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Abstract 
Breast cancer is the most common cancer among women in Sweden. To be able to 

treat the disease it is important that it is detected at an early stage. In Sweden, women 

between 40 and 74 years are regularly offered screening with mammography to detect 

abnormalities in their breasts. The mammograms give the radiologist a good image of 

the breasts’ appearances, but it is difficult to detect structures that are covered by 

overlaying breast tissue, which are thus not seen in the image. To visualize structures 

hidden within the tissue and to see structures at different depths in the breast, breast 

tomosynthesis can be used. Breast tomosynthesis gives a three-dimensional image of 

the breast. In order to obtain the three-dimensional image, the breast is scanned in an 

angle of for example 50° and 25 projections of the breast are acquired. This can be 

reconstructed into a 3D image stack of the breast. To give an overview of what is 

shown in the corresponding tomosynthesis stack, the data can be reconstructed into a 

single synthetic mammogram. In this project, a quantitative comparison has been done 

between synthetic mammograms and conventional mammograms to investigate 

similarities and differences. The ultimate goal was to examine if it could be possible 

to use synthetic mammograms to compare to prior synthetic mammograms in order to 

track changes in the breast over time, when screening for breast cancer, just as 

conventional mammograms are used today. If that would be possible, the synthetic 

mammograms can provide a good overview of the breast, additionally the image stack 

acquired from breast tomosynthesis would give the radiologist the possibility to 

examine the breast in detail. The results showed that the synthetic mammograms were 

similar to conventional mammograms in one out of three aspects, the breast area 

density. Another comparison of the three was to use Transpara, an AI software, to 

examine the mammograms. This indicated similarities but there is still not enough 

evidence to draw conclusions. The last method of the three indicated significant 

differences in the frequency content, thus different structures were visible in the two 

types of mammograms. To conclude, synthetic mammograms and conventional 

mammograms are quite similar, but there are still improvements to be done before 

being able to state that they are equivalent. 
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Populärvetenskaplig sammanfattning 
Bröstcancer är den vanligaste typen av cancer hos kvinnor i Sverige. Ca 7000 kvinnor 

i Sverige drabbas av bröstcancer varje år och 1400 av dem dör. I Sverige erbjuds 

kvinnor mellan 40 och 74 år screening för att upptäcka bröstcancer i ett tidigt stadie. 

Screening görs med mammografi och ger en två-dimensionell (2D) röntgenbild. Det 

kan dock vara svårt att se förändringar i bröstet på en 2D bild då avvikande strukturer 

i bröstet kan täckas av annan bröstvävnad och förbli oupptäckta. För att synliggöra 

eventuellt gömda strukturer kan brösttomosyntes användas. Vid brösttomosyntes tas 

till exempel 25 snittbilder av bröstet som tillsammans har ett vinkelomfång på 50°, 

dessa bilder ger tillsammans en så kallad ”pseudo-tre dimensionell (3D)”-volym av 

bröstet. Bilderna kan därefter rekonstrueras till en så kallad syntetisk mammografibild 

som är i 2D. 

Syftet med projektet var att genomföra en kvantitativ jämförelse mellan syntetiska 

bilder med bilder från vanlig mammografi för att undersöka likheter och skillnader. 

Detta för att senare undersöka om det går att använda syntetiska bilder vid screening 

för att jämföra med syntetiska bilder från tidigare screeningtillfällen och se 

förändringar i bröstet över tid, på samma sätt som mammografibilder används idag. 

Om det är möjligt erhålls både en enkel överblick av bröstet som fås med den 

syntetiska bilden, samtidigt som det går att undersöka bröstet snitt för snitt med 

brösttomosyntes. 

Vid screening tas bilder i två vinklar på bröstet, en bild uppifrån och en från sidan. I 

det här projektet användes bilder från 69 kvinnor, där alla bilder visade bröstet från 

sidan. Bilderna undersöktes med tre olika metoder. Med den första metoden 

undersöktes det om frekvensinnehållet skilde sig mellan de syntetiska bilderna och de 

vanliga mammografibilderna. Den andra metoden som användes var att med hjälp av 

mjukvaran LIBRA bestämma arean tät bröstvävnad i förhållande till det totala bröstets 

area på bilderna. Den tredje metoden som användes var att använda mjukvaran 

Transpara. Transpara använder artificiell intelligens och ger bilderna ett Transpara 

score på 1-10 beroende på sannolikheten för cancer på bilderna där 10 innebär att 

något som liknar cancer har upptäckts på bilden. 

Resultatet av projektet visade att mammografibilder och syntetiska bilder erhöll 

liknande resultat gällande andelen tät bröstvävnad i bilderna. Däremot fanns det fler 

högfrekventa strukturer i de vanliga mammografibilderna än i de syntetiska 

mammografibilderna. Detta kan innebära att vävnad med stråkigheter i den vanliga 

mammografibilden, som kan ge indikation för cancer, inte finns med i den syntetiska 

bilden och därmed kan cancern förbli oupptäckt i de syntetiska bilderna. 

Användningen av mjukvaran Transpara kunde inte påvisa några skillnader mellan 

vanliga mammografibilder och syntetiska bilder. Det går inte att med säkerhet 
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bekräfta detta, då Transpara endast är tränat på att tolka vanliga mammografibilder 

och inte syntetiska bilder. 

Det krävs mer utveckling och förbättring av de syntetiska bilderna för att få dem att 

likna vanliga mammografibilder. När de är förbättrade kan det kanske i framtiden bli 

standard med brösttomografi och syntetiska bilder vid screening för bröstcancer och 

strålningen från vanlig mammografi uteslutas. 
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1 Introduction 

1.1 Background 

Breast cancer is the most common cancer among women in the world [1]. Every year 

7000 women in Sweden are diagnosed with breast cancer, and around 1400 die from 

the disease [2]. To be able to treat and cure the cancer, it is important to find it at an 

early stage. In order to find it at an early stage before any symptoms are shown, breast 

cancer screening with mammography is used. In Sweden women are offered regular 

screening [1, 3, 4]. The screening age and intervals may be different depending on 

where in Sweden women live, the intervals below are those used in Region Skåne. 

When women are 40-54 years and 55-74 years, they are offered screening with an 

interval of 18 months and 24 months, respectively [5]. The reason for having different 

intervals is that younger women have denser breast than older women which makes it 

harder to detect cancer and that breast cancer in young women can grow and develop 

faster despite the fact that the incidence of cancer increases with age [6].  

1.1.1 The breast 

The breast consists of glandular tissue and adipose (fatty) tissue, but also blood 

vessels, ducts for transporting milk, lymphatic vessels and lymph nodes. The breast 

also consists of connective tissue and ligaments that give the breast its shape. The 

glandular tissue is divided into 15-20 lobes and the lobes consist of smaller structures 

called lobules. The main task for the lobules is to produce milk when women are 

breastfeeding [7]. 

  

Figure 1.1: The female breast. (A screenshot from Memorial Sloan Kettering Cancer Center, 

2019 [retrieved 2019 11 10]; Available from: https://www.mskcc.org/cancer-

care/types/breast/anatomy-breast.) 

https://www.mskcc.org/cancer-care/types/breast/anatomy-breast
https://www.mskcc.org/cancer-care/types/breast/anatomy-breast
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1.1.2 Mammography and breast tomosynthesis 

1.1.2.1 Mammography 

Digital mammography (DM), now usually simply called mammography since the 

phasing-out of analogue systems, is the main technology used for breast cancer 

imaging. The first time X-rays were used to detect breast cancer in-vivo was at the 

end of the 19th century, but it was often too late to be treated [8]. The German surgeon 

Albert Salomon is known as the founder of mammography. In 1913 he presented how 

he had used X-rays on mastectomy specimens, and how it could show the distribution 

of cancer within the specimens [8, 9].  

In 1930 Staffon L. Warren presented a stereoscopic in-vivo technique for 

mammography on patients undergoing surgery. In 1931 Walter Vogel presented how 

benign breast lesions and carcinoma could be differentiated from each other on 

mammograms. 

Developments, discoveries and studies were made. Jacob Gershon-Cohen showed in 

the 1950s the correlation of lesions on roentgenograms with specimens. He also 

showed the importance of compressing the breast during X-ray exposure in order to 

receive good contrast in the image and an evenly spread radiation field [9]. 

The Uruguayan radiologist Raul Leborgne realised the importance of compressing the 

breast to mammograms with good quality, and also to visualize and differentiate 

different microcalcifications in breast cancer [9].  

In 1960 the radiologist Robert L. Egan presented a mammographic technique that 

became widespread and increased the interest in mammography. This technique was 

reproducible and obtained high-quality mammograms in a way that had not been 

possible before. It could also be used for breast cancer screening [9, 10].  

In Sweden in 1976 a study in Malmö was started by the radiologist and pioneer Ingvar 

Andersson. The purpose of the study was to investigate if regular screening for breast 

cancer with mammography could be a useful method. This study was the second 

largest study in the world. It provided the basis for regular breast cancer screening in 

Sweden [11]. 

An article published in 2016 was based on trials of breast cancer screening with 

mammography in Malmö, Stockholm and Göteborg. The article evaluated whether 

screening could reduce the risk of mortality because of breast cancer. The article 

included women who had their first screening in 1976 between the ages of 40-74 years 

and the last screening in 1986. It was shown that the risk of mortality was relatively 

decreased with 15% due to screening [12]. 
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1.1.2.2 Breast tomosynthesis 

Another technique for imaging the breast is with breast tomosynthesis (BT). BT is 

based on tomosynthesis which is in turn based on standard tomography that had its 

birth in the beginning of the 20th century and was developed by physicians and 

engineers. They combined the moveable X-ray tube and detector as well as the idea 

of acquiring images at different angles [13]. 

A research group at Johns Hopkins University, USA, was the first to use the word 

tomosynthesis. They had constructed a machine that could image the skull of a 

chimpanzee in the late 1960s. In the 1970s and 1980s better algorithms, for example 

deblurring for tomosynthesis was developed. Breast tomosynthesis development 

started in the late 1990s at the breast imaging group at the Massachusetts General 

Hospital, USA [13]. 

A study, recently done in Malmö called Malmö Breast Tomosynthesis Screening Trial 

(MBTST) lasted for five years (2010-2015) and included approximately 15000 

women. The women had undergone two view mammography as part of their regular 

screening examination, that is in the medio-lateral oblique (MLO) and cranio-caudal 

(CC) view and one view BT in the MLO view. Results indicated more cancers were 

detected with BT than with conventional mammography, namely 8.7 cancers and 6.5 

cancers per 1000 women screened, respectively [14]. 

1.1.2.3 Synthetic 2D mammogram  

Today, conventional mammograms are often used together with BT. But for this the 

woman has to be exposed to X-rays twice, once for the one view mammography and 

once for the one view BT. 

The MBTST showed that more cancers could be detected with BT than with 

conventional mammography. In the study the women had to be exposed to X-rays 

twice, once for the conventional mammography examination, to acquire 2D images, 

and once for the BT. With 2D-images of the breast, the radiologist can achieve a good 

overview of the breast and can easily track changes in the breast over time when 

comparing with prior mammograms acquired from earlier screenings. 

