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Abstract

Smoothed Aggregation (SA) is a technique from algebraic multigrid methods (AMG) which
has shown very promising results when solving systems of linear equations with symmetric
system matrices, but suboptimal results for nonsymmetric system matrices. The purpose
of this thesis is to investigate the method EMIN(r) and a closely related method EMIN
proposed by Sala and Tuminaro. EMIN(r) and EMIN were built on the success of SA in
symmetric systems, but perform better in nonsymmetric systems. These methods have a
more costly set-up, but promising results were found, in particular when performing one
time-step of linear advection at extremely high CFL numbers.
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Populärvetenskaplig sammanfattning

I naturen förekommer många differentialekvationer, som man inte kan lösa exakt, men som
man önskar kunna lösa approximativt. Många verktyg har utvecklas för just detta, men
man måste diskretisera och lösa system av linjära ekvationer för att få igång metoden. Det
här är en väldigt omfattande uppgift när systemen är stora. I det här examensarbetet har
vi arbetat med en sorts iterativ method för att lösa de stora systemen av linjära ekvationer,
som kommer från diskretiseringen av partiella differentiella ekvationer (PDEs).

Methoden heter multigrid och bakgrunden till den är att man delar upp problemet i två
delar: ‘smooth’ och ‘oscillatory’. Först använder man en ‘smoother’ (t.ex. några itera-
tioner av Jacobi) som tar bort de ‘oscillatory’ felvärdena. Sedan löser man ett system,
som är lika originalet men mindre, och därefter interpolerar man lösningen av det mindre
problemet för att få en bättre approximation till det stora. Att lösa ett mindre problem
tar bort ‘smooth’ felvärdena.

Om man bara använder del ett, är metoden för långsam. Om man bara använder del
två, konvergerar metoden inte. Men, om man använder båda tillsammans, blir metoden
kraftig och snabb.

I den här uppsatsen experimenterar vi med ‘smoothed aggregation’, som är en variant
av den traditionella multigridmetoden. Man använder lite extra ‘smoothing’ när man min-
skar problemet och igen när man gör det stort igen. Det fungerar väldigt bra när man löser
ett system av linjära ekvationer med en symmetrisk positiv definit (SPD) systemmatris.
Tyvärr går det inte lika bra när systemmatrisen inte är SPD. Vi tittar också på en variant
av ‘smoothed aggregation’ som fungerar bra när systemmatrisen inte är SPD (EMIN(r)).
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Chapter 1

Introduction

1.1 Opening Remarks

Partial differential equations (PDEs) can be used to describe a wide variety of phenomena
such as sound, heat, diffusion, electrostatics, electrodynamics, fluid dynamics, elasticity,
or quantum mechanics [18]. Many PDEs cannot be solved with pen and paper, thus many
methods have been developed to approximate these equations numerically to a very high
degree of accuracy. In doing so, we take a continuous problem and discretize it. When
solving linear PDEs numerically, we often have to solve very large systems of linear equa-
tions, and thus we are interested in ways to solve these systems efficiently. Since Gaussian
elimination would be far too slow, we consider iterative methods.

One iterative method for solving these systems of equations is multigrid method. Multigrid
is a very effective method for solving linear systems of equations when the system matrix is
symmetric and sparse. Multigrid schemes require O(n) operations for sparse systems with
n entries. Convergence rates as impressive as 0.1 have been observed. Multigrid also gives
rise to good preconditioners for GMRES, which can be useful as a subsolver for Newton’s
method for the linear and nonlinear equation systems which arise from discretized PDEs
[1]. A variant of multigrid, Full Approximation Scheme, can be used to solve nonlinear
systems of equations, but we will not explore this.

This thesis explores some modifications to multigrid in order to solve linear systems asso-
ciated with both symmetric and nonsymmetric system matrices more effectively. We will
experiment with different methods for restriction and prolongation which contain extra
smoothing, then test the performance of these with different pre- and post-smoothers on
a variety of problems in 1D and 2D.

The aim of this thesis is to understand the results of Sala and Tuminaro in [9], and to
find effective ways to solve linear equation systems with nonsymmetric system matrices.
We will explain the theory in an intuitive way, and then show results of many numerical
experiments which illustrate the theory.

1.2 Overview

Chapter 2 describes the equations considered throughout this thesis, and then Chapter 3
shows our discretizations of these equations. Chapter 4 provides a background on multi-
grid methods and Chapter 5 provides a thorough explanation of the method Smoothed
Aggregation. Chapter 6 presents results of Smoothed Aggregation along with some closely
related methods, and will explain the results. Chapter 7 presents a method which gener-
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2 CHAPTER 1. INTRODUCTION

alizes Smoothed Aggregation for nonsymmetric system matrices, and shows how to set up
this method. Chapters 8 and 9 explain how to implement these methods within a multigrid
scheme, and present and explain results from testing these methods. Chapter 10 includes
an experiment with one of the user-defined parameters. Chapter 11 offers some concluding
remarks and ideas for future work, and The Appendix offers derivations of the different
iterative methods (smoothers) used throughout this thesis. One can also find pseudo code
in this section.



Chapter 2

Equations

In this chapter, we will provide background information on the three equations studied
throughout this thesis. We will start with the Poisson equation, then discuss linear advec-
tion and finish with information on convection diffusion.

2.1 Poisson Equation

We begin by considering the Poisson equation and the closely related Laplace equation [5].

The Laplace equation is given by
�u = 0

and the Poisson equation by
��u = f.

The Poisson equation arises, for example, when describing the potential field caused by a
given charge or mass density distribution. With the potential field f known, one can then
calculate the gravitational or electrostatic field u [19]. The Laplace equation can be used,
for example, to model the steady-state heat equation [17].

In the two above equations, x 2 U and the unknown u : Ū �! R, u = u(x), where U ⇢ R
is a given, open set.

For the Laplace equation, the function f : U �! R is also given.

Definition:
The function

�(x) :=

(
�

1
2⇡ log ||x|| m = 2

1
m(m�2)↵(m)

1
||x||m�2 m � 3,

defined for x 2 Rm
, x 6= 0 is the fundamental solution to Laplace’s equation. We note here

that ↵(m) denotes the volume of the unit ball in Rm.

Theorem: (Solving the Poisson equation)
Assume that f 2 C

2
c (Rm); that is f is twice continuously differentiable with compact sup-

port.

Define u by

u(x) =

Z

Rm
�(x� y)f(y)dy =

(
�

1
2⇡

R
R2 log (||x� y||)f(y)dy m = 2
1

m(m�2)↵(m)

R
Rm

f(y)
||x�y||m�2dy m � 3.

(2.1)

3



4 CHAPTER 2. EQUATIONS

Then,
u 2 C

2(Rm)

and
��u = f in Rm

.

So, the convolution formulas (2.1) provide us with a solution to the Poisson equation in
Rm. We take a second here to note that we do not need to address boundary conditions
when using the convolution formula [16].

Following this logic, we choose f 2 C
2
c (Rm) throughout this thesis. The problem we

solve is: (
��u = 4⇡2 sin⇡x2 x 2 (0, 1)

u(x) = 0 x = 0, x = 1,

the Poisson equation in 1D.

2.2 Linear Advection

The linear advection equation is sometimes called the transport equation because it de-
scribes taking some initial condition and moving it at a constant speed along characteristic
lines in the time-space plane.

More generally [5], we have

ut + a ·Du = 0 in Rm
⇥ (0,1)

where a is a fixed vector in Rm, a = (a1, ..., an) and u : Rm
⇥ [0,1) �! R is the unknown

u = u(x, t).

Du = Dxu = (ux1 , ..., uxn) is the gradient of u with respect to the spatial variables.

In this thesis, we will consider the linear advection equation in 1D, i.e.

ut + aux = 0

with initial condition
u(x, 0) = u0(x) = sin(⇡x)

on the domain (0, 2], which has the analytical solution u(x, t) = u0(x� at). This solution
reflects that we are transporting the initial values at a constant velocity a to the right if
a > 0 and to the left if a < 0. In this thesis, we will consider only positive values for a.

2.3 Convection Diffusion

We consider also the equation for convection diffusion (1D),
(
�"�u+ bru = f x 2 (0, 1)

u = 0 x = 0, x = 1,

and (2D) (
�"�u+ b ·ru = f x 2 (0, 1)⇥ (0, 1)

u = 0 on the boundaries,
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where we take b = 1 in 1D and the vector fields ’bent pipe’ (3.4) or ’recirc’ (3.5) in 2D,
which we plot in the following chapter. We will vary ". We choose the right-hand side
so that the solution u is given by u(x) = sin2(⇡x) in 1D and u(x, y) = sin2(⇡x) sin2(⇡y)
in 2D. A smaller value for " corresponds to a more convective (nonsymmetric) system,
because the diffusive term is less dominant. Many flow problems (in water and air) are
characterized by very small values of epsilon, so this problem is a practical one to solve.
On the other hand, a larger value for " corresponds to a more diffusive (symmetric) sys-
tem. We consider " = 10�1 a large value for epsilon, and " = 10�5 a small value for epsilon.

More generally [15], the convection diffusion equation is

@c

@t
= r ·

�
Drc

�
�r · (vc) +R,

where r · (Drc) represents the diffusive term (divergence of the gradient), r · (vc) is the
velocity field (convective term) and R describes sources or sinks.



Chapter 3

Discretizations

In this chapter, we discuss the discretizations which are used throughout this thesis. As
stated in the introduction, we will take the continuous equations we considered in the
previous chapter and solve these equations numerically to a very high degree of accuracy.
To achieve this goal, we must begin with discretizations. For the Poisson equation and
convection diffusion equations, we need only to consider space discretizations, since we
have only space derivatives. When solving linear advection, we must account for both time
and space derivatives, and hence the need for time and space discretizations.

We note here that, in 1D, we will always choose the number of unknowns m to be a power
of 2 (i.e. m = 2n, n = 1, 2, ...). In 2D, we will always choose m to be a perfect square
which is also divisible by 9l, where l represents the finest multigrid level (see Chapter 4).

3.1 Space Discretization for the Poisson Equation

The system matrix (i.e. discrete differential operator) for the discretized Poisson equation
is symmetric positive definite. This is an important property which we will return to many
times throughout this thesis.

Definition: Symmetric positive definite (SPD)
A symmetric matrix A 2 Rm⇥m is called SPD if

x
T
Ax > 0

for all x 2 Rm
6= 0.

We use second order central differences (finite differences) with m+2 points for the Laplace
operator with Dirichlet boundary conditions on an equidistant grid with domain x 2 [0, 1],
i.e. we solve the system

1

�x2

0

BBBB@

2 �1

�1
. . . . . .
. . . . . . �1

�1 2

1

CCCCA

0

BBBB@

u1
...
...

um

1

CCCCA
=

0

BBBB@

4⇡2 sin(⇡x21)
...
...

4⇡2 sin(⇡x2m)

1

CCCCA
, (3.1)

where uj ⇡ u(xj), and set u0 = u(0) = 0 and um+1 = u(1) = 0. A concrete example of an
equidistant grid with m = 8 unknowns appears in Figure 3.1.

6
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3.2 Time and Space Discretization for Linear Advection

Here we use a first-order finite volume discretization with upwind flux on an equidistant
grid to perform one time-step of linear advection. We choose the implicit Euler method for
the time-stepping because of the stability properties of this method. Since solutions are
transported along characteristic lines and we consider only a > 0, we must use an upwind
scheme, meaning we go forward in time and backward in space. Our approximations to
the derivatives are then as follows:

@u

@t
(xj , tn) =

u(xj , tn+1)� u(xj , tn)

�t
+O(�t)

@u

@x
(xj , tn) =

u(xj , tn)� u(xj�1, tn)

�x
+O(�x).

Since we use the implicit Euler method, we must solve a system of linear equations on each
time-step. This translates into the following system for j = 1, ...,m.

u
n+1
j � u

n
j

�t
+ a

u
n+1
j � u

n+1
j�1

�x
= 0 ()

u
n+1
j � u

n
j + a

�t

�x
(un+1

j � u
n+1
j�1 ) = 0 ()

u
n+1
j + a

�t

�x
u
n+1
j � a

�t

�x
u
n+1
j�1 = u

n
j ()

0

BBBB@

(1 + a
�t
�x) 0 �a

�t
�x

�a
�t
�x

. . . . . .

. . . . . . 0
�a

�t
�x (1 + a

�t
�x)

1

CCCCA

0

BBBB@

u
n+1
1
...
...

u
n+1
m

1

CCCCA
=

0

BBBB@

u
n
1
...
...

u
n
m

1

CCCCA
, (3.2)

where u
n
j ⇡ u(xj , tn). In this thesis we take initial condition u

0
j = u(xj , 0) = sin(⇡xj) on

the domain (0, 2].

The top right entry in the system matrix reflects the periodic boundary conditions, i.e.
u
k
0 = u

k
m for all time-steps k = 0, 1, 2.... Because we are using a finite volume discretization,

our solutions represent piecewise constant approximations on a cell, i.e. we have solution
ui for all x 2 [xi, xi+1], where xj 2 [0, 2], j = 1, ...,m+1 and �x = 2

m . A concrete example
of these cells with m = 8 unknowns is given in Figure 3.2.
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3.3 Space Discretization for Convection Diffusion

3.3.1 Convection Diffusion in 1D

To form our (finite differences) discretization in the same way Sala and Tuminaro do in [9],
we use second-order central differences for the diffusive term (i.e. �"�u) and a first-order
upwind difference for the convective term (i.e. b ·ru). This corresponds to

"

�x2

0

BBBB@

2 �1

�1
. . . . . .
. . . . . . �1

�1 2

1

CCCCA

0

BBBB@

u1
...
...

um

1

CCCCA
+

b

�x

0

BBB@

1
�1 1

. . . . . .
�1 1

1

CCCA

0

BBBB@

u1
...
...

um

1

CCCCA
=

0

BBBB@

f1
...
...
fm

1

CCCCA

()

0

BBBB@

( 2"
�x2 + b

�x) �
"

�x2

(� "
�x2 �

b
�x)

. . . . . .

