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Abstract 
 

Ethiopia produces 86% of its electricity from hydropower source, still they 

experience frequent power shortages. As they are part of the East African 

Power Pool, this power shortage is usually made up for by buying energy from 

other members of the pool. Forecasting the energy available for usage in the 

future allows Ethiopia to buy energy ahead of time when prices are low, but 

also to sell surplus electricity to neighboring countries. This is the degree 

project I was offered to investigate into at the company Refinitiv. To do so, a 

modified HBV model was used to predict the hydroelectricity, using as input 

one of the two weather datasets (CPCP and CFSR), both provided by the 

company, and a Q-target series against which the computed runoff is 

evaluated. The task of constructing a Q-target series meant that an extensive 

search for runoff data was necessary. After finding such data and entering the 

Q-target series in the model, the model’s performance was assessed during 

the calibration and validation parts. The model using CFSR data was found to 

perform better than CPCP’s by a substantial margin. Nonetheless, the results 

are promising for both models. Suggestions for further work in this subject 

relate to the quality of the runoff data used, as the data used in this project 

originated from a secondary source, and missing runoff data was filled in using 

unknown interpolation equations. For this reason, it is recommended to get 

the raw data from the primary source, namely the Ministry of Water, 

Irrigation and Energy. This would allow for greater flexibility during the 

construction of the Q-target series.
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1. Introduction 

1.1 Background 
Ethiopia generates 86% of its electricity from hydropower, the economically 

feasible potential was estimated by the Ethiopian government to be around 

45 GW, of which only 8.5% is currently utilized. The remaining untapped 

potential is huge and can help achieve Ethiopia’s goal of becoming a lower 

middle-income country by 2025. For instance, it could make Ethiopia a 

reliable regional power hub, through selling energy to neighboring countries 

when in surplus of energy. An important feature of hydropower is that it 

usually, but not always, relies on water stored in reservoirs, which can be used 

for irrigation purposes and thus moderate the effects of the frequent drought 

periods Ethiopia is subject to (Power Africa, 2016). 

As Ethiopia is part of the East African Power Pool, a 10-country power pool, 

the infrastructure for power trade between the pool power members is 

already present. A 2030 projection has Ethiopia the country with the most 

power surplus of all countries of the pool, this is contingent on Ethiopia’s 

efforts in building more hydropower plants by 2030. In order to do so, a 

model-based estimation, rather than a crude estimate, of the hydropower 

potential that the many rivers of Ethiopia offer is clearly warranted (Deloitte, 

2015). 

This is the task Refinitiv (formerly known as Thomson Reuters) has set for me 

to investigate, since they supply hydropower generation forecasts for a 

number of countries in the world using a modified version of the HBV model. 

The HBV model is a hydrological model that can be used to compute river 

discharge using only precipitation and temperature data for a given 

catchment area (Bergström, 1992). After calibration, this model uses the 

precipitation and temperature as inputs and gives as output the estimated 

river runoff. This inflow to reservoirs can be then linked to the energy 

produced by hydropower plants. 

The HBV model needs observed runoff at first to calibrate its parameters: 

observed river and stream flows are needed to calibrate the model, the longer 
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the data series, the more accurate the model gets. Once the model is 

calibrated for a certain river basin or area, weather forecast data can be used 

to predict river flows, which in turn is used to predict the energy that can be 

generated from hydropower in the near future. 

Predicting the available energy in the near future is useful since it allows to 

meet potential power shortages by buying electricity from neighboring 

countries, or on the contrary sell surplus electricity to neighboring countries, 

in essence it helps minimize the costs of electricity production. 

1.2 Aims and objectives 
The aim of this degree project is to build and analyze the performance of a 

hydrological model that can be used to forecast the energy production from 

hydropower source in the Omo-Gibe river basin in Ethiopia. 

In order to achieve this goal, the work proper was divided into two main 

objectives: those related to building the Q-target series, and those to calibrate 

the HBV model and run it. 

• Construct the Q-target series: 
1. Find hydrological data 

2. Select streamflow stations 

3. Weigh streamflow stations 

4. Construct the Q-target series 

• Calibrate and validate the model: 
1. Choose the appropriate precipitation and temperature polygons 

2. Calibrate the HBV model 

3. Validate the model 

4. Compare the performance of the model 

1.3 Methodology 
A literature study has been done to learn about the energy market in Ethiopia, 

the amount of hydroelectricity produced each year, the biggest energy-

producing power plants, and Ethiopia’s current energy wholesale to 

neighboring countries. 
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Then, the HBV model is introduced along some parameters. This rainfall-

runoff model needs precipitation and temperature data as input and a Q-

target series in order to calibrate the model. Two precipitation datasets were 

provided by Refinitiv, this resulted in calibrating two distinct models each one 

using a different precipitation dataset, this also meant that one model could 

be compared to the other. The source of weather data is discussed at length 

in the data collection section. As for building a Q-target series, an extensive 

search has been followed to find streamflow data for hydrological stations. 

Some of the criteria applied for choosing the right gauging stations are: nature 

of the flow – natural or disrupted by human activities, distance to power 

plants, stations upstream of the hydropower plant in question, quality and 

quantity of data. 

Once the Q-target series was built, the calibration process was carried with 

changes made to the model parameters until no substantial improvement to 

the r2 value could be achieved. Both models were validated then and their 

performance analyzed and compared against each other, before concluding 

the project with some suggestions on how the model could be improved 

upon. 

1.4 Limitations 
Some limitations are inherently present in this kind of work. The first 

limitation to consider relates to the building of the Q-target series as it is not 

only dependent on the choice of the streamflow stations to use but also the 

weight given to each station. As there is no exact method to follow in order 

to choose and weigh the stations, this step remains to some extent subjective. 

