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Abstract 
 
Nitrogen dioxide (NO2) is an important air pollutant with both environmental and 
epidemiological effects. The main aim of this thesis is to explore spatial patterns and 
temporal trends of tropospheric NO2 concentrations globally using data from the OMI 
instrument aboard NASA’s Aura spacecraft. Additional aims are to validate the 
satellite data by comparing it to ground-based measurements, and to find the timing 
and magnitude of the most significant breakpoints over the study period of 2005 
through 2018. The results show that there was statistically significant agreement 
between the satellite-based and ground-based datasets (r = 0.53). The global trend 
over the study period was negative (- 0.41 molecules cm-2 y-1), but a large difference 
was found between land and oceans (trends of - 1.84 molecules cm-2 y-1 and 0.35 
molecules cm-2 y-1, respectively). USA, western Europe, India, China and Japan were 
identified as hotspot areas with high NO2 concentrations, while all these areas had 
negative trends over the study period. Finally, it was found that the year 2008 had the 
highest number of significant breakpoints, out of which almost all were negative.  
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1. Introduction 
 

Air pollution is one of the main threats to human health, ecosystems and climate on a 
global scale (Paraschiv et al., 2017; Bechle et al., 2013). The global population is 
growing substantially and more than half of the world’s population now live in urban 
areas. Large urban areas and high population densities are hotspots for air pollution 

(Paraschiv et al., 2017; Schneider et al., 2015). According to the World Health 
Organization (WHO), about 3 million people die annually due to ambient air pollution, 
mainly in low- and middle-income countries, and about 90 % of the world’s population 
are exposed to air that exceed the WHO air quality guidelines (WHO, 2016). 
 
Nitrogen dioxide (NO2) is one of the most important air pollutants in the atmosphere 
(Georgoulias et al., 2019) and has been linked to a number of both environmental and 
epidemiological effects (Streets et al., 2013; Bechle et al., 2013). It is formed in 
processes where nitrogen reacts with oxygen in high temperatures, e.g. through 
lightning and the combustion of fuels (Zhang et al., 2017). The main anthropogenic 
sources of NO2 emissions are transport, industry processes and energy production (Liu 
et al., 2016). Some of the main environmental effects that are linked to high NO2 
concentrations are acidification, eutrophication and photochemical formation of 
ozone (O3) (Zhang et al., 2018; Zhang et al., 2017; Streets et al., 2013). NO2 also 
modifies the radiative balance in the atmosphere and influences the atmospheric 
lifetime of greenhouse gases (Geourgoulias et al., 2019; Boersma et al., 2011). NO2 is 
toxic at high concentrations and the epidemiological effects include respiratory 
illnesses such as lung cancer, asthma exacerbations and cardiopulmonary mortality 
(Georgoulias et al., 2019; Zhang et al., 2017; Bechle et al., 2013; Ordóñez et al., 2006). 
NO2 has a short atmospheric lifetime, on average 3.8 ± 1.0 hours (mean ± 1 standard 
deviation) (Liu et al., 2016) as it reacts with sunlight which triggers the production of 
OH (Safieddine et al., 2013). Therefore, high concentrations of tropospheric NO2 is 
mainly confined to its emission sources, which in general are urban and industrialised 
areas (Georgoulias et al., 2019; Bechle et al., 2013).  
 
Monitoring of NO2 concentrations and other air pollutants can be done with ground-
based monitoring stations. However, monitoring stations tend to be clustered in city 
centres, have a small spatial coverage and are often lacking in developing countries 
(Yu et al., 2018; Bechle et al., 2013). Ground-based air quality monitoring is thereby 
unevenly distributed, and leave large areas under-represented (Lamsal et al., 2015; Yu 
et al., 2018). An alternative approach to monitor air pollution is the usage of remotely 
sensed satellite data which increase the spatial coverage. Major advances have been 
made over the past decades to use satellite-based instruments to monitor 
atmospheric pollutants (Paraschiv et al., 2017). Satellite-based monitoring of NO2 
started in 1995 with the Global Ozone Monitoring Experiment (GOME) instrument 
(Schneider et al., 2015). Since then, other satellite-based instruments have been used 
to monitor tropospheric NO2, such as GOME-2, the Scanning Imaging Absorption 
spectroMeter for Atmospheric CHartographY (SCIAMACHY), the Ozone Monitoring 
Instrument (OMI), and the recent TROPOspheric Monitoring Instrument (TROPOMI) 
aboard Sentinel-5. Out of these instruments, OMI offers the longest continuous 
monitoring record (ongoing since 2004) and has a relatively high spatial resolution (13 
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* 24 km2 at nadir) (Zhang et al., 2017; Streets et al., 2013).  Potential errors in 
estimating NO2 concentrations from satellite data include uncertainties in surface 
albedo, aerosols, cloud parameters, slant column density and air mass factor 
calculations (Bechle et al., 2013; Streets et al., 2013; Boersma et al., 2011). Therefore, 
for satellite-based measurements to be trustworthy, the data needs to be validated 
against ground-based monitoring stations (McPeters et al., 2008).  
 
Studies of long-term trends provides information on changes in air pollution, 
distribution patterns, and is useful to assess the effects of emission mitigation efforts 
(Wang & Wang, 2018; Geddes et al., 2016; Munir et al., 2013). Studies that investigate 
NO2 trends using OMI data and validated the results against ground-based 
measurements have been performed previously. For instance, Lamsal et al. (2015), Zu 
et al. (2015), Tong et al. (2015) and Bechle et al. (2013) did studies in the U.S., de Foy 
et al. (2016) studied NO2 trends over China, Gruzdev and Elokhov (2010) in Russia, 
Paraschiv et al. (2017) in eight European cities and Duncan et al. (2016) in cities around 
the globe. These studies have overall found declining NO2 trends in their respective 
study areas and good agreement between OMI and ground-based measurements with 
correlation coefficients ranging between 0.3 – 0.93. NO2 trend studies on a global scale 
have also been performed previously using various satellite sensors. Georgoulias et al. 
(2019) used GOME, GOME-2 and SCIAMACHY to study trends from 1996 – 2017, 
Krotkov et al. (2016) used OMI to study trends between 2005 – 2015, Geddes et al. 
(2016) used GOME, GOME-2 and SCIAMACHY between 1996 – 2012, Miyazaki et al. 
(2017) used OMI, GOME-2 and SCIAMACHY between 2005 – 2014 and Schneider et al. 
(2012) used SCIAMACHY between 2002 – 2011. These studies have overall found both 
negative and positive regional trends.  
 
In this study, data from OMI will be used to study global and regional patterns and 
trends in tropospheric NO2 concentrations from 2005 to 2018, thereby contributing 
to the research in spatiotemporal patterns in NO2 concentrations by updating and 
expanding the work done by previous scholars. Furthermore, linear- and non-linear 
trend types as well as timing and magnitude of the major breakpoints will be spatially 
explicit analysed at global scale. 
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1.1. Overall aim and research questions 
The aim of this study is to map the spatial patterns and temporal trends of global 
tropospheric NO2 concentrations from 2005 to 2018, using data from the OMI 
instrument. A second aim is to validate the OMI data by analysing whether the 
satellite-based measurements are correlated with in situ data from ground-based 
monitoring stations. A third aim is to analyse if regional differences can be found in 
global NO2 concentrations and if any significant temporal trends exist over the study 
period. Finally, timing and magnitude of significant breakpoints of NO2 concentrations 
will be analysed for each grid cell on a global scale.  
 
Research questions to be responded in this thesis are: 

• How does the OMI data compare to the ground-based measurements?  

• Based on the satellite data, do we see any spatial patterns in NO2 

concentrations globally?  

• Do we see any temporal trends in the concentrations of NO2 over the study 

period? 

• And finally, when did the most significant breakpoint events occur? 
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2. Background 

2.1. The Aura spacecraft 
Aura is one of the National Aeronautics and Space Administration’s (NASA) Earth 
Observing System (EOS) satellites. It was launched in 2004 with the mission to collect 
data of global air pollution and to monitor the chemistry and dynamics of Earth’s 
atmosphere on a daily basis (NASA, 2007). Aura follows a sun-synchronous near polar 
orbit at an average height of 705 km and has a 16-day repeat cycle. The satellite has 
an orbital period of approximately 99 minutes and an Equator overpass time of 13:45 
(± 15 min) local time (Goldberg et al., 2019; Bucsela et al., 2013; OMI team, 2012).  
 
Aboard Aura there are four instruments; the High-Resolution Dynamics Limb Sounder 
(HIRDLS), the Microwave Limb Sounder (MLS), the Tropospheric Emission 
Spectrometer (TES), and the Ozone Monitoring Instrument (OMI) (NASA, 2007; Levelt 
& Noordhoek, 2002). In this study, data collected with the OMI instrument has been  
used.  
 

2.2.  OMI characteristics and instrument description  
OMI is a nadir-looking push broom hyperspectral imaging spectrometer. It measures 
reflected solar radiation in the ultraviolet and the visible light (UV/VIS) channels of the 
electromagnetic spectrum (wavelength range of 264 – 504 nanometre (nm)) with a 
spectral resolution of 0.42 – 0.63 nm (Ziemke et al., 2017; Dobber et al., 2006). The 
instrument has a surface swath width of 2 600 km and achieves global coverage in 
about 14.5 orbits with a 13 * 24 km (along track * across track) field of view at nadir 
(Goldberg et al., 2019; Kim et al., 2018). The objective of OMI is to measure key air 
quality components and parameters at a high spatial and spectral resolution in order 
to study the recovery of the ozone layer, climate change and tropospheric air pollution 
(Dobber et al., 2006). The specific components and parameters that OMI measures 
are cloud pressure and coverage, aerosols, surface irradiance and total column and 
vertical profile of the trace gases ozone (O3), nitrogen dioxide (NO2), sulfur dioxide 
(SO2), formaldehyde (HCHO), bromine monoxide (BrO) and chlorine dioxide (OClO) 
(Tan et al., 2018; Levelt & Noordhoek, 2002; Levelt et al., 2017).  
 
The OMI instrument consists of three main elements; the optical assembly, the 
electronics unit and the interface adaptor module (Levelt & Noordhoek, 2002). In the 
optical assembly, the incoming light enters a telescope and is depolarised using a 
scrambler. The light is then split depending on wavelength into a UV or a VIS channel 
and is then focused by a mirror on to two separate detectors which converts the 
optical signal to an analogue electrical signal (Dobber et al., 2006; Levelt et al., 2017). 
The electrical signal is then transferred to the electronics unit which digitizes the signal 
to measurement data. Another function of the electronics unit is to control the 
settings of the optical assembly and to receive commands from the interface adaptor 
module. The digitized signal data is then sent from the electronics unit to the interface 
adaptor module, which is the interface between OMI and the Aura satellite (Dobber 
et al., 2006; Levelt & Noordhoek, 2002).   
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2.3. The OMI row anomaly 
Since 2007, OMI has suffered from reduced quality and spatial coverage in parts of 
the sensor’s field of views. This problem is dynamic, meaning that it has varied over 
time, and is referred to as a row anomaly (Tan et al., 2018; Torres et al., 2018; Krotkov 
et al., 2017). The reason for the row anomaly is not fully understood but is believed to 
be caused by a physical blockage of the optics from loosening fabric material on the 
interior walls of the sensor (Torres et al., 2018; Krotkov et al., 2017). However, this 
row anomaly only affects the level 1B and level 2 OMI products, which contain orbital 
swath data. The level 3 product is made up of composites that are produced by 
filtering out the affected data and averaging the unaffected pixels, thereby only 
maintaining data with ‘optimal quality’ (OMI team, 2012). In this study, the level 3 
product was used. 
 

2.4.  OMI NO2 retrieval 
There are two OMI NO2 products available; NASA’s standard product and the Royal 
Netherlands Meteorological Institute’s Derivation of OMI Tropospheric NO2 
(DOMINO) product. The difference between the two products is how they separate 
NO2 in the stratospheric and tropospheric columns and their respective air mass factor 
(AMF) calculations (Ialongo et al., 2016). The AMF is defined as the ratio of the slant 
column to the vertical column (Palmer et al., 2001).  The product that has been used 
for this study is the NASA standard product version 3.  
 
The NO2 retrieval of the NASA standard product algorithm has four main steps; 
obtaining the NO2 slant column density (SCD), estimating the stratospheric 
contribution, calculating a tropospheric AMF and finally to use the SCD and AMF to 
calculate the vertical column density (VCD) (Hains et al., 2010; Bucsela et al., 2006). 
The SCD is the total amount of NO2 (molecules cm-2) observed from OMI through the 
atmosphere in an angled view, while the VCD is total amount in a vertical view. In 
order to retrieve the SCD, OMI uses differential optical absorption spectroscopy 
(DOAS) spectral fitting technique. NO2 is measured in the wavelength range 405 – 465 
nm of the VIS and near-UV channels, where NO2 has strong spectral absorption 
(Krotkov et al., 2017; Bucsela et al., 2006). This results in the total SCD, which includes 
both stratospheric and tropospheric NO2. Since NO2 in the stratospheric and 
tropospheric columns have different origins and vary in spatial distribution (Bucsela et 
al., 2006), there is a need to separate the two columns. In the NASA standard product, 
this is done using an algorithm which results in an interpolated stratospheric NO2 mask 
(Tong et al., 2015). The tropospheric SCD is then derived by subtracting the 
contribution from the interpolated stratospheric NO2 mask from the total SCD. Next, 
the AMF is calculated from an assumed NO2 profile, cloud fraction and surface albedo 
(Tong et al., 2015; Boersma et al., 2011). Finally, the VCD, which is the final product 
and the variable of interest, is derived from dividing the SCD by the AMF (Krotkov et 
al., 2017; Bucsela et al., 2013).   
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2.5. Trend classification 
Trend analysis is a statistical procedure of finding and extracting underlying patterns 
in time series data. In this study, Polytrend, an algorithm that accounts for non-linear 
change in a trend, was used (Jamali et al. 2014).  It has a polynomial fitting-based 
scheme that divides trends into cubic, quadratic, linear, and concealed trend types. 
The scheme of the program consists of a 3-phase procedure. First, the fit of a cubic 
model (highest order polynomial considered) is tested by evaluating statistical 
significance of the fit (statistical significance level 0.05). If the test fails, the same 
procedure is applied to test the fit of a quadratic model. If the quadratic model test 
fails, a linear model is tested (Fig. 1).  

 
Figure 1. A schematic representation of the Polytrend workflow. Figure from Jamali et al. (2014).  

There are five possible trend type outcomes in the output; cubic, quadratic,  
linear, concealed and no-trend. The cubic trend type means that the trend line of the 
cell has two or more bends, implying that the cell has experienced more than one 
direction change of its trend line over the study period (i.e. first negative, followed by 
positive and then negative again, or vice versa). The quadratic trend type is a trend 
line with one bend in its curve, implying that the cell has experienced one direction 
change of its trend line over the study period (i.e. first positive and then negative 
trend, or vice versa). The linear trend type means that the trend line has had a uniform 
direction over the study period (either positive or negative). The concealed trend type 
consists of cells with either cubic or quadratic trend types, but with no significant net 
change in NO2 over the study period. Finally, the no-trend trend type consists of cells 
where all other trend models were statistically insignificant at the 0.05 significance 
level (Jamali et al., 2014). In this thesis, the algorithm was used to classify the type of 
trend each cell experienced and to find the slope direction, significance (significance 
level 0.05) and the slope coefficient of each cell’s time series curve over the study 
period. 
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2.6. Breakpoint analysis 
Detecting Breakpoints and Estimating Segments in Trend (DBEST) is a computer 
program for analysing time series of satellite sensor data. Its change detection 
algorithm detects trend changes (breakpoints), determines their type (abrupt or non-
abrupt) and significance (significance level 0.05), and estimates timing and magnitude 
of the detected changes.  This is done by using a segmentation algorithm and user-
defined thresholds (Jamali et al. 2015). In DBEST, single time-step differences for all 
data points in the time series are calculated as follows: 
 
Linear segments are computed for all points in the time series. A straight line is then 
fitted through each pair of successive start and end points. The point in the segment 
with the maximum distance to the line is then selected (Fig. 2 a). If this point is above 
a user-defined distance threshold value, these points are called breakpoints. The 
selected breakpoints are fitted to the time series and are treated as adjoining linear 
segments, which results in a time series made up of continuous trends composed of 
linear segments (Fig. 2 b). Depending on the number of changes that are of interest, 
the breakpoints are selected based on the magnitude of their trend local change. For 
a change to be considered as abrupt it needs to satisfy two criteria. First, the 
difference between two successive points needs to exceed the first level-shift 
threshold. Second, the magnitude of the change needs to be large enough to shift the 
mean by the second level-shift threshold over the period of the duration threshold. 
For a more thorough description of DBEST, see Jamali et al. (2015).   
 

 
Figure 2.  A schematic representation of the DBEST workflow for a time series, in this case for vegetation index 
(VI). (a) - Straight lines (dashed in grey) are fitted through consecutive peak and valley points and turning points 
(in red) are computed. (b) – Linear trends (segments in red) are then computed by the DBEST algorithm. Figure 
provided from Jamali et al. (2015). 
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The user-defined parameters of DBEST and the threshold values used in this study are 
as follows: 
 

• First level-shift threshold: The lowest difference allowed in NO2 concentrations 

between the level-shift point and the next data point. In this case, the lowest 

allowed NO2 concentration difference was set to 2 molecules cm-2.  

• Second level-shift threshold: The lowest difference allowed in the means of 

the data calculated over the period before and after the level-shift point. In 

this case the lowest allowed difference was set to 10 molecules cm-2.  

• Duration threshold: The lowest time period (time steps) allowed within which 

the shift of the mean of the data level before and after the level-shift point 

persists; and the lowest spacing between successive level-shift points. In this 

case set to 2 years.  

• Distance threshold: The lowest perpendicular distance allowed from the 

farthest point to the straight line between successive peak and valley points. 

In this case, the lowest distance allowed was set to 0.5 molecules cm-2. 

• Change number: The number of greatest changes (breakpoints) of interest for 

detection. In this case, the number of breakpoints to be detected was set to 1 

in order to find the major change of each pixel over the study period. 

• Change magnitude: The lowest magnitude of change allowed for detection. In 

this case set to 0.5 molecules cm-2. 

• Type: Either cyclical for time series with seasonal data or non-cyclical for time 

series without seasonal cycle (deseasonalized data). In this case non-cyclical.  

• Period: The seasonality period value. In this case left empty since 

deseasonalized data was used. 

• Algorithm: The algorithm used by DBEST, either ‘generalization’ or ‘change 

detection’. In this case change detection. 

• m: The number of changes or breakpoints of interest for detection. In this case 

set to 1 to find the major change over the study period. 

• Alpha: The statistical significance level used for testing significance of detected 

changes. In this case 0.05.  
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3. Data  
 

3.1. Satellite-based NO2 dataset 
The NO2 dataset is the OMI/Aura level 3 NO2 (OMNO2d) version 3 standard product 
which was downloaded from NASA’s Earth Observation data collection (Earthdata, 
2019). The OMNO2d product contains composites of daily total tropospheric column 
NO2

 data with a spatial resolution of 0.25° * 0.25°. The data is stored in the version 5 
EOS Hierarchical Data format (HE-5) (Krotkov et al., 2017). In this study, OMI data from 
January 1st of 2005 until December 31st of 2018 has been used. In total, 5 173 daily 
OMNO2d HE-5 files were used.  
 

3.2. Ground-based NO2 dataset 
The ground-based data is monthly averages of daily observations (n = 1 706 830) and 
annual averages (n = 6 113) of atmospheric NO2 concentrations from monitoring 
stations in the USA between the years 2005 to 2018 (Fig. 3), provided by the US 
Environmental Protection Agency (US EPA, 2019). The reference method used by the 
US EPA for collection of ambient NO2 is chemiluminescence analysis (Gillam & Hall, 
2016). This method is based on the reaction of nitric oxide (NO) with ozone (O3). The 
principle of the method is that a sample of ambient gas enters a reaction chamber 
where NO molecules react with O3 to form NO2. The reaction produces a quantity of 
light, a phenomenon known as chemiluminescence. The intensity of the light, which 
is proportional to the concentration of NO2, is then measured to determine the 
concentration of NO2 (Gillam & Hall, 2016; US EPA, 2002).  
 

3.3.  Ancillary data 
The ancillary data used in this study consist of a global shapefile with administrative 
boundaries on the country and continent levels, downloaded from the Database of 
Global Administrative Areas (GADM, 2018).  
 

 
Figure 3. Spatial distribution of US EPA air quality monitoring stations used in this study. 
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4. Methodology 
 

4.1. Data validation 
The OMNO2d files were averaged monthly and yearly. The averaged satellite-based 
NO2 data was then compared to ground-based NO2 data in order to verify the validity 
of OMNO2d data product. Data from the US EPA was chosen for the comparison. The 
choice was based on availability and usability of the data, as pre-generated files of 
annual summaries for monitoring station with associated coordinates for the full study 
period (2005 – 2018) were available. 
 
Since the two datasets use different units (molecules cm-2  for the satellite-based data 
and ppb for the ground-based data), the values were recalculated to z-statistics using 
the following equation: 

𝑧 =
(𝑥 −  μ)

σ
 

Where 
z = the resulting z-statistic 
x = the original OMI or monitoring station value 
µ = the mean value of the OMI or monitoring station data 
σ = the standard deviation of the OMI or monitoring station data 
 

Histograms were created to compare the shape and spread of the internal 
distributions of the z-scores from the satellite-based and the ground-based data.  
Then, ordinary least squares linear regressions, Pearson’s correlation analyses and 
root mean square error (RMSE) was computed for the two datasets. The analyses 
were performed for all monthly and annual data points, the spatial averages of all 
annual data points, and the temporal averages of all annual data points. 
 

4.2. Analysis of spatial patterns and temporal trends 
The spatial patterns were analysed by averaging all OMI NO2 data over the study 
period.  For analysing the temporal trends, a time series of each year’s mean NO2 
concentration was first calculated. Then, DBEST was used to analyse the timing and 
magnitude of greatest significant breakpoints while Polytrend was used to analyse the 
significant slope coefficient and trend types of each cell’s time series of tropospheric 
NO2 concentration over the study period.  
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5. Results 
 

5.1. Data validation 
Differences between the z-scores of the ground-based and the satellite-based 
datasets were found (Fig. 4). The shape of the satellite-based data is bimodal while 
the shape of the ground-based data is unimodal and skewed to the right. Another 
difference between the datasets is the spread of the values. The range of the 
ground-based dataset is slightly higher than the range of the satellite-based dataset 
(5,94 and 5,14 respectively).  
 

 
Figure 4. Distribution pyramid histograms of the Z-score values for the satellite-based dataset (left) and ground-
based dataset (right). 

Scatterplots were created to display the relationship between the two datasets. First, 
all ground-based measurements over the study period and the satellite-based 
measurements from corresponding OMI pixels were plotted (Fig. 5 a). Secondly, the 
average values of each ground-based measurement station were plotted against the 
average value of corresponding OMI pixels (Fig. 5 b). Thirdly, the annual averages of 
all ground-based stations and the annual average of all corresponding OMI pixels were 
plotted against each other (Fig. 5 c). Finally, the monthly averages of all ground-based 
data were plotted against the monthly average of all corresponding OMI pixels (Fig. 5 
d). All components were significantly correlated at the 0.01 significance level. The 
linear regressions and Pearson’s correlation analyses show that OMI data was more 
successful at estimating the temporal patterns (r2 = 0.88, r = 0.94) than the spatial 
patterns (r2 = 0.41, r = 0.64). The monthly averages were negatively correlated (r2 = 
0.91, r = -0.96). According to the satellite-based data, the NO2 concentrations were 
lowest during the winter months and highest during the summer months, while the 
pattern for the ground-based data was the opposite. Because of this, it was decided 
not to use the monthly averages for further analysis in this study.  
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Figure 5. Linear regression and RMSE of the z-scores from (a) the measurements of all ground-based stations 
against the estimates of corresponding satellite-based pixels, (b) the average value  of each ground-based station 
versus the average value of corresponding satellite-based pixels, (c) the annual averages of all ground-based 
stations versus the annual averages of corresponding satellite-based pixels, and the monthly averages of all 
ground-based stations versus the monthly averages of corresponding satellite-based pixels (d).  

5.2. Spatial patterns 
There is a distinct difference in the concentration distribution between the northern 
and southern hemispheres, where the higher concentrations are almost exclusively 
found in the northern hemisphere (Fig. 6 a). The primary hotspot areas that stand out 
are: 1) U.S.A (Fig. 6 b), 2) western Europe (Fig. 6 c), and 3) India, China and Japan (Fig. 
6 d). These areas were selected as focus areas due to their high average NO2 

concentrations and have been used for further analysis in the remaining part of the 
study.  
 
The range of NO2 concentrations (Fig. 7), i.e. the variability of concentrations, 
generally follows the same spatial pattern as the averaged concentrations (Fig. 6). 
Large areas over the US (Fig. 7 a), Europe (Fig. 7 b), India, eastern China and Japan (Fig. 
7 c) have high range values, indicating high variability in NO2 concentrations over the 
study period over these areas.  
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Figure 6. Averaged spatial distribution of tropospheric NO2 concentrations (molecules cm-2) globally (a) and 
regionally (USA (b), Europe (c), India, China, Japan (d)) between 2005 - 2018.  

 

Figure 7. Range of tropospheric NO2 concentrations (molecules cm-2) for each cell globally (a) and regionally (USA 
(b), Europe (c), India, China, Japan (d)) between 2005 - 2018.   
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5.3. Temporal trends 
The global annual averages of tropospheric NO2 concentrations shows a decreasing 
trend over the study period (Fig. 8). After the year 2008, there was a distinct drop 
which lasted until 2011, when the average concentration was at its lowest point of the 
study period (37.11 molecules cm-2). After 2011, the concentrations started to 
increase again. Even though the time series has a negative linear trend, the annual 
average of the year 2018 is the highest over the study period (52.05 molecules cm-2).  

 
Figure 8. Time series of global annual average tropospheric NO2 concentrations (molecules cm-2) 2005-2018. 

Just over half of the study area (53 %) had decreasing trends over the study period, 
while 47 % had positive (Fig. 9). An interesting pattern that stands out is the 
relationship between increasing trends over oceans and decreasing trends over land. 
Out of all cells over oceans, 79.98 % had positive trends, and out of all cells over land, 
70.89 % had decreasing trends. The increasing trends were generally found near the 
poles, west of the Americas, as well as along vertical strips in the southern 
hemisphere.  
 
With the insignificant trends (significance level 0.05) masked out, 72.12 % of the 
remaining cells were negative whereas 27.88 % were positive (Fig. 10 a). 91.08 % of 
the negative significant trends were located over land and 65.99 % of the positive 
significant trends were located over oceans. Hereafter, all trends described in this 
paper refer to significant trends. The average significant trend globally over the study 
period was -0.41 molecules cm-2 y-1. The average significant trend over land was -1.84 

molecules cm-2 y-1 while the average significant trend over oceans was 0.35 molecules 
cm-2 y-1. 
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Figure 9. Direction of each cell's trend globally between 2005 – 2018 as estimated by Polytrend. 

 

 
Figure 10. Direction of each significant cell’s trend and coefficients as estimated by Polytrend globally (a) and 
regionally (USA (b), Europe (c), India, China, Japan (d)) between 2005 - 2018. 
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All areas with high average NO2 concentrations (Fig. 6) and high variability (Fig. 7) also 
had negative significant trends (Table 1). The strongest average trends in the focus 
areas were found in Japan (- 5.11 molecules cm-2 y-1), Belgium (- 4.89 molecules cm-2 

y-1) and Germany (- 4.04 molecules cm-2 y-1). The highest average NO2 concentrations 
were found in the Netherlands (206.18 molecules cm-2), Belgium (191.17 molecules 
cm-2), Germany (184.67 molecules cm-2) and the U.K. (160.48 molecules cm-2). All of 
these countries are located in Europe, where the highest maximum concentrations 
were also found.  
 

Table 1 The major, average and range of change (molecules cm-2) of significant breakpoints during the year 
2008, as well as the proportion of the type of change. 

Country Average NO2 
concentration 

Max NO2 
concentration 

Average 
range 

Max 
range 

Average 
trend 

Strongest 
trend 

      +                 - 
USA 91.80 192.76 54.51 141 - 3.57 2.60 - 9.38 

Netherlands 206.18 214.12 50.68 65 - 3.79 - - 5.38 

Belgium 191.17 211.49 62.43 77 - 4.89 - - 6.32 

Germany 184.67 216.57 57.77 81 - 4.04 - - 6.20 

U.K.  160.48 214.85 50.46 87 - 3.79 1.15 - 6.91 

India 116.42 188.32 54.26 135 - 3.11 3.49 - 6.56 

China 98.48 195.75 48.94 129 - 3.57 2.17 - 8.29 

Japan 139.32 190.51 76.57 114 - 5.11 - - 8.26 

Global 44.67 219.97 22.18 165 - 0.41 3.70 - 9.41 
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5.4. Trend types 
In a global context, the quadratic trend type had the highest spatial coverage (44.42 
%, mainly positive) (Table 2) out of which 44.80 % is found over land and 55.20 % is 
found over oceans. The cubic trend type occupies 32.59 % of the significant trends, 
out of which 95.10 % is found over oceans. 22.99 % had a linear trend type, mainly 
negative, out of which 57.34 % is found over land and 42.66 % is found over oceans 
(Fig. 11 a). The proportional coverage of the trend types in the focus areas can be seen 
in figure 11 b – d and are summarised in table 2.  
 

 
Figure 11. Trend type of each cell with a significant trend globally (a) and in USA (b), Europe (c), India, China, 
Japan (d) between 2005 – 2018 as estimated by Polytrend. 

Table 2. Spatial coverage (%) of the significant trend types globally and in average NO2 concentration hotspot 
areas. 

Trend types  
Linear Linear Quadratic Quadratic Cubic Cubic Cell count 

Trend 
Direction 

+ - + - + - 
 

USA 0.00 4.52 6.48 87.65 1.18 0.17 14 074 

Netherlands 0.00 60.56 0.00 39.44 0.00 0.00 71 

Belgium 0.00 25.81 0.00 74.19 0.00 0.00 62 

Germany 0.00 60.87 0.00 39.13 0.00 0.00 736 

U.K.  0.44 41.67 0.00 57.89 0.00 0.00 456 

India 0.38 14.08 0.09 85.07 0.19 0.19 1 065 

China 0.03 47.12 0.02 49.49 0.01 3.32 8 883 

Japan 0.00 2.16 0.00 97.84 0.00 0.00 602 

Global 5.07 17.92 33.59 10.83 7.62 24.97 87 889 
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5.5. Breakpoint analysis 
The starting time of the detected breakpoints (insignificant changes masked out) is 
dominated by the period of 2005 – 2008 (71.97 % of cells) (Fig. 12 a). The year 2008 
was by far the year with the highest occurrence of major changes of all years (46.31 
%), indicating a major event during this year that had effects all over the globe (Fig. 12 
a and Fig. 13).  
 
The detected breakpoints were mostly negative (63.67 %) (Fig. 12 b) and non-abrupt 
(85.17 %), indicating that most of the changes occurred gradually over time. The cells 
that experienced the strongest positive change over the study period are located in 
South Africa (61.37 molecules cm-2), China (57.81 molecules cm-2) and India (56.90 
molecules cm-2) while the cells that experienced the strongest negative change are 
located in China (97.92 molecules cm-2), USA (-91.12 molecules cm-2) and Spain (-
83.02 molecules cm-2). Because of the drastic changes in 2008, this year was 
investigated further (Fig. 13). 98.74 % of the major changes were negative (Fig. 13 a) 
out of which 71.70 % were non-abrupt. In the focus areas, the strongest change of 
2008 was in China (-97.92 molecules cm-2) where most of the changes were non-
abrupt, followed by USA (-91.12 molecules cm-2). The strongest average change was 
in Japan (-44.62 molecules cm-2), followed by USA (-41.47 molecules cm-2).  
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Figure 12. The starting year (a) and magnitude (b) of the major change for each significant cell between 2005 – 
2018, as estimated by DBEST. 
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Figure 13. The major change of each significant cell globally (a) and in USA (b), Europe (c), India, China, Japan (d) 
during the year 2008, as estimated by DBEST.  

 

Table 3 The major, average and range of change (molecules cm-2) of significant breakpoints during the year 
2008, as well as the proportion of the type of change. 

 
Major 
change 

Average 
change 

Range of 
change values 

Change type 
(%) 

    Abrupt Non-abrupt 

USA -91.12 -41.47 122.29 85.08 14.92 

Netherlands -28.93 -22.98 13.92 58.33 41.67 

Belgium -33.15 -27.47 15.39 14.29 85.71 

Germany -50.55 -31.86 38.77 62.92 37.08 

U.K.  -37.63 -24.44 22.57 41.30 58.70 

India -60.56 -34.61 47.23 23.36 76.64 

China -97.92 -32.45 90.96 42.20 57.80 

Japan -76.81 -44.62 60.75 38.82 61.18 

Global -97.92 -18.62 129.09 28.30 71.70 
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6. Discussion 
 
This study contributes to the ongoing research regarding remote sensing of 
spatiotemporal NO2 trends by validating the OMI NO2 product and by investigating 
how the tropospheric concentrations have changed globally and regionally over the 
period of 2005 through 2018. Furthermore, the timing and magnitude of the major 
change for each cell with a significant trend was highlighted. The most important 
results of the study show that the regions that have the highest average 
concentrations also have the highest variability and negative trends, that the global 
trend in NO2 over the study period is negative, and that in year 2008 something 
happened that had a significant and sudden impact on the global concentrations of 
NO2.  
 

6.1.      OMI validation 
The results of the OMI validation showed that there was statistically significant 
agreement between the satellite-based and the ground-based datasets. The 
correlations were statistically significant at the 0.01 level for all components and the 
correlation coefficient for all of the data points was 0.53 (Fig. 5 a). This result is in line 
with previous OMI validation studies. For instance, the correlation coefficients ranged 
between 0.47 – 0.76 in a study of several cities by de Foy et al. (2016), 0.51 – 0.86 by 
Paraschiv et al. (2017), 0.4 – 0.8 by Bechle et al. (2013) and 0.76 for Lamsal et al. 
(2015). The statistical comparison further indicated that OMI was more successful at 
estimating the temporal component (r = 0.93) than the spatial component (r = 0.64). 
This can partially be explained by that the ground-based monitoring stations is focused 
on a certain emission source, e.g. traffic locations, whereas an OMI pixel (13 * 24 km2) 
covers a larger area with more potential emission sources within the pixel (Paraschiv 
et al., 2017). Based on this, it is concluded that satellite-based measurements from 
OMI is a useful approach for measurements of NO2 in order to compensate for the 
lacking spatial coverage of ground-based monitoring stations and to study global 
trends. 
 

6.2. Spatiotemporal trends 
The spatial distribution of average NO2 concentrations found in this study (Fig. 6) 
resemble those in similar studies (Georgoulias et al. 2019; Krotkov et al. 2016; 
Miyazaki et al., 2017; Geddes et al., 2015), confirming that these areas are indeed the 
main hotspots of tropospheric NO2 concentrations globally. According to Krotkov et 
al. (2016), the highest NO2 concentrations coincide with urban areas with high 
populations and industrialized regions. The global and regional NO2 temporal trends 
found in this study (Fig. 10) also generally agree with the results from previous studies, 
with two differences. Georgoulias et al. (2019), Miyazaki et al. (2017) and Geddes et 
al. (2015) all reported increasing NO2 trends over both India and China, while Krotkov 
et al. (2016) reported increasing trends over India. In this study, the results show 
decreasing trends over both countries. Reasons for this difference can possibly be 
attributed to differences in satellite instruments used and/or study periods. Geddes 
et al. (2015) combined data from GOME, GOME-2 and SCIAMACHY from 1996 through 
2012, Miyazaki et al. (2017) combined data from OMI, GOME-2 and SCIAMACHY 
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between 2005 and 2014, Georgoulias combined GOME, GOME-2 and SCIAMACHY 
between 1996 and 2017, and Kroktov et al (2016) used OMI data from 2005 through 
2015.  
 
The global average of the significant trends over the study period was negative (- 0.41 
cm-2 y-1), but differences over land and oceans were observed. Over land, the average 
trend was -1.84 cm-2 y-1, while the average trend over ocean areas was 0.35 cm-2 y-1. 
It should be noted that all though the global average trend and the average trend over 
land were negative over the full study period, the global annual averages actually 
increased over the second half of the study period (Fig. 8). It is plausible that the 
negative trends are biased by the temporary dip in concentrations during the years 
2008 – 2011.   
 
NO2 concentrations over oceans are generally much lower than over terrestrial areas 
since there are no sources of NO2 emissions except for passing ships (Peters et al., 
2012), which indicates that the increasing trends over remote oceans are caused by 
atmospheric deposition of NO2 which has been transported from their source by large-
scale circulation (Yuchechen et al., 2017). According to Peters et al. (2012), satellite 
instruments have issues detecting trace gases over remote oceans because 
concentrations are very low, and the concentrations are often below the detection 
limit of the instruments.  
 
Decreases of NO2 concentrations can primarily be attributed to either local, regional 
or country level environmental regulations, improvements in emission control 
technology (for e.g. power plants and vehicles), or economic changes and the 
associated effects in energy usage (Duncan et al., 2016; Krotkov et al., 2016). Since the 
spatial distribution of average concentrations and decreasing significant trends 
correlate well, this indicates that environmental regulations and technological 
improvements in the countries with the most severe pollution have had a positive 
effect on concentrations of NO2. However, it should also be noted that the final year 
of this study period (2018) has the highest average global concentrations of all years 
in this study. It is plausible that economic changes also had an effect, based on the 
sudden decrease after the year 2008, which was the starting year of a global economic 
recession (Bishop & Steadman, 2014; Castellanos & Boersma, 2012) (cf below). This 
clearly shows the importance of satellite-based monitoring of NO2 concentrations for 
assessing global trends, the effects of regional environmental regulations and 
technological improvements to reduce emissions, but also for estimations of marine 
background conditions for global and regional chemical transport models (Martins et 
al., 2016).  
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6.3. Linear and non-linear trend types 
Linear regression models assume that changes occur linearly and gradually, which is 
not always the case (Jamali et al., 2014). Here, a polynomial fitting-based scheme 
(Polytrend) was used to account for non-linear trends. This polynomial approach thus 
helps to detect remotely sensed trends in a time series that would not be identified 
by an ordinary least square (i.e. linear model) approach. The linear trend type was the 
least common trend globally, while the quadratic trend type was the most common 
trend (Fig. 11; Table 2). Since the quadratic trend type has a trend line with one bend, 
this indicates that these areas either increased in the beginning of the study period 
and then started to decrease, or that they have been decreasing over the study period 
and started to increase towards the end of the study period. The cubic trend type was 
uncommon in all NO2 hotspot countries and was almost exclusively found over oceans 
(95.10 %). This means that the trend direction over these cells changed multiple times 
and could be an indication of the statement from Peters et al. (2012) that 
measurements over remote oceans are unclear. Based on this, it should be noted that 
the positive trends over remote ocean areas are possibly unreliable, due to that the 
concentrations in these areas are low in relation to the magnitude of the error 
sources. 
 

6.4. Breakpoint analysis 
The majority of the significant breakpoints over the study period were negative (63.67 
%) and non-abrupt (85.17 %). Non-abrupt changes indicate that the concentrations of 
NO2 have increased or decreased gradually, possibly due to environmental regulations 
that have become stricter over time or economic cycles, as opposed to abrupt changes 
which could be due to that power plants or industries have been either opened or 
shut down suddenly.  
 
The year 2008 was by far the year with the highest occurrence of significant 
breakpoints (46.31 %), out of which 98.74 % was negative. A global-scale reduction of 
tropospheric NO2 concentrations was also observed in figure 8 during this year. It has 
also previously been pointed out that 2008 is a year of significant reductions in NO2 
emissions (e.g. Tong et al., 2015; de Foy et al., 2016; Bishop & Steadman, 2014; 
Castellanos & Boersma, 2012) due to the start of the so called ‘Great Recession’. This 
was an event which caused large scale economic reductions and affected 
anthropogenic activity globally, which in turn reduced the associated emissions of air 
pollution from e.g. vehicles, power plants and industries. The plausible impact of the 
Great Recession on the regional NO2 hotspots can be seen in figures 13 b, c and d as 
well as in table 3. According to the results of this study, the largest change magnitudes 
in NO2 concentrations during 2008 were found in China, USA, India and Japan. The 
European countries appear to have suffered less, based on the changes in 
tropospheric NO2 concentrations (Fig, 13; Table 3).  
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7. Conclusions 
 
In this study, the spatial patterns and temporal trends of tropospheric NO2 have been 
studied globally over the study period of 2005 - 2018 by using remotely sensed 
satellite data from the OMI instrument aboard NASA’s Aura satellite. Furthermore, 
the timing and magnitude of significant breakpoints were identified.  
 
The OMI data was validated using data from ground-based monitoring stations and 
there was statistically significant agreement between the satellite-based and the 
ground-based datasets. This shows that satellite-based measurements are useful for 
studying trends in tropospheric air pollution and can compensate the lacking spatial 
coverage of ground-based monitoring stations.  
 
The spatial distribution of NO2 concentrations is dominated by industrialised and 
highly populated regions in the northern hemisphere, and eastern USA, western 
Europe, India, China and Japan were identified as NO2 concentration hotspots.  
 
The average global trend was negative over the study period (- 0.41 molecules cm-2 y-

1) and a large difference between ocean and land areas was observed. The average 
trend over oceans was 0.35 molecules cm-2 y-1, while the average trend over land was 
– 1.84 molecules cm-2 y-1. All countries that were identified as NO2 concentration 
hotspots had negative average trends.  
 
The timing of the strongest significant breakpoints mostly occurred during the year 
2008 (46.31 %), and almost all these breakpoints were negative.  
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9. Appendices 
9.1. Change types 

 

 
Figure 14. Type of change as estimated by DBEST. 

9.2. Significant change 

 
Figure 15. Significance of change per cell as estimated by DBEST. 
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9.3. Significant trends 

 
Figure 16. Significance of trends per cell as estimated by Polytrend. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



39 
 

9.4. List of previously published master thesis reports 
 
Series from Lund University 

 Department of Physical Geography and Ecosystem Science 
 

Master Thesis in Geographical Information Science 

 

1. Anthony Lawther: The application of GIS-based binary logistic regression 

for slope failure susceptibility mapping in the Western Grampian Mountains, 

Scotland (2008). 

2. Rickard Hansen: Daily mobility in Grenoble Metropolitan Region, France. 

Applied GIS methods in time geographical research (2008). 

3. Emil Bayramov: Environmental monitoring of bio-restoration activities using 

GIS and Remote Sensing (2009). 

4. Rafael Villarreal Pacheco: Applications of Geographic Information Systems 

as an analytical and visualization tool for mass real estate valuation: a case 

study of Fontibon District, Bogota, Columbia (2009). 

5. Siri Oestreich Waage: a case study of route solving for oversized transport: 

The use of GIS functionalities in transport of transformers, as part of 

maintaining a reliable power infrastructure (2010). 

6. Edgar Pimiento: Shallow landslide susceptibility – Modelling and validation 

(2010). 

7. Martina Schäfer: Near real-time mapping of floodwater mosquito breeding 

sites using aerial photographs (2010). 

8. August Pieter van Waarden-Nagel: Land use evaluation to assess the 

outcome of the programme of rehabilitation measures for the river Rhine in 

the Netherlands (2010). 

9. Samira Muhammad: Development and implementation of air quality data 

mart for Ontario, Canada: A case study of air quality in Ontario using OLAP 

tool. (2010). 

10. Fredros Oketch Okumu: Using remotely sensed data to explore spatial and 

temporal relationships between photosynthetic productivity of vegetation and 

malaria transmission intensities in selected parts of Africa (2011). 

