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Popular Science Summary

In order to explain what this paper is about, it is necessary to first define a few of
the mathematical concepts which it concerns. A group is a set of objects, called
elements, together with a rule, called an operation, which tells us how two ele-
ments combine with each other to make a third. Furthermore, to be considered
a group it must also satisfy 4 conditions, called axioms. One of which is that
the group must be closed under it’s operation. This means that whenever any
two elements in the group are combined, the resulting element is also part of the
group. The remaining axioms require that the group must also be associative,
have an identity element and each element must have an inverse. The way in
which the elements in a group act with each other is called the group’s structure.
If 2 groups have the same number of elements and share the same structure, then
they are regarded as being isomorphic to each other, which essentially means
that they equivalent. Many everyday things can be regarded as groups, such as
the symmetries of geometrical objects, or the number systems we use.

The set of 2 x 2 matrices whose determinant is equal to 1, together with the
operation of ordinary matrix multiplication, forms a group called the special
linear group. This is a group because the product of 2 matrices has a determi-
nant equal to the product of the determinants of the 2 matrices, so since 1 x
1 = 1, this new element also belongs to the group, hence the axiom of being
closed is satisfied. Furthermore, it is crucial that the entries in the matrices
are taken from a specified ring or field. Rings and fields are, like groups, ab-
stract mathematical objects, albeit they satisy even more axioms than groups
do. Crucially, rings and fields have both an additive and a multiplicative identity.

This paper focuses on SL(2, F ), which is the two-dimensional special linear group
whose entries are taken from an algebraically closed field. Algebraically closed
fields are infinite in size, which means that the resulting special linear group is
also infinite. A subgroup of a group is simply a group with the added require-
ment that each of it’s elements must also belong to the original group. Thus a
finite subgroup of SL(2, F ) is any finite set of elements belonging to this infinite
group SL(2, F ), which satisfy the 4 axioms of being a group.

This paper classifies all the possible structures which a finite subgroup of SL(2, F )
could have. The result has implications within the study of finite simple groups.
This classification was first done by American mathematician Leonard Eugene
Dickson in 1901. The purpose of this reformulation is to make it accessible to a
wider audience by providing a more detailed explanation at the various stages
of the proof.
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Abstract

This paper is a reformulation of Leonard Dickson’s complete classification of the
finite subgroups of the two-dimensional special linear group over an arbitrary
algebraically closed field, SL(2, F ). The approach is to construct a class equation
of the conjugacy classes of maximal abelian subgroups of an arbitrary finite
subgroup of SL(2, F ). In turn, this leads to only 10 possible classes of structures
of this subgroup up to isomorphism.
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Introduction

The general linear group of degree n is the group formed by the set of n x n in-
vertible matrices, together with the operation of ordinary matrix multiplication,
with the entries of each matrix coming from a specific ring or field. The special
linear group is a subgroup of the general linear group, namely those matrices
with a deteminant equal to 1. In this work, we focus on the two-dimensional
case, with entries coming from an algebraically closed field, F . This is denoted
by GL(2, F ) for the general linear group and SL(2, F ) for the special linear
group. Recall that an algebraically closed field is a field which contains the roots
to any non-constant polynomial in F [x], with coefficients in F . They are infinite
in size and two such examples are the field of complex numbers and the field of
algebraic numbers.

In 1901, Leonard Eugene Dickson published his book Linear Groups, with an
Exposition of the Galois Field Theory [3]. In this work, he obtains a complete
classification of the finite subgroups of SL(2, F ). This paper is a reformulation
of Dickson’s classification theorem and loosely follows Chapter 3, §6 in Michio
Suzuki’s book Group Theory I [9]. This classification theorem is of particular
interest in the study of finite simple groups and Suzuki himself describes it as
one of the indispensable tools in studying the basic properties of linear groups
which underlie the concept of p-stability [9, p.392].

The paper begins with a brief overview of some preliminary requirements which
are necessary to the understanding of the proof. They are standard group theory
results which may or may not have been covered in a first course given on group
theory, the majority of which are cited without proof. A more advanced reader
may choose to skip over this chapter.

The main body of work begins in Chapter 1 and focuses on the infinite group
SL(2, F ). We make some important observations about the conjugacy of the
elements in this group and the centre of the group. Some important elements
and subgroups of SL(2, F ) are defined and their centralisers and normalisers
determined. We show that the action of SL(2, F ) on the projective line is triply
transitive, which is a vital tool used several times throughout the paper in de-
termining group structure.

In Chapter 2 we consider an arbitrary finite subgroup G of SL(2, F ). The no-
tion of a maximal abelian subgroup is introduced and utilised to construct a
class equation, whereby G is partitioned into the conjugacy classes of it’s max-
imal abelian subgroups. This plays a crucial role in determining the possible
structures of G. We find that the number and type of these conjugacy classes
are restricted to just 6 different cases.