Secondly, both precipitation and temperature data used as input are not 

measured data but modelled data, this means that the input is synthetic and 

therefore adjustments are an intrinsic part of the input. Furthermore, the HBV 

model itself makes assumptions and therefore uses a set of parameters that 

may not be relevant to the case at hand. Finally, the energy prediction step 

doesn’t consider whether or not the energy produced by the hydropower 

plants happens when said power plants are used to their fullest capacity.  
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2. Literature study 

2.1 Introduction of Ethiopia 
Ethiopia is a country located in East Africa, specifically in the region of the 

Horn of Africa, and is home to about 110 million inhabitants which makes it 

the second most populous country in Africa. Even though Ethiopia is a 

landlocked country, it is commonly referred to as ‘Water tower of Africa’ 

because of the great water reserves it possesses. For instance, the Blue Nile 

river, which accounts for 80% of the streamflow of the Nile river by volume, 

has its source in Ethiopia (Champion and Manek, 2019). 

 
Figure 1. Map of the Horn of Africa (European Civil Protection and Humanitarian Aid 

Operations, 2019) 

This control over the availability of water in downstream countries is a source 

of frequent discontent, as it constitutes a considerable leverage over 

neighboring countries most notably Egypt, which relies on the Nile river for 

the wellbeing of its agricultural sector (Champion and Manek, 2019). 

Still, Ethiopia itself is susceptible to frequent droughts especially in the 

eastern part of the country, and it harms its own agricultural sector, which 
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accounts for about 75% of the labor force and represents 40 % of its GDP, its 

biggest exports are coffee and oilseeds (Central Intelligence Agency, 2019). 

Omo-Gibe river basin 
Ethiopia is divided into 12 basins out of which 9 are river basins. In this work 

the focus is on the Omo-Gibe river basin (shown in figure 2), which is home to 

about 6.5 million people and has a size of just under 80000 km2. Omo river 

represents the largest river of this basin, while Gibe river is the largest 

tributary to the Omo river, contributing about 90% of the total volume of the 

Omo river. (Legass, 2016) 

 
Figure 2. Topographical map of Omo-Gibe river basin (Legass, 2016) 
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2.2 Energy market of Ethiopia 

2.2.1 Introduction 
The energy market of Ethiopia is dominated by the Ethiopian Electric Power 

(EEP) which is a state-owned company that produces the electricity through 

the power plants it owns. While there is a private sector, the number of 

privately-owned power plants is very low compared to the public-owned ones 

in terms of generating capacity most likely because of the fact that the 

country has the third-highest public investment in the world, but the sixth-

lowest private investment (World Bank, 2016). The Ethiopian Electric Utility 

(EEU) is given the task of distributing the electricity. The electrification rate 

stands at 25% with 85% of the urban population has access to electricity while 

only 5.3% of the rural population shares the same privilege. The low electricity 

access and substantial distribution losses coupled with the fact that the 

electricity demand sees about a 20% growth each year put a lot of additional 

stress on the national grid (African Development Bank, 2018). 

2.2.2 Power generation capacity 
Only 8.5% of Ethiopia’s hydropower potential (45 GW) is utilized. This 

potential is a crude estimate given by the government, not a research-based 

one (Power Africa, 2016). This represents a huge untapped potential. The 

government is aware of it and, as the power generation stood at only 4180 

MW in 2015/2016, follows an aggressive stance with regards to building more 

hydropower dams as exemplified in their latest Growth and Transformation 

Plan released in 2016 where the government set the power generation 

capacity target to 17,347 MW of which 13,817 MW comes from hydropower 

source (Federal Democratic Republic of Ethiopia, 2016). 

Hydropower plants are scattered all around the country as can be seen from 

figure 2: 
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Figure 2. The location of current and future hydropower plants in Ethiopia 

The chart below sums up the different hydropower plants in Ethiopia with the 

installed capacity and its current status. Varying plants in terms of installed 

capacity can be found from the small-scale Aba Samuel’s 6.6 MWe to the 

ambitious and giant GERD’s 6450 MWe (Ethiopian Electric Power, 2018). 
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Table 1. Current and future hydropower plants, their location and their nominal capacity 

Latitude Longitude Name Installed 
capacity 
(MWe) 

Status 

8.788°N 38.706°E Aba 
Samuel 

6.6 operational 

8.468°N 39.156°E Koka 
(Awash I) 

43 operational 

8.393°N 39.352°E Awash II+III 64 operational 

9.561°N 37.413°E Fincha 134 operational 

9.789°N 37.269°E Fincha 
Amerti 
Neshe 
(FAN) 

95 operational 

7.831°N 37.322°E Gilgel Gibe 
I 

184 operational 

7.757°N 37.562°E Gilgel Gibe 
II 

420 operational 

6.844°N 37.301°E Gilgel Gibe 
III 

1,870 operational 

7.225°N 39.462°E Melka 
Wakena 

153 operational 

11.82°N 36.92°E Tana Beles 460 operational 

13.348°N 38.742°E Tekeze 300 operational 

11.486°N 37.587°E Tis Abay 
I+II 

84.4 operational 

5.51°N 39.718°E Genale 
Dawa III 

254 operational, but out of 
use for social reasons 

5.68°N 40.93°E Genale 
Dawa VI 

257 project implementation 

8.211°N 36.073°E Geba I+II 385 project implementation 

11.214°N 35.089°E GERD 6,450 under construction, 65% 
complete (as of 4/2018) 

6.584°N 36.565°E Koysha 2,160 under construction 

 

As predicted, the lion’s share of Ethiopia’s energy production comes from 

hydropower, e.g. 86% in 2015. Figure 3 shows the total energy production and 
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the share of each energy source. Hydropower is and remains the predominant 

source of energy in Ethiopia (Ethiopian Electric Power, 2018). 

Figure 3. Energy produced in GWh per year in Ethiopia 

Not all power plants are equal in terms of energy generated though as can be 

seen from figure 4 which shows the share of energy produced by hydro power 

plant in the period extending from September 2017 to August 2018 (Ethiopian 

Electric Power, 2018). 

