiplication: Zrknfp¨qspzq “ p´1qk
`

z d
dz

˘k
F pzq

• Convolution: Let hpkq “
ř8
j“0 fpk ´ jqgpjq, i.e. the convolution of

functions f and g. Then, Zrhspzq “ F pzqGpzq

3.4 Z-transform Pairs

Below is a table of well known Z-transform pairs [2, p. 252]. The functions
δpkq and upkq denote the unit impulse and unit step function respectively,
and α and γ are scalars in R.
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Signal Z-transform ROC

δpk ´ nq z´n C
upkq z

z´1 |z| ą 1

´up´k ´ 1q z
z´1 |z| ă 1

kupkq z
pz´1q2

|z| ą 1

k2upkq zpz`1q
pz´1q3

|z| ą 1

p´pαqkqupk ´ 1q z
z´α |z| ă |α|

αkupkq z
z´α |z| ą |α|

γkcospαkqupkq zpz´γcospαqq
z2´2γcospαkqz`γ2

|z| ą |α|

γksinpαkqupkq zγsinpαq
z2´2cospαqz`γ2

|z| ą |α|

3.5 The inverse Z-Transform

As mentioned in the beginning of this chapter, for the application of a Z-
transform of a system to be of any use, a process of inverting the transform
has to be available. There are three methods to do so that will be mentioned
here [2, p. 260]:

• Inspection of the power series expansion of the generating function.

• Partial fraction decomposition of the generating function (PFD).

• Contour integration.

The inverse Z-transform is denoted by fpkq “ Z´1rF spkq.

3.5.1 Contour Integral

The contour integration method defines the inverse Z-transform of function
F as [7, p. 758]:

Z´1rF spkq “ 1

2πi

¿

r

F pzqzk´1dz

where i is the imaginary unit and r is a counter clockwise contour around
the origin of the complex plane. This method requires advanced knowledge
in complex analysis and will not be further discussed here.
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3.5.2 Power Series Expansion

This method revolves around analyzing the power series expansion of the
function F pzq, e.g. if F pzq is a proper, reduced rational function, then by
performing the long division of the fraction one can acquire the infinite power
series which can be used along with the Z-transform pair table to determine
the inverse function of F .

Example:

Consider the function F pzq “ z
z´α , α P R with |z| ą |α|. Carrying out the

long division of the fraction gives:

z

z ´ a
“ 1`

a

z
`
a2

z2
` ... “

8
ÿ

k“0

akz´k

By comparing this sequence with the definition of a Z-transform it is readily
seen that the inverse Z-transform is fpkq “ ak, k “ 1, 2, 3, ...

3.5.3 Partial Fraction Decomposition

Consider the rational function F pzq “ P pzq
Qpzq , where P and Q are polynomials

in z. The method revolves around decomposing the function into a sum
of terms where the denominator in each term is a factor of Qpzq, then the
terms are inspected in the same manner as above, and their inverse transform
determined. By the linearity of Z-transforms, the inverse transform is thus
the sum of those terms, and is found by comparing them to a list of Z-
transform pairs.

Example:

Consider the function F pzq “ z2`3z
z2´8z`15

with |z| ą 5. To simplify the cal-

culation, the partial fraction decomposition of z´1F pzq will be derived, and
then F pzq will be determined by the proper multiplication of the variable z.
The goal is to find coefficients A and B such that:

z´1F pzq “
z ` 3

z2 ´ 8z ` 15
“

z ` 3

pz ´ 5qpz ´ 3q
“

A

z ´ 5
`

B

z ´ 3

Taking the last two equalities and multiplying the denominator over to the
right hand side gives:



24 CHAPTER 3. THE Z-TRANSFORM

z ` 3

pz ´ 5qpz ´ 3q
“

A

z ´ 5
`

B

z ´ 3

ðñ Apz ´ 3q `Bpz ´ 5q “ z ` 3

ðñ zpA`Bq ´ p3A` 5Bq “ z ` 3

Comparison of the coefficients on both sides of the last equation gives the
linear system:

#

A`B “ 1

3A` 5B “ ´3

which yields A “ 4, B “ ´3. Thus the partial fraction decomposition of
F pzq is given by F pzq “ 4z

z´5 ´
3z
z´3 . Now by comparing this generating

function to the table above thus gives an inverse transform fpkq “ 4 ¨ 5k ´
3k`1.