To only use BT without any form of 2D mammograms for screening examinations, 

has in some studies been shown to make it hard to correctly classify clusters of 

microcalcifications. Because the microcalcification cluster may appear as one 

microcalcification on each slice, it may not be obvious that there is a cluster of 

calcifications, making it harder to detect [15]. BT stacks are also difficult to compare 

with prior screening mammograms in order to detect changes in breast composition. 

That is the main reason why synthetic 2D mammograms are advantageous as they will 

be easier and quicker to compare with prior mammograms. The synthetic 2D 

mammograms are synthesized from the image stacks obtained from BT. 
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The reconstruction algorithm, Insight2D, used in this project was developed by 

Siemens Healthcare in Forchheim, Germany. At the moment an improved version of 

the algorithm is under development. The two different types of synthetic 

mammograms are in this report referred to as old Insight2D and new Insight2D. 

Depending on what algorithm is used for creating the synthetic 2D mammogram from 

tomosynthesis projections, the synthetic 2D mammogram and the mammogram 

acquired from DM will be more or less similar. To quantify how similar or dissimilar 

they appear was the purpose of this project. 

1.2 Aim 

The aim of the project was to make quantitative comparisons of synthetic 2D 

mammograms and mammograms from conventional mammography, to lay the 

foundation for future work to determine if synthetic 2D mammograms can be used for 

tracking changes in the breast over time and compare with priors, in the same way 

conventional mammograms are used today. 
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2 Theory 

2.1 Mammography, breast tomosynthesis and synthetic 

mammogram 

Breast cancer screening with mammography is used to detect cancer at an early stage. 

At an examination, two images of each breast are acquired, in the MLO view and in 

the CC view as seen in Figure 2.1. The two views complement each other; the MLO 

view provides a good visualization of the inner part of the breast and the pectoralis 

muscle, while the CC view effectively visualizes the central part of the breast [1]. 

 

Figure 2.1: The two most common views used at mammography; medio-lateral oblique and 

cranio caudal. (A screenshot from Transpara.) 

Breast tomosynthesis is a method that acquire images of the breast in for example 25 

projections in an angle of 50° over the breast. The 25 projections acquired are 

reconstructed to provide a pseudo-3D volume of the breast, which gives the possibility 

for the radiologist to examine individual slices of the breast [13]. BT can be done in 

both CC and MLO views, but in this project only the MLO view has been used [13, 

14]. 

When imaging the breast, it has to be compressed to get a good quality of the 

mammogram acquired, but also to reduce scattered radiation, reduce the radiation 

dose and to spread apart structures in the breast as a way to reduce overlaying breast 

tissue. The compression force in the MLO view can roughly be reduced by 40% when 

BT is being used instead of DM [14, 16]. The reason of a reduction in the compression 

force in BT is that the breast is imaged in several projections, thus the breast tissues 

do not have to be spread apart to the same extent as in DM. The mean glandular dose 
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(MGD) for a two-view, CC and MLO, DM has been reported as 2.7 mGy while for a 

BT in the MLO view it is 2.3 mGy [1, 13, 14, 17]. 

A synthetic mammogram is a 2D-image which is the result of “slabbing”, that is 

adding the reconstructed slices of a BT-volume into a single 2D image. This is usually 

done either as an average intensity pixel (AIP) or maximum intensity pixel (MIP) slab. 

AIP means that each pixel in the image is equal to the average of the voxels projected 

into it, and MIP means that each pixel is equal to the maximum value of the voxels. 

AIP tends to hide important structures, while MIP is often excessively noisy. The 

Insight2D algorithm uses a blend of these two methods together with iterative image 

filters to produce an image. The new Insight2D is designed to create an image which 

looks similar to an unprocessed mammogram, which is the raw output from the X-ray 

detector. This allows the use of the same image filters and image processing normally 

employed in the mammography system to for example optimize the gray scale and 

equalize the contrast [18]. 

2.2 Noise power spectrum 

A mammogram consists of layered structures of a wide range of sizes. Like in other 

images, the smaller the structure, the higher its spatial frequency, and vice versa, with 

single-pixel structures having the highest possible frequency [19]. 

A noise power spectrum shows the distribution and amplitudes of the spectral 

frequencies in the image. Assuming a perfect detector, it consists of two parts, the 

anatomical noise and the quantum noise [20]. Anatomical noise is the signal from, in 

this case the breast tissue, both normal breast tissue and abnormalities in the tissue. 

That means, anatomical noise can hide abnormalities that are of interest [21]. 

Quantum noise, or statistical noise, occurs when acquiring the image. Quantum noise 

may include detector noise which is caused by a non-ideal detector, in other words an 

ideal detector has a 100% effectiveness. Quantum noise depends on how the photons 

are distributed in the X-ray beam and absorbed in the tissue. To get a good image, 

photons need to be equally distributed in the beam. When acquiring the image, 

photons are never perfectly evenly distributed and that is what gives rise to the 

quantum noise [22]. The field becomes more even the more the breast is exposed, and 

the statistical noise will be lower. 

The expression for the noise power spectrum, NPS(f), can be written 

 𝑁𝑃𝑆(𝑓) = 𝑁𝑃𝑆𝑞 (𝑓) + 𝑁𝑃𝑆𝑎(𝑓) (1) 

  

where NPSq(f) and NPSa(f) are the quantum noise power spectrum and anatomical 

noise power spectrum, respectively. At low frequencies the noise power spectrum is 

dominated by the anatomical noise, while at high frequencies quantum noise 
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contributes more to the noise power spectrum than the anatomical noise. The 

anatomical noise power spectrum follows a power-law relation 

 𝑁𝑃𝑆𝑎(𝑓) = 𝛼𝑓−𝛽 (2) 

 

where f is the spatial frequency, 𝛼 is a scaling factor and the exponent, 𝛽 controls how 

fast the curve increases or decreases. Studies indicate that a mammogram with a small 

𝛽-value have less fibroglandular tissue in the breast, which improves detectability of 

abnormalities in the image[23]. 

Earlier studies have shown that the 𝛽-value differs depending on what modality is 

used. The 𝛽-value on a breast computed tomography (CT) image and a mammogram 

have the following relation [20].  

 𝛽𝐶𝑇 = 𝛽 𝑐𝑜𝑛𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑎𝑙 𝑚𝑎𝑚𝑚𝑜𝑔𝑟𝑎𝑚 − 1 (3) 

In conventional mammograms the 𝛽-values are between 1,5 to 3,5 [24]. A high 𝛽-

value means that high spatial frequencies are dampened, and high spatial frequencies 

correspond to small and detailed structures in the image. That means an image with a 

high 𝛽-value has less detailed structures than an image with a lower 𝛽-value. Low 

spatial frequencies represent smooth shapes of the image [25, 26]. 

2.3 Density of the breast 

Women with dense breasts (an increased portion of glandular and fibrous tissue 

compared to adipose tissue) have a higher risk of developing breast cancer than 

women with less dense breast [27]. At the same time, it is also more difficult to detect 

abnormalities in dense breasts since it may be hard to palpate abnormalities, and also 

hard to detect them in mammography screening since they may be covered by 

overlaying tissue. Besides, dense tissue and both benign and malignant tumors have 

similar attenuation of X-rays [28, 29]. Mammographic density classification of the 

breast is today visually done by the radiologist when examining the mammogram. The 

density of the mammogram can for example be graded according to the Breast 

Imaging-Reporting and Data System (BI-RADS) density estimation [29]. The BI-

RADS’s grading scale is a – d, the different grades in the scale represent different 

fibroglandular tissue content and distribution in the breast, and hence the breast 

density. The different grades are: a: the breast almost only consists of adipose tissue, 

b: mostly adipose tissue but there are scattered areas with fibroglandular tissue, c: 

heterogeneously dense breasts, and d: extremely dense breast [30]. 

The density of the breast can as mentioned be subjectively visually rated, but it can 

also be quantitatively derived. There are two different kinds of measurements that 

refer to the amount of dense tissue in the breast. One is volumetric measurement which 

is a relation between the volume of the dense tissue in the breast compared to the total 
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volume of the breast. The breast volume can be measured in many ways with different 

methods, for example, with imaging or with biostereometrics methods [31, 32]. The 

most commonly used method is to determine the density based on relative attenuation 

properties of breast tissue. According to this method there are two types of tissues in 

the breast, dense fibroglandular tissue and adipose tissue. From the image it is 

estimated how much a certain thickness of adipose tissue attenuates the radiation. 

With that in mind the relative densities of each pixel are estimated depending on the 

thickness of the tissue and the detected relative attenuation [33]. 

Another way to measure the density is to take the breast area into consideration, 

instead of the volume, similar to an assessment done by a radiologist. In this project 

the breast density was measured with the software Laboratory for Individualized 

Breast Radiodensity Assessment version 1.0.5-beta1, LIBRA, which measures the 

area density of the breast. LIBRA processes the image while first marking the 

boundary of the breast and the pectoralis muscle. Thereafter, it uses an algorithm that 

segments the breast into regions and group them together depending on their grey-

scale levels, thus the same X-ray attenuation. The area of the regions which are 

defined to be dense tissue is then added together to a total dense area of that specific 

breast. The breast density is calculated by  

 
𝑏𝑟𝑒𝑎𝑠𝑡 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 =  

𝑑𝑒𝑛𝑠𝑒 𝑏𝑟𝑒𝑎𝑠𝑡 𝑎𝑟𝑒𝑎 

𝑡𝑜𝑡𝑎𝑙 𝑏𝑟𝑒𝑎𝑠𝑡 𝑎𝑟𝑒𝑎
∗ 100 

(2) 

 

where the areas are in square centimeters (cm2) and the breast density in percentage 

(%) [34-36]. 

2.4 Artificial intelligence, AI, for evaluation of mammograms 

The mammograms obtained during examinations are preferably examined by two 

independent breast radiologists in order to find abnormalities, and to reduce recalls of 

false-positive cases. This is a time and cost consuming method; therefore, alternatives 

would be welcome. To make the examinations of mammograms more efficient AI 

methods could be used. An AI system developed by ScreenPoint Medical BV, 

Nijmegen, the Netherlands, called Transpara 1.4.0 (hereinafter called Transpara) has 

been used in this project. Transpara has been trained and taught using deep learning 

methods to differentiate cancer in the form of calcifications and soft tissue lesions on 

mammograms. In order to teach the system how to differentiate structures, it was 

trained on 45000 mammograms that were classified using a number of different 

traditional image classification methods developed from earlier computer-assisted 

detection (CAD) systems for mammography. Together with information of the 

diagnosis of each image, a deep-learning convolutional neural network was used to 

train the system to find and rate lesions according to their suspiciousness [37]. 
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Transpara scores suspicious regions on mammograms by giving them a cancer 

likelihood score from 1-100. It interacts with radiologists by giving them the local 

score, if the score is >15, of a selected area [38, 39]. Based on the type of findings and 

level of suspiciousness on the mammograms, Transpara gives one overall score for 

that specific examination. The Transpara score is a score from 1-10, where 10 

represents something that has the highest risk of being malignant while 1 represents 

that nothing suspicious can be proved. In a typical screening population, the 

programme has been calibrated to put 10% of cases in each category and >80% of 

cancers in group 10 [38, 40].  
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3 Method 
The following chapter describes the method used. It starts to describe how the 

selection of images was done and follows with three parts used for the mammogram 

analysis. It ends with the statistical analysis of the received data. A visual overview 

can be seen in Figure 3.1. 

 

Figure 3.1: A schematic overview of the different steps in the method. 

 

3.1 Selection of images 

The images from DM used in this project were selected depending on the Transpara 

score they had received from an evaluation not connected to this study, and also 

depending on the findings on the DM images, that is the type of case-group each of 

the mammograms is connected to (left column in Table 3.1) [14, 41]. As mentioned 

before Transpara scores the mammograms depending on their probability to contain 

tumors. The higher score the higher probability there is to find anything malignant in 

the mammograms. 

In total 69 cases, that is 69 DM images, were selected from four different groups. The 

division of the groups depended on what each individual case at the end turned out to 

be. The groups contained false-negative cases, false-positive cases, true-negative 

cases and true-positive cases. 



   
 

14 

• False-negative case: the result pointed to no malignancy, but the case proved 

to be cancer. This type of cancer is called interval cancer and is often detected 

by the woman between two consecutive screening examinations. 

• False-positive case: the result pointed to cancer, but it was not [31]. When the 

radiologist finds something suspect in the image, the woman is recalled for 

further examinations. But the findings from the further examinations do not 

show any malignancy. 

• True-negative case: the result points to no cancer, and there was no cancer. 

No interval cancer is detected between two consecutive screening 

examinations. 

• True-positive case: the result points to cancer, and it was cancer [32]. That is 

also when the woman is recalled for further examinations the finding verifies 

malignancy. 

At the beginning, 20 cases were chosen from each group except the group containing 

false-positive cases where only 19 cases were chosen. In addition, the cases were 

chosen so ten of the 20 cases had a high Transpara score while the other ten had a low 

score. During the process of the project some of the cases were excluded, thus 

reducing the number of cases. This was because one case had only one mammogram, 

some cases had mammograms with artefacts while several cases had mammograms 

in only the CC view. However, this project only considered images in the MLO view 

as these were the only BT projections available. In Table 3.1, the number of cases 

from each group can be found, and how high and low Transpara score was defined for 

each group. 

Table 3.1: The number of cases from the different case groups. The Transpara score refers to 

the image acquired from mammography. 

Types of cases Low/high 

Transpara 

score 

Transpara score Number of cases 

False-negative Low < 8 7 

High > 9 7 

False-positive Low < 3 9 

High > 9.8 9 

True-negative Low < 0.1 10 

High > 9.96 10 

True-positive Low < 6 7 

High > 9.96 10 
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Every woman had undergone BT, in this case stacks with 25 images of each breast 

were yielded. Based on the raw data from the BT two different types of synthetic 

mammograms were created. In total 414 different images were analyzed, 69 × 2 

mammograms from DM, 69 × 2 old Insight2D and 69 × 2 new Insight2D. All the 

different kinds of mammograms were acquired on Mammomat Inspiration Tomo 

(Siemens Healthcare GmbH, Erlangen, Germany).  

In this project, only mammograms in the MLO-view were used, since examinations 

with BT had only been done in the MLO-view, and hence, there were only synthetic 

mammograms in the MLO-view available. 

3.2 Noise power spectrum - 𝛽 − value calculations 

As mentioned in the theory in chapter 2.2, the noise power spectrum is a spectrum of 

the spatial frequencies in the image. The purpose with this analysis was to investigate 

if the frequency content changed between conventional mammograms and synthetic 

mammograms. The frequencies relevant for the investigation were those responsible 

for the anatomical noise, namely the structures of the breast. It was assumed, that the 

total noise power spectrum follows the same power-law equation (2) as the anatomical 

noise does. An overview of the calculations implemented can be seen in Figure 3.2. 

To be able to only use the frequencies responsible for the anatomical noise, the image 

was loaded into MATLAB R2016a (hereinafter referred to as Matlab). A script (see 

Appendix 1) was used that created 100 regions of interest (ROIs) with a size of 

100 × 100 pixels randomly within the breast. 

 

Figure 3.2: A visualization of the 𝛽-value calculations. 
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To make sure that the ROIs were within the breast’s area on the image, the image was 

first converted to a logical matrix, containing only ones and zeroes, where the pixels 

that had a pixel value >0 became ones in the logical matrix and the rest zeros. That 

means that all the pixels within the breast were represented by ones in the logical 

matrix, and everything around the breast were zeros. Thereafter, all the coordinates of 

the pixel elements consisting of ones were randomly placed in a vector. For an ROI 

to be created, the first element from the vector was chosen, and a ROI was created 

with the picked element making the upper left corner of the ROI. To make sure that 

all the elements within the created 100 × 100 pixels ROI were within the breast’s area, 

thus only had elements of ones, the sum of all matrix elements was calculated to 

investigate if the sum was equal to 10000. If the sum was not 10000, that meant that 

the current ROI was not within the breast area and a new element in the random vector 

had to be picked. Additionally, the sum of all the pixel elements had to be controlled. 

Once all the ROIs were created and all of them were within the breast in the logical 

matrix, the same coordinates were used to make ROIs in the corresponding breast 

image, from which the value of 𝛽 in the noise power spectrum was calculated. 

Thereafter, each ROI was processed in the script presented in Appendix 2, which calls 

the four scripts in Appendix 5 and calculates the 𝛽 in the noise power spectrum for 

each ROI [42]. The scripts perform a directionally independent frequency space 

transform of the ROI. Thereafter, an exponential curve is fitted to the frequency 

spectrum and the 𝛽-value is determined, that is the exponent of the curve. A mean 

value of 𝛽 was calculated from all the 100 ROIs in every image processed. 

The script in Appendix 3 was used to load the set of images to examine, followed by 

the script in Appendix 4, which automatically lead the set of images through the 

process of making the ROIs, and thereafter, calculating and saving the 𝛽-value in the 

power-law equation. 

The β-value was calculated on all the three types of mammograms.  

3.3 Density measurements 

The breast area density for the images was calculated by using the software LIBRA. 

Matlab was used to control LIBRA to be able to analyze the images. 

To be able to analyze the synthetic mammograms the DICOM header had to be 

modified. The tag ImagesInAcquisition was removed, because it noted that there was 

a stack of images even if there was not. This was done in Matlab by using the script 

in Appendix 6. 

To start the analysis, LIBRA was started and the file with images to be processed was 

chosen. The results obtained from LIBRA were measures on the breast densities and 

mammograms with breast segmentations. 
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Conventional mammograms and new Insight2D were analyzed in LIBRA. The old 

Insight2D mammograms were not analyzed, because it was shown that there was a 

too bright breast skin line on the mammograms. The bright skin line made it difficult 

for LIBRA to mark it and the pectoralis muscle, and thus, to make a correct calculation 

of the breast density. 

3.4 Transpara score measurements 

To decide the Transpara score for the different cases, the software Transpara was used. 

The Transpara scores for the conventional mammograms did not need to be 

calculated, since their scores had been measured in earlier studies and the results could 

be used in this project. 

To be able to decide the Transpara score for the new Insight2D, the DICOM header 

had to be changed. Because in the header it was stated that every single image was a 

stack of slices acquired from breast tomosynthesis, but a synthetic image is as 

mentioned, only one picture and created from a stack of images. That was why the 

header had to be changed, so that the header information correlated with the image 

processed, and to make it possible for Transpara to process the image. The tags that 

were changed or modified were Image Type, Series Description, Acquisition Number, 

and Images In Acqusition, and their “values” were set to be 

‘DERIVED\PRIMARY\TOMO_2D\LEFT (or RIGHT)’, ‘T_PR L_MLO (or 

R_MLO) PRIME, Diagnosis’, ‘1’ and ‘1’, respectively. These changes were done in 

Matlab by the script in Appendix 7. Thereafter, the new Insight2D could be analyzed 

in Transpara.  

Once the mammograms had been processed the results could be shown in two 

different ways, either as an overall score namely a Transpara score of the images with 

the same identification number or as separate scores on all the findings on the different 

images. The conventional mammograms had one overall Transpara score, since all 

the images from the same woman had the same personal number. However, that was 

not the case for the synthetic mammograms, they all had different identification 

numbers no matter if they were from the same woman or not. That meant, that every 

synthetic mammogram got its own Transpara score. Therefore, the synthetic 

mammogram with the highest score in the set of mammograms, that is from the same 

woman, represented the Transpara score for that specific pair of mammograms. 

The mammograms receiving a Transpara score were the conventional mammograms 

and the new Insight2D. The old Insight2D could not be processed in Transpara 

because of the time limitation of this project. Since their DICOM header on the 

mammograms was not accepted, and it was difficult to solve the issue. 
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3.5 Analysis of the data 

The next step in the analysis process of the different kinds of mammograms was to 

evaluate the results received from the different methods, in other words the 

calculations of the 𝛽-value, the area density measurements and Transpara score. 

 

The data was statistically analyzed with SPSS (IBM SPSS Statistics). To receive 

inspiration and suggestions about what different statistical methods were available to 

use for evaluating the data, different resources were used. SPSS’s own menu with 

statistical methods, in combination with article [43] and personal communication with 

Daniel Förnvik gave a good combination of suggestions on methods of how to analyze 

the obtained data. 

 

Different statistical methods were used that depended on the statistically distribution 

of the results, all results were visualized in histograms. If the result was normal 

distributed, parametric methods such as one-way analysis of variance (ANOVA) or 

Student’s t-test could be used, with additional Post Hoc Tests. That was the case for 

the 𝛽-value results. For non-normally distributed data, non-parametric methods were 

used for example Wilcoxon signed rank test and in addition scatterplots for calculation 

of Pearson’s R. The results from the density measurement was analyzed with non-

parametric methods. An receiver operating characteristics (ROC) analysis was an 

appropriate method for the Transpara score analysis. Since the Transpara score gives 

a score depending on the likeliness for cancer, the scores could be evaluated in an 

ROC analysis. An ROC curve is usually used to evaluate the performance of the 

modality used and if it is ‘true’ or ‘false’, but in this case it was only used to compare 

the area under the curve (AUC) not to evaluate Transpara. The closer the AUC value 

the more similar features and structures were the mammograms assumed to have. But 

this analysis could be used since there were 31 cases with cancer (true) and 38 were 

normal (false) that is healthy cases. Transpara is not trained on synthetic 

mammograms that was why the ROC analysis was not used to evaluate Transpara.   
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4 Results 
Figure 4.1 shows the left breast from the same woman. The figure shows all three 

types of mammograms used in this project, that is conventional mammograms, old 

Insight2D and new Insigh2D. 

 

Figure 4.1: The different types of mammograms used in the project. (Mammograms saved 

from ImageJ.) 

All data received were visualized in histograms, Appendix 9.8. 

4.1 Noise power spectrum - 𝛽 − value calculations 

The different results received from the 𝛽-value calculations were visualized in 

histograms, Appendix 9.8.1. It turned out that all of them except the one for old 

Insight2D for the right breast were normally distributed. Since only one histogram 

deviated from the others and the number of cases were >50 it was acceptable to 

evaluate the data with parametric methods, based om the mean value of the 

populations. The Tables 4.1, 4.2, and 4.3 show properties of the different types of 

mammograms. The 𝛽-value for conventional mammograms were 1.73±0.12 and 

1.72±0.11, for left and right breasts, respectively. For the different types of synthetic 

mammograms, the 𝛽-values were 3.60±0.16 and 3.61±0.15 for the old Insight2D left 

and right breasts, respectively. And for the new Insight2D 3.69±0.07 and 3.69±0.07 

for left and right breast, respectively. A graphical illustration of this can also be found 

in Figure 9.4. 

Two one-way ANOVA analyses were done. One analysis comparing the 𝛽-values of 

mammograms of the left breasts and the second analysis comparing mammograms of 

the right breasts. 
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Table 4.1: 𝛽-values for conventional mammograms. 

 Conventional mammograms 

 Left Right 

Mean 1.73 1.72 

Std. Deviation 0.12 0.11 

Minimum 1.46 1.40 

Maximum 1.96 2.00 

 

Table 4.2: 𝛽-values for old Insight2D. 

 Old Insight2D 

 Left Right 

Mean 3.60 3.61 

Std. Deviation 0.16 0.15 

Minimum 3.19 3.21 

Maximum 3.92 3.87 

 

Table 4.3: 𝛽-values for new Insight2D. 

 New Insight2D 

 Left Right 

Mean 3.69 3.69 

Std. Deviation 0.07 0.07 

Minimum 3.53 3.53 

Maximum 3.83 3.82 

 

The ANOVA analyses showed significant differences (P < 0.001) between the 

different mammogram types. To investigate if the mean values of all the three groups 

differed a Post hoc test was done with a 95% confidence interval. The results can be 

seen in Table 4.4 and 4.5. The mean values were significantly different, which could 

be assumed at least between conventional mammograms and the both types of 

synthetic mammograms. There was also a significant difference between the two 

types of synthetic mammograms which was less obvious, as can be seen from the 

confidence intervals. 
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Table 4.4: Post Hoc Tests of 𝛽-values for mammograms showing the left breast. 

Left breast    95% Confidence 

Interval 

(I) (J) Mean 

Difference 

(I-J) 

P Lower 

Bound 

Upper 

Bound 

Conventional 

mammograms 

Old Insight2D -1.88 P < 0.001 -1.92 -1.83 

New 

Insight2D 

-1.96 P < 0.001 -2.01 -1.91 

Old Insight2D Conventional 

mammograms 

1.88 P < 0.001 1.83 1.93 

New 

Insight2D 

-0.09 P < 0.001 -0.14 -0.04 

New 

Insight2D 

Conventional 

mammograms 

1.96 P < 0.001 1.91 2.01 

Old Insight2D 0.09 P < 0.001 0.04 0.14 

 

 

Table 4.5:  Post Hoc Tests of 𝛽-values for mammograms showing the right breast. 

Right breast    95% Confidence 

Interval 

(I) (J) Mean 

Difference 

(I-J) 

P Lower 

Bound 

Upper 

Bound 

Conventional 

mammograms 

Old Insight2D -1.89 P < 0.001 -1.94 -1.84 

New 

Insight2D 

-1.97 P < 0.001 -2.02 -1.93 

Old Insight2D Conventional 

mammograms 

1.89 P < 0.001 1.84 1.94 

New 

Insight2D 

-0.08 P < 0.001 -0.13 -0.04 

New 

Insight2D 

Conventional 

mammograms 

1.97 P < 0.001 1.93 2.02 

Old Insight2D 0.08 P < 0.001 0.04 0.13 
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4.2 Density measurements 

Conventional mammograms and new Insight2D were analyzed with LIBRA, to decide 

the percentage area of dense tissue. Images of what LIBRA decided to be dense tissue 

can be seen in Figure 4.2. As seen in the figure, LIBRA marks the contour of the breast 

and the pectoralis muscle before calculating the breast density. The results can be seen 

in Table 4.6 and 4.7. To note; the breast density in the tables do not agree with the 

ratio between the dense area and the total area seen in the same tables.  

 

Figure 4.2: Dense breast areas within green markings and the breast contour marked in red 

determined by LIBRA. The left mammogram of each pair shows the corresponding 

mammogram without any markings. (Mammograms saved from LIBRA.) 

The results obtained from all the different cases were also used for making histograms. 

All the different histograms, Appendix 9.8.2 (Figure 9.5-9.7), showed lop-sided 

distributions of the total area, the dense area and the breast density. Thus, a non-

parametric statistical analysis was used. Three scatterplots comparing the different 

measurements, the total area, the dense area and the breast density, were created, 

Figure 4.3 and 4.4, and Pearson’s correlation coefficient, R, was decided. The R-

values were 0.87 for the total breast area for both left and right breast and 0.85 for the 

dense breast area for both breasts. The R-values for the breast density were similar 

between the left and right mammograms (R = 0.89 and 0.88). R-values (Table 4.8) 

showed strong correlations and no significant difference between the image types. 

The scatterplots and Pearson’s coefficient were used to pairwise compare the 

mammograms. Additionally, the Wilcoxon signed rank test was used to evaluate if 

the two types of mammograms had similar breast density. Table 4.9 shows, that 

conventional mammograms showed slightly higher breast density than the new 

Insight2D. The result is not significant (P = 0.26 left breast and 0.30 right breast).  
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Table 4.6: Properties of conventional mammograms showing left and right breast, 

respectively. 

 Conventional mammograms 

 Left breast Right breast 

 Total 

breast 

area 

(cm2) 

Dense 

breast 

area 

(cm2) 

Breast 

density 

(%) 

Total 

breast 

area 

(cm2) 

Dense 

breast 

area 

(cm2) 

Breast 

density 

(%) 

Mean 166.4 40.0 25.8 165.2 40.7 26.7 

Median 157.4 34.8 22.3 157.3 34.3 23.3 

Minimum 77.6 12.0 5.1 80.0 15.9 7.7 

Maximum 324.9 117.7 71.7 372.3 91.2 69.5 

Interquartile 

Range 

71.1 21.9 20.1 73.9 32.9 23.1 

 

 

 

Table 4.7: Properties of new Insight2D showing left and right breast, respectively. 

 New Insight2D 

 Left breast Right breast 

 Total 

breast 

area 

(cm2) 

Dense 

breast 

area 

(cm2) 

Breast 

density 

(%) 

Total 

breast 

area 

(cm2) 

Dense 

breast 

area 

(cm2) 

Breast 

density 

(%) 

Mean 151.9 34.8 24.8 148.6 36.7 26.5 

Median 146.0 28.4 21.0 143.0 32.3 22.0 

Minimum 77.9 10.8 6.1 74.4 8.3 3.4 

Maximum 297.4 104.5 71.3 298.6 99.1 69.4 

Interquartile 

Range 

58.2 21.1 19.3 49.4 25.9 21.6 
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Table 4.8: Pearson's correlation coefficient for the scatterplots above (Figure 4.3-4.4). 

Data sets to be compared R2 R 

Total 

breast area 

Left breast 0.755 0.87 

Right breast 0.751 0.87 

Dense 

breast area 

Left breast 0.728 0.85 

Right breast 0.726 0.85 

Breast 

density 

Left breast 0.790 0.89 

Right breast 0.773 0.88 

 

 

Table 4.9: Wilcoxon Signed Ranks Test based on the breast densities. 

   N Mean 

Rank 

P 

D
en

si
ty

(C
o
n

v
en

ti
o
n

a
l 

m
a
m

m
o
g
ra

m
s)

 –
 

D
en

si
ty

(N
ew

 

In
si

g
h

t2
D

) 

 

Left breast 

Negative 

ranks 

30a 33.90 %  

0.26 

 

 

Positive 

ranks 

39b 35.85 % 

 

Right 

breast 

Negative 

ranks 

30c 34.37 %  

0.30 

 

 

Positive 

ranks 

39d 35.49 % 

a. Density(Conventional mammograms) < Density(New Insight2D)    Left breast 

b. Density(Conventional mammograms) > Density(New Insight2D)    Left breast 

c. Density(Conventional mammograms) < Density(New Insight2D)    Right breast 

d. Density(Conventional mammograms) > Density(New Insight2D)    Right breast 

 

4.3 Transpara score measurements 

Conventional mammograms and the new Insight2D were evaluated by Transpara, 

Table 4.10. Histograms to visualize the Transpara score for the mammograms can be 

found in Appendix 9.8.3. There were in total 69 pairs of cases, where 31 cases showed 

breast cancer and 38 no cancer. 
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Table 4.80: Transpara score on the mammograms. 

 Conventional 

mammograms 

New 

Insight2D 

Median 10 9 

Minimum 1 2 

Maximum 10 10 

Interquartile 

Range 

7 3 

 

 

 

Figure 4.5:Mammograms with markings of suspicious regions determined by Transpara. (A 

screenshot from Transpara.) 

The ROC curves can be seen in Appendix 9.8.3.  

The following Table 4.11 shows results from the ROC analysis. The AUC were 0.62 

for the conventional mammograms and 0.54 for new Insight2D. While the lower and 

upper boundaries were 0.49 and 0.75 for the conventional mammograms and 0.40 and 

0.68 for the new Insight2D. Since the ranges for the boundaries were overlapping, 

they imply that there were no differences in the Transpara scores between the different 

mammograms. 
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Table 4.11: ROC and AUC comparison on two types of mammograms. The purpose was to 

evaluate if the AUC values were similar, not to evaluate Transpara. 

 Receiver operating 

characteristics (ROC) 

Area under the curve 

(AUC) 

 N  Asymptotic 95% 

confidence interval 

 Positive 

cases 

Negative 

cases 

Area Lower 

bound 

Upper 

bound 

Conventional 

mammograms 

31 38 0.62 0.49 0.75 

New 

Insight2D 

31 38 0.54 0.40 0.68 
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5 Discussion 
The aim of this project was to compare conventional mammograms and synthetic 

mammograms. The methods used were to compare the frequency content in the 

mammograms, the area breast density and the Transpara score. The result showed that 

the mammograms had significant different frequency content. The breast densities 

were well correlated between conventional mammograms and new Insight2D but for 

the old Insight2D there was a difference. This means, improvements have been done 

in the reconstruction’s algorithm for creating synthetic mammograms. The Transpara 

score were also similar when comparing the AUC-values, but more cases for that 

method are needed. The different methods and results will be discussed under the 

following subchapters. 

