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Abstract

In a circular accelerator the closed orbit can be viewed as the mean position of
particles in a beam. The closed orbit is perturbed by machine errors and can
be manipulated by dedicated corrector magnets. This thesis introduces a lin-
ear algebra framework for closed orbit perturbation and correction, its imple-
mentation as a Python package and its use for three studies in HL–LHC: orbit
corrector budget, orbit feedback expected performance analysis and specifica-
tions for new beam position monitors. The orbit corrector budget is formulated
as a convex optimization problem and solved for the current iteration of HL–
LHC. Results based on a simplified model for the orbit feedback are presented,
showcasing its ine�cacy in maintaining collision on its own and the inherent
stability in LHC. Necessary short-term beam position monitor stability for ade-
quate position-based correction of beam separation is estimated to be under one
micrometer. Finally, optimizing over linear correction strategies is o�ered as an
interesting venue for further research.

Keywords: CERN, LHC, HLLHC, HiLumi, orbit correction, error correction, knob
implementation, linear algebra, matrix, closed orbit, accelerator physics, Twiss, beam
dynamics, dynamical systems, applied mathematics, optimization, convexity, pseudoin-
verse, SVD, BPM, Python, MSc



2



Acknowledgements

I would like to thank my supervisor at CERN, Davide Gamba, the hands-down biggest con-
tributor to this thesis whose name is not on the front cover. The idea behind the framework,
as well as a proof-of-concept suite of MATLAB scripts, are his making and in every mean-
ingful way the foundation on which this thesis is built. In addition to his direct contribution
to the project’s foundation, Davide’s mentoring has been indispensable. I arrived at CERN
with no formal education in accelerator physics, and was subsequently taught the notion of
emittance and particle injection based on Davide playing with crumbs in the cafeteria ––
successfully. Thank you Davide.

I would also like to thank Riccardo De Maria for interesting discussions about, and in-
terest in, the framework applied to the orbit corrector budget.

In the same vein, I want to thank Jörg Wenninger for enlightening me about the orbit
feedback system used in LHC and operational experience from using it.

I would like to to thankmy home institute supervisor Alexandros Sopasakis for providing
swift support and feedback when requisite, and for trusting me in the interim.

I thank Tobias Persson for supervising me in the summer of 2018 for my CERN openlab
project. Without Tobias, there is little reason to believe that I would have later come to
CERN as a Technical Student, nor that I would have considered myself a worthy candidate
for it. Thank you for the support Tobias.

The typical work environment for non-sta� personnel at CERN is shared o�ces, and
with this inmind I would like to thankmy o�cemates in 9/R-014. Thanks for your guidance,
opinions on, and distractions away from my work, it has all been much appreciated.

For much the same reason, I want to thank my classmates, corridor co-habitants and
friends in general for the duration of my studies in Lund. Thanks for keeping me sane.

I would like to thank my parents who humour my scholarly ambitions and who would
have been about as happy with me if I went into plumbing. Thank you for making me stub-
born, keeping my ego in check and caring deeply.

Lastly, I would like to thank my little brother Alexander for being two years my junior,
following my footsteps and keeping even pace. You make me very proud Alex.

3



4



Contents

1 Introduction 9
1.1 CERN and the HL–LHC Project . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2 Primary Thesis Objective in Prose . . . . . . . . . . . . . . . . . . . . . . . 11
1.3 Clarification of Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4 Previous work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Theory 15
2.1 (Transverse) Beam Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 Particle Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.2 Integrating with Respect to Path Length . . . . . . . . . . . . . . . 17
2.1.3 Linear Transfer Maps . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.1.4 Beam Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.1.5 Closed Orbit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.1.6 Derivation of the Closed Orbit . . . . . . . . . . . . . . . . . . . . 34
2.1.7 Machine Errors to Orbit Kicks . . . . . . . . . . . . . . . . . . . . 36
2.1.8 Statistical Interpretation of Twiss Paramters . . . . . . . . . . . . . 38
2.1.9 Luminosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.2 Linear Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.2.1 Notation and Elementary Operations . . . . . . . . . . . . . . . . . 39
2.2.2 Projection Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.2.3 Singular Value Decomposition . . . . . . . . . . . . . . . . . . . . . 40
2.2.4 Moore-Penrose Inverse . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.2.5 Linear Transformations of Random Vectors . . . . . . . . . . . . . 42

2.3 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.3.1 Convex Optimization . . . . . . . . . . . . . . . . . . . . . . . . . 43

3 Framework Implementation 45
3.1 Linear Algebra Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2 Core Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2.1 Twiss Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5



CONTENTS

3.2.2 Response Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3 Additional Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3.1 Slicing the Twiss Table . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3.2 Pseudoinverse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.3.3 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4 Example Computations and Output . . . . . . . . . . . . . . . . . . . . . . 50
3.5 Verification of Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.5.1 Computing Perturbations in MAD-X . . . . . . . . . . . . . . . . . 53
3.5.2 Verifying Linearity of MAD-X . . . . . . . . . . . . . . . . . . . . 54
3.5.3 Verifying Analytical Response Matrices . . . . . . . . . . . . . . . 55

4 Orbit Corrector Budget 57
4.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1.1 Error Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.1.2 Knob Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.1.3 Satisfying the Orbit Corrector Budget . . . . . . . . . . . . . . . . 62

4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.2.1 Boundary Conditions and Specifications . . . . . . . . . . . . . . . 63
4.2.2 Error Correction Procedure . . . . . . . . . . . . . . . . . . . . . . 64
4.2.3 Comparison of Corrections . . . . . . . . . . . . . . . . . . . . . . 66
4.2.4 Knob Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5 Estimating Impact of Orbit Feedback System for Maintaining Collision 71
5.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.1.1 Imperfect BPMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.1.2 Orbit Correction over Time . . . . . . . . . . . . . . . . . . . . . . 74
5.1.3 Orbit Feedback System in LHC . . . . . . . . . . . . . . . . . . . . 75

5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6 BPM Specification for Local IP Correction 83
6.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7 Discussion 89
7.1 POCKPy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
7.2 Corrector Budget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.2.1 Error Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
7.2.2 Knob Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.3 Estimating Impact of Orbit Feedback System for Maintaining Collision . . 90
7.3.1 Underlying Assumptions . . . . . . . . . . . . . . . . . . . . . . . . 90

7.4 BPM Specification for Local IP Correction . . . . . . . . . . . . . . . . . . 92
7.4.1 Underlying Assumptions . . . . . . . . . . . . . . . . . . . . . . . . 92

8 Conclusion 93

6



CONTENTS

Appendix A Element Naming Conventions 97

Appendix B Crab Cavities 101

Nomenclature 103

Glossary 105

Bibliography 109

7



CONTENTS

8



Chapter 1

Introduction

Coming up with a good subject for a Master’s thesis is hard work. By the paradox of choice,
it follows that it is the Engineering Physics student that has to work the hardest to find
one. For this reason, I was very thankful for Davide’s o�er to come work at CERN on orbit
correction for HL–LHC. However, I was not only spared the burden of finding a subject to
work on, I was also o�ered a project which epitomized what Engineering Physics is all about:
multi-disciplinary work. This thesis ties many di�erent fields together, but the overarching
theme is applied mathematics; mathematics applied to the study of first-order closed orbit
perturbation and correction in HL–LHC.

Having said this, the subject matter is technical and heavy in jargon. To accommodate
for this, the choice was made early to make the thesis self-contained. In retrospect I think
this has been largely successful, but the page count had to su�er as a result. All the neces-
sary theory, most notably transverse beam dynamics, is given in some detail in Chapter 2.
Technical jargon is introduced ad hoc with a Glossary and a Nomenclature at the end of the
thesis. I hope that the reader identifies that while transverse beam dynamics is integral to
the application, and the jargon necessary to aptly describe it, all the actual analysis is based
on linear algebra, statistics and a little convex optimization.

1.1 CERN and the HL–LHC Project
The full thesis was carried out at CERN,Meyrin, Switzerland, and its subjectmatter is heavily
intertwined with CERN’s mission and facilities. As such, it is only reasonable that a short
summation of CERN follows. The European Organization for Nuclear Research, CERN
(abbreviation in French: Conseil Européen pour la Recherche Nucléaire) is the world’s largest
particle physics laboratory. CERN was founded in 1954 as a means of pooling European
nations’ resources together for the purpose of conducting frontier nuclear research in Europe,
and as a peace project in the aftermath of the second world war.

To pursue this research, CERN was to become more than a theory workshop, it was to
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1. Introduction

become a de facto laboratory, and the instrumentation of choice for this was particle accel-
erators. Simply put, by accelerating charged particles to high energy and have them interact
with other particles, information could be retrieved about their nuclei. As time progressed
and the understanding of nuclear physics accrued, the focus shifted from nuclear to sub-
nuclear physics, or more broadly put, particle physics. The constituents of atoms are well
understood, but what are the constituents of the constituents?

In parallel with this research trend towards the understanding of and relation between
more and more fundamental constituents of matter, the accelerators were put on a trajec-
tory towards achieving the corresponding particle energies necessary for probing this region.
Greater energies means beams are harder to bend, which to a large extent explains the scale
of new circular accelerators.

Today the latest and biggest accelerator at CERN is the Large Hadron Collider (LHC)
completed in 2008 [1]. It is a 27-kilometer ring of well over a thousand super-conducting
magnets kept at a temperature below three Kelvin. Somewhat simplified, two beams of par-
ticles are accelerated through the LHC in parallel but opposite direction and made to collide
at fixed interaction points to study their collision. A schematic of this is presented in Figure
1.1

Figure 1.1: Schematic of LHC with interaction points [1].

LHC is divided into eight octants, half of which host collisions between the two beams at
designated positions called interaction points. The interaction points are IP1 (ATLAS), IP2

10



1.2 Primary Thesis Objective in Prose

(ALICE), IP5 (CMS) and IP8 (LHC-B), where the experiments at each interaction point
are given in parenthesis. In 2012, the ATLAS and CMS experiments conducted at the LHC
reported the detection of the Higgs Boson, leading to the 2013 Nobel Prize in Physics being
awarded to François Englert and Peter W. Higgs for their formulation of it.

Today, the evolution of CERN’s accelerator complex continues. Most notably, the LHC
will undergo a major upgrade during the 2020s to extend its operability another decade,
thereby giving it the new name High-Luminosity Large Hadron Collider (HL–LHC or Hi-
Lumi for short) [2]. As the name gives away, one of the goals of the HL–LHC is to increase its
luminosity (and thereby its rate of collisions), and this by a factor of five beyond the original
design value of the LHC, all the while keeping the same structure and tunnel.

The LHC being already a highly complex machine, any upgrade must be studied to make
sure the design remains stable and functional. This typically involves simulation studies,
probing everything from element placement to magnet design to strategies for the correc-
tion of errors. This is the context in which this thesis exists, it is a part of the simulation
studies for the HL–LHC. More specifically, this thesis introduces a framework for machine
error induced orbit perturbations, correction of these orbit perturbations and the imple-
mentation of orbit knobs, where an orbit knob is taken as a shorthand for any routine that
manipulates the beam orbit in a controlled manner, typically for a specific operation sce-
nario. Having implemented this framework, three studies will be conducted inside it. A
more detailed explanation of the primary study is given next in prose, with the actual physics
and mathematical formalism of the underlying problem postponed to Chapter 2, 3 and 4.

1.2 Primary Thesis Objective in Prose
A circular accelerator necessitates a set of components which are indispensable. In the first
order, they are:

1. Bending magnets. If beams of particles are to perform a circular motion then some
force is necessary to bend the beam. Bending magnets are used for this.

2. Quadrupoles. If a laser pointer is targeting a wall far away, then the laser dot will have
become larger than the pointer’s aperture by the time it hits the wall. Analogously,
beams of particles will spread radially as they travel in an accelerator if no mediating
force acts on them; let that go on for long enough and the beam will eventually hit
the inside of the beampipe. What is needed is some form of focusing, something that
stabilizes the beam to keep its cross-section from expanding. Quadrupoles achieve this.

3. Orbit correctors. If a beam needs to be fine-steered in the accelerator, e.g. there is
a pipe which the beam has to pass through which is slightly o� the path the beam
otherwise would have gone, one can power orbit correctors to steer the beam into it.

4. Beam Position Monitors (BPMs). In order to steer a beam it is necessary to know its
position. BPMs are sensors that measure the position of beams within the beampipe.

As it happens, bending magnets and quadrupoles installed into an accelerator are prone
to have errors, which albeit small, have noticeable e�ect on beams in the accelerator. One
such e�ect is beam orbit perturbation. To correct for it, one powers orbit correctors which
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1. Introduction

counteract the e�ects of the errors as measured by the BPMs. This is called orbit error correc-
tion. In addition to this, the orbit correctors have to be used for various fine-steering routines,
e.g. moving the beam at some point or have it form a certain angle at some other. These rou-
tines are called orbit knobs. Finally, there is a limit put on how much each orbit corrector can
be used. With this in mind, a natural question comes to mind: is there enough orbit corrector
strength to both correct for machine errors and to implement all desired knobs? This is the primary
objective of this thesis, to design and implement a framework for answering the question of
whether the orbit corrector budget holds.

1.3 Clarification of Objectives
Leaving the realm of prose, the objective can be more technically enunciated. The primary
objective of this thesis is to develop a Python framework for HL–LHC capable of:

1. Computing the orbit perturbation e�ects of machine element imperfections and mis-
alignments.

2. Computing the orbit response of orbit correctors.

3. Implementing knobs.

4. Performing orbit error correction.

5. Verifying the integrity of the orbit corrector budget.

The aim is for the framework to be used continuously in the verification process of HL–
LHC optics; verifying that the error correction and knob implementation are feasible and
satisfy the orbit corrector budget. This is the primary objective, the secondary objective is
to put the framework to use for three studies as part of the HL–LHCWork Package 2 (WP2)
group at CERN. These studies are:

1. Verifying that the v1.5 HL–LHC optics satisfy the orbit corrector budget.

2. Investigating the performance of the Orbit FeedBack system (OFB) employed in LHC
for maintaining collision and how it transfers to HL–LHC.

3. Estimating the necessary BPM stability for employing local IP correction during col-
lision.

1.4 Previous work
Had it not been for prior work and investigations into this problem of finding feasible cor-
rector configurations, this would not have been a feasible Master’s thesis; it would have been
incompatible with the time budget. It is with this in mind that I owe a good deal to my
CERN supervisor Davide Gamba and his colleague Riccardo De Maria, among others, for
their previous work on this subject (e.g. [3]).

12



1.4 Previous work

Dr. Gamba had already developed a set of MATLAB scripts for accomplishing similar
results by directly interfacing with the accelerator design software MAD-X [4]. This was a
proof-of-concept and was estimating perturbations caused by errors and the e�ects of orbit
correctors by modifying one element at a time and retrieving the di�erence in orbit. In doing
so, his framework could build up the matrices necessary for this formalism by repeatedly
calling MAD-X. This work di�ers in three major respects:

1. The framework takes input in the form of .tfs tables, a MAD-X file format, which
contain all the relevant information for a linear treatment of the problem, and to for-
mulaically compute the e�ects on the orbit. This allows for a speed-up in analyzing
optics and decouples the framework from direct interaction with MAD-X.

2. Optimization over orbit corrector configurations is included for error correction and
knob implementation. This was not present before.

3. Three additional studies based on the framework are conducted.
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Chapter 2

Theory

In this chapter the theory that was previously withheld will now be given. It will be split into
three parts:

1. Transverse Beam Dynamics

2. Linear Algebra

3. Optimization

The notions introduced in this chapter will be implement to provide the framework de-
scribed in Chapter 3, subsequently applied to the problems treated in this thesis.

2.1 (Transverse) Beam Dynamics
In this section the essentials of Transverse Beam Dynamics necessary for this thesis will be
accounted for. For amore comprehensive review, seeWolski’s BeamDynamics inHigh Energy
Particle Accelerators [5] which has inspired the approach taken in this section. Our review
will be incremental, starting with single particle analysis.

2.1.1 Particle Dynamics
Consider a Cartesian coordinate system and a charged particle with mass m and charge q.
Assuming a force F is applied to the particle with momentum p, Newton’s second law states:

dp
dt

= F . (2.1)

In the case of it being in a electromagnetic field, the Lorentz force is given by

F = q(E + v × B) . (2.2)

15



2. Theory

One approach to computing the position of a single particle moving through the accelera-
tor would be to directly solve the equations posed in (2.1) and (2.2). This is possible, but
not the typical approach in beam dynamics [5, p. 60]. One of the primary reasons is that
the integration with respect to time would require the electromagnetic fields to be expressed
as functions of time. In beam dynamics the electromagnetic fields are more easily defined
as functions of the position along the accelerator, which instead warrants integration with
respect to path length. An alternative treatment that allows for this is Hamiltonian mechan-
ics, which is the approach used for this thesis and beam dynamics in general. Hamilton’s
equations can be stated as:

dxi

dt
=
∂H
∂pi

,

dpi

dt
= −

∂H
∂xi

,

(2.3)

where xi and pi correspond to the ith dimension for the position and momentum of the
particle, respectively, and H is a function, the Hamiltonian. As Newton’s second law and
Hamilton’s equations are both able to describe the same system, the force in the latter case
must be encoded in the Hamiltonian. For example, a one-dimensional harmonic oscillator
would in Newtonian mechanics be described by the force

F = −kx , (2.4)

whereas in Hamiltonian mechanics the corresponding system would be defined by

H =
p2

2m
+

k
2

x2 . (2.5)

For accelerator physics, the relevant force is the Lorentz force in (2.2), hence the equiv-
alent Hamiltonian has to be derived. First, we recall how the scalar potential φ and vector
potential A are related to the electromagnetic fields:

E = −∇φ −
∂A
∂t

,

B = ∇ × A .
(2.6)

In the non-relativistic case, this resolves to the Hamiltonian:

H =
(p − qA)2

2m
+ qφ . (2.7)

Observe that p in (2.7) is not the mechanical momentum but the canonical momentum. These
are not guaranteed to be equal, as this particular case demonstrates by applying (2.3) to this
Hamiltonian:

vi =
dxi

dt
=
∂H
∂pi

=
pi − qAi

m
=⇒ p = mv + qA . (2.8)

In essence, Hamiltonian mechanics will predict the same orbit but its momentum, called the
canonical momentum, is not necessarily the same as the mechanical momentum. To resolve
the naming conflict, p is taken to be the canonical momentum and pmech the mechanical
momentum.

16



2.1 (Transverse) Beam Dynamics

Note that the Hamiltonian in (2.7) is not relativistic, whereas the system of analysis (par-
ticle beams in HL–LHC) is, hence a relativistic expression for the Hamiltonian needs to be
derived. Recall from special relativity that a particle in free space (i.e. no electromagnetic
fields present) has a total energy given by

E2
f ree = p2

mechc
2 + m2c4 , (2.9)

where m is the rest mass and c the speed of light in vacuum. With the same notation, the
following relations are valid:

E f ree = γmc2 ,

pmech = βγmc ,
β = v/c ,

γ =
1√

1 − β2
.

(2.10)

To get the total energy E and the canonical momentum p in presence of electromagnetic
fields, the contribution from the fields has to be added:

E = E f ree + qφ .
p = pmech + qA .

(2.11)

To find the Hamiltonian we note that for some systems the Hamiltonian is equal to the
total energy of the particle. Looking back on (2.5), it proved correct for the harmonic oscilla-
tor. With that in mind, if the total energy can be expressed in the canonical momentum then
it is possible that the expression could correspond to the Hamiltonian. This can be achieved
by combining (2.9) and (2.11):

(E − qφ)2 = E2
f ree = p2

mechc
2 + m2c4 = (p − qA)2c2 + m2c4 , (2.12)

which upon solving for E gives a guess for a possible Hamiltonian:

H = E = c
√

(p − qA)2 + m2c2 + qφ , (2.13)

and this turns out be a correct Hamiltonian for a relativistic particle in a electromagnetic
field [5, p. 63].

2.1.2 Integrating with Respect to Path Length
First, consider a particle moving in one dimension. We can express this as a function of t
where each point in time is described by a tuple

(
x(t), p(t)

)
, where x and p are referred to as

dynamical variables. Over the evolution in time, this particle will form a continuum of points
in the two-dimensional space x, p called the phase space. For any such path (physical or not),
one can compute the action S between any two times defined as:

S =

∫ b

a

[
pẋ − H

]
dt . (2.14)

17



2. Theory

Given two points in phase space which a system passes through at two separate times, the
actual path between them, as defined by Hamilton’s equations, will minimize the action. The
integral in (2.14) can be rewritten as an integral over x as per:

S =

∫ b

a

[
pẋ − H

]
dt =

∫ x(b)

x(a)
p

dx
dt

dt
dx

dx − H
dt
dx

dx =

∫ x(b)

x(a)

[
(−H)

dt
dx

+ p
]

dx , (2.15)

which, with the following variable substitution:

H ′ = −p ,
p′ = −H ,

a′ = x(a) ,
b′ = x(b) ,
t′ = x ,
x′ = t ,

(2.16)

becomes:

S =

∫ b

a

[
pẋ − H

]
dt =

∫ b′

a′

[
p′

dx′

dt′
− H ′

]
dt′ . (2.17)

In the new variables, a representation of the Hamiltonian system has been constructed
that uses the coordinate x as the free variable and di�erent canonical variables. They define
the same action and hence minimizing one will minimize the other, which in turn means that
they describe the same path. For clarity, the new equations for the system are written down
in terms of the original variables:

dt
dx

=
∂p
∂H

,

dH
dx

= −
∂p
∂t

.

(2.18)

As is visible from (2.18), this new system gives solutions to time andHamiltonian as functions
of x and they are derived from the original canonical momentum p. It is worth spending a
moment interpreting the meaning of this. When the new system of equations is solved, t(x)
and H(x) are retrieved, which means that for any given position, it is possible to predict
the time of arrival and the total energy of the particle at that point. This is to be compared
to the original system (2.3), where instead x(t) and p(t) are solved for, i.e. the position and
canonical momentum at any given time.

Note that this was derived for the case of one degree of freedom, whereas a particle inside
an accelerator has three. To extend the result, the derivation for the case of a accelerator
segment that is straight and use a Cartesian coordinate system (x, y, z) where the z-axis runs
parallel to the length of the segment follows. The action from (2.14) directly translates to:

S =

∫ b

a

[
px ẋ + pyẏ + pzż − H

]
dt , (2.19)

where everything has been defined analogously and H relates to the Hamiltonian for the
new three-dimensional system, which was found by expanding the vectors in (2.13). It is
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2.1 (Transverse) Beam Dynamics

possible to apply the same trick as before in (2.15) to the position z, i.e. the position along the
accelerator, to express the action as an integral over the path along the accelerator rather than
time. Although the reader might already have guessed the outcome, the derivation follows
for clarity:∫ b

a

[
px ẋ + pyẏ + pzż − H

]
dt =

∫ z(b)

z(a)

[
px ẋ

dt
dz

+ pyẏ
dt
dz

+ pzż
dt
dz
− H

dt
dz

]
dz

=

∫ z(b)

z(a)

[
px

dx
dz

+ py
dy
dz
− H

dt
dz

+ pz

]
dz .

(2.20)

Observe that by defining a new Hamiltonian H ′ = −pz and new canonical momentum in z
as −H , the previous result from the one-dimensional case is replicated. H ′ can be computed
from (2.13) by solving for pz:

H ′ = −pz = −

√
(E − qφ)

c2 − (px − qAx)2 − (py − qAy)2 − m2c2 − qAz , (2.21)

where we have used that H = E. From now on the previous Hamiltonian H will only be
referred to as E and the newly derived H ′ will be referred to as the Hamiltonian H . This
is done since the original formulation of the Hamiltonian is unwieldy and o�ers no utility
other than as an expression for the total energy of the particle.

The new representation of the Hamiltonian system in (2.21) has replaced time as the free
variable with z, and as a result solving Hamilton’s equations will now produce a solution
for the coordinate-momentum pairs (x, px), (y, py) and (t,−E). This means that for any
position along the beam, the transverse canonical momenta and position, the time of arrival
and energy, are tracked. In this formulation of the Hamiltonian system, we have that

d(−E)
dz

=
∂H
∂t

, (2.22)

implying that a time-invariant system will result in the conservation of the total energy of
the particle. For stable conditions in the accelerator, almost all fields are time-invariant, and
therefore so is theHamiltonian. If theHamiltonian is the function determining the dynamics
of the system then, trivially, the transverse variables (x, px) and (y, py) can be solved inde-
pendently of time. This implies that if the subject of analysis is the transverse variables and
all the electromagnetic fields are time-invariant, then a Hamiltonian treatment will reduce
the dimensionality of the problem by one.

Hamiltionian for a Curved Reference System
The Hamiltonian just derived was for the case of a straight reference system, i.e. a linear
accelerator. This thesis will however work with curved reference systems as HL–LHC is a
circular accelerator, wherefore a di�erent Hamiltonian has to be derived for curved reference
systems. The idea is the same but deriving it in detail would take more e�ort than it is worth,
as such it is provided below in the form that will be used for the remainder of the thesis. It
is given as

H =
δ

β0
−(1+hx)

√(
δ +

1
β0
−

qφ
cp0

)2

− (px − ax)2 − (py − ay)2 −
1

β2
0γ

2
0
−(1+hx)as , (2.23)
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where

z =
s
β0
− ct ,

δ =
E

cp0
−

1
β0
,

px =
βxγc + qAx

p0
,

py =
βyγc + qAy

p0
,

ax =
Axq
p0

,

ay =
Ayq
p0

,

as =
Asq
p0

.

(2.24)

Quantities indexed by a zero refer to a reference particle. The reference particle has themomen-
tum p0, the momentum the accelerator was designed for, and follows the reference trajectory
with radius ρ (and curvature h = 1/ρ), the trajectory the reference particle was designed to
follow. The reference system is shown in Figure 2.1

y

x

z

ρ

ρ

centre of
curvature

actual
orbit

d~r

s

reference
orbit

Figure 2.1: Graphical representation of the coordinate system to be
used for this thesis [4].

The reference trajectory is parameterized by s, the free variable for this Hamiltonian.
Everything indexed by an s refers to quantities pointing in the tangential direction of the
reference orbit. What was previously the coordinate-momentum pair (t,−E) has been trans-
formed into (z, δ) and the canonical momenta have been scaled by the reference momentum.
The reason for this change is numerics. Solving the Hamiltonian system exactly for a full
accelerator is rarely, if ever, an option. It is therefore necessary to employ numerical methods
for the simulations, which encourages conditioning of the dynamic variables. For example,
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2.1 (Transverse) Beam Dynamics

(z, δ) = (0, 0) for the reference particle which can be put in contrast to (t,−E). The time
of arrival for positions along the accelerator will increase indefinitely and so tracking the
relative longitudinal distance of particles would involve taking di�erences between increas-
ingly large numbers. Instead tracking quantities in relation to the reference particle is a valid
approach to conditioning the variables, as great deviation from the reference particle will
nevertheless result in lost particles.

2.1.3 Linear Transfer Maps
As was previously hinted at, the Hamiltionian in (2.23) will rarely translate into explicit solu-
tions for a full circular accelerator. Alternatives will have to be devised, and from experience
in the field of accelerator physics (and applied physics in general), a linear approximation is
su�cient for many applications. The approach taken here is the canonical one. Summarized,
the following is done per element in the accelerator:

1. Use the Hamiltonian in (2.23) where the electromagnetic fields and the curvature of
the element have been entered.

2. Do an appropriate Taylor approximation and truncate at the third order (i.e. a second-
order approximation of the Hamiltonian).

3. Setup Hamilton’s equations, which will be linear relations.

4. Express the mapping through the element as a matrix.

If this is done for every element, then e�ectively one has retrieved a first order approxi-
mation of the entire accelerator. By applying a sequence of matrices to a given configuration
of dynamical variables corresponding to a certain state of a particle in the accelerator, it is
possible to compute its state further down or back in the accelerator. In this section linear
approximations to the drift space, bending magnet, orbit corrector dipole and quadrupole will be
computed. These elements are considered because:

1. They can all be well-approximated by a linear approximation.

2. The drift space is the simplest element there is, hence a good starting point.

3. Bending magnets and quadrupoles are the main source of closed orbit perturbation in
an accelerator like HL–LHC.

4. Orbit corrector dipoles are the main tool for controlled manipulation of the closed
orbit.

Drift Space
A drift space in an accelerator is simply free space, a region of the accelerator where no
electromagnetic fields are in place. It makes little sense to have curved drift spaces as the
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beam experiences no bending force inside them, hence h = 0. The Hamiltonian inside such
an element is described by removing all electromagnetic fields from (2.23) producing

H =
δ

β0
−

√(
δ +

1
β0

)2

− p2
x − p2

y −
1

β2
0γ

2
0
. (2.25)

This is the exact Hamiltonian inside a drift space. In this particular case there is also an
exact closed solution, but for the sake of methodology a second order approximation of the
Hamiltonian is derived. Note that the Hamiltonian is independent of z, hence δ must be
constant. This implies that for a linear approximation the transverse dynamical variables are
the only ones considered. The approximation is performed as follows:

H =
δ

β0
−

√(
δ +

1
β0

)2

− p2
x − p2

y −
1

β2
0γ

2
0

=
δ

β0
−C

√
1 −

p2
x + p2

y

C2

≈
δ

β0
−C +

p2
x + p2

y

2C
,

(2.26)

where C =
√

1 + 2δ
β0

+ δ2, (recall that γ2 = 1
1−β2 ) and it has been assumed

p2
x+p2

y
C2 � 1. This

assumption is valid only if particles do not deviate significantly in angle from the reference
particle, which while not immediately obvious, is reasonable in practice. Further expanding
C yields the final Hamiltonian:

H2 =
p2

x

2
+

p2
y

2
+

δ2

2β2
0γ

2
0
, (2.27)

where the constant has been left out as it does not impact the dynamics. To produce the
solution, Hamilton’s equations can be applied to (2.27) for each set of canonical coordinates.

dx
ds

=
∂H2

∂px
= px ,

dpx

ds
= −

∂H2

∂x
= 0 ,

dy
ds

=
∂H2

∂py
= py ,

dpy

ds
= −

∂H2

∂y
= 0 ,

dz
ds

=
∂H2

∂δ
=

δ

β2
0γ

2
0
,

dδ
ds

= −
∂H2

∂z
= 0 .

(2.28)

It goes without saying that the equations in (2.28) are an approximation, which defines the
dynamics inside a drift space in the first order. Given initial conditions and the length of
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2.1 (Transverse) Beam Dynamics

a drift space, the means of computing the evolution of any particle passing through it are
provided. Using the notation

u(s) =
[
x(s) px(s) y(s) py(s) z(s) δ(s)

]ᵀ
, (2.29)

for describing the state of a particle, the following matrix formalism can be employed:

u(s0 + L) = Tdriftu(s0) , (2.30)

where s0 denotes the start of a drift space, L is the length of it and Tdrift is defined as:

Tdrift =



1 L 0 0 0 0
0 1 0 0 0 0
0 0 1 L 0 0
0 0 0 1 0 0
0 0 0 0 1 L

β2
0γ

2
0

0 0 0 0 0 1


. (2.31)

The first linear approximation of an element has been derived. The derivation for subsequent
elements is similar but the bookkeeping will be kept less verbose.

Bending Magnet
Bending magnets are curved dipoles tasked with bending the reference trajectory by using a
constant magnetic field perpendicular to the bending plane, e.g. for horizontal bending we
have

B =
[
Bx By Bs

]ᵀ
=

[
0 B0 0

]ᵀ
. (2.32)

It is however not the magnetic field but the vector potential that enters the Hamiltonian,
hence the magnetic field has to be expressed as a function of this quantity. Recall from (2.6),
the magnetic field is the curl of the vector potential. In Cartesian coordinates this would be
a straightforward computation, but as the coordinate system of choice for a bending magnet
is curvilinear, i.e. h 6= 0, the curl of the vector potential is non-trivial. For the sake of
brevity, a vector potential is directly provided which is valid in our coordinate system and
computationally advantageous:

a =
[
0 0 −k0x + k0hx2

2(1+hx)

]ᵀ
. (2.33)

where k0 =
q
p0

B0 is the normalized field strength. Inserting (2.33) into the Hamiltonian (2.23),
we retrieve

H =
δ

β0
− (1 + hx)

√(
δ +

1
β0

)2

− p2
x − p2

y −
1

β2
0γ

2
0

+ k0(1 + hx)x − k0h
x2

2
. (2.34)

Using the same technique as before for approximating the Hamiltonian yields

H2 =
p2

x

2
+

p2
y

2
+

δ2

2β2
0γ

2
0

+

{
k0 − h

(
1 +

δ

β0

)}
x + k0h

x2

2
. (2.35)
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Again the partial derivatives of H2 are computed and expressed in a linear relation, but this
time around there is an added constant term:

u(s0 + L) = Tbendu(s0) + dbend , (2.36)

where

Tbend =



1 L 0 0 0 0
−hk0L 1 0 0 0 hL

β0

0 0 1 L 0 0
0 0 0 1 0 0
−hL
β0

0 0 0 1 L
β2

0γ
2
0

0 0 0 0 0 1


, dbend =



0
(h − k0)L

0
0
0
0


. (2.37)

Note that depending on the value of the h−k0, a particle entering on the reference trajectory
could leave the bending magnet o� the reference trajectory. However, by definition, the
reference trajectory is the trajectory traversed by the reference particle, which enforces h = k0
for a correctly designed and perfect accelerator. In such a case, the mapping simplifies to
Tbend.

Orbit Corrector
The primary mean of changing the closed orbit in a controlled manner is through orbit correc-
tor dipoles. An orbit corrector dipole is e�ectively a straight bending magnet with a variable
k0. It follows that a horizontal orbit corrector can be retrieved by taking the derived map of
the bending magnet from (2.37) with h = 0. The resulting mapping is:

u(s0 + L) = Thcorru(s0) + dhcorr , (2.38)

where
Thcorr = Tdrift , dhcorr =

[
0 θ 0 0 0 0

]ᵀ
. (2.39)

and θ = k0L. Since orbit correctors are only powered for intentional manipulation of the
orbit, θ = 0 when analyzing the stability of an accelerator, hence they are equivalent to drift
spaces in a naive operational scenario. The analogous derivation holds for a vertical orbit
corrector, where the only di�erence in the resulting mapping is that the orbit kick applies to
the vertical plane.

Quadrupole
In accelerators quadrupoles are the primary tool for transverse focusing of the beam. They
have a magnetic field

b =
q
p0

B =
[
k1y k1x 0

]ᵀ
, (2.40)

where by convention k1 =
q
p0

B1. A vector potential achieving this is

a =
[
0 0 −

k1
2 (x2 − y2)

]ᵀ
. (2.41)
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2.1 (Transverse) Beam Dynamics

Inserting this vector potential into (2.23) with h = 0 (quadrupoles are usually straight ele-
ments) and no scalar potential yields the Hamiltonian for a straight quadrupole:

H =
δ

β0
−

√(
δ +

1
β0

)2

− p2
x − p2

y −
1

β2
0γ

2
0
−

k1

2
(x2 − y2) . (2.42)

Repeating the approximation procedure gives the second-order Hamiltonian

H2 =
p2

x

2
+

p2
y

2
+

δ2

2β2
0γ

2
0

+
k1

2
(x2 − y2) . (2.43)

Due to the interdependence in each pair of transverse variables, the expression is slightly
more complicated than before, but nevertheless linear. In matrix formalism

u(s0 + L) = Tquadu(s0) , (2.44)

where

Tquad =



cos(ωL) sin(ωL)/ω 0 0 0 0
−ω sin(ωL) cos(ωL) 0 0 0 0

0 0 cosh(ωL) sinh(ωL)/ω 0 0
0 0 ω sinh(ωL) cosh(ωL) 0 0
0 0 0 0 1 L

β2
0γ

2
0

0 0 0 0 0 1


, ω =

√
k1 .

(2.45)
Assuming k1 > 0 and realistic values values for k1, L, any particle entering the quadrupole
with a horizontal orbit will experience a kick to bring it back towards zero horizontal orbit,
whereas a vertical orbit will be aggravate the situation by giving a kick increasing the deviation.
Summarized, for k1 > 0 the quadrupole is horizontally focusing and vertically defocusing, with
the inverse for k1 < 0.

Often it is su�cient to treat the quadrupole as a thin lens. The concept is the same as in
optics: an incoming beam experiences a change in angle linearly proportional to the o�set
from the optical axis, and no change in position. The crux of a thin lens is essentially that
it is so thin that any beam passing through it does not experience any change in transverse
position while inside the lens. Formulaically, this is achieved by keeping k1L constant while
letting L → 0, and this gives the thin-lens transformation matrix

Tquad(thin) =



1 0 0 0 0 0
−k1L 1 0 0 0 0

0 0 1 0 0 0
0 0 k1L 1 0 0
0 0 0 0 1 L

β2
0γ

2
0

0 0 0 0 0 1


, (2.46)

where the focal length is f = 1/(k1L). Observe that the mapping is valid for k1 < 0, which
inverts the e�ects in the transverse planes. In the first order, a thin-lens treatment is often
su�ciently accurate, and it also has the benefit of providing a simple way of visualizing the
transverse dynamics using linear optics.
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2.1.4 Beam Dynamics
Having derived linear transformations for the essential building blocks of a circular acceler-
ator, the next object of attention is to study the structures where such elements are put in
sequence with a focus on the transverse plane. We make the following assumptions:

• All elements are without errors.

• All orbit correctors are powered o�.

• The beam is monochromatic, i.e. all particles have the same energy as the reference
particle, δ = 0.

This is done to make all mappings strictly linear with no added constant, and the dynamics
in the transverse planes decoupled from the dynamics in the longitudinal plane.

As discussed previously, any quadrupole is focusing in one and defocusing in the other
transverse plane, which brings about the idea of the simplest structure for focusing a beam:
the FODO lattice. The FODO lattice is a lattice where quadrupoles are alternatingly focusing
and defocusing with some constant spacing between them, i.e. drift spaces. In a simple
periodic FODO lattice, the transformation matrix for one cell can be written as:

TFODO = TdriftTDTdriftTF , (2.47)

where TF and TD correspond to focusing and defocusing quadrupoles respectively with focal
lengths± f separated by drift spaces of length L. The decoupled dynamics implies thatTFODO
is a block diagonal matrix as per:

TFODO =

Tx 0 0
0 Ty 0
0 0 Ts

 . (2.48)

with transverse transfer matrices

Tx =

[1 − L
f (1 + L

f ) L
f (2 f + 1)

− L
f 2 1 + L

f

]
,

Ty =

[1 + L
f (1 − L

f ) L
f (2 f − 1)

− L
f 2 1 − L

f

]
,

(2.49)

Note that the physical interpretation of applying the FODO transformationmatrix is the
transportation of the particle through one cell in a periodic machine. For the FODO matrix
given in (2.47), repeatedly applying it to a state would produce a sequence of states measured
at the entrance of the focusing quadrupole as the particle passes through multiple cells. Such
a plot is shown in Figure 2.2 where the horizontal state is tracked through a FODO lattice
each time it passes through the defocusing quarupole. Notice how for any starting point,
the phase space plot assumes the shape of an ellipse, all with the same shape. This is a result
built into how the problem was treated. To get into why this structure arises is technical but
important, and the next subject.

First, the concept of symplecticitywill be introduced. A 2n×2n, n positive integer, matrix
A is said to be symplectic if it satisfies

AᵀSA = S , (2.50)
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Figure 2.2: Phase plots for di�erent initial phase space vectors in a
FODO lattice where L = 1, f =

√
2. Each cross corresponds to the

horizontal phase space vector measured after having passed through
the defocusing quadrupole in such a periodic FODO lattice.

where S is the skew-symmetric matrix defined as

S =


R

. . .
R

︸ ︷︷ ︸
n

, R =

[
0 1
−1 0

]
. (2.51)

Any solution derived from Hamilton’s equations is symplectic, and therefore so are all trans-
fer matrices derived so far. This motivates why the approach taken for deriving each matrix
was to approximate the Hamiltonian to second order, di�erentiate it and then solve Hamil-
ton’s equations. An alternative (and at first glance, just as good) approach would have been
to di�erentiate the Hamiltonian, approximate to the first order and then solve the system.
However, symplecticity is only guaranteed if Hamilton’s equations are solved exactly, inde-
pendently of what the Hamiltonian looks like. Another important observation is that any
(valid) product of symplecticmatrices is also symplectic. This can be proven as follows. Given
two symplectic matrices, A1 and A2, the following holds:

(A1A2)ᵀSA1A2 = A2
ᵀA1

ᵀSA1A2 = A2
ᵀSA2 = S . (2.52)

This implies that any sequence of elements in the accelerator for which there are linear trans-
formations (derived by approximating theHamiltonian to second order), will in turn produce
a map that is symplectic.
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Importantly, symplecticity enforces constraints on the system. Consider a symplectic
transfer map T for a cell in a periodic lattice. The cell could come from a FODO lattice, but
could also be the product of all element transfer maps for one lap in any circular accelerator.
We consider the horizontal part of the transfer map Tx, but the same derivation would hold
for Ty. Tx can be parameterized as follows [6]:

Tx = I cos(2πQx) + RAx sin(2πQx)

=

[
cos(2πQx) + αx sin(2πQx) βx sin(2πQx)

−γx sin(2πQx) cos(2πQx) − αx sin(2πQx)

]
,

(2.53)

where I is the identity matrix, R is the skew-symmetric matrix from (2.51) and Ax is defined
as:

Ax =

[
γx αx
αx βx

]
. (2.54)

This representation of Tx has four free paramaters: Qx, αx, βx and γx . However, recall that
Tx is symplectic. This is a matrix relation which here translates to

βxγx − α
2
x = 1 . (2.55)

α, β and γ are known as the Courant-Snyder parameters or, as they will here be referred to, the
Twiss parameters, and Q is the tune. Note that

Tr(Tx) = 2 cos(2πQx) . (2.56)

Using (2.56), one can e�ciently compute the Twiss parameters and tune given the transfer
map Tx of a cell in the periodic lattice. Note that the Twiss parameters derived from such a
cell is a function of the internal position in the cell, i.e. from which position one defines the
start of the cell. Let the horizontal transfer map for a cell be

T = T2T1 , (2.57)

whereT1 andT2 are both products of an arbitrary number of element transfer matrices. Note
that the start of the cell is the entrance of the first element in T1, analogous to the exit of the
last element in T2. A di�erent description of the same periodic lattice can be constructed by
choosing a di�erent cell:

T′ = T1T2 = T1TT1
−1 , (2.58)

where T′ instead starts with the entrance of the first element in T2. Note that

Tr(T) = Tr(T′) = 2 cos(2πQx) , (2.59)

since (square) matrix multiplication commutes under the trace operation. The tune is thus
independent of the position in the cell.

For the Twiss parameters, we have:

T = I cos(2πQx) + RAx sin(2πQx) ,
T′ = I cos(2πQx) + RAx

′ sin(2πQx) = T1TT1
−1

= I cos(2πQx) + T1RAxT1
−1 sin(2πQx) ,

=⇒ RAx
′ = T1RAxT1

−1 ,

=⇒ Ax
′ = R−1T1RAxT1

−1 = RᵀT1RAxT1
−1 =

=
(
T1
−1)ᵀAxT1

−1 ,

(2.60)
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2.1 (Transverse) Beam Dynamics

where the last two steps make use of Rᵀ = R−1 and a corollary to the symplecticity condi-
tion: RᵀTR =

(
T−1)ᵀ. Summarizing, the starting position for a given cell a�ects the Twiss

parameters, but the tune stays the same. To make this statement more rigorous, let s0, s1 be
longitudinal positions inside a cell where T(s0, s1) denotes the mapping from position s0 to
s1. The Twiss parameter mapping can then in general be given as:

Ax(s1) =
{
T(s0, s1)−1

}ᵀ
Ax(s0)T(s0, s1)−1 . (2.61)

If the transfer map for each element of an accelerator is known, then the Twiss parameters at
any position can be propagated along the accelerator using (2.61), thus providing a method
for computing the Twiss parameters as a function of s. As an example, Figure 2.3 shows βx
in HL–LHC for a given optics, that is, for Twiss parameters generated by a certain setting
of quadrupole strengths. For now, we only remark that the β-function assumes large values
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Figure 2.3: βx in HL–LHC shown for both beams over the full ma-
chine (a), and zooomed in around IP5 (b) for collision optics. s = 0
corresponds to IP1.

around interaction point 1 and 5, and relatively small values at the points themselves.
An invariant property along the accelerator is the emittance, εx . The emittance is defined

as

εx =
[
x px

]
Ax

[
x
px

]
= xᵀAxx . (2.62)

To prove its constancy, let an arbitrary point x in horizontal phase space get mapped along
the beamline via a transfer map T. The emittance at the new position ε ′x thus satisfies

ε ′x = (x′)ᵀAx
′x′ = xᵀTᵀ

{(
T−1)ᵀAxT−1

}
Tx = xᵀAxx = εx , (2.63)

Note that 2.62 defines an ellipse in phase space. This can be made more explicit by expressing
it on the form:

εx = γxx2 + 2αxxpx + βx p2
x , (2.64)

which can also be graphically reppresented as in Figure 2.4. If the emittance is a constant
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Figure 2.4: Parameterization of a phase space ellipse using the Twiss
parameters.

for a particle traversing an accelerator, it then follows that a particle passing through a point
multiple times in an accelerator will assume values on the ellipse defined at said point. This
is the explanation for the ellipses shown in Figure 2.2.

Note that the Twiss parameters predict on which ellipse a given particle will be found
on for each s, but gives no information about how a given point on a phase space ellipse
translates to the next. To resolve this, we introduce the angle variable:

tan ϕx = −β
px

x
− αx . (2.65)

Given the angle variable, it is possible to solve for x and px in (2.64):

x =
√
εxβx cosϕx

px = −

√
εx

βx
(sin ϕx + αx cosϕx)

(2.66)

Observe that knowing the value of ϕx as a function of s, together with the emittance and
Twiss parameters, gives a complete description of a particle’s trajectory. To achieve this end,
we introduce the phase advance µx :

µx(s0, s1) = ϕx(s1) − ϕx(s0) =

∫ s1

s0

ds
βx(s)

. (2.67)

The phase advance is the increment in angle-variable between two points in an accelerator,
and is determined solely by the βx function. This implies that it is su�cient to know the
initial point in phase space for a particle, together with the Twiss parameters for the accel-
erator, to determine its full evolution in phase space. This observation is made rigorous in
(2.68):

T(s0, s1) =


√

βx(s1)
βx(s0)

{
cos µx + αx(s0) sin µx

} √
βx(s0)βx(s1) sin µx

αx(s0)−αx(s1)√
βx(s0)βx(s1)

cos µx −
1+αx(s0)αx(s1)√
βx(s0)βx(s1)

sin µx

√
βx(s0)
βx(s1)

{
cos µx − αx(s1) sin µx

}
 ,
(2.68)
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Figure 2.5: Plot of the horizontal trajectory of a particle for one turn
in HL–LHC, starting at IP1 with x = 1.0 mm and px = 0.0 rad.

where µx is the phase advance between s0 and s1. Using this transfer mapping, Figure 2.5
shows the horizontal position of a particle for one turn in the HL–LHC. Observe that the
particle oscillates, that it assumes greater values where βx is at its greatest and that the oscil-
lation is driven by the phase advance.

If C is the length of a periodic cell (or circular accelerator), then T(s0, s0 + C) is equal
to the transfer matrix for one turn as given in (2.53). This observation leads directly to the
relation between the phase advance and tune:

Qx =
1

2π
µx(0,C) (2.69)

This also provides an interpretation for the tune: it is the number of oscillations for one turn
in a periodic accelerator. In HL–LHC, the tunes are equal across the two beams and assume
values:

Qx = 62.31
Qy = 60.32

(2.70)

Interestingly, the tunes di�er for the two planes. From the perspective of a single particle
passing through HL–LHC, the di�erence in tune implies that it will perform roughly two
more oscillations in the horizontal plane than in the vertical plane per turn. Note however
that the fractal part of the tune is almost equal across the planes. This implies that when
considering the evolution of a particle’s transverse position, at an arbitrary fix location s,
from one turn to the next, the oscillations will occur with almost the same frequency in the
two transverse planes.
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2.1.5 Closed Orbit
The notion of a closed orbit will be very important for future analysis. It is only well-defined
for a periodic lattice, from here on taken to mean a circular accelerator with circumference
C. The closed orbit is represented by the point in phase space that closes in on itself after
one turn in the accelerator:

uco(s) = uco(s + C) , (2.71)

where uco is a state vector as defined in (2.29). Monochromaticity is still assumed, and so all
dynamics remain uncoupled. The transverse dynamics remains the primary interest, and so
the analysis will be performed for the horizontal plane where x =

[
x px

]ᵀ
, but the treatment

of the vertical plane remains analogous. The one-turn map for a given s is here defined as:

f 1
s (x) = T1(s)x + d1(s) . (2.72)

Note how in this treatment the one-turn map has a constant d1(s). This di�ers from the
previous treatment where d1(s) was zero due to the assumption of no element errors nor
powered orbit correctors. When discussing the closed orbit however, the analysis is only
non-trivial if d1(s) 6= 0, wherefore it is assumed to be non-zero.

The following holds for the horizontal closed orbit xco:

xco(s) = f 1
s
{
xco(s)

}
= T1(s)xco(s) + d1(s) , (2.73)

where I−T1(s) must be invertible for any operational machine. If it was not, then the notion
of closed orbit would not exist for the machine, which in turn would render it inoperable as
the notion of stability breaks down. It follows that

xco(s) =
{
I − T1(s)

}−1
d1(s) . (2.74)

In the previous analysis, xco(s) = 0, i.e. the closed orbit was equal to the reference orbit.
To see how the non-zero closed orbit enters the results, consider the one-turn map applied
to an arbitrary point in phase space x, at an arbitrary position s:

f 1
s (x) = f 1

s
{
x − xco(s) + xco(s)

}
= T1(s)

{
x − xco(s) + xco(s)

}
+ d1(s)

= T1(s)
{
x − xco(s)

}
+ xco(s) .

(2.75)

Note how the one-turn map at a position s maps any point x based on its location in phase
space relative to the closed orbit. It follows that the n-turn map satisfies

f n
s (x) = T1

n(s)
{
x − xco(s)

}
+ xco(s) . (2.76)

We recall that T1(s) is the one-turn mapping for the perfect machine, and therefore it
follows that when the closed orbit is non-zero, the ellipse in phase space is shifted by the
closed orbit, whereas its shape, determined by T1(s), remains the same. Expressed di�er-
ently, the closed orbit defines the center of the dynamics whereas the dynamics themselves
are determined by the Twiss parameters. This is showcased in Figure 2.6: the distance and
orientation of the starting point relative to the closed orbit define the scale of the dynamics,
but the shape of the orbit is pre-determined by the Twiss parameters, i.e. the optics.
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Figure 2.6: Phase-plots for a FODO lattice where L = 1, f =
√

2
and di�erent closed orbits. Each cross in the graph corresponds to
an iterate derived from the starting point (0, 0) with a closed orbit
coded with the same color.

Before concluding the discussion of the closed orbit as phenomenon and moving on to
deriving how it can be computed e�ciently, we will provide motivation for why the closed
orbit plays an integral role in the operation of an accelerator. For the most part, it can be as-
sumed that particle beams in an accelerator are enveloped by a circular pipe centered around
the reference orbit, and that any particle reaching the pipe is lost. The shape of the dynamics
is defined by the chosen optics and is therefore not, in the first order, impacted by machine
dipolar imperfections. The closed orbit, however, is, and if the closed orbit is large enough
at a point along the accelerator then the beam can hit the pipe. Such a situation is shown in
Figure 2.7. In other words, if the closed orbit is not controlled, then the beam may be lost.
Similarly, in a collider, such as HL–LHC, where two beams are to interact with each other,
if the closed orbit is not controlled, then they might not enter collision, as the closed orbits
have caused the beams to drift apart at the point of collision.

The next sections will show how the closed orbit can be perturbed by machine imper-
fections and how orbit correctors can have the same impact. Before that, we summarize the
findings:

1. Accelerator design defines the Twiss parameters, and hence the dynamics around the
closed orbit.

2. Machine errors and powered orbit correctors, together with the map of the perfect
machine, determine the closed orbit.
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x

x

Figure 2.7: Cross-section of a beam shown inside a circular beampipe
for two di�erent closed orbits, denoted by x’s.

3. Controlling the closed orbit of an accelerator is integral to its operation.

2.1.6 Derivation of the Closed Orbit
The ultimate goal is to derive a formalism for how machine errors alter the closed orbit, this
part is dedicated to deriving the perturbation of the closed orbit caused by a kick. A kick, in
this context, corresponds to a constant added to the canonical momentum for a first-order
map. For example, the e�ect of an orbit corrector dipole is such a kick. The linear one-turn
transfer map to be used is:

T(s0, s0 + C) = T1(s0) =

[
cos 2πQ + α0 sin 2πQ β0 sin 2πQ
−γ0 sin 2πQ cos 2πQ − α0 sin 2πQ

]
, (2.77)

where quantities evaluated at s = s0 are indexed by zero and all indices indicating transverse
plane have been left out. Now assume an orbit kick θ at s = s0, and an otherwise perfect
machine. The following then holds for the perturbed one-turn-map:

f 1
s0

(x) = T1(s0)x +

[
0
θ

]
, (2.78)

where the closed orbit naturally must satisfy f 1
s0

[
xco(s0)

]
= xco(s0). This can be computed

directly yielding

xco(s0) =
{
T1(s0) − I

}−1
[

0
−θ

]
=

1
2(1 − cos 2πQ)

[
cos 2πQ − α0 sin 2πQ − 1 −β0 sin 2πQ

γ0 sin 2πQ cos 2πQ + α0 sin 2πQ − 1

] [
0
−θ

]
=

θ

2(1 − cos 2πQ)

[
β0 sin 2πQ

1 − cos 2πQ − α0 sin 2πQ

]
.
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This can be further simplified using some trigonometry:

xco(s0) =
θβ0 sin 2πQ

2(1 − cos 2πQ)
=

2θβ0 sin πQ cos πQ
4 sin2 πQ

=
θβ0 cos πQ
2 sin πQ

,

px,co(s0) =
θ

2(1 − cos 2πQ)
(
1 − cos 2πQ − α0 sin 2πQ

)
=

θ

4 sin2 πQ

(
2 sin2 πQ − 2α0 sin πQ cos πQ

)
=

θ

2 sin πQ
(
sin πQ − α0 cos πQ

)
.

At this point the closed orbit at the position of the kick has been computed. It is possible to
compute the closed orbit as a function of s by applying the transfer map T(s0, s):

xco(s) = T(s0, s)xco(s0) ,

xco(s) =
θ

2 sin πQ
{√
β0βs(cos µ + α0 sin µ) cos πQ +

√
β0βs(sin πQ − α0 cos πQ) sin µ

}
=
θ
√
β0βs

2 sin πQ
(
cos µ cos πQ + sin µ sin πQ

)
=
θ
√
β0βs

2 sin πQ
cos(πQ − µ) ,

px,co(s) =
θ

2 sin πQ

√
β0

βs

{
cos µ sin πQ − cos πQ sin µ − αs(cos µ cos πQ + sin µ sin πQ)

}
=

θ

2 sin πQ

√
β0

βs

{
sin(πQ − µ) − αs cos(πQ + µ)

}
=

θ

2 sin πQ

√
β0

βs
sin(πQ − µ) −

αs

βs
xco(s) ,

where µ is the phase advance from s0 to s. The answer is thus:

xco(s) =
θ
√
β0βs

2 sin πQ
cos(πQ − µ) ,

px,co(s) =
θ

2 sin πQ

√
β0

βs
sin(πQ − µ) −

αs

βs
xco(s) .

(2.79)

The key observations are that:

1. The closed orbit caused by an orbit kick can be expressed using only the Twiss param-
eters, phase advance and the kick strength.

2. The larger the β-function is at the source of the kick, the greater the impact.
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3. The induced closed orbit is linear in the orbit kick.

Recalling the plot of βx in Figure 2.3, it follows from the second point that the areas most
sensitive to kicks for HL–LHC are around IP1 and IP5.

The last point is however especially poignant: given a distribution of kicks along the ac-
celerator, the resulting aggregate closed orbit is the sum of the individual kicks’ contribution
to the closed orbit. Next it will be shown that machine errors give rise to kicks which are
linearly proportional to the errors, e�ectively extending the previous statement to distribu-
tions over errors. This implies that the closed orbit perturbation caused by orbit correctors
and machine errors can be superimposed, the underpinning of the matrix formalism derived
in Chapter 3.

2.1.7 Machine Errors to Orbit Kicks
It should come as no surprise at this point that machine errors have an impact on the closed
orbit. It is however not obvious that the most pronounced machine errors (from the per-
spective of transverse beam dynamics) can be well-approximated by a linear treatment. The
underlying idea is simple: if a given machine error can be perceived as e�ectively inducing an
orbit kick θ at a given s, then it can be treated linearly as per (2.79). From this perspective,
the task is to map di�erent machine errors to their corresponding orbit kicks. Below follows
a list of the errors that will be considered:

• Transverse misalignment: ∆x, ∆y

• Rotational misalignment: ∆ψ

• Field error: ∆k0, ∆k1

where positive rotation is defined by the right-hand rule around the longitudinal axis using
the coordinate system in Figure 2.1. All these errors are to be analyzed for bending magnets
and quadrupoles. In the end, there will be a mapping from these errors to their orbit kick
and hence to their e�ect on the closed orbit, meaning that for a given machine (as defined
by its errors) it is possible to compute the aggregate closed orbit perturbation.

Bending Magnet Errors
For a bending magnet, the analysis is straightforward. First, let us consider the case of trans-
verse misalignment. The magnetic field inside a bending magnet is uniform. Performing a
transverse shift will not impact the magnetic field at any position inside the bending magnet
and therefore any particle passing through it will not experience any di�erence:

θd,x
∆x = θd,x

∆y = 0 ,

θ
d,y
∆x = θ

d,y
∆y = 0 .

(2.80)

For a field error ∆k0, let us recall from the transfer map of the bending magnet (2.37) that
there is constant term in the mapping for px, (h − k0)L. This term is ideally zero, but in the
case that an error ∆k0 is added to k0, there is a non-zero orbit kick as per

θd,x
∆k0

= −∆k0L ,

θ
d,y
∆k0

= 0 .
(2.81)
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A rotation ∆ψ around the longitudinal axis can be treated as splitting the dipole field
into two components, one in x and one in y as per:

∆kx
0 = −k0 sin ∆ψ ≈ −∆ψk0 ,

∆ky
0 = k0(cos ∆ψ − 1) ≈ 0 ,

(2.82)

where ∆ψ � 1 has been assumed. This directly induces orbit kicks

θd,x
∆ψ

= 0 ,

θ
d,y
∆ψ

= −∆ψk0L .
(2.83)

Quadrupole Errors
For the treatment of the quadrupole the thin-lens approximation will be used and the as-
sumption that the transverse planes are uncoupled. A transverse misalignment of δ is equiv-
alent to an increment in orbit at the point by −δ. This directly gives the kick for transverse
misalignment:

θ
q,x
∆x = k1L∆xco ,

θ
q,x
∆y = 0 ,
θ

q,y
∆x = 0 ,
θ

q,y
∆y = −k1L∆yco .

(2.84)

The orbit kick induced by a field error follows analogously from the treatment of the bending
magnet:

θ
q,x
∆k1

= −∆k1Lxco ,

θ
q,y
∆k1

= ∆k1Lyco .
(2.85)

Similarly, the rotational error ∆ψ around the longitudinal axis is analogous to the bending
magnet with the added observation that a quadrupole has two axes of symmetry in the trans-
verse plane instead of the one for the dipole:

∆kx
1 = k1(cos 2∆ψ − 1) + k1 sin 2∆ψ ≈ 2k1∆ψ ,

∆ky
1 = −k1(cos 2∆ψ − 1) + k1 sin 2∆ψ ≈ 2k1∆ψ ,

(2.86)

where ∆ψ � 1 has been assumed. This induces the following kicks:

θ
q,x
∆ψ

= −2k1∆ψLxco ,

θ
q,y
∆ψ

= −2k1∆ψLyco .
(2.87)

Summary
The mapping from element error to induced orbit kick is summarized below in Table 2.1. An
important observation from Table 2.1 is that all the induced kicks are linear in the machine
errors. Recalling that the closed orbit perturbation in turn is linear in orbit kicks leads to
the conclusion that the closed orbit perturbation is linear in the machine errors.
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Table 2.1: Table over errors and corresponding transverse kicks.

BENDING MAGNET
Error type Kick in x Kick in y
∆x 0 0
∆y 0 0
∆ψ 0 −k0∆ψ
∆k0 −∆k0L 0
QUADRUPOLE
Error type Kick in x Kick in y
∆x k1L∆x 0
∆y 0 −k1L∆y
∆ψ −2k1Lxco∆ψ −2k1Lyco∆ψ
∆k1 −Lxco∆k1 Lyco∆k1

2.1.8 Statistical Interpretation of Twiss Paramters
All analysis up to this point has been analogous to that of a single particle with a given
emittance. In practice, particles in a circular accelerator are inserted in groups called bunches,
where one bunch has a given longitudinal length, contains up to billions of particles and a
beam can be made up of thousands of bunches. By physical necessity, the particles in a bunch
will have a spread in transverse phase space, and therefore in transverse emittance. This
warrants a di�erent interpretation of the Twiss parameters.

When transverse emittance is discussed for an actual beam, it is as a descriptor for the
distrubition over transverse emittances. In this thesis, it is assumed that the underlying dis-
tribution is Gaussian, and all numbers provided in the context of emittance are the 1*RMS
(root-mean-square) values. In this context, phase space ellipses for a given emittance εx can
be seen as enveloping the phase space area where 68% of all particles in a bunch have εx or
lower emittance. From this perspective, the closed orbit can be seen as the centroid of the
Gaussian distribution, that is, the mean state vector particles assume in phase space. The
argument for controlling the closed orbit remains the same: smaller closed orbit translates
into greater distance to the beampipe and therefore less particles lost.

Emittance can either be specified in terms of geometric emittance εx, which is the emittance
we have considered so far, or in terms of normalized emttance εN,x, defined as:

εN,x = βrelγrelε , (2.88)

where βrel and γrel are the relativistic factors. The benefit of the normalized emittance is
that it remains constant as the beam gets accelerated, which is not the case for the geometric
emittance. The underlying cause is that our dynamical variable for the transverse momentum
is scaled by the longitudinal momentum, and if the beam is accelerated, then the phase space
ellipse has to shrink.

Another important metric of the beam is the beam size σx :

σx(s) =
√
βx(s)εx . (2.89)

The beam size is recognizable from Figure 2.4 as the amplitude of the oscillation at any point
s. Lastly, the value of the β function at an interaction point is denoted by β∗, and unless
specified otherwise is assumed to be equal for the two transverse planes.
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2.1.9 Luminosity
LHC and HL–LHC are colliders, meaning they accelerate beams up to a collision energy and
then have them collide with each other. These collisions are performed to study rare events
taking place inside them, and the more rare events that take place the better. The number of
events per second can be written as:

dR
dt

= Lσp , (2.90)

where L is the luminosity and theσp the cross-section for a given event. The cross-section is a
constant from the perspective of an accelerator designer, wheras the luminosity is a quantity
that can be optimized for. Assuming both beams collide head-on, have the same internal
structure and Gaussian cross-section, the luminosity can be expressed as [7]:

L =
N2 f Nb

4πσ2 × exp
(
−

d2

4πσ2

)
, (2.91)

where N is the number of particles in a bunch, Nb is the number of bunches in a beam, f is
the revolution frequency of the beams, σ is the beam size at collision, assumed equal for both
planes, and d is the distance between the centers of the beams at collision, referred to as the
beam separation.

The luminosity as defined in (2.91) does not account for all e�ects, such as the impact of
colliding at an angle, but it includes the major contributors relevant for this thesis. It follows
that increasing the luminosity can be done by either increasing the number of particles in
collsion, increasing the revolution frequency (more bunches in collision per unit time) or
reducing the beam size (denser beams means more collisions). The term that is most relevant
for this thesis is d, the beam separation. The beam separation is equal to the Pythagorean
distance between the closed orbit positions of the beams at the collision point, and as such
it provides a strong incentive to minimize the closed orbit at collision points.

2.2 Linear Algebra
The primary concern of this thesis is e�ective modeling of closed orbit perturbation and
correction. Because of the linearity of closed orbit perturbation with respect to a kick, it is
possible to model this in a linear algebra formalism, which in turn warrants a review of the
tools in linear algebra that will be used. As the vector spaces considered will be finite, all
discussions of linear mappings will be expressed in terms of matrices.

2.2.1 Notation and Elementary Operations
Let A ∈ Rm×n. We will make use of the ’†’ operator as A† to signify the operation of taking a
subset of rows and columns of A. Which rows and columns is given by context and specified
in text where ambiguous. We define the range of A as

range(A) =
{
Ax ∈ Rm

∣∣∣ x ∈ Rn} , (2.92)
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and the kernel as
ker(A) =

{
x ∈ Rn

∣∣∣ Ax = 0
}
. (2.93)

The notation ||x||p , x ∈ Rn, is used for the Lp-norm on Rn, and abs(x) for the absolute
value applied to each element of the vector x.

Inequalities of the form x < b define one inequality per element in x.

2.2.2 Projection Matrices
A square matrix P of size n × n is called a projection matrix if it satisfies

P2 = P . (2.94)

A corollary is that if P is a projection matrix onto range(P), then I − P is another projection
matrix onto ker(P). Trivially it follows that

P(I − P) = 0 , (2.95)

where 0 is the zero matrix. Finally, a projection matrix P which also satisfies

Pᵀ = P , (2.96)

is called an orthogonal projection matrix.

2.2.3 Singular Value Decomposition
The Singular Value Decomposition (abbrev. SVD) is a decomposition that can be performed
on any complex matrix, here we limit the treatment to real matrices. The (full) SVD of
A ∈ Rm×n is written:

A = USVᵀ , (2.97)

where U and V are orthogonal matrices of dimension m × m and n × n respectively and S is
a m × n matrix of the form

S =



σ1
. . .

σn
0 . . . 0
... . . . ...
0 . . . 0


, (2.98)

and it has been assumed m > n. The σi in S are referred to as the singular values of A.
Important properties of the SVD:

• σ1 ≥ . . . ≥ σi ≥ . . . ≥ σn ≥ 0

• Avi = σiui , i = 1, . . . , n

• The column vectors vi of V with σi = 0 span ker(A).

• The column vectors ui of U with σi > 0 span range(A).
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2.2.4 Moore-Penrose Inverse
Consider the problem

Ax = b , (2.99)

where one is to solve for x. Focusing on A, there are three possibilities:

• A is invertible, i.e. there is a unique solution.

• A is underdetermined, i.e. there are infinitely many solutions.

• A is overdetermined, i.e. there is no solution.

Now, for the invertible case, we trivially get the solution

x = A−1b , (2.100)

via the inverse. In the other scenarios, however, no inverse is available, in which case one
can define a pseudoinverse. The most common pseudoinverse is the Moore-Penrose inverse, here
denoted by pinv(·) and used interchangeably with the word pseudoinverse from now on. It
has the following properties:

• If A is invertible, then pinv(A) = A−1.

• If A is underdetermined, then x′ = pinv(A)b is a solution to Ax = b with minimal
L2-norm.

• If A is overdetermined, then x′ = pinv(A)b is a solution to minx ||Ax − b||2 with
minimal L2-norm.

• It commutes with transposition:
{
pinv(A)

}ᵀ
= pinv(Aᵀ).

Another property of the pseudoinverse is that it can be used to construct orthogonal
projections P1, P2 onto range(A) and range(Aᵀ) respectively:

P1 = A pinv(A) ,
P2 = pinv(A)A .

(2.101)

Lastly, a more esoteric property of the pseudoinverse is that it is continuous, under some
conditions. To see that its continuity is not unconditional, consider the following example:

Aε =

[
ε 0
0 0

]
=⇒ pinv(Aε ) =

[
1/ε 0
0 0

]
,

lim
ε→0

Aε =

[
0 0
0 0

]
, but lim

ε→0
pinv(Aε ) does not converge.

The condition under which the pseudo-inverse is continuous is that its argument must retain
its rank in the limit [8]. In the above example,Aε converges to a matrix with rank zero, whereas
it started out as a rank one matrix, hence the discontinuity of the pseudo-inverse.

41



2. Theory

Computing the Pseudoinverse
Severalmethods for computing the pseudoinverse exist, but for this thesis the one usedwill be
based on the SVD. The merit of using an SVD-based pseudoinverse is that a variable number
of singular values can be used. To see the merit of this, let us consider the following system
of equations:

Ax =

[
10−12 0

0 1

]
, x =

[
10−3

1

]
. (2.102)

Here the matrix is close to being rank one, but its upper-left value is non-zero so the solution
is x =

[
109 1

]ᵀ
. If one includes all singular values in the pseudoinverse, it will give the same

solution. However if one enforces that no singular value smaller than 10−10 is used for the
computation of the pseudoinverse, then x =

[
0 1

]ᵀ
. In this case, the argument could be

made that the upper-left entry in A is virtually zero or numerical noise, and a singular value
cuto� o�ers one method of systematizing this value judgement by leaving out small singular
values.

The nomenclature will still refer to these pseudoinverses by ’pinv(·)’, but it is to be kept
in mind that by excluding singular values in its computation some of the previous properties
break down. For example, if any singular value is excluded then an invertible matrix will not
have a pseudoinverse equal to its inverse, nor does the subsequent properties for the under-
or overdetermined systems apply. However, removing singular values in the computation
does not impact the commutativity, nor does it change the fact that P1 and P2 are orthogonal
projections (even though their range is altered).

2.2.5 Linear Transformations of Random Vectors
Let x ∈ Rn be sampled from a distribution D(Rn) with covariance matrix Σx, and let A ∈
Rm×n. Let y = Ax, and Σy its covariance matrix. The following holds:

Σy = AΣxAᵀ . (2.103)

Equation (2.103) allows for directly computing the statistics of a linear operation applied to
random vectors, assuming that the covariance of the distribution is known.

2.3 Optimization
As part of this thesis revolves around an optimization problem, it would be prudent to com-
ment on it briefly. For analysis of the optimization problem at hand, see Chapter 4. If no
structure beyond the problem category exists, then the most general paradigm of optimiza-
tion is non-linear constrained minimization. It can be stated as follows:

min
x∈Rn

f (x)

subject to gi(x) ≤ 0 , i = 1, . . . , k ,
h j(x) = 0 , j = 1, . . . , l .

(2.104)

When it comes to non-linear constrained optimization, methods of solving them are problem-
dependent. Any structure beyond the minimal should be utilized to construct a good solver,
such as convexity.
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2.3.1 Convex Optimization
A function r : Rn → R is called convex if it satisfies that

r[λx + (1 − λ)y] ≤ λr(x) + (1 − λ)r(y) , ∀x, y ∈ Rn, ∀λ ∈ [0, 1] , (2.105)

and a function a : Rn → R is called a�ne if it is of the form

a(x) = cᵀx + b , (2.106)

where c ∈ Rn and b ∈ R. Now, if the functions gi and f are convex and all h j are a�ne, then
the problem in (2.104) belongs to the category of convex optimization. Convex optimization
problems have the useful property that every local minimum is guaranteed to be a global
minimum. Several solvers for convex optimization problems exist, and assuming that a given
problem is well-conditioned and its dimensionality is manageable, then these solvers can be
robust and e�ective.
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Chapter 3

Framework Implementation

The framework was implemented as a Python package called POCKPy (Perturbation, Orbit
Correction and Knobs in Python). It relies on the fact that all sources of closed orbit pertur-
bation are linear in their kick. In Chapter 2, it was shown that element imperfections give
rise to kicks linearly proportional to them, and that elements called orbit corrector dipoles
can produce controllable orbit kicks. In this chapter, we will make use of these observations
to construct a matrix formalism for computing the closed orbit.

For simplicity, we first assume a single-beam circular accelerator consisting out of noth-
ing but the following elements:

1. Drift spaces

2. Bending magenets

3. Quadrupoles

4. Orbit correctors

Secondly, we assume that we have access to a table which provides the following quantities
at the middle of each element in the accelerator:

1. Twiss parameters

2. Phase advances (relative to some point)

3. Position s along the accelerator (relative to some point)

4. Element parameters (L, k0, k1)

5. Closed orbit in (x, px) and (y, py)
If the accelerator under consideration had m elements, then there would be m rows in this
table. This allows, for example, to store the values of βx in a vector βx of length m. Anal-
ogously, orbits in transverse phase space evaluated at these positions could be described by
vectors of length 4m.
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3.1 Linear Algebra Formalism
We observe that given data listed above, it is possible to compute:

1. Any error-induced orbit kick.

2. The perturbation of the closed orbit as the result from any orbit kick.

Most importantly, recall that the closed orbit perturbations caused by machine errors are
linear with respect to the errors. Let there be n unique machine errors where ei is the magni-
tude of the ith error. The closed orbit perturbation caused by this error can then be written

∆ui = eipi , (3.1)

where ∆ui and pi are 4m long vectors containing the closed orbit perturbation in the (x, px)
and (y, py) phase spaces. Note that pi is defined by (2.79) together with scaling factor from
Table 2.1. It follows that the total closed orbit perturbation caused by machine errors can be
written as follows:

∆u =

n∑
i=1

eipi =
[
p1 p2 . . . pn

] 
e1
e2
...

en

 = RMee , (3.2)

where RMe is the error response matrix of size 4m × n and e the error vector of length n. By an
anologous derivation, the impact on closed orbit from powering the orbit correctors in the
machine is given by:

∆v = RMcc , (3.3)

where RMc is the corrector response matrix of size 4m × k and c is the vector containing the
strength of each corrector.

We have derived linear mappings from the n-dimensional error space and k-dimensional
corrector space to the 4m-dimensional orbit space. Any possible instance of the machine
imperfections corresponding to a vector e can be analyzed from the perspective of its impact
on the closed orbit, its correction and the residual orbit in the machine, using the following
equation:

r = RMee − RMcc . (3.4)

To correct for a given machine, defined by its errors e, means to achieve a suitable r by
powering correctors c, subject to constraints on c and r.

Implementing an orbit knob in this formalism is done by solving for c in

RMc
†c = k , (3.5)

where † denotes the operation of taking a subset of rows, corresponding to the element posi-
tions and variables of interest, and a subset of columns, corresponding to desired correctors
to be used for implementing a given knob, with k encoding the requisite values at said rows.
We recall that the purpose of an orbit knob is to achieve a certain closed orbit in the ma-
chine, often corresponding to a certain opertational scenario. An example of an orbit knob
is shown in Section 3.4.
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Collider Caveat

Previous analysis assumed a circular accelerator with one beam, which does not fit the de-
scription of HL–LHC, a collider. This can be addressed by extending the number of rows in
the matrices. If both beams pass through the same number of elements, then the extension
would lead to an 8m-dimensional orbit space, i.e. each row in the response matrices can be
identified by a 3-tuple (beam, dynamical variable, element name).

From the perspective of computing the response matrices, this introduces two changes.
Firstly, the table supplied as input has to contain all information for both beams. Secondly,
some elements are shared between the two beams. This happens around collision points
where the beams have to be brought close together before colliding, wherefore they pass
through shared optics. This has an impact in that some correctors and sources of errors
are common between the beams, i.e. there are elements which can impact both beams. In
practice, this comes down tomore bookkeeping, andwhile shared elements have an impact on
the analysis, they do not considerably complicate the computation of the response matrices.

3.2 Core Structure
To implement the framework the programming language was chosen to be Python, specifi-
cally Python 3. The arguments, in no particular order, for doing so are:

1. The dominion of Python as a scripting language at CERN.

2. The availability of good packages for numerical linear algebra and data structures (e.g.
numpy [9] and pandas [10]).

3. Already developed Python interfaces to software at CERN being available.

4. The possibility of performing the analysis on SWAN (Service forWeb based ANalysis),
a cloud-based data analysis service with a Jupyter notebook interface used at CERN.

Currently all HL–LHC and LHC optics are defined in MAD-X scripts, stored as .madx
files. Di�erent modes of analysis of optics are available inside MAD-X, among which the
most relevant one for POCKPy is the TWISS module. It computes the Twiss parameters and
closed orbit for a given beam and outputs it in a .tfs file, an output format unique toMAD-
X. With this background, a simplified input pipeline and overview of POCKPy is given in
Figure 3.1. POCKPy supports input in the form of either .tfs files or a .madx file defining
a valid instance of HL–LHC. If a .madx file is supplied, it is executed by MAD-X inside
the framework to produce .tfs files. Supplying one .tfs file per beam provides su�cient
information for analysis in POCKPy. Once valid input is provided, it is parsed and passed
around in the framework, finally resulting in the response matrices. After this, the user can
directly interact with the solver module to perform analysis on the closed orbit.

More information together with the source code of POCKPy can be found at: https:
//gitlab.cern.ch/jodander/pockpy.
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3. Framework Implementation
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- Propagates settings to other 
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- Filters Twiss tables to reduce 

number of elements

- Computes response 

matrices in pandas formatAnalysis request

{...}

Figure 3.1: Rough schedule of the input-output pipeline and struc-
ture of POCKPy. Orange boxes correspond to Python modules with
name in bold.

3.2.1 Twiss Table
The Twiss table is what gets parsed from the input and contains the necessary data for the
computation of the response matrices. It has an ordered index where all defined elements
in HL–LHC are sorted by longitudinal position and where each column corresponds to a
variable evaluated at that position. A subset of the relevant columns are given in Table 3.1.

Table 3.1: Table describing a subset of the data columns in a Twiss
table.

Column name Description
BETX Twiss β-function in the horizontal plane.
ALFY Twiss α-function in the vertical plane.
MUX Phase advance in horizontal plane.
L Length of the element.
K0L Integrated dipole field strength.
K1L Integrated quadrupole field strength.
X Closed orbit in x.
Y Closed orbit in y.
KEYWORD String specifying the element type.
S Longitudinal position along the lattice.

From the perspective of closed orbit perturbation, the important quantities are the Twiss
parameters. What the Twiss table provides in this respect is the Twiss parameters evaluated
at the middle of every element in HL–LHC. For the purpose of this thesis, that is su�cient.
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What is important is that the closed orbit is known at sensitive elements and that no source
of error is missed, but since all sensitive elements and all sources of errors are, trivially, ele-
ments, nothing is missed by discretizing the path along the accelerator w.r.t. to the center of
elements.

3.2.2 Response Matrices
One of the most important parts of the framework is the ability to compute the response
matrices RMc and RMe. Let us recall (2.79) which defines the closed orbit perturbation
caused by a kick θ at s = 0, evaluated at an arbitrary s, repeated next for convenience.

xco(s) =
θ
√
β0βs

2 sin πQ
cos(πQ − µ) ,

px,co(s) =
θ

2 sin πQ

√
β0

βs
sin(πQ − µ) −

αs

βs
xco(s) .

We note that given a kick θ at the middle of an arbitrary element, the closed orbit pertur-
bation at the center of every other element can be computed. Not only that, but due to the
column structure of the Twiss table, the computation can be vectorized. We also observe
that the conversion factor from machine imperfection to kick involves quantities which are
available in the Twiss table, e.g. k0 and L.

The data structure for the response matrices warrants a comment. The response matrices
are stored as pandas DataFrames, meaning they can be accessed by an index and a column.
The structure of the columns is direct: each column in the corrector response matrix corre-
sponds to a corrector, and each column in the error response matrix corresponds to a type
of error for a given bending magnet or quadrupole. The index is a bit more contrived, it is
accessed by a 3-tuple of (beam, dymamical_variable, element). The benefit of this
structure is that given a source of closed orbit perturbation, its e�ect can be evaluated for
beams, dimensions and elements in a single matrix multiplication.

Technicalities beyond what has been discussed do exist, e.g. taking the direction of beams
into consideration, but the general idea has been accounted for. Computing response matri-
ces can be done e�ciently with the Twiss table.

3.3 Additional Routines
Here a few general comments are dedicated to routines in the framework not covered before.

3.3.1 Slicing the Twiss Table
HL–LHC, as its predecessor LHC, are big machines from the perspective of the number of
elements in them; if the full accelerator is considered, the Twiss table for HL-LHC contains
over 31 thousand rows. Combining this with the fact that a good portion of these are sources
of error and the fact that each response matrix need a factor four as many rows as the Twiss
table (one per transverse dynamical variable), the final response matrices will have hundreds
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ofmillions of entries, each encoded as a float value. Even assuming 32-bit float representation,
physical memory in the order of 64 GB would still be necessary for their storage.

In order to minimize the amount of memory, and therefore also speeding up the calcu-
lations, a method for filtering the Twiss table w.r.t. element types, longitudinal position and
whether it is a source of closed orbit perturbation was introduced. The result is that the user
can choose to focus on a certain region (e.g. around IP5) or, alternatively, if the user requires
to model the full accelerator, it is possible to select only the most relevant elements (e.g. cor-
rectors, quadrupoles), which can shrink the number of rows to the point where the response
matrices can be stored in memory without floating point precision loss, memory swapping
or crashing.

3.3.2 Pseudoinverse
The pseudoinverse routine used in POCKPy is the SVD-based pinvmethod in numpy.linalg.
It is however wrapped to allow for:

• Specifying the number of singular values to retain. The original pinv method only
implements a cuto� based on the relative size of singular values.

• Computing separately the pseudoinverse for the horizontal and vertical plane, as the
two plane are supposed to be uncoupled in this treatment. This allows to have the
singular values computed independently for each plane.

• Allowing forDataFrames as input, while retaining and inverting the index and columns
in the result.

3.3.3 Optimization
For later optimization of the later knob implementation and error correction, the Python
package cvxpy [11, 12] was used. It is a convex optimization library in Python with an em-
bedded language for defining constraints and objective functions. It is built on the theoretical
framework of disciplined convex programming [13], which is used to break each function down
into its components to try to ascertain its convexity, and then uses the information to find
an appropriate solver. Both the error correction and the knob implementation optimization
problems posed in Chapter 4 proved tractable when using the SOCP (second-order cone
programming) solver ECOS [14], included in cvxpy.

3.4 Example Computations and Output
Before verifying the integrity of the framework and performing studies using it, an overview
of what the framework outputs will be provided. For quantitative analysis, the most straight-
forward format for analyzing the closed orbit is to represent it as a function of the longitudi-
nal position along the accelerator, often only for a section of the accelerator. Such a plot can
be seen in Figure 3.2 where the horizontal closed orbit perturbation for horizontally shifting
a quadrupole is shown for Beam 1. The important observation is that there is nothing intrin-
sically local about errors in a given region, their e�ect is global and often have their greatest
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Figure 3.2: Closed orbit perturbation from a horizontal misalign-
ment of the quadrupole MQ.20L5.B1 plotted for Beam 1 in the hor-
izontal plane. Plotted as an unfolded line fromQ25 toQ25 in octant
5 (a), and for the full ring (b).

impact far away from their immediate vicinity. Plots of the same type as Figure 3.2a will be
used for studies and comparisons as they are easier for quantitative reasoning, whereas polar
representation mainly serves for qualitative analysis. The work in this thesis will be focused
around octant 5 enclosed by Q25, the same region as presented in 3.2a. Importantly, this
runs contrary to the previous argument about closed orbit perturbation being a global phe-
nomenon, but by intelligently correcting the orbit, it can be canceled such that it does not
propagate outside of a given region, granted there are su�ciently many and e�ectively posi-
tioned orbit correctors. This can be seen in Figure 3.3a, which shows the residual after two
di�erent corrections of the horizontal misalignment of MQ.20L5.B1. The global correction
corresponds to a correction that reduces the orbit in the region with limited corrector usage,
whereas the local correction corresponds to a correction where the error is corrected close
to its origin at the expense of additional orbit corrector strength. This is for octant 5, the
corresponding residuals for the full machine can be seen in Figure 3.3b.

Note that the residual for the local correction does not impact the closed orbit outside
of octant 5 as the closed orbit perturbation in Figure 3.3a was canceled at the end points.
Thanks to the linearity of the closed orbit perturbation and correction problem, if we only
deal with the errors in a given region, and if the closed orbit at the boundaries of such a
region are set to be the zero vector, then one can consider only that portion of the machine,
without looking elsewhere.

Lastly, an example of an orbit knob is shown in Figure 3.4. This knob has been imple-
mented by finding a solution to (3.5), where the equation system enforced px = ±295 µrad
at the interaction point and zero orbit and angle at elements Q12 on each side of IP5. The
dashed lines shows the same knob scaled to achieve a crossing angle of ±100 µrad. This is a
general attribute of knobs: they are scalable. From an operational perspective, this allows for
smooth transitions when activating knobs, and the ability to fine-steer closed orbit at select
locations by using predefined knobs.
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Figure 3.3: Residual orbit from two di�erent corrections of the
orbit perturbation from a 1 mm horizontal misalignment of the
quadrupole MQ.20L5.B1, shown for Beam 1 in the horizontal plane.
Plotted as an unfolded line from Q25 to Q25 in octant 5 (a), and for
the full ring (b).
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Figure 3.4: An implementation of a knob enforcing a crossing angle
of ±295 µrad in the horizontal plane at IP5, zoomed in around IP5.
Dashed lines correspond to multiplying the corrector configuration
by 100/295.
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3.5 Verification of Framework
As the end goal of POCKPy is to provide continuous verification of HL–LHC optics, it is
necessary to verify that the framework is consistent with tools already in place. The verifica-
tion of HL–LHC optics is today largely done in MAD-X scripts, wherefore the most direct
means of cross-checking the output of POCKPy is comparison with MAD-X. The compari-
son considered here used the following test cases:

1. Verify computation of closed orbit for a distribution of errors.

2. Verify computation of closed orbit for a distribution of corrector strengths.

3. Verify that a given error and its correction produces the same closed orbit residual.

The distributions used for the comparisons were uniform with boundaries for the machine
errors given as

• ±0.5 mm transverse quadrupole misalignments

• ±0.002 relative strength error for quadrupoles and dipoles

• ±1 mrad roll for quadrupoles and ±0.5 mrad for dipoles

and boundaries for the corrector strengths given as ±1 mTm, where the error distribution
is the one currently used to model HL–LHC. All comparisons were performed on the HL–
LHC collision optics version 1.5, release candidate 0 [15]. The section of the accelerator
investigated was octant 5, from Q25 to Q25 around IP5, for both beams and planes.

3.5.1 Computing Perturbations in MAD-X
The procedure of computing perturbations in MAD-X is summarized as follows:

1. Compute the closed orbit for no machine errors.

2. Add machine errors.

3. Compute the new closed orbit in presence of machine errors.

4. Detract the first orbit from the second to get the closed orbit perturbation.

As the computation has to be performed for the full machine in order for it to qualify as a
closed orbit perturbation, the process is not instantaneous, taking in the order of a minute on
a Dell XPS 13 with Intel Core i7-8550U CPU @ 1.80GHz when run as a single process. This
is one of the reasons for using an analytical estimation of orbit perturbation and correction
as presented in Chapter 2 and 3.
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3.5.2 Verifying Linearity of MAD-X
For this verification, the response matrices inside POCKPy were initialized by direct inter-
action with MAD-X. Unit errors were added to elements, unit kicks to correctors, and the
closed orbit perturbation reported by MAD-X for each of these alterations was inserted into
the columns of the response matrices. Subsequently these matrices were used for direct com-
parison with MAD-X. Each of the test cases was run for 100 samples, where the comparison
of closed orbit post-correction was performed as follows:

1. An erroneous machine was sampled from the distribution.

2. The machine was corrected by applying a pseudoinverted corrector response matrix
inside POCKPy.

3. The errors and their corrections were entered into MAD-X and the resulting closed
orbit residual was compared to the one in POCKPy.

The orbits induced by machine errors as well as those induced by correctors showed no no-
table discrepancy. The scenario most likely to deviate is the third case where the residual
after correction is analyzed, as it is formed from the di�erence between two orbits of compa-
rable size, i.e. the error-induced perturbation and its approximate negation in the corrector-
induced correction. This case proved consistent as well with plots shown in Figure 3.5 for 100
samples. The RMS orbit in Figure 3.5a shows no noticeable discrepancy, nor does the single
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Figure 3.5: Comparison between MAD-X and POCKPy (using re-
sponse matrices from MAD-X) for the residual post-correction,
plotted for Beam 1 in the horizontal plane. Shown for (a), the RMS
over all 100 samples, and (b), the sample with biggest deviation as
measured in L2 norm.

sample with the greatest measured deviation in Figure 3.5b. The fact that the worst sample
from the worst test scenario has good correspondence provides a strong argument for believ-
ing that the closed orbit computations performed in MAD-X can be well-approximated by
response matrices.
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3.5.3 Verifying Analytical Response Matrices
In the second verification step, the response matrices initalized by MAD-X was compared to
the response matrices computed analytically inside POCKPy, using the same test scenarios
and distributions as before. By the same reasoning, the scenario most likely to show discrep-
ancies is the error correction, which is showcased in Figure 3.6. For the horizontal residual in
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Figure 3.6: Comparison betweenMAD-X and POCKPymatrices for
the RMS residual post-correction for a pseudo-inverse-based correc-
tion, here shown for Beam 1 and both planes.

Figure 3.6a, there are minor discrepancies visible at some of the peaks of the residual, albeit
not that large. Their root cause is field errors in bending magnets: they are treated di�er-
ently between MAD-X and POCKPy, and arguably more consistently in POCKPy. Since the
bending magnet field error only a�ects the horizontal plane, Figure 3.6b, showing the ver-
tical closed orbit residual, lacks this discrepancy. There are still minor di�erences visible at
some peaks, which is dominated by a di�erent assumption: MAD-X treats quadrupoles as
thick lenses, whereas POCKPy assumes they can be treated as thin lenses, and this explains
the remaining discrepancy.

Based on this inquiry, it has been established that there is a discrepancy between the
computation of closed orbit in MAD-X and POCKPy. This discrepancy can be traced back
to a di�erence in assumptions made in POCKPy contrary to MAD-X, and it is ultimately
small enough not to significantly impact the results presented in this thesis. Summarizing,
POCKPy is deemed su�ciently consistent with MAD-X to be used in its place for closed
orbit perturbation computations.
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Chapter 4

Orbit Corrector Budget

In this chapter the formalism developed in Chapter 3 will be made use of to state the error
correction and knob implementation problems. In words, the objective is to implement a set
of knobs and to correct for closed orbit perturbation caused bymachine errors, both of which
require the use of orbit correctors. Each orbit corrector has an upper limit on how great a
kick it can produce, hence it makes sense to talk of an orbit corrector budget, which enforces
a constraint to be respected across both problems. This orbit corrector budget problem will
be stated, analyzed and solved for HL–LHC.

Unavoidably, this study makes use of the element naming scheme used in LHC and HL–
LHC, and while it is possible to still deduce the meaning of the names employed, the naming
conventions are described in Appendix A for greater clarity, if necessary. For ease of nota-
tion, elements will also be referred to using regular expressions [16] from now on. A regular
expression defines a pattern, and when a regular expression is used in this thesis, we are re-
ferring to every element matching this pattern. A good reference for regular expression can
be found at [17], but for the purpose of thesis it su�ces to know that an expression of the
form B[12], matches a B followed by either a 1 or a 2 and that any subpattern followed by
? makes that pattern optional to match for. As an example, [AB]?2 matches A2, B2 or 2.

4.1 Problem Formulation
The problem will be approached by splitting it into two separate parts: the error correction
and the knob implementation. The reasons for doing so are

• Implementing knobs is done independently of the error correction in practice.

• Error correction is contingent on which error configuration, drawn from a distribu-
tion, is being corrected. Treating the error correction separately allows for statistical
analysis of corrections over a given distribution.
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4. Orbit Corrector Budget

• There are applications where only one of the two problems are of interest.

We begin with the error correction problem.

4.1.1 Error Correction
When correcting for machine errors in an accelerator one measures the closed orbit pertur-
bation in the machine and then powers orbit correctors to negate the measured perturbation.
It is however not the case that the closed orbit can be measured at every element; it can only
be measured at dedicated elements called beam position monitors (BPMs for short), and more-
over only the transverse closed orbit positions, not angles, are observable. With this in mind,
we state the error correction problem as follows:

find c ∈ Rk , (4.1a)
given e ∈ Rn , (4.1b)
subject to abs(c) ≤ berr , (4.1c)

(RMee + RMccq+1)†eq = 0 , (4.1d)

abs(RMee + RMcc)†ineq ≤ t . (4.1e)

The problem as posed in (4.1) involves finding a feasible corrector strength configuration c,
contingent on a given machine error configuration e,under constraints on the closed orbit
residual and corrector strength. The constraint on the corrector strength in (4.1c) is given
in absolute value as the direction of orbit corrector kicks is irrelevant; it is the magnitude of
the kick that is constrained. Equation (4.1d) takes a subset of transverse positions measured
at BPMs (i.e. a subset of rows) by applying the operator †eq and enforces that the closed
orbit must be zero at these locations. This constraint is used to enforce small closed orbit
around chosen BPMs, e.g. BPMs surrounding an interaction point. Finally, the inequality in
(4.1e) uses the operator †ineq to take all rows with BPMs and transverse position that was not
included in †eq to put constraints on absolute closed orbit residual.

In terms of structure, note that the constraints are trivially convex, even linear. The
absolute value inequalities can be written as two linear vector inequalities since |a| < b ⇐⇒
−a < b , a < b, hence if there is a feasible region, it is a convex polytope. To give the problem
some more structure, it can be changed from a feasibility problem to a minimization one by
adding an objective function f , as per

min
c∈RK

f (c) ,

given e ∈ Rn ,

subject to abs(c) ≤ berr ,

(RMee + RMccq+1)†eq = 0 ,
abs(RMee + RMcc)†ineq ≤ t .

(4.2)

Many possible choices for f exist, but a decent one for the problem is

f (c) = ||(RMcc + RMee)†ineq ||2 + λ||c||2 , λ ≥ 0 . (4.3)

which is a convex function. The convexity follows from the norm being a convex function,
the composition of a convex function with an a�ne function being convex, and the sum of
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4.1 Problem Formulation

two convex functions being convex. This makes the optimization problem of (4.2) convex.
Most importantly, it allows for the overall minimization of the orbit with a regularizing term
penalizing ine�cient use of the allotted corrector strength.

Linear Error Correction
While the convex formulation of the error correction is su�cient for correcting errors on a
case-by-case basis, there is an argument for expressing the correction as a linear mapping, i.e.
a matrix mapping from orbit measured at BPMs to the corrector strength for its correction.
The reasons for wanting to do this are multiple:

1. Such an error correction can be computed once and then re-used indefinitely for dif-
ferent machine errors.

2. By virtue of it being a linear mapping, the covariance matrix of the residual and cor-
rector strength used can be computed directly, instead of estimated by sampling error
distributions with known covariance matrices

3. The orbit correction feedback, a low-level control process for continuous correction of
beams in LHC, is based on a linear correction [18, 19]. More on this in Chapter 5.

A naive solution would be to directly apply the pseudoinverse to the corrector response
matrix with an adequate number of singular values, which guarantees a solution and mini-
mizes the L2-norm (for the given number of singular vectors) of the residual r, as defined by

r = RMc
†BPMc + RMe

†BPMe = RMc
†BPMc + o . (4.4)

where †BPM is the operation of taking all rows corresponding to BPMs and transverse closed
orbit positions. An issue with directly applying the pseudo-inverse and computing c as

c = − pinv(RMc
†BPM)o (4.5)

is that minimizing the L2-norm of r is not necessarily conducive to the objective. When
minimizing the residual, each component of the residual is considered equally important.
E.g. considering a full accelerator with an arbitrary density of BPMs along it, if all BPMs are
treated equally then sections of the accelerator with a higher density of BPMs will be more
aggressively corrected, and vice versa. A slight modification to the naive approach that can
allay this concern and add flexibility is

c = − pinv(ΛLRMc
†BPM)ΛLo , (4.6)

where ΛL is a diagonal matrix where each entry functions as a weight for a certain beam,
BPM, and dynamical variable. By weighting important BPMs more, the underlying least-
squares problem of the pseudoinverse will penalize orbit at those BPMs more, leading to
more correction at those locations. Extrapolating the same argument, if a few BPMs are
weighted considerably more than all others, they will be corrected to zero orbit. This allows
for a linear correction strategy to enforce hard constraints on orbit. Inversely, a weight of
zero implies that the correction will not utilize the information at the corresponding BPM.
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There could also be scenarios where a subset of correctors should be used less or more
than their complement. This can be achieved in the same way be by adding yet another
diagonal matrix ΛR:

c = −ΛR pinv(ΛLRMc
†BPMΛR)ΛLo = Ao , (4.7)

where each diagonal entry in ΛR corresponds to a certain corrector. In this case, greater
weight corresponds to it being used more and a weight of zero to it not being used at all. In
general, we refer to A of (4.7) as a linear correction strategy.

The alert reader will have noticed that what is provided by (4.7) is not an algorithm for
finding ’the best error correction strategy’ given RMc, RMe and a distribution over errors
e ∈ Rn, but rather a way of encoding error corrections. Beyond heuristics such as ’give greater
weight to BPMs in important sections’, there is no optimization routine involved in finding
a good A; it is currently done ad hoc.

Statistical Analysis Based on Linear Correction
Given a linear correction strategy A that maps from orbit observed at BPMs to corrector
strength, it is possible to analyze some statistical quantities if the distribution of machine
error configurations is known. If so, the resulting residual after correcting and the corrector
strength used for it also become random variables as per:

c = ARMe
†BPMe = Bce ,

r = RMcARMe
†BPMe + RMee

= (RMcARMe
†BPM + RMe)e = Bre .

(4.8)

Now, assuming that e has a covariance matrix Σe, the corresponding covariance matrices for
c and r can be derived from the standard transform of covariance matrices:

Σc = BcΣeBc
ᵀ ,

Σr = BrΣeBr
ᵀ .

(4.9)

Another interesting metric that can be derived in this manner is the worst-case corrector
strength and residual. If it is assumed that the errors have an absolute bound, emax, then the
worst-case quantities can be computed as:

cwc = abs(Bc)emax ,

rwc = abs(Br)emax .
(4.10)

It is worth stating that the worst-case quantities are evaluated on a per entry basis for the two
vectors. For example, this means that the worst-case for a given corrector is not necessarily
the same worst-case as for any other corrector.

4.1.2 Knob Implementation
To implement a knob is to find a corrector strength configuration such that the closed orbit
perturbation at prescribed element positions attain requisite values, as defined in (3.5). An
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example of a knob could be to move both beams in opposite directions at a collision point.
Such a knob could then be powered before entering collision, separating the two beams, and
then be gradually turned o� to move the two beams into collision. Another feature of knobs
is that when utilized, they are used up to a sign; if c defines a knob, then −c could also be
run in practice, and would be referred to as defining the same knob. Said di�erently, knobs
are implemented up to a sign.

Unlike error correction, the implementation of a knob is done o�ine, i.e. independent
of any error-induced orbit in the machine, which allows for knob definitions to include ele-
ments other than BPMs. We state the knob implementation problem as follows:

find C = [c1, c2, . . . , cq] ∈ Rk×q (4.11a)

subject to
q∑

j=1

abs(c j) ≤ bknob , (4.11b)

RMc
† j c j = k j , j = 1, . . . , q . (4.11c)

The problem as formulated in (4.11) concerns finding q valid knob implementations, where
the ith knob is defined to implement a closed orbit for variables and positions defined by †i
with values ki , under constraints on the total corrector strength employed. The inequality
in (4.11b) needs to take the absolute value of each term since there could otherwise be can-
cellation between knobs that in practice would add up, and hence a feasible point for the
problem might be an unfeasible point in practice, which would be an unattractive feature
of the formulation. In practice, there will always be some cancellation between corrector
strength configurations for any combination of signs, as such, the formulation, while not
giving false positives, will be more pessimistic than is the real-world case.

An important point to mention before delving deeper into the problem is that the equa-
tion systems posed in (4.11c) are underdetermined. This is not conveyed by how they are
presented, but makes sense from an operational perspective: if tasked with implementing a
set of o�sets and angles at di�erent positions along the accelerator, it has to be assumed that
the task is feasible to begin with, and more likely than not, there is probably some degree of
freedom in the implementation. With this in mind, the equality constraints in 4.11c form hy-
perplanes inRk×q. The inequality constraints in (4.11b) based on the absolute value of vectors
can be rewritten as 2q linear vector inequalities, which form half-space in Rk×q. Supposing
that the problem is feasible, then the feasible region is formed in the intersection of a set of
q hyperplanes and 2q half-space in Rk×q, which makes it another convex polytope.

Once more, picking a convex objective functions renders the optimization problem con-
vex:

min
C∈Rk×q

f (C)

subject to
q∑

j=1

abs(c j) ≤ bknob ,

RMc
† j c j = k j , j = 1, . . . , q .

(4.12)

The form of the objective function was chosen as

f (C) = ||W0

q∑
j=1

abs(c j)||2 +

l∑
k=1

||WkRMccik ||pk . (4.13)
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where pk is either 2 or ∞. Firstly note that the objective function achieves what has been
requested of the optimizer. The first term corresponds to minimizing the absolute corrector
strength of some subset of all correctors used, encoded in W0 with only positive entries. The
second term(s) attempts to minimize the orbit in an Lpk sense at some locations, encoded
in Wk for knob ik . In essence, the optimization function captures the ability to minimize
the usage of a set of correctors, and to minimize the orbit at a custom set of locations in the
accelerator for di�erent knobs.

Secondly, observe that the objective function is convex. The second term(s) in the func-
tion are convex by the same argument as for the error correction objective function: convex
functions composed with a�ne functions are convex. The first term is convex because the
absolute value is a convex function, a sum of convex functions is convex, a positive weighted
sum of convex functions is also convex and, lastly, a compound function where the outer one
(here the norm) is convex and non-decreasing in each of its arguments, is convex, if each of
the arguments is a convex function. Since each term in the objective function is convex, it
follows that the objective function is convex too.

4.1.3 Satisfying the Orbit Corrector Budget
Both (4.2) and (4.12) have constraints on the corrector strength employed, given by berr and
bknob respectively. Assuming the orbit corrector budget introduces a total constraint of b,
and we have b = berr + bknob, then solving the error correction and knob implementation
problems implies that the total corrector strength used will be within the budget. By this
reasoning, the larger problem of satisfying the orbit corrector budget can seen as iterative in
the following sense:

1. Reserve corrector strength for the error corrections as defined by berr .

2. Verify that berr confers a su�cient amount of corrector strength to correct the closed
orbit adequately su�ciently often.

3. Find one feasible knob implementation given the corrector strength constraint bknob =

b − berr .

This approach has the downside ofmaking berr a hyperparameter, but it is at least an intuitive
hyperparameter: greater entries in berr means more corrector strength for error correction
and less for knob implementation, and vice versa. As for the error correction, what is deemed
as su�ciently often is context dependent, but will always involve deriving statistics from the
error correction based on an assumed distribution of machine errors.

4.2 Results
After POCKPy was implemented, studies were conducted using it. This is a study of the
orbit corrector budget performed inside POCKPy.
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4.2.1 Boundary Conditions and Specifications
For the investigation of the orbit corrector budget the HL–LHC optics version 1.5, release
candidate 0 was considered. As proven in Section 3.4 it is possible to focus on a small section
of the ring of interest. Here octant 5 was chosen, from MQ.25L5.B[12] to MQ.25R5.B[12].
Because the interaction regions in octant 1 and 5 are the main regions a�ected by the HL–
LHC upgrade, and since they are symmetric, it su�ces to treat one of them. In treating the
error correction, the following assumptions were put on the errors:

• ±0.5 mm transverse quadrupole misalignments

• ±0.002 relative strength error for quadrupoles and dipoles

• ±1 mrad roll for quadrupoles and ±0.5 mrad for dipoles

• No machine errors past Q20.

where the values specify bounds on the uniform distribution. Moreover, the correction had
to implement:

• Zero residual orbit at IP5.

• Zero residual orbit at the crab cavities, ACFCA.[AB][LR]5.B[12].

• No orbit leakage at the end of the accelerator segment (i.e. zero residual orbit and
angle at MQ.25[LR]5.B[12]).

• Less than 1 mm residual orbit at every other position.

The zero orbit at IP5 is due to it being a point of collision, whereas the zero orbit at the
crab cavities follows from how these elements a�ect the luminosity (see Appendix B for more
details on crab cavities). Enforcing no orbit leakage at the extremities of the segment under
consideration is in line with the assumption that each octant can be treated independently.
Finally, enforcing a sub-millimeter residual at every other point is done to reduce the distance
between beam and pipe, i.e. to maximize the aperture available for the beam. To enforce the
zero orbit and angle, BPMs close to the specified element positions were corrected to zero.
If two BPMs are corrected to zero, and no source of closed orbit perturbation is situated
between them, it then follows that the perturbation between them is zero.

The knobs to be implemented were:

• IP_CROSSING: Implement a crossing angle (up to ±295 µrad) in the horizontal plane
for both beams in IP5. Allowed correctors: every corrector from IP5 up to and in-
cluding the ones in Q4 on each side.

• IP_SEPARATION: Implement a separation of the beams (up to±0.75 mm) at IP5 in the
vertical plane. Allowed correctors: every corrector up to Q4, excluding all correctors
of type MCBY.

• CC_SEPARATE_B1/CC_SEPARATE_B2: Implement an orbit at the crab cavities (up to
±1 mm) in the horizontal and vertical plane, independently for each beam. Allowed
correctors: all correctors up to Q6 on each side.
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• OFFSET_REMOTE_ALIGNMENT: Implement an o�set of both beams (up to ±2 mm) in
the horizontal and vertical plane at IP5 when o�setting every quadrupole from Q4 on
the left to Q4 on the right of IP5 by ±2 mm, and the quadrupole at Q5 by ±1 mm.
Allowed correctors: every corrector from Q4 to Q8 on each side, excluding all correctors
of type MCBRD.

• LUMISCAN_B1/LUMISCAN_B2: Implement an orbit at IP5 (up to ±100 µm) in the
horizontal and vertical plane for each beam, independently. Allowed correctors: every
corrector from Q4 to Q5, on each side of IP5.

For all knobs an additional optimization goal for the implementation was to minimize the
use of the MCBY correctors and the residual orbit at the crab cavities.

The corrector budget, i.e. how much corrector strength in Tm is allotted to each correc-
tor, is given in Table 4.1. The corrector strength allotted to the knob implementation was

Table 4.1: The orbit corrector budget in HL–LHC. Corrector names
are provided as regular expressions and corrector strength is given
in units of Tm.

Corrector name Corrector strength limit [Tm]
MCB[HV] 1.895
MCBC[HV].9 1.895
MCBC[HV].[78] 2.8
MCBC[HV].[56] 2.1
MCBY[HV].[AB]?4 2.25
MCBRD[HV] 5.0
MCBXFA[HV].3 4.5
MCBXFB[HV].[AB][12] 1.87
MCBW[HV] 1.87

chosen to be the orbit corrector budget, minus the 2*RMS corrector strength used for the er-
ror correction. Other measures than the 2*RMS value could have been taken as the reference,
e.g. the worst-case over a number of samples or another multiple of the root-mean-square.
An argument for choosing the two-time root-mean-square value is experience; it was used
for similar modeling of LHC where it was a good predictor for the corrector strength used
[20].

4.2.2 Error Correction Procedure
For the error correction, two error correction methods were implemented and used:

1. Linear correction based on a weighted pseudoinverse of the corrector response matrix.

2. Constrained convex optimization in cvxpy based on (4.2).

The first method constitutes a direct approach and has been used before [3]. It however has
the drawbacks of not being adaptable (the same mapping will be applied to the most patho-
logical as well as the most easily corrected machines) and lacking functionality for mapping
weights and singular value cuto�s to given constraints. Having said this, it can serve as a
benchmark for the performance of the convex optimization. The methods are specified next.
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Linear Correction
For the linear correction, 50 out of 57 singular values was used for each plane, and BPMs were
weighted as follows:

• BPMs that were to be corrected to zero were weighted as 1.0.

• Remaining BPMs in the IR were weighted as 1e−5.

• Remaining BPMs in the arc were weighted as 1e−6.

where the 1.0 weights serve to enfore the equality constraints, and the remaining weights are
used to achieve a feasible residual orbit less than 1 mm at the remaining BPMs.

Applying this linear correction to the given error distribution results in Figure 4.1.
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Figure 4.1: The residual orbit (a) and corrector strength (b) for the
linear correction, given as 2*RMS and worst-case. Residual is given
for Beam 1 in the horizontal plane, and corrector strength is plotted
for all correctors up to Q10 on each side where each pair of bars
corresponds to a corrector.

Convex Optimizer Correction
For the optimization of the error correction, the convex optimizer was used where

1. The orbit was forced to zero at the BPMs around critical points.

2. The orbit constraint was set to 1 mm at every other BPM in the segment.

3. Each corrector was constrained to use at most 2 Tm.

4. The weight for the regularizing term (corresponding to ||c||2) was set to 2e−3.
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A point worth making is that even if the constraints could be made stricter, the optimizer
will try to minimize both the corrector strength usage and the residual orbit. As such, even
if the constraints are lax, the orbit will ideally be minimized to the point where none of the
constraints are active. Unlike for a linear mapping where the worst-case and RMS result
can be computed analytically, the convex optimizer has to estimate the RMS and worst-case
values. To do this, 20000 samples were drawn from the machine error distribution and were
attempted to be corrected by the optimizer within the given constraints. Out of the 20000
samples, none failed to be corrected within the set limits. The estimated RMS and worst-case
orbits along with corrector strength can be seen below in Figure 4.2.
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Figure 4.2: The residual orbit (a) and corrector strength (b) for the
convex correction, given as 2*RMS andworst-case. Residual is given
for Beam 1 in the horizontal plane, and corrector strength is plotted
for all correctors up to Q10 on each side where each pair of bars
corresponds to a corrector.

4.2.3 Comparison of Corrections
For the given settings, the most important comparison between the convex and linear cor-
rection is that of the RMS orbit and corrector strength used. These comparisons can be seen
in Figure 4.3, where the correctors are plotted on the right-hand side of IP5 up to Q10. The
linear correction corrects more aggressively, producing a smaller residual while also using
more corrector strength. This result is however predicated on the parameterization of the
linear correction and the convex optimizer. Both methods here provide corrections that are
adequate under the given constraints. If one were interested in correcting more aggressively
with the convex optimizer, then it would be necessary to decrease the weight of the regu-
larizing term in the objective function, or to force it by setting harder constraints on the
orbit. Note however that enforcing harder constraints could render the correction of some
machines infeasible.

The worst case scenarios depicted in Figures 4.2 and 4.1 have to be interpreted as the
’worst scenario per point’, where a scenario corresponds to a configuration of machine er-
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Figure 4.3: Comparison of 2*RMS residual orbit (a) and corrector
strength (b) between the linear and the convex correction. Residual
is given for Beam 1 in the horizontal plane, whereas the corrector
strengths shown are those of the right-hand side of IP5 up to Q10.

rors. Unlike RMS values which are easily estimated, extreme values of a distribution are in
general not. The linear correction is a special case where the worst case can be analytically
computed as per (4.10), and it gives an idea why it is hard to estimate directly from the
distribution. The worst case error configuration for any given quantity will correspond to
each error attaining either maximum orminimum value, and is therefore virtually impossible
to attain by repeated sampling from the error configuration distribution. Nevertheless, the
worst case outcome over a large number of samples can still be a meaningful indicator of the
worst case scenarios one is likely to encounter in practice.

4.2.4 Knob Implementation

Given an error correction, the 2*RMS corrector strength for the correction was detracted
from the total available corrector strength, which was then defined to be the corrector bud-
get available for the knob implementation. The optimizer for the knob implementation was
run with optimization goal of minimizing the use of the MCBY correctors and with added
regularizing term for minimizing the orbit at the crab cavities. As the error correction study
gave two valid error correction strategies with similar corrector strength usage, both are valid
for the knob implementation. Using either one for the knob implementation gave a feasi-
ble corrector configuration, and the results from using the convex correction can be seen in
Figures 4.4 and 4.5. The result demonstrates that the MCBY correctors are used sparingly and
several constraints are active (bars touching the limits), in line with what is to be expected
when an optimum has been found.

67



4. Orbit Corrector Budget

M
C
BV

.12
L5
.B
2

M
C
BV

.11
L5
.B
1

M
C
BH

.11
L5
.B
2

M
C
BH

.10
L5
.B
1

M
C
BV

.10
L5
.B
2

M
C
BC

V.
9L

5.
B1

M
C
BC

H
.9
L5
.B
2

M
C
BC

H
.8
L5
.B
1

M
C
BC

V.
8L

5.
B2

M
C
BC

V.
7L
5.
B1

M
C
BC

H
.7
L5
.B
2

M
C
BC

H
.6
L5
.B
1

M
C
BC

V.
6L

5.
B2

M
C
BC

V.
5L
5.
B1

M
C
BC

H
.5
L5
.B
2

M
C
BY

V.
B4

L5
.B
1

M
C
BY

H
.B
4L
5.
B2

M
C
BY

H
.4
L5
.B
1

M
C
BY

V.
4L
5.
B2

M
C
BY

V.
A
4L
5.
B1

M
C
BY

H
.A
4L
5.
B2

M
C
BR

D
H
.4
L5
.B
1

M
C
BR

D
V.
4L
5.
B2

M
C
BR

D
V.
4L
5.
B1

M
C
BR

D
H
.4
L5
.B
2

M
C
BX

FA
H
.3
L5

M
C
BX

FA
V.
3L
5

M
C
BX

FB
H
.B
2L
5

M
C
BX

FB
V.
B2

L5
M
C
BX

FB
V.
A
2L
5

M
C
BX

FB
H
.A
2L
5

M
C
BX

FB
V.
A
2R

5
M
C
BX

FB
H
.A
2R

5
M
C
BX

FB
H
.B
2R

5
M
C
BX

FB
V.
B2

R
5

M
C
BX

FA
V.
3R

5
M
C
BX

FA
H
.3
R
5

M
C
BR

D
V.
4R

5.
B1

M
C
BR

D
H
.4
R
5.
B2

M
C
BR

D
H
.4
R
5.
B1

M
C
BR

D
V.
4R

5.
B2

M
C
BY

H
.A
4R

5.
B1

M
C
BY

V.
A
4R

5.
B2

M
C
BY

V.
4R

5.
B1

M
C
BY

H
.4
R
5.
B2

M
C
BY

H
.B
4R

5.
B1

M
C
BY

V.
B4

R
5.
B2

M
C
BC

H
.5
R
5.
B1

M
C
BC

V.
5R

5.
B2

M
C
BC

V.
6R

5.
B1

M
C
BC

H
.6
R
5.
B2

M
C
BC

H
.7
R
5.
B1

M
C
BC

V.
7R

5.
B2

M
C
BC

V.
8R

5.
B1

M
C
BC

H
.8
R
5.
B2

M
C
BC

H
.9
R
5.
B1

M
C
BC

V.
9R

5.
B2

M
C
BV

.10
R
5.
B1

M
C
BH

.10
R
5.
B2

M
C
BH

.11
R
5.
B1

M
C
BV

.11
R
5.
B2

M
C
BV

.12
R
5.
B1

0

1

2

3

4

5
C
or
re
ct
or

st
re
ng
th

[T
m
]

LUMISCAN_B1
LUMISCAN_B2
IP_CROSSING
IP_SEPARATION
OFFSET_REMOTE_ALIGNMENT
CC_SEPARATE_B1
CC_SEPARATE_B2
2*RMS CORRECTION

Figure 4.4: Bar plot of the corrector strength used for implementing
all knobs and a 2*RMS error correction. Red triangles represent the
corrector strength limit for each corrector. Shown for all correctors
up to Q10 on both sides of IP5.

4.3 Conclusion
Under the given assumptions the orbit corrector budget holds, in line with preliminary ver-
ifications [15]. There is a su�cient amount of orbit corrector strength allotted for error
correction and implementing the listed knobs for the HL–LHC optics version 1.5, release
candidate 0. For this iteration of the orbit corrector budget problem, both linear and convex
corrections provided feasible solutions, but this need not be the general case. If constraints
are hard enough then it is possible that the flexibility of the convex optimizer is necessary
to produce a feasible solution. Moreover, as the constraints get harder the parameterization
of the linear correction gets more constrained. Since there is no reliable algorithm currently
available for finding feasible linear correction strategies subject to constraints, it follows that
correcting based on linear correction strategies would not scale well with harder constraints.
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Figure 4.5: Bar plot of the corrector strength used for implementing
all knobs and a 2*RMS error correction. Red triangles represent the
corrector strength limit for each corrector. Shown for all correctors
up to Q10 on the right-hand side of IP5.
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Chapter 5

Estimating Impact of Orbit Feedback Sys-
tem for Maintaining Collision

Currently in LHC there is a feedback system employed for stabilizing the closed orbit during
operation, referred to as the Orbit Feedback System (OFB) [18, 19]. It is run throughout the
di�erent phases of the machine cycle, from beam injection to dump at the end of collision.
Here the focus will be on the phase ’stable beams’, when beams are in collision.

During stable beams the global orbit is not a concern; the order of the usual closed orbit
perturbation accrued over stable beams is too small to cause any beam loss. Exceptions to
this are abrupt events (e.g. great ground motion, or equipment faults), but they are outliers
and not the topic of this analysis. The issue is instead that the typical perturbation causes
the beams to drift away from each other at the collision points, which means less luminosity.
The object of analysis is therefore not the usual global orbit but rather the beam separation
at the collision points, here with a focus on IP5.

HL–LHC will also have a dedicated feedback system for closed orbit stabilization, but
its final design is yet to be decided. As a first approximation of the feedback system in
HL–LHC, we will transfer the OFB as defined in LHC to HL–LHC and compare it to the
current implementation. This allows for some insight to be gained into how theOFB impacts
luminosity and how this can be expected to scale for HL–LHC.

5.1 Problem Formulation
New concepts have to be introduced in order to adequately treat the subject. The notion
of imperfect BPM readings will be accounted for together with a model for the e�ect of an
orbit feedback system during stable beam conditions, followed by an overview of the OFB
performance in LHC.
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5.1.1 Imperfect BPMs
In terms of nomenclature, we define the signal y measured at BPMs as

y = RMe
†e + w , (5.1)

where e represents machine errors inducing closed orbit perturbation and w is noise added
to the signal, i.e. BPM reading errors. Assuming a linear correction strategy A, the corrector
strength used to correct for a given signal can be written as

c = Ay = A(RMe
†)e + Aw = Be

ce + Bw
c w , (5.2)

where the analogous equation for the residual turns out as

r = RMee + RMcc =
(
RMe + RMcARMe

†)e + RMcAw
= Be

r e + Bw
r w .

(5.3)

Looking at (5.3), one can obtain some insight on what constitutes a good linear correction
strategy. In particular, it should satisfy:

1. ||
(
RMe + RMcARMe

†)e||2 is minimal, i.e. A is e�ective at inverting perturbations
caused by machine errors and sampled at BPMs.

2. ||RMcAw||2 is minimal, i.e. A is ine�ective at inverting the noise reported by BPMs.

The relative importance of these points depends on the distributions of e and w. If the ma-
chine errors are considerably smaller than the reading errors then the best correction strategy
is to correct cautiously, and for the inverse the best approach is to correct aggressively. To
make this rigorous, we let the linear correction strategy be the standard pseudoinverted cor-
rector matrix as per

A = − pinv(RMc
†) . (5.4)

As the number of singular values is variable for the pseudoinverse, there is a relation between
the number of singular values and the characteristics of the correction. Large singular values
in the corrector response matrix correspond to unit-length corrector strength vectors (left-
singular vectors) which induce large closed orbit (right-singular vectors multiplied by their
singular values), and vice versa for small singular values. This is showcased in Figure 5.1.
Smaller singular values correspond to basis vectors in orbit space which are localized and
exhibit noisy behaviour, conversely, greater singular values impact larger sections of the ring
with more physical characteristics. In constructing A, if only a few singular values are used,
we call the correction global and if many are used it is instead referred to as local.

Returning to the notion of imperfect BPMs, since smaller singular values correspond to
noisier basis vectors in orbit space, it follows that local corrections will propagate more noise
from BPMs to the closed orbit. Viewed di�erently, the more basis vectors in orbit space one
uses, the better reconstruction of an arbitrary orbit vector, including unphysical orbits.

Recalling Chapter 4 it was shown that a linear correction strategy provides simple equa-
tions for computing the covariance of the correction assuming the underlying error has a
known distribution. Analogously, a linear correction strategy for a noisy signal leads to lin-
ear mappings in e and w for the corrector strength employed and residual after correction.
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Figure 5.1: Right-singular vectors of RMc for Beam 1 in the hori-
zontal plane, where the singular values are sorted by their size in
decreasing order. Each singular vector shown has L2norm equal to
1.

Assuming that e,w are random uncorrelated vectors with corresponding covariancematrices
Σe, Σw, respectively, the covariance matrices for c and r can be directly derived as

Σc = Be
cΣe(Be

c)ᵀ + Bw
c Σw(Bw

c )ᵀ ,
Σr = Be

r Σe(Be
r )ᵀ + Bw

r Σw(Bw
r )ᵀ .

(5.5)

In the simplest model of the correction problem, one can assume i.i.d (independently and
identically distributed) zero-mean distributions for the BPM reading errors and machine
errors, respectively. Assuming that ground motion is the dominating source of orbit pertur-
bation, the transverse misalignment of quadrupoles can be perceived as i.i.d., in which case
(5.5) can be written as:

Σc = σ2
quad(Bc

e)†q
{
(Bc

e)†q
}ᵀ

+ σ2
BPMBc

w(Bc
w)ᵀ ,

Σr = σ2
quad(Br

e)†q
{
(Br

e)†q
}ᵀ

+ σ2
BPMBr

w(Br
w)ᵀ ,

(5.6)

where †q corresponds to taking the subset of columns corresponding to transverse misalign-
ment of quadrupoles, and where σquad , σBPM are the standard deviations for quadrupole
transverse misalignment, assumed equal for both transverse planes, and BPM reading errors
respectively. Using (5.6) it becomes possible to evaluate linear correction strategies based
only on the relation between σquad and σBPM .
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5.1.2 Orbit Correction over Time
Consider orbit correction on the time interval t ∈ [0,T ] for a machine error e(t) that evolves
continuously in time and where BPM readings are i.i.d. Now, assume that on this interval n
corrections are performed at times t1 < t2 < ... < tn−1 < tn. Let wi be the BPM reading
error at time ti and define the corrector strength and residual directly after performing the
ith correction as ci and ri , respectively. Let A = − pinv(RMc

†) be the linear correction
strategy employed for a given number of singular values in the pseudoinverse, and define
P = −RMc

†A = RMc
† pinv(RMc

†). Recalling Chapter 2, P is an orthogonal projection,
whereby it follows that P2 = P and A(I − P) = 0. Granted this, the following holds:

c1 = A(RMe
†e1 + w1) ,

r1 = RMe
†e1 + RMc

†c1

= (I + RMc
†A)RMe

†e1 + RMc
†Aw1

= (I − P)RMe
†e1 − Pw1 ,

c2 = c1 + A
(
RMe

†e2 + RMc
†c1 + w2

)
= A

[
(I − P)RMe

†e1 + RMe
†e2 + (I − P)w1 + w2

]
= A

(
RMe

†e2 + w2
)
,

r2 = RMe
†e2 + RMc

†c2

= (I − P)RMe
†e2 − Pw2 ,

...

cn = A(RMe
†en + wn) ,

rn = (I − P)RMe
†en − Pwn

= (I + RMc
†A)RMe

†en + RMc
†Awn ,

(5.7)

The important point to note in (5.7) is that the residual and corrector strength used directly
after the ith correction depends only on the machine error and BPM reading at that point in
time; there is no memory with respect to previous corrections. If one studies the continuous
evolution of the residual, then naturally each correction is visible on the interval, but for any
given point in time t ∈ [0,T ] it is only the latest correction that impacts the residual at that
point. To underline this point, we consider an example.

Assume that a quadrupole, initially at rest, moves horizontally as described by a Brownian
motion, that is, it is continuous, its movement during any time-interval can be described by
a zero-mean Gaussian distribution with variance linearly proportional to the timespan, and
disjoint intervals are independent. Figure 5.2 shows a numerical example where a quadrupole
moves like a Brownian motion and the closed orbit is tracked over time at an arbitrary po-
sition. The plot demonstrates the previous statement: when considering the evolution of
closed orbit in the machine over time, it is only the latest correction that has an impact. The
statement remains valid when including BPM errors: it is only the latest BPM reading error
that enters the residual.

Using (5.7) with the residual evaluated for the whole machine, it is possible to compute
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Figure 5.2: Horizontal closed orbit induced by a quadrupole fol-
lowing a Brownian motion, measured at an arbitrary element. The
raw perturbation is shown alongside two correction scenarios: one
where the orbit is corrected once at t = 0.8 and another where the
orbit is corrected at t = 0.2 and t = 0.8, all with the same correction
strategy and perfect BPMs.

the covariance matrices directly after the ith correction:

Σc(ti) = Be
cΣe(ti)(Be

c)ᵀ + Bw
c Σw(Bw

c )ᵀ ,
Σr(ti) = Be

r Σe(ti)(Be
r )ᵀ + Bw

r Σw(Bw
r )ᵀ .

(5.8)

which is the same as (5.5) except for a time-dependence in the covariance matrix of the ma-
chine errors. Summarizing, to investigate the corrector strength usage and closed orbit resid-
ual after having performed several corrections over time, it is su�cient to consider only the
very last correction. If the distributions of the machine and BPM reading errors are known
at the time of a correction, then this information su�ces for computing the residual at that
point in time.

5.1.3 Orbit Feedback System in LHC
A fill in LHC denotes the full sequence of injecting beams into LHC, ramping them up to
collision energies, colliding and then dumping them. A simplified overview of a fill can be
seen below in Figure 5.3.

The OFB itself is not a trivial construct; it is a full-fledged feedback system. Despite this,
in the first-order, it can be described as doing the following, iteratively:
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Energy

Time

Injection, Ramp and 

Squeeze Ramp down

Stable Beam/Collision

Aggressive OFB:

~400/520 Singular values

Reserved OFB:

~40/520 Singular values

Figure 5.3: An overview of the di�erent stages of a fill in LHC along
with approximate information of the number of singular values em-
ployed currently by the orbit feedback in LHC.

1. Retrieve reading of current closed orbit y from BPM system.

2. Compute the di�erence with respect to a given reference closed orbit, ∆y.

3. Compute necessary corrector strength update via a linear correction strategy as per
∆c = A∆y.

4. Apply the correction multiplied by a gain (typically � 1) over a period of time to
optimize for overshoot, response time and robustness.

Based on the current performance of LHC, the OFB is currently run aggressively (many
singular values, i.e. local correction) during the ramp and leniently (few singular values, i.e.
global correction) during collision [21]. A heuristic as to why the OFB is run aggressively
for the ramp is that the beam optics and energy are changed significantly during that stage.
It is a complex phase and so more sources of errors are introduced, e.g. transient currents
and hysterisis-like e�ects in magnets when changing beam energy and machine optics. In
contrast to this, during stable beams the beam optics and energy remain the same, wherefore
there is less orbit perturbation and so less need for corrections.

5.2 Results
To model the e�ect of the OFB for stable beams, the following data and assumptions were
used:

1. The OFB does not use any correctors that are shared between the beams [21].
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2. TheOFB uses 40 out of 520 singular values (per transverse plane) for the pseudoinverse
of the corrector response matrix [21].

3. All closed orbit perturbation taking place during collision is, or can be treated as being,
caused by transverse movement of quadrupoles.

4. All transverse quadrupoles movement is i.i.d. in each dimension.

5. All BPM reading errors are i.i.d. in each dimension.

6. As reference values,σquad = 0.3 µm is taken as the RMS quadrupole movement during
a typical collision time of 12 hours and σBPM = 20 µm as the RMS BPM error for one
reading [22].

7. Equation 5.6 is used to compute the residual at the end of collision, whereA = − pinv(RMc
†)

with the proper number of singular values.

8. LHC optics used: β∗ = 30 cm, εN = 2.5 µm and E = 6.5 TeV.

9. HL–LHC optics used: β∗ = 15 cm, εN = 2.5 µm and E = 7 TeV.

Given the previous assumptions, an example result for the residual orbit in the full ma-
chine can be seen in Figure 5.4 where LHC and HL–LHC are compared when using 40 and
400 singular values for the linear correction strategy A in the OFB. The plots shown in Fig-
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Figure 5.4: TheRMShorizontal horizontal residual for Beam 1 at the
end of collision using theOFB, measured in beam size and compared
between LHC and HL–LHC forσquad = 0.3 µm,σbpm = 20 µm for
40 (a), and 400 (b) singular values used in A. S = 0 corresponds to
IP5 and the leftmost peak corresponds to IP1.

ure 5.4 are normalized in units of beam size. Recalling the definition of beam size in (2.89),
it is proportional to the square-root of the β-function, which provides the explanation for
the peaks at IP1 and IP5 where the β-function assumes its smallest value. The relative size
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of these peaks, however, cannot be fully explained by the relative values of the β-function
at these points, as the β-function over the full machine plays a role. For HL–LHC, the β-
function in the interaction regions is greater, which has the impact that quadrupole mis-
alignments in these regions have a greater impact on the closed orbit at every other position,
including the interaction points. In addition to this, the normalized emittance is the same for
the two machines, but as the collision energy is greater in HL–LHC, it has lesser geometric
emittance, which reduces the beam size and therefore further constributes to the discrepancy
between the machines.

Overall, the results in 5.4a are expected: there is a worsening of the orbit at IP1 and
IP5 where the beam size has been shrunk in HL–LHC. To quantify why the beams are not
corrected more aggressively, see Figure 5.4b where the same scenario is plotted but for 400
singular values in A. In essence, the errors in the BPM readings propagate to the orbit, wors-
ening it substantially, unless the number of singular values is constrained for stable beams.
Considering the relatively small orbit perturbations taking place during stable beams, this
was to be expected.

Using (5.6) with minor modifications, it is possible to compute the RMS beam separation
d (measued in beam size σ) at IP5 for the di�erent correction strategies in LHC and HL–
LHC:

dLHC
40 =

√
4.69e11

σ2

m2 × σ
2
quad + 7.49e6

σ2

m2 × σ
2
BPM ,

dLHC
400 =

√
5.18e11

σ2

m2 × σ
2
quad + 4.87e8

σ2

m2 × σ
2
BPM ,

dHLLHC
40 =

√
7.47e11

σ2

m2 × σ
2
quad + 1.56e7

σ2

m2 × σ
2
BPM ,

dHLLHC
400 =

√
6.38e11

σ2

m2 × σ
2
quad + 2.87e9

σ2

m2 × σ
2
BPM .

(5.9)

Note that the scaling factors are functions of the response matrices, defined by the optics,
and the number of singular values used in the correction strategy. As expected, a greater
number of singular values amplifies the impact of BPM noise. Somewhat unexpectedly, 400
singular values performs worse than 40 singular values when correcting for beam separation
caused by quadrupole errors in LHC. A possible explanation for this is the correction strat-
egy being an unweighted corrector response matrix, meaning that the extra singular vectors
included for the 400 singular values correction might prioritize other regions and not the
two BPMs surrounding IP5. This e�ect need not be symmtetrical across the machines as
small variations in the optics may shift around the singular vectors considerably, and so the
di�erence between the machines could come down to structural di�erences arising from the
high-luminosity upgrade.

In Figure 5.5 we show the beam separation at IP5 in LHC for 40 singular values, and
di�erent values of the RMS quadrupole movement and BPM noise using (5.9). A few easy
observations can be made for Figure 5.5. Firstly, the RMS BPM error has to be kept below
roughly 60 µm if the OFB is to have any ameliorating e�ect on the RMS beam separation at
IP5. Secondly, even for perfect BPMs the OFB is only able to reduce the beam separation
by roughly 20 % for the given magnitude of the quadrupole error. This is not unexpected,
and is a direct result from the correction strategy being global and unweighted. If the OFB
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Figure 5.5: The RMS beam separation measured in beam size at IP5
for the end of collision using the OFB with 40 singular values, plot-
ted versus σBPM for σquad = 0.3 µm (a), and versus σquad for several
values of σBPM (b).

is to have the ability to considerably correct for beam separation, then it needs to weight
the corrector response matrix and possibly change the number of singular values. In practice
however, this added capability to correct for beam separation would necessarily propagate
more BPM errors, and so the real bottleneck is the level of noise in the BPMs and not so much
the choice of correction strategy.

It should be emphasized that the x-axes in Figure 5.5 should not be directly associated
with time. Even if the assumption is made that the RMS quadrupole error increases linearly
with time (contrary to e.g. a Brownian motion where it is proportional to the square-root),
it would be a stretch to claim any continuity. Rather, the graphs should be seen as scans over
possible quadrupole errors by the end of collision and what the respective impact on beam
separation would be.

Having investigated the impact of the OFB in LHC on beam separation, Figure 5.6 shows
a comparison between LHC and HL-LHC for the same settings. The important point here
is that from the perspective of beam separation at IP5, HL–LHC will perform worse but
comparably. In terms of just maintaining collision, even if no OFB is run for HL–LHC it
would still be in collision as 0.4σ is still small enough for collisions to take place, even if
luminosity is lost. This loss in luminosity is given by the exponential factor in (2.91):

exp
(
−

d2

4σ2

)
= exp

(
−

0.42σ2

4σ2

)
= 0.96 . (5.10)

In other words, a beam separation of 0.4σ would give a 4 % instantaneous luminosity loss
by the end of collision for HL-LHC, implying a lower loss of integrated luminosity loss over
a fill, but still not acceptable.

The beam operator in LHC possesses another tool for reducing the beam separation, the
lumiscan. It is an orbit knob, recognizable as one of the knobs implemented in Chapter 4,
and an implementation of it can be seen in Figure 5.7. This knob can be used to bring the
beams into head-on collision, and does so by using the luminosity of the beam as a signal.
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Figure 5.6: The RMS beam separation at IP5 at the end of col-
lision using the OFB with 40 singular values as a function of the
RMS quadrupole error, measured in beam σ’s for σbpm = 20 µm
where the RMS quadrupole error is scanned. Here plotted against
the benchmark of using no correction.

In practice, this means steering one of the beams while the other one is kept stable, and
measuring the luminosity as the first beam is moved until an optimum has been found, i.e.
head-on collision. Importantly, the lumiscan is independent of BPM readings, as only the
luminosity is used as signal.

During collision, lumiscans are called manually by an operator whenever the luminosity
drops below what is expected. A critical property of the lumiscan is that it can be applied
on top of the OFB, in other words, if a lumiscan is performed with the OFB active, the OFB
does not cancel the orbit knob. This is a result of the OFB using a global correction, and the
lumiscan modifying the orbit localized around interaction points. Due to the availability of
the lumiscan, operating virtually independently of theOFB, beam separation can and is made
smaller than what is predicted here for LHC. The results shown here for LHC should instead
be viewed as the beam separation for an alternative operational scenario where lumiscans are
disabled.

Lastly, it is worth mentioning that for Run 1 (2010-2013), LHC was run with the OFB
inactive during collision and still proved stable [21]. This was however for other parameters;
the collision energy was lower at 3.5 TeV and the beam sizes at collision were greater, and so
that iteration of LHC was overall more resillient to closed orbit perturbation. Nevertheless,
the lattice has not changed considerably since then, and so there are grounds for believing
that LHC could remain operational in Run 3 without the OFB during collision.
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Figure 5.7: Implementation of the lumiscan orbit knob, shown for
the horizontal plane around octant 5 where s = 0 is the position of
IP5.

5.3 Conclusion
The results derived here indicate that the OFB used in LHC does not significantly improve
the beam separation stability at IP5 during collision. Transferring the OFB as currently
implemented for the LHC to HL–LHC leads to similar results, with a worsening of beam
separation driven in part by a reduced beam size at the collision points.

81



5. Estimating Impact of Orbit Feedback System for Maintaining Collision

82



Chapter 6

BPM Specification for Local IP Correction

The integrated luminosity over a fill can be viewed as a benchmark for the performance of a
collider, but the instantaneous luminosity also plays an important role for the experiments
conducted. The event pile-up is a parameter describing the luminosity from a single bunch
crossing, i.e. the number of events per bunch crossing. If too many events take place per
bunch crossing, then the data collected by detectors may be saturated and harder to analyze.
Granted this, if the integrated luminosity is treated as a constant, it is preferable to have a
constant event pile-up. This can be achieved by β∗-levelling.

To β∗-level is to change the β-function at an interaction point, i.e. β∗, during collision as a
means of keeping the instantaneous luminosity constant, as per (2.91). In practice this is done
in steps where the optics is changed to achieve the new β∗. At each step non-negligible closed
orbit perturbation might be induced. Because of this, using a lumiscan might be necessary to
bring the beams back into head-on collision. During LHCRun 2, a few β∗-levelling steps were
performed, and at times, no lumiscans were necessary to recover head-on collision condition.
In HL–LHC, the luminosity will be increased nominally by a factor five while the number
of bunches is kept constant [23]. This will increase the event pile-up and so the β∗-levelling
used in HL–LHC will be more involved with many more levelling steps, thus potentially
increasing the number of lumiscans performed during collision.

Performing a lumiscan takes in the order of a minute [24], and in this process some lumi-
nosity is inevitably lost as the luminosity itself is used as the signal to optimize over. Given
the new β∗-levelling scheme in HL–LHC, the integrated luminosity lost to lumiscans could
increase considerably. Because of this luminosity loss, there have been calls for limiting the
use of lumiscans, which warrants an alternative method for bringing beams into head-on col-
lision. One such method could be to make use of the BPMs closest to the interaction point
and correcting them to the design orbit using orbit correctors. Such a correction would re-
quire highly accurate BPMs close to the interaction points. The subject of this study is to
estimate how accurate these BPMs would have to be in order to replace lumiscans.
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6.1 Results
As lumiscans are performed to bring beams into head-on collision, any local IP correction
employed as a substitute has to reduce the beam separation su�ciently. As a benchmark
of this, we use 0.1σ beam separation, corresponding to a 0.25 % instantaneous luminosity
loss. In other words, if a local IP corrrection can achieve a 0.1σ RMS beam separation, it is
considered a valid substitute for lumiscans.

To study these corrections, the following setup was used and assumptions were made:

1. Only octant 5 is considered from Q25 to Q25, with quadrupole errors from Q20 to Q20.

2. All closed orbit perturbation is, or can be treated as being, caused by transverse move-
ment of quadrupoles.

3. All quadrupoles’ movement transversally is i.i.d. in each dimension.

4. All BPM reading errors are i.i.d. in each dimension.

5. As a reference value, σquad = 0.3 µm is taken as the RMS quadrupole movement to
correct for during collision [22].

6. Equation 5.6 is used to compute the residual whereA = − pinv(RMc
†), with the proper

number of singular values.

7. HL–LHC optics used: β∗ = 15 cm, εN = 2.5 µm and E = 7 TeV.

The underlying assumption for studying one octant is that errors local to the octant are
assumed to be the dominating source of errors at the corresponding interaction point. For
the extent of this study, pairs of BPMs will be used where one pair is defined as per Figure
6.1. In other words, the ith BPM pair is the pair of BPMs formed by taking the ith BPM away
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Figure 6.1: Schedule of the BPM pairs in the interaction region
around IP5.

from the IP, on each side of the IP and for both beams. This means that what is referred to
as a BPM pair in this chapter is in fact four di�erent BPMs, one per side of IP and beam.

Under these assumptions, Figure 6.2 shows the RMS beam separation at IP5 when using
di�erent pairs of BPMs and where each point shown corresponds to the correction for the
optimal number of singular values. If one uses only one BPM pair at a time, the trend is
clear: the closer the BPM pair is to the IP5, the more e�ective it is at correcting the beam
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Figure 6.2: The RMS beam separation at IP5 after local correction
as a function of RMS BPM error for σquad = 0.3 µm, plotted for
di�erent pairs of BPMs used in the correction.

separation. The underlying reason has to do with the number of error sources between each
BPM pair. The closest BPM pair performs the best as there is no error source between the
BPMs, and the further away a BPM pair is the more error sources. Because of this relation, the
correction of the closest pair is in fact independent of the level of closed orbit pertubation; if
the closed orbit is corrected to zero at these BPMs, it directly follows that the closed orbit at
IP5 is zero too. In the same manner, correcting to zero at a BPM pair when there is an error
source between them will invariably lead to a residual at the interaction point. This is most
clearly seen in Figure 6.2 at the leftmost points where the BPMs are perfect: pair 1 corrects to
zero beam separation, every other pair does not with a performance worsening with distance
from the interaction point.

Based on the previous reasoning, assuming all BPMs are equal in performance, the closer
the pair of BPMs is to the interaction point, the better. There is however an argument for
making use of groups of pairs for the local correction. If one has access to several imperfect
BPMs close to each other, then it is possible to reduce the level of noise in the readings based
on the collective reading being unphysical. A naive schematic of this is shown in Figure 6.3.
The figure assumes that any physical orbit must be a straight line for the region. In such a
system, the orbit can be estimated based on the line with the least-squares distance to every
measurement. Under reasonable assumptions, more measurements imply a better estimate
of the line.

This principle is used in Figure 6.4 where groups of BPM pairs are used in the correction.
Here it becomes evident that one can improve the result in Figure 6.2 by combining BPMs in
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Figure 6.3: Schematic of beam measurement by imperfect BPMs.
The gray blocks correspond to BPMs, the full red line corresponds
to the actual closed orbit, the black crosses correspond to the BPM
reading of the beam and the red dashed line corresponds to the re-
construction of the closed orbit based on the readings.
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Figure 6.4: The RMS beam separation at IP5 after local correction
as a function of RMS BPM error for σquad = 0.3 µm, plotted for
di�erent sets of BPM pairs used in the correction.

the IR for the given quadrupole errors, but not considerably. To get an idea why combining
many BPMs does not improve the beam separation by much, consider the following argu-
ment. Assume we have n identical BPMs in a sequence of an accelerator and each of them
measures the horizontal closed orbit of a beam. In the best-case scenario, we can assume
that there are no sources of closed orbit perturbation between each of the BPMs, and so if
any of the n BPMs would have provided a perfect reading, then the real closed orbit at every
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other BPM would have been computable, i.e. the beam has one degree of freedom, the size
of the orbit. The most beneficial scenario for estimating the orbit is if each BPM reading is
as important. If the distribution of noise in the BPMs is equal across them, then this would
correspond to a beam with constant closed orbit in the region, meaning that the ideal pre-
dictor of the closed orbit would be the arithmetic mean. It follows that in the best possible
scenario, the best noise reduction we can achieve is by a factor 1/

√
n for a section of n BPMs.

Applied to the setup we are investigating, in the best case scenario, we can assume that
groups of BPM pairs function as the closest BPM pair, scaled by the noise reduction of 1/

√
n

where n is the number of BPM pairs used. This provides an upper-bound on the allowed BPM
noise for satisfactorily correcting the beam separation at IP5 as per:

Required BPM stability σBPM when using n BPM pairs ≤
√

n × 0.50 µm . (6.1)

where the 0.50 µm is the maximum allowed RMS BPM error for the closest BPM pair. Note
that (6.1) is independent of the error in the machine, and optimistic. As there are sources of
closed orbit perturbation between the BPM pairs, the reduction factor of the noise will not
be
√

n but smaller, and when combinining BPM pairs it follows that some of the correction
will be applied to BPMs other than the closest ones, hence their correction will be worse for
perfect BPMs. Nevertheless, (6.1) gives a useful bound on the minimum BPM stability for a
given choice of BPM pairs; if the inequality is not satisfied, then there is no possibility that
a correction strategy will achieve the requisite beam separation using only information from
BPMs.

The results from Figure 6.2 and 6.4 are summarized in Table 6.1. The table provides the

Table 6.1: Table over required BPM stability to achieve a beam sep-
aration at IP5 corresponding to a 0.25% instantaneous luminosity
loss for σquad = 0.3 µm for di�erent BPMs employed in the correc-
tion.

BPM pairs used Required RMS BPM stability [µm]
1 0.50
2 0.46
3 0.33
4 0.20
5 N/A
6 N/A
1 through 2 0.57
1 through 3 0.70
1 through 4 0.80
1 through 5 0.85
1 through 6 0.88

necessary BPM stability to replace the lumiscans for the assumed error of σquad = 0.30 µm,
when performed during collision to re-enter head-on collision. This stability needs to be kept
over the the full collision, which is in the order of ten hours. If this would be achieved, then
local IP correction could be employed after each β∗-levelling step and to correct for orbit
drift at the interaction points, i.e. it could replace lumiscans during collision.
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6. BPM Specification for Local IP Correction

A separate use of local IP correction that has not been mentioned is as a means of finding
a luminosity signal. If HL–LHC is not operated for an extended period of time, or some
equipment fault takes place between two fills, then the closed orbit in the machine might be
large enough that collision cannot be found after the ramp. Lumiscans are also performed in
these scenarios, but finding collision can take considerably longer than a minute since there
is no luminosity signal. Once a luminosity signal is found, head-on collision can be achieved
in around a minute. If the stability of the closest BPM pair around interaction points is good
enough, it would be possible to correct down to the design orbit at these locations and a
luminosity signal would be attained instantly.

A beam separation of 4σ still gives a su�cient luminosity signal to be able to quickly
find head-on collision [24]. As correction using the closest BPM pair is independent of the
closed orbit in the machine, the result from Table 6.1 can be scaled directly to compute the
necessary necessary BPM stability to always find collision:

Required BPM stability σBPM to find collision = 40 × 0.50 µm = 20 µm . (6.2)

where the factor 40 is the quotient between 4σ and 0.1σ. The timescale of this stability
dictates how useful the local IP correction can be to find collision. If it is less than a day, then
it is not very useful, whereas if if it is in the order of months then one can possibly save time
using this approach.

6.2 Conclusion
Based on the results presented, the BPMs closest to the points of collisions would need a sta-
bility in the order of a micrometer on a timescale of around ten hours to replace lumiscans
as a means of steering beams into head-on collision. The BPM pairs most e�ective at cor-
recting orbit at the points of collision are the closest ones, with their e�ectiveness degrading
with distance. If one is interested in using local IP correction as a means of finding collision,
then the minimum BPM stability is around twenty micrometers for whatever timescale is
considered.

As to the larger question of whether it is worthwhile to remove the lumiscans in HL–
LHC, the following things ought to be performed:

1. Quantify the actual gain from removing the lumiscans in terms of integrated luminos-
ity.

2. Investigate the feasibility ofmicrometer stability for the BPMs near the collision points.

3. If it proves feasible to upgrade the BPMs to this precision, quantify the cost of doing
so, which can be favorably compared to integrated luminosity.

Finally, the results presented here are compatible with those of a previous study on older
HL–LHC optics and under di�erent assumptions [25]. For that study, the necessary RMS
BPM stability to replace lumiscans during collision was estimated to be 1.20 µm.
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Chapter 7

Discussion

Having accounted for the results of the thesis, this chapter will be dedicated to discussing
choices, assumptions and the outcome of these.