3.6 Solutions to the State Vector Equation

These tools can now be used to represent the equations in (1.1) as Z-
transforms in the following way, by taking the Z-transform of (1.1):

Zrxpk ` 1qspzq “ AZrxpkqspzq ` bZrupkqspzq
ðñ zXpzq ´ zx0 “ AXpzq ` bUpzq

ðñ pzI ´AqXpzq “ zx0 ` bUpzq

ðñ Xpzq “ pzI ´Aq´1rzx0 ` bUpzqs

Using this expression, the Z-transform of the output is given by:

Y pzq “ cXpzq ` dUpzq

“ c
“

pzI ´Aq´1zx0 ` pzI ´Aq
´1bUpzq

‰

` dUpzq

“ czpzI ´Aq´1x0 `
“

cpzI ´Aq´1b` d
‰

Upzq

(3.1)

and finally, now by performing partial fraction decomposition as needed, the
inverse transform of the state or the output can be found.
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Example:

Consider the system:

xpk ` 1q “

„

3 1
0 5



xpkq `

„

1
0



upkq

ypkq “
“

1 0
‰

xpkq

xp0q “ 0

with upkq “ 1, k ě 0, and Z-transform Upzq “ z
z´1 . The matrix pzI ´Aq´1

is given by:

1

pz ´ 3qpz ´ 5q

„

z ´ 5 1
0 z ´ 3



and thus the expression for the Z-transform of the state is:

Xpzq “
1

pz ´ 3qpz ´ 5q

„

z ´ 5 1
0 z ´ 3

 „

1
0



z

z ´ 1

“
z

pz ´ 1qpz ´ 3qpz ´ 5q

„

z ´ 5
0



“
z

pz ´ 1qpz ´ 3q

„

1
0



“

„

´1
2

z
z´1 `

1
2

z
z´3

0



where the last equality is derived with partial fraction decomposition. Us-
ing this state, and the equation derived in (3.1), yields the Z-transformed
output:

Y pzq “
“

1 0
‰

„

´1
2

z
z´1 `

3
2

z
z´3

0



“ ´
1

2

z

z ´ 1
`

3

2

z

z ´ 3

and finally, using the table of transforms, the output of the system is given
by:

ypkq “ ´
1

2
`

1

2
3k “

1

2
p3k ´ 1q



26 CHAPTER 3. THE Z-TRANSFORM



Chapter 4

Stability

Two different types of stability will be discussed here, asymptotic stabil-
ity and bounded-input-bounded-output stability (BIBO). Results will also be
provided to show how they relate to each other. Stability is usually the first
property that is considered when the behaviour of a system is analyzed [9, p.
113]. Other types of stability, such as exponential stability, exist but will
not be discussed here.

4.1 Asymptotic Stability

The first type of stability discussed is the asymptotic stability, which ana-
lyzes the stability of a system as time passes.

Definition: Consider System (1.1) and let upkq “ 0,@k ě 0. The system
is called asymptotically stable if for any inital state x0 limkÑ8 xpkq “ 0 [9,
p.121].

Informally, if it is assumed that the input to the system is always zero, the
solution to the system will, as time passes, converge to zero.

The following theorem gives a method to determine the asymptotic stability
of a linear time-invariant system.

Theorem: The system (1.1) is asymptotically stable if and only if the
eigenvalues of A all have magnitude less than unity [9, p. 122].