. . . . . . �
"

�x2

(� "
�x2 �

b
�x) ( 2"

�x2 + b
�x)

1

CCCCA

0

BBBB@

u1
...
...

um

1

CCCCA
=

0

BBBB@

f1
...
...
fm

1

CCCCA
, (3.3)

where uj ⇡ u(xj), fj = f(xj) and the right-hand side of the equation, f , is chosen so that
the exact solution to the linear system is given by u = sin2(⇡x), i.e.

f =

0

BBBBBB@

�"

⇣
2⇡2

�
cos2(⇡x1)� sin2(⇡x1)

�⌘
+ b

⇣
2⇡ sin(⇡x1) cos(⇡x1)

⌘

...

...
�"

⇣
2⇡2

�
cos2(⇡xm)� sin2(⇡xm)

�⌘
+ b

⇣
2⇡ sin(⇡xm) cos(⇡xm)

⌘

1

CCCCCCA
.

Since we apply Dirichlet boundary conditions here, we have u0 = um+1 = 0. The grid in
1D is the same as the one we use for the Poisson equation, as shown in Figure 3.1.

3.3.2 Convection Diffusion in 2D

We consider the 2D convection diffusion equation,
(
�"�u+ b ·ru = f in (0, 1)⇥ (0, 1)

u = 0 on the boundaries

with the two vector fields below.

Bent pipe: b =
⇣
2x(

1

2
x� 1)(1� 2y),�4y(y � 1)(1� x)

⌘
(3.4)

Recirc: b =
⇣
4x(x� 1)(1� 2y),�4y(y � 1)(1� 2x)

⌘
(3.5)

We discretize this with the following stencil:

1

h2

2

4
1
2h(b2 � |b2|)� "

�
1
2h(b1 + |b1|)� " h(|b1|+ |b2|) + 4" 1

2h(b1 � |b1|)� "

�
1
2h(b2 + |b2|)� "

3

5 , (3.6)

where b1 refers to the first component of the vector field, and b2 refers to the second. This
represents a second-order central differences discretization for the diffusive term and a
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Figure 3.3: Bent Pipe

Figure 3.4: Recirc

first-order upwind discretization for the convective term, as done by Sala and Tuminaro in
[9]. We use the term h here to signify that �x = �y, i.e. an equidistant grid in both direc-
tions. In this case, h = 1p

m+1
. To see what this looks like, consider Figure 3.5 with m = 16.

This discretization was chosen for its stability properties. Since we will be considering
small values for ", this discretization is a reasonable choice. We note, however, that this
discretization is only O(h) and not sufficient for many engineering applications [11].

Similar to our case in 1D, f is chosen such that the solution to our linear system is given
by

u(x, y) = sin2(⇡x) sin2(⇡y).

This function is zero on the boundary.

�0.2 0.2 0.4 0.6 0.8 1

�0.2

0.2

0.4

0.6

0.8

1

Figure 3.5: m = 16 unknowns on a 2D grid, h = dx = dy = 1p
m+1

= 1
5
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Chapter 4

Background on Multigrid Methods

Multigrid methods are designed for solving sparse linear systems that arise from discretized
partial differential equations. These methods can solve many such systems to a high de-
gree of accuracy in a fixed number of iterations, not growing in m, and have shown to be
especially successful in solving symmetric systems [3].

To see how multigrid methods work, we take for example the Poisson equation in 1D
with Dirichlet boundary conditions, i.e.

(
��u = f(x), x 2 [0, 1], f 2 C([0, 1],R)
u(x) = 0, x = 0, x = 1.

The system matrix A which arises from the discretization (3.1) (i.e. of the discrete Laplace
operator with Dirichlet boundary conditions) has m eigenvalues

�
Laplace
j =

4

�x2
sin2

⇣
⇡j

2(m+ 1)

⌘
, j = 1, ...,m (4.1)

and m (scaled) eigenvectors

v
Laplace
j =

p

2�x

0

B@
sin(j⇡x1)

...
sin(j⇡xm)

1

CA , j = 1, ...,m (4.2)

where xi 2 (0, 1) for i = 1, ...,m, �x = 1
m+1 [3].

4.1 Jacobi Smoothing

Multigrid methods start with pre-smoothing iterations via a linear iterative method. By
smoothing, we mean a method to reduce the oscillatory error.

Definition: (Linear iterative method)
A linear iterative method for the solution of Ax = b, A 2 Rm⇥m is of the form

xk+1 = Mxk +N
�1
b.

We call M in the previous definition the iteration matrix.

Theorem:
A linear iterative method is convergent to limit x̄ independent of x0 iff ⇢(M) < 1.

11
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Thus, if ⇢(M) < 1 we get convergence to the unique solution of

x = Mx+N
�1
b.

This is the solution to Ax = b when x
⇤ = A

�1
b. For this to happen, we must have a

consistent method, i.e.

Mx
⇤ +N

�1
b = x

⇤
()

(M +N
�1
A� I)x⇤ = 0 ()

M = I �N
�1
A.

Thus, any iteration with ⇢(M) < 1 and M = I � N
�1
A for N

�1
2 Rm⇥m converges to

x
⇤ = A

�1
b.

In this thesis, we use a few different linear iterative methods for smoothing (e.g. Ja-
cobi, Gauss-Seidel, etc.). In the Appendix, we show how these methods are derived.

For now, we consider one possibility, Weighted Jacobi smoothing. Such an iteration is
given by

xk+1 = xk � wD
�1
Axk + wD

�1
b,

where M = (I � wD
�1
A) 2 Rm⇥m. The m eigenvectors of M are the same as those of A

given in (4.2). The m eigenvalues of M are given by:

�
M
j = 1�

w�x
2

2
�

Laplace
j = 1� 2w sin2

⇣
⇡j

2(m+ 1)

⌘
< 1,

for w 2 (0, 2), j = 1, ...,m. From the Theorem, we know Weighted Jacobi converges to the
solution to Ax = b.

Consider now the error, i.e. xk+1 � x
⇤:

xk+1 � x
⇤ = Mxk + wD

�1
b� x

⇤ + wD
�1
Ax

⇤
� wD

�1
b

= M(xk � x
⇤)

= M
k+1(x0 � x

⇤)

=
mX

j=1

↵j(�
M
j )k+1

vj . (4.3)

So, we can express the error as a sum of linearly independent eigenvectors and, using scaled
eigenvalues as coefficients. We refer to each summand in (4.3) as an error component.

We consider now some plots (spectrum) of the m eigenvalues of M for different values
of w in Figure 4.1. This represents changing the damping parameter within the Weighted
Jacobi iteration. The leftmost eigenvalue in each plot represents �

M
1 and the rightmost

represents �
M
m , with �

M
j , for j = 2, ...,m� 1, in order, in between. The eigenvalues of low

indices correspond to the slowly oscillating sine functions and the eigenvalues of high in-
dices represent the high frequency sine waves. We refer to these terms as the low frequency
and high frequency error components, respectively.

From these plots, we can see that for w = 2
3 , the larger half of the eigenvalues are all

quite close to 0. In fact, we have

|�
M
j | <

1

3
, for all

m+ 1

2
 j  m.
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Figure 4.1: Eigenvalues for Different w

We take w = 2
3 and, as a result, damp the half of the error components associated with

high frequency sine functions. In fact, these oscillatory components are reduced at least
by a factor of 3 with each relaxation, independent of the grid width. We call this part of
our method pre-smoothing [3].

Weighted Jacobi smoothing does a great job at eliminating high frequency error, but

⇢(M) �! 1,O(�x
2).

So, as we refine the grid, Weighted Jacobi will become less effective, especially at eliminat-
ing low frequency error components. A similar result follows from the other linear iterative
methods considered in this thesis.

4.2 Coarse Grid Correction

Now, we concern ourselves with the low frequency error components. The main idea here
is to halve the dimension of our problem and solve the defect equation, i.e.

Ae = A(x⇤ � xk+1) = b�Axk+1 = r,

on a coarse grid, where this is less computational work. If we solved the defect equation
on the fine grid, then we would have the solution to our original equation, but this would
involve the same amount of work as solving the original problem Ax = b on the fine grid,
which is what we want to avoid. We instead solve the defect equation on the coarse grid,
then interpolate this vector to the fine level and update our approximate solution.

For dimension m = 8, consider a discretization of the lowest frequency eigenvector (er-
ror component) of the Laplace operator on [0, 1].

v1 =
p

2�x sin(⇡x) ⇡

0

BBBB@

p
2�x sin(⇡x1)

...

...
p
2�x sin(⇡x8)

1

CCCCA
2 R8

,
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where xi 2 (0, 1), i = 1, ..., 8, �x = 1
9 . A plot of this follows in Figure 4.2a.

(a) Lowest frequency error component
v1, m = 8
Fine level

(b) v0 = R
0
1v1

m = 4
Coarse level

Figure 4.2: Halving the dimension

Now, consider the restriction operator

R
0
1 =

1

2

0

BB@

1 1
1 1

1 1
1 1

1

CCA 2 R4⇥8
,

which halves the dimension. In the case of having just a fine grid and a coarse grid, one
moves from the fine grid (level 1, R8) to the coarse grid (level 0, R4) by multiplying from
the left with the restriction operator R0

1. In general, the operator Rl�1
l takes us from level

l to level l � 1. To see what our sine function looks like on the coarse grid consider

R
0
1v1 =

p
2�x

2

0

BB@

�
sin(⇡x1) + sin(⇡x2)

�
�
sin(⇡x3) + sin(⇡x4)

�
�
sin(⇡x5) + sin(⇡x6)

�
�
sin(⇡x7) + sin(⇡x8)

�

1

CCA 2 R4
.

The plot of this discretized sine function follows in Figure 4.2b.

On the coarse grid, our discretized sine function goes through half a period in 4 grid
points, where on the fine grid this took 8 grid points. What we observe here is that the
slowly oscillating error components appear half as smooth on the coarse grid. It is here on
the coarse grid where we will correct them by solving A0e0 = r0. This is what is meant
by the coarse grid correction. We note that in the experiments which follow, we omit the
factor 1

2 in front of the restriction operator, as done by Sala and Tuminaro in [9], unless
otherwise noted.

We can write the coarse grid correction as an iterative method. This corresponds to:

xk+1 = (I � P
1
0A

�1
0R

0
1A1)xk + P

1
0A

�1
0R

0
1b1,

where P
1
0 = 2(R0

1)
T, which represents interpolating from the coarse level to the fine level.

We can actually prove this coarse grid correction is not a convergent method. However,
in combination with a smoother (such as Weighted Jacobi), we can build very powerful
methods to solve linear systems. Thus we have all the tools we need in order to understand
multigrid schemes.
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4.3 2-Grid Method

The two grid method consists of combining the tools we have just discussed. The pseudo
code follows in Algorithm 1. We note that in all of our methods, we use a Galerkin
projection for the coarse grid discretization of the system matrix, i.e.

Al�1 = R
l�1
l AlP

l
l�1 2 R

m
2 ⇥m

2 ,

where Al 2 Rm⇥m.

Throughout this thesis, we will sometimes use the notation Ac = R
0
1AfP

1
0 , where Af

represents the system matrix on the fine level and Ac represents the system matrix on the
coarse level.

Algorithm 1 2-Grid Method
Jacobi pre-smooth ⌫1 times: A1x1 = b1

Calculate the residual: r1 = A1x1 � b1

Restrict the residual: r0 = R
0
1r1

Solve the defect equation for e0: A0e0 = r0

Prolong this to correct the approximation to the solution: x1 = x1 + P
1
0 e0

Jacobi post-smooth ⌫2 times: A1x1 = b1

4.4 V/W Cycles

In the case of large scale systems, the coarse grid problem may be too large to solve di-
rectly. What we consider now is defining a sequence of coarser and coarser grids. We do
this so we can use solve on a much coarser grid, which takes much less work.

To see this, consider the pseudo code in Algorithm 2 for multigrid V/W cycles (below) and
Figures 4.3 and 4.4, which follow.

Algorithm 2 Multigrid Method, V/W cycles
function MG(xl,b,l)
if l = 0 then

Solve A0x0 = b0 directly
else

Pre-smoothing: xl = S
⌫1
l (xl, bl)

Restrict the residual: rl�1 = R
l�1
l (Alxl � bl)

Initial guess for el�1: vl�1 = 0
Call Multigrid recursively: for i = 1, ..., � MG(vl�1, rl�1, l � 1)
Update the approximation on the fine grid: xl = xl � P

l
l�1vl�1

Post-smoothing: xl = S
⌫2
l (xl, bl)

end if

We note here that throughout this thesis, we will continue to iterate either the 2-grid
scheme or a V/W scheme until

||Axk � b||2

||b||2
< tol.
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Figure 4.3: Visualization of V cycle, � = 1
S refers to smoothing, E refers to solving (courtesy of Versbach)

⌦0

⌦1

⌦2

⌦3
S

S

S

E

S

E

S

S

S

E

S

E

S

S

S

R

R

R P R P

P R

R P R P

P

P

Figure 4.4: Visualization of W cycle, � = 2
S refers to smoothing, E refers to solving (courtesy of Versbach)



Chapter 5

Smoothed Aggregation

5.1 Introduction to Smoothed Aggregation

Smoothed Aggregation (SA) is an Algebraic Multigrid (AMG) method which was designed
for solving systems of linear equations with a symmetric positive definite system matrix.
AMG methods automatically generate coarse levels and level transfer operators, though
the coarse grids are unknown [9]. Throughout this thesis, we only consider Geometric
Multigrid methods, where the grids are known. The same results we describe here hold in
the case where the grid is known.