11. Svajunas Plunge: Advanced decision support methods for solving diffuse 

water pollution problems (2011). 

12. Jonathan Higgins: Monitoring urban growth in greater Lagos: A case study 

using GIS to monitor the urban growth of Lagos 1990 - 2008 and produce 

future growth prospects for the city (2011). 

13. Mårten Karlberg: Mobile Map Client API: Design and Implementation for 

Android (2011). 

14. Jeanette McBride: Mapping Chicago area urban tree canopy using color 

infrared imagery (2011). 

15. Andrew Farina: Exploring the relationship between land surface temperature 

and vegetation abundance for urban heat island mitigation in Seville, Spain 

(2011). 

16. David Kanyari: Nairobi City Journey Planner:  An online and a Mobile 

Application (2011). 

  



40 
 

17. Laura V. Drews:  Multi-criteria GIS analysis for siting of small wind power 

plants - A case study from Berlin (2012). 

18. Qaisar Nadeem: Best living neighborhood in the city - A GIS based multi 

criteria evaluation of ArRiyadh City (2012). 

19. Ahmed Mohamed El Saeid Mustafa: Development of a photo voltaic 

building rooftop integration analysis tool for GIS for Dokki District, Cairo, 

Egypt (2012). 

20. Daniel Patrick Taylor: Eastern Oyster Aquaculture: Estuarine Remediation 

via Site Suitability and Spatially Explicit Carrying Capacity Modeling in 

Virginia’s Chesapeake Bay (2013). 

21. Angeleta Oveta Wilson: A Participatory GIS approach to unearthing 

Manchester’s Cultural Heritage ‘gold mine’ (2013). 

22. Ola Svensson: Visibility and Tholos Tombs in the Messenian Landscape: A 

Comparative Case Study of the Pylian Hinterlands and the Soulima Valley 

(2013). 

23. Monika Ogden: Land use impact on water quality in two river systems in 

South Africa (2013). 

24. Stefan Rova: A GIS based approach assessing phosphorus load impact on 

Lake Flaten in Salem, Sweden (2013). 

25. Yann Buhot: Analysis of the history of landscape changes over a period of 

200 years. How can we predict past landscape pattern scenario and the 

impact on habitat diversity? (2013). 

26. Christina Fotiou: Evaluating habitat suitability and spectral heterogeneity 

models to predict weed species presence (2014). 

27. Inese Linuza: Accuracy Assessment in Glacier Change Analysis (2014). 

28. Agnieszka Griffin: Domestic energy consumption and social living 

standards: a GIS analysis within the Greater London Authority area (2014). 

29. Brynja Guðmundsdóttir: Detection of potential arable land with remote 

sensing and GIS - A Case Study for Kjósarhreppur (2014). 

30. Oleksandr Nekrasov: Processing of MODIS Vegetation Indices for analysis 

of agricultural droughts in the southern Ukraine between the years 2000-

2012 (2014). 

31. Sarah Tressel: Recommendations for a polar Earth science portal 

in the context of Arctic Spatial Data Infrastructure (2014). 

32. Caroline Gevaert: Combining Hyperspectral UAV and Multispectral 

Formosat-2 Imagery for Precision Agriculture Applications (2014). 

33. Salem Jamal-Uddeen:  Using GeoTools to implement the multi-criteria 

evaluation analysis - weighted linear combination model (2014). 

34. Samanah Seyedi-Shandiz: Schematic representation of geographical railway 

network at the Swedish Transport Administration  (2014). 

35. Kazi Masel Ullah: Urban Land-use planning using Geographical Information 

System and analytical hierarchy process: case study Dhaka City (2014). 

36. Alexia Chang-Wailing Spitteler: Development of a web application based on 

MCDA and GIS for the decision support of river and floodplain 

rehabilitation projects (2014). 

37. Alessandro De Martino: Geographic accessibility analysis and evaluation of 

potential changes to the public transportation system in the City of Milan 

(2014). 

38. Alireza Mollasalehi: GIS Based Modelling for Fuel Reduction Using 

Controlled Burn in Australia. Case Study: Logan City, QLD (2015). 



41 
 

39. Negin A. Sanati: Chronic Kidney Disease Mortality in Costa Rica; 

Geographical Distribution, Spatial Analysis and Non-traditional Risk Factors 

(2015). 

40. Karen McIntyre: Benthic mapping of the Bluefields Bay fish sanctuary, 

Jamaica (2015). 

41. Kees van Duijvendijk: Feasibility of a low-cost weather sensor network for 

agricultural purposes: A preliminary assessment (2015). 

42. Sebastian Andersson Hylander: Evaluation of cultural ecosystem services 

using GIS (2015). 

43. Deborah Bowyer: Measuring Urban Growth, Urban Form and Accessibility 

as Indicators of Urban Sprawl in Hamilton, New Zealand (2015). 

44. Stefan Arvidsson: Relationship between tree species composition and 

phenology extracted from satellite data in Swedish forests (2015). 

45. Damián Giménez Cruz: GIS-based optimal localisation of beekeeping in 

rural Kenya (2016). 

46. Alejandra Narváez Vallejo: Can the introduction of the topographic indices 

in LPJ-GUESS improve the spatial representation of environmental 

variables? (2016). 

47. Anna Lundgren: Development of a method for mapping the highest coastline 

in Sweden using breaklines extracted from high resolution digital elevation 

models (2016). 

48. Oluwatomi Esther Adejoro: Does location also matter?  A spatial analysis of 

social achievements of young South Australians (2016). 

49. Hristo Dobrev Tomov: Automated temporal NDVI analysis over the Middle 

East for the period 1982 - 2010 (2016). 

50. Vincent Muller: Impact of Security Context on Mobile Clinic Activities  

A GIS Multi Criteria Evaluation based on an MSF Humanitarian Mission in 

Cameroon (2016). 

51. Gezahagn Negash Seboka: Spatial Assessment of NDVI as an Indicator of 

Desertification in Ethiopia using Remote Sensing and GIS (2016). 

52. Holly Buhler: Evaluation of Interfacility Medical Transport Journey Times 

in Southeastern British Columbia. (2016). 

53. Lars Ole Grottenberg:  Assessing the ability to share spatial data between 

emergency management organisations in the High North (2016). 

54. Sean Grant: The Right Tree in the Right Place: Using GIS to Maximize the 

Net Benefits from Urban Forests (2016). 

55. Irshad Jamal: Multi-Criteria GIS Analysis for School Site Selection in 

Gorno-Badakhshan Autonomous Oblast, Tajikistan (2016). 

56. Fulgencio Sanmartín: Wisdom-volkano: A novel tool based on open GIS 

and time-series visualization to analyse and share volcanic data (2016). 

57. Nezha Acil: Remote sensing-based monitoring of snow cover dynamics and 

its influence on vegetation growth in the Middle Atlas Mountains (2016). 

58. Julia Hjalmarsson: A Weighty Issue:  Estimation of Fire Size with 

Geographically Weighted Logistic Regression (2016). 

59. Mathewos Tamiru Amato: Using multi-criteria evaluation and GIS for 

chronic food and nutrition insecurity indicators analysis in Ethiopia (2016). 

60. Karim Alaa El Din Mohamed Soliman El Attar: Bicycling Suitability in 

Downtown, Cairo, Egypt (2016). 



42 
 

61. Gilbert Akol Echelai: Asset Management: Integrating GIS as a Decision 

Support Tool in Meter Management in National Water and Sewerage 

Corporation (2016). 