The share of the 3 Gilgel Gibe power plants, all of which are located in the 

Omo-Gibe river basin, stands at 58% of the total energy produced, adding 

Tana Beles increases this value to 80%. 
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Figure 4. Share of energy production by hydropower plant in MWh during 2017/18 

The East African Power Pool is a 10-country power pool whereby members of 

the EAPP pool their energy so any surplus production isn’t wasted but is 

transferred to nearby countries who can make up for any energy shortage. 

Since energy is a vital resource, reliance on it keeps growing, and being a 

member of an energy pool remains the surest way to provide energy for 

domestic, commercial and industrial purposes. Ethiopia, and neighboring 

countries Sudan, Djibouti and Kenya are all members of the pool. A 2030 

projection has Ethiopia as the country with the most power surplus of all 

countries of the pool, and as Ethiopia builds more power plants, the energy 

trade with the other members can only increase as can be seen in table 2 

(Ethiopian Electric Power, 2018): 
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Table 2. Energy trade in GWh between Ethiopia and neighboring countries. 

INTERCONNECTIONS 11/12 12/13 13/14 14/15 15/16 16/17 17/18 

ETHIO – DIJBOUTI 331 386 267 379 271 492 911 

ETHIO - KENYA 1 1 1 1 2 - - 

ETHIO - SUDAN - 175 340 381 427 759 520 

TOTAL (GWH) 332 562 608 761 700 1,251 1,431 

 

Figure 5 shows the total energy transferred from Ethiopia to neighboring 

countries and EAPP members Sudan and Djibouti from September 2011 to 

August 2018 (Ethiopian Electric Power, 2018). 

 

Figure 5. Energy wholesale from Ethiopia to Sudan and Djibouti in GWh 

2.3 HBV model 
The HBV model is a hydrological runoff model developed in 1972 by SMHI 

(Swedish Meteorological and Hydrological Institute) used in Scandinavia but 

also around the world. This model has seen applications in different fields like 

real time forecasting, groundwater simulations, design floods and water 

balance studies amongst others. (Bergström, S., 1992) 
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The model used to estimate the runoff in the Omo-Gibe river basin is based 

on the HBV model and resembles in a simplified manner the one pictured in 

figure 6. The model is composed of two distinct but interrelated boxes, the 

soilwater box and the runoff box. This model needs the precipitation and the 

temperature as inputs, while it outputs the computed runoff. 

 
Figure 6. Example of an HBV model (Persson, 2018a) 

Soilwater box 
The soilwater box simulates the reaction of soils to precipitation. The water 

in the soilwater box is usually estimated using mathematical equations that 

are interrelated. The number of equations used increases with the complexity 

of the model but so does the number of input data needed, variables used, 

and time to compute the program. Below are simple equations which 

combined together are used to describe the effect of precipitation on soils. 

𝑑ℎ𝑠
𝑑𝑡

= 𝑝 − 𝑒 − 𝑓 
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The variation in water level hs in the soilwater box is equal to the difference 

between the precipitation p, evapotranspiration e, and percolation to runoff 

box f. It should be noted that the precipitation p can be either in the form of 

rainfall or snowmelt. 

While rainfall is typically a given data, snowmelt is usually computed, the 

equation below can be used to do just so: 

𝑠𝑚 = max⁡(0, 𝐶𝑑 ∗ (𝑇 − 𝑇𝑒𝑚𝑝𝑟𝑒𝑓)) 

In essence, this equation describes the fact that if the temperature T is above 

a reference temperature Tempref (usually set to 0°C) then the snow is melting, 

and its value is equal to this difference in temperature times a model 

parameter Cd. So, the precipitation p mentioned above is really equal to the 

sum of the rainfall r and snowmelt sm. 

Usually, the evapotranspiration and percolation too are modelled with 

parameters that control the influence of temperature, the soil moisture 

content, the potential evapotranspiration and the field capacity on them. 

The evapotranspiration is calculated using the following equation: 

𝑒 = 𝑝𝑒 ∗ min⁡(1,
ℎ𝑠
ℎ𝑝
) 

From the equation, the maximum evapotranspiration e that can be reached 

is pe which is the potential evapotranspiration and is a model parameter. 

Unless the water level in the soil hs is above a threshold hp (also a model 

parameter) which means that there is enough water in the soil and therefore 

the soil is saturated, the evapotranspiration will be less than the maximum 

value (pe). When the soil is unsaturated, the soil eats away from that potential 

evapotranspiration. 

Percolation is calculated using the following equation: 

𝑓 = 𝑝 ∗ (
ℎ𝑠
𝐹𝐶

)𝑏 

From the equation, percolation happens when there is precipitation and there 

is water in the soilbox. Percolation increases as either precipitation or the 
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water level hs increases, but also if FC is set to a lower value. This is, of course, 

a simplification of what happens in reality, but a good approximation, 

nonetheless. Both FC and b are model parameters. 

Runoff box 
The runoff box simulates the reaction of a reservoir with two outlets to an 

inflow of water (the percolation f), the bottom outlet has a slow and steady 

kind of flow q1 (called slow runoff) and the top one has a fast response q0 

(called fast runoff).  

The variation in the water level h is calculated using the continuity equation 

below: 

𝑑ℎ𝑟
𝑑𝑡

= 𝑓 − 𝑞 

q being the runoff, and f is the percolation described in the section above. 

While the equation for the runoff is: 

𝑞 =
ℎ𝑟
𝑇
+
ℎ𝑟 − 𝐻𝑡

𝑇𝑓𝑎𝑠𝑡
 

T and Tfast are time constants, and Ht is the threshold level at which point the 

fast response is triggered. 

