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Abstract 
Localization of muscle motor units (MU) using surface electromyography 

(sEMG) is of interest in areas including neurology, rehabilitation and 

prosthetic control. The aim of the thesis is to describe a method for MU 

localization using high-density sEMG (HDsEMG) and verify the method 

using simultaneous intramuscular EMG (iEMG) recordings. Based on 

previous work by Roeleveld et al, two conduction models for MU 

localization are described. The models are analytical volume conductors 

implemented in MATLAB. Simultaneous iEMG (wire electrodes) and 

HDsEMG (8x8 electrode array) recordings from the forearm were used. 

EMG decomposition provided individual motor unit action potential 

(MUAP) trains. Using MUAP trains, the resulting surface potential 

distribution from individual MU firings was used to estimate MU depth. By 

matching MUs from iEMG and HDsEMG decomposition, the models for 

depth estimation were calibrated. Three MUs with known depth in the flexor 

digitorum profundus, abductor pollicis longus and extensor pollicis longus 

muscles were used. Conclusions could not be drawn on the values for signal 

attenuation in the models due to high variance between the MUs. The 

direction of the results however supported the underlying theory. More MUs 

are required to create reliable models. Finding matching MUs in iEMG and 

sEMG was difficult, but there are many ways to improve the method relating 

to both recording and depth estimation. 
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Abbreviations 

 

MU  Motor unit 

 

MUAP Motor unit action potential 

 

EMG  Electromyography 

 

iEMG  Intramuscular electromyography 

 

sEMG  Surface electromyography 

 

HDsEMG High-density surface electromyography 

 

FWHM Full width at half maximum  
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Introduction 

The source of the problem 

Localization of individual motor units (MUs) in a muscle using surface 

electromyography (sEMG) is of interest in several research areas, including 

neurology, rehabilitation and prosthetic control. It is a complex problem, 

with limited studies addressing the topic. The task can be split into two parts. 

Firstly, we want to distinguish a single source, a motor unit, from a sea of 

active motor units during muscle contraction. We then want a model of the 

propagating signal, which can be used to locate the source inside the body, 

using the resulting surface signal alone (Figure 1). In most cases, there can 

be hundreds of MU firings every second, both above and below the one we 

are looking for. And to make it just a bit harder, sEMG recordings are 

incredibly noisy. The first part of the problem is tackled using software with 

decomposition algorithms. The models used for source localization are 

based on previous work by Roeleveld et al (1) and will be described in 

detail. 

 
Figure 1. Schematic of a cross section of the upper forearm. 

Purpose and disposition 

The aim of this master thesis project is to present and describe a viable 

model for localization of MUs using sEMG. Before diving into the method, 

some background will be given to the EMG signal, some underlying 
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anatomy, and why it’s a problem worth solving. The method section is a 

step-by-step description. This includes the recording setup, the software 

used for signal decomposition, and importantly a thorough explanation of 

two models used for depth estimation. After a short section of results, a 

discussion on the models, the results, shortcomings and areas for 

improvements will conclude the report. Additionally, appendices of scripts 

used in MATLAB are also included. 

Background 

From neuron to electrode 

EMG recordings are based on the electrical nature of neuromuscular 

activity. Much like the neurons which initiate muscle contractions, each 

muscle fibre conducts an electric potential along its membrane. A single 

unit, consisting of a neuron and several muscle fibres, is called a motor unit 

(MU). The incoming action potential from the motor neuron is 

comparatively weak and is not very useful for our purpose. The resulting 

action potential in the muscle fibers however is much stronger and is the 

basis for EMG recordings. The currents generated by MUs can be picked 

up with electrodes, either invasively or non-invasively. Non-invasive 

electrodes are placed on the skin and called surface EMG (sEMG). Invasive 

electrodes, which can be needle or wire electrodes, are placed inside the 

muscle and called intramuscular EMG (iEMG). A high-density surface 

electrode array (HDsEMG) is used in this project, which gives a 

comprehensive view of the surface potential over a larger area covering the 

muscle. 

For iEMG, the MUs closest to the electrode are relatively distinct and can 

often be identified in the raw signal (Figure 2). This is great for recording 

individual MUs but since it is an invasive recording it has many drawbacks. 

Penetrating the skin carries a risk of infection, it can cause discomfort for 

the subject, and it may disrupt or damage the surrounding tissues. Surface 

EMG avoids these drawbacks, however the signal is more complicated. The 

raw signal is more of a compound signal of the activity of all MUs in the 

area. Meaning that many MUs are superimposed on top of each other, 



9 
 

making it hard to differentiate between them. The electrode is further from 

the source and is largely affected by the surrounding anatomy and 

physiology, i.e. the signal traverses various tissues with differing conductive 

qualities to reach the skin surface. 

 
Figure 2. 10 seconds of intramuscular EMG (top) and surface EMG (bottom). The 

sEMG signal strength is amplified. 

The underlying biology 

The EMG signal produced by groups of muscle fibers, is initiated by 

specific motor neurons located in the brainstem and the spinal cord. A motor 

neuron conducts a signal in the form of action potentials through its axon 

all the way to the muscle. An action potential is the depolarization of the 

plasma membrane which travels throughout the cell. Ion-channels open 

successively from the neuron cell body to the end of the axon. It’s an all or 

nothing signal, which means that every action potential will fully depolarize 

the membrane as it travels. Each action potential therefore has the same 

strength and shape as the next (Figure 3). 
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Figure 3. Schematic of a neuron and the principals of an action potential. 

At the muscle, the axon branches out to several muscle fibers. The amount 

of fibers the motor neuron innervates varies largely between muscles. Each 

muscle fiber is innervated at a part of its plasma membrane called the motor 

end plate. An axon terminal and the motor end plate make up the 

neuromuscular junction (2). The motor end plate only receives a signal from 

a single motor neuron. A motor neuron and the fibers it innervates is defined 

as a single motor unit. Although each motor unit is distinct, the positions of 

the fibers are often spread, causing motor units to somewhat overlap with 

each other (Figure 4). 