Proof: Using (1.2) and the definition of stability, (1.1) is asymptotically
stable if:

lim
kÑ8

xpkq “ lim
kÑ8

Akx0 “ 0 (4.1)

27
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By the Jordan normal form [4, p. 354] there exists a nonsingular matrix
T such that A can be written as A “ TJT´1, where J is a block diagonal
matrix:

J “

»

—

—

—

–

J1
J2

. . .

Jm

fi

ffi

ffi

ffi

fl

and each block Ji is of the form:

Ji “

»

—

—

—

—

—

—

—

–

λi 1 0

0 λi 1
. . .

. . .
. . .

. . . 0
. . .

. . . 1
0 λi

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

with λi being an eigenvalue of A. Furthermore, each block Ji can be written
as a sum of a scaled identity matrix Di “ λiI and a nilpotent matrix Ni,
Ji “ Di `Ni, where:

Ni “

»

—

—

—

—

—

—

—

–

0 1 0
. . .

. . .
. . .

. . .
. . . 0
. . . 1

0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Let j denote the dimension of Ji. Then, N j
i “ 0, and furthermore, each

successive power of Ni ”shifts” the superdiagonal to the right, i.e.:

N2
i “

»

—

—

—

—

—

—

—

–

0 0 1
. . .

. . .
. . .

. . .
. . . 1
. . . 0

0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

and so on. Thus (4.1) can be written as:
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lim
kÑ8

xpkq “ lim
kÑ8

pTJT´1qkx0 “ 0 (4.2)

By expanding (4.2), it becomes:

lim
kÑ8

pTJT´1qpTJT´1q...pTJT´1qx0 “ 0

ðñ lim
kÑ8

TJkT´1x0 “ 0

Now, inspecting the matrix Jk:

Jk “

»

—

—

—

–

J1
J2

. . .

Jm

fi

ffi

ffi

ffi

fl

»

—

—

—

–

J1
J2

. . .

Jm

fi

ffi

ffi

ffi

fl

...

»

—

—

—

–

J1
J2

. . .

Jm

fi

ffi

ffi

ffi

fl

looooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooon

k times

“

»

—

—

—

–

Jk1
Jk2

. . .

Jkm

fi

ffi

ffi

ffi

fl

“

»

—

—

—

–

pD1 `N1q
k

pD2 `N2q
k

. . .

pDm `Nmq
k

fi

ffi

ffi

ffi

fl

By the binomial theorem, each block equals:

pDi `Niq
k “

ˆ

k

0

˙

Dk
i `

ˆ

k

1

˙

Dk´1
i Ni ` ...`

ˆ

k

j ´ 1

˙

Dk´j`1
i N j´1

i

`

ˆ

k

j

˙

Dk´j
i N j

i ` ...`

ˆ

k

k

˙

Nk
i

loooooooooooooooooomoooooooooooooooooon

=0
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“

ˆ

k

0

˙

»

—

—

—

–

λki
. . .

λki

fi

ffi

ffi

ffi

fl

`

ˆ

k

1

˙

»

—

—

—

—

–

0 λk´1i
. . .

. . .

. . . λk´1i

0

fi

ffi

ffi

ffi

ffi

fl

` ...

`

ˆ

k

j ´ 1

˙

»

—

—

—

–

0 λk´j`1i
. . .

0

fi

ffi

ffi

ffi

fl

which is an upper triangular matrix with each element being the eigenvalue
to some power k ´ l, times some constant cl “

`

k
l

˘

, for l “ 0, 1, ..., j ´ 1.
Thus, as k goes to infinity, each element of each block of J will converge to
zero if and only if |λi| ă 1, which in turn means that (4.2) will hold. This
concludes the proof.

A similar argument exists for continuous systems, where they are asymptot-
ically stable if and only if the real parts of the eigenvalues are negative.

Although the Jordan normal form is used in this proof, it is often avoided to
use it in numerical algorithms because of the roundoff difficulties that result
from the lack of orthogonality in T [1, p. 503].