The model parameters are summed up in the chart below (table 3): 

Table 3. Model parameters and their respective boxes 

BOX PARAMETER 

SOILWATER (SNOWMELT) Cd, Tempref 
SOILWATER (EVAPOTRANSPIRATION) pe, hp 

SOILWATER (PERCOLATION) FC, b 
RUNOFF T, Tfast, Ht 

 

Some of these parameters are limited in respect to the value they can carry, 

for example T is always going to be bigger than Tfast, while Tref is usually going 

to hover around 0 °C. Others like Cd can be estimated if the type of soil is made 

known, for example Cd is equal to 2 mm/°C/day for forested areas and Cd is 

between 3-6 mm/°C/day for open fields. Of course, these values can be 
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exceeded or not even reached. When this happens, the model becomes more 

analytical than physically based (Persson, 2018b). 

All these model parameters are determined during the calibration phase, the 

idea is that the model can simulate the runoff of a particular basin by using a 

specific set of model parameters that distinguish the reaction of this basin to 

weather conditions. After the calibration process, this set of parameters is 

saved for future uses to predict the runoff using the temperature and 

precipitation data. 

  



16 
 

3. Data collection and preparation 

In this section, I describe both data collection and preparation tasks. The 

former refers to how the required data for the model was collected: 

precipitation and temperature data have been provided by Refinitiv, and an 

extensive search on the internet has been made to find data pertaining to 

streamflow rates and energy produced. The latter deals with the structuring 

of the data to match the format of the model’s input. 

3.1 Data collection 

3.1.1 Precipitation 
Both precipitation datasets have been provided by Refinitiv. The first dataset 

(referred to by CPCP) comes from the US federal agency Climate Prediction 

Center (CPC). The Climate Prediction Center both monitors and forecasts 

climate variables like temperature and precipitation (National Weather 

Service - Climate Prediction Center, 2019). 

The second dataset comes from the Climate Forecast System Reanalysis 

(CFSR) model developed by the US National Centers for Environmental 

Prediction (NCEP), CFSR is a meteorological model that considers “the 

interaction between the Earth's atmosphere, oceans, land and sea ice” 

(National Centers for Environmental Prediction - Climate Forecast System, 

2019). 

None of the datasets provides observed precipitation values. While it is true 

that CPCP data is based on observed weather data, this data is subject to some 

statistical fiddling and in the case of CFSR data, it is based on a meteorological 

model altogether. 

Both datasets had the KML file format, therefore the software Google Earth 

was used to open these files and display their respective content. Once 

opened, Google Earth shows a gridded Earth (figure 7) where cells or polygons 

are about 3000 km2 in size, and are either blue, yellow or red colored. Blue 

polygons correspond to cells with a ratio of observed data to calculated data 
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above 0.5, yellow to cells with a ratio lower than 0.5, and red to cells where 

no observed data is available. 

Figure 7. Different kinds of precipitation polygons available in Ethiopia (Blue polygons 

correspond to cells with a ratio of observed data to calculated data above 0.5, yellow to cells 

with a ratio lower than 0.5, and red to cells where no observed data is available) 

3.1.2 Temperature 
The temperature data, too, was provided by Refinitiv, in the case of 

temperature only one dataset was made available, and it is CFSR-based. The 

reason behind this is that temperature doesn’t vary a lot from one day to 

another, the greatest daily variation and unpredictability is mostly seen in 

precipitation patterns. CFSR, being a fully-fledged meteorological model, is 

less susceptible to missing observed data - say if a particular weather station 

stops working - than CPCP is, the latter relying heavily on observed data. 

Once opened in Google Earth, the resulting grid looks the same as the 

precipitation’s, again with the blue colored cells referring to polygons with a 

ratio of observed data to calculated data above 0.5, yellow ones to those with 

a ratio below 0.5, and finally, the red color for polygons with no observation 

data (figure 8). 
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Figure 8. Different kinds of temperature polygons available in Ethiopia (Blue polygons 

correspond to cells with a ratio of observed data to calculated data above 0.5, yellow to cells 

with a ratio lower than 0.5, and red to cells where no observed data is available) 

3.1.3 Streamflow 
The source of the streamflow data (no pun intended!) was a tedious one, as 

this kind of data in the hydrological world is prized, it’s only too natural to find 

difficulties in the process of searching for it. 

Streamflow data can be found on the Global Runoff Database, a river 

discharge database ran by the Global Runoff Data Center (GRDC). The GRDC 

compiles streamflow data from different data providers around the globe. A 

catalogue of the stations can be found on their website in a KMZ file format. 

The stations can be seen in the figure below represented by a white pin, some 

major streams in Ethiopia are represented by a blue line (GRDC, 2018). 
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Figure 9. Location of GRDC stations in Ethiopia 

 

A data request was made in order to get flow data for many rivers in 

Ethiopia. An order form was filled in, after specifying the GRDC No. of the 

station, the river name, the station name, the period, and the resolution 

(Monthly/Daily). All available daily data of Ethiopia for the 1978-2018 

period, and all available monthly data of Sudan and Somalia for the 1978-

2018 period was requested. The reason behind adding neighboring countries 

Sudan and Somalia is that there is no data for some streams in Ethiopia and 

this can be remediated by gathering discharge data downstream the rivers 

in neighboring countries. The requested data was received shortly after the 

request was made. As expected, data for most rivers was limited to monthly 

data, and large parts of stations with daily data missing. 

Streamflow data across Ethiopia is recorded by Ethiopia’s Ministry of Water, 

Irrigation and Energy (MOWIE). During the work period, multiple crashes of 

their website were observed. At first when the site was inaccessible, the 

“Wayback Machine”, a digital archive of the Web, was used to access past 

versions of this website in order to find information related to hydrological 

data. Various contact emails were found on the website and were promptly 

contacted, to no avail probably because of the fact that it was an older version 
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and the emails were no longer valid. When the website was up again, new 

emails were fetched and contacted, but no response could be obtained. 

Another probable source of hydrological information was the Ethiopian 

Institute of Water Resources and so it was contacted and, in this instance too, 

no answer was received. 