 
Figure 4. Schematic of several muscle fibers. The fibers of a single motor unit (red) 

are spread out. 
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Starting at the motor end plate, which is most often located near the center 

of a muscle fiber, the action potential spreads to both ends of the fiber. It 

takes time for the action potential to cover the entire fiber, which means the 

recorded EMG signal is spread out in both space and time. Fibers vary in 

length and can be as long as the muscle itself. Some are shorter and attached 

at an angle to the muscles longitudinal axis. The direction of the fibers also 

needs to be taken into account since the conductivity in a muscle is higher 

along the fibers than in the perpendicular plane (2)(3). 

Acting in unison, the fibers of a MU together create a strong enough signal 

that can traverse the body to the skin surface to be recorded. It passes 

through the muscle itself, connective tissue, fat and skin. These tissues are 

not uniformly distributed which together with other irregularities, like blood 

vessels and bone, makes it hard to create a realistic model. There is normally 

a considerable layer of fat between the muscles and the skin which gives 3 

distinct layers to consider; muscle, fat and skin. The skin is incredibly thin 

in comparison but is still the source of highest impedance. The thickness of 

the fat layer varies from person to person as well as from area to area. The 

amount of muscle tissue the signal passes through depends on the depth of 

the MU. 

Utilities of motor unit localization 

Localization of specific motor units is useful for several areas. Two clear 

examples are related to prosthetic control and rehabilitation. MU 

localization can improve the ability to distinguish different muscle 

activations to improve prosthetic control. For rehabilitation following motor 

impairment, studying MU activity can help define the effectiveness of 

rehabilitation treatments. 

Prosthetic control using surface EMG have many approaches. Commonly 

used is the EMG amplitude for control of one degree of freedom at a time 

(4). Control schemes utilizing pattern recognition and artificial neural 

networks are also being developed (5)(6). However, many prosthetic 

devices suffer from high rejection rates, which in part is due to non-intuitive 

control. More intuitive control may be found by taking into account the 

underlying process of EMG signal generation. Using motor unit discharge 
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timings is an alternative which is more directly connected to the signals 

from our nervous system (7). With additional localization of MUs, a more 

physiologically accurate method for prosthetic control can be developed. 

Such a method could potentially map the surface EMG signal proportionally 

to individual muscles, allowing for natural and intuitive control. 

Every year 15 million people worldwide suffer a stroke (8). Motor 

impairment is a common consequence of stroke, which affects 80% of 

patients, making it a leading cause of adult disability in most countries 

(9)(10). Motor recovery is complicated and rehabilitation approaches are 

numerous with varying results. Comprehensive reviews on these 

approaches have been made in attempts to define their effectiveness and 

determine appropriate interventions (9)(10). They conclude that although 

some approaches are promising, there are many gaps and shortcomings in 

the evidence base for interventions. The clinical decisions, therefore, 

continue to rely on individual therapists. Recommendations are made for 

research to much more clearly define the effect of specific rehabilitation 

interventions and to better understand the underlying mechanisms. 

Monitoring MU activity over time may provide a measure for this. By 

mapping MU activity to muscles of interest, we can study the recovery of 

motor units during rehabilitation treatments, e.g. to measure MU recovery 

rate (Figure 5). This could ultimately become a tool to help inform the 

decisions on future rehabilitation treatments. 

 
Figure 5. Illustration of MU recovery over time. With MU localization, recovery 

in a specific muscle or area can be studied in patients recovering from motor 

impairment after stroke. 
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Monopolar and differential configurations 

When using an array of electrodes, e.g. HDsEMG, the measurements can be 

either monopolar or differential. In monopolar measurements each 

individual electrode is compared to a single reference electrode which is 

carefully placed at a position with a stable electric potential. Differential or 

bipolar measurements instead compares the potential at each electrode with 

the closest subsequent electrode. Noise from distant sources affect 

neighboring electrodes in a similar manner since they are relatively close to 

each other. The effects of surrounding equipment and potential crosstalk 

from nearby muscles therefore partially cancels out, reducing the noise 

level. Without a fixed reference however, the differential setup measures 

only relative values. 

Noise becomes a larger issue for monopolar measurements since the 

distance between the measuring electrode and reference electrode is greater. 

Consequently, it carries a lower signal-to-noise ratio, even though the mean 

amplitude of the recording is stronger. Additionally, monopolar 

measurements are seemingly more complicated to perform than differential 

measurements due to extra considerations required for the reference 

electrode. Changes in potential at the reference electrode can influence the 

recording so the stability of the reference point needs to be considered 

(11)(12)(13). However analyzing monopolar recordings may be less 

complicated. In this thesis, the recordings used are from a differential 

configuration, since it was easier to set up. 

Decomposition 

To study an individual motor unit, it needs to be separated from the raw 

signal. This is a considerable challenge for sEMG due to the complexity of 

the signal, containing superpositions of many motor unit action potentials 

(MUAPs) and high levels of noise. The sEMG electrodes are far less 

selective than iEMG electrodes, which have commonly been used for 

studying motor units. Tools for decomposing single channel iEMG have 

been around for quite some time. Recent advances in sEMG decomposition 

techniques also allow for the extraction and study of single motor units from 

high-density electrode arrays covering a muscle (14)(15)(16). The 
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separation achieved through various decomposition techniques and 

algorithms returns individual MUAP trains, i.e. the time of each firing of 

individual MUs. 

The increased number of channels in HDsEMG make it possible to apply 

component analysis methods. Originally used in the Convolution Kernal 

Compensation algorithm, accounting for the effects across all electrodes. 

The discharge timings of MUs, i.e. the MUAP trains, are represented by a 

series of delta functions. An unknown mixing matrix is introduced where 

the impulse response correspond to the action potentials of the motor units. 

The MUAP trains, mixing matrix and an additional vector for noise together 

result in the sampled signal. The inverse problem of this system is then 

solved (14, 17). 

Decomposed MUAP trains can be used to give a comprehensive image of 

how a single MU firing affects the potential distribution across the skin. By 

averaging the raw signal from each firing, noise and distant motor units 

cancel out. Given enough firings, the effect of a single motor unit on the 

surface potential can be visualized (Figure 6). 