The final chapter examines these 6 cases individually. In each case we determine
the possible structures that G could have. The 10 possible structures of G are
finally consolidated into the classification theorem.
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Chapter 0

Preliminaries

This section briefly outlines some standard group theory results which perhaps
may not have been covered in a first course in Group Theory. Since they are
not the main focus of this paper, most of the proofs have been omitted. A more
advanced reader may choose to skip this first chapter, using it only for reference
purposes as and when the results are subsequently cited.

0.1 Some Elementary Theorems

The following theorems are all well-known fundamental results in group theory.
If the reader is interested in the proofs, they can be found in Hungerford [6].

Lagrange’s Theorem. Let G be a finite group. Then the order of any subgroup
of G divides the order of G.

First Isomorphism Theorem. Let φ : G→ G′ be a homomorphism of groups.
Then,

G/Ker φ ∼= Im φ.

Hence, in particular, if φ is surjective then,

G/Ker φ ∼= G′.

Second Isomorphism Theorem. Let H and N be subgroups of G, and N C G.
Then,

H/H ∩N ∼= HN/N.

Third Isomorphism Theorem. Let H and K be normal subgroups of G and
K ⊂ H. Then H/K is a normal subgroup of G/K and,

(G/K)/(H/K) ∼= G/H.

Cauchy’s Theorem. If the order of a finite group G is divisible by a prime
number p, then G has an element of order p.

3
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0.2 Sylow Theory

In 1872, Norweigian mathematician Peter Ludwig Sylow published his theorems
regarding the number of subgroups of a fixed order that a given finite group
contains. Today these are collectively known as the Sylow Theorems and play
a vital role in determining the structure of finite groups. I will use the results
of these theorems several times throughout this paper and I state them here
without proof. If the reader would like to read further, the proofs can be found
in most introductory texts on group theory, such as Bhattacharya [2], except
Corollary 0.2 which can be found in Alperin and Bell [1, p.64] .

Definition. Let G be a finite group and p a prime, a Sylow ppp-subgroup of G
is a subgroup of order pr, where pr+1 does not divide the order of G.

Let p be a prime. A group G is called a ppp-group if the order of each of it’s
elements is a power of p. Similarly, a subgroup H of G is called a ppp-subgroup
if the order of each of it’s elements is a power of p.

In each of the following results, G is a finite group of order prm, where p is a
prime which does not divide m.

First Sylow Theorem. If pk divides |G|, then G has a subgroup of order pk.

Second Sylow Theorem. All Sylow p-subgroups of G are conjugate.

Third Sylow Theorem. The number of Sylow p-subgroups np divides m and
satisfies np ≡ 1(mod p).

Corollary 0.1. A Sylow p-subgroup of G is unique if and only if it is normal.

Corollary 0.2. Any p-subgroup of G is contained in a Sylow p-subgroup.

0.3 Group Action

Definition. Let G be a group and X be a set. Then G is said to act on X
if there is a map φ : G × X → X, with φ(a, x) denoted by a∗x, such that for
a, b ∈ G and x ∈ X, the following 2 properties hold:

(i) a ∗(b ∗x) = (ab)∗x,

(ii) IG
∗x = x.

The map φ is called the group action of G on X.
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Definition. Let G be a group acting on a set X and let x ∈ X. Then the set,

Stab(x) = {g ∈ G : gx = x},

is called the stabiliser of x in G. Each g in SG(x) is said to fix x, whilst x is
said to be a fixed point of each g in SG(x). Also, the set,

Orb(x) = {gx : g ∈ G},

is called the orbit of x in G.

The orbit and the stabiliser of an element are closely related. The following
theorem is a consequence of this relationship and it will be useful throughout
this paper.

Orbit-Stabiliser Theorem. Let G be a finite group acting on a set X. Then
for each x ∈ X,

|G| = |Orb(x)||Stab(x)|.

The following standard theorem will all play a vital roll later on.

Theorem 0.3. Let G be a group and H a subgroup of G of finite index n. Then
there is a homomorphism φ : G −→ Sn such that,

ker(φ) =
⋂
x∈G

xHx−1.

Proof. See [2, p.110] for proof.

0.4 Conjugation

Definition. Let G be a group and a an element of G. An element b ∈ G is said
to be conjugate to a if b = xax−1 for some x ∈ G.

Let H1 be a proper subgroup of G and fix x ∈ G \ H1. The set H2 = {g ∈
G : g = xh1x

−1, ∀h1 ∈ H1} is said to be a conjugate subgroup of H1. We
write H2 = xH1x

−1. It is trivial to show that H2 is a subgroup of G.

Conjugation plays an important roll thoughout the paper, in particularly the
following properties about conjugate elements and subgroups.

Proposition 0.4. Let a, b be conjugate elements of a group G and A, B be
conjugate subgroups of G. Then the following properites hold:

(i) If either a or b has finite order, then both a and b have the same order.

(ii) A ∼= B.
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Proof. (i) Since a and b are conjugate elements in G, b = xax−1 for some x ∈ G.
Suppose that b has finite order and bk = IG for some k ∈ Z+,

IG = bk = (xax−1)k = xakx−1 ⇒ ak = IG.

Alternatively suppose that a has finite order and ak = IG for some k ∈ Z+,

ak = IG ⇒ IG = xakx−1 = (xax−1)k = bk.