One final solution was to scour the Internet for this kind of data from 
secondary sources. This extensive search yielded some findings at long last: a 
2011 Master thesis report done by Daniel Asefa in Addis Ababa University 
under the tile “Water Use and Operation Analysis of Water Resource Systems 
in Omo Gibe River Basin” contained flowrates for the gauging stations shown 
in the figure below. The values are monthly flowrates from 1985 to 2006 but 
were limited to those stations present in the Omo Gibe river basin. Missing 
data in some stations has already been filled using an interpolation of 
flowrates from nearby stations (Asefa, 2011). 
 

Figure 10. Location of streamflow stations in Omo-Gibe river basin  

 

3.1.4 Energy 
The currently installed hydropower park in Ethiopia was found on the 

Ethiopian Electric Power (EEP) website. Planned plants and the ones under 
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construction were found on other websites. These three types of plants are 

all shown in figure 11 (Ethiopian Electric Power, 2018) (IEA, 2019). 
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Figure 11. Current and prospective hydropower plants in Ethiopia 
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Data for the energy produced comes from two different sources: the 

Ethiopian Electric Power (EEP) covers the energy production for the period 

from 2011/12 to 2017/18, and the International Energy Agency (IEA) for the 

period stretching from 1990 to 2016. Values from both sources for the same 

year were compared and were found to correspond roughly to each other. 

Unfortunately, this data corresponds to the total energy produced by the 

hydropower park, except for the year 2017/18 where data for individual 

plants can be found. 

3.2 Data preparation 

3.2.1 Precipitation and Temperature 
Both meteorological datasets were already correctly formatted, and thus 

needed no conversion. 

3.2.2 Streamflow 
Since streamflow rates were given on a monthly m3/s they were converted to 

mm daily. In order to achieve this, the original flowrates were converted by 

accounting for the size of each catchment and using the monthly flow as a 

constant one.  

The different catchments that are part of the Omo-Gibe river basin were 

found in the study below, then one screenshot of the different catchments 

was overlayered on top of the Omo-Gibe river basin layer in Google Earth so 

that as a result the size of the catchments could be determined (See Appendix 

2). 

For the Asendabo catchment, the source of the image was found in “The 

Application of Predictive Modelling for Determining Bio-Environmental 

Factors Affecting the Distribution of Blackflies (Diptera: Simuliidae) in the 

Gilgel Gibe Watershed in Southwest Ethiopia” (Ambelu et al., 2014) 
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Figure 12. Resulting Asendabo river basin area 

For the Abelti catchment, the following source was used: “Proceeding of The 

Second National Consultative Workshop on Integrated Watershed 

Management on Omo-Gibe Basin” (Legass, 2016) 

Figure 13. Resulting Abelti river basin area 
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Since the data is too big to be formatted manually, a simple MATLAB routine 

was used to format the data the right way (See Appendix 3 for the actual 

values). 

3.2.3 Construction of the Q-target series 
Once runoff data is available, the construction of the Q-target series (also 

referred to by observed runoff) can start. First, streamflow stations are 

selected based on a number of criteria: the quality of their respective data 

(the percentage of missing data), their location in the catchment and their 

size. Once the number of stations is reduced, a Q-target series can be 

produced usually by giving a weight to each station depending on their size 

and quality of their data. 

Selection of streamflow stations 
Not all the stations shown in figure 10 are useful, some of the stations aren’t 

usable at all since too much data is missing, others are downstream the 

hydropower plants or too small to effect anything meaningful on the energy 

produced. 

At the end, two gauging stations can be used. The first one “Asendabo” is 

located just upstream Gilgel Gibe I, and since it’s the only river that feeds the 

Gilgel Gibe I reservoir, it seems appropriate to select this station.  

The second station chosen is “Abelti”. Even though its stream is affected by 

the operations done upstream at the level of Gilgel Gibe I, it remains the most 

important in the whole catchment since the river on which this station is 

located accounts for the majority of the river flow of the entire basin. 

Construction of the Q-target series 
The river flows coming from Asendabo and Abelti stations respectively are 

combined just upstream of the hydropower plant Gilgel Gibe II, this means 

that both stations have roughly the same impact on downstream hydropower 

plants. Therefore, the Q-target series is built by simply averaging the observed 

runoff of the two streamflow stations Asendabo and Abelti. 

During the coming calibration and validation processes of the model, the 

resulting computed runoff is compared with the constructed Q-target series 

(observed runoff). The smaller the difference between the computed runoff 
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and the observed runoff the higher the performance of the model. In essence, 

the Q-target serves the purpose of being the benchmark against which the 

results of the model are compared. 
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4. Results 

4.1 Temperature and precipitation polygons 
First, the temperature and precipitation polygons were chosen. The first 

criteria for the first batch of the weather polygons to be used was proximity 

to the streamflow stations and only the polygons located within the 

catchment could be chosen. The second criteria is the quality of weather data, 

ranked in order of higher quality, the green-colored polygons come first then 

the yellow-colored ones, the red ones being of the lowest quality were chosen 

as a last resort. 

The next step is to test each weather polygon alone, this was done while 

trying a reasonable value for the model parameters. Then, the 3 best 

performing weather polygons were selected. It was decided to choose 3 

polygons in case there is any problem with one polygon there is backup from 

the other two polygons so that the model would still work correctly albeit in 

a less-than-optimal fashion.  

Finally, the weight to give to each polygon was decided while carrying the 

calibration phase, which means that changing the values of the model 

parameters and the weight of the different polygons were carried out 

simultaneously. 

4.2 Calibration and validation of the model 
After choosing the temperature and precipitation polygons, the model is ran 

first for the calibration phase which stretches from 1985 to 1999, and then 

the validation phase from 1985 to 2006. During the calibration phase, the 

model parameters are set to different values and then modified many times 

until different sets of model parameters are tested. The calibration process is 

stopped when there is no substantial change in the way observed runoff 

(constructed Q-target series) and computed runoff match even while 

tweaking the model parameters further. After the calibration is finished, the 

model is validated using a longer period of time. 