 
Figure 6. Illustration of the principle of HDsEMG decomposition and extraction 

of MU potential distributions. Image from (18). 
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Depth estimation of individual motor units 

The potential distribution across the skin from a single MU can be used to 

estimate its depth, as described by Roeleveld et al (1). The idea is that with 

increased motor unit depth, the distance to each electrode on the skin surface 

becomes approximately the same and the potential will, therefore, be more 

uniformly distributed. In contrast, a motor unit close to the surface will be 

close to a few electrodes and relatively far away from others and the 

potential will, therefore, be much stronger at the closest electrodes with a 

non-uniform distribution across the skin. 

Roeleveld et al (1) describe an analytical method for depth estimation from 

the peak potentials of electrodes perpendicular to the fiber direction over the 

skin. They used a basic model where the sEMG signal amplitude declines 

with increased radial distance to the motor unit. In that study, the authors 

model the body part as a single homogeneous volume conductor. In this 

thesis, a similar one-layer model, as well as an expanded two-layer model, 

are tested. The models are not sufficient on their own and require 

verification. In order to verify and calibrate the models, recordings with 

parallel iEMG and sEMG was used. The high selectivity of iEMG allows 

for precise knowledge of MU locations. This can then be used when 

estimating the depth of the same MU using sEMG. 
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Method 

The recording setup 

Several recordings of simultaneous iEMG and HDsEMG have been made 

at the Dept. of Biomedical Engineering, Lund University. However, only 

two of the datasets returned MUs after sEMG decomposition. The first 

dataset was recorded from the upper forearm. The HDsEMG consisted of 

an 8 by 8 electrode array and recording in a bipolar configuration. The 

HDsEMG was centered over an iEMG wire electrode inside the flexor 

digitorum profundus muscle (Figure 7). The depth of the iEMG electrode 

was approximately 1 cm and the arm circumference 28 cm. 

 
Figure 7. Image of the HDsEMG array and iEMG wire electrode on the subject’s 

upper forearm. 

The second data set was recorded from the posterior side of the lower 

forearm. The HDsEMG array was in a bipolar configuration. Three iEMG 

wire electrodes were placed in the extensor indicis proprius, abductor 

pollicis longus and extensor pollicis longus at 0,841 ; 0,910 and 1,58 cm 

depth respectively (Figure 8). 
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Figure 8. Image of the HDsEMG array and three iEMG wire electrodes on the 

subject’s lower forearm. 

The depth of these iEMG electrodes were precisely measured using 

ultrasound (Figure 9, 10 and 11). Additionally, using ultrasound, the layer 

of fat between the muscles and the skin was measured to approximately 0.3 

cm. The arm circumference was approximately 18 cm. 

 
Figure 9. Ultrasound measurement of the wire electrode in the extensor indicis 

proprius muscle. Wire depth is measured to 0,841 cm. 
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Figure 10. Ultrasound measurement of the wire electrode in the abductor pollicis 

longus muscle. Wire depth is measured to 0,910 cm. 

 

 
Figure 11. Ultrasound measurement of the wire electrode in the extensor pollicis 

longus muscle. Wire depth is measured to 1,58 cm. 
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The EMG datasets were recorded over the course of 30 minutes at 10240 

Hz in BioLab from OT Bioelectronica. The subject followed a specific 

protocol, performing different isometric exercises with the hand. The force 

of each movement was measured and the subject would track a force in a 

separate LabVIEW program (Figure 12). 

 
Figure 12. Image of the recording setup where the force of the subjects hand 

movements are measured and shown in a LabVIEW program. The subject is 

tracking a sine curve by regulating the force of their movement. 

Surface decomposition 

In order to find individual MUAP trains, the HDsEMG datasets were 

decomposed in BioLab. The decomposition algorithm was applied on 

segments, between 20-100 seconds long (Figure 13). The amount of MUAP 

trains returned by the algorithm varied between segments, from none up to 

15 MUAP trains. The datasets and MUAP trains were then imported to 

MATLAB. 
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Figure 13. 40 seconds of raw intramuscular EMG (top), high-density surface EMG 

(middle) and individual MUAP trains from decomposition (bottom). 

The matching of iEMG and MUAP trains from sEMG decomposition was 

done manually. Each MUAP train was plotted with the raw iEMG signal 

and searched for matching spikes (Figure 14-17). Since the position of the 

iEMG electrodes were measured using ultrasound, MUAP trains matching 

the iEMG recording had a known depth. 
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Figure 14. A section of intramuscular EMG from the flexor digitorum profundus 

muscle of the first dataset (blue) and a matching MUAP train from HDsEMG 

decomposition (red). The activity of the iEMG and the MUAP train match. 

 
Figure 15. A section of intramuscular EMG from the flexor digitorum profundus 

muscle of the first dataset (blue) and a matching MUAP train from HDsEMG 

decomposition (red). Each firing in the MUAP train corresponds to a large peak 

in the iEMG signal. 
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Figure 16. A section of intramuscular EMG from the abductor pollicis longus 

muscle of the second dataset (blue) and a matching MUAP train from HDsEMG 

decomposition (red). The iEMG signal is slightly messy and contains a large range 

of spike sizes. 

 
Figure 17. A section of intramuscular EMG from the abductor pollicis longus 

muscle of the second dataset (blue) and a matching MUAP train from HDsEMG 

decomposition (red). Each firing of the MUAP train corresponds to a spike in the 

iEMG signal. However, in contrast to the flexor digitorum profundus muscle, there 

are here many more spikes in the iEMG signal. 



23 
 

Intramuscular decomposition 

Few MUAP trains from sEMG decomposition were found matching the raw 

iEMG. Therefore, to further calibrate the model, decomposition was also 

performed on the iEMG signal in the extensor pollicis longus muscle. This 

decomposition was done using the software Emglab, which decomposed 

segments of less than 100 seconds at a time. The software returned many 

individual MUAP trains (Figure 18), which could be used in a similar 

manner as MUAP trains from sEMG decomposition. The MUAP trains 

from intramuscular decomposition were also imported to MATLAB. 