SPD systems have corresponding energy norms:

Definition: (Energy norm)
The energy norm of a vector x with respect to a symmetric positive definite (SPD) matrix
A is given by

||x||A =
p

xTAx.

In an SPD system, we can discuss high-energy and low-energy modes, which correspond
to oscillatory and smooth error modes respectively [9]. Throughout this thesis, we will en-
counter some systems that are not SPD and thus, the energy norm is not defined. In this
chapter, where we discuss only SPD systems, we will use the terms low-energy/ smooth
and high-energy/ oscillatory interchangeable.

We begin by studying different methods for prolongation and restriction. The rate of
convergence of an AMG method is strongly dependent on the choice of restriction and pro-
longation operators. A necessary condition for achieving high rate of convergence is that
the prolongation operator contains in its range only vectors x such that Ax ⇡ 0, where A

is the discrete differential operator. Such vectors x are called smooth [12]. By smooth, we
imply that these vectors are smooth relative to the relaxation method, i.e. these are the
vectors to which Jacobi smoothing does very little [7].

Smooth error components can be efficiently corrected on coarser levels. If we include
them in the range space of the prolongator, they are represented throughout the mesh
hierarchy [8] and rapid convergence is achieved [4]. SA can be thought of as a regular
multigrid method with extra smoothing in prolongation and restriction.

In this chapter, we will first show how to form the prolongation and restriction operators
for the method SA. We will then look at a concrete example to appreciate the effectiveness
of the damping parameter defined by the method SA. After that, we will experiment with
multiple iterations of Weighted Jacobi on the prolongation basis functions (i.e. columns of

17
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the prolongator). We conclude this section with some error estimates from [12].

5.2 Prolongation Operator, SA

To create such a prolongation operator, we start by constructing a tentative prolongator
matrix P

(tent) based on a user-defined parameter: the near kernel. For this we will follow
the explanation from [9].

Definition: (Near kernel)
All vectors x such that Ax ⇡ 0, where A is the discrete differential operator.

The near kernel is an assumption about the problem rather than the use of geometri-
cal information [14]. By this we mean the near kernel is based on the differential operator
and not on the grid we are using. In practice, the near kernel will be a user-defined vector
(or set of vectors). Throughout this thesis, we take the constant vector as our user-defined
near kernel, unless otherwise specified. This is the standard choice of near kernel for the
Laplace operator [9], but others are possible, namely the constant vector plus a linear term,
which we will show in Chapter 10.

Consider a 2-grid method. In the method SA, we first construct the tentative prolon-
gator from the constant vector in a way such that the near kernel is in the range of P (tent).
The constant vector is thus accurately interpolated from the coarse level to the fine level.
We do this such that the columns of P (tent) are linearly independent, i.e. we define P

(tent)

as

P
(tent) =

0

BBBBBBBBBBB@

1
1

1
1

. . .
1
1

1

CCCCCCCCCCCA

2 Rm⇥m
2 . (5.1)

Consider solving the discrete Poisson equation in 1D (3.1), where A is SPD. We can see
these columns in (5.1) as sine waves which go through one period over one grid point. Un-
fortunately, the tentative prolongator columns have high energy (oscillatory sine waves).
This implies that some smooth error components (low frequency sine waves) are not accu-
rately represented throughout the mesh hierarchy even though the user-defined near kernel
always is. One step of Weighted Jacobi (iteration matrix) applied to all columns of the
tentative prolongator reduces the energy in each of the columns while preserving the in-
terpolation of user-defined near kernel (far from boundaries). This is because the constant
vector is still in the range of the prolongation operator, even after applying Weighted Ja-
cobi. The result of applying Weighted Jacobi is the columns of P more closely span the
smooth error subspace [8], and thus smooth error components (solved for on the coarse
grid) can be better interpolated to the fine grid, where we can update our approximation
to the solution. Thus, for the method SA, we take

P = (I � w
(p)

D
�1
A)P (tent)

,

where w
(p) is the damping parameter and D is the diagonal of A.

To better understand this, we consider a more concrete example: a 2-grid method from
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[13], where we seek the solution to Ax = b, and A is SPD.

We consider again our smoothing iterative method (e.g. Weighted Jacobi), which can
be written as

J(x) = Mx+N
�1
b,

where
M = (I � w

(p)
D

�1
A). (5.2)

The error on the fine grid is defined as

e(x) = x� x
⇤
2 Rm

.

Error components which are not efficiently resolved by smoothing, i.e. those such that

Me ⇡ e

are the smooth error components. These are the components we must resolve on the coarse
grid.

What we seek now is a prolongation operator such that

e1 = Pe0,

so we can properly prolong the smooth error from the coarse grid (correction) and thus
update the approximate solution on the fine grid, i.e.

x1 = x1 + Pe0.

The subscript here refers to which level we are on, with subscript 1 referring to the fine
grid and subscript 0 referring to the coarse grid.

In the ideal case, the range of P always contains all smooth components of an arbitrary
error e1 2 Rm, but in practice this requirement is unnecessarily strong. Typically, a weaker
condition is satisfactory, i.e. find a P such that

MPv ⇡ Pv. (5.3)

Our matrix P
(tent) from (5.1) is very bad from the point of view of (5.3). We take instead

our prolongation operator P to be

P = MP
(tent)

,

which is very good from the point of view of (5.3), since one iteration of Weighted Jacobi
is very effective in decreasing the energy of the columns of P (tent), thus smoothing them.
In a later section, we will experiment with applying multiple iterations of Weighted Jacobi
to the columns of P (tent).

5.3 Restriction Operator, SA

Since SA was developed for SPD systems, it is natural that we take our restriction matrix
to be the transpose of our prolongation matrix. In other words,

R
(tent) = (P (tent))T =

0

BBB@

1 1
1 1

. . . . . .
1 1

1

CCCA
2 R

m
2 ⇥m

,

and
R = P

T = (MP
(tent))T = R

(tent)
M

T
,

where M is defined as in (5.2).
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5.4 Poisson Equation

Since SA was designed for SPD systems [9], we consider first our discretization of the
Poisson equation, since the system matrix A defined in (3.1) is SPD. P and R as defined
by the method SA are given by:

P = MP
(tent) =

0

BBBBBBBBBBBBBB@

1� .5w(p)

1� .5w(p)
.5w(p)

.5w(p) 1� .5w(p)

1� .5w(p)

.5w(p)

. . .
.5w(p)

1� .5w(p)

1� .5w(p)

1

CCCCCCCCCCCCCCA

2 Rm⇥m
2 ,

with
w

(p) =
4/3

⇢(D�1
A)

, (5.4)

and R = P
T, where M is defined as in (5.2).

The damping parameter w
(p) for the method SA is based on an eigenvalue calculation.

We will now compare the energy of the first column of the tentative prolongator with re-
spect to the system matrix A to the energy over the first column of the prolongator matrix
from the method SA with respect to the same SPD matrix. We do this to show how ef-
fective Jacobi energy-minimization is in this problem, with the given damping parameter.
Using first the tenative prolongator, we get:

q
P

(tent)
1

TAP
(tent)
1 =

r
2

�x2
.

Using the prolongator matrix from the method SA we get:

q
PT
1 AP1 =

r
2� 3w(p) + 1.5w(p)

�x2
. (5.5)

To compare the two values for energy, we consider the one variable function

f(w(p)) = 2� 3w(p) + 1.5w(p)
,

i.e. the quantity under the square root symbol in the numerator of (5.5). We also look
at our possible values for w

(p). As stated above in (5.4), w(p) in the method SA is based
on an eigenvalue calculation. We are interested in the eigenvalues of D�1

A, which are just
scaled version of the eigenvalues for the discrete Laplace operator with Dirichlet boundary
conditions (recall from (4.1)). Thus, the eigenvalues of D�1

A are

�
D�1A
j =

�x
2

2
�

Laplace
j = 2 sin2

⇣
⇡j

2(m+ 1)

⌘
, j = 1, ...,m.

Since w
(p) relies on the spectral radius of D�1

A, we only care about the largest of these
eigenvalues. From the formula above, we see that ⇢(D�1

A) �! 2 as our dimension increases,
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Figure 5.1: Plot of f(w(p)) = 2� 3w(p) + 1.5w(p)

and thus w
(p)
�!

2
3 .

Consider now the plot in Figure 5.1. With w
(p) = 2

3 we can see the energy of the first
column of P will be significantly less than the energy over the first column of P (tent), with
respect to the system matrix A. In other words, one iteration of Weighted Jacobi on the
prolongation basis functions with the damping parameter defined for the method SA sig-
nificantly decreases the energy of the columns of P with respect to the matrix associated
with the discretized Laplace operator.

As shown previously, Weighted Jacobi is very effective at eliminating high frequency er-
ror components. We can now assume that the low-energy subspace is in the range of P ,
and the smooth error components (including the user-defined near kernel) are represented
throughout the mesh hierarchy. These are the key concepts of the successful method SA
for SPD systems [9]. Later in this thesis, we will develop similar methods for nonsymmetric
systems which are built on the success of SA.

We now consider what happens if we were to repeat the process, smoothing the columns
even further.

5.5 Multiple Iterations of Weighted Jacobi

The method SA applies just 1 iteration of Weighted Jacobi to the prolongation basis
functions, effectively damping the high frequency error. The prolongation matrix this is
associated with can be seen in the previous section. In this section, we consider what
happens if we were to apply more than one iteration of Weighted Jacobi to the basis
functions, reducing the energy even more. Our prolongation matrix is thus given by the
formula

P
k+1
i = (I � w

(p)
D

�1
A)P k

i

= P
k
i � w

(p)
D

�1
AP

k
i ,

where P
0
i is the i-th column of P (tent). We consider the prolongation matrix which corre-

sponds to 2 iterations of Weighted Jacobi on each prolongation basis function. This matrix
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we will call P 2 and is given by

P
2 =

0

BBBBBBBBBBBBBBBBB@

a d

b c

c b d

d b c
. . .

c b
. . .

d b
. . .

c
. . .

d
. . .
. . . ,

1

CCCCCCCCCCCCCCCCCA

2 Rm⇥m
2

where a = w2�4w+4
4 , b = w2�2w+2

2 , c = �3w2+4w
4 and d = w2

4 .

To appreciate what is going on here, consider the second column of P with 1 iteration
of Weighted Jacobi (i.e. P from the method SA), when A is the discrete Laplace operator,

P
1
2 =

0

BBBBBBBBBBB@

0
0.33333412
0.66666588
0.66666588
0.33333412

0
...
0

1

CCCCCCCCCCCA

2 Rm

and then the second column of P 2 (2 iterations of Weighted Jacobi) when A is the same
as above:

P
2
2 =

0

BBBBBBBBBBBBB@

0.11111163
0.33333333
0.55555503
0.55555503
0.33333333
0.11111163

0
...
0

1

CCCCCCCCCCCCCA

2 Rm
.

From this we can see the columns of the prolongation basis functions actually begin to
resemble sine waves of lower frequencies as we iterate Weighted Jacobi. From an energy
minimization perspective this makes sense, since higher frequency sine waves have higher
energy than low frequency, slowly oscillating sine waves. This pattern continues as we
increase our number of iterations. This is beneficial for convergence because these slowly
oscillating sine functions are the same error components that are slow-to-converge on the
fine grid. Having these sine functions as the columns of the prolongation matrix helps
ensure the low energy eigenmodes (i.e. smooth error components) are accurately repre-
sented throughout the mesh hierarchy [8], and thus can be corrected. In Chapter 10 we
will experiment in taking the lowest frequency eigenvector and constructing our P based
solely on this vector.

Next, consider the coarse matrix corresponding to solving the Poisson equation using the
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Table 5.1: Jacobi Iterations on the Prolongation Basis Functions, Solving the Poisson
Equation (3.1)

Number of Jacobi iterations Number of 2-grid iterations CPU time
0 43 25.207526000000144
1 17 18.04043499999989
2 13 16.02034300000014
3 12 15.640740999999707
4 11 15.008073999999851
5 11 15.396749

1 pre- and post-smoothing step (Weighted Jacobi), m = 5120, �x = 1
1+m , solve used on the

coarse level, CPU time includes set-up

2-grid method, first with A
SA
c = RAfP where R = P

T and P is from the method SA and
then A

SA2
c = R

2
AfP

2, where R
2 = (P 2)T. We get:

A
SA
c =

0
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c b d b c
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where a = 3w2�6w+4
2�x2 , b = �w2+2w�1

�x2 , c = �w2

4�x2 and d = 5w2�8w+4
2�x2 and

A
SA2
c =

0
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where a = 11w4�30w3+36w2�24w+8
4�x2 , b = �23w4+72w3�96w2+64w�16

16�x2 , c = �13w4+24w3�12w2

8�x2 ,
d = �w4

16�x2 , e = 21w4�56w3+60w2�32w+8
4�x2 and f = �15w4+64w3�96w2+64w�16

16�x2 .

From this, we see that doing another iteration of Weighted Jacobi on the prolongation
basis functions results in more non-zero elements on the coarse matrix, complicating the
solve function. We are not surprised by this result, since as we damp the columns of P ,
we increase the number of non-zero elements in P (and R). Then, the product Ac = RAfP

has more non-zero elements as a result.

From the results of Table 5.1 and the plot of iterations of Weighted Jacobi vs energy
in the first column of P (Figure 5.2), we see a large improvement in CPU time to conver-
gence after applying just 1 iteration of Weighted Jacobi to the prolongation basis functions
when solving the discrete Poisson equation (3.1).

Iterating the procedure continues to decrease the energy, but we see only marginal gains
in CPU time when we do this, due to the longer set-up. With this in mind, we apply just
1 iteration for the remainder of this thesis.