The r2 value is a measure of how well the computed runoff matches the 

observed runoff, and it is calculated using the equation below: 
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𝑟2 =
∑(𝑄𝑜𝑏𝑠

̅̅ ̅̅ ̅̅ − 𝑄𝑜𝑏𝑠)
2 − ∑(𝑄𝑐 − 𝑄𝑜𝑏𝑠)

2

∑(𝑄𝑜𝑏𝑠
̅̅ ̅̅ ̅̅ − 𝑄𝑜𝑏𝑠)

2
 

The maximum achievable r2 value is 1 and can be achieved if Qc is equal to 

Qobs, on the other hand there is no minimum value as it can have a negative 

value in case the model is poorly calibrated. If the r2 value is equal to 0, then 

this means that the first term of the denominator is equal to the second, 

which in turn means that the model performs just as well as if the mean 

observed runoff was used instead of calculated runoff. 

4.3 Calibration phase 
Figure 14 below shows the observed runoff (Qobs) in red and the computed 

runoff Q in blue using the CPCP dataset. The r2 achieved in this case is 0.763 

which represents a good value, as can be seen from the graph the computer 

runoff Q and the Qobs match perfectly for 7 years and besides 1987, 1992 and 

1997 for which Q and Qobs don’t correspond well, the other remaining years 

see a good match. 

The figure below shows also the accumulated difference which starts at 0 in 

the year 1985 and stands at 266.1 at the end of the calibration phase by the 

end of the year 1999.  

Figure 14. Calculated and observed runoff for the CPCP model during the calibration phase. 
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On the other hand, the figure below (figure 15) uses the CFSR dataset, here 

too Qobs and Qcalc match quite closely with an r2 value of 0.8. Even though the 

r2 value achieved here is higher than it is the case when using the CPCP 

dataset, the peaks of Q and Qobs here don’t match quite well (9 instances) 

against 5 instances for the CPCP model. On the other hand, the phase when 

the observed runoff gets low in the winter every year fits tighter in the CFSR 

model than in the CPCP model. The CFSR model also achieves a lower 

accumulated difference in absolute terms than CPCP does, 238.4 mm against 

266.1 mm.  

Figure 15. Calculated and observed runoff for the CFSR model during the calibration phase. 

4.4 Validation phase 
Once the calibration phase is finished, the next step is to validate the model, 

which means the model is run for a longer period and its strength and 

accuracy assessed. In this step there is no fiddling of the model parameters, 

they remain unchanged during the validation phase. The validation period 

starts in 1985 and extends to 2006. 

The figure below (figure 16) shows the results of the CPCP model after 

validation. The r2 value drops by 24 % to 0.579 down from 0.763, as in all the 

new years the model performed only correctly for one year (2006). And this 

can be seen also in the accumulated difference value, as it increases to 2236.4 

mm since 6 out of the last 7 years are poorly simulated.  
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Figure 16. Calculated and observed runoff for the CPCP model during the validation phase. 

On the other hand, the CFSR model performs really well, and sees a very 

minor decrease in the r2 value down from 0.8 to 0.797. Two years out of the 

last six are well simulated, which is quite different from the results using the 

CPCP model. 

Figure 17. Calculated and observed runoff for the CFSR model during the validation phase. 

Both resulting R-squared and accumulated difference values are summarized 

in the chart below for both datasets CPCP and CFSR. 

Table 4. Resulting R2 and accumulated difference from both CPCP and CFSR datasets 

Dataset CPCP CFSR 

Calibration R2 = 0.763 
AccDiff = 266.1 

R2 = 0.800 
AccDiff = 238.4 

Validation R2 = 0.579 
AccDiff = -2236.4 

R2 = 0.797 
AccDiff = 644.9 

 

Since both datasets have different precipitation values, it’s normal that the 

resulting r2, AccDiff and computed runoff are all different as can be seen in 

table 4 above and figure 18 below which shows the computed runoff 

computed from 1985 to 2018 using both datasets (the top graph shows the 



31 
 

calculated runoff using CFSR data and the bottom one using CPCP data) (for 

the actual values, please see Appendix 4). 

Figure 18. Computed runoff using CFSR (top) and CPCP (bottom) datasets 

The energy produced by the 3 hydropower plants in the Omo-Gibe river basin 

in 2017 amounts to 7450 GWh, while the computed runoff using CFSR for the 

same year totals 846 mm, which gives a factor of 8.8 GWh/(mm/year). After 

updating CFSR data and adding it to the model, it’s easy to estimate the 

energy produced in the future using this factor. 

4.5 Analysis and discussion 
At the end of the calibration process, both CPCP and CFSR resulted in similar 

R2 value, 0.763 and 0.8 respectively, however after validation CPCP sees a 

large decrease in the R2 value down from 0.763 to 0.579, while CFSR sees a 

negligible decrease in the R2 value.  

Similar to the change in the R2 value, the accumulated difference (difference 

between the computed runoff and observed runoff) observed a large 

variation (in absolute terms) while using CPCP data, a variation of about 2500 

mm as opposed to CFSR with 420 mm.  
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For the CPCP model, the accumulated difference sees a sharp raise during 

1987 which is the worst modelled year of all 15 years. For the remainder of 

the calibration period besides 1997, the accumulated difference remains 

fairly stable. In essence, the accumulated difference observes an abrupt 

change for the badly modelled years and stays stable for well-modelled years. 

As for the CFSR model, during the third year the accumulated difference sees 

a sharp increase, so this year (1987) is actually badly modelled for both 

datasets. 

After the validation period, the accumulated difference actually breaks even 

around the middle of 2000, but from then and until the end of 2006 the model 

manages to pile up to 2236 mm worth of water volume, this is due to the fact 

that the CPCP model constantly underestimates the runoff in the last 7 years 

of the validation period. 

On the other hand, the accumulated difference for the CFSR dataset increases 

by about 400 mm, in stark contrast to the 2500 mm increase for the CPCP 

model. 

Of course, as is usually the case, the r2 value and the accumulated difference 

see a decrease during the validation process and was actually expected, this 

means that a small variation in the two aforementioned values signifies that 

the model is strong enough for future uses. 