 
Figure 18. A segment decomposition of the iEMG electrode in the extensor pollicis 

longus muscle using Emglab, returning 9 MUAP trains (bottom left).   

Motor units extracted from sEMG 

The MUAP trains were used for depth estimation. The raw sEMG data for 

each firing of the MUAP train was averaged to remove noise and create a 

clear image of how the MU affected the surface potential (Figure 19-21). 
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Figure 19. Extracted MU in the flexor digitorum profundus muscle. Each sEMG 

signal was averaged using each instance of 245 firings in a MUAP train from 

HDsEMG decomposition. The far right column is excluded due to the nature of the 

differential recording setup. The fifth column was used for depth estimation. 

 
Figure 20. Extracted MU in the abductor pollicis longus muscle. Each sEMG 

signal was averaged using each instance of 184 firings in a MUAP train from 

HDsEMG decomposition. The far right column is excluded due to the nature of the 

differential recording setup. The trough in the fifth column is likely also due to the 

differential setup. The sixth column was used for depth estimation. 



25 
 

 
Figure 21. Extracted MU in the extensor pollicis longus muscle. Each sEMG signal 

was averaged using each instance of 88 firings in a MUAP train from iEMG 

decomposition. The far right column is excluded due to the nature of the 

differential recording setup. The second column was used for depth estimation. 

Depth estimation 

One-layer model 

The first model, as described by Roeleveld et al (1), assumes a constant 

attenuation level of the signal from the source to the surface electrodes, i.e. 

a single homogeneous layer. The distance from the source to an electrode is 

the radial distance 𝑟(𝑗). A power function is used to describe the relation 

between radial distance and the surface amplitude 𝑉(𝑗), specifically for 

electrodes in the plane perpendicular to the muscle fiber. 

𝑉(𝑗) = 𝑘 ∙ (
𝑟(𝑗)

𝑟𝑘
)

−𝑄
       [1] 

𝑘 is the amplitude estimate for the signal at distance 𝑟𝑘 and 𝑄 describes the 

strength of signal attenuation. A higher 𝑄 means the amplitude of the signal 

decreases faster as it travels to the skin surface. An important thing to note 

is that the attenuation power affects distant electrodes more than electrodes 

closer to the source. This means that a lower attenuation strength results in 
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a more uniform distribution. 

The surface signal should be strongest at the point with the shortest radial 

distance, which is directly above the MU. For this point 𝑉(𝑗) = 𝑉𝑚𝑎𝑥 and 

𝑟(𝑗) = 𝑑, the MU depth. The position on the surface where the potential 

reaches half maximum is labeled 𝑉𝐹 with radial distance 𝑟𝐹. This point is 

found by looking at the distribution of the signal across the skin which will 

be covered later. By combining the equation for 𝑉𝑚𝑎𝑥 and 𝑉𝐹, some constants 

cancel out which results in 

𝑉𝑚𝑎𝑥 = 𝑘 ∙ (
𝑑

𝑟𝑘
)

−𝑄

, 𝑉𝐹 = 𝑘 ∙ (
𝑟𝐹

𝑟𝑘
)

−𝑄

 

⇒
𝑉𝑚𝑎𝑥

𝑉𝐹
= (

𝑑

𝑟𝐹
)

−𝑄

⇒ 2 = (
𝑟𝐹

𝑑
)

𝑄

 

⇒ 𝑟𝐹 𝑑⁄ = 21 𝑄⁄         [2] 

where 𝑟𝐹 and 𝑑 are unknown for each MU and 𝑄, which we want to estimate, 

is constant for the entire volume. 

In addition to the power function, 𝑟𝐹 and 𝑑 are also related through 

geometric equations. The shape is simplified to a cylindrical shape as seen 

in Figure 22. 

 
Figure 22. Schematic of the geometry of the model. The MU location is marked as 

the red circle. 
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Three points; the MU, the center of the cylinder and the surface point with 

half maximum amplitude, create a triangle. This triangle is subject to the 

cosine rule where the angle 𝛼 is the angle between the lines from the center 

of the cylinder to 𝑉𝑚𝑎𝑥 and 𝑉𝐹. The sides of the triangle are (𝑟𝐴 − 𝑑) and 𝑟𝐴 

respectively and the side opposing 𝛼 is 𝑟𝐹. We get the following, 

𝑎2 = 𝑏2 + 𝑐2 − 2𝑏𝑐 ⋅ cos(𝛼) 

⇒ 𝑟𝐹
2 = 𝑟𝐴

2 + (𝑟𝐴 − 𝑑)2 − 2𝑟𝐴(𝑟𝐴 − 𝑑)cos(𝛼).    [3] 

We then separate 𝑑2, 

⇒ 𝑟𝐹
2 = 𝑑2 − 2𝑟𝐴𝑑(1 − cos(𝛼)) + 2𝑟𝐴

2(1 − cos(𝛼)).   [4] 

Again, 𝑟𝐹 and 𝑑 are unknown for each MU, so we combine equation [2] and 

[4] by replacing 𝑟𝐹
2 with 

𝑟𝐹
2 = (21 𝑄⁄ ⋅ 𝑑)2. 

This results in 

⇒ 22 𝑄⁄ ⋅ 𝑑2 = 𝑑2 − 2𝑟𝐴𝑑(1 − cos(𝛼)) + 2𝑟𝐴
2(1 − cos(𝛼)) 

⇒ 𝑑2(1 − 22 𝑄⁄ ) − 2𝑟𝐴𝑑(1 − cos(𝛼)) + 2𝑟𝐴
2(1 − cos(𝛼)) = 0. 

We simplify the equation by introducing 

𝛾 = 1 − 22 𝑄⁄ , 

and extract the depth 𝑑, 

⇒ 𝑑 =
𝑟𝐴

𝛾
((1 − cos(𝛼)) ± √(1 − cos(𝛼))2 − 2𝛾(1 − cos(𝛼))). [5] 

The angle 𝛼 depends on the surface distance between 𝑉𝑚𝑎𝑥 and 𝑉𝐹. This 

distance is labeled 
1

2
𝑙𝑎, which gives the angle in radians as 

𝛼 =
𝑙𝑎

2𝑟𝐴
. 

The distance 
1

2
𝑙𝑎 between 𝑉𝑚𝑎𝑥 and 𝑉𝐹 is obtained from surface potential 

distribution over the skin, caused by the MUAP. The surface potential 

distribution perpendicular to the fiber direction follows a gaussian curve. 
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 𝑓(𝑥) = 𝑎𝑒
−

(𝑥−𝑏)2

2𝑐2  

Where 𝑎 is the maximum amplitude, 𝑏 is the horizontal offset of the 

maximum amplitude and 𝑐 is related to the width of the gaussian curve. The 

full width at half maximum (FWHM) of a gaussian curve corresponds to 𝑙𝑎 

according to 

𝑙𝑎 = 2√2 ln(2) ∙ 𝑐 

A gaussian fit in MATLAB is applied to the peak-to-peak values of the 

electrodes perpendicular to the fiber direction. The column with the 

strongest signal is chosen manually (Figure 23). 

 
Figure 23. Extracted MU in the flexor digitorum profundus muscle. A gaussian fit 

is applied to the peak to peak values of the electrodes in the selected region. 

The assumption for this model is that 𝑄 is constant for the entire section. In 

the original paper by Roeleveld et al (1), the power 𝑄 varies between 0,9 

and 2,0. These values were used as starting points for the model. The depth 

of the MU was approximately known, and the power 𝑄 was calibrated to 

match the MU depth. A visualization of the MU depth was also 

implemented in MATLAB using the measured parameters and estimated 

depth. 
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Two-layer model 

In order to expand the model to two layers, a different approach to the 

original power function was used. A starting amplitude, 𝐴0 is assigned to 

the source, the center of the MU. It is assumed that the attenuation of the 

signal is constant in muscle and constant in fat respectively. As the signal 

traverses the muscle, perpendicular to the fiber direction, the signal 

amplitude is modified with an exponential function. Starting with 

𝐴 = 𝐴0 ⋅ 𝑒−𝑎𝑥 

where 𝑥 is the distance through muscle the signal traverses and 𝑎 is the 

strength of signal attenuation. A larger attenuation constant again means the 

signal decreases faster with distance. To account for a layer of fat, which 

further decreases the amplitude of the signal, the equation is expanded with 

𝐴 = 𝐴0 ⋅ 𝑒−𝑎x ⋅ 𝑒−𝑏y ⇒ 𝐴 = 𝐴0 ⋅ 𝑒−𝑎x−𝑏y.    [6] 

The distance through fat is 𝑦 and the signal attenuation in fat is 𝑏. 

In a similar manner to the one-layer model, the distribution of the signal 

across the skin is also important. Combining the points of maximum 

amplitude 𝐴1 and half maximum 𝐴𝐹 results in 

𝐴1 = 𝐴0 ⋅ 𝑒−𝑎𝑥1−𝑏𝑦1 , 𝐴𝐹 = 𝐴0 ⋅ 𝑒−𝑎𝑥𝐹−𝑏𝑦𝐹  

𝐴1

𝐴𝐹
=

𝑒−𝑎𝑥1−𝑏𝑦1

𝑒−𝑎𝑥𝐹−𝑏𝑦𝐹
⇒ 2 = 𝑒−𝑎𝑥1−𝑏𝑦1+𝑎𝑥𝐹+𝑏𝑦𝐹  

⇒ ln(2) =  −𝑎𝑥1 − 𝑏𝑦1 + 𝑎𝑥𝐹 + 𝑏𝑦𝐹 

⇒ ln(2) = 𝑎(𝑥𝐹 − 𝑥1) + 𝑏(𝑦𝐹 − 𝑦1).     [7] 

Additionally, we have 

𝑑 = 𝑥1 + 𝑦1 

𝑟𝐹 = 𝑥𝐹 + 𝑦𝐹 

The thickness of fat 𝑦1 is measured using ultrasound. With a two-layer 

model however, there are too many unknown variables. In order to continue, 
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a few important assumptions and simplification are made. An 

approximation is applied where the ratio of the distances 𝑑 and 𝑟𝐹 is 

equivalent to the ratio of the subcomponent distances in muscle and fat 

respectively. I.e. since the distance 𝑟𝐹 is greater than 𝑑, the fractions of 𝑟𝐹 

are similarly greater than the fractions of 𝑑.  Which means 

𝑟𝐹

𝑑
≈

𝑥𝐹

𝑥1
≈

𝑦𝐹

𝑦1
. 

The variables in equation [7] are replaced and expressed using 𝑟𝐹 and 𝑑. 

ln(2) = −𝑎𝑥1 − 𝑏𝑦1 + 𝑎𝑥𝐹 + 𝑏𝑦𝐹 

⇒ ln(2) = −𝑎𝑥1 − 𝑏𝑦1 + 𝑎𝑥1

𝑟𝐹

𝑑
+ 𝑏𝑦1

𝑟𝐹

𝑑
 

⇒ ln(2) = 𝑎𝑥1 (
𝑟𝐹

𝑑
− 1) + 𝑏𝑦1 (

𝑟𝐹

𝑑
− 1) 

⇒ ln(2) = (𝑎𝑥1 + 𝑏𝑦1) (
𝑟𝐹

𝑑
− 1) 

Since thickness of fat 𝑦1 is known, this gives 

𝑥1 = 𝑑 − 𝑦1 

⇒ ln(2) = (𝑎(𝑑 − 𝑦1) + 𝑏𝑦1) (
𝑟𝐹

𝑑
− 1)     [8] 

A simplification is made regarding the signal attenuations 𝑎 and 𝑏. 

Conductivity is greater in muscle than in fat but measured values vary 

greatly. Conductivity studies (19) for the relevant frequency range (<1000 

Hz) show approximately 15 times greater conductivity for muscle compared 

to fat. To simplify calibrating the attenuation constants, values where 

𝑏 = 𝑎 ⋅ 15 

were chosen for this model. 