Thus ak = IG ⇐⇒ bk = IG. Thus a and b have the same order.

(ii) Since A and B are conjugate, there exists some x ∈ G such that B = xAx−1.
Define the map φ by,

φ : A −→ xAx−1,

a1 7−→ xa1x
−1. (∀ a1 ∈ A)

We show that φ is a homomorphism between A and B = xAx−1.

φ(a1a2) = xa1a2x
−1 = (xa1x

−1)(xa2x
−1) = φ(a1)φ(a2).

Now consider an arbitrary k ∈ ker(φ).

k ∈ ker(φ) ⇐⇒ φ(k) = IG ⇐⇒ xkx−1 = IG ⇐⇒ k = IG.

So ker(φ) = {IG} which means φ is injective. Now let b1 ∈ B = xAx−1. Thus
b1 = xa1x

−1 for some a1 ∈ A. Since a1 ∈ A, φ(a1) = xa1x
−1 = b1 and so φ is

surjective. Thus φ is an isomorphism and A and B are isomorphic.

The final part of this proposition is an important result which shows that since
conjugate subgroups are isomorphic, conjugation preserves group structure and
properties. In particular, conjugate subgroups have the same cardinality and if
one is abelian or cyclic, then so is the other.

0.5 Automorphism

Definition. An automorphism of a group G is a isomorphism from G onto
itself. The set of all automorphisms of G forms a group under composition and
is denoted by Aut(G).

An inner automorphism is an automorphism whereby G acts on itself by con-
jugation. That is, each g ∈ G induces a map, ig : G→ G, where ig(x) = gxg−1

for each x ∈ G. The set of all inner automorphisms is denoted by Inn(G) and
is a normal subgroup of Aut(G) (For proof of this see [2, p.104].
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0.6 Direct Product

Definition. If G1, G2, ..., Gn are groups, we define a coordinate operation on
the Cartesian product G1 ×G2 × ...×Gn as follows:

(a1, a2, ..., an)(b1, b2, ..., bn) = (a1b1, a2b2, ..., anbn),

where ai, bi ∈ Gi. It is easy to verify that G1 × G2 × ... × Gn is a group under
this operation. This group is called the direct product of G1, G2, ..., Gn.

Lemma 0.5. Let A and B be normal subgroups of G with A∩B = {IG}. Then
AB ∼= A×B.

Proof. First note that the elements of A commute with the elements of B, since
∀ a ∈ A and b ∈ B,

aba−1b−1 = a(ba−1b−1) ∈ A, (since A C G)

aba−1b−1 = (aba−1)b−1 ∈ B. (since B C G)

Therefore aba−1b−1 ∈ A ∩B = {IG}, and ab = ba.

Define the operation ∗ on A×B by (a1, b1) ∗ (a2, b2) = (a1a2, b1b2). Now define
the map φ by,

φ : A×B −→ AB,

(a, b) 7−→ ab. (∀ a ∈ A, b ∈ B)

We show that φ is a homomorphism between A×B and AB.

φ((a1, b1) ∗ (a2, b2)) = φ(a1a2, b1b2)

= a1a2b1b2

= a1b1a2b2

= φ(a1, b1)φ(a2, b2).

Thus φ is a homomorphism and clearly surjective. It remains to show that it is
injective.

φ(a1, b1) = φ(a2, b2),

a1b1 = a2b2,

a1b1b
−1
2 = a2,

b1b
−1
2 = a−11 a2 ∈ A ∩B.

Since A∩B = {IG}, we have b1b
−1
2 = IG = a−11 a2 and so b1 = b2, a1 = a2 and φ

is injective. So φ is an isomorphism and AB ∼= A×B.

Corollary 0.6. Let A and B be subgroups of G. If A ∩ B = {IG} and ab = ba
∀a ∈ A, b ∈ B. Then AB ∼= A×B.

Proof. Since A and B commute, the argument outlined in Lemma 0.5 also holds
here.
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Chapter 1

Properties of SL(2, F )SL(2, F )SL(2, F ) over an
Algebraically Closed Field

1.1 General Notation

Throughout this paper, F will denote an arbitrary algebraically closed field. For
convenince we let L denote the infinite group SL(2, F ). The letter p will be used
to denote the characteristic of F . Recall that the characteristic of a field is the
smallest number of times which the multilplicative identity of the field, say 1,
needs to be summed to reach the additive identity of the field, say 0. If there
is no such number, then we regard p as being zero, otherwise it is always a prime.

Unless otherwise stated, the letters α, β, γ, δ, λ, µ, and σ will denote elements
of F and ω and ρ elements of F ∗, where F ∗ are the non-zero elements of F .

1.2 Subsets of LLL

In this chapter we make some useful observations about specific elements and
subgroups of L. We define the following elements of L as follows.

dω =

[
ω 0
0 ω−1

]
, tλ =

[
1 0
λ 1

]
, w =

[
0 1
−1 0

]
. (ω ∈ F ∗ and λ ∈ F )

We also define the following subsets of L.