A positive note for the CPCP model is that it does account for the drought 

period in the early- to mid- 2000s while CFSR does it but only to a small extent. 

In all actuality, CFSR predicts usually overestimates the runoff while CPCP 

underestimates it.  

Discussion 
First, the HBV model is like its name implies a model with inherent limitations, 

and one of two possibilities present themselves to the user. The first 

alternative is to work with a simple model and therefore this model won’t 

take into account the intricate interaction between the various physical 

phenomena at play. The second choice is a complex model that considers this 

interplay and thus needs more input data. The issues with this kind of model 

that usually arise are twofold: first, this data is usually too specific to be 
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available in all parts of the world and second even if such data is found, it 

might not lead to better results than if the simpler model was used. Even after 

modelling, the results need a thorough examination since a model is not 

reality itself, and therefore analyzing data is a great way to enhance the 

understanding of how the model works and how it could be improved upon. 

Only two streamflow stations are used and while it is true that having fewer 

stations makes the task easier and simpler, this is not optimal in case one 

station is out of function the user is left with only one station. On the other 

hand, data for some tributaries might not be available at all and consequently 

relying on two stations might be the only choice available. Streamflow data 

for one station, namely Asendabo, was filled in for missing data and so is 

subject to error, it is much better to have the original intact streamflow data 

for this station, but it was not possible to get hold of such data. 

As climate gets disrupted more frequently to extreme fashion, relying on CFSR 

might not be the best choice in the long term unless an update or revision to 

it is implemented and includes the effect of climate change on the weather, 

otherwise CPCP seems a better choice if the disruption caused by climate 

change is continuing. 

Lastly, the energy generated by the power plants on an individual basis is not 

available except for the year 2017/18, it is recommended to have such data 

for other years, and look at the relationship between the energy generated 

throughout an extended period of time and the computed runoff to have a 

more accurate factor to predict the energy generated using weather forecast. 
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5. Conclusion 

The objective of this degree project was to build and use the HBV model to 
forecast hydroelectricity, and as such the results shown by this project are 
promising. These results depended on two distinct parts: the construction of 
the Q-target series and the calibration and validation of the model. 
 
The construction of the Q-target series proper is heavily dependent on the 
quality and quantity of runoff data. An extensive search for this data has been 
performed, after which runoff data was found for several stations. However, 
only two stations qualified for the criteria applied to the data as data for most 
stations was missing and was found to be filled in using unknown 
interpolation equations. As such, the construction of the Q-target series, and 
by the same token the results of this project, were inherently limited by the 
available data or lack thereof. 
  
Nevertheless, the second part of this project, namely the calibration and 
validation of the model, is quite promising. The CFSR model was found to 
perform very well since during the calibration phase an r2 value of 0.8 is 
considered a good value when building such a model. Furthermore, this value 
saw only a minor decrease during the validation process, which is a good 
indicator of the strength of the model. 
 
Some suggestions that could be considered for further work in this project are 
obtaining data for the gauging stations from the Ministry of Water Irrigation 
and Energy, which is the operator and owner of streamflow stations in 
Ethiopia, this will allow access to raw data. The first benefit is the fact that this 
data comes from a primary source, and therefore reduces the risk of using 
mishandled data from a secondary source. The second benefit pertains to the 
fact that when missing data is found for a particular station, the author can 
decide which interpolation equations can be used in order to fill in the missing 
data. The construction of the Q-target series is ultimately greatly improved by 
having access to more better-quality data, since more stations located in the 
catchment can be used, and different combinations of them can be tested. 
Finally, getting access to the energy produced on an individual basis for an 
extended period of time can significantly enhances the accuracy of the energy 
production forecast.  
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Appendix 1 

Table 5. Energy generated and installed capacity from 1990 to 2017 

Year Energy 
generated 
(GWh) 

Installed 
capacity 
(MW) 

1990 1062 412 

1991 1082 412 

1992 1151 412 

1993 1263 412 

1994 1354 412 

1995 1428 412 

1996 1510 412 

1997 1566 412 

1998 1579 412 

1999 1605 412 

2000 1646 412 

2001 1992 485 

2002 2023 485 

2003 2280 485 

2004 2521 669 

2005 2833 669 

2006 3259 669 

2007 3385 669 

2008 3296 669 

2009 3524 669 

2010 4931 1429 

2011 6262 1944 

2012 7388 1944 

2013 8338 1944 

2014 9013 1944 

2015 9674 1944 

2016 10406 3814 

2017 13238 3814 
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Appendix 2 

 

 
Figure 19. Asendabo river basin (Ambelu et al., 2014) 

Figure 20. Overlay of Asendabo river basin on Omo-Gibe river basin map 
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Figure 21. Omo river basin elevation map (Legass, 2016) 
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Figure 22. Overlay of the elevation map on Omo-Gibe basin map   
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Appendix 3 