Just as in the one-layer model, 𝑟𝐹 and 𝑑 are also related geometrically 

through the cosine rule. A system of equations, consisting of equation [3] 

and [8], is solved using MATLAB. With precise knowledge of MU depth 

from ultrasound recordings, the constants for attenuation are then calibrated.  
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Results 

Flexor digitorum profundus 

From the first dataset, HDsEMG decomposition returned a MUAP train 

with a clear match to the iEMG signal in the flexor digitorum profundus 

muscle in the upper forearm. The electrode depth was approximately 1 cm, 

estimated without ultrasound. The arm circumference was 28 cm and the 

MU is shown in Figure 24. With a Gaussian fit of the peak-to-peak values 

of the fifth column, the FWHM of the surface distribution was estimated to 

𝑙𝑎 = 1,8. 

Using these parameters, the one-layer and two-layer models were 

calibrated, returning values for the attenuation constants of the models. 

𝑄 = 2,9 

𝑎 = 0,5 and 𝑏 = 7,5. 

 
Figure 24. Visualization of the MU in the flexor digitorum profundus muscle from 

a cross section of the fifth column.  
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Abductor pollicis longus 

From the second dataset, HDsEMG decomposition only returned a 

matching MUAP train for the iEMG signal in the abductor pollicis longus 

muscle in the lower forearm. The match was not as clear as in the first 

dataset with many additional spikes in the iEMG signal which were not 

covered by the MUAP train from decomposition. The electrode depth was 

0,91 cm, measured using ultrasound. The arm circumference was 18 cm and 

the MU is shown in Figure 25. With a Gaussian fit of the peak-to-peak 

values of the sixth column, the FWHM of the surface distribution was 

estimated to 

𝑙𝑎 = 2,5. 

With these parameters, the one-layer and two-layer models were calibrated, 

returning values for the attenuation constants of the models. 

𝑄 = 1,7 

𝑎 = 0,28 and 𝑏 = 4,2. 

 
Figure 25. Visualization of the MU in the abductor pollicis longus muscle from a 

cross section of the sixth column.  
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Extensor pollicis longus 

HDsEMG decomposition of the second dataset did not return MUAP trains 

matching the iEMG in the extensor pollicis longus nor the extensor indicis 

proprius. Decomposition of iEMG from the extensor pollicis longus 

returned several MUs. The electrode depth was 1,58 cm, measured using 

ultrasound. The arm circumference was 18 cm and the strongest MU is 

shown in figure 26. With a Gaussian fit of the peak-to-peak values of the 

second column of each MUAP train, the FWHM of the surface distribution 

was estimated between 

3,3 > 𝑙𝑎 > 2,7. 

With these parameters, the one-layer and two-layer models were calibrated, 

returning a range of values for the attenuation constants of the models. 

3,5 < 𝑄 < 5 

0,55 < 𝑎 < 0,81 and 8,25 < 𝑏 < 12,15. 

 
Figure 26. Visualization of the MU in the extensor pollicis longus muscle from a 

cross section of the second column.  
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The corresponding depth, FWHM and attenuation constants for both models 

are summarized for all three extracted motor units in table 1. 

Table 1. Summary of the MUs in the flexor digitorum profundus (FDP), abductor 

pollicis longus (APL) and extensor pollicis longus (EPL) muscles. Several MUAP 

trains were used for the extensor pollicis longus which returned a range values for 

the FWHM of the surface distribution and attenuation constants. 

 Depth FWHM One-layer 

model 

Two-layer model 

𝑑 𝑙𝑎 𝑄 𝑎 𝑏 

FDP 1 1,8 2,9 0,5 7,5 

APL 0,9 2,5 1,7 0,28 4,2 

EPL 1,57 3,3 − 2,7 3,5 − 5,0 0,55 − 0,81 8,25 − 12,15 
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Discussion 

The aim of this thesis was to present and describe a viable model for 

localization of MUs using sEMG. Although the method presented is 

promising, its viability is yet to be fully determined. With limited MUs to 

work with, it is difficult to draw strong conclusions. There is quite some 

variance in the resulting attenuation constants between the MUs. There are 

several sources of variance to account for and possible faults in the method 

to cover. The results show promise in some aspects however and there is 

much work that can be done to improve the model. 

It’s a good idea to first understand how the parameters of the model affect 

the results. As previously mentioned, a deeper MU creates a wider potential 

distribution on the surface and a larger FWHM 𝑙𝑎. Conversely however, a 

larger attenuation power creates a more narrow distribution and a smaller 

𝑙𝑎. For a given distribution, i.e. the MU specific input data, changes in the 

models attenuation strength inversely change the resulting depth estimated 

for the MU. Changes in the body part circumference have an effect as well. 

Increasing the circumference increases the distance to the electrodes farthest 

away, with similar effects as changes in attenuation power. 

Supporting the theory 

The MU of the flexor digitorum profundus has the most narrow distribution. 

In comparison, the MU of the extensor pollicis longus has a clearly wider 

distribution. This is what was expected for a deeper MU which supports the 

underlying theory of the method. When instead compared to the MU of the 

abductor pollicis longus we again see a wider distribution, however with 

similar depth. This could be due to the circumference difference of the upper 

and lower forearm. The larger circumference around the flexor digitorum 

profundus should result in more narrow distributions for a given depth. If 

we compare the abductor pollicis longus and extensor pollicis longus MUs 

we see a smaller difference in distribution for a large difference in depth. 

As for all the MU comparisons, theory supports the direction of the results, 

however the details and consequently the attenuation constants still vary 

considerably. Therefore, with these MUs, we cannot draw conclusions on 



36 
 

the values of the attenuation constants for the models. 

Variance 

The primary source of uncertainty for the MU of the flexor digitorum 

profundus is the intramuscular electrode depth, since this dataset did not 

include ultrasound to locate the iEMG wire. If the true depth of the MU is 

shallower than measured, this would result in smaller attenuation constants 

for the models. The position of the other iEMG carry some uncertainty as 

well, but not nearly as much. 

The extracted MU of the abductor pollicis longus (Figure 20) has a 

confusing shape to it which may affect the result. A trough seem to separate 

two peaks in the surface distribution. This is likely due to recording with a 

differential setup. Furthermore it is unclear how much the differential setup 

affects the results compared to monopolar. Although there is reduced noise, 

there is increased complexity when analyzing the signal. Decomposition of 

monopolar recordings may reveal MUs which differential decomposition 

does not. A monopolar setup is seemingly more optimal, especially since 

differential data can more easily be reconstructed from a monopolar 

recording. 

Internal irregularities, like variation in thickness of the fat layer, blood 

vessels and connective tissue, could affect the results from any one MU, 

which is difficult to account for. Varying shapes of body parts may affect 

the result as well. The models assume the shape to be a perfect cylinder, 

which may be a good estimation for larger limbs but perhaps insufficient for 

the lower forearm. The curvature around the lower forearm varies 

significantly which affects the distance from the MU to each electrode. A 

larger body part, like the thigh could provide more reliable results. A model 

using complicated shapes and electrode positions may be a possibility as 

well, requiring considerable changes. 

Improvements 

To improve the method and balance the variance, more MUs need to be 

included in calibrating the model. This would also provide a much needed 
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error range for the depth estimation. Although it was difficult to find 

matching MUs in HDsEMG decomposition and iEMG, improvements in 

decomposition algorithms may provide enough MUs to reliable find 

matchings. Additionally, using decomposition of more iEMG electrodes 

could be an efficient way to calibrate the models. 

There is a large amount of data in the HDsEMG recordings. Whilst all 

electrodes are used in decomposition and for extracting the MU potential 

distribution, the models neglects much of the data for depth estimation. 

Instead of only using the peak to peak values of the electrodes, other features 

like the energy of the signal could be explored as well. Expanding the 

models to cover more columns could reduce variance, making the results 

more reliable. Instead of applying a 1-dimensional gaussian fit to the data, 

a 2-dimensional surface could be used instead. Since the potential 

distribution is dependant on the fiber direction, a 2-dimensional fit could 

also be used for fibers in all directions. 

For the two-layer model, adjusting the ratio of the attenuation powers in fat 

and muscle may be the flexibility the model needs to match the data. An 

additional layer, accounting for the skin should be considered as well. The 

issue that comes with increasing the amount of layers is that more unknown 

variables are introduced. Additional approximations will be required which 

may affect the results. Evaluating the level of detail best suited for the 

purpose is essential. 

Clinical application 

With more data and fine-tuning of the models, there are several ways to 

proceed with clinical application. For stroke rehabilitation, as mentioned in 

the introduction, it could give a measure for MU recovery by mapping MU 

activity to different muscles. It would serve as an additional assessment 

without impeding the patient’s regular therapy. The patient would initially 

have the size of the relevant limb measured. Ultrasound measurements 

determine the thickness of the layers surrounding the muscle, i.e. the skin 

and fat layers. With these parameters the model is tailored for each patient. 

During standard rehabilitation exercises, HDsEMG measurements would be 

made, with a protocol and setup similar to the one in this thesis and 
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movements appropriate for the specific muscle. Many HDsEMG 

measurements need to be done over a certain time period to create a measure 

of MU recovery. With improved decomposition algorithms, more MUs can 

be mapped to different muscles. And with more data, the results will be 

more reliable. If necessary, a single parallel iEMG recording could be made 

to better calibrate the model in the initial phase when tailoring the model for 

the patient. From thereon only sEMG would be used, since the aim is to 

create a non-invasive method for MU localization. 

Conclusion 

Two models for depth estimation were provided. The direction of the results 

support the underlying theory, but there is high variance in the calibrated 

values for attenuation. More MUs are needed to create reliable models. 

Although the results are not conclusive, there is much that can be done to 

improve the models and move closer to clinical application. 
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Appendix 1 
The MATLAB code of the first script, used to plot and extract MUs. 

 
%samplingrate 

S = 10240; 

                              

%Import Data, time and amplitude vectors 

%Raw intramuscular EMG data 

DataiEMG = load('CAiEMG.mat'); 

TimeiEMG = DataiEMG.Time; 

DataiEMG = DataiEMG.Data; 

 

%Raw surface EMG data 

DatasEMG = load('CAsEMGx64_1110to1170.mat');   

TimesEMG = DatasEMG.Time;    %In seconds 

DatasEMG = DatasEMG.Data; 

 

%Motor unit firings, Decomponi data, Within DatasEMG range 

Decomponi = load('Decomponi1110to1170.mat');   

TimeDecomponi = Decomponi.Time;   %In seconds 

Decomponi = Decomponi.Data(:,7); 

 

%% 

%Choose column to fit a gaussian 

col = 5; 

 

%Window size to look for MU-firings 

AvgWin1 = TimeDecomponi(1)+1;             %Averaging 

window start (s) 

AvgWin2 = TimeDecomponi(end)-1;           %Averaging 

window end (s) 

 

%Window size for each MU-firing 

FireWin1 = -0.015;                        

 %Firing window start offset (s) 

FireWin2 = 0.02;                          %Firing 

window end offset (s) 

 

% Finds all MU-firings, adds them in seconds to FireTimings 

AW1 = int64((AvgWin1-TimeDecomponi(1))*S);  %Conversion from sec 

to index 

AW2 = int64((AvgWin2-TimeDecomponi(1))*S);  %Conversion from sec 

to index 

FireTimings = []; 

for i = AW1:AW2                          %Finds MU-firings 

within AvgWin 

 if Decomponi(i) == 1                    
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      FireTimings = [FireTimings TimeDecomponi(i)]; 

 End 

end 

 

% Sums all MU-firings, adds them to SumFirings 

SumFirings = zeros(int64((FireWin2-FireWin1)*S),64); 

SumiEMG = zeros(int64((0.01+0.01)*S)); 

%For each MU-firing 

for i = 1:length(FireTimings)             

 FW1 = int64((FireTimings(i)+FireWin1-TimesEMG(1))*S); 

 FW2 = FW1 + length(SumFirings) - 1; 

  

%Raw sEMG within FireWin of MU-firing 

 Firings = []; 

 for j = 1:64                         

      Firings(:,j) = DatasEMG(FW1:FW2,j); 

 end 

 SumFirings = SumFirings + Firings; 

  

end 

%Average 

AvgFirings = SumFirings/length(FireTimings); 