5.6 Error Estimates

In [12] Vanek compares how the error is reduced with each iteration of the 2-grid method
when solving Ax = b for an SPD system, using first tentative prolongation and restriction,
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Figure 5.2: Energy Plot, m = 5120

and then using the prolongation and restriction operators as defined by the method SA.
The results follow without proof. We use the notation ⌫1, ⌫2 to indicate the number of
pre-smoothing and post-smoothing iterations, respectively. M corresponds to the iteration
matrix of Weighted Jacobi.

Lemma: (Error estimate, Tentative prolongation and restriction)
Let restriction and prolongation be achieved using a tentative operators, ⌫1 = 0, T =
ker(RA). Then the following error estimate is valid:

||e(xk+1)||2
||e(xk)||2

 sup
x2T\{0}

||M
⌫2x||2

||x||2
.

Theorem: (Error estimate, Smoothed Aggregation)
Let ⌫1 = ⌫2 = 2, T = ker(RA). Then the following error estimate holds for the 2-level
method with operators R = R

(tent)
M , P = MP

(tent):

||e(xk+1)||2
||e(xk)||2



⇣
sup

x2T\{0}

||Mx||2

||x||2

⌘4
.

In reality, we hope to do much better than these error estimates.



Chapter 6

Smoothed Aggregation and Closely
Related Methods

6.1 SA, NSA and NSR

We now discuss two variants of SA, Nonsmoothed Restriction Aggregration (NSR) and
Nonsmoothed Aggregation (NSA). These methods require only very simple adaptations
from SA.

In NSR, we keep P as defined in SA, i.e.

P = MP
(tent)

M = (I � w
(p)

D
�1
A)

w
(p) =

4/3

⇢(D�1
A)

,

where P
(tent) is as defined in (5.1). But, instead of defining R as

R = P
T = R

(tent)
M

T
,

as in SA, we use
R = R

(tent)
,

where R
(tent) = P

(tent)T. Thus, we have removed the extra smoothing step in the restric-
tion, but keep it in the prolongation.

In NSA, we remove the extra smoothing altogether and take

R = R
(tent)

and
P = P

(tent)
.

This corresponds to the classic agglomeration multigrid scheme.

6.2 SA, NSA and NSR for Symmetric System Matrices

To see the effects of removing the extra smoothing, we consider the discrete Poisson equa-
tion in one dimension with Dirichlet boundary conditions (3.1). A plot of this figure follows
in Figure 6.1.
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The discrete Laplace operator is an SPD matrix, so we expect SA to perform well. Be-
cause NSR removes some extra damping, we can expect it to perform suboptimally, but
better than Nonsmoothed Aggregation (NSA). To test this, a simple 2-grid method was
implemented with 1 pre- and post-smoothing iteration of Weighted Jacobi. Sparse solve
(spsolve) from Scipy was used on the coarsest level. To see the results of this experiment
with m = 1024 unknowns, see Table 6.1. The results are as predicted: SA performed best,
followed by NSR. NSA required the most iterations to converge in this experiment.

Table 6.1: Poisson Equation (3.1) (Symmetric)

Method Number of 2-grid iterations
SA 16
NSA 41
NSR 23

1 pre- and post-smoothing step (Weighted Jacobi), m = 1024, �x = 1
1+m , solve used on the

coarse level, tol = 10�8

Figure 6.1: Solution to (3.1)

6.3 SA, NSA and NSR for Nonsymmetric System Matrices

So far, we have only considered symmetric systems, such as the one formed by the discrete
Laplace operator. Consider now linear advection

ut + aux = 0

with periodic boundary conditions and initial condition

u0 = u(x, 0) = sin(⇡x)

on the domain x 2 (0, 2].

Our system matrix A corresponding to a first-order finite volume discretization with up-
wind flux and one time-step (implicit Euler method) is no longer symmetric (3.2).
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6.3.1 SA Prolongation for Linear Advection (Nonsymmetric)

The prolongation operator for the method SA is again given by

P = (I � w
(p)

D
�1
A)P (tent)

.

In the symmetric case, this prolongator reduces energy of the prolongation basis functions
over the SPD system matrix A. As we no longer have an SPD system, we can no longer
speak of an energy norm with respect to A or high energy error components, since the
energy norm is no longer defined. However, the method still attempts to damp oscilla-
tory eigenmodes (analogous to high energy components in symmetric systems) of A via
Weighted Jacobi, which can be seen directly from the equation for P [9]. The goal of this
is still to represent better the slowly-oscillating smooth error components throughout the
mesh hierarchy [8].

In the case of linear advection, where A is defined as in (3.2), P for the method SA
becomes

P =

0

BBBBBBBBBBBB@
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6.3.2 SA Restriction for Linear Advection (Nonsymmetric)

As stated previously, the system matrix for linear advection associated with one time-step
using our discretization is no longer symmetric. We can still apply the method SA to our
system with the restriction matrix given by

R = P
T = P

(tent)T(I � w
(p)

D
�1
A)T.

Because D
�1 is just the identity matrix times a constant, we have

(D�1
A)T = A

T(D�1)T = A
T(D�1) = (D�1)AT

.

Thus, we have the relation

R = P
(tent)T(IT � w

(p)
A

T
D

�1T)

= R
(tent)(I � w

(p)
A

T
D

�1)

= R
(tent)(I � w

(p)
D

�1
A

T).

Looking carefully at the equation above for R, we notice that this corresponds to damping
the oscillatory eigenmodes of AT, a matrix which is not equal to A. Thus, we are effectively
damping the wrong error components when we apply the restriction operator from SA in
the nonsymmetric case. Because of this property of the restriction operator, we can expect
suboptimal results of SA in nonsymmetric systems [9].



28CHAPTER 6. SMOOTHED AGGREGATION AND CLOSELY RELATED METHODS

6.4 Results: Nonsymmetric Systems

6.4.1 Data Tables

Table 6.2: Linear Advection (3.2) (Nonsymmetric)

Method Number of 2-grid iterations
SA 81
NSA 85
NSR 81

Iterations required to perform one time-step with �t = .01, m = 1024, a = 2, 1 pre- and
post-smoothing step (Non-Weighted Jacobi), �x = 2

m , solve used on the coarse level, initial
condition u0 = sin(⇡x), for x 2 (0, 2], periodic boundary conditions, tol = 10�8

Table 6.3: Number of 2-grid Iterations, Linear Advection (3.2) (Nonsymmetric)

Method m = 512 m = 1024 m = 2048 m = 4096 m = 8192
SA 6 7 7 8 8
NSA 6 7 8 8 8
NSR 6 7 7 8 8

Iterations required to perform one time-step with �t = .01, a = 2, 1 pre- and post-smoothing
step (Weighted Jacobi), �x = 2

m , solve used on the coarse level, initial condition u0 = sin(⇡x),
for x 2 (0, 2], periodic boundary conditions, tol = 10�8

Table 6.4: 1D Convection Diffusion (3.3)

Method Number of 2-grid itera-
tions, " = 10�5, highly con-
vective

Number of 2-grid itera-
tions, " = 10�1, nearly
symmetric

SA 24 13
NSA 27 30
NSR 9 16

1 pre- and post-smoothing step of Weighted Jacobi, m = 1024, �x = 1
1+m , b = 1, tol = 10�8

6.4.2 Discussion of the Results

To visualize how the methods perform in a simple case, we consider a 2-grid method for
performing one time-step of linear advection with Jacobi smoothing. A plot of the cal-
culated solution with �t = .1 can be seen in Figure 6.2. Table 6.2 shows us how many
iterations we need to perform one time-step (�t = .01) of linear advection using the pre-
viously described methods. As we can see, SA actually takes almost as many iterations as
NSA, and NSR takes as many iterations as SA. We can see that extra smoothing within
restriction and/ or prolongation does help, but we hope to do better.

Table 6.3 shows a nice property of multigrid methods. In this simple 2-grid scheme, we see
mesh width independence. As we vary how many unknowns we have on the same space
domain, our iterations stay roughly the same when solving an otherwise identical problem.
We use this property to our advantage when solving more complicated (and larger) prob-
lems.
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Figure 6.2: Solution to (3.2)

Figure 6.3: Solution to (3.3)
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Following the same ideas as before, we test this equation in the 2-grid method for dif-
ferent values of " in the convection diffusion equation. A plot of the calculated solution
can be found in Figure 6.3. We recall that the discretization matrix for convection diffusion
from (3.3) is nonsymmetric. Table 6.4 shows how many iterations we need for convergence
in solving both cases of the convection diffusion equation, using our previously described
methods. In highly convective systems (i.e. " = 10�5), SA performs poorly and NSR, skip-
ping the suboptimal smoothing related to A

T, performs better than both SA and NSA. In
more symmetric systems (i.e. " = 10�1), SA performs better than NSA and NSR.

6.5 Motivation for a New Method for Nonsymmetric Systems

What we would like now is a method which builds on the success of SA, but can achieve
good results in nonsymmetric systems. Such a method should effectively smooth the ten-
tative restrictor and prolongator basis functions in nonsymmetric systems, so that the
smooth error components can be represented throughout the mesh hierarchy [8]. From our
previous work, we understand that such a method should not involve A

T in the restric-
tion operator. We understand that such a method should also accurately interpolate the
user-defined near kernel.



Chapter 7

Generalization of SA to
Nonsymmetric Systems

In [9], Sala and Tuminaro suggest 2 new methods for nonsymmetric systems which are
based on the success of SA in symmetric systems. These methods are built on the same
two key components as SA: energy minimization (smoothing) and the accurate interpola-
tion of the user-defined near kernel. In their experiments, the methods show results which
are comparable to SA in diffusive systems and much better than SA in convective systems
(1D).

We first explain the method called EMIN(r) then the closely related method EMIN. We
will consider how these methods handle energy minimization (smoothing) in systems that
are not SPD, and the interpolation of the user-defined near kernel. Just like in the method
SA, we seek to minimize the energy of our columns of P so that we can better represent
smooth error components throughout the mesh hierarchy, with the goal of correcting them
on the coarsest grid, then interpolating them back to the fine grid to update our approxi-
mation. However, unlike in SA, where we chose a single damping parameter based on an
eigenvalue calculation, EMIN(r) will incorporate a new idea of local damping parameters.
The idea here is that different regions (highly convective or highly diffusive) may benefit
from different damping parameters [9]. We will close this section by discussing how these
methods perform for different systems.

7.1 Damping Parameters for EMIN(r)

Before we show how to set-up the prolongation and restriction operators for our new meth-
ods, we consider how to calculate the local damping parameters. To mimic the method
SA with nonsymmetric systems, Sala and Tuminaro selected damping parameters in such
a way to minimize AP in the Frobenius norm [9].

The following relationship holds:

||AP ||
2
F = trace([AP ]T[AP ]) =

ncX

j=1

P
T
j A

T
APj =

ncX

j=1

||Pj ||
2
ATA, (7.1)

where Pj = (I�w
(p)
j D

�1
A)P (tent)

j and nc refers to the number of columns of P (tent). Defin-
ing Pj as such reminds us of the method SA, which applied one iteration of Weighted
Jacobi to each column of the tentative prolongator, damping the high energy (symmetric
system matrices) and smoothing the columns of the prolongator. The w

(p)
j represent the

local damping parameters. The method SA did not use local damping parameters, but
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instead a single damping parameter based on an eigenvalue computation.

The last item in (7.1) reflects a generalization of SA’s energy minimization of the pro-
longation basis functions to nonsymmetric systems, since A

T
A is always an SPD matrix.

The local damping parameters are chosen such that:

w
(p)
j = argmin

w
(p)
j

||AP ||
2
F , j = 1, ..., nc

which corresponds to:

w
(p)
j =

X
argmin

w
(p)
j

||Pj ||
2
ATA, j = 1, ..., nc

=
X

argmin
w

(p)
j

||(I � w
(p)
j D

�1
A)P (tent)

j ||
2
ATA, j = 1, ..., nc

=
X

argmin
w

(p)
j

||P
(tent)
j � w

(p)
j D

�1
AP

(tent)
j ||

2
ATA, j = 1, ..., nc. (7.2)

We can solve this minimization by an orthogonal projection, i.e. projecting the vector
P

(tent)
j onto D

�1
AP

(tent)
j with respect to A

T
A. The length of this projection corresponds

to the w
(p)
j which minimizes the j-th summand in (7.2).

Projecting P
(tent)
j onto D

�1
AP

(tent)
j with respect to A

T
A results in a vector which we

can calculate as follows:

v =
< P

(tent)
j , D

�1
AP

(tent)
j >ATA

||D
�1
AP

(tent)
j ||2

ATA

D
�1
AP

(tent)
j .

Since we are interested in the length of this vector, i.e. the scalar quantity w
(p)
j for each j,

this gives us a nice closed formula for our damping parameters. We get:

w
(p)
j =

< P
(tent)
j , D

�1
AP

(tent)
j >ATA

||D
�1
AP

(tent)
j ||2
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for the prolongation and

w
(r)
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(tent)
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T
, D
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A

T
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i

T
>AAT

||D
�1
ATR

(tent)
i

T||2
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.

in the case of restriction (analogous case).

This results in a large set-up cost for the method EMIN(r), compared to our previously
defined methods. However, as shown in the results in the next chapter, the set-up cost is
justified for some problems (in particular, linear advection with large CFL numbers), due
to the impressive results of the method.

7.2 Setting up EMIN(r)

Now that we have our damping parameters, we must set up our restriction and prolonga-
tion in a way that guarantees the interpolation of the user-defined near kernel vector(s),
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i.e. that this vector(s) is accurately represented throughout the mesh hierarchy. In this
section we focus on how to set up prolongation and in the next section, we explain why
this way accurately interpolates the user-defined near kernel.

If we follow an analogous idea to SA, it seems reasonable to set up our prolongation
as

P = P
(tent)

�D
�1
AP

(tent)⌦(p)
,

where ⌦(p) is a diagonal (m2 ⇥
m
2 ) matrix with w

(p)
j , j = 1, ..., nc as entries. Since our matrix

⌦(p) has dimensions (m2 ⇥
m
2 ) we need to put the this matrix on the right of the matrix

P
(tent). This formula, unfortunately, proves to be problematic (see following section). We

decide instead to set up our prolongation as

P = P
(tent)

�D
�1⌦(fine)

AP
(tent) = (I �D

�1⌦(fine)
A)P (tent)

, (7.3)

where ⌦(fine) is an (m⇥m) matrix with diagonal entries w
(fine)
j defined by

⌦(int)
P

(tent) = P
(tent)⌦(p) (7.4)

and
w

(fine)
j = max{0, min

j, aij 6=0
w

(int)
j }, (7.5)

where ⌦(int) is an (m ⇥m) diagonal matrix with entries w
(int)
j . Because of this, we need

m damping parameters, though we only have m
2 . Thus, we must do an interpolation.

To see what this interpolation looks like, consider using solving (7.4) for the entries of
⌦(int) (i.e. w

(int)
j ) in a concrete example (m = 8). We have:
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and therefore w
(int)
2j�1 = w

(p)
j and w

(int)
2j = w

(p)
j for j = 1, ..., nc. Now we have our w(int)

j , and
we use (7.5) to calculate w

(fine)
j .

Unfortunately, we have no closed formula to calculate the optimal w(int)
j (interpolation).
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So, setting up P in the way described above does lose some of the optimality of the energy
minimization.

We define R in an analogous way:

R = R
(tent)

�R
(tent)

AD
�1⌦(fine) = R

(tent)(I �AD
�1⌦(fine)), (7.8)

noting that A
T is not included in the above equation.

7.3 EMIN

Our second proposed method, EMIN is almost identical to EMIN(r). EMIN avoids some
of the setup cost of EMIN(r) by taking the local damping parameters calculated for the
prolongation and using them directly in the restriction. We will see a savings in setup cost
associated with EMIN (one half), without sacrificing on performance.

7.4 Near Kernel Interpolation, EMIN(r)/ EMIN

In a previous section we discussed choosing the damping parameters to minimize ||AP ||
2
F

and thus smooth the prolongation basis functions. Using SA as our guide, we must also
accurately interpolate the user-defined near kernel. By this we mean

min
P

||AP ||
2
F subject to N ⇢ R(P )

where N is the user-defined near kernel (the constant vector, unless otherwise specified)
and R(P ) is the range of our prolongation operator.

For the methods EMIN(r) and EMIN, the prolongation operator is

P = (I �D
�1⌦(fine)

A)P (tent)

instead of the original idea which gave us optimal energy minimization,

P = P
(tent)

�D
�1
AP

(tent)⌦(p) = (I �D
�1
A)P (tent)⌦(p)

. (7.9)

To see why the original idea for P does not accurately interpolate the user-defined near
kernel, consider calculating P from (7.9) when A is the system matrix used to solve the
discrete Poisson equation. This matrix P corresponds to:

P =

0
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.

We see above that multiplying with ⌦(p) on the right multiplies in the wi’s column-wise.
Because our damping parameters are not always equal for all i, this does not guarantee
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that the constant vector will be in the range of our prolongation operator. This gives us
the idea to change the placement of the diagonal matrix constructed from the damping
parameters.

We return now to our proposed formula for P in EMIN(r)/EMIN. For simplicity’s sake,
let’s refer to this matrix as

S = I �D
�1⌦(fine)

A.

In the case of the Poisson equation, we get
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For linear advection (system matrix corresponds to 1 time-step using the implicit Euler
method with periodic boundary conditions), we get
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where w is used in the previous matrix because w
(fine)
i are equal for all i in this case.

For convection diffusion, we get
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Because of the structure of the linearly independent columns of P
(tent) (i.e. repeating

patterns of 0’s and 1’s) and the different matrices for S shown above, where the damping
parameters appear row-wise (instead of column-wise), we can see that the constant vector



36 CHAPTER 7. GENERALIZATION OF SA TO NONSYMMETRIC SYSTEMS

is in the range of our new prolongation operators (excluding the first and last entry, which
correspond to boundaries). Thus, we can count on our user-defined near kernel vector
being accurately represented throughout the mesh hierarchy, just as it was in the method
SA. Unfortunately, this result is not true in general for S 2 Rm⇥m, which is why we chose
to show the previous three examples.

7.5 EMIN and EMIN(r) for Symmetric Systems

Table 7.1: Poisson Equation (3.1) (Symmetric)

Method Number of 2-grid iterations
SA 16
NSA 41
NSR 23
EMIN(r) 18
EMIN 18

1 pre- and post-smoothing step (Weighted Jacobi), m = 1024, �x = 1
1+m , solve used on the

coarse level, tol = 10�8

Figure 7.1: Iterations vs Residual for solving (3.1) with Jacobi smoothing, ⌫1 = ⌫2 = 1 l = 1,
� = 1, m = 1024, �x = 1

m+1

Now that we have shown how to set up our new methods, we can visualize their
effectiveness first (for simplicity’s sake) in the 2-grid method. The results of this follow in
Table 7.1 and Figure 7.1, where we considered the Poisson equation.

Our new methods perform almost as well as SA in the symmetric case. This is very
promising because SA is a powerful method for symmetric systems and it is our hope
that our newly proposed methods will perform well in both symmetric and nonsymmetric
systems. We note, however that EMIN(r) and EMIN require more set-up than SA.
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7.6 EMIN and EMIN(r) for Nonsymmetric Systems

Table 7.2: Linear Advection (3.2) (Nonsymmetric)

Method Number of 2-grid iterations
SA 81
NSA 85
NSR 81
EMIN(r) 68
EMIN 68

Iterations required to perform one time-step with �t = .01, m = 1024, a = 2, 1 pre- and
post-smoothing step (Non-Weighted Jacobi), �x = 2

m , solve used on the coarse level, initial
condition u0 = sin(⇡x), for x 2 (0, 2], periodic boundary conditions, tol = 10�8

Figure 7.2: Iterations vs Residual for solving (3.2), Non-Weighted Jacobi smoothing,
⌫1 = ⌫2 = 1, l = 1, � = 1, m = 1024, �x = 2

m , �t = .01, a = 2

Table 7.3: Number of 2-grid Iterations, Linear Advection (3.2) (Nonsymmetric)

Method m = 512 m = 1024 m = 2048 m = 4096 m = 8192
SA 6 7 7 8 8
NSA 6 7 8 8 8
NSR 6 7 7 8 8
EMIN(r) 5 6 6 6 6
EMIN 5 6 6 6 6

Iterations required to perform one time-step with �t = .01, a = 2, 1 pre- and post-smoothing
step (Weighted Jacobi), �x = 2

m , solve used on the coarse level, initial condition u0 = sin(⇡x),
for x 2 (0, 2], periodic boundary conditions, tol = 10�8
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Table 7.4: 1D Convection Diffusion (3.3)

Method Number of 2-grid itera-
tions, " = 10�5, highly con-
vective

Number of 2-grid itera-
tions, " = 10�1, nearly
symmetric

SA 24 13
NSA 27 30
NSR 9 16
EMIN(r) 7 14
EMIN 7 14

1 pre- and post-smoothing step of Weighted Jacobi, m = 1024, �x = 1
1+m , b = 1, tol = 10�8

If we now refer to Table 7.2 and Figure 7.2, we can see that our new methods perform
well when performing one time-step of linear advection. Our new methods are better
than our previous best methods here. Table 7.3 shows that our new methods also
preserve mesh width independence in the case of one time-step of linear advection.
Looking at Table 7.4 we can see that in the highly convective case of convection diffusion,
our new methods also perform better than the previously described methods. In the
nearly symmetric case of convection diffusion, our newly proposed methods do almost as
well as SA, the method designed for such systems. Thus, we have promising new methods
to try out on more complicated problems.



Chapter 8

Multigrid Method Results (Part 1)

In this chapter, we begin by transitioning from the 2-grid method to a multigrid scheme.
We will explain what this entails, and then prove the invertibility of the coarse system
matrices in this scheme. After this, we will present some basic results using our previously
presented methods.

8.1 Implementation of the Multigrid Method

Now that we have seen many simple examples using just the 2-grid method, we change our
focus to the multigrid method. It is here that we incorporate V and W cycles for more
efficient solving.

It is also important to point out how we are defining our coarse matrices. Following
Sala and Tuminaro in [9], we set up the coarse matrices recursively. By this, in the 4-level
model (i.e. l = 3 on the finest level), we mean A3 is constructed according to the specified
discretization and dimensions on the fine grid, and then

A2 = R
2
3A3P

3
2 ,

A1 = R
1
2R

2
3A3P

3
2P

2
1 = R

1
2A2P

2
1

and
A0 = R

0
1R

1
2R

2
3A3P

3
2P

2
1P

1
0 = R

0
1A1P

1
0 ,

where R
l�1
l and P

l
l�1 are the method-specific restriction and prolongation operators. Be-

cause of this, sometimes the matrices on the coarsest level no longer have the same structure
as the fine level system matrix they originated from.

It is here that we remind the reader to always use sparse matrices when working with
a multigrid method. If one fails to do this, the code will be far, far too slow for practical
purposes, especially if one wants to solve for thousands of unknowns (or more). Addition-
ally, since the numerical experiments in this thesis were implemented in Python, it should
be pointed out that for loops should be avoided whenever possible, as Python is a scripting
language.

8.2 Multigrid Method Compared to 2-grid Method

We also note here the differences between the multigrid method and the 2-grid method.
Multigrid methods are extremely useful when we have large dimensions, since we can reduce
the size of our solve problem immensely by going down multiple levels. However, with
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the change of dimension comes the fact that the solve on the coarsest level will not be as
effective as in the 2-grid method, since we have strayed so far from our original problem.
What multigrid methods offer us is a comparatively shorter computation time.

8.3 Proof of the Invertibility of the Coarse Matrices

8.3.1 Introduction to Null Space Preservation

As stated in the previous section, going down multiple levels using R and P as defined by
the methods in this thesis can result in a coarsest grid matrix that is quite different from
the system matrix on the finest level. We will prove in this section that, as long as the fine
grid matrix is full rank, we need not worry that our matrices will become singular on the
coarse levels.

Consider first P from the methods EMIN(r) and EMIN. We take this prolongator first
because it is the most complicated. Setting up P as

P = P
(tent)

�D
�1⌦(fine)

AP
(tent) (8.1)

allows us to show the desired property, whereas the original idea (presented in the previous
chapter)

P = P
(tent)

�D
�1
AP

(tent)⌦(p) (8.2)

does not.

We shall now show that for (8.1), the null space of A is in the range of P when it is
in the range of P (tent). We also show that this is not necessarily so for (8.2). In the fol-
lowing subsection, we show the importance of this property.

Proof:
Assume that the (not necessarily trivial) null space of A is in the range of P (tent), that is
assume AP

(tent)
c = 0 where A 2 Rm⇥m and c 2 Rm. Then, using P from (8.1) we have:

Pc = P
(tent)

c�D
�1⌦(fine)

AP
(tent)

c

= P
(tent)

c� 0

= P
(tent)

c,

or that the null space of A is in the range of P when it is in the range of P (tent).

Now consider again our original idea for P from (8.2). Here we have:

Pc = P
(tent)

c�D
�1
AP

(tent)⌦(p)
c

= P
(tent)

c�D
�1
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(tent)
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. . .
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From our assumption, we have that AP
(tent)

c = 0. From the above, we can see that if
there is variation in the w

(p)
j ’s, then P

(tent)⌦(p)
c might not be in the null space of A, and

thus the null space of A is not necessarily in the range of P when it is in the range of
P

(tent), which is the property we wanted to show. It is for this reason we use

P = P
(tent)

�D
�1⌦(fine)

AP
(tent)

.

We note here that it is trivial to see that our previous methods (SA, NSA and NSR) all
share this property.

8.3.2 Null Space Preservation

Define P from SA, NSR, NSA, EMIN(r) or EMIN.

In order to show the relationship between the null space vectors throughout the mesh
hierarchy, assume

AfP
(tent)

c = 0

where P
(tent)

c is not necessarily the zero vector (i.e. Af is not necessarily full rank) and
Af 2 Rm⇥m.

From the previous subsection and the above, we have:

Pc = P
(tent)

c.

We also have:

RAfPc = 0.

But we notice that
Ac = RAfP 2 R

m
2 ⇥m

2

and

Acc = RAfPc = R0 = 0,

showing that c is the (not necessarily trivial) null space of Ac.

From this, we see that we have a relationship between the null space of Af and the null
space of Ac. That is, if

AP
(tent)

c = A

0
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1

1
1
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then
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All of the examples presented in this thesis have an invertible matrix on the fine level. The
above shows that, if we start with a full rank matrix on the fine level, then we need not
worry that the coarse level matrices will become singular, since the null space of the coarse
system matrices will also be only the zero vector (of proper dimension).

This holds throughout the mesh hierarchy, since we define coarse level matrices recursively
using P and R from the specified method (i.e. A0 = R

0
1R

1
2A2P

2
1P

1
0 ). This is advantageous,

as we use solve on the coarsest level. (For the interested reader, an alternative proof of
this concept follows in the next subsection.)

8.4 Alternative Proof of the Invertibility of the Coarse Ma-

trices

We provide here a sketch of another proof of the invertibility of the coarse matrices. Though
the null space preserving property of these methods (previous subsection) shows the same
thing, this proof provides an alternative way of looking at things.

A sketch was chosen because our matrices R, Af and P are different depending on the
problem. First, we chose an Af based on the problem we wish to solve, but for each Af

of a given dimension, we have 4 different R’s and 3 different P ’s to choose from (if we
consider only the methods presented in this thesis). The following result holds in all cases.

Proof:
Assume Af is a matrix with dimensions (m⇥m) and that Af has full rank.

Due to the constraint on the near kernel and the structure of P , P has always m
2 lin-

early independent columns and only the trivial null space (of dimension (m2 ⇥ 1)).

AfP has only the trivial null space since we assumed Af is full rank. This means AfP

maps only the zero vector of dimension (m2 ⇥ 1) to the zero vector of dimension (m ⇥ 1)
since AfP has dimension (m⇥ m

2 ).

R has a nontrivial null space of dimension m
2 , i.e. we have m

2 linearly independent non-zero
vectors (v1, ..., vm

2
) of dimension (m⇥ 1) such that Rvi = 0, i = 1, ..., m2 .

We can show that the non-trivial null space of R is not within the range of AfP , i.e.
AfP cannot map any vectors of dimension (m2 ⇥ 1) to any of the vectors (v1, ..., vm

2
) of

dimension (m⇥ 1) which are the elements of the null space of R.

Thus, Ac = RAfP 2 R(m2 ⇥m
2 ) has only the trivial null space of dimension (m2 ⇥ 1).

=) Ac is invertible. ⇤

8.5 Results: Multigrid (Basic Examples)

We include the data tables which show the effect of the different methods on multigrid
iterations when solving the Poisson equation, linear advection and 1D convection diffusion.
All of these data tables represent a 4-level model (l = 3 on the finest level) with � = 2, i.e.
a ’W-cycle.’ The text n/c indicates a failure to convergence after 300 multigrid iterations.
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Table 8.1: Number of Multigrid Iterations, Poisson Equation (3.1)

Method m = 512 m = 1024 m = 2048 m = 4096 m = 8192
SA 15 16 16 16 17
NSA 70 72 74 76 79
NSR 22 22 23 24 24
EMIN(r) 17 18 18 19 19
EMIN 17 18 18 19 19

1 pre- and post-smoothing step (Weighted Jacobi), l = 3, � = 2, �x = 1
1+m , solve on the

coarsest level, tol = 10�8

Table 8.2: Number of Multigrid Iterations, Linear Advection (3.2)

Method m = 512 m = 1024 m = 2048 m = 4096 m = 8192
SA 9 21 n/c n/c n/c
NSA 16 25 33 40 44
NSR 6 7 7 8 8
EMIN(r) 14 8 6 6 6
EMIN 14 8 6 6 6

1 pre- and post-smoothing step (Weighted Jacobi), iterations required to perform one time-step
with a = 2, �t = .01, l = 3, � = 2, �x = 2

m , initial condition u0 = sin(⇡x), for x 2 (0, 2],
periodic boundary conditions, solve on the coarsest level, tol = 10�8

Table 8.3: Number of Multigrid Iterations, 1D Convection Diffusion (3.3), " = 10�5

(Convective Case)

Method m = 512 m = 1024 m = 2048 m = 4096 m = 8192
SA n/c n/c n/c n/c n/c
NSA 54 50 44 35 26
NSR 9 9 9 9 11
EMIN(r) 7 8 8 9 11
EMIN 7 8 8 9 11

1 pre- and post-smoothing step (Weighted Jacobi), l = 3, � = 2, �x = 1
1+m , b = 1, solve on

the coarsest level, tol = 10�8

Table 8.4: Number of Multigrid Iterations, 1D Convection Diffusion (3.3), " = 10�1

(Diffusive Case)

Method m = 512 m = 1024 m = 2048 m = 4096 m = 8192
SA 12 13 13 13 14
NSA 55 57 59 60 62
NSR 13 13 14 15 16
EMIN(r) 14 14 14 15 15
EMIN 14 14 14 15 15

1 pre- and post-smoothing step (Weighted Jacobi), l = 3, � = 2, �x = 1
1+m , b = 1, solve on

the coarsest level, tol = 10�8
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8.5.1 Discussion of the Results (Basic Examples)

If we consider Table 8.1, we see that SA performs best when solving the Poisson equation,
as expected. NSR, removing the restriction smoothing does not perform as well as SA.
EMIN(r) and EMIN perform well, though not as well as SA and have a significantly larger
set-up cost.

If we look to Table 8.2, we see that our newly proposed methods EMIN(r) and EMIN
perform well when performing one time-step of linear advection, particularly as the dimen-
sion grows. This corresponds to solving linear advection at a larger CFL, where

CFL :=
a�t

�x
.

We will investigate this idea further in the following chapter. Our previously discussed
methods do not perform as well, with the exception of NSR, which skips the suboptimal
restriction smoothing related to A

T.

If we look to Table 8.3, we see that EMIN and EMIN(r) perform extremely well in the
highly convective case, though not with mesh width independence. Our method SA does
not converge here. The method NSR, skipping the suboptimal smoothing on restriction,
also performs well and is less costly to set up, compared to EMIN(r) and EMIN.

If we look to Table 8.4, we see that EMIN and EMIN(r) perform almost as well as SA
in the diffusive case. This is promising, since SA was designed for symmetric systems.
NSR performs as well or better than EMIN(r) and EMIN, and has a simpler set-up.

8.5.2 A Note on EMIN vs EMIN(r)

In all of the experiments presented in this thesis, the two newly proposed methods perform
identically, though EMIN saves considerably on setup cost (one half). It is therefore ad-
vised that EMIN be used over EMIN(r), even if perhaps we lose some optimality in energy
minimization.

In the case of linear advection with periodic boundary conditions, the damping param-
eters on restriction and prolongation are all identical anyway. In the case of 1D convection
diffusion, the largest difference between damping parameters was found in the first deci-
mal place. This is interesting to note, considering these local damping parameters were
designed for the convection diffusion equation. This result is true both when " = 10�1 and
" = 10�5, i.e. in the convective and diffusive case.
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Multigrid Method Results (Part 2)

In this chapter, we go a little bit further in our investigation of the different methods
for prolongation and restriction. We first apply some more advanced smoothers in pre-
smoothing when performing one time-step of linear advection, then we experiment with
residual smoothing when performing one time-step of the same equation. We finish this
chapter by explaining how to solve a 2D convection diffusion equation in a multigrid setting,
and providing results on how our different methods performed. We note that, just as we
had previously, the text n/c in the data tables indicates a failure to convergence after 300
multigrid iterations.

9.1 Linear Advection with Optimized Runge-Kutta Smoothers

9.1.1 Background on Runge-Kutta Smoothers

In [2], Birken used a multigrid method with s-stage explicit Runge-Kutta methods for
presmoothing and a smoothing step on the coarsest level (instead of a direct solve),
in order to solve the linear advection (3.2). These smoothers require more set-up than
Weighted Jacobi, but are also more powerful. The smoothers approximate the solution to
the initial value problem

ut = f(u), un = u(tn),

and are of the form
u0 = un

uj = un + ↵j�t
⇤
f(uj�1), j = 1, ..., s� 1

un+1 = un +�t
⇤
f(us�1),

where ↵j and �t
⇤ are free parameters and we make the consistency requirement that

↵j 2 [0, 1]. As Birken explains in [2], one step of the Runge-Kutta smoother consists of
performing one step of the Runge-Kutta scheme for solving

ut⇤ = u
n
�Au(t⇤) = f(u), u(t⇤0) = u

n
.

We note here that �t
⇤ refers to a pseudo time-step and actually has no physical meaning.

We define �t
⇤ on each level as

�t
⇤
l = c�t

⇤
/⌫,

where ⌫ = a�t. Thus, it is the c and ↵j which Birken has chosen in an optimal way.

Two different strategies are presented for optimizing these free parameters. First, the
free parameters ↵j and c were optimized such that the smoothers removed nonsmooth
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error components fast, for a variety of CFL numbers. Then, the free parameters were
optimized in order to minimize the spectral radius of M , where

u
(k+1) = Mu

(k) +N
�1
b,

corresponds to one iteration of our multigrid scheme. This optimization was more costly.

We note that in [2], Birken took R
(tent) = 1

2P
(tent), so we do this also in the experiments

involving the Runge-Kutta smoothers which follow.

9.1.2 Experiment with Runge-Kutta Smoothers

We would like to see if using Birken’s optimized Runge-Kutta smoothers can speed up
convergence when using our methods to solve (3.2). We know that the methods SA, NSR,
EMIN(r) and EMIN provide extra smoothing within prolongation, restiction or both. Since
the method NSA uses only a tentative restrictor and tentative prolongator, the method
NSA corresponds to the same problem presented in [2].

The quantity
CFL :=

a�t

�x

refers to a ratio between time-step and cells on a domain when solving PDEs with explicit
methods. Since we use a discretization with the implicit Euler method, we do not need to
consider a certain maximum CFL for stability. Instead, it is interesting to look at what
happens for large CFL values, since the method can handle large time-steps. The data
tables for medium, large and extremely large CFL numbers follow in the next section.

9.1.3 Data Tables, Linear Advection with R-K Smoothers

We provide here the data tables which compare the results of performing one time-step
of linear advection using different methods for prolongation and restriction and different
smoothers for pre-smoothing and smoothing on the coarsest grid. The code for the Runge-
Kutta smoothers was written by Versbach. We have optimized parameters ↵j and c for
CFL = 3 and CFL = 24. CFL = 240 represents an extremely large CFL, for which we do
not have optimized parameters. We instead use the optimized parameters we have from
CFL = 24, the largest CFL Birken considered in [2].

We note that the abbreviation ’RK2 (sm.)’ refers to using a 2-stage explicit Runge-Kutta
method with optimized parameters such that the smoother removes the nonsmooth error
components fast and ’RK2 (rho)’ refers to a 2-stage explicit Runge-Kutta method with
optimized parameters to minimize the spectal radius of M .

We include here a column which corresponds to using Weighted Jacobi as a smoother
(abbreviation ’W.J.’). This was done so that the reader would have a basis from which to
interpret the new results.
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Table 9.1: Number of Multigrid Iterations, Linear Advection (3.2), CFL=3 (medium)

Method RK2
(sm.)

RK3
(sm.)

RK4
(sm.)

RK2
(rho)

RK3
(rho)

RK4
(rho)

W.J.

SA 7 4 4 12 4 4 18
NSA 8 5 5 13 5 5 19
NSR 7 5 4 8 4 4 8
EMIN(r) 7 5 4 10 5 5 13
EMIN 7 5 4 10 5 5 13

Iterations required to perform one time-step with m = 48, a = 2, ⌫1 = 2 pre- and ⌫2 = 0
post-smoothing step, �x = 2

m , �t = 1
16 , ⌫1 smoothing steps used on the coarse level, initial

condition u0 = sin(⇡x), for x 2 (0, 2], periodic boundary conditions, tol = 10�8, l = 2, � = 1

Table 9.2: Number of Multigrid Iterations, Linear Advection (3.2), CFL=24 (large)

Method RK2
(sm.)

RK3
(sm.)

RK4
(sm.)

RK2
(rho)

RK3
(rho)

RK4
(rho)

W.J.

SA n/c n/c n/c n/c n/c n/c n/c
NSA 31 20 15 22 20 14 63
NSR 21 14 12 20 12 13 36
EMIN(r) 19 13 10 19 9 13 22
EMIN 19 13 10 19 9 13 22

Iterations required to perform one time-step with m = 48, a = 2, ⌫1 = 2 pre- and ⌫2 = 0
post-smoothing step, �x = 2

m , �t = 1
2 , ⌫1 smoothing steps used on the coarse level, initial

condition u0 = sin(⇡x), for x 2 (0, 2], periodic boundary conditions, tol = 10�8, l = 2, � = 1

Table 9.3: Number of Multigrid Iterations, Linear Advection (3.2), CFL=240 (extremely
large)

Method RK2
(sm.)

RK3
(sm.)

RK4
(sm.)

RK2
(rho)

RK3
(rho)

RK4
(rho)

W.J.

SA n/c n/c n/c n/c n/c n/c n/c
NSA 165 79 48 128 53 76 n/c
NSR 50 33 27 51 33 44 107
EMIN(r) 35 23 18 28 18 21 60
EMIN 35 23 18 28 18 21 60

Iterations required to perform one time-step with m = 48, a = 20, ⌫1 = 2 pre- and ⌫2 = 0
post-smoothing step, �x = 2

m , �t = 1
2 , ⌫1 smoothing steps used on the coarse level, initial

condition u0 = sin(⇡x), for x 2 (0, 2], periodic boundary conditions, tol = 10�8, l = 2, � = 1

9.1.4 Discussion of the Data Tables, Linear Advection with R-K Smoothers

When we consider a medium CFL condition, we can see above that the choice of method for
restriction and prolongation does not make a large difference in the number of multigrid
iterations required for convergence. The exception here is ’RK2 (rho),’ which performs
best with the method NSR. The optimized smoothers perform much better than Weighted
Jacobi in this example, which is not surprising considering these methods were optimized
for solving this particular problem.

At a large CFL, the choice of method begins to matter a bit more. Our newly proposed
methods, EMIN(r) and EMIN are the best performing methods at large CFL (though they
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tie with NSR for ’RK4 (rho)’). All the Runge-Kutta smoothers perform significantly better
than Weighted Jacobi at CFL = 24.

At extremely large CFL (i.e. CFL = 240), we see that the newly proposed methods
EMIN(r) and EMIN really pay off. We need to consider that these methods have a much
larger set-up cost compared to the others, but the convergence at extremely large CFL
numbers makes them worthwhile.

9.2 Residual Smoothing, Linear Advection

The method SA adds additional smoothing on restriction and prolongation. In this section
we will explore what happens when we do an extra smoothing of the residual within the
multigrid method.

9.2.1 Optional Second Order Lowpass Filter

In [10], Söderlind suggests adding a second-order lowpass filter to smooth the residual
before restriction and thus speed up convergence. By this, we mean update rl with

rl  
1

4

0

BBBB@

2 1

1
. . . . . .
. . . . . . 1

1 2

1

CCCCA
rl.

The above equation shows that this optional step adds additional matrix-vector products,
and is, thus, more costly. However, this simple modification can be a cheap way to speed
up NSA when solving the linear advection equation, as we will see in the results in Table
9.4.

9.2.2 Residual Averaging

Similarly, in [6], Jameson suggests implicit averaging of the residuals with their neighbors,
i.e.

�"r̄j�1 + (1 + 2")r̄j � "r̄j+1 = r̄j

with " = .5. This increases the implicitness of the method, which allows us to take a larger
time-step.

In practice, we apply two iterations of Weighed Jacobi to the following system:
0
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...
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in order to solve for r̂h. We then take this vector r̂h to be our residual and proceed with
the algorithm as usual. Just like with Söderlind’s lowpass filter for smoothing the residual,
we apply this step before we restrict the residual.

We test these ideas when performing one time-step of the linear advection equation with
periodic boundary conditions, i.e. solving (3.2) with our previously described methods for
restriction and prolongation. We use a simple Weighted Jacobi smoother for pre-smoothing
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and then this smoother again on the coarsest level, instead of solving. First, we look at
what happens with time-step �t = 1

16 using no filter, Jameson’s residual averaging and
Söderlind’s lowpass filter, then again at �t = 1

2 . These results are in Tables 9.4 and 9.5.
Table 9.6 compares how many iterations our methods need to converge to solve 1 iteration
of the same equation without any filter and �t = 1

16 , then how many iterations using
Jameson’s implicit averaging but with a time-step which is twice as large (�t = 1

8).

9.2.3 Results, Linear Advection with Residual Smoothing

Table 9.4: Number of Multigrid Iterations, Linear Advection (3.2), CFL=3

Method No filter Implicit residual av-
eraging

Lowpass filter

SA 18 13 13
NSA 19 14 14
NSR 8 13 13
EMIN(r) 13 13 13
EMIN 13 13 13

Iterations required when performing one time-step with m = 48, a = 2, ⌫1 = 2 pre- and
⌫2 = 0 post-smoothing step (Weighted Jacobi relaxation), �x = 2

m , �t = 1
16 , ⌫1 iterations of

the smoother used on the coarse level, initial condition u0 = sin(⇡x), for x 2 (0, 2], periodic
boundary conditions, tol = 10�8, l = 2, � = 1, " = .5

Table 9.5: Number of Multigrid Iterations, Linear Advection (3.2), CFL=24

Method No filter Implicit residual av-
eraging

Lowpass filter

SA n/c n/c n/c
NSA 63 61 62
NSR 35 39 38
EMIN(r) 22 27 26
EMIN 22 27 26

Iterations required when performing one time-step with m = 48, a = 2, ⌫1 = 2 pre- and
⌫2 = 0 post-smoothing step (Weighted Jacobi relaxation), �x = 2

m , �t = 1
2 , ⌫1 iterations of

the smoother used on the coarse level, initial condition u0 = sin(⇡x), for x 2 (0, 2], periodic
boundary conditions, tol = 10�8, l = 2, � = 1, " = .5

Table 9.6: Number of Multigrid Iterations, Linear Advection (3.2)

Method No filter �t = 1
16 , CFL=3 Implicit residual averaging

�t = 1
8 , CFL=6

SA 18 17
NSA 19 18
NSR 8 17
EMIN(r) 13 15
EMIN 13 15

Iterations required when performing one time-step with m = 48, a = 2, ⌫1 = 2 pre- and ⌫2 = 0
post-smoothing step (Weighted Jacobi relaxation), �x = 2

m , ⌫1 iterations of the smoother on
the coarsest level, initial condition u0 = sin(⇡x), for x 2 (0, 2], periodic boundary conditions,
tol = 10�8, l = 2, � = 1, " = .5
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9.2.4 Discussion of the Results, Residual Smoothing

From Table 9.4, we can see that for CFL= 3, applying either Söderlind’s second-order
lowpass filter or Jameson’s implicit residual averaging can be a cheap way to speed up
convergence when using the methods NSA or SA. Unfortunately, this filter does not help
us in conjunction with NSR, EMIN(r) or EMIN. Since the method SA requires extra set-up
cost, the method NSA with the lowpass filter is our best option here.

In Table 9.5, we see that at CFL= 24, we do not benefit from applying a lowpass fil-
ter or implicit residual averaging in the same way we did at CFL= 3. Thus, residual
smoothing is not recommended here.

From Table 9.6, we can see that applying Jameson’s idea of residual averaging with the
method NSA allows us to take a time-step which is twice as large (double the CFL) in
1 fewer multigrid iteration. Since residual averaging corresponds to just 2 iterations of
Weighted Jacobi on the fine grid, this can be seen as a cheap way to speed up convergence
of the method NSA, which is our cheapest option for restriction and prolongation. SA
also performs slightly better with residual averaging, though SA is not an ideal method for
the (nonsymmetric) linear advection equation. Unfortunately, our preferred methods for
linear advection (NSR, EMIN(r) and EMIN) do not show any improvement with residual
averaging. Instead, residual averaging in these cases corresponds to more work for a slower
convergence and is, thus, not recommended.

9.3 Convection Diffusion in 2D

9.3.1 Tentative Restriction and Prolongation in 2D

We begin here by noting that the tentative prolongator and tentative restrictor are differ-
ent in 2D, since we need to prolong and restrict in both the x and y directions. To see
this, we provide a concrete example with 36 unknowns.

Consider Figure 9.1, where there are 36 grid points on the fine grid (black and white
circles), which get reduced to 4 grid points on the coarse grid (black cirles). In this way,
we divide the number of unknowns by 9 each time we move to the next coarsest grid, and
each contributing point on the ’finer’ grid has equal weight on the next coarsest grid. This
is the same coarsening Sala and Tuminaro used in [9]. The restriction operator in this case
is thus:

R
(tent)
2D =

1

9


R̂

R̂

�
2 R4⇥36

,

where
R̂ =

✓
1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0
0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1

◆
.

We note here that P
(tent)
2D = 9R(tent)

2D
T (different from 1D where P

(tent) = R
(tent)T), and

we continue to use a Galerkin projection, i.e. Al�1 = R2DAlP2D. Additionally, we note
that forming the tentative restrictor and prolongator as described above keeps the constant
vector (user-defined near kernel) in the range of both of these operators, thus preserving the
properties we have previously discussed (namely, invertible coarse grid matrices, under the
assumption of a full rank fine grid system matrix). We note that we use the discretization
given in (3.6) and to solve this problem.
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u7
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Figure 9.1: Coarsening of the Grid in 2D

9.3.2 Methods for Restriction and Prolongation in 2D

The methods NSA, SA and NSR in 2D are formed in a way analogous to 1D, i.e. the
prolongators and restrictors are either taken as the tentative operators, or one iteration of
Jacobi damping is applied to the columns and/ or rows of the tentative operators. Our
newly proposed methods EMIN(r) and EMIN, require a bit more consideration in 2D, but
we note here that the formulas for restriction and prolongation (i.e. (7.3) and (7.8)), still
hold in 2D for all of our methods.

The difficulty with EMIN(r) and EMIN in 2D comes from setting up the matrix ⌦(fine).
Consider again (7.4) through (7.7), where we first found the entries w

(int)
j of the (m⇥m)

diagonal matrix of damping parameters ⌦(int) from the entries of ⌦(p). The entries of ⌦(p)

represented optimal damping parameters in terms of energy minimization and the entries
of ⌦(int) represented interpolated values, which we need in order to meet the null space
preserving property (see Chapter 7). Once we had the entries of ⌦(int), finding the entries
of ⌦(fine) was simple (7.5).

In 2D, finding the proper w
(int)
j is more challenging. We include here the closed formula:

w
(int)
3i
p

m
9 +3k+j+lm

p
m
9

= w
(p)

l
p

m
9 +k

, l = (1, ...,

r
m

9
), k = (1, ...,

r
m

9
), i = (1, ..., 3), j = (1, ..., 3)

for all possible unknowns, m.

9.3.3 Results of 2D Convection Diffusion

We provide in this section data tables showing how our methods performed, error plots
and plots of the solutions found for the 2D convection diffusion equation, i.e.

(
�"�u+ b ·ru = f in (0, 1)⇥ (0, 1)

u = 0 on the boundaries,

over the vector fields ’bent pipe’ (3.4) and ’recirc’ (3.5) with discretization given in (3.6).

We provide also a table showing the relative error after multigrid terminates for both
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vector fields. We note that we provide data tables on iterations for convergence of this
experiment performed with two different smoothers, i.e. Weighted Gauss-Seidel (SOR)
and Symmetric Gauss-Seidel (SSOR). Discussion of these results follows after. We note
that we limit the error plots and solution plots in the remainder of this section to those
corresponding to the method EMIN with smoother SSOR. This is to avoid being repetitive,
as the plots look identical when using the other methods. We note, however, that this has
been checked. Additionally, Figure 9.4 shows the plots of iterations vs residual for the 2D
convection diffusion equation.

Additionally, we note that the experiments in this section consider m = 50625 unknowns,
a comparatively much larger quantity of unknowns than what was considered in the other
experiments in this thesis. This choice of quantity of unknowns was made due to the large
relative error upon termination (when compared to the discrete representation of the exact
solution, see Table 9.11) of some of the experiments, and the order one character of the
discretization for convection diffusion in 2D (3.6).

Table 9.7: Number of Multigrid Iterations, 2D Convection Diffusion (3.6) (Bent pipe)
with SOR smoother

Method " = 10�1
" = 10�2

" = 10�3
" = 10�4

" = 10�5

SA 50 47 n/c n/c n/c
NSA 191 135 93 161 n/c
NSR 81 67 70 150 220
EMIN(r) 37 37 66 145 217
EMIN 37 37 66 145 217

Iterations required to solve 2D convection diffusion (bent pipe), m = 2252 = 50625, ⌫1 = 1
pre- and ⌫2 = 1 post-smoothing step, �x = 1p

m+1
= 1

226 , solve used on the coarse level, tol
= 10�8, l = 2, � = 1, n/c indicates no convergence after 300 iterations

Table 9.8: Number of Multigrid Iterations, 2D Convection Diffusion (3.6) (Bent pipe)
with SSOR smoother

Method " = 10�1
" = 10�2

" = 10�3
" = 10�4

" = 10�5

SA 36 31 27 43 59
NSA 157 105 49 55 66
NSR 66 48 32 51 65
EMIN(r) 24 23 27 49 64
EMIN 24 23 27 49 64

Iterations required to solve 2D convection diffusion (bent pipe), m = 2252 = 50625, ⌫1 = 1
pre- and ⌫2 = 1 post-smoothing step, �x = 1p

m+1
= 1

226 , solve used on the coarse level, tol
= 10�8, l = 2, � = 1

Discussion of the Results, ’Bent pipe’

When solving the 2D convection diffusion equation with the SOR or SSOR smoother over
the vector field ’bent pipe’ (Table 9.7 and Table 9.8), we notice that for the methods SA,
NSA and NSR, as we decrease epsilon such that " = 10�1, " = 10�2, " = 10�3, the number
of iterations required for convergence decreases. As we then further decrease epsilon such
that " = 10�4, " = 10�5, the number of iterations required for convergence increases. This
is due to the character of the vector field. We do not see such a pattern with the meth-
ods EMIN(r) or EMIN combined with either smoother. Instead, with our newly proposed
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Table 9.9: Number of Multigrid Iterations, 2D Convection Diffusion (3.6) (Recirc) with
SOR smoother

Method " = 10�1
" = 10�2

" = 10�3
" = 10�4

" = 10�5

SA 47 51 n/c n/c n/c
NSA 202 202 213 n/c n/c
NSR 85 87 133 289 n/c
EMIN(r) 36 40 101 284 n/c
EMIN 36 40 101 284 n/c

Iterations required to solve 2D convection diffusion (recirc), m = 2252 = 50625, ⌫1 = 1 pre- and
⌫2 = 1 post-smoothing step, �x = 1p

m+1
= 1

226 , solve used on the coarse level, tol = 10�8,
l = 2, � = 1

Table 9.10: Number of Multigrid Iterations, 2D Convection Diffusion (3.6) (Recirc) with
SSOR smoother

Method " = 10�1
" = 10�2

" = 10�3
" = 10�4

" = 10�5

SA 37 38 55 88 123
NSA 167 165 160 157 177
NSR 70 71 85 126 164
EMIN(r) 22 23 55 115 158
EMIN 22 23 55 115 158

Iterations required to solve 2D convection diffusion (recirc), m = 2252 = 50625, ⌫1 = 1 pre- and
⌫2 = 1 post-smoothing step, �x = 1p

m+1
= 1

226 , solve used on the coarse level, tol = 10�8,
l = 2, � = 1

methods, as epsilon decreases, the number of iterations required for convergence increases.

For larger values of epsilon (i.e. the diffusive case) and the smoother SOR or SSOR,
the newly proposed methods actually perform better than SA. For smaller values of ep-
silon (i.e. the convective case) and the smoother SSOR, SA actually performs best, though
SA does not converge after 300 iterations with the smoother SOR.

We note here that at larger values of epsilon, we recommend the smoother SOR. This
is because SOR is half of the work of SSOR, yet we can converge in fewer than double
iterations using SOR compared to SSOR. However, when solving problems with smaller
values of epsilon, SSOR is recommend. In some cases, we can converge in nearly a quarter
as many iterations using SSOR, compared to SOR (e.g. EMIN(r)/EMIN with " = 10�5).

Discussion of the Results, ’Recirc’

When solving the 2D convection diffusion equation with the SOR or SSOR smoother over
the vector field ’recirc’ (Table 9.9 and Table 9.10), we see that as epsilon becomes smaller,
we need more iterations to converge. When we consider larger values of epsilon (e.g.
" = 10�1, " = 10�2), EMIN(r) and EMIN perform the best. We must note that SA with
smaller values of epsilon (e.g. " = 10�3, " = 10�4, " = 10�5) performs well when combined
with SSOR smoothing, but does not converge within 300 iterations when combined with
SOR smoothing. In general, for either smoother, as epsilon gets smaller, NSR performs
almost as well as EMIN(r) and EMIN, and is less costly to implement, though the relative
error upon termination of this experiment is very important to note (see following section).

Just as when we considered the ’bent pipe’ problem above, we have savings when us-
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Figure 9.2: Error plots for the solutions found for 2D convection diffusion (3.6) (’bent
pipe’) using the method EMIN, SSOR smoothing

ing the SOR smoother with larger values of epsilon. However, as epsilon gets smaller,
SSOR is worth the cost. We can see this in particular for " = 10�4 solved with the meth-
ods EMIN(r) and EMIN. When using SSOR, we needed 115 iterations to converge, while
SOR required more than double this (284 iterations).

General Reflections, 2D Convection Diffusion

The previously described results are not exactly what we expected would happen, especially
when we consider both vector fields with the more powerful smoother SSOR, which Sala and
Tuminaro considered in [9]. We thought SA would perform very well in the diffusive case
(symmetric) and horribly in the convective case (nonsymmetric), while EMIN/EMIN(r)
would perform quite well in the diffusive case and very well in the convective case. What
our prediction failed to take into account was that we would need to adapt the discretiza-
tion in order to preserve stability in 2D convection diffusion with small values for epsilon
(i.e. the coefficient in front of the Laplace operator). One can see directly from looking
at the stencil in (3.6) that the discretization matrix will be rather symmetric (especially
compared to the discretization matrix for convection diffusion in 1D, (3.3)) and thus, SA
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Figure 9.3: Error plots for the solutions found for 2D convection diffusion (3.6) (’recirc’)
using the method EMIN, SSOR smoothing

will be a reasonable choice, even in the convective case. This reflection matches the results
we see with the smoother SSOR.

We note that, though EMIN/EMIN(r) always performed better than NSA (i.e. no addi-
tional smoothing on restriction and prolongation), sometimes the gain was only marginal.
SA requires less in terms of set-up cost when compared to EMIN(r) and EMIN, and is a
good method for 2D convection diffusion, especially for small values of epsilon in conjunc-
tion with the more costly smoother SSOR.

We take a second to note that the error plots for solving the 2D convection diffusion
equation over the vector field ’bent pipe’ (Figure 9.2) all have slope one, indicating a first
order discretization, as we anticipated. The error plots for the same equation over the vec-
tor field ’recirc’ (Figure 9.3) show slope one for large values of epsilon and slopes smaller
than one for smaller values of epsilon. This corresponds to the results we get from the
plots of the solution, i.e. for very small epsilon, we get a solution which converges in multi-
grid (small relative residual), but which still has a rather large relative error (measured by
comparing our solution to the discrete representation of the solution we know we should
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(a) Symmetric Gauss-Seidel smoothing, ⌫1 = ⌫2 = 1,
l = 2, � = 1, m = 2025, �x = 1p

m+1

(b) Symmetric Gauss-Seidel smoothing, ⌫1 = ⌫2 = 1,
l = 2, � = 1, m = 2025, �x = 1p

m+1

(c) Symmetric Gauss-Seidel smoothing, ⌫1 = ⌫2 = 1,
l = 2, � = 1, m = 2025, �x = 1p

m+1

(d) Symmetric Gauss-Seidel smoothing, ⌫1 = ⌫2 = 1,
l = 2, � = 1, m = 2025, �x = 1p

m+1

Figure 9.4: Iterations vs Residual, 2D Convection Diffusion (3.6)

expect, namely u(x, y) = sin2(⇡x) sin2(⇡y)).

Following this idea, we can see the size of the relative error when solving the 2D con-
vection diffusion equation for varying values of epsilon (SSOR smoother) in Table 9.11.
We can see that the relative error when solving the 2D convection diffusion equation over
the vector field ’recirc’ with small values of epsilon is rather large. This explains the plots
of the solutions we found for this equation and the corresponding error plots.

Figure 9.5 and Figure 9.6 show the plots for various values of epsilon when solving the
2D convection diffusion problem with the method EMIN. In the case of ’bent pipe,’ all of
the plots look the same, though one can see when " = 10�4 or " = 10�5, there is some
variation on the boundary. In the case of ’recirc,’ one can see that the relative error is
rather large as epsilon becomes small, though we still converge in a multigrid scheme.

A Final Word on 2D Convection Diffusion

We note that in [9], Sala and Tuminaro reported very exciting results when using EMIN(r)/
EMIN to solve the 2D convection diffusion equation over both vector fields. We solved the
same problem they did, but in a simpler way, i.e. we solved the linear equation systems
that arised from this discretized PDE via a multigrid scheme with different methods for
prolongation and restriction. They on the other hand used the multigrid schemes with dif-
ferent methods for prolongation and restriction as preconditioners for GMRES, a different
algorithm to solve the linear equation systems that arise from this discretized PDE. Their
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(a) " = 10�1 (b) " = 10�2

(c) " = 10�3 (d) " = 10�4

(e) " = 10�5

Figure 9.5: Plots of the solutions found for 2D convection diffusion (3.6) (’bent pipe’)
using the method EMIN, m = 50625, SSOR smoothing

results are more exciting, but this work offers a different perspective.
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(a) " = 10�1 (b) " = 10�2

(c) " = 10�3 (d) " = 10�4

(e) " = 10�5

Figure 9.6: Plots of the solutions found for 2D convection diffusion (3.6) (’recirc’) using
the method EMIN, m = 50625, SSOR smoothing

Table 9.11: Relative Error upon Termination, 2D Convection Diffusion (3.6) with SSOR
Smoother

Vector field " = 10�1
" = 10�2

" = 10�3
" = 10�4

" = 10�5

Bent pipe .00726 .01499 .01771 .01836 .01845
Recirc .00633 .06036 .39695 .87472 .98767

Relative error rounded to 5 decimal places, m = 2252 = 50625, ⌫1 = 1 pre- and ⌫2 = 1
post-smoothing step, �x = 1p

m+1
= 1

226 , solve used on the coarse level, tol = 10�8, l = 2,
� = 1



Chapter 10

Experiment with the Near Kernel,
Poisson Equation

As mentioned previously, the constant vector is not the only possible user-defined near
kernel for the discrete Laplace operator [9]. We can choose the near kernel as any vector(s)
x such that Ax ⇡ 0, with the implication that this vector(s) will be represented exactly
within the mesh hierarchy. We experiment below with taking a discrete representation of
a linear function plus a constant as the near kernel vector for the Laplace operator. For
example, take:

P
(tent) =

0

BBBBBBBBB@

1
1 + 1

m
1 + 2

m
1 + 3

m
. . .

1 + m�2
m

1 + m�1
m

1

CCCCCCCCCA

2 Rm⇥m
2

with R
(tent) = (P (tent))T.

We take a second to remember that the goal of our restriction is to resolve low energy
eigenmodes (i.e. error components) on the coarse grid, where they appear to have higher
energy. We must ensure that they are represented on the coarse grid. Instead of consid-
ering the near kernel as defined above, we experiment below with replacing the definition
of the near kernel with a discrete representation of the lowest energy eigenmode. This
vector, x is not such that Ax ⇡ 0, but it is a smooth error component, and this tentative
prolongator will help ensure it is represented on the coarse grid, where we can resolve it.
In the case of the Laplace operator, our tentative prolongator will look like:

P
(tent) =

0

BBBBBBBBB@

sin(⇡x1)
sin(⇡x2)

sin(⇡x3)
sin(⇡x4)

. . .
sin(⇡xm�1)
sin(⇡xm)

1

CCCCCCCCCA

2 Rm⇥m
2 ,

with x1, ..., xm taken to be m equally-spaced points in the interval (0, 1), and R
(tent) =

(P (tent))T.
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Table 10.1: Number of 2-Grid Iterations, Poisson Equation (3.1) with Different Tenative
Prolongators

Method Near kernel: con-
stant vector

Near kernel: x +
constant vector

Near kernel: Low-
est frequency eigen-
mode

SA 16 16 14
NSA 41 41 33
NSR 23 23 17
EMIN(r) 18 18 15
EMIN 18 18 15

1 pre- and post-smoothing step (Weighted Jacobi), m = 1024, �x = 1
1+m , solve on the coarse

level, tol = 10�8

For the results of these experiments in the 2-grid method, refer to Table 10.1. Using
the lowest energy eigenmode does correspond to a modest improvement in convergence. It
must also be noted that using this instead of the traditional definition of the near kernel will
result in considerably more setup cost for only a slight improvement. Of course, it would
have been fun to experiment with this idea on a hard-to-converge example, such as the
2D convection diffusion equation over the vector field ’recirc’ with m = 50625 unknowns.
However, the eigenvectors of the system matrix are not nearly as simple to calculate, so
such an example was not possible. Thus, all other experiments in this thesis are performed
with the constant vector as the user-defined near kernel.



Chapter 11

Concluding Remarks

11.1 Summary of Findings

Our new methods, EMIN(r)/EMIN offer good results in the 1D convection diffusion prob-
lem. However, in the convective case NSR performs almost identically and is cheaper,
while SA performs better in the diffusive case and is also cheaper than the new methods.
In the 2D convection diffusion experiment, EMIN(r) and EMIN performed competitively
in terms of iterations, but cheaper alternatives such as SA, again, performed nearly as
well or slightly better. It is therefore not recommended that one use the new methods in
solving 2D convection diffusion with a multigrid scheme as carried out in this thesis.

One problem which showed exciting results was performing one time-step of linear ad-
vection with Birken’s optmized smoothers from [2]. Here we saw great performance gains
from EMIN(r)/EMIN over the other methods at extremely large CFL numbers.

11.2 Future Work

In this thesis, we used a multgrid scheme with different operators for prolongation and
restriction to solve the linear equation systems associated with the discretized PDEs. It
must be noted, however, that Sala and Tuminaro in [9] considered these schemes as pre-
conditioners for GMRES, the tool they used to solve the same linear equation systems.

Our results shed light on the new methods’ benefits and drawbacks, but except for in
the case of linear advection at extremely large CFL’s, we do not see any very exciting
gains from using the newly proposed methods EMIN(r) and EMIN. It is thus highly rec-
ommended that this work be continued, using these multigrid schemes as preconditioners
for GMRES. In [9], great results were documented in 2D convection diffusion and in solving
the Euler equations when these methods were used in this way.
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Chapter 12

Appendix

12.1 Derivation of the Smoothers

12.1.1 Jacobi

A = D +R,

D =

0

BBBB@

a1,1 0 · · · 0

0
. . . . . . ...

... . . . . . . 0
0 · · · 0 am,m

1
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a2,1
. . . . . . ...
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x = D
�1(b�Rx)

x
(k+1) = D

�1(b�Rx
(k))

12.1.2 Gauss-Seidel

A = D + L+ U,

L =

0

BBBB@

0 0 · · · 0

a2,1
. . . . . . ...

... . . . . . . 0
am,1 · · · am,m�1 0

1

CCCCA
, U =

0

BBBB@

0 a1,2 · · · a1,m

0
. . . . . . ...

... . . . . . . am�1,m

0 · · · 0 0

1

CCCCA

Ax = b

(D + L)x = (D + L)x+ (b�Ax)

(D + L)x = (D + L)x+ (b� (D + L+ U)x)

(D + L)x = b� Ux

(D + L)x(k+1) = b� Ux
(k)

x
(k+1) = �(D + L)�1Ux

(k) + (D + L)�1b
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12.1.3 Weighted Jacobi

This method is almost the same as Jacobi Smoothing, except we add a parameter w (and
an additional term) to speed up convergence. This corresponds to:

x
(k+1) = wD

�1(b�Rx
(k)) + (1� w)x(k)

= wD
�1(b� (D �A)x(k)) + (1� w)x(k)

= wD
�1
b+ wx

(k)
� wD

�1
Ax

(k) + x
(k)
� wx

(k)

= (I � wD
�1
A)x(k) + wD

�1
b.

12.1.4 Weighted Gauss-Seidel

In an analogous way to Weighted Jacobi, an iteration of Weighted Gauss-Seidel corresponds
to:

x
(k+1) = w

�
(D � L)�1Ux

(k) + (D � L)�1b
�
+ (1� w)x(k).

12.1.5 Symmetric Gauss-Seidel

For each iteration of Symmetric Gauss-Seidel, we need to solve two systems of linear
equations in order to get x

(k+1). This corresponds to doing one iteration of backward
weighted Gauss-Seidel, followed by an iteration of forward Gauss-Seidel. These systems
are as follows.

(D � wL)x(k+
1
2 ) = [wU + (1� w)D]x(k) + wb

(D � wU)x(k+1) = [wL+ (1� w)D]x(k+
1
2 ) + wb

12.2 Symmetric Gauss-Seidel Implementation

Start with an initial guess x
(0). Then,

for k = 1, 2, ..., ⌫1
for i = 1, 2, ..., n

� = 0
for j = 1, 2, ..., i� 1

� = � � (D � wL)i,j x
(k� 1

2 )
j

end
for j = i, i+ 1, ..., n

� = � + (wU + (1� w)D)i,j x
(k�1)
j

end
x
(k� 1

2 )
i = (wbi + �)/Ai,i

end
for i = n, n� 1, ..., 1

� = 0
for j = 1, 2, ..., i

� = � + (wL+ (1� w)D)i,j x
(k� 1

2 )
j

end
for j = i+ 1, i+ 2, ..., n

� = � � (D � wU)i,j x
(k)
j

end
x
(k)
i = (wbi + �)/Ai,i
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end
end
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