7.1 POCKPy
From the perspective of the task originally set out, the project is a success. Based on the
comparisons between the framework and MAD-X, the framework is capable of computing
response matrices that match established results. The optimization procedures provided al-
lows for optimizing the error correction and knob implementation, and is able to optimize
for both in a few seconds on aDell XPS 13with Intel Core i7-8550UCPU@ 1.80GHz. Assum-
ing the full pipeline of runningMAD-X to produce output for POCKPy, the full computation
should be on the timescale of minutes, which is adequate from the perspective of continuous
validation of the HL–LHC optics. This will depend on what is considered su�cient valida-
tion of an optics. If analyzing the statistics of the residual and corrector strength employed
based on a linear correction is the relevant procedure, then this can be performed in seconds.
If instead one wants to make use of the convex optimizer, then one has to sample from many
machine errors to estimate these quantities. This takes more time, but doing it naively in a
single process still allows hundreds of machines to be corrected in the order of a minute.

7.2 Corrector Budget
The current design of the HL–LHC v.1.5, release candidate 0, does satisfy the corrector bud-
get, in line with previous preliminary verifications [15].
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7. Discussion

7.2.1 Error Correction
For previous studies of the corrector budget employed in HL–LHC, linear correction strate-
gies based on weighted pseudoinverses have been used. The new routine based on convex
optimization allows for a di�erent approach where constraints can be put on individual cor-
rections. Evidently, for appropriately chosenweights (and number of singular values), the two
approaches can give similar results. The results of the error correction make a good argument
for that the residual closed orbit can be corrected down to less than 1 mm in HL–LHC, and
that this would be a�orded by the given corrector budget.

7.2.2 Knob Implementation
The convex optimization used for the knob implementation here managed to find knob im-
plementation within the budget. Finding knob implementation was previously done byman-
ually weighting pseudoinverses which in theory should be able to find the same solution, but
is not a robust approach. The new approach introduced in this thesis is faster, can handle
constraints and arguably more user friendly.

7.3 Estimating Impact of Orbit Feedback Sys-
tem for Maintaining Collision

The results on LHC from this study are compaible with experience; LHC is a stable machine
which in practice could be run during collisions without any OFB, at the expense of a growth
in global orbit. The result that the OFB does not have a big impact on the beam separation is
a result which is reflected in the fact that lumiscans nevertheless are occasionally performed,
which hints at noticeable beam separation during fills. The reason as to why the OFB does so
little to control the beam separation is a direct result fromusing an unweighted pseudoinverse
with few singular values. However, as Figure 5.4 demonstrates, opting for usingmore singular
values propagates the error from the BPMs to the orbit. This leads to the conclusion that if the
OFB were to be of significant use in minimizing beam separation, then the BPMs employed
in the OFB would have to be more stable.

Transferring the OFB as implemented in LHC to HL–LHC leads to analogous results,
but scaled di�erently, as seen in Figure 5.6. The driving factors behind this scaling is the
beam size at collision, di�erence in collision energy and the overall di�erence in β-function
between the two machines. Based on the result, it would appear as if HL–LHC could be run
using the same OFB but with more frequent lumiscans (or lumiscan equivalents).

7.3.1 Underlying Assumptions
The more debatable assumptions made in the previous analys should be discussed. First out,
that all perturbation are caused by transversemovements of quadrupoles. This is based on the
view that the major contributor to closed orbit perturbation is caused by ground motion, i.e.
the groundmoving somewhat over time, and not uniformly across the 27 km long accelerator.
In the context of closed orbit perturbation during collision, tenths of micrometers across all
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quadrupoles, especially the ones in the interaction regions, is enough to induce a global orbit
in the order of a hundred micrometers, and beam separation of tenths of σ’s at collision
points. Other sources of errors are present, e.g. transient currents in magnets and power
supply stability, but they are assumed to be of a smaller order. Moreover, as the quadrupole
errors give rise to kicks at all quadrupoles, it is assumed that errors not accounted for could
be handled by an increase in the magnitude of the assumed quadrupole errors.

Second, that all quadrupoles’ transverse movement is i.i.d. in each dimension. This is
not an obvious assumption as ground motion can be correlated in space. The major reason
for assuming i.i.d. is that alternative formulations would lead to more complex expressions.
Moreover, encoding the correlation between di�erent quadrupoles would itself rely on fur-
ther assumptions which can be questioned, nor is it a given that correlation would worsen
the residual. Depending on how the correlation is structured, it is possible that the phase
advance between alternatingly focusing and defocusing quadrupoles causes the e�ect of the
orbit kicks at the quadrupoles to cancel each other out more than in the case where they are
assumed independent. In short, it is an assumption that makes the problem more tractable
and which does not necessarily underestimate the closed orbit perturbation.

Third, that all BPM reading errors are i.i.d. in each dimension. This is an assumption
that is motivated by the assumption that BPM reading errors are dominated by electronic
errors, and since each BPM has its own (but structurally similar or equal) electronics the
errors themselves are independent across di�erent BPMs but distributed similarly. There
are exceptions, there was for example an issue with heating in acquisition electronics. Each
BPM is connected to a rack of electronics which processes the readings, and one rack can
be connected to multiple BPMs. If these racks are not properly cooled and maintained at
a stable temperature, then the processed signal gets noisier, and so the noise for some BPM
readings was correleated because they shared racks. This was a problem during LHC Run 1,
but since then more e�ective cooling is employed wherefore this e�ect has less of an impact.

Fourthly, that 5.6 is used to compute the residual at the end of collision. The mathemat-
ical motivation as to why is given in Section 5.1.2, which relies on the OFB working based
on occasionally sampling the orbit measured at the BPMs and applying a correction directly
after. This is a significant simplification as the actual OFB is not blind to the time domain.
Nevertheless, the primary implication of the OFB working in the time domain for this study
is that each correction gets applied gradually over time. Since the study concerns itself with
the beam separation at the end of collision primarily, the time span is in the order of hours,
and so the transient e�ects from previous corrections can be neglected.

Lastly, an implicit assumption, that the ground motion will behave the same in HL–LHC
as LHC. HL–LHC will make use of the LHC tunnel and will share much of the structure.
Because of this there are good arguments for believing that the ground motion experienced
in HL–LHC will be similar to the one experienced in LHC. Still, it is not impossible that
the new triplet quadrupole assemblies in HL–LHC might worsen or improve the transfer
function from ground motion to magnetic field motion.
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7.4 BPM Specification for Local IP Correc-
tion

For the study of local IP correction in HL–LHC, the result is comparable to a prior study
operating under slightly di�erent assumptions [25]. The point to drive home is that both
studies reach the conclusion of needing BPM stability in the order of one micrometer, which
is a considerable improvement over what is currently in place (stability in the order of tens
of micrometers).

As such, it is important that the feasibility, potential gain in integrated luminosity and
the cost of upgrading the BPMs are quantified. Not having to use lumiscans as a means of
keeping the beams in head-on collision for stable beams would be possible if the BPMs are
su�ciently reliable. Analogously, having the same stability when finding collision between
fills or after longer machine stops would save time, and therefore increase the integrated
luminosity. This would require stability of the BPMs on the timescale of days, but would also
contribute to an e�ective gain in integrated luminosity if achieved.

7.4.1 Underlying Assumptions
Most of the debatable underlying assumptions for this study were already dealt with in the
OFB study. Still, there are two that are worth commenting on. First, the choice of setting the
RMS quadrupole transversemisalignment to 0.3 µm, the same as that for theOFB study. One
argument for choosing this value is that it o�ers a reasonable base case. It provides a good
estimate of the ground motion experienced between two fills, and so the numbers provided
for the BPM stability can be interpreted as requirements for finding head-on collision at the
end of the ramp. Note however that the performance of the closest BPM pair is independent
of the magnitude of the closed orbit perturbation, and so the related numbers, including the
theoretical bound on the performance of combining BPMs, are too.

A second assumption made use of in Figures 6.2 and 6.4 was that the optimal number of
singular values was available to the beam operator at the point of correction. If the BPMs are
relatively unstable then fewer singular values should be used to propagate less BPM error and
relatively stable BPMs should be put to use by including more singular values. In practice,
the operator cannot know the optimal number of singular values at any given point in time,
meaning that a ’fair’ number of singular values would instead be chosen based on experience.
This does not change the results provided in the study, instead what is here being emphasized
is that the local correction strategies employed will at best achieve the beam separation in
Figures 6.2 and 6.4 for the given assumptions.
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Chapter 8

Conclusion

The thesis work has resulted in a Python framework (POCKPy) for the orbit corrector budget
inHL–LHC, and first-order closed orbit correctionmore generally. Prior to the introduction
of POCKPy, verifying the orbit corrector budget had to be performed by direct interaction
with MAD-X for the computation of response matrices and subsequent ad-hoc weighted
pseudoinverses for error correction and knob implementation. Any notion of optimization
was based on manually altering the weights for pseudoinverses in iterations until the opti-
mization goal was achieved. This was time-consuming as well as not robust; no guarantees
could be o�ered for the optimality of a given result nor could the failure to find a solution
be provided as proof for the nonexistence of one. In POCKPy, it is su�cient to provide
input in the form of .tfs files, from which the corrector response matrices are computed.
Convex optimization for knob implementation and error correction can be performed with
constraints on orbit and corrector strength, and for di�erent goal functions. The final re-
sult being that optimal solutions for feasible problems as well as infeasible problems can be
identified robustly and e�ciently.

When investigating the current corrector budget, POCKPy was able to verify that the
orbit corrector budget for HL–LHC version 1.5, release candidate 0, will hold. In addition
to verifying the feasibility of the problem, POCKPy was able to optimize the knob imple-
mentation such that the orbit at the crab cavities was minimal and the MCBY corrector usage
was optimized.

Using the response matrices computed in POCKPy, two additional studies were con-
ducted. The first study treated the e�ect of the orbit feedback system for collision in LHC,
and studied an extension of it on HL–LHC. The results indicate that the orbit feedback sys-
tem as currently used in LHC does not considerably correct for beam separation at collision
points, providing an argument for the robustness of the LHC design in terms of the stability
at interaction points during collision. Investigating the same orbit feedback applied to HL–
LHC led to characteristically similar but di�erently scaled results as that of LHC, driven in
part by the di�erence in beam sizes for the two machines. The results imply that transferring
the orbit feedback system from LHC to HL–LHC, in first approximation, will still provide

93



8. Conclusion

a reasonably stable machine, granted that the ground motion sensitivity stays the same, but
with a greater need for occasionally bringing beams back into head-on collision via lumiscans.

In the second study, local IP correction as an alternative to lumiscans was investigated
for HL–LHC. Based on the results, BPM stability in the order of a micrometer would be
necessary for the BPMs next to collision points. The constraints on the BPM stability can be
relaxed if multiple BPM pairs around collision points are used, but not by more than a factor
two.

In terms of future work for POCKPy, there are still functionalities to implement. From
a usability and maintainability perspective, POCKPy is in need of improved error handling
and unit testing. These are features planned to be implement as part of the author’s remaining
internship at CERN. There is also a good argument for including more specialized use cases
of POCKPy as dedicated routines.

Lastly, a potentially worthwhile endeavour would be to investigate the possibility of au-
tomatizing the search for weights and singular value cuto�s for linear correction strategies.
To naively approach this with gradient-based optimization is ruled out as the gradient of the
pseudoinverse as a function of the weights and number of singular values is not numerically
stable nor continuous. A possibility that could be explored is to use some form of evolu-
tionary algorithm, possibly within the subdomain of di�erential evolution, with reasonable
heuristics hard-coded. It would not be fast as it has to compute many pseudoinverses per
generation, but if done correctly it ought to be possible to find linear corrections without
having the user manually manipulate weights for individual BPMs and correctors.
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Appendix A

Element Naming Conventions

As element names occur in this thesis, it is worth spending a little time on the element naming
convention used in HL–LHC. Figure A.1 is essentially a zoomed-in and stretched out variant
of Figure 1.1 with additional terminology. The key take-aways from Figure A.1 for the present

Figure A.1: In-depth view of a segment in LHC [26].

purpose are:

1. Each octant is divided into two half-arcs surrounding an insertion.

2. Each octant is also divided into a left side and a right side.

3. The center-point of some octants is the interaction point, IP for short, with their sur-
rounding region referred to as interaction region, abbreviated IR.

From the perspective of lattice definitions, there are eight IPs in HL–LHC, but this is
only for notational ease. An interaction point in the strict sense is a point where the two
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beams collide, and is only a feature of octant 1, 2, 5 and 8 where experiments are run. When
an IP or IR is referred to in this thesis, it is taken for granted that it applies to one of these
octants. What all octants nevertheless have in common is that they all have a long straight
section in the middle as part of the insertion. The arc can be perceived to be roughly uniform
across LHC whereas the long sections di�er from octant to octant.

As the base pattern is a FODO lattice (alternatingly focusing and defocusing quadrupoles),
the machine can be broken up into half-cells containing one quadrupole each. In doing so,
each half-cell is given a number, where the ith quadrupole away from the center of its octant
is associated with the ith half-cell. With this in mind, the general naming convention can be
summarized as follows:

<TYPE><SPECIAL>.<EXTRA><HALF_CELL><LEFT_OR_RIGHT><OCTANT>.B<1_OR_2>

• TYPE: Entry specifying the type of element. See Table A.1 for example entries.

• SPECIAL: Optional entry which can be used to specify sub-type of element, e.g. H or
V to signify if a corrector is acting on the horizontal or vertical plane.

• EXTRA: Optional entry used to separate between otherwise identically named elements.
E.g. A, B, C to separate between three bending magnets in the same half-cell.

• LEFT_OR_RIGHT: Entry specifying which side of the closest IP the element is on. As-
sumes either L or R.

• OCTANT: Entry specifying the octant the element is a part of. Valid entries are 1 to 8.

• 1_OR_2: Entry specifying which beam the element is part of. Either 1 or 2, unless the
element is shared between the two beams in which case the element name ends with
the OCTANT entry.

Table A.1: Table over prefixes for di�erent element types.

Element type Prefix
Bending magnet MB
Quadrupole MQ
Orbit corrector MCB
BPM BPM
Crab cavity ACFCA
Drift DRIFT

For example, the element MQ.25L5.B1 is a quadrupole on the left side of IP5, in the
25th half-cell and for Beam 1. The special identifier can be used in multiple ways, for example
MQML.10R1.B1 is a di�erent type of quadrupole in half-cell 10, on the right side of IP1 for
beam 1. Here the special identifier describes the type of quadrupole. For MCBH.21R5.B1,
the special identifier H signifies that it is a horizontal orbit corrector. Two other horizontal
orbit correctors are MCBYH.A4R5.B1 and MCBYH.B4R5.B1. In this case the two horizontal
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orbit correctors share type MCBY, octant, side of IP, half-cell and beam, which is why they
make use of the extra specifiers A and B to tell them apart.

Note that there are elements which skip the appendage of .B<1_OR_2>. These corre-
spond to elements which are common to both beams, which can only happen in the IR.
This is due to the fact that when two beams are brought to collision they pass through the
same equipment close to the point of collision. Examples of this are MCBXFAV.3L5, a shared
vertical corrector, and MBXF.4L5, a shared bending magnet. This has an important impact
on the analysis, since powering a shared corrector impacts both beams, same thing goes for
imperfections in shared bending magnet.
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Appendix B

Crab Cavities

To maximize the luminosity at interaction points, HL–LHC will make use of elements called
crab cavities. In Figure B.1 the e�ect of crab cavities is displayed where bunches of parti-
cle are colliding at an interaction point. Due to longitudinal dynamics (not covered in this

Figure B.1: Illustrative figure on the e�ect of Crab Cavities [27].

thesis), beams are made up of bunches with a proper longitudinal length. Moreover, by ge-
ometry, two beams colliding at a fixed point has to do so at an angle unless they are to have
a continuum of collision points. If the crossing angle is too small, then the two beams may
still electromagnetically interact with each other considerably before colliding, which is un-
desirable and enforces a noticeable crossing angle. Combining these two facts leads to the
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situation depicted: the bunches making up the two beams would not overlap perfectly in the
colllision, unless the bunches were somehow deformed before entering collision.

Crab cavities are used to deform bunches such that their overlap at collision ismaximized.
The crab cavities are one of the major contributors toward increasing the luminosity in HL–
LHC, and so maintaining good conditions for their operations is important. Critically, any
transverse orbit at the crab cavities will generate undesired beam-induced RF power in the
crab cavity itself, which needs to be evacuated. Beam orbit at crab cavities therefore has to
be minimized.
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Nomenclature

α, β, γ Twiss parameters.

β∗ Beta function at collision point.

† Matrix and vector operator for taking subsets of rows and columns for matrices, or
subsets of rows for vectors.

∆ψ Rotational misalignments w.r.t. longitudinal axis.

∆k0 Dipole field error.

∆k1 Quadrupole field error.

∆x, ∆y Transverse misalignments.

ε Emittance.

εN Normalized emittance.

Λ Diagonal matrix.

L Luminosity.

A Linear correction strategy mapping from closed orbit to corrector strengths.

RMc Orbit response matrix for correctors.

RMe Orbit response matrix for machine errors.

abs(·) Absolute value operator. When applied to a vector quantity the output is the result
from applying the absolute value operator to each entry.

pinv(·) Operation for the Moore-Penrose inverse.

Σ Covariance matrix.

θ Orbit kick.
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b Vector of inequality constraints for the absolute corrector strength used.

c Vector of corrector strengths.

e Vector of machine errors.

F The force vector.

k Vector of a subset of machine positions and dynamical variables where values indicate
equality constraints for a knob.

o Vector representing a closed orbit of arbitrary origin.

w Vector of zero-mean noise added to BPM reading.

y Vector of BPM reading measuring positions of both beams, i.e. positions at BPMs
with added noise.

c Speed of light in vacuum.

d Beam separation.

k0 Normalized field strength of a dipole.

k1 Normalized field strength of a quadruple.

L Length of an element.
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beam separation Di�erence in closed orbit between two colliding beams at a given point.

bending magnet Magnetic dipoles bending the beam reference trajectory.

BPM Beam Position Monitor. Sensors employed in accelerators to measure the transversal
position of beams at a given position along the accelerator path.

bunch Group of particles in a beam with a given longitudinal length. A beam typically
consists of thousands of bunches.

closed orbit Unique orbit which closes in on itself after one turn in a circular accelerator.

collision point Point where the two beams collide. For LHC and HL–LHC they are located
in the middle of octants 1, 2, 5, and 8.

corrector strength Magnitude of the orbit kick for a given orbit corrector. In this thesis
measured in Tm, but otherwise often expressed in rad.

crossing angle Angle under which two beams collide.

drift space Straight section in the accelerator with (virtually) no electromagnetic fields.

error correction Powering orbit correctors to cancel the closed orbit perturbation caused
by machine errors.

event pile-up Luminosity per bunch crossing.

fill Process inwhich bunches of protons are injected into LHC, ramped up to collision energy
and then collided at the collision points, and finally dumped.

FODO cell A cell in a FODO lattice consisting of a focusing and defocusing quadrupole
separated by driftspaces.

FODO lattice A periodic lattice where the smallest periodic cell is a FODO cell.
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half-cell Half of one FODO cell containing one of the two quadrupoles.

HL–LHC High Luminosity Large Hadron Collider. An upgrade of LHC to increase the
instantaneous luminosity by a factor of five, extending the operation of the collider
beyond 2025.

IP Interaction Point. Synonym to collision point..

knob A routine used to implement a specific closed orbit in the machine by powering orbit
correctors, often tied to a specific operation scenario.

lattice Schematic of accelerator where all element positions are given.

LHC Large Hadron Collider. World’s biggest particle collider, operational at CERN since
2008.

LHC Run Period of time during which LHC is operational. In-between LHC Runs, LHC
can be upgraded and maintained.

LHCB1/LHCB2 LHC Beam 1/2. Internal name inMAD-X for Beam 1 (clockwise) and Beam
2 (counter-clockwise).

lumiscan Knob used in LHC for bringing beams into head-on collision. Currently used to
enter collision and to occassionally reduce the beam separation during collision.

machine Used interchangeably with accelerator with emphasis on a machine being an accel-
erator with a fix set of machine errors..

machine error Error in alignment or field of bending magnet or quadrupole.

MAD-X Accelerator design software employed at CERN for simulations.

OFB Orbit Feedback System. Feedback system currently employed in LHC for keeping the
beam stable and minimizing orbit throughout the di�erent stages of a fill.

optics A lattice together with specification of magnetic fields. Also used to indicate the
β-functions in a machine.

orbit corrector Dipole magnet with adjustable strength such to induces an orbit kick at its
position, allowing the operator to change the closed orbit in.

orbit corrector budget Specification of the maximum corrector strength allowed in the or-
bit corrector of an accelerator.

perfect machine Machine with no machine errors.

Qi Quadrupole inside the ith half-cell.

RMS RootMean Square. For zero-mean distributions, RMS is equal to the standard-deviation.
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singular value cuto� Specification of the number of singular values to be used when per-
forming an SVD-based pseudoinverse.

SVD Singular Value Decomposition.

turn Synonym for a full lap around a circular accelerator.
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