 

%Min and Max for each sEMG 

FireMax = max(AvgFirings);                            

FireMin = min(AvgFirings);   

 

%Peak2Peak values for selected column 

for j = 1:8 

 ColP2P(j) = (FireMax(col+8*(j-1)) - FireMin(col+8*(j-1))); 

End 

 

%Vector with min P2P set to 0 to allow for gaussian fit 

ColFit = ColP2P - min(ColP2P); 

 

%P2P plot 

figure 

plot(ColFit) 

title(['Average of ',num2str(length(FireTimings)),' MU-firings in 

column ',num2str(col)]) 

 

%% iEMG and Decomponi plot 

% Plots iEMG and MU-timings 

figure                                    

plot(TimeiEMG(AvgWin1*S:AvgWin2*S),DataiEMG(AvgWin1*S:AvgWin2*S)) 

hold on 

plot(TimeDecomponi(AW1:AW2),Decomponi(AW1:AW2)) 

title([num2str(length(FireTimings)), ' MU-firings, 
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iEMG&Decomponi']) 

 

%% Plots MU average over 64 sEMG plots 

%Plots all 64 electrodes 

figure                  

for j = 1:8 

 for k = 1:8 

      subplot(8,8,(j-1)*8+k) 

      plot(AvgFirings(:,(j-1)*8+k)) 

      axis([0 length(AvgFirings) min(FireMin) 

max(FireMax)]); 

 end 

end 

 



44 
 

Appendix 2 

The MATLAB code of the second script, used to estimate and visualize 

the depth of the extracted MU. 

 
%% Requires 

% Column of P2P values, ‘ColFit’ 

% Column, ‘col’ 

% Average of firings for each electrode, ‘AvgFirings’ 

 

%Circumference arm 

Ca = 28;                                       

%Radius arm 

rA = Ca/2/pi;                                  

 

%%Column variables 

%Electrodes over skin 

Li2 = [1 2 3 4 5 6 7 8]; 

%Gaussian fit of peak2peak values 

GaussFitCol = fit(Li2',ColFit','Gauss1'); 

%Center of signal in the electrode vector 

centerOfCol = GaussFitCol.b1; 

% Shift electrode vector to align peak with 0 

Li2 = Li2-centerOfCol; 

%Electrode positions in radians 

alphaLi2 = Li2/rA; 

%Gaussian width constant of peak2peak fit 

GaussWidth2 = GaussFitCol.c1; 

%Full width at half maximum over skin 

La2 = GaussWidth2*2*sqrt(log(2)); 

%Full width at half maximum in radians 

alphaLa2 = La2/2/rA;   

 

%% Main equation 

%One-layer 

%Set attenuation constant 

Q2 = 1; 

%These make writing the equation easier 

gamma2 = 2^(-1/Q2);     

c2 = 1-(1/gamma2)^2; 

%Motor unit depth 

d2 = rA/c2*((1-cos(alphaLa2))-sqrt((1-cos(alphaLa2)).^2-2*c2*(1-

cos(alphaLa2)))) 

 

%% Alternative equation 

%Two-layer 

%Set attenuation constants 

Qmuscle = 0.5; 
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Qfat = Qmuscle*15; 

%Fat thickness from ultrasound 

Xfat = 0.3; 

 

% System of equations 

syms d rF 

eqns = [(Qmuscle*(d-Xfat) + Qfat*Xfat)*(1-rF/d) == log(0.5), rA^2 

+ (rA-d)^2 - 2*rA*(rA-d)*cos(alphaLa2) - rF^2 == 0, d>0, d<2*rA, 

rF>0, rF<2*rA]; 

Solution = solve(eqns, [d rF]); 

 

%Motor unit depth 

d = double(Solution.d) 

rF = double(Solution.rF); 

 

%% Plot visualization of depth with column 'col' 

%Arm outline 

theta = linspace(0,pi,200); 

%Plot fixed electrode positions (true) or fixed MU position 

(false) 

ElecPosFixed = true; 

 

if ElecPosFixed == true 

 ElecPos = [-3.5 -2.5 -1.5 -0.5 0.5 1.5 2.5 3.5]; 

else 

 ElecPos = Li2;                               %Electrode 

positions 

end 

 

radius = Ca/2/pi; 

depth = d2; 

 

%Scaling factors for extracted motor units 

x_scale = 0.5;                                

y_scale = 10; 

plot_size = radius+1; 

 

%Surface EMG from column 'col' 

x_wave = [];                                  

y_wave = []; 

for i = 1:length(ElecPos) 

 x_wave(:,i) = linspace(-x_scale,x_scale,length(AvgFirings)) 

- cos(ElecPos(i)/radius+pi/2)*radius*1.3; 

 y_wave(:,i) = y_scale*AvgFirings(:,col+8*(i-1)) + 

sin(ElecPos(i)/radius+pi/2)*radius*1.3; 

end 

 

%Electrode coordinates 
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x_elec = radius*-cos(ElecPos/radius+pi/2); 

y_elec = radius*sin(ElecPos/radius+pi/2); 

%MU coordinates 

if ElecPosFixed == true 

 x_MU = (radius-depth)*-cos((ElecPos(1)+centerOfCol-

1)/radius+pi/2); 

 y_MU = (radius-depth)*sin((ElecPos(1)+centerOfCol-

1)/radius+pi/2); 

else 

 x_MU = 0; 

 y_MU = radius-depth; 

end 

 

figure 

hold on 

plot(radius*cos(theta),radius*sin(theta),'k','LineWidth',4) 

axis([-plot_size plot_size 0 1.5*plot_size]) 

pbaspect([1 0.75 1]) 

plot(x_elec,y_elec,'r.','MarkerSize',15) 

plot(x_MU,y_MU,'ro','MarkerSize',7) 

title(['Source depth = ',num2str(d2),' cm, Column 

',num2str(col),', Center under 

',num2str(centerOfCol)],'FontSize',12) 

xlabel('cm') 

ylabel('cm') 

for i = 1:length(ElecPos) 

 plot(x_wave(:,i),y_wave(:,i),'b') 

end 

 