4.2 Bounded-Input-Bounded-Output Stability

Bounded-input-bounded-output stability relates the boundedness of an in-
put to a system to the boundedness of the resulting output.

Definition: Consider System (1.1) and let x0 “ 0. The system is called
Bounded-input-bounded-output stable if the following holds. For any input
function u having bound v, that is |upkq| ď v for all k ě 0, there exists a q
such that |ypkq| ď q for all k ě 0 [9, p. 122].

As with asymptotic stability, a theorem is provided that determines the
bounded-input-bounded-output stability of a system.

Theorem: Consider System (1.1) and let hpkq “ cAk´1b, k ě 1. then the
system is bounded-input-bounded-output stable if and only if [9, p. 122]:

8
ÿ

k“1

|hpkq| ă 8
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Proof:

”ð”: Let x0 “ 0, |upkq| ď v,@k, p “
ř8
k“1 |hpkq|, and consider the output

given by (1.3). Taking the absolute value of both sides of it gives:

|ypkq| “

ˇ

ˇ

ˇ

ˇ

ˇ

k´1
ÿ

j“0

cAk´j´1bupjq ` dupkq

ˇ

ˇ

ˇ

ˇ

ˇ

ď

k´1
ÿ

j“0

|cAk´j´1bupjq| ` |dupkq| Triangle inequality

ď

k´1
ÿ

j“0

|cAk´j´1b|v ` |d|v |upkq| ď v

“ p|cAk´1b| ` |cAk´2b| ` ...` |cAb| ` |cA0b|qv ` |d|v

“ p|hpkq| ` |hpk ´ 1q| ` ...` |hp2q| ` |hp1q|qv ` |d|v

“

k
ÿ

l“1

|hplq|v ` |d|v

ď pv ` |d|v

where the last inequality follows from the assumption of the theorem. By
picking q “ pv`|d|v in the definition above the output will be bounded and
the system is bounded-input bounded-output stable.

”ñ”: Proof by contradiction. The goal here is to show that if
ř8
k“1 |hpkq| “

8 then there exists a bounded input that results in an unbounded out-
put. Thus assume x0 “ 0,

ř8
k“1 |hpkq| “ 8, the system is bounded-input-

bounded-output stable, i.e. for each input upkq and output ypkq there exist
constants v and q respectively such that |upkq| ď v,@k and |ypkq| ď q,@k
and let n be an integer such that

řn´1
k“1 |hpkq| ą q ` |d| which is always

possible since the sum diverges.

Now, let the signal upjq be such that:

upjq “

$

’

&

’

%

1, if cAk´j´1b ą 0

0, if cAk´j´1b “ 0

´1, if cAk´j´1b ă 0

where k is fixed but arbitrary and 0 ď j ď k´ 1. This signal has magnitude
1 or less and is thus bounded. It also has the property that each term in
the output given by (1.3) is non-negative, i.e.:
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ypkq “
k´1
ÿ

j“0

cAk´j´1bupjq ` dupkq

“

k´1
ÿ

j“0

|cAk´j´1b| ` dupkq

“ |cAk´1b| ` |cAk´2b| ` ¨ ¨ ¨ ` |cA0b| ` dupkq

“

k´1
ÿ

j“1

|hpjq| ` dupkq

But now consider ypnq. This gives:

ypnq “
n´1
ÿ

j“1

|hpjq| ` dupnq

ą q ` |d| ` dupnq

which contradicts the assumption that |ypkq| ď q, and thus that the system
is bounded-input-bounded-output stable. Thus it is necessary for the sum
to be finite if the system is to be bounded-input-bounded-output stable.

4.3 Relation of Asymptotic stability and Bounded-
Input Bounded-Ouput stability

To conclude this chapter, a relation between asymptotic stability and bounded-
input bounded-output stability is provided.

Theorem: If (1.1) is asymptotically stable, then it is bounded-input bounded-
output stable [9, p. 122].