5.1 𝛽 − value calculations 

When the logical matrix was created, while preparing for making the ROIs, pixels 

with a value >0 became ones, and pixels with a value equal to 0 became zeroes. In the 

ideal case pixels with a value >0 should only be found within the contour of the breast 

and nowhere around the breast. It was unknown if pixels for example artefacts could 

have led to pixels outside the breast’s boundaries being >0, but this is unlikely as 

image processing should take care of this. However, if there were pixels with a value 

>0 where they should not be, then those frequencies could have affected the estimated 

𝛽-value. To avoid extra pixels and mammograms with artefacts or anything else, 

every mammogram would have to be examined. In the interest of time, no 

mammogram was reviewed in such a way before being used in this project. All the 

mammograms were from examinations and processed using standard software 

supplied by Siemens and were assumed to be of good quality, if not new 

mammograms were acquired. 

When creating the ROIs, it was confirmed that the whole ROI was within the contour 

of breast, but it was not verified whether the different ROIs overlapped with each 

other or not. This simplified the writing and execution of the script, and any statistical 

problems caused by this should be compensated for due to the randomized center 

approach used and due to the large number of samples. 

The estimation of the 𝛽-value was intended to determine if the different types of 

mammograms had the same frequency content. The 𝛽-value does not quantify the 

spatial distribution of frequencies. So, basically the 𝛽-exponents can be the same, but 

the mammograms can look completely different, they just have the same frequency 

content, or size distribution of structures. This is something to be aware of, as it can 

mean that on the conventional mammogram very important structures can be seen but 

may have disappeared on the synthetic mammogram, for example fine high-frequency 

spiculations that characterize the border of a malignant lesion. The synthetic 
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mammogram may instead have other structures that may be irrelevant, but they cause 

the 𝛽-value to be the same. 

 

The results of the 𝛽-values were significantly different when comparing all the cases. 

High 𝛽-value for the synthetic mammograms indicates, according to the power-law 

equation, that high frequencies are being more dampened compared to low 

frequencies than on conventional mammograms. High frequencies are those 

frequencies that make up small and detailed structures. Consequently, if the high 

frequencies are dampened there is a risk that essential structures disappear from the 

mammograms which can be severe. It could be that such structures are the only 

indications of cancer. If the structures are lost the cancer is missed. The damping of 

the high frequencies can also be seen if comparing the mammograms in Figure 4.1. 

The synthetic mammograms have less details than the conventional mammograms. 

However, the effect of this on image quality is unknown. This study did not evaluate 

if lesion visibility was affected. 

 

5.2 Density calculations 

For the breast density calculations only conventional mammograms and the new 

Insight2D were used. Early in the project a few old Insight2D were processed in 

LIBRA, but without any success in calculating the breast densities. The densities 

obtained had major deviations from normal densities which were obviously a result 

of the marked dense areas on the mammograms. As can be seen in Figure 4.1, there 

is a very bright skin line contour around the breast that made it hard for LIBRA to 

firstly segment the breast and the pectoralis muscle, and thereafter segment the dense 

areas based on the marks. Thus, early on, the old Insight2D were excluded from the 

density calculations. Because it was evident, they were different compared to the 

conventional mammograms and new Insight2D. 

Interesting observations that can be noted in Table 4.6 and 4.7, all areas and the 

densities are bigger for the conventional mammograms than for new Insight2D. This 

may be a result of the different compression magnitude used at the mammography 

versus breast tomosynthesis. For conventional mammography the breast had to be 

more compressed to receive a mammogram with good quality in comparison to breast 

tomosynthesis where force did not need to have that big magnitude to receive a good 

image [14]. Since the breast is not so compressed, the area of the breast is smaller for 

breast tomosynthesis and synthetic mammograms, than it is on conventional 

mammograms. 

The scatterplots, Figure 4.3 and 4.4, were created to visualize the areas and densities, 

and for calculating Pearson’s R do all have similar scatter variation. All of them have 

very little scatter at low values while mammograms with greater areas and densities 
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have a bigger distance to the straight line. The figures (4.3 and 4.4) appeared as 

expected. Furthermore, the Pearson’s coefficient indicated on a strong correlation 

between every pair of mammograms.  

There seems to be a systematic offset with approximately 2%-points for the different 

breast densities if the calculations are done with a calculator. When calculating the 

ratio between the dense area and the total area the results do not agree with the results 

in Table 4.6 and 4.7, what LIBRA calculated. One reason for the offset could be that 

when LIBRA calculates the total breast area it takes the whole breast into account, 

including the pectoralis muscle. But when it calculates the breast density it takes the 

ratio between the dense breast area and total breast area, but it does not include the 

area for pectoralis muscle in the total area, since the dense area does not include the 

muscle. Another suggestion for the 2%-points difference could be that LIBRA 

calculates the ratio between the dense area and the total area, and thereafter makes the 

corrections needed for the pectoralis muscle. 

5.3 Transpara score  

The images processed in Transpara were those required from conventional 

mammography and the new Insight2D. Before Transpara could process the new 

Insight2D, the DICOM headers had to be slightly changed since Transpara is not 

trained to interpret synthetic mammograms. Changing tags in the DICOM header for 

the new Insight2D was done with help from Alejandro Rodriguez-Ruiz, Radboud 

University Medical Center, Nijmegen, the Netherlands. It was more difficult to make 

the DICOM header for the old Insight2D to look like the DICOM headers in the 

conventional mammograms. That is why they were not processed in Transpara, and 

due to the time limitations. 

Since Transpara is not trained on synthetic mammograms, the Transpara scores given 

to the new Insight2D should be interpreted with care. That same is true of the 

evaluation of the data received. The data were analyzed with ROC analysis and the 

AUC was calculated. It was shown that the AUC for the new Insight2D was less than 

for the conventional mammograms. But there were still no significant differences 

between the two types of mammograms since the lower and upper boundaries 

overlapped. The fact that the difference was not bigger than this is promising, as it 

means that the system used to detect and mark cancer lesions on conventional 

mammograms can handle synthetic images reasonably well, which in turn indicates 

that the difference between the two image types is relatively minor.  

However, no general conclusion can be made for the Transpara score since more cases 

should have been used to give the statistical analysis more strength, the 69 cases used 

were not enough. An essential point is that Transpara has not been trained on synthetic 

mammograms. The Transpara scores for the conventional mammograms were 
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determined based on four mammograms, two in MLO view and two in CC view from 

the left and right breast, respectively. The new Insight2D were only available in the 

MLO view and Transpara used individual scores for each mammogram, because the 

DICOM header did not indicate that they were pairs of mammograms from 69 women. 

The highest score from every pair of the new Insight2D was used for the analysis, in 

the same way as Transpara does, but having the CC view available as well would 

likely have changed the result. In addition, the cases used for the project had either 

low or high Transpara score, so there were very few cases with scores in between. 

This will affect the ROC curve, but for the analysis done in this study this should have 

little effect.  
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6 Ethical reflection 
No specific ethical approval was needed for this project, since the images used were 

from the Malmö Breast Tomosynthesis Screening Trial, MBTST [14], which has 

already gone through ethical review and approval. The existing ethical review also 

covers extra projects like this one aimed at analyzing new reconstructions’ algorithms. 

MBTST is approved by the ethics committee at Lund University and the Radiation 

Safety Board at Skåne University Hospital, Malmö. Furthermore, it is registered at 

ClinicalTrials.gov with the NCT number: NCT01091545. 

The mammograms were already acquired before the project started, so no women had 

to undergo any additional examination, neither mammography nor breast 

tomosynthesis. Thus, they were not exposed to any additional radiation. 

The synthetic mammograms created from breast tomosynthesis, were only in the 

MLO view, and with reduced compression compared to conventional mammography. 

If the synthetic one-view mammograms, namely only MLO view, in combination with 

breast tomosynthesis can be an alternative for breast cancer screening, the radiation 

dose would be slightly reduced by up to 0.4 mGy MGD, since images will only be, in 

this case, acquired in one view, MLO, compared to today’s two-view conventional 

mammograms, MLO and CC, even though the dose per view would be somewhat 

higher. If used to replace two-view conventional mammography and breast 

tomosynthesis with two-view synthetic mammography and breast tomosynthesis the 

dose saving would be equivalent to one two-view conventional mammography 

examination, or roughly 2 mGy MGD.  

By using synthetic mammograms, the compression of the breasts could also be 

reduced to about half, as breast tomosynthesis requires less compression [14]. The 

effect of compression on synthetic mammograms has however not been evaluated. 

The fear of pain during breast cancer screening is one of the main reasons women 

point to when they decide not to attend the screening [1]. Thus, using synthetic 

mammograms instead of conventional mammograms can be an alternative to both 

reduce the radiation dose, the compression of the breast and consequently the pain 

during screening. If more research is done on the two different types of mammograms 

and it indicates that they are sufficiently similar, it could then be possible to only use 

synthetic mammograms, and breast tomosynthesis, during screening and compare 

those to priors as conventional mammograms are used today. 
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7 Conclusion 
Conventional mammograms and synthetic mammograms performed similarly 

regarding the Transpara score and the breast density. However, not so much trust can 

be put in analysis of the new Insight2D processed in Transpara and LIBRA since 

neither system is intended to work on synthetic mammograms. Additionally, there 

were too few cases to make any statistical conclusions from the data received from 

Transpara. 

 

The breast densities were well correlated, which was also found by others [35]. Every 

pair of mammograms of the two different image types were well correlated. It was 

also a good correlation when comparing the two different groups of mammograms, 

conventional and new Insight2D.  

 

There was a significant difference between the synthetic mammograms and the 

conventional mammograms regarding the 𝛽-values. There was also a small difference 

between the old Insight2D and the new Insight2D. This can be a potential risk since 

the 𝛽-values for the synthetic mammograms were higher than for conventional 

mammograms. And a high 𝛽-value means high frequencies are being dampened 

which can lead to essential structures not being detected. 

 

To conclude, synthetic mammograms need improvements before they can substitute 

conventional mammograms during screening. They seem to show less fine structure 

than conventional mammograms, which is proven by the 𝛽-value calculation. The 

Transpara score indicated similarities even though there were too few cases to base 

the result on. But synthetic mammograms are as good as conventional mammograms 

when it comes to the breast density. 
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9 Appendices  

9.1 Appendix 1 
usecreateROI 

 

a_segment = a > 0;   %tar fram allt som inte är svart dvs har 

pixelvärde 0. 
vector = find(a_segment); %en radvektor som motsvarar 

elementvärdet som finns i a_segmentmatrisen. Varje element har 

ett namn som är ett elementvärde. 

  
mixIndex = randperm(length(vector)); %vektorn vector är 

blandad, värdena som varje element har är ett övre vänstra 

hörnet 
mixVector = vector(mixIndex); 
[m, n] = size(a); 
s = [m, n]; 
vektorI = 1:100;          %skapa en vektor att spara hörnen i 
vektorJ = 1:100;          %skapa en vektor att spara hörnen i 
i = 0; 
count = 1; 
while count < 101 
    i = i + 1; 
    [I, J] = ind2sub(s,mixVector(i)); 

     
    while I+99 > m || J+99 > n            %denna ska köras om 

om det högre hörnet hamnar utanför a-matrisen 
        i = i + 1;                      %flyttar framåt i den 

slumpade vektorn vector för platsen i som den var på gjorde 

ett roi som var utanför bröstet. 
        [I, J] = ind2sub(s,mixVector(i)); 
    end 

     

     
    roi = a_segment(I:I+99, J:J+99); 

     
    while sum(sum(roi)) ~= 10000         % ej lika med'  

100*100 matris med 1:or summa=10000. 
        i = i + 1;                      %flyttar framåt i den 

slumpade vektorn vector för platsen i som den var på gjorde 

ett roi som var utanför bröstet. 
        [I, J] = ind2sub(s,mixVector(i)); 

         
        while I+99 > m || J+99 > n            %denna ska köras 

om, om det högre hörnet hamnar utanför a-matrisen 
            i = i + 1;                      %flyttar framåt i 

den slumpade vektorn vector för platsen i som den var på 

gjorde ett roi som var utanför bröstet. 
            [I, J] = ind2sub(s,mixVector(i)); 
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        end 

         
        roi = a_segment(I:I+99, J:J+99); 
    end 

     
    vektorJ(count) = J; 
    vektorI(count) = I; 
    count = count + 1; 
end 

 

%Det är I och J som ska användas för att skapa ROIen på 

bröstet, det som är 

%testat nu är så att ROIerna innehåller 1 på alla platser. 

  

%Detta ska nu göras om så att det plockas ut ur själva 

bröstbilden. 

  

a1 = a(vektorI(1):vektorI(1)+99, vektorJ(1):vektorJ(1)+99); 

a2 = a(vektorI(2):vektorI(2)+99, vektorJ(2):vektorJ(2)+99); 

a3 = a(vektorI(3):vektorI(3)+99, vektorJ(3):vektorJ(3)+99); 

a4 = a(vektorI(4):vektorI(4)+99, vektorJ(4):vektorJ(4)+99); 

a5 = a(vektorI(5):vektorI(5)+99, vektorJ(5):vektorJ(5)+99); 

a6 = a(vektorI(6):vektorI(6)+99, vektorJ(6):vektorJ(6)+99); 

a7 = a(vektorI(7):vektorI(7)+99, vektorJ(7):vektorJ(7)+99); 

a8 = a(vektorI(8):vektorI(8)+99, vektorJ(8):vektorJ(8)+99); 

a9 = a(vektorI(9):vektorI(9)+99, vektorJ(9):vektorJ(9)+99); 

a10 = a(vektorI(10):vektorI(10)+99, 

vektorJ(10):vektorJ(10)+99); 

  

a11 = a(vektorI(11):vektorI(11)+99, 

vektorJ(11):vektorJ(11)+99); 

a12 = a(vektorI(12):vektorI(12)+99, 

vektorJ(12):vektorJ(12)+99); 

a13 = a(vektorI(13):vektorI(13)+99, 

vektorJ(13):vektorJ(13)+99); 

a14 = a(vektorI(14):vektorI(14)+99, 

vektorJ(14):vektorJ(14)+99); 

a15 = a(vektorI(15):vektorI(15)+99, 

vektorJ(15):vektorJ(15)+99); 

a16 = a(vektorI(16):vektorI(16)+99, 

vektorJ(16):vektorJ(16)+99); 

a17 = a(vektorI(17):vektorI(17)+99, 

vektorJ(17):vektorJ(17)+99); 



   
 

43 

a18 = a(vektorI(18):vektorI(18)+99, 

vektorJ(18):vektorJ(18)+99); 

a19 = a(vektorI(19):vektorI(19)+99, 

vektorJ(19):vektorJ(19)+99); 

a20 = a(vektorI(20):vektorI(20)+99, 

vektorJ(20):vektorJ(20)+99); 

  

a21 = a(vektorI(21):vektorI(21)+99, 

vektorJ(21):vektorJ(21)+99); 

a22 = a(vektorI(22):vektorI(22)+99, 

vektorJ(22):vektorJ(22)+99); 

a23 = a(vektorI(23):vektorI(23)+99, 

vektorJ(23):vektorJ(23)+99); 

a24 = a(vektorI(24):vektorI(24)+99, 

vektorJ(24):vektorJ(24)+99); 

a25 = a(vektorI(25):vektorI(25)+99, 

vektorJ(25):vektorJ(25)+99); 

a26 = a(vektorI(26):vektorI(26)+99, 

vektorJ(26):vektorJ(26)+99); 

a27 = a(vektorI(27):vektorI(27)+99, 

vektorJ(27):vektorJ(27)+99); 

a28 = a(vektorI(28):vektorI(28)+99, 

vektorJ(28):vektorJ(28)+99); 

a29 = a(vektorI(29):vektorI(29)+99, 

vektorJ(29):vektorJ(29)+99); 

a30 = a(vektorI(30):vektorI(30)+99, 

vektorJ(30):vektorJ(30)+99); 

  

a31 = a(vektorI(31):vektorI(31)+99, 

vektorJ(31):vektorJ(31)+99); 

a32 = a(vektorI(32):vektorI(32)+99, 

vektorJ(32):vektorJ(32)+99); 

a33 = a(vektorI(33):vektorI(33)+99, 

vektorJ(33):vektorJ(33)+99); 

a34 = a(vektorI(34):vektorI(34)+99, 

vektorJ(34):vektorJ(34)+99); 

a35 = a(vektorI(35):vektorI(35)+99, 

vektorJ(35):vektorJ(35)+99); 

a36 = a(vektorI(36):vektorI(36)+99, 

vektorJ(36):vektorJ(36)+99); 

a37 = a(vektorI(37):vektorI(37)+99, 

vektorJ(37):vektorJ(37)+99); 

a38 = a(vektorI(38):vektorI(38)+99, 

vektorJ(38):vektorJ(38)+99); 
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a39 = a(vektorI(39):vektorI(39)+99, 

vektorJ(39):vektorJ(39)+99); 

a40 = a(vektorI(40):vektorI(40)+99, 

vektorJ(40):vektorJ(40)+99); 

  

a41 = a(vektorI(41):vektorI(41)+99, 

vektorJ(41):vektorJ(41)+99); 

a42 = a(vektorI(42):vektorI(42)+99, 

vektorJ(42):vektorJ(42)+99); 

a43 = a(vektorI(43):vektorI(43)+99, 

vektorJ(43):vektorJ(43)+99); 

a44 = a(vektorI(44):vektorI(44)+99, 

vektorJ(44):vektorJ(44)+99); 

a45 = a(vektorI(45):vektorI(45)+99, 

vektorJ(45):vektorJ(45)+99); 

a46 = a(vektorI(46):vektorI(46)+99, 

vektorJ(46):vektorJ(46)+99); 

a47 = a(vektorI(47):vektorI(47)+99, 

vektorJ(47):vektorJ(47)+99); 

a48 = a(vektorI(48):vektorI(48)+99, 

vektorJ(48):vektorJ(48)+99); 

a49 = a(vektorI(49):vektorI(49)+99, 

vektorJ(49):vektorJ(49)+99); 

a50 = a(vektorI(50):vektorI(50)+99, 

vektorJ(50):vektorJ(50)+99); 

  

a51 = a(vektorI(51):vektorI(51)+99, 

vektorJ(51):vektorJ(51)+99); 

a52 = a(vektorI(52):vektorI(52)+99, 

vektorJ(52):vektorJ(52)+99); 

a53 = a(vektorI(53):vektorI(53)+99, 

vektorJ(53):vektorJ(53)+99); 

a54 = a(vektorI(54):vektorI(54)+99, 

vektorJ(54):vektorJ(54)+99); 

a55 = a(vektorI(55):vektorI(55)+99, 

vektorJ(55):vektorJ(55)+99); 

a56 = a(vektorI(56):vektorI(56)+99, 

vektorJ(56):vektorJ(56)+99); 

a57 = a(vektorI(57):vektorI(57)+99, 

vektorJ(57):vektorJ(57)+99); 

a58 = a(vektorI(58):vektorI(58)+99, 

vektorJ(58):vektorJ(58)+99); 

a59 = a(vektorI(59):vektorI(59)+99, 

vektorJ(59):vektorJ(59)+99); 
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a60 = a(vektorI(60):vektorI(60)+99, 

vektorJ(60):vektorJ(60)+99); 

  

a61 = a(vektorI(61):vektorI(61)+99, 

vektorJ(61):vektorJ(61)+99); 

a62 = a(vektorI(62):vektorI(62)+99, 

vektorJ(62):vektorJ(62)+99); 

a63 = a(vektorI(63):vektorI(63)+99, 

vektorJ(63):vektorJ(63)+99); 

a64 = a(vektorI(64):vektorI(64)+99, 

vektorJ(64):vektorJ(64)+99); 

a65 = a(vektorI(65):vektorI(65)+99, 

vektorJ(65):vektorJ(65)+99); 

a66 = a(vektorI(66):vektorI(66)+99, 

vektorJ(66):vektorJ(66)+99); 

a67 = a(vektorI(67):vektorI(67)+99, 

vektorJ(67):vektorJ(67)+99); 

a68 = a(vektorI(68):vektorI(68)+99, 

vektorJ(68):vektorJ(68)+99); 

a69 = a(vektorI(69):vektorI(69)+99, 

vektorJ(69):vektorJ(69)+99); 

a70 = a(vektorI(70):vektorI(70)+99, 

vektorJ(70):vektorJ(70)+99); 

  

a71 = a(vektorI(71):vektorI(71)+99, 

vektorJ(71):vektorJ(71)+99); 

a72 = a(vektorI(72):vektorI(72)+99, 

vektorJ(72):vektorJ(72)+99); 

a73 = a(vektorI(73):vektorI(73)+99, 

vektorJ(73):vektorJ(73)+99); 

a74 = a(vektorI(74):vektorI(74)+99, 

vektorJ(74):vektorJ(74)+99); 

a75 = a(vektorI(75):vektorI(75)+99, 

vektorJ(75):vektorJ(75)+99); 

a76 = a(vektorI(76):vektorI(76)+99, 

vektorJ(76):vektorJ(76)+99); 

a77 = a(vektorI(77):vektorI(77)+99, 

vektorJ(77):vektorJ(77)+99); 

a78 = a(vektorI(78):vektorI(78)+99, 

vektorJ(78):vektorJ(78)+99); 

a79 = a(vektorI(79):vektorI(79)+99, 

vektorJ(79):vektorJ(79)+99); 

a80 = a(vektorI(80):vektorI(80)+99, 

vektorJ(80):vektorJ(80)+99); 
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a81 = a(vektorI(81):vektorI(81)+99, 

vektorJ(81):vektorJ(81)+99); 

a82 = a(vektorI(82):vektorI(82)+99, 

vektorJ(82):vektorJ(82)+99); 

a83 = a(vektorI(83):vektorI(83)+99, 

vektorJ(83):vektorJ(83)+99); 

a84 = a(vektorI(84):vektorI(84)+99, 

vektorJ(84):vektorJ(84)+99); 

a85 = a(vektorI(85):vektorI(85)+99, 

vektorJ(85):vektorJ(85)+99); 

a86 = a(vektorI(86):vektorI(86)+99, 

vektorJ(86):vektorJ(86)+99); 

a87 = a(vektorI(87):vektorI(87)+99, 

vektorJ(87):vektorJ(87)+99); 

a88 = a(vektorI(88):vektorI(88)+99, 

vektorJ(88):vektorJ(88)+99); 

a89 = a(vektorI(89):vektorI(89)+99, 

vektorJ(89):vektorJ(89)+99); 

a90 = a(vektorI(90):vektorI(90)+99, 

vektorJ(90):vektorJ(90)+99); 

  

a91 = a(vektorI(91):vektorI(91)+99, 

vektorJ(91):vektorJ(91)+99); 

a92 = a(vektorI(92):vektorI(92)+99, 

vektorJ(92):vektorJ(92)+99); 

a93 = a(vektorI(93):vektorI(93)+99, 

vektorJ(93):vektorJ(93)+99); 

a94 = a(vektorI(94):vektorI(94)+99, 

vektorJ(94):vektorJ(94)+99); 

a95 = a(vektorI(95):vektorI(95)+99, 

vektorJ(95):vektorJ(95)+99); 

a96 = a(vektorI(96):vektorI(96)+99, 

vektorJ(96):vektorJ(96)+99); 

a97 = a(vektorI(97):vektorI(97)+99, 

vektorJ(97):vektorJ(97)+99); 

a98 = a(vektorI(98):vektorI(98)+99, 

vektorJ(98):vektorJ(98)+99); 

a99 = a(vektorI(99):vektorI(99)+99, 

vektorJ(99):vektorJ(99)+99); 

a100 = a(vektorI(100):vektorI(100)+99, 

vektorJ(100):vektorJ(100)+99); 
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9.2 Appendix 2 

The following script is based on Erik Fredenberg’s (Royal Institute of Technology, 

KTH, Sweden) script demo_nps_package.m and can be found on 

https://se.mathworks.com/matlabcentral/fileexchange/36462-noise-power-spectrum 

(2019-03-04). The script is modified to be able to fit the images in the project. 

 

useomskrivningavcalcNPSbeta 

 

A = {a1; a2; a3; a4; a5; a6; a7; a8; a9; a10; a11; a12; a13; 

a14; a15; a16; a17; a18; a19; a20; 
    a21; a22; a23; a24; a25; a26; a27; a28; a29; a30; a31; 

a32; a33; a34; a35; a36; a37; a38; a39; a40; 
    a41; a42; a43; a44; a45; a46; a47; a48; a49; a50; a51; 

a52; a53; a54; a55; a56; a57; a58; a59; a60; 
    a61; a62; a63; a64; a65; a66; a67; a68; a69; a70; a71; 

a72; a73; a74; a75; a76; a77; a78; a79; a80; 
    a81; a82; a83; a84; a85; a86; a87; a88; a89; a90; a91; 

a92; a93; a94; a95; a96; a97; a98; a99; a100;}; 
B = ones(length(A),1); 

  
for i = 1:length(A) 
    aaaa = A(i); 
    aaaa = cell2mat(aaaa); 

     

    I_3D = repmat(double(aaaa),[1 1 100]); 

     

     
    %function [beta_vol,beta_proj,beta_slice] = 

calcNPSbeta(I_3D) 

     
    % Simulation of a 3D volume with power-law noise. Fractals 

are examples of 
    % structures that exhibit power-law NPS. These can be used 

to describe many 
    % naturally occuring phenomena such as mountains or 

structures in the 
    % human body. The latter includes, for instance, the 

vascular system and 
    % breast tissue, and the power-law noise may in that case 

be used to model 
    % the performance of a radiologist who interprets images 

of the body. 
    % 
    % E. Fredenberg et al, RSNA 2011 
    % E. Fredenberg et al, SPIE Medical Imaging 2011. 
    % E. Fredenberg et al, Med Phys 37, 2017-2029 (2010). 
    % Power-law NPS in 3D is very well described in: 
    % Gang et al, Med Phys 37, 1948-1965 (2010). 

https://se.mathworks.com/matlabcentral/fileexchange/36462-noise-power-spectrum
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    px = 85e-3; 
    vx = 85e-3; % voxel side length [e.g. mm] 
    n = 3; % number of dimensions 

     
    % % Generate a 3D NPS. 
    % % Magnitude of the power law. 
    alpha = 1e-3; 
    % % Exponent of the power law. beta = 0 is white noise, 

beta = 1 is referred 
    % % to as pink noise, beta = 2 is brown (or red) noise, 

beta = 3 is 
    % % sometimes called black noise. A space-filling fractal 

has a 
    % % characteristic power law with exponent beta = 3, and 

many natural 
    % % processes, for instance the vascular system or breast 

tissue, have 
    % % characteristic power laws with beta in the range 2-3. 
    beta = 3; 
    % 
    % nps_fun_in = @(varargin) power_law_noise([alpha beta], 

varargin{:}); 
    % 
    % % Create a noise volume from the NPS. 
    roi_size = 100; % The volume is 100x100x100 voxels 
    % voxel_value = 0.5*vx; % This implies a volume that is, 

for instance, half filled with a material. 
    % stack_size = 1; % A single realization. 
    % [I_3D, x] = filtered_noise(roi_size, n, stack_size, 

voxel_value, vx, nps_fun_in); 
    % 
    % % Create a projection image from the volume. 
    I_2D = sum(I_3D,3); 

     
    % Measure the NPS 
    use_window = 1; % Tapering window to avoid spectral 

leakage. 
    % in the 3D volume: 
    average_rois = 0; % No averaging since there is only one 

realization. 
    [nps_3D_measured, f_x] = calc_digital_nps(I_3D, n, vx, 

use_window, average_rois); % [e.g. mm^3] 
    % in a slice of the 3D volume: 
    average_rois = 1; % Use the planes as realizations. 
    nps_slc_measured = calc_digital_nps(I_3D, n-1, vx, 

use_window, average_rois);  % [e.g. mm^2] 
    % in the projection: 
    average_rois = 0; 
    nps_2D_measured = calc_digital_nps(I_2D, n-1, vx, 

use_window, average_rois); % [e.g. mm^2] 
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    % Assume rotational symmetry and convert to radial 

coordinates. 
    uniquify = 1; 
    [nps_3Dr_measured, f_3Dr] = cart2rad(nps_3D_measured, f_x, 

n, uniquify); 
    [nps_slcr_measured, f_slcr] = cart2rad(nps_slc_measured, 

f_x, n-1, uniquify); 
    [nps_2Dr_measured, f_2Dr] = cart2rad(nps_2D_measured, f_x, 

n-1, uniquify); 

     
    % Fit the measured NPS: 
    f_Nyq = 1/(2*px); % Nyquist frequency 
    f_fit = logspace(log10(1/roi_size), log10(f_Nyq), 1000); % 

log-spaced frequency vector 
    log_fit = 1; % fit in log domain 
    nps_fun_fit = @(P, varargin) power_law_noise(P, 

varargin{:}); 
    % in the 3D volume: 
    P_start_3D = [alpha beta]; 
    [P_fit_3D, nps_3Dr_fit] = fit_nps(nps_3Dr_measured, f_3Dr, 

1, nps_fun_fit, P_start_3D, f_fit, log_fit); 
    % in the slice: 
    % slice alpha is found via the hypergeometric function, 

slice beta is 
    % volume beta-1. (Gang et al, Med Phys 37, 1948-1965 

(2010)) 
    F = quadgk(@(p) (1+p.^2).^(-beta/2),0,Inf); 
    P_start_slc = [2*alpha*F beta-1]; 
    [P_fit_slc, nps_slcr_fit] = fit_nps(nps_slcr_measured, 

f_slcr, 1, nps_fun_fit, P_start_slc, f_fit, log_fit); 
    % in the projection image 
    P_start_2D = [alpha*roi_size/vx beta]; 
    [P_fit_2D, nps_2D_fit] = fit_nps(nps_2Dr_measured, f_slcr, 

1, nps_fun_fit, P_start_2D, f_fit, log_fit); 

     
    beta_vol =  num2str(P_fit_3D(2),2); 

     
    beta_slice = num2str(P_fit_slc(2),2); 

     
    beta_proj = num2str(P_fit_2D(2),2); 

     
    beta_slice = str2double(beta_slice); 

     
    B(i,1) = beta_slice; 
end 

  
%Körs då alla små delmatriser i A körts och då matrisen B är 

fylld med beta_slice-värden. 
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summa = sum(B) 
meanbeta = summa/(length(B)) 

 

 

9.3 Appendix 3 
 

meanBetagammalsynthetic = zeros(1,409); 

parfor numberImage = 1:409 

    a = dicomread(gammalsyntfiler{numberImage}); 

    meanBetagammalsynthetic(numberImage) = idioticFunction(a); 

end 

 

 

9.4 Appendix 4 
 

function out = idioticFunction(a) 
usecreateROI 
useomskrivningavcalcNPSbeta 
out = meanbeta; 
end 
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9.5 Appendix 5 

The following four scripts (calc_digital_nps(l, n, px, use_window, 

average_stack), cart2rad(nps_x, f_x, n, unq), fit_nps(nps_in, 

f_in, n, nps_fun, P_start, f_fit, log_fit), power_law_noise(P, 

varargin)) from 

https://se.mathworks.com/matlabcentral/fileexchange/36462-

noise-power-spectrum (2019-03-04) by Erik Fredenberg were used in their 

original form. 

9.5.1 calc_digital_nps(l, n, px, use_window, average_stack) 
 

function [nps, f] = calc_digital_nps(I, n, px, use_window, 

average_stack) 
% [nps, f] = calc_digital_nps(I, n, px, use_window, 

average_stack) 
% 
% Calculates the digital noise-power spectrum (NPS) noise-only 
% realizations. The following rference provides a good 

overview of NPS 
% calculations: 
% I. A. Cunningham, in Handbook of Medical Imaging (SPIE 

Press, 
% Bellingham, USA, 2000), vol. 1. 
% 
% I is a stack of symmetric n-dimensional noise realizations. 

The 
% realizations are stacked along the last array dimension of 

I. If 
% average_stack is set, the calculated NPS is averaged over 

the stack to 
% reduce uncertainty. px is the pixel size of the image. 
% 
% If use_window is set, the data is multiplied with a Hann 

tapering window 
% prior to NPS calculation. Windowing is useful for avoiding 

spectral 
% leakage in case the NPS increases rapidly towards lower 

spatial 
% frequencies (e.g. power-law behaviour). 
% 
% nps is the noise-power spectrum of I in units of px^n, and f 

is the 
% corresponding frequency vector. 
% 
% Erik Fredenberg, Royal Institute of Technology (KTH) (2010). 
% Please reference this package if you find it useful. 
% Feedback is welcome: fberg@kth.se. 
if nargin<3 || isempty(px), px=1; end 
if nargin<4 || isempty(use_window), use_window=0; end 

https://se.mathworks.com/matlabcentral/fileexchange/36462-noise-power-spectrum
https://se.mathworks.com/matlabcentral/fileexchange/36462-noise-power-spectrum
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if nargin<5 || isempty(average_stack), average_stack=0; end 
stack_size=size(I,n+1); 
size_I=size(I); 
if any(diff(size_I(1:n))) 
    error('ROI must be symmetric.'); 
end 
roi_size=size_I(1); 
% Cartesian coordinates 
x=linspace(-roi_size/2,roi_size/2,roi_size); 
x=repmat(x',[1 ones(1,n-1)*roi_size]); 
% frequency vector 
f=linspace(-0.5,0.5,roi_size)/px; 
% radial coordinates 
r2=0; for p=1:n, r2=r2+shiftdim(x.^2,p-1); end, r=sqrt(r2); 
% Hann window to avoid spectral leakage 
if use_window 
    h=0.5*(1+cos(pi*r/(roi_size/2))); 
    h(r>roi_size/2)=0; 
    h=repmat(h,[ones(1,n) stack_size]); 
else h=1; 
end 
% detrending by subtracting the mean of each ROI 
% more advanced schemes include subtracting a surface, but 

that is 
% currently not included 
S=I; for p=1:n, S=repmat(mean(S,p), ((1:n+1)==p)*(roi_size - 

1) + 1); end 
%S=repmat(S,ones(1,n)*roi_size); 
F=(I-S).*h; 
% equivalent to fftn 
for p = 1:n, F = fftshift(fft(F,[],p),p); end 
% cartesian NPS 
nps=abs(F).^2/... 
    roi_size^n*px^n./... NPS in units of px^n 
    (sum(h(:).^2)/length(h(:))); % the normalization with h is 

according to Gang 2010 
% averaging the NPS over the ROIs assuming ergodicity 
if average_stack, nps=mean(nps,n+1); end 
 

9.5.2 cart2rad(nps_x, f_x, n, unq) 
 

function [nps_r, f_r] = cart2rad(nps_x, f_x, n, unq) 
% [nps_r, f_r] = cart2rad(nps_x, f_x, n, unq) 
% 
% Converts an n-dimensional symmetric noise-power spectrum 

(NPS) from 
% Cartesian to radial coordinates. 
% 
% Several NPS measurements may be stacked along the last array 
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% dimension of nps_x, which is indicated by ndim(nps_x) = n + 

1. If unq is 
% set, non-unique data points are averaged. This latter is a 

slow function 
% that should be improved. 
% 
% Erik Fredenberg, Royal Institute of Technology (KTH) (2010). 
% Please reference this package if you find it useful. 
% Feedback is welcome: fberg@kth.se. 
% input checking 
if nargin<4 || isempty(unq), unq=0; end 
size_nps = size(nps_x); if any(diff(size_nps(1:n))), 

error('ROI must be symmetric'); end 
if length(size_nps)==2 && size_nps(1)==1, nps_x=nps_x'; end 
roi_size = size(nps_x,1); 
stack_size = size(nps_x,n+1); 
% radial frequency vector 
f_x=repmat(f_x',[1 ones(1,n-1)*roi_size]); 
f_r2=0; for p=1:n, f_r2=f_r2+shiftdim(f_x.^2,p-1); end, 

f_r=sqrt(f_r2); 
% radial NPS 
nps_r=reshape(nps_x,[roi_size^n stack_size]); 
f_r=f_r(:); 
% remove non-unique points if fitting in log domain because 
% sum of log \neq log of sum 
if unq, [f_r, nps_r]=uniquify(f_r, nps_r); end 
end 
function [A_out,B_out]=uniquify(A_in,B_in) 
% Makes vectors unique for repetitive values in A_in by taking 

the mean 
% for the corresponding elements in B_in. This is a very slow 

function that 
% could be immensely improved. 
if size(A_in,2)==1, A_in=A_in'; 
elseif size(A_in,1)~=1, error('A_in must be a vector') 
end 
if size(B_in,1)==size(A_in,2), B_in=B_in'; 
elseif size(B_in,1)==size(A_in,2), error('B_in must have one 

dimension that matches A_in') 
end 
A_out=unique(A_in); 
B_out=nan(size(B_in,1),size(A_out,2)); 
for a=1:numel(A_out) 
    for b=1:size(B_in,1) 
        B_out(b,a)=mean(B_in(b,A_in==A_out(a))); 
    end 
end 
end 
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9.5.3 fit_nps(nps_in, f_in, n, nps_fun, P_start, f_fit, log_fit) 
 

function [P_fit, nps_fit] = ... 
    fit_nps(nps_in, f_in, n, nps_fun, P_start, f_fit, log_fit) 
% [P_fit, nps_fit] = ... 
%           fit_nps(nps_in, f_in, n, nps_fun, P_start, f_fit, 

log_fit) 
% 
% Least-square fits a noise-power spectrum (NPS) to a 

specified function 
% and returns the parameters of the fit as well as the fitted 

function. 
% 
% nps_fun is a handle to a function that accepts a parameter 

vector P and n 
% equally sized n-dimensional arrays with Cartesian 

coordinates: 
% nps_fun(P, f1, f2, ..., fn). 
% Start values for the fit are supplied in P_start Frequency 

vector for 
% returning a fitted NPS are supplied in f_fit. Setting 

log_fit returns a 
% fit in the log domain, which is useful for large ranges of 

data, such as 
% for a power-law NPS. 
% 
% Erik Fredenberg, Royal Institute of Technology (KTH) (2010). 
% Please reference this package if you find it useful. 
% Feedback is welcome: fberg@kth.se. 
% input checking 
if nargin<4, f_fit = f_in; end 
if nargin<5 || isempty(log_fit), log_fit=0; end 
size_nps=size(nps_in); 
if any(diff(size_nps(1:n))) 
    error('ROI must be symmetric.'); 
end 
if length(size_nps)==2 && size_nps(1)==1, nps_in=nps_in'; end 
if size(f_in,1)==1, f_in=f_in'; end 
roi_size = size(nps_in,1); 
stack_size = size(nps_in,n+1); stack_size = max(stack_size, 

1); 
% frequency vectors 
f_in_a = repmat(f_in, [1 ones(1, n-1)*roi_size]); 
f_in_c = cell(1,n); for p = 1:n, f_in_c{p} = shiftdim(f_in_a, 

p-1); end % create arrays similar to meshgrid 
f_fit_a = repmat(f_fit', [1 ones(1, n-1)*roi_size]); 
f_fit_c = cell(1,n); for p = 1:n, f_fit_c{p} = 

shiftdim(f_fit_a, p-1); end  % create arrays similar to 

meshgrid 
fitting_options = 

optimset('Display','off','FunValCheck','on'); 
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P_fit=zeros(stack_size, length(P_start)); 
nps_fit=zeros(stack_size, length(f_fit)); 
for k=1:stack_size; 

     
    nps_k = permute(nps_in, [n+1 1:n]); 
    nps_k = ipermute(nps_k(k,:), [n+1 1:n]); 
    if ~log_fit % lin fitting 
        fit_fun = @(P) sum((nps_fun(P,f_in_c{:}) - nps_k).^2); 
    elseif log_fit % log fitting 
        fit_fun = @(P) sum((real(log(nps_fun(P,f_in_c{:}))) - 

log(nps_k)).^2); 
    end 

     
    P_fit(k,:) = fminsearch(fit_fun, P_start, 

fitting_options); 

     
    nps_fit(k,:) = nps_fun(P_fit(k,:),f_fit_c{:}); 

     
end 
end 
 

 

9.5.4 power_law_noise(P, varargin) 
 

function nps = power_law_noise(P, varargin) 
% nps = power_law_noise(P(alpha, beta), f1, f2, ..., fn) 
% nps = power_law_noise(P(alpha, beta), fr) 
% 
% Returns a radially symmetric power-law NPS, nps = alpha * 

fr^(-beta), for 
% Cartesian or radial input coordinates. 
% 
% f1, f2, ..., fn are equally sized n-dimensional arrays with 

Cartesian 
% coordinates. Optionally, fr is an array of radial 

coordinates. The output 
% nps is in Cartesian coordinates and in units of alpha. 
% 
% Erik Fredenberg, Royal Institute of Technology (KTH) (2010). 
% Please reference this package if you find it useful. 
% Feedback is welcome: fberg@kth.se. 
% input checking 
if length(varargin)>1 && (ndims(varargin{1})~=length(varargin) 

||... 
        any(diff(cellfun(@(C) ndims(C),varargin)))) 
    error('f1, f2, ..., fn need to be equally sized n-D 

arrays.') 
end 
alpha = P(1); 
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beta = P(2); 
% converting to radial coordinates 
r2=0; for p = 1:length(varargin), r2 = r2 + varargin{p}.^2; 

end 
% power law 
nps = alpha * r2.^(-beta/2); 
 

 

9.6 Appendix 6 
 

for i = 1:168     

    image = dicomread(namn{i}); 

    info = dicominfo(namn{i}); 

    remove = rmfield (info, 'ImagesInAcquisition'); 

    a = ['H:\Ellinor fall för analys\' num2str(i) '.dcm']; 

    dicomwrite(image,a,remove,'CreateMode','copy'); 

    filePaths{i} = a; 

end 

 

9.7 Appendix 7 
 

for i = 1:length(namn); 
    image = dicomread(namn{i}); 
    info = dicominfo(namn{i}); 
    type = info.ImageLaterality;         %denna tar fram 

ImageType som ska ändras till 'DERIVED\PRIMARY\LEFT ELLER 

RIGHT BEROENDE PÅ' 
    if isequal(type,'R')   %jag tror att alla har denna typ av 

ImageType, även vänster bröst. 
        info.ImageType = 'DERIVED\PRIMARY\TOMO_2D\RIGHT'; 
        info.SeriesDescription = 'T_PR R-MLO PRIME, 

Diagnosis'; 
    else 
        info.ImageType = 'DERIVED\PRIMARY\TOMO_2D\LEFT'; 
        info.SeriesDescription = 'T_PR L-MLO PRIME, 

Diagnosis'; 
    end 

     
    info.ImagesInAcquisition = 1; 
    info.AcquisitionNumber = 1; 

     

     
    a = ['H:\Insight2D_raw\syntetiskachangedtags\' num2str(i) 

'.dcm']; 
    dicomwrite(image, a, info, 'CreateMode', 'Copy') 
end  
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9.8 Appendix 8 – Results 

The data received were all plotted in histograms to investigate the distribution of the 

data. Based on the data distribution, appropriate statistical analysis methods were 

chosen to investigate the data. 

9.8.1 𝛽 − value 

 

Figure 9.1: Distribution of the 𝛽-values for conventional mammograms. 

 

 

Figure 9.2: Distribution of the 𝛽-values for old Insight2D. 

 

 

Figure 9.3: Distribution of the 𝛽-values for new Insight 2D. 
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9.8.2 Density measurements 

 

Figure 9.5: Total breast area and dense breast area for conventional mammograms. 

 
Figure 9.6: Total breast area and dense breast area for new Insight2D.  
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9.8.3 Transpara score 

 

 
Figure 9.8: Transpara score distribution for conventional mammograms and new Insight2D, 

respectively. 

 

 

 
Figure 9.9: ROC curves for Transpara scores for conventional mammograms and new 

Insight2D, respectively. 

 