D = {dω}, T = {tλ}, H = DT.

Observe that H is the set of all lower triangular matrices in L whilst Dw is the
set of all anti-diagonal matrices.

H = DT = {dωtλ} =

{[
ω 0
0 ω−1

] [
1 0
λ 1

]}
=

{[
ω 0

λω−1 ω−1

]}
. (1.1)

Dw = {dωw} =

{[
ω 0
0 ω−1

] [
0 1
−1 0

]}
=

{[
0 ω

−ω−1 0

]}
. (1.2)

9
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These elements and subgroups are fundamental to this paper and this notation
will be used throughout.

Lemma 1.1. For any ω, ρ ∈ F ∗ and λ, µ ∈ F we have:

dωdρ = dωρ, tλtµ = tλ+µ, dωtλd
−1
ω = tσ (σ = λω−2), wdωw

−1 = d−1ω .

Proof. These identities are all easily shown by matrix multiplication:

dωdρ =

[
ω 0
0 ω−1

] [
ρ 0
0 ρ−1

]
=

[
ωρ 0
0 ω−1ρ−1

]
= dωρ.

tλtµ =

[
1 0
λ 1

] [
1 0
µ 1

]
=

[
1 0

λ+ µ 1

]
= tλ+µ.

dωtλd
−1
ω =

[
ω 0
0 ω−1

] [
1 0
λ 1

] [
ω−1 0
0 ω

]
=

[
ω 0
0 ω−1

][
ω−1 0
λω−1 ω

]
=

[
1 0

λω−2 1

]
= tσ.

wdωw
−1 =

[
0 1
−1 0

] [
ω 0
0 ω−1

] [
0 −1
1 0

]
=

[
0 1
−1 0

] [
0 −ω
ω−1 0

]
=

[
ω−1 0
0 ω

]
= d−1ω .

Lemma 1.2. (i) The sets D and T are subgroups of L and

D ∼= F ∗, T ∼= F.

(ii) T is a normal subgroup of H and H/T ∼= D.

Proof. (i) The function ψ : F ∗ → D defined by ψ(ω) = dω is a homomorphism
between the group F ∗ under normal multiplication and D under normal matrix
multiplication:

ψ(ωρ) = dωρ = dωdρ = ψ(ω)ψ(ρ). (by Lemma 1.1)

Observe that ψ is trivially injective and surjective and thus an isomorphism. So
D ∼= F ∗ and D is a subgroup of L.

The function φ : F → T defined by φ(λ) = tλ is a homomorphism between
the group F under addition and T under normal matrix multiplication:

φ(λ+ µ) = tλ+µ = tλtµ = φ(λ)φ(µ). (by Lemma 1.1)

It’s clear that φ is injective and surjective and thus an isomorphism. So T ∼= F
and T is a subgroup of L.
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(ii) Let tµ and dωtλ be arbitrary elements of T and H respectively. Conjugating
tµ by dωtλ gives,

(dωtλ)tµ(dωtλ)−1 = (dωtλ)tµ(t−1λ d−1ω )

= dω(tλtµt−λ)d−1ω (since t−1λ = t−λ)

= dωtµd
−1
ω (by Lemma 1.1)

= tσ ∈ T. (where σ = µω−2 by Lemma 1.1)

Since tµ was chosen arbitrarily from T we have (dωtλ)T (dωtλ)−1 = T and since
dωtλ was chosen arbitrarily from H, we have that T C H.

The function π : H → D defined by π(dωtλ) = dω is a homomorphism between H
under normal matrix multiplication and D under normal matrix multiplication:

π(dωtλdρtµ) = π(dωdρtσtµ) (where σ = λρ2 by Lemma 1.1)

= dωdρ

= π(dωtλ)π(dρtµ).

We see that π is trivially surjective and has kernel

ker(π) = {dωtλ ∈ H : π(dωtλ) = IL} = T.

Thus by the First Isomorphism Theorem,

H/ker(π) ∼= Im(π),

H/T ∼= D.

1.3 The Centre of LLL

Definition. The centre Z(G) of a group G is the set of elements of G that
commute with every element of G.

Z(G) = {z ∈ G : ∀g ∈ G, gz = zg}.

It is an immediate observation that Z(G) is a normal subgroup of G, since for
each z ∈ Z, gzg−1 = gg−1z = z, ∀g ∈ G. It’s also clear that a group is abelian
if and only if Z(G) = G.

For ease of notation, Z(L) will be denoted simply by Z throughout the rest of
this paper.

Lemma 1.3. Z = 〈−IL〉.
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Proof. Take an arbitrary element x =

[
α β
γ δ

]
∈ L and an arbitrary element

z =

[
z1 z2
z3 z4

]
∈ Z and consider their product:

zx =

[
z1 z2
z3 z4

] [
α β
γ δ

]
=

[
α β
γ δ

] [
z1 z2
z3 z4

]
= xz,

[
z1α+ z2γ z1β + z2δ
z3α+ z4γ z3β + z4δ

]
=

[
z1α+ z3β z2α+ z4β
z1γ + z3δ z2γ + z4δ

]
. (1.3)

Equating either the top left or bottom right entries, we see that z2γ = z3β.
Since β and γ can take any values in F , for equality to always hold we must
have z2 = 0 = z3. Hence equation (1.3) simplifies to[

z1α z1β
z4γ z4δ

]
=

[
z1α z4β
z1γ z4δ

]
.