Table 6. Monthly streamflow at Assendabo station from 1985 to 2006 

m3/s Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

1985 2.6 1.7 1.2 5.6 12.8 74.0 69.8 108.1 90.1 36.8 12.7 6.0 

1986 2.1 2.6 4.1 3.6 4.4 34.2 74.1 67.8 85.9 32.9 10.2 7.0 

1987 3.2 0.5 7.4 5.5 16.0 41.4 57.1 61.3 76.4 35.5 15.2 4.0 

1988 3.9 4.3 1.6 1.4 3.4 10.7 56.1 155.5 121.7 94.8 20.5 7.3 

1989 4.8 5.0 3.5 21.1 11.4 27.3 52.1 76.3 77.7 41.6 14.9 17.1 

1990 8.1 6.4 9.6 8.9 16.3 48.6 91.0 75.9 120.0 5.8 92.5 9.5 

1991 6.2 5.2 7.4 4.6 10.5 34.7 67.1 112.7 84.3 20.3 3.4 2.4 

1992 0.6 1.5 3.1 3.2 10.7 42.2 85.2 186.8 118.1 74.5 19.9 7.7 

1993 7.2 8.5 4.6 14.3 27.1 51.9 94.4 138.2 108.2 49.4 22.9 20.1 

1994 5.8 3.2 4.3 5.0 21.4 70.1 126.4 167.5 124.2 27.3 11.3 5.8 

1995 3.2 3.0 2.5 8.0 11.6 15.1 45.2 64.8 78.2 18.7 7.9 6.2 

1996 36.4 36.4 18.5 16.4 34.6 88.2 87.0 123.0 89.6 45.8 17.1 16.3 

1997 6.5 3.2 2.4 17.1 26.2 70.1 69.8 104.2 71.6 71.2 125.3 53.4 

1998 28.4 16.1 16.3 11.7 20.6 30.1 84.7 171.2 99.2 84.5 34.2 14.9 

1999 10.1 5.9 7.3 6.1 16.6 35.6 79.6 108.7 59.6 72.6 26.0 11.0 

2000 6.4 3.8 2.4 7.3 19.9 29.8 62.9 82.8 87.8 75.5 36.5 11.0 

2001 22.9 23.6 24.7 24.0 36.6 67.7 117.6 106.5 77.5 49.9 29.8 15.4 

2002 9.8 5.9 7.2 9.7 7.1 29.7 57.8 76.4 61.2 21.9 12.2 12.6 

2003 10.6 5.3 9.0 10.0 5.7 24.3 81.0 85.2 94.6 30.8 12.7 9.9 

2004 6.5 5.0 4.1 6.7 13.4 32.6 65.2 99.1 95.6 77.7 20.5 13.2 

2005 9.2 4.8 10.3 8.8 40.7 34.7 68.0 129.5 125.7 51.9 19.7 9.9 

2006 7.7 9.2 9.8 12.1 14.4 35.9 121.1 169.1 108.9 52.0 29.5 23.5 
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Table 7. Monthly streamflow at Abelti station from 1985 to 2006 

m3/s Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

1985 7.9 4.9 2.9 4.8 20.5 62.8 238.
7 

519.
8 

461.
6 

139.
2 

35.7 14.
8 

1986 8.2 6.8 8.4 8.8 7.5 97.1 375.
2 

350.
2 

409.
9 

151.
1 

30.0 14.
3 

1987 7.3 5.8 12.
4 

11.
8 

20.2 82.7 186.
2 

297.
9 

278.
5 

111.
1 

32.7 11.
7 

1988 6.7 6.3 4.5 2.2 4.6 19.9 589.
3 

993.
1 

758.
4 

675.
9 

308.
1 

29.
7 

1989 24.
4 

16.
8 

12.
2 

36.
6 

20.5 62.4 227.
5 

459.
8 

453.
5 

145.
3 

41.9 35.
7 

1990 12.
9 

15.
5 

15.
2 

16.
8 

19.9 95.0 355.
7 

663.
9 

567.
1 

22.3 389.
9 

37.
1 

1991 24.
0 

20.
1 

28.
8 

17.
5 

41.3 141.
5 

279.
8 

477.
6 

354.
0 

81.3 12.8 9.1 

1992 12.
1 

16.
1 

8.6 8.9 25.9 80.4 298.
4 

961.
0 

568.
6 

309.
2 

79.7 167
.6 

1993 28.
0 

33.
3 

13.
6 

54.
3 

117.
2 

257.
6 

530.
1 

839.
6 

624.
5 

204.
2 

92.3 81.
6 

1994 53.
8 

12.
0 

16.
4 

19.
0 

82.8 292.
7 

476.
1 

107
1.1 

696.
3 

110.
5 

44.4 22.
3 

1995 12.
2 

11.
4 

9.3 31.
2 

45.8 60.2 186.
1 

782.
4 

465.
9 

74.7 30.8 23.
8 

1996 167
.6 

167
.6 

74.
2 

63.
8 

157.
6 

455.
7 

629.
4 

111
3.2 

456.
5 

284.
9 

103.
5 

63.
7 

1997 47.
3 

41.
8 

25.
3 

59.
5 

73.5 230.
8 

383.
9 

489.
2 

350.
4 

376.
8 

402.
8 

198
.8 

1998 92.
5 

52.
9 

55.
2 

34.
5 

64.7 117.
9 

505.
7 

100
4.5 

745.
1 

586.
3 

248.
1 

92.
7 

1999 54.
7 

30.
8 

27.
9 

22.
4 

54.3 139.
4 

346.
5 

611.
4 

377.
1 

471.
2 

173.
4 

55.
0 

2000 39.
1 

22.
2 

14.
9 

25.
4 

63.1 114.
5 

296.
2 

524.
8 

477.
6 

315.
9 

149.
3 

43.
3 
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Appendix 4 

Table 8. Computed runoff using CFSR and CPCP datasets 

 
 

Q (CPCP) Q (CFSR)

1985 535.482 464.7642

1986 814.593 542.5436

1987 452.897 502.5848

1988 611.2499 623.849

1989 488.5681 484.8227

1990 470.0083 464.642

1991 441.8429 481.259

1992 592.1386 667.8921

1993 614.0423 648.3755

1994 547.7454 415.2983

1995 722.4478 629.3941

1996 611.9962 641.8043

1997 488.4698 623.9397

1998 606.3521 651.7839

1999 303.297 613.8538

2000 126.719 582.5372

2001 141.1265 419.0569

2002 117.155 442.2632

2003 76.3541 554.2938

2004 89.5827 690.2399

2005 319.1816 732.5555

2006 386.7972 700.4985

2007 289.3728 1005.1486

2008 308.2375 546.7717

2009 437.6094 880.1127

2010 274.5921 1188.2591

2011 170.8596 1018.5942

2012 422.8001 895.5815

2013 374.7584 1071.2435

2014 317.7786 934.3338

2015 302.0745 1028.8623

2016 393.9085 955.7579

2017 262.8611 845.5196

2018 58.476 372.1167