62. Terje Slinning: Analytic comparison of multibeam echo soundings (2016). 

63. Gréta Hlín Sveinsdóttir: GIS-based MCDA for decision support: A 

framework for wind farm siting in Iceland (2017). 

64. Jonas Sjögren: Consequences of a flood in Kristianstad, Sweden: A GIS-

based analysis of impacts on important societal functions (2017). 

65. Nadine Raska: 3D geologic subsurface modelling within the Mackenzie 

Plain, Northwest Territories, Canada (2017). 

66. Panagiotis Symeonidis: Study of spatial and temporal variation of 

atmospheric optical parameters and their relation with PM 2.5 concentration 

over Europe using GIS technologies (2017). 

67. Michaela Bobeck: A GIS-based Multi-Criteria Decision Analysis of Wind 

Farm Site Suitability in New South Wales, Australia, from a Sustainable 

Development Perspective (2017). 

68. Raghdaa Eissa: Developing a GIS Model for the Assessment of Outdoor 

Recreational Facilities in New Cities Case Study: Tenth of Ramadan City, 

Egypt (2017). 

69. Zahra Khais Shahid: Biofuel plantations and isoprene emissions in Svea and 

Götaland (2017). 

70. Mirza Amir Liaquat Baig: Using geographical information systems in 

epidemiology: Mapping and analyzing occurrence of diarrhea in urban - 

residential area of Islamabad, Pakistan (2017). 

71. Joakim Jörwall: Quantitative model of Present and Future well-being in the 

EU-28: A spatial Multi-Criteria Evaluation of socioeconomic and climatic 

comfort factors (2017). 

72. Elin Haettner: Energy Poverty in the Dublin Region: Modelling Geographies 

of Risk (2017). 

73. Harry Eriksson: Geochemistry of stream plants and its statistical relations to 

soil- and bedrock geology, slope directions and till geochemistry. A GIS-

analysis of small catchments in northern Sweden (2017). 

74. Daniel Gardevärn: PPGIS and Public meetings – An evaluation of public 

participation methods for urban planning (2017). 

75. Kim Friberg: Sensitivity Analysis and Calibration of Multi Energy Balance 

Land Surface Model Parameters (2017). 

76. Viktor Svanerud: Taking the bus to the park? A study of accessibility to 

green areas in Gothenburg through different modes of transport (2017).  

77. Lisa-Gaye Greene: Deadly Designs: The Impact of Road Design on Road 

Crash Patterns along Jamaica’s North Coast Highway (2017).  

78. Katarina Jemec Parker: Spatial and temporal analysis of fecal indicator 

bacteria concentrations in beach water in San Diego, California (2017).  

79. Angela Kabiru: An Exploratory Study of Middle Stone Age and Later Stone 

Age Site Locations in Kenya’s Central Rift Valley Using Landscape 

Analysis: A GIS Approach (2017).  

80. Kristean Björkmann: Subjective Well-Being and Environment: A GIS-Based 

Analysis (2018).  

81. Williams Erhunmonmen Ojo: Measuring spatial accessibility to healthcare 

for people living with HIV-AIDS in southern Nigeria (2018).  



43 
 

82. Daniel Assefa: Developing Data Extraction and Dynamic Data Visualization 

(Styling) Modules for Web GIS Risk Assessment System (WGRAS). (2018).  

83. Adela Nistora: Inundation scenarios in a changing climate: assessing 

potential impacts of sea-level rise on the coast of South-East England (2018).  

84. Marc Seliger: Thirsty landscapes - Investigating growing irrigation water 

consumption and potential conservation measures within Utah’s largest 

master-planned community: Daybreak (2018).  

85. Luka Jovičić: Spatial Data Harmonisation in Regional Context in 

Accordance with INSPIRE Implementing Rules (2018).  

86. Christina Kourdounouli: Analysis of Urban Ecosystem Condition Indicators 

for the Large Urban Zones and City Cores in EU (2018).  

87. Jeremy Azzopardi: Effect of distance measures and feature representations 

on distance-based accessibility measures (2018).  

88. Patrick Kabatha: An open source web GIS tool for analysis and visualization 

of elephant GPS telemetry data, alongside environmental and anthropogenic 

variables (2018).  

89. Richard Alphonce Giliba: Effects of Climate Change on Potential 

Geographical Distribution of Prunus  africana (African cherry)  in the 

Eastern Arc Mountain Forests of Tanzania (2018).  

90. Eiður Kristinn Eiðsson: Transformation and linking of authoritative multi-

scale geodata for the Semantic Web: A case study of Swedish national 

building data sets (2018).  

91. Niamh Harty: HOP!: a PGIS and citizen science approach to monitoring the 

condition of upland paths (2018).  

92. José Estuardo Jara Alvear: Solar photovoltaic potential to complement 

hydropower in Ecuador: A GIS-based framework of analysis (2018). 

93. Brendan O’Neill: Multicriteria Site Suitability for Algal Biofuel Production 

Facilities (2018). 

94. Roman Spataru: Spatial-temporal GIS analysis in public health – a case 

study of polio disease (2018). 

95. Alicja Miodońska: Assessing evolution of ice caps in Suðurland, Iceland, in 

years 1986 - 2014, using multispectral satellite imagery (2019). 

96. Dennis Lindell Schettini: A Spatial Analysis of Homicide Crime’s 

Distribution and Association with Deprivation in Stockholm Between 2010-

2017 (2019). 

97. Damiano Vesentini: The Po Delta Biosphere Reserve: Management 

challenges and priorities deriving from anthropogenic pressure and sea level 

rise (2019). 

98. Emilie Arnesten: Impacts of future sea level rise and high water on roads, 

railways and environmental objects: a GIS analysis of the potential effects of 

increasing sea levels and highest projected high water in Scania, Sweden 

(2019). 

99. Syed Muhammad Amir Raza: Comparison of geospatial support in RDF 

stores: Evaluation for ICOS Carbon Portal metadata (2019). 

100. Hemin Tofiq: Investigating the accuracy of Digital Elevation Models from 

UAV images in areas with low contrast: A sandy beach as a case study 

(2019). 

101. Evangelos Vafeiadis: Exploring the distribution of accessibility by public 

transport using spatial analysis. A case study for retail concentrations and 

public hospitals in Athens (2019). 



44 
 

102. Milan Sekulic: Multi-Criteria GIS modelling for optimal alignment of 

roadway by-passes in the Tlokweng Planning Area, Botswana (2019). 

103. Ingrid Piirisaar: A multi-criteria GIS analysis for siting of utility-scale 

photovoltaic solar plants in county Kilkenny, Ireland (2019). 

104. Nigel Fox: Plant phenology and climate change: possible effect on the onset 

of various wild plant species’ first flowering day in the UK (2019). 

105. Gunnar Hesch: Linking conflict events and cropland development in 

Afghanistan, 2001 to 2011, using MODIS land cover data and Uppsala 

Conflict Data Programme (2019). 

106. Elijah Njoku: Analysis of spatial-temporal pattern of Land Surface 

Temperature (LST) due to NDVI and elevation in Ilorin, Nigeria (2019). 

107. Katalin Bunyevácz: Development of a GIS methodology to evaluate informal 

urban green areas for inclusion in a community governance program (2019). 

108. Paul dos Santos: Automating synthetic trip data generation for an agent-

based simulation of urban mobility (2019). 

109. Robert O’ Dwyer: Land cover changes in Southern Sweden from the mid-

Holocene to present day:  Insights for ecosystem service assessments (2019). 

110. Daniel Klingmyr: Global scale patterns and trends in tropospheric NO2 

concentrations (2019). 

 