Proof:

Since (1.1) is asymptotically stable we know that all the eigenvalues of A
have magnitude less than unity. It follows from the spectral radius theorem
[6, p. 617] and the continuity of norms that:

lim
kÑ8

Ak “ 0 ñ lim
kÑ8

||Ak|| “ 0

Then there exists a number d such that 0 ă d ă 1 and ||Ak|| ă dk. Now
consider:
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8
ÿ

k“1

|hpkq| “
8
ÿ

k“1

|cAk´1b|

By the Cauchy-Schwarz inequality [12, p. 21] it follows that:

8
ÿ

k“1

|cAk´1b| ď ||c|| ¨ ||b||
8
ÿ

k“1

||Ak´1|| ă ||c|| ¨ ||b|| ¨
8
ÿ

k“1

dk´1

and since d ă 1, the right hand side of this equation converges to some
constant p. Thus we have:

8
ÿ

k“1

|hpkq| ă p

and thus it follows that (1.1) is bounded-input-bounded-output stable.

Theorem: If (1.1) is completely observable, completely reachable and bounded-
input bounded-output stable, then it is also asymptotically stable [9, p. 122].

Proof:

Since (1.1) is bounded-input bounded-output stable we know that
ř8
k“1 |cA

k´1b|
is finite, which implies that limkÑ8 cA

k´1b “ 0. Now since k approaches
infinity we can pluck out an A on the left side and on the right side to get:

lim
kÑ8

pcqpAk´1qpbq “ 0

lim
kÑ8

pcAqpAk´3qpAbq “ 0

lim
kÑ8

pcA2qpAk´5qpA2bq “ 0

...

lim
kÑ8

pcAiqpAk´i´jqpAjbq “ 0, for i, j “ 0, 1, ..., n´ 1

The relation above can be rewritten as:

lim
kÑ8

»

—

—

—

–

c

cA
...

cAn´1

fi

ffi

ffi

ffi

fl

Ak´i´jrb|Ab|A2b|...|An´1bs “ 0

ðñ lim
kÑ8

OAk´i´jR “ 0
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where O and R are the observability and reachability matrices respectively.
Now since both of them are of full rank n by assumption it follows that:

lim
kÑ8

Ak´i´j “ 0

which in turn implies that (1.1) is asymptotically stable. This concludes the
proof.

Example:

Consider the system [9, p. 125]:

xpk ` 1q “

»

–

1
2 1 0
0 0 0
0 0 ´1

fi

flxpkq `

»

–

0
1
0

fi

flupkq

ypkq “
“

1 0 0
‰

xpkq

with A, b, c taking on the usual notation. Since A is triangular its eigenvalues
are on the diagonal and the largest one in absolute value is 1, thus the
system is not asymptotically stable. By using eigenvalue decomposition of
A “ PΛP´1, the sum

ř8
k“1 |hpkq| can be determined and is given by:

8
ÿ

k“1

|hpkq| “
8
ÿ

k“1

|c
`

PΛP´1
˘k
b|

“

8
ÿ

k“1

|cPΛkP´1b|

“

8
ÿ

k“1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“

1 0 0
‰

»

—

–

1 ´ 2?
5

0

0 1?
5

0

0 0 1

fi

ffi

fl

»

–

`

1
2

˘k
0 0

0 0 0
0 0 p´1qk

fi

fl

»

–

1 2 0

0
?

5 0
0 0 ´1

fi

fl

»

–

0
1
0

fi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“

8
ÿ

k“1

ˆ

1

2

˙k´1

which is a convergent series and thus the system is bounded-input bounded-
output stable.

Furthermore, the ranks for the observability and reachability matrices is 2
which is not surprising given that the system is not asymptotically stable,
meaning that either its bounded-input bounded-output stability, or rank
conditions for the observability and reachability matrices would have to fail.
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Numerical Methods to
Determine Rank

How do we determine the rank of large matrices? In cases that appear in
applications in engineering and physics the matrices in question can have
very large dimensions, say 1000ˆ1000. For this reason the use of numerical
methods is paramount, but care must be taken because of the finite arith-
metic of computers. Because of the finite arithmetic, we need to be sure that
the algorithm used to determine rank is stable, i.e. that small perturbations
in input do not give large perturbations in the output. For more on stability
see [12, Ch.14, 15].

5.1 The singular Value Decomposition

The best method known is to use the singular value decomposition [5, p.
167]. It is given by:

A “ UΣV T

The matrix Σ is diagonal with the singular values of A on its diagonal,
arranged from largest to the smallest, and U and V are unitary. It not only
finds the rank of A by looking at the singular values, but it also tells us how
close in the 2-norm we are from a matrix of a lower rank, by looking at the
smallest singular value. It is also backwards stable, a particularly nice form
of stability, i.e. the singular values attained by the factorization are exact
for a matrix close by the original matrix in the 2-norm [8, p. 131].

The singular value decomposition is however computationally expensive. For
example the commonly used Golub-Kahan method has two phases:

35
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1. Decompose A into QTBP where B is bidiagonal and Q, P are orthog-
onal. If only the singular values are required then Q and P can be
discarded.

2. Compute the singular value decomposition of B, e.g. with a variant of
the QR algorithm or by the divide and conquer method [12, p. 239].

The cost of the algorithm for a m ˆ n matrix is dominated by the first
phase which has a cost of „ 4mn2 ´ 4

3n
3 flops, compared to „ 2mn2 ´ 2

3n
3

flops for a Householder QR decomposition and „ 2
3m

3 flops for Gaussian
Elimination. [12, p. 237. p. 75. p. 160]. So why not use QR decomposition
or Gaussian elimination to determine the rank instead? It turns out these
two methods are not stable methods of rank determination.

5.2 The QR Decomposition

Consider the n ˆ n matrix A “ QR. Since Q is of full rank we know that
rank(A) = rank(R). Thus if A is rank deficient there should be an element
on the diagonal of R that is small when compared to the machine epsilon.
However consider the matrix:

Kahnpcq “

»

—

—

—

—

—

—

–

1 ´c ´c . . . ´c
0 s ´cs . . . ´cs
...

. . . s2
. . .

...
...

. . .
. . . ´csn´2

0 . . . . . . 0 sn´1

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

–

1
s

s2

. . .

sn´1

fi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

—

–

1 ´c ´c . . . ´c
0 1 ´c . . . ´c
...

. . .
. . .

. . .
...

...
. . .

. . . ´c
0 . . . . . . 0 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

where c ą 0, s ą 0 and c2`s2 “ 1 [4, p. 279]. This is a famous example dis-
covered by William Kahan. Performing a QR decomposition on Kah100p0.2q
reveals the smallest diagonal element of R to be r100,100 “ 0.13256413, a
number far away from zero when compared to the standard 64 bit machine
epsilon ε “ 2.220446 ¨10´16, but at the same time the smallest singular value
of Kah100p0.2q is σn “ 3.678056 ¨ 10´09. Thus the Kahan matrix gets closer
and closer to a singular matrix as its dimensions grow.
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n Rnn σn σ1{σn σn´1{σn
5 9.215999 ¨ 10´1 6.126013 ¨ 10´1 1.838307 1.681975

10 8.321862 ¨ 10´1 2.788470 ¨ 10´1 4.622766 3.336641

50 3.678284 ¨ 10´1 9.287521 ¨ 10´5 4.990962 ¨ 105 4.427926 ¨ 103

100 1.325641 ¨ 10´1 3.678056 ¨ 10´9 2.177658 ¨ 109 4.029607 ¨ 107

150 4.777569 ¨ 10´2 1.456591 ¨ 10´13 7.257142 ¨ 1013 3.667112 ¨ 1011

200 1.721820 ¨ 10´2 5.786992 ¨ 10´18 2.190496 ¨ 1018 3.326517 ¨ 1015

250 6.205382 ¨ 10´3 1.131002 ¨ 10´20 1.281683 ¨ 1021 6.134230 ¨ 1017

300 2.236399 ¨ 10´3 9.008557 ¨ 10´21 1.789173 ¨ 1021 2.775550 ¨ 1017

Table 5.1: A comparison table of the trailing element of R and some of the
singular values of Kahnp0.2q as its dimension grows. The number σ1{σn is
known as the condition number of the matrix, and σn´1{σn denotes the ratio
of the second smallest and smallest singular value.

5.3 Gaussian Elimination

In the case of Gaussian Elimination consider the nˆ n matrix [5, p.168]:

An “

»

—

—

—

—

–

1 ´1 . . . ´1

0 1
. . .

...
...

. . .
. . . ´1

0 . . . 0 1

fi

ffi

ffi

ffi

ffi

fl

This matrix is in reduced row echelon form and thus is an example of a
matrix that could result from Gaussian elimination. It has a nice, upper
triangular structure with all the diagonal elements equal to 1, and hence
detpAnq “ 1 for all n. So it clearly has full rank. However, for A100 its
smallest singular value is σn “ 2.637323 ¨ 10´18, so in the same manner
as the Kahan matrix it gets arbitrarily close to a singular matrix as its
dimension grows.
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n σn σ1{σn σn´1{σn
5 9.298533 ¨ 10´2 2.942754 ¨ 101 1.623324 ¨ 101

10 2.929643 ¨ 10´3 1.918487 ¨ 103 5.127458 ¨ 102

50 2.659590 ¨ 10´15 1.162226 ¨ 1016 5.640279 ¨ 1014

100 4.772302 ¨ 10´18 1.314330 ¨ 1019 3.143180 ¨ 1017

150 1.162393 ¨ 10´17 8.134010 ¨ 1018 1.290450 ¨ 1017

200 3.369086 ¨ 10´18 3.751085 ¨ 1019 4.452261 ¨ 1017

250 1.572475 ¨ 10´17 1.006099 ¨ 1019 9.539123 ¨ 1016

300 7.556553 ¨ 10´18 2.514857 ¨ 1019 1.985035 ¨ 1017

Table 5.2: A comparison of the smallest singular values of An as n grows.
Even though it has a structure that shows full rank, the singular values
show that as its dimension grows it becomes closer and closer to a singular
matrix.

By performing singular value decomposition of A100 “ UΣV T , we can define
Σ̃ “ Σ ` δΣ such that σ̃100,100 “ 0. Then Ã “ U Σ̃V T will be the singular
matrix that is closest to A in the 2-norm.

These cases shown here are rare to happen in mathematical modelling but
are nonetheless one of the reason why the singular value decomposition is
considered the most reliable method for rank determination even though
computationally QR decomposition and Gaussian elimination are cheaper
to perform.



Chapter 6

Conclusions

The aim of this thesis was the study of linear time-invariant systems, and
the concepts of reachability, observability and stability of those systems and
how these concepts can be used to get desirable results when using them to
model systems in real life.

While the conditions for these concepts are easily derived, a difficult problem
that we face when applying these methods is the finite arithmetic of the
computers performing the tasks at hand. This shows the importance of the
study of perturbation and how it affects numerical computations.

Historically finite arithmetic has been a large obstacle to overcome for nu-
merical analysts. Early hardware came with its own standards for floating
point precision and operations that worked on one system could lead to
different results when done on a different system [11]. This led to the stan-
dardization of floating point precision with the IEEE-754 standard, which
most common computers use today.

It is interesting to note that the singular value calculations performed in this
thesis were tested on two different computers with two different methods in
the Python programming language, one which computes matrices U , Σ and
V and another which discards U and V at each step in the calculation. On
each occasion the results given had small differences when compared to each
other.

39
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