
Master thesis

Segmentation of White Blood Cells Using
Deep Learning

Desiré Nilsson and Sophia Grimmeiss Grahm

18 December, 2019

Supervisors:
Kalle Åström, LTH

Kent Str̊ahlen, CellaVision AB

Abstract

The white blood cell count and differential is an important part of diagnosing a number of medical
conditions. Instead of doing this by manual microscopy, CellaVision’s technology has automated
the process of finding and classifying white blood cells. To support a diagnosis it is desired that
the system can produce cytoplasm-to-nucleus-ratio. This ratio is calculated from a segmented image
where the pixels are labelled as background, cytoplasm, or nucleus. The system used today, using
active contours, does not always produce perfect segmentations for all cells, and it would therefore
be beneficial to improve the segmentation. Using machine learning, we have constructed a network
for segmenting white blood cell images. This model, with some small modifications, produces both
binary (cell and background) and multi-class (cytoplasm, nucleus and background) segmentations.
The model is a U-net inspired by work previously done on other similar segmentation tasks. The
network reached an IoU of 93.9% in the binary case, and in the muli-class case 82.8% and 94.5% for
the cytoplasm and nucleus respectively. The main challenges were to separate neighbouring cells and
cells in a cluster.

Over all the network performed better than the active contour method in difficult images, and in
cases where neither were good, the network was usually better. If the network was trained more on
images that are difficult to segment, the resulting segmentations of these images could be improved.

1

Acknowledgement

We would first like to thank our supervisor Kalle Åström for all the valuable ideas, suggestions
and delimitations. It was a great help both to expand and limit the content of this project.

We would also like to thank CellaVision for giving us this opportunity, and more importantly all
the people at CellaVision that welcomed us. First and foremost our supervisor Kent Str̊ahlén for
supporting us and answering all our questions about cells and their segmentations. We would also like
to thank him for providing us with material and for the feedback on our report. Further we would
like to thank Benny Klein for producing our data, explaining it to us and providing material for our
writing process. Worth mentioning is also Åse Sykfont Snygg who explained the staining process to
us, and Ida Wagnström who helped us get started with the coding. Thanks also to the people whom
we shared an office with for the company, help and all the nice chats that had nothing to do with cells
or segmentation.

Finally we would also like to thank our family and friends that helped us throughout our education.
Special thanks to Emil Johansson for all the encouragement, notes, code examples and emotional
support.

2

Contents

1 Introduction 5
1.1 About CellaVision and Automatic Differential . 5
1.2 Aim . 7
1.3 Related Work . 7

2 Neural Networks 8
2.1 Convolutional Neural Networks . 9

2.1.1 Convolution . 9
2.1.2 Max-pooling . 9
2.1.3 Batch Normalization . 10
2.1.4 Activation Functions . 10
2.1.5 Dropout . 11
2.1.6 Augmentation . 11

2.2 U-net . 11
2.2.1 Upconvolution . 12

2.3 Specifics for Training . 13
2.3.1 Loss Functions . 13
2.3.2 Optimiser . 14

3 Data 15
3.1 Data Specifics . 15
3.2 Generating Ground Truth . 16
3.3 Challenges in Segmentation . 16

3.3.1 Multiple Cells . 16
3.3.2 Smudge Cells . 16
3.3.3 Platelets . 16
3.3.4 Other Difficulties . 17

3.4 Our Classification . 17

4 Method 19
4.1 Network Design . 19
4.2 Evaluation . 20

4.2.1 Pixel-by-Pixel Accuracy . 20
4.2.2 Intersection over Union . 20
4.2.3 Visualisation . 20

5 Results 22
5.1 Binary Segmentation . 22
5.2 Multi-class Segmentation . 24

6 Discussion and Conclusion 27
6.1 Data . 27
6.2 Ground Truth . 27
6.3 Evaluation Methods . 28
6.4 Network Performance . 28
6.5 Future Work . 29
6.6 Conclusions . 29

3

Glossary

Abbreviations

WBC = White Blood Cell
RBC = Red Blood Cell
CNR = Cytoplasm-to-Nucleus-Ratio
RGB = Colour images, containing three colour channels Red, Green and Blue

Cell biology

Leukocyte = White blood cell
Erythrocyte = Red blood cell
Thrombocyte = Platelet

Nucleus = The part of the cell containing DNA
Cytoplasm = The part of the cell that is not nucleus, containing all apparatus for the cell to survive
and function properly
Vacuole = A fluid filled organelle in the cytoplasm

Machine learning

Batch = A subset of the input data, used to train on smaller sets to decrease memory usage
FCN = Fully Connected Network, a network where all nodes in a layer is connected to all nodes in
the previous layer
CNN = Convolutional Neural Network, a network with convolutional layers
ReLU = Rectified Linear Unit, an activation function

Ground truth = Segmentation of a cell considered to be correct
Hyperparameter = A parameter set when designing the network, before training
Convergence = When the network have found a set of parameters that will not be changed signifi-
cantly even if trained longer
Overfit = When a network has adapted to much to the training data that it can not generalise to
other input

Active contour = The segmentation method currently used in CellaVisions system
U-net = The network architecture used in this report

Evaluation

IoU = Intersection over Union, a measure of how well a segmentation matches ground truth
IoUb = Intersection over Union but with border pixels between classes excluded from the measure

4

1 Introduction

Human blood contains three types of blood cells. The most common is red blood cells (RBC),
or erythrocytes, which transport oxygen. The other ones are platelets, also called thrombocytes,
which are important for clotting, and white blood cells (WBC), or leukocytes, which are a vital part
of the immune system. There are many different types of leukocytes, the five most common types
are lymphocytes, monocytes, basophils, neutrophils and eosinophils. These are normally found in
a healthy persons blood in different concentrations and they each play a different role in the body’s
defence against infections and disease, and differ not only in function but also in appearance. Counting
how many of the different types there are present in a blood sample is a vital part of diagnosing a
number of illnesses as their relative proportions indicate different types of problems [3].

One of the first steps in blood analysis is to analyse the sample in a cell counter. The cell counter
automatically calculates the concentration of white blood cells, red blood cells and platelets. If an
abnormality is detected, the sample is flagged for a process called the white blood cell differential.
This is the process of counting and classifying leukocytes, which is often done manually by studying
a blood smear through a light microscope. The WBC count and differential is time consuming and
requires skilled staff, but as modern technology has made automatic blood analysis possible, fully or
partially automated solutions have become increasingly common. This makes it possible for skilled
staff to put their time elsewhere [4].

With automated analyses more information could also be extracted. One parameter of interest,
which is hard to estimate by only looking at the cells, is the cytoplasm-to-nucleus-ratio (CNR) of the
white blood cells. Like most cells in the body the leukocytes consists of a nucleus, which contains
DNA, and cytoplasm, which contains all apparatus the cells needs to live. To obtain this ratio the
cell must be segmented, which is a procedure of determining which pixels belongs to which part of
the image, in this case which pixels are a WBC and which are background.

Figure 1.1 – An example of a cell image, containing a centred WBC, multiple RBCs and a small
platelet.

1.1 About CellaVision and Automatic Differential

CellaVision’s main product is automated cell differentiation. They offer many applications, such as
red blood cell characterisation and body fluid differential, but the main feature is the white blood
cell differentiation. To perform the differentiation a blood sample is prepared by placing a drop of
peripheral blood on a glass slide and smearing it with a spreader slide. This can be done automatically

5

or manually. The slide is then air dried and fixed with either methanol or ethanol. In order to
distinguish the different cell types, the slide is stained with a Romanowsky stain such as May-Grünwald
Giemsa, Wright, or Wright-Giemsa. The system places the sample under a microscope and identifies a
monolayer, i.e. an area where cells are mostly non-overlaping but not too far apart. Then a pre-locater
finds where the white blood cells are located, and must distinguish what is a WBC and what is not.
This may sound easy, but varying image quality, the use of different staining techniques as well as the
presence of colour stains, artefacts, and fragments of broken cells sometimes makes it difficult even
for the human eye. There are also blood components, such as thrombocytes, that might be similar
to white blood cells in appearance but are not as relevant for the differential. When the interesting
cells are located the system camera takes a picture of it. An example of such an image is presented
in Figure 1.1. The images are taken in 100x magnification in Bayer format which is then converted
to standard colour images (RGB). The system performs a segmentation and a pre-classification. All
images and their respective cell classes are then presented to the operator who reviews and verifies
the result.

(a) Large segmentation. (b) Small segmentation.

Figure 1.2 – Examples of segmentations produced by the active contours method. This method
sometimes includes RBCs and excludes weakly coloured areas of the cytoplasm.

The current segmentation method in CellaVision’s system is based on a snake with area-based
external energy. A classic snake is an active contour model, which is based on the idea to fit a closed
curve to the edges of the object to segment. This is done by choosing a closed curve and letting it
expand until it reaches the object outline [8]. For the most part, this method performed well and
the segmentations have been accurate. There were some instances however, where the method had a
hard time differentiating between cell and background. A common problem was images with a large
amount of erytrocytes where the snake often expanded into adjacent red blood cells, see Figure 1.2a.
Another issue was cells where the cytoplasm had a colour similar to the background, as in Figure 1.2b.
In these cases, the method did not include the brighter parts in the segmentation. There was also a
problem with images containing multiple cells.

6

1.2 Aim

This project aims to produce a neural network, more specifically a U-net, that can correctly segment
WBCs from cell images. It should segment the WBC as a whole in a binary image by classifying pixels
as cell or background. It should also perform a multi-class segmentation where the cytoplasm and
nucleus are segmented into differently coloured areas in the same image. This is to be used to extract
the CNR which, combined with other medical information, is an interesting measure in diagnostics.

1.3 Related Work

Various types of microscopic cell images have previously been shown to be possible to segment with
satisfying results using neural networks. In [1], S. Akram et al. (2016) tested a convolutional neural
network on three different data sets. Although neither were from peripheral blood smears, the results
indicate that it is possible to segment cell images with neural networks. In [15], F. Xing et al. (2019)
used many different neural networks for nucleus detection on large-scale pathology images from a wide
variety of organs.

A now commonly used network to segment a number of cell types is the U-net structure. It was
first proposed by O. Rönneberger et al. (2015) in [12] and has been widely used since. In the study,
an IoU (Intersection over Union) score of 92% was presented. However, this study used images of
HeLa cells taken with electron microscope and light microscope. In [16], Z. Zhou et al. (2018) studied
microscopy images of cell nuclei among others, with some different models including the U-net. The
microscopy images had an IoU score of 91% using U-net. In [7], J. Isaksson et al. (2017) used the
U-net model on images of prostate tissue. They achieved a result of 88 % on cytoplasm pixels and
72% on nuclei.

In [9], G. Moallem et al. (2017) segmented white blood cells with an accuracy of about 80% using
a level-set algorithm and in [13], F. Sadeghian et al. (2009) used a snake to segment white blood cells
and achieved an accuracy of 78%.

In short, there is plenty of research on segmentation with neural networks, and also many studies
on segmentation using U-nets. However, as to the authors knowledge there are no studies done on
segmentation of white blood cells in peripheral blood smears using U-nets.

7

2 Neural Networks

The design of neural networks is originally inspired by neurons in the human brain. The idea is
that many inputs in some way are combined and weighted to form the output. We will now continue
to explain the components of our neural network. For the interested reader, we would recommend [5]
and [6] for further reading.

A simple network structure is shown in Figure 2.1. It is made up of a number of nodes, drawn as
circles, which are connected by edges, drawn as arrows. The nodes on the left side are input, which
could be pixels in an image or words in a sentence. The node to the right are output, which again
can have a number of formats, such as pixel value or a number. There could be one, two, or many
inputs and outputs, and they do not have to be equally many or of the same type. For example,
an input image could result in an output number representing a label. Between input and output,
the information is processed in the hidden part of the network, which can be a single layer, or many
hundreds. Each edge has a weight associated to it, and each node has a bias. The output, yi, from a
node with m input nodes, each with the output xj , can be described by the formula

yi = f

(m∑
j=1

(wi,j · xj) + bi

)
,

where wi,j is the weight corresponding to the input node xj , and bi is the bias in node yi. In this
expression, f is an activation function which allows the output to be non-linear in regards to the
input, which is desired when using a neural network. The use of a liner network is unnecessary since
there are easier ways to deal with linear dependencies. During what is called training, the network
will update the values of the weights and biases. Training is done by giving the network input and
corresponding correct output. The correct output is collected in the ground truth set, which is to
be considered the ideal answer. How the network should update the weights is determined by a loss
function. This function is usually formulated to describe the error between the output and the ground
truth, which is minimised during the training process.

Figure 2.1 – A simple model of a neural network.

There are numerous types of neural networks, for example recurrent networks and autoencoders.
One commonly used for classification is the fully connected network (FCN). In this type of network,

8

all nodes in one layer are connected to all nodes in the next layer, like the example in Figure 2.1.
When using a FCN, the number of parameters increase rapidly when adding new layers, which makes
them very computationally demanding. Therefore it is common to use a convolutional neural network
(CNN).

2.1 Convolutional Neural Networks

To replace the fully connected layers and efficiently reduce the amount of network parameters, the
convolutional neural network uses convolutional and pooling layers. These networks also usually have
an activation function, and sometimes batch normalization and dropout layers which will be explained
shortly. In a network classifying into categories, the convolutional and pooling layers would be followed
by a number of fully connected layers that eventually produces the output prediction. This structure
works well for classification tasks since the resolution and dimensionality of the feature map is reduced
in each step, resulting in a single feature vector containing probabilities for each class. In segmentation
tasks, where the desired output is an image instead of a category, this output vector or the previous
feature maps must be used to generate a segmented output image.

2.1.1 Convolution

The convolutional layers in a network combine local information from surrounding pixels when calcu-
lating a pixel’s value in the next layer. This is done using a kernel, or filter, which has a pre-determined
size, describing how large the area of interest is, or in other words, how many of the surrounding pixels
that should be taken into consideration. In a convolutional layer, the content of the kernel is what
is learned. The kernel is moved across the image with a stride, which describes how many pixels the
kernel should be shifted. The final size of a n×m image with a kernel size fn × fm and stride k is(n− fn

k
+ 1
)
×
(m− fm

k
+ 1
)
,

but it is sometimes beneficial to keep the size of the image. This can for example be done by wrapping,
reflecting or replicating the edge pixels but is commonly done by adding zeros outside of the image,
called zero-padding. To keep the original size, padding is done with (f − 1)/2 zeros, where f again
is the kernel size. The resulting sizes after a convolution, signed ∗, for an arbitrary sized image and
kernels are shown in Figure 2.2, where the zeros are shown as dotted elements.

(a) Convolution without padding. (b) Convolution with padding.

Figure 2.2 – Convolution with a 3× 3 kernal and stride 1, with and without padding. Notice that the
original size is preserved when padding is used.

2.1.2 Max-pooling

Pooling is a commonly used operation between convolutional layers. It is a way to down-sample and
reduce dimensionality, while still keeping the most important information. This is, like the convolution,

9

done using a kernel and a stride. The max-pooling kernel sized 3 × 3 in Figure 2.3 takes all pixels in
the red area into consideration and only saves the maximum value, in this case the 8. Here the stride
is 2×3, meaning that the kernel is moved 2 steps to the right, and now becoming the blue area. After
becoming the yellow area, the kernel can can no longer be moved to the right, and it restarts and
move 3 pixels down from where it started, becoming the area in green.

Figure 2.3 – Visualization of max-pooling, with kernel 3 × 3 and stride 2 × 3.

As the example in Figure 2.3 shows, the stride and kernel does not have to be square, but usually
are. The most commonly used in max-pooling is a kernel of size 2x2 with a stride of 2 in both
directions, which halves the size. This kernel and stride are used in our network.

2.1.3 Batch Normalization

When using large amounts of data during training, the data is often divided into smaller parts, called
batches. These are propagated through the network one by one in order to decrease the required
memory usage. Given a batch, the normalization is done by modifying the output from a prior
activation layer and is used to make the learning faster and more robust. In practice this is done by
subtracting the mean and dividing by the standard deviation of the output. By doing this, the weights
between the hidden layers vary less and all weights have the same influence. Batch normalization also
allows a layer to depend a little less on other layers to learn.

2.1.4 Activation Functions

Activation functions are used in a network to transform a node’s input to its output. Using non-linear
activation functions is essential since it introduces non-linearity into the network, which is important
when learning complex behaviour. There are many types of activation functions, the ones used here
are softmax, sigmoid and ReLU.

The rectified linear unit, more commonly known as ReLU, is described as

fr(x) = max(0, x),

which sets the output to zero if the input value x is negative, but is kept unchanged if x is positive.
The ReLU function is shown in Figure 2.4a.

The sigmoid function is often used when performing a binary classification. It is described as

fsig(x) =
1

1 + e−x
,

and is shown in Figure 2.4b. It contracts all values to the interval between 0 and 1.
The softmax function is a generalization of the sigmoid function and is used when having a multi-

class classification, meaning there are more than two classes. This function is a described as

fsoft(x)i =
exi∑C
j e

xj

,

10

where C is the number of classes and i is the class of interest. Like the sigmoid function, it scales the
outputs for the different classes to all be between 0 and 1, but also makes sure that the outputs adds
up to 1 so that they can be interpreted as probabilities.

(a) The ReLU function. (b) The Sigmoid function.

Figure 2.4 – Two of the activation functions used in our model. Note that the scales are not the same.

2.1.5 Dropout

One major problem with deep neural networks is the risk of the network overfitting. This occurs
when the network is adapting to the training data without being able to generalise the results. If
an overfitted network is used, it will perform well on the images in the training data but not on
other images. One can say that the network learns features specific for the training data by heart.
Using dropout is a way to avoid this problem. This method works by randomly inactivating nodes by
setting the weights to zero on all the outgoing edges, which has the same effect as simply removing
the node from the network during training. This means that a node cannot trust that a neighbouring
node catches the interesting structure but must itself learn important content. This prevents the
network from learning structures that are specific for the training data and therefore makes it better
at generalising. When designing the network, a hyperparameter is set to decide the likelihood of
dropping a node. The higher the parameter, the more nodes will be dropped. Dropout is also a
way of training different nets “at the same time”, since the network design changes during training
[14]. However, since the network is changing, the time until convergence, when the weights no longer
change, is longer.

2.1.6 Augmentation

Augmentation is a commonly used technique to make the model more robust and to expand the train-
ing set without having to actually acquire more data. This is typically done with image modification
like zooming, shifting or rotating the image so that the network will be trained on data with varying
features. Augmentation also prevents overfitting as the input has more variation. By providing the
data this way, the network should be able to correctly segment an object regardless of whether it is
perfectly centred, has a different size than usual or is slightly deformed.

2.2 U-net

The U-net structure, first described in [12], consists of an encoder and a decoder part. The encoder,
or contraction part, is a downsampling which extracts features from the input, similar to a CNN. The
decoder, or expanding part, is an upsampling that translates the features back to a format similar to

11

the original input. This could be considered to be a way of copying information, but in the end only
the most important parts of the input are desired as output. This is why the network is designed in
a way that it is forced to learn and “copy” only the most important information. In the U-net the
downsampling consists of convolutional and pooling layers and the upsampling is a combination of
upconvolution and convolutional layers.

In addition to these encoder and decoder parts, the U-net also has a concatenation part. It allows
information to pass the encoder part without having to make features out of it. This means that
the network learns both information by being forced to create features in the deep part, but can also
utilise the information in the features of the more shallower parts. An example of a U-net structure
is shown in Figure 2.5.

Figure 2.5 – An example of a simple U-net structure. The left part extracts features from the image
and the right side creates an output image from these features.

2.2.1 Upconvolution

Upconvolution is a way of increasing resolution in the decoder part of the U-net. This is done with
up-sampling, a process visualised in Figure 2.6 below. Starting from a small image, the 2x2 image
to the left, the desired output is a larger image, containing the same information. First the rows are
copied and inserted below the original row, as illustrated inside the dotted frame. Then the same is
done with the columns, resulting in a doubling in size to the right. After the up-sampling step, a
padded convolution is done, described in section 2.1.1.

Figure 2.6 – Visualisation of up-sampling. This is used to increase the image resolution.

12

2.3 Specifics for Training

When training a network, it must somehow measure how well it performs, and what it should do to
improve. This is the purpose of the loss function and the optimiser.

2.3.1 Loss Functions

The loss function is the network’s tool to determine how well it performs. There are multiple types of
loss functions and in our network we use binary cross-entropy loss when classifying binary images (cell
and background) and categorical cross-entropy loss when segmenting into multiple classes (cytoplasm,
nucleus and background). The binary cross-entropy loss is described as

CE = −
C=2∑
i=1

ti log(fsig(si)) = −t1 log(fsig(s1)) − (1 − t1) log(1 − fsig(s1)),

where fsig is the sigmoid function described in section 2.1.4. The parameter s1 is the output from the
network, and fsig(s1) is the probability that the pixel is a cell pixel, taking a value between 0 and 1.
The second parameter, t1, is the ground truth value. This has a value of either 0 or 1 and it describes
if the pixel is a cell pixel or not, according to the correct segmentation described in the ground truth.
When the pixel truly is a cell pixel, meaning t1 = 1, the loss is low if fsig(s1) is close to 1 and high
if fsig(s1) is close to 0, see Figure 2.7. This function results in a high loss if the network is very sure
about a wrong answer, in this case when fsig(s1) is very close to 0.

Figure 2.7 – Log-loss when the true label is one. Notice that the loss increases when the prediction is
close to zero. Image from [2]

The other loss used in our network is the categorical cross-entropy which is described by

CE = −
C∑
i

ti log(fsoft(s)i),

where C is the number of classes, ti is the ground truth label for class i, and fsoft(s)i is the output
from the network, using softmax, considering class i. This is similar to the equation for the binary
cross-entropy when we have two classes, that is when C = 2, except that f(s) is a sigmoid in the
binary loss and a softmax the categorical loss. As the ground truth label is zero for all values except
one, ti = tp, we can write out the entropy as

CE = − log(
esp∑C
j e

sj
),

13

where we simply replace the f with the softmax function.

2.3.2 Optimiser

To enhance performance of the network an optimiser is used. This is a function used to optimise
parameters, which in this case means finding the optimal combination of the weights. There are
many different optimisers, which all work a little differently. Most commonly used are optimisers
based on gradient decent. The basic idea with this method is to first compute in which direction a
set of weights should be changed according to the loss function, meaning which should be increased
and which should be decreased. This is commonly done by differentiation, calculating a gradient
that indicates how the weights should be changed to reduce the loss as fast as possible. The second
step is to actually change the value in this direction by a small amount. How small is decided by a
hyperparameter called learning rate. The optimiser used in our network is called Adam, which stands
for adaptive moment estimation. It works by adding a fraction of the last gradient to the current one.
In this way, the convergence is little faster when weights are differently distanced from their optimum.

In Figure 2.8 an example with stochastic gradient decent and two parameters, θ0 and θ1, is shown.
The loss function, J(θ0, θ1), is the surface coloured according to a scale where red is high and blue
is low. Starting from the black cross near the top, the gradient of how to lower the loss as fast as
possible is calculated to be the black line. Then a step is taken, with length according to the learning
rate, and the next position is the next black cross. This is then repeated until the weights are adjusted
to the dark blue concavity. Though this is a nice and quite common visualisation, it is important to
note that the weight changes are made in the θ0-θ1 plane below which in turn results in a change in
J-direction.

Figure 2.8 – Visualisation of the optimisation procedure. The parameters θi are updated to decrease
the loss, J(θ0, θ1). Image from [11].

14

3 Data

When developing the network, we first started working with a smaller data set with a size of 64 x
64 pixels, see Figure 3.1a. These black-and-white images were used to get started with the segmenting,
and had no segmentation of the nucleus. The second data set consisted of RGB images with varying
dimensions. As can be seen in Figure 3.1b, the cell constitutes most of the image and in many cases
it stretched beyond the extent of the image. These images were used to develop the algorithm and
try different models. It was also used to develop our evaluation methods, described in Section 4.2,
and an interface for segmenting images by hand. Examples from the third and final data set used to
produce the result are included in Figure 3.1c.

(a) Data set 1. (b) Data set 2. (c) Data set 3.

Figure 3.1 – Examples of images from the three data sets used when developing the network.

3.1 Data Specifics

The final data consisted of microscopic images containing one or more white blood cells and a corre-
sponding black-and-white segmentation of the cell and nucleus, generated by the system described in
Section 1.1. The images originate from samples stained with Wright-Giemsa, and were taken using
CellaVision’s system, producing images with a size of 480x480 pixels and a resolution of 10.2 pixels/µm.
Since this data set contained exploded cells, colour residue from the staining and other artefacts which
are not clinically relevant, some images were removed. The data was then divided into training, vali-
dation and test parts, containing 70%/15%/15% of the total amount of data respectively, resulting in
a partition of 1856/398/398 images respectively. To make the model more robust and to expand the
data set without having to manually segment more data, we chose to do augmentation to the training
set. This was done by rotation, shifts in both height and width, shear, zoom, and horizontal flip.

15

3.2 Generating Ground Truth

For the binary ground truth the provided black-and-white segmentation of the cell was used in most
cases, when the active contour method gave a satisfactory result. Images for which the system did
not produce a good segmentation were more or less altered. Small corrections where done only on the
faulty part but more severe errors where re-segmented entirely by free hand drawing.

For the multi-class segmentation, the provided segmentation of the nucleus was corrected in the
same way as the cell segmentation. The already corrected cell segmentation for the binary case
was then combined with the nucleus segmentation to form an RGB image with background as blue,
cytoplasm in green and nucleus in red. Both sets of ground truth thus contain segmentations done
both by the system and by hand.

3.3 Challenges in Segmentation

The nucleus of the cell is usually a well defined area, clearly separated from other nuclei in adjacent
cells and from other similar components like RBCs. It is usually well stained and is therefore often
easy to segment. However, the segmentation of cytoplasm or whole cells was not always straight
forward and many questions about what should be included or not were raised during the process of
generating the ground truth.

3.3.1 Multiple Cells

The active contour method was designed to not include cells that were not fully included in the image.
Ideally, there should be one image of each cell where that cell is centred and other close-by cells may be
in the picture. For this reasons, there may be multiple cells in an image and a cell might be included
in many images. The classification and segmentation of the image should only be based on the cell
that is centred. This raised the question of whether our method should only segment the middle cell,
all cells that were fully included in the image, or all cells even if some are partly outside the image.

3.3.2 Smudge Cells

Another challenge was the presence of smudge cells and cells where the cytoplasm was barely visible.
Smudge cells are leukocytes that have been ruptured during the preparation of the blood smear and
appear as only a nucleus that may be slightly or very smudged. Smudge cells have long been seen
as an artefact with no clinical relevance, but have been proved to predict survival in patients with
Chronic Lymphocytic Leukemia [10]. It is therefore important to detect and correctly classify these
cells, but not as important to have a correct segmentation. In some cases, the cytoplasm is still
visible around the nucleus, but there is rarely a clear outline. In these cases, it may be correct to
only segment the nucleus, since it has an easily defined boundary and the cell outline might not be a
reliable measurement after breaking. However, in images of non-ruptured cells with low contrast or
where the cytoplasm colour is similar to the background the network should correctly segment the cell
outline. The similar appearance of these cells provide difficulties to generate satisfying segmentations.

3.3.3 Platelets

Thrombocytes, also called platelets, have been another source of discussion. Platelets are usually
significantly smaller than leukocytes, in which case they can be easily classified as background, but
sometimes large platelets can be mistaken for white blood cells during pre-location. If the sample
has started to coagulate, there might also be clusters of platelets, also mistaken for a WBC. These
are interesting to detect, but since the segmentation is not of interest to perform CNR it does not
really matter how well it is segmented. In addition it is usually difficult to determine which platelets
are a part of the cluster and therefore the ground truth for such an image is very hard to determine.

16

More difficulties arise when a platelet is close to a WBC as segmentation methods usually include the
platelet, which causes error in the CNR.

3.3.4 Other Difficulties

Other difficulties when segmenting a white blood cell is faded or blurred edges that are hard for a
network to separate from the background. The same problem happens when a vacuole, which looks like
a bubble with the same colour as the background, is at the very edge of a cell, and the segmentation
gets an indent.

Sometimes a WBC is squeezed in between a cluster of RBCs, generating protrusions and a very
jagged edge, and some WBCs have protrusions without evident reason. Other cells have similar colour
to the surrounding RBCs which is problematic as the network excludes what it believes to be part of
a red blood cell.

3.4 Our Classification

We have divided our data into 8 classes based on segmentation difficulty in order to facilitate evalua-
tion of our method. A higher class number corresponds to a more challenging image to segment. These
classes are not related to the classification of leukocytes used during the white blood cell count and
differential. In Table 3.1 it is displayed how well represented the different classes are in the test and
train set. Examples of images from the different classes can be seen in Figure 3.2 and are explained
as follows:

1. Easy cells - images with a single cell that is easy to segment.

2. Multiple cells - two or more, clearly separated cells that are fully contained in the image.

3. Half cells - some cells are partially outside the image, but clearly separated from one another.

4. Difficult cells - images with cells that are difficult to segment. Other cells or platelets may be
present.

5. Adjacent platelets - images with platelets adjacent to the cell.

6. Smudge cells - images with smudge cells. Other cells or platelets may be present.

7. Platelets - platelet cluster or single platelets, may contain other cells.

8. Adjacent cells - images with two or more adjacent cells. The adjacent cell might be partly
outside the image.

Some of the images could belong to multiple classes, for example a smudge cell with other cells
beside it. In these cases, the images were classified in the class with the highest number, accounting
for the most difficult feature.

Data set Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8
Test (%) 68.1 1.3 2.8 8.0 7.8 5.8 3.0 3.3
Train (%) 67.7 0.8 4.1 9.5 5.8 4.9 2.4 4.8

Table 3.1 – Distribution of cell images in test and training data.

Here is nonsense text to get the picture to be on one page and the next headline on the next. But
I have to write more to actually get this effect... So here goes nothing. I have a banana, but really
I don’t... But I can go get one on the next floor if I would like to have one. There are also apples,

17

(a) Class 1. (b) Class 2. (c) Class 3. (d) Class 4.

(e) Class 5. (f) Class 6. (g) Class 7. (h) Class 8.

Figure 3.2 – Examples of images in different classes.

pears and some other stuff. Now I will check if this is enough text! I can now tell you that it wasn’t.
So I have to write more. Which I don’t really want to... But I do want to know if my little trick will
work and I also have to wait to be able to continue with my coding. The run is not even halfway
done. I have a lot of time to kill until it is done. Now I will check again! Still not enough! How much
do I have to make up? I will change colour and check again :(It was done, but then we changes stuff
and now it doesn’t work again. I wonder how much I will have to make up this time... This much is
probably not enough. I want the visual report to be nice!

18

4 Method

4.1 Network Design

The network we designed is a U-net which is greatly inspired by networks previously used for segmen-
tations, in particular [7]. It was built using Keras, which is a deep learning library for Python, that
works with GPU processing. It runs on top of Tensorflow, which is a library for developing machine
learning models. The structure of the network design for binary segmentation is shown in Figure 4.1.

To reduce time and computer memory, the input is re-scaled images sized 128x128 pixels. The
contracting part consists entirely of convolutions with a 3×3 kernel, followed by batch normalizations
and ReLUs, all three combined and shown as blue boxes. The down-sampling is done with max-
pooling with a 2 × 2 kernel which halves the size, shown in light blue circles. In the bottom layer,
after the first convolution, a second convolution is done with a kernel of 1× 1, shown as dark red box.

The expanding part is done with upconvolutions with up-sampling factor 2×2, meaning that both
the number of rows and number of columns are doubled, shown with dark blue circles. Then, again, the
expanding part are mostly convolutions with 3×3 kernel, followed by batch normalization and ReLUs,
again blue boxes. But now, information from the contracting part is added with concatenation, the
orange arrows. When reaching the top a dropout layer with hyperparameter set to 0.5, green diamond,
is added before the final convolution with 1× 1 kernel and sigmoid activation function, shown as light
red box, which produces the output. All convolutions are padded which means that the size does not
change between layers except for the max-pooling and upconvolutions. As there are equally many
max-pooling layers as upconvolutions, the output will also be 128x128 pixels.

Figure 4.1 – The network design for binary cell segmentation.

This network uses the Adam optimiser with learning rate 0.0001. The loss function is a binary
cross-entropy loss since the problem is a pixel-wise binary classification.

19

In addition to this network to produce the binary segmentation, it was slightly modified to also be
able to handle multi-class segmentation where the cytoplasm and nucleus are separate classes. To do
this the last convolution before the output is changed from sigmoid to instead be a softmax activation,
and having 3 output channels to generate RGB images. The optimiser is still Adam with learning
rate 0.0001, and the loss is categorical cross-entropy as the classification is no longer binary.

4.2 Evaluation

To evaluate the performance of our network, several evaluation methods where used.

4.2.1 Pixel-by-Pixel Accuracy

The first, and probably most intuitive one is pixel-by-pixel accuracy. Each pixel of the produced
segmentation is compared to the ground truth segmentation, and the accuracy is then calculated by

1 − (PFP + PFN)

Ptot
=
PTP + PTN

Ptot
,

where PFP is the number of false positives, meaning pixels that is background in the ground truth
but cell in the segmentation, and PFN is the opposite, the number of false negatives, pixels that is
cell in ground truth but background in the segmentation. On the other side of the equality, PTP is
the number of true positives, pixels that should be cell according to the ground truth and is also cell
in the segmentation. The number of true negatives, pixels that are correctly classified as background,
is denoted PTN . The the total number of pixels in the image is Ptot. In other words, the accuracy is
the percentage of correctly classified pixels. This measurement is simple and easy to understand, but
is not very informative when a large majority of the pixels all belong to one class. For example, an
image with only 10% of the pixels being cell would get a 90% accuracy when classifying all pixels as
background.

4.2.2 Intersection over Union

The second method is Intersection over Union, or IoU. As the name implies, this is a quotient where
the numerator is the intersection of pixels that are classified as cell in the ground truth image and the
generated segmentation and the denominator is the union of pixels classified as cell in either one or
both segmentations. More specifically it is produced by

IoU =
PTP

PFP + PTP + PFN
,

where PTP , PFP and PFN are the same as in the accuracy measurement above. For the multi-class
segmentation, an IoU score is generated for each class individually.

As the ground truth is made using the active contour method, the IoU will in all non-handsegmented
cases give 100% match. To reduce this bias we used a strategy inspired by [7]. In this approach, a
border which is not included in the IoU measure is added between classes. This measure is denoted
IoUb. This means that segmentations from our network with only a thin line of incorrectly classified
pixels at the edge where the segmentation changes from one class to another will have the same IoUb

as the active contour segmentation.

4.2.3 Visualisation

In addition to the numerical evaluation methods, the results were visualised to easier determine which
errors were made and how serious they were.

To study how well the generated segmentation matched the original image, a faded version of the
binary segmentation was overlapped with the image. This method proved to be difficult to use for
evaluation as it was hard see small differences, see Figure 4.2.

20

(a) Class 1. (b) Class 2.

Figure 4.2 – Example of the visual evaluation using overlap for images with easily segmented cells
(class 1) and multiple cells (class 2).

Instead an evaluation based on the ground truth segmentation was used, where images displaying
the difference between the ground truth and produced segmentation are made. For the binary clas-
sification both true positives and true negatives, meaning all correctly classified pixels, are displayed
in black, false positives in white and false negatives in grey, see top of Figure 4.3. For the multi-class
case, the visualisation is again black for all correctly classified pixels but white for all incorrectly
classified. A coloured version of of false negative and false positives for all three classes would not
facilitate evaluation. These are shown at the bottom of Figure 4.3.

(a) Class 1. (b) Class 2.

Figure 4.3 – Example of the visual evaluation using ground truth segmentation. The top two images
are from a binary evaluation and the bottom two from a multi-class evaluation.

21

5 Results

5.1 Binary Segmentation

Our binary segmentation method achieved an accuracy score of 99.5% and a mean IoU score of
93.9%. Examples of resulting segmentations and evaluation images for test images with multiple cells,
adjacent platelets, smudge cells and cell clusters (class 2, 5, 6, and 8) can be seen in Figure 5.1. The
result from active contour and ground truth are show in Figure A.1 in appendix.

(a) Class 2. (b) Class 5. (c) Class 6. (d) Class 8.

Figure 5.1 – Examples of our resulting segmentations (second row), evaluation (third row), and overlap
images (last row) for class 2, 5, 6 and 8. Notice that the segmentations for class 2 and 5 are fairly
accurate while class 6 and 8 were more difficult to segment.

22

As seen in Figure 5.1, our method managed to satisfactory segment cells that were clearly separated
and had an easily defined border. When platelets or cells were too close together, it often segmented
them as a single cell. It also struggled to find the borders of smudge cells where remains of the
cytoplasm was visible around the nucleus as well as to classify vacuoles as part of the cell. The
resulting mean IoU and IoUb scores for both the active contour method and the U-net model are
presented in Table 5.1. Here it is seen that the IoUb score for the U-net was better than for the Active
Contours method. The distribution of the IoUb score on the test images are shown in Figure 5.2.
These figures show that almost all segmentations (more than 350/398) produced by the U-net reached
a score of above 90% of which most are above 95%. Although most of the active contours segmentations
(about 320/398) reach an score of more than 90%, the ones that score below 90% yield scores down
to about 30%. The U-net segmentations that do not reach 90% more often get scores around 60-80%.

Method Accuracy Loss IoU (mean) IoUb (mean)
U-net 99.5% 0.0223 93.9% 96.7%

Active contour 99.5% - 96.2% 91.0%

Table 5.1 – Comparison between CellaVision’s segmentations using active contours and our U-net on
binary segmentation. Best result are in bold.

(a) Scores for the U-net segmentations. (b) Scores for the active contours segmenta-
tions.

Figure 5.2 – Distribution of IoUb scores for the binary segmentation.

As previously mentioned, the data was divided into eight classes depending on how difficult they
were to segment. In order to measure how well our method segmented different types of images
the IoUb scores were calculated for the classes. The resulting performance for our network and the
active contour method are presented in Table 5.2. Here it is shown that the U-net performed better
overall, and especially for class 2, 6, 7, and 8 (multiple cells, smudge cells, platelets and adjacent
cells). However both methods struggled with the last three classes.

Class 1 2 3 4 5 6 7 8
U-net (%) 98.7 96.3 95.1 95.8 95.7 84.5 82.1 93.2

Active contour (%) 94.9 87.0 91.4 93.6 90.9 78.6 36.3 82.8

Table 5.2 – The mean IoUb score for the different cell classes when performing binary segmentation.

Another way of comparing the two methods is to compare the images with the lowest accuracy
for each method. Images where both methods perform well are not as interesting to study since most
methods can yield a decent segmentation. When deciding which method to use, it is more interesting

23

to see which method performs best on images that are difficult to segment. To do this comparison, the
N images with the lowest scores for the U-net method, and the N images where the Active Contours
method resulted in the lowest scores were chosen. Since the methods often struggled with the same
images, there was an overlap of about 50%. These images were then used to calculate the IoU scores.
As seen in Table 5.3 the U-net consistently performed better than the active contours method.

IoU Active contour IoU U-net Number of images, N Number of images total
54.2% 66.0% 10 15
67.4% 78.1% 30 46
73.1% 82.9% 50 73

Table 5.3 – Mean IoU scores without considering borders for the N images with the lowest accuracy
for each method.

5.2 Multi-class Segmentation

When classifying the images into multiple classes, our method achieved a mean IoU score of 94.5%
for nucleus pixels and 82.8% for cytoplasm pixels. The resulting segmentations and evaluation images
are shown in Figure 5.3. The result from the active contour method and ground truth is shown in A.2
in Appendix A.

(a) Class 2. (b) Class 5. (c) Class 6. (d) Class 8.

Figure 5.3 – Examples of our resulting segmentations (second row) and evaluation (third row) for
class 2, 5, 6 and 8.

24

Looking at the last row of Figure 5.3, where falsely classified pixels are shown in white and
correctly classified pixels in black, it can be seen that the method struggles most with determining the
cell outline and not as much with finding the nucleus. The method performs well as long as the cells
are far enough apart but has trouble finding the cell outline in smudge cells with remains of cytoplasm
around them and separating vacuoles from background. It manages to differentiate adjacent platelets
from cells in about half of the images in class 5, one example is shown in Figure 5.3b.

The resulting accuracy and mean IoUb scores for both the active contour method and the U-net
model are presented in Table 5.4. The distributions of these scores are shown in Figure 5.4.

Method Accuracy Loss IoU (mean) IoUb (mean)
U-net 98.8% 0.0240 94.5% 98.1%

Active contour 99.0% - 98.5% 98.4%

(a) Segmentation of nucleus.

Method Accuracy Loss IoU (mean) IoUb (mean)
U-net 98.8% 0.0240 82.8% 88.7%

Active contour 99.0% - 92.3% 91.9%

(b) Segmentation of cytoplasm.

Table 5.4 – Comparison between CellaVision’s segmentations using active contours and our U-net on
multi-class segmentation.

(a) Scores for the nucleus in U-net segmen-
tations.

(b) Scores for the nucleus in active contours
segmentations.

(c) Scores for the cytoplasm in U-net seg-
mentations.

(d) Scores for the cytoplasm in active con-
tours segmentations.

Figure 5.4 – Distribution of IoUb scores for the multi-class segmentations.

25

These figures show that the scores for nucleus pixels almost always end up between 95-100% for
both methods while the cytoplasm scores are more spread out. In Figures 5.4c and 5.4d there are a
few segmentations with a score below 5%. These are all cells that do not have any cytoplasm in the
ground truth, such as smudge cells or platelets (which are classified as nucleus), which results in 0%
score.

As before, it is interesting to see how well the network performed on different types of images.
The resulting IoUb scores for the different classes are presented in Table 5.5. Here it is shown that the
methods performed well on different types of images. The U-net method was better at segmenting
images with multiple cells, both when they were close together and further apart as well as cells that
are difficult to segment. The active contours method performed better for easily segmented cells,
images with adjacent platelets and platelet images. Both methods struggled to segment smudge cells.

Class 1 2 3 4 5 6 7 8
U-net (%) 99.0 98.6 94.6 98.7 97.1 98.5 83.1 94.6

Active contour (%) 99.6 89.1 90.6 97.8 99.5 99.3 92.6 85.6

(a) The mean IoUb scores for nucleus segmentation.

Class 1 2 3 4 5 6 7 8
U-net (%) 95.1 90.0 90.1 89.3 92.3 15.8 69.4 89.6

Active contour (%) 98.0 82.3 91.6 85.9 96.4 33.5 89.6 80.3

(b) The mean IoUb scores for cytoplasm segmentation.

Table 5.5 – The mean IoUb score for the different cell classes when performing multi-class segmentation.

26

6 Discussion and Conclusion

The purpose of this project was to construct a neural network that correctly segments white
blood cells in microscopic images of blood smears. This was to be done by binary classification and
multi-class classification using a U-net. In most cases the network produced very good results with
IoU scores around 90%. This is relatively high compared to previous studies, which presented scores
between 72% and 92%. It also had a more even IoU distribution and stable performance than the
active contours method and generally produced better segmentations for the images that were most
difficult to segment correctly. However, there are some limitations with this project, mostly regarding
the data and ground truth segmentation since it was based on segmentations produced with the active
contours method.

6.1 Data

All our images origin from only a few blood samples and are stained using the same method. This
means that there is not much variation among them, neither in colour nor in content. This may
result in the network having difficulties generalising to other samples with more variety or differences
in staining. Also, as one can see in Table 3.1, the majority of the data is of standard images with
one easily defined and easily segmented WBC. There were relatively few difficult images, and only a
small number of images that had the same type of difficulties. This means that the network is trained
mostly on single, clearly distinctive WBCs during training, but not so many clusters for example,
which makes it hard for the network to perform well on these types of images.

The exclusion of images that where falsely selected as WBCs, such as staining artefacts or remains
of damaged cells, is not problematic as these images are not clinically interesting, and do therefore not
contribute to the data set. These images are taken due to an error made in the pre-location of cells
and should ideally not have been included. Since the network is not trained on this type of images
we do not know what it would do when presented with them, which it likely would be in a real life
setting as pre-location algorithms are not flawless. However, the segmentation the network tries to
produce when presented with such an image is not useful or interesting, and how it does it and why
is not of value to know. This makes removing these images justified.

6.2 Ground Truth

The active contours method is designed to only segment WBCs that are fully included in the image,
which is reasonable as it is not possible to calculate the CNR for parts of cells. We believe that
our method would be better at only determining whether a pixel belongs to a WBC or background,
regardless of whether a cell is only partially in the image or not, since it seems to have difficulties
excluding cells far from the image centre. Ideally, we would like to include all WBCs in the ground
truth image, but since it is based on the active contours method, changing the ground truth would
require an amount of work that is not within the scope of this project.

Another issue concerning ground truth is its segmentation accuracy. Most of the ground truth is
produced with the active contours method and some images are hand segmented. The hand segmented
images might not be 100% accurate since it was not done by professionals. As all data was manually
reviewed to determine whether it should be corrected or not, some errors may have been missed and
might still be present in the ground truth set.

27

6.3 Evaluation Methods

To evaluate our method in comparison to the active contour method used in the current system,
some creative solutions had to be found. The current method naturally scored very high in all
easily segmented cells as it actually was the ground truth. However, since the border between cell and
background is not perfectly unambiguous, there are many possible segmentations that are equally true,
varying only by a few pixels along the cell outline. For example, we see that the resulting segmentations
for class 2 and 5 in Figure 5.1 only differ from the ground truth in some of the outermost pixels. This
is the case for most of our images since our network seems to consistently make the segmentations a
few pixels smaller than the ground truth. Since the ground truth is not segmented with an accuracy of
one pixel, it is not possible to say whether our network or the ground truth performs the most correct
segmentation in these cases. These segmentations should therefore be considered to have a 100%
accuracy. This is the reasoning behind creating the IoUb measure where border pixels are excluded.
As the ground truth is down-sampled to be able to compare it to the segmentation generated by the
U-net, this border needs to be about 4 pixels in the original image to become about 1 pixel wide in the
down-sampled version. Examples of ground truth images with border pixels are shown in Figure A.3
in Appendix A.

6.4 Network Performance

The network seems to be good at differentiating between cells and background, but struggles with
separating WBCs that are close together. This presents a problem when the network finds two or
more cells which it segments and counts as one, for which the system then calculates the CNR. When
looking at Table 3.1 we see that images containing adjacent cells, class 8, only accounts for 4.8% of the
training data and 3.3% of the test data. This means that the network barely has a chance to learn how
to segment those images correctly. Even if there where more examples of this kind, the error caused
by segmenting nearby cells as one will typically be very small since the border pixels only account for
a small part of the image. This makes these types of cells difficult to segment in general, and it is not
surprising that neither method performs well on these images. In addition to this, our network might
have difficulties differentiating between adjacent cells or platelets due to the down-sizing. Smaller
images of the size 128 × 128 pixels are used as input to the network, which makes the line separating
the cells about 1-2 pixels wide. This line is probably blurred after just one down-sampling layer, and
would likely not be found unless it had been extracted as a feature during the first two convolutional
layers. If these features are found, the concatenation layers are supposed to account for the effects of
down-sampling by using feature maps from the uppermost layers. This is however not achieved since
there are so few images with adjacent cells and clusters. This difficulty with differentiating between
nearby cells might be possible to eliminate if more data with clusters, platelets and nearby cells is
used for training or if larger images could be used as input. Another strategy could be to use object
detection before segmentation in order to separate individual cells.

The network also does not perform well on images of smudge cells and platelet clusters, class 6
and 7. This does not present a problem though as neither are of interest to segment. As mentioned in
Sections 3.3.2 and 3.3.3, we do not calculate a CNR value for either platelets or smudge cells. Platelet
clusters are however important to find since they indicate that the blood has started to coagulate. The
presence of smudge cells is relevant since it has proven to predict survival in patients with Chronic
Lymphocytic Leukemia. Ignoring them might also result in a skewed differential if some cell types are
more likely to smudge than others. Therefore, these cells are of interest to find and classify, which is
why they where included as data in this project. This means that it does not matter if the network
performs well on these cells, and segmentations such as the one in Figure 5.1c can be considered good
even though they include some of the remains of the cytoplasm and not only the cell nucleus. These
segmentations do however, even though they are to be considered acceptable segmentations, cause a
considerable decrease of the IoU score.

28

6.5 Future Work

Although the network generally performs well, there are some areas that would be interesting for
further studies. To enhance network performance, it would be desirable to train a network to learn
how to handle cells that are not fully contained in the image and cells with adjacent cells or platelets,
which are categorised as class 3, 5 and 8 (see Figure 3.2). This would likely be possible for the network
to learn, but would require more training data of that specific type. This could be done by generating
training data, either with a generative adversarial network (GAN) that generates images with the
same characteristics as its training data, or by merging additional half cells, whole cells and platelets
into an image.

In order for the method to be practically useful in a system performing white blood cell count and
differentiation, the segmentation of a single image should not take more than 10-20 ms. This limits
the depth of the network, the amount of layers, and the image resolution. In this project, we have
focused on researching whether it is possible to segment blood smear cell images with deep learning,
and how to achieve the best possible segmentations rather than developing a product for clinical use.
With this said, it might be possible to decrease the image resolution further or use a smaller model
to achieve faster calculations, and still get an acceptable result even if it most likely would produce
less accurate segmentations.

6.6 Conclusions

It is possible to segment white blood cells using a neural network with a U-net structure. The network
performs well in most images but has difficulties with segmenting nearby cells and excluding cells that
are partially in the image. This could however be improved by training the network more on these
types of images.

29

References

[1] Saad Ullah Akram et al. “Cell segmentation proposal network for microscopy image analysis”.
In: Deep Learning and Data Labeling for Medical Applications. Springer, 2016, pp. 21–29.

[2] Algorithmia. Introduction to Loss Functions. url: https://blog.algorithmia.com/introduction-
to-loss-functions.

[3] Martin Blumenreich. “The white blood cell and differential count”. In: Clinical Methods: The
History, Physical, and Laboratory Examinations, 3rd edition. 1990, pp. 724–727.

[4] CellaVision. CellaVision Annual report 2018. 2018.

[5] Konrad Gjertsson. “Segmentation in Skeletal Scintigraphy Images using Convolutional Neural
Networks”. In: Master’s Theses in Mathematical Sciences. 2017.

[6] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016. isbn:
9780262035613.

[7] Johan Isaksson et al. “Semantic segmentation of microscopic images of H&E stained prostatic
tissue using CNN”. In: 2017 International Joint Conference on Neural Networks (IJCNN). IEEE.
2017, pp. 1252–1256.

[8] Adam Karlsson. Area-Based Active Contours with Applications in Medical Microscopy. Licenti-
ate Thesis. 2005.

[9] Golnaz Moallem et al. “Detecting and Segmenting White Blood Cells in Microscopy Images of
Thin Blood Smears”. In: 2017 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)
(2017), pp. 1–8.

[10] Grzegorz S. Nowakowski et al. “Percentage of smudge cells on routine blood smear predicts
survival in chronic lymphocytic leukemia”. In: Journal of Clinical Oncology (2009), pp. 1844–
1849.

[11] Reina. Stochastic Gradient Descent with Restarts. url: https://thisgirlreina.wordpress.
com/2018/07/11/stochastic-gradient-descent-with-restarts/.

[12] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-net: Convolutional networks for
biomedical image segmentation”. In: International Conference on Medical image computing and
computer-assisted intervention. Springer. 2015, pp. 234–241.

[13] Farnoosh Sadeghian et al. “A Framework for White Blood Cell Segmentation in Microscopic
Blood Images Using Digital Image Processing”. In: Biological Procedures Online, volume 11
(2009).

[14] Nitish Srivastava et al. “Dropout: A Simple Way to Prevent Neural Networks from Overtting”.
In: Journal of Machine Learning Research (2014).

[15] Fuyong Xing et al. “Towards pixel-to-pixel deep nucleus detection in microscopy images”. In:
BMC Bioinformatics volume 20 (2019).

[16] Zongwei Zhou et al. “Unet++: A nested u-net architecture for medical image segmentation”.
In: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision
Support. Springer, 2018, pp. 3–11.

30

Appendix A

(a) Class 2. (b) Class 5. (c) Class 6. (d) Class 8.

Figure A.1 – Examples of original images (first row), ground truth segmentations (second row), binary
segmentations produced with the U-net model (third row), and segmentations produced with the active
contour method (last row) for class 2, 5, 6, and 8.

31

(a) Class 2. (b) Class 5. (c) Class 6. (d) Class 8.

Figure A.2 – Examples of original images (first row), ground truth segmentations (second row), multi-
class segmentations produced with the U-net model (third row), and segmentations produced with
the active contour method (last row) for class 2, 5, 6, and 8.

32

(a) Ground truth image for binary segmentation.

(b) Ground truth image for multi-class segmentation.

Figure A.3 – Example of a ground truth images with pixels classified as border. Images of these types
were used to calculate IoUb.

33