Thus

z1 = z4 and z =

[
z1 0
0 z1

]
.

Since we are working in the special linear group, det(z) = 1, thus z1 = ±1 and
Z = 〈−IL〉 as required. Observe that this is a cyclic group of order 2 except in
the case of p = 2 where −IL = IL.

Lemma 1.4. If p 6= 2, then L contains a unique element of order 2.

Proof. Consider an arbitrary element x ∈ L with order 2. That is x2 = IL,
x 6= IL and thus x = x−1.

x =

[
α β
γ δ

]
=

[
α β
γ δ

]−1
=

[
δ −β
−γ α

]
.

Thus α = δ, β = −β ⇒ 2β = 0 and γ = −γ ⇒ 2γ = 0. In the case of p 6= 2 this
gives β = 0 = γ. So

x =

[
α 0
0 α

]
.

Also α2 = 1 since x ∈ SL(2, F ), so α = ±1. For x to have order 2, we must have
α = −1. Hence there is a unique element of order 2, namely −IL.

1.4 Conjugacy of the Elements of LLL

Proposition 1.5. Each element of L is conjugate to either dω for some ω ∈ F ∗,
or to ±tλ for some λ ∈ F .
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Proof. Since F is algebraically closed, any element x ∈ L can be regarded as a
linear transformation in the 2 dimensional vector space over F , with the eigen-
values π1 and π2.

• If π1 and π2 are distinct, then x is thus diagonalisable. That is, there ex-
ists an invertible matrix a ∈ GL(2, F ) such that y = axa−1 is a diagonal matrix.
Furthermore, we can multiply a by a suitable scalar to find an element in L
which conjugates x and y:

Set b =
a√

det(a)
, thus bxb−1 =

a√
det(a)

x (
√

det(a) ) a−1 = axa−1 = y.

Observe that det(b) = 1, hence x and y are conjugate in L. Furthermore, since
y is a diagonal matrix it must belong to the set D, showing that x is conjugate
to dω for some ω ∈ F ∗.

• If π1 = π2 then x has just one repeated eigenvalue. Suppose that x is di-
agonalisable. Then there exists an element c ∈ GL(2, F ) and a diagonal matrix
π1IG such that x = c(π1IG)c−1 = π1IG. Thus x = ±IG, which trivially belongs
to both D and T × Z.

Now assume that x is not diagonalisable. Chapter 7 of [5] shows that there
exists an element d ∈ GL(2, F ), such that x = djd−1, where,

j =

[
π1 1
0 π1

]
is the Jordan Normal Form of x. By the method described above, we can multiply
d by a suitable scalar to show that x is conjugate to j in L. Now we conjugate
j by an element of L whose top left entry is 0.

[
0 −γ−1
γ δ

] [
π1 1
0 π1

] [
δ γ−1

−γ 0

]
=

[
0 −γ−1
γ δ

] [
π1δ − γ π1γ

−1

−π1γ 0

]
=

[
π1 0
−γ2 π1

]

Now clearly the determinant of x is equal to the determinant of j, namely 1,
which means that π1 = ±1. This shows that j is conjugate in L to some element
in T ×Z as well as x. Furthermore, since conjugation is transitive, x is conjugate
to ±tλ for some λ ∈ F .

1.5 Centralisers & Normalisers

Definition. The centraliser CG(H) of a subset H of a group G is the set of
elements of G which commute with each element of H.

CG(H) = {g ∈ G : gh = hg, ∀h ∈ H}.
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Definition. The normaliser NG(H) of a subset H of a group G is the set of
elements of G which stabilise H under conjugation.

NG(H) = {g ∈ G : gHg−1 = H}.

Both the centraliser and normaliser of a subset H are subgroups of G. Note also
that the centraliser is a stronger condition than the normaliser and any element
in the centraliser of H is also in its normaliser. If H is a singleton then it’s clear
that its centraliser and normaliser are equal.

Proposition 1.6. (i) NL(T1) ⊂ H, where T1 is any subgroup of T with order
greater than 1.

(ii) CL(±tλ) = T × Z where λ 6= 0.

Proof. (i) Let tλ be an arbitary element of T1 with λ 6= 0. To determine the
normaliser of T1 in L we consider which x ∈ L satisfy xtλx

−1 ∈ T1.

xtλx
−1 =

[
α β
γ δ

] [
1 0
λ 1

] [
δ −β
−γ α

]

=

[
α β
γ δ

] [
δ −β

δλ− γ α− βλ

]

=

[
αδ − βγ + βδλ −β2λ

δ2λ αδ − βγ − βδλ

]
.

Since xtλx
−1 ∈ T1 we have −β2λ = 0 and since λ 6= 0, we have β = 0. Since

tλ was chosen arbitrarily, any element which normalises T1 is a lower diagonal
matrix and is therefore in H by (1.1). Thus NL(T1) ⊂ H as required.

(ii) To determine the centraliser of tλ in L, we consider which y ∈ L satisfy
ytλ = tλy for an arbitrarily chosen tλ, with λ 6= 0.

ytλ = tλy,[
α β
γ δ

] [
1 0
λ 1

]
=

[
1 0
λ 1

] [
α β
γ δ

]
,

[
α+ βλ β
γ + δλ δ

]
=

[
α β

γ + αλ δ + βλ

]
. (1.4)

Equating the top left entries of (1.4) gives α+ βλ = α which means β = 0 since
λ 6= 0 by assumption. Equating the bottom left entries gives that α = δ. Finally,
since det(y) = 1, we have αδ = 1 so α = ±1. Thus a y ∈ CL(tλ) is

y =

[
α 0
γ α

]
. (where α = ±1)
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So y = ±tσ for some σ ∈ F , and TZ = {±tσ} ⊂ CL(tλ). Now take an arbitrary
tµz ∈ TZ.

(tµz)tλ = tλ(tµz),

tµtλz = tλtµz, (since z ∈ Z)

tµ+λ = tµ+λ.

Thus tµz and indeed the whole of TZ is contained in CL(tλ), so CL(tλ) = TZ.

Since T commutes elementwise with Z and T ∩Z = {IG}, we can apply Corollary
0.6 and assert that CL(tλ) = TZ ∼= T × Z as required. The centraliser of −tλ is
also T × Z, since an element x commutes with −tλ if and only if it commutes
with tλ:

xtλ = tλx ⇐⇒ −(xtλ) = −(tλx) ⇐⇒ x(−tλ) = (−tλ)x.

Note that in case of λ = 0, ±tλ ∈ Z and thus it’s centraliser is the whole of L.

Proposition 1.7. (i) NL(D1) = 〈D,w〉, where D1 is any subgroup of D with
order greater than 2.

(ii) CL(dω) = D where ω 6= ±1.

Proof. (i) Since |D1| > 3, we can choose a dω ∈ D1\Z, that is where ω 6= 1. To
determine the normaliser of D1 in L we consider which x ∈ L satisfy xdωx

−1 ∈
D1.

xdωx
−1 =

[
α β
γ δ

] [
ω 0
0 ω−1

] [
δ −β
−γ α

]

=

[
α β
γ δ

] [
δω −βω

−γω−1 αω−1

]

=

[
αδω − βγω−1 αβ(ω−1 − ω)
γδ(ω − ω−1) αδω−1 − βγω

]
∈ D1. (1.5)

Since (1.5) is in D1, the top right and bottom left entries must be 0. Since
ω 6= ±1, we have ω 6= ω−1 and so αβ = 0 = γδ.

• If α = 0, then β and γ are non-zero since det(x) = 1, thus δ = 0. So
det(x) = −γβ = 1 and −γ = β−1. (1.5) becomes[

ω−1 0
0 ω

]
= d−1ω .

Since D1 is a group, it contains the inverse of each of it’s elements, so d−1ω ∈ D1

as required. In this case we have x ∈ wD.
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• If α 6= 0, then similarly β = 0, δ = α−1 and γ = 0. (1.5) now becomes[
ω 0
0 ω−1

]
= dω ∈ D1.

This time we have x ∈ D. So x ∈ D ∪ wD = 〈D,w〉 and any element which
normalises D1 is in 〈D,w〉, thus NL(D1) ⊂ 〈D,w〉.

Now take an arbitrary y ∈ 〈D,w〉 = D ∪ wD. If y ∈ D then y = dρ1, for
some ρ1 ∈ F ∗.

dρ1dωd
−1
ρ1 = dω ∈ D1. (by Lemma 1.1)

If y ∈ wD then y = wdρ2, for some dρ2 ∈ F ∗.

(wdρ2)dω(wdρ2)
−1 = wdρ2dωd

−1
ρ2 w

−1

= wdωw
−1

= d−1ω ∈ D1. (by Lemma 1.1)

Thus y indeed who whole of 〈D,w〉 is contained in NL(D1). This inclusion gives
the desired result, NL(D1) = 〈D,w〉.

(ii) Now we consider which y ∈ L satisfy ydω = dωy for an arbitrarily chosen dω,
with ω 6= ±1.

ydω = dλy,[
α β
γ δ

] [
ω 0
0 ω−1

]
=

[
ω 0
0 ω−1

] [
α β
γ δ

]
,

[
αω βω−1

γω δω−1

]
=

[
αω βω
γω−1 δω−1

]
. (1.6)

Equating the top right and bottom left entries of (1.6) gives that β = 0 = γ
since Since ω 6= ω−1. Thus δ = α−1 and

x =

[
α 0
0 α−1

]
∈ D.

Thus x and indeed the whole of CL(dω) is contained in D. Now take an arbitrary
dρ ∈ D.

dρdω = dρω = dωdρ.

So clearly D ⊂ CL(dω) and thus CL(dω) = D as required.

Proposition 1.8. Let a and b be conjugate elements in a group G. Then ∃x ∈ G
such that xCG(a)x−1 = CG(b).



1.5. CENTRALISERS & NORMALISERS 17

Proof. This proposition essentially claims that conjugate elements have conju-
gate centralisers. Since a and b are conjugate there exists an x ∈G such that
b = xax−1. Let g be an arbitrary element of CG(a). Then,

(xgx−1)(xax−1) = xgax−1

= xagx−1 (since g ∈ CG(a))

= (xax−1)(xgx−1).

Thus xgx−1 ∈ CG(xax−1). Since g was chosen arbitrarily,

xCG(a)x−1 ⊂ CG(xax−1) = CG(b).

Conversely, let h be an arbitary element of CG(xax−1). Then,

(x−1hx)a = x−1h(xax−1)x

= x−1(xax−1)hx (since h ∈ CG(xax−1))

= a(x−1hx).

So x−1hx ∈ CG(a) and since h was arbitrarily chosen from CG(xax−1),
x−1CG(xax−1)x ⊂ CG(a). Multiplication on the left by x and on the right
by x−1 gives CG(b) = CG(xax−1) ⊂ xCG(a)x−1. Since we have shown that each
set contains the other, xCG(a)x−1 = CG(b) as required.

Corollary 1.9. The centraliser of an element x in L is abelian unless x belongs
to the centre of L.

Proof. This is almost an immediate consequence of the preceding results. Propo-
sitions 1.6 and 1.7 show that an element of the form ±tλ which does not lie in
the centre of L has centraliser T × Z, whilst a non-central element of the form
dω has centraliser D. Both T and D are abelian since they are isomoprhic to F
and F ∗ respectively. Let tλz1 and tµz2 be arbitrary elements of T × Z.

(tλz1)(tµz2) = tλtµz2z1 (since z1 ∈ Z)

= tµtλz2z1 (since T is abelian)

= (tµz2)(tλz1). (since z2 ∈ Z)

Thus T × Z is also abelian. Since every element of L is conjugate to dω or
±tλ by Proposition 1.5 and conjugate elements have conjugate centralisers by
Proposition 1.8, the centraliser of each x ∈ L \ Z is conjugate to either T × Z
or D. Proposition 0.4(iii) shows that conjugate subgroups are isomorphic and
therefore have the same structure, thus since both T × Z and D are abelian,
CL(x) is also abelian. Note that in general this does hold for x ∈ Z, since its
centraliser is the whole of L which is not abelian unless L = Z.
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1.6 The Projective Line & Triple Transitivity

It is convenient to sometimes take a geometric viewpoint and regard the elements
of L as pairs of vectors in the 2-dimensional vector space over F , which we will
denote V . An element of L is thus a linear transformation of V .

Definition. Let L be the set of all 1-dimensional subspaces of V . A subset S
of L is called a subspace of L if there is a subspace U of V such that S is
the set of all 1-dimensional spaces of U . We have dim U = dim S + 1. The set
L on which this concept of subspaces is defined is called the projective line
on V and an element of L is a 0-dimensional subspace of L and consequently
called a point. The projective line can be considered as a straight line in the
field, plus a point at infinity.

Any 1-dimensional subspace of V is a set of vectors of the form ηu, where u is a
non-zero vector of V and η ∈ F ∗. Thus the points of L are equivalence classes
with the following relation defined on the set of vectors of V .

u =

[
u1
u2

]
∼
[
v1
v2

]
= v ⇐⇒ u = ηv, (for η ∈ F ∗).

Notice that u and v are equivalent if and only if u1v2 = v1u2. Importantly each
point Pi of L can be represented by a corresponding equivalence class of vectors
of V , that is, P corresponds to u if P = u1/u2. In the case when u2 = 0, this
corresponds to the point at infinity.

Definition. Let S be a permutation group which acts on a set X and {x1, x2, x3}
and {x′1, x′2, x′3} be two subsets of distinct elements of X. Then S is said be
triply transitive on X if there is an element π ∈ S such that,

xπi = x′i, (i = 1,2 or 3).

Theorem 1.10. Let L be the projective line over the field F . Then L is triply
transitive on the set of the points of L .

Proof. Let P1, P2 and P3 be distinct points of L and pi be a vector in V
corresponding to Pi. Since each Pi is distinct, p1, p2 and p3 are thus pairwise
linearly independent. Thus p1 and p2 form a basis for V and it’s clear that there
exist α, β ∈ F ∗ such that,

p3 = αp1 + βp2.

Now, let Q1, Q2 and Q3 be three more distinct points of L and qi be a vector in
V corresponding to Qi. Similarly, by the above argument, there exist γ, δ ∈ F ∗
such that,

q3 = γq1 + δq2.
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Let π ∈ GL(2, F ) be the linear transformation which sends αp1 to γq1 and βp2
to δq2. Thus,

π(p3) = π(αp1 + βp2) = π(αp1) + π(βp2) = γq1 + δq2 = q3

Hence we get P π1 = Q1, P
π
2 = Q2 and P π3 = Q3 and GL(2, F ) is triply transitive.

Now set,

η =

√
1

det π
.

Consider the mapping θ which sends αp1 to ηγq1 and βp2 to ηδq2. Observe that,

det θ = η2 det π = 1

So θ ∈ SL(2, F ) = L and since P θ1 = Q1, P
θ
2 = Q2 and P θ3 = Q3, we have that

L is also triply transitive.

The following proposition looks at what happens when the group L acts on the
projective line L .

Proposition 1.11. (i) Each element of the form dω (with ω 6= ±1), fixes the
same two points on the projective line L and fixes no other point.

(ii) Each element of the form ±tλ (with λ 6= 0), fixes the same point P on L
and fixes no other point. Furthermore, Stab(P ) = H.

(iii) All conjugate elements have the same number of fixed points on L .

(iv) Any noncentral element of L has at most 2 fixed points on L .

Proof. (i) Let P be a fixed a point of an arbitrary dω ∈ D, with ω 6= ±1 and let
u belong to the corresponding equivalence class of vectors of V to P .

dωu =

[
ω 0
0 ω−1

] [
u1
u2

]
=

[
u1ω
u2ω

−1

]
∼
[
u1
u2

]
,

u1u2ω = u1u2ω
−1.

Since ω 6= ±1, ω does not equal ω−1, and so either u1 = 0 or u2 = 0. Thus u

is equivalent to either the vector

[
0
1

]
or

[
1
0

]
and these correspond to 2 distinct

points of L which are fixed by dω.

(ii) Let P be a fixed a point of an arbitrary tλ, with λ 6= 0, and let u be
the corresponding element of V to P .

tλu =

[
1 0
λ 1

] [
u1
u2

]
=

[
u1

u1λ+ u2

]
∼
[
u1
u2

]
,

u1u2 = u1
2λ+ u1u2.
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This gives u1
2λ = 0 and since λ 6= 0 we have u1 = 0. Thus tλ has just one fixed

point, P which corresponds to the equivalence class of

[
0
1

]
in V . We show also

that P is also the only fixed point of −tλ, with λ 6= 0.

−tλu =

[
−1 0
λ −1

] [
u1
u2

]
=

[
−u1

u1λ− u2

]
∼
[
u1
u2

]
,

−u1u2 = u1
2λ− u1u2.

So again u1 = 0 and −tλ fixes P and no other point. We now calculate the
stabiliser of P in L, by considering which x ∈ L fix P .

xu =

[
α β
γ δ

] [
0
1

]
=

[
β
δ

]
∼
[
0
1

]
.

Thus β = 0 and x ∈ H. Since x was chosen arbitrarily from Stab(P ), we have
Stab(P ) ⊂ H. Now let an arbitrarily chosen y ∈ H act on P .

yu =

[
α 0
γ α−1

] [
0
1

]
=

[
0
α−1

]
∼
[
0
1

]
.

Thus y and indeed H is contained in Stab(P ), so Stab(P ) = H as desired.

(iii) Let Pi (i = 1, 2, ...) be the fixed points of x ∈ L and let y be conjugate
to x in L. That is, there exists a g ∈ L such that x = gyg−1.

xPi = Pi,

gyg−1Pi = Pi,

y(g−1Pi) = (g−1Pi).

This shows that Pi is a fixed point of x if and only if g−1Pi is a fixed point of y.
Thus conjugate elements have the same number of fixed points.

(iv) By Proposition 1.5(i), every element of L is conjugate to either dω or ±tλ,
so since conjugate elements have the same number of fixed points, every element
of L\Z has either the same number of fixed points as dω (with ω 6= ±1), namely
2, or the same number as ±tλ, (with λ 6= 0), namely 1.



Chapter 2

The Maximal Abelian
Subgroup Class Equation

2.1 A Finite Subgroup of LLL

We now return to the realm of finite groups and consider G to be an arbitrary
finite subgroup of L. We will still continue to use Z to denote the centre of L,
and will use Z(G) whenever we refer to the centre of G.

Observe that if Z is not contained in G, then Z must contain a non-identity
element, thus |Z| = 2 and p 6= 2 by Lemma 1.3. Recall that L has a unique
element of order 2 by Lemma 1.4, −IL, which is not in G, therefore G has no
element of order 2.

By Cauchy’s Theorem, which says that if a prime p divides the order of a fi-
nite group, then the group contains an element of order p, we deduce that 2 does
not divide the order of G.

This means that |G| and |Z| are relatively prime, so G ∩ Z = {IL} and we
can use Corollary 0.6 to show that GZ ∼= G× Z. This shows that regardless of
whether G contains Z or not, its structure is uniquely determined by GZ, so it
suffices to only consider the case when Z ⊂ G.

2.2 Maximal Abelian Subgroups

Definition. Let H and J be subgroups of a group G where H is abelian. H is
called maximal abelian if J is not abelian whenever H ( J .

A group G is said to be elementary abelian if it is abelian and every non-
trivial element has order p, where p is prime.

Notation. Let M denote the set of all maximal abelian subgroups of G.

Maximal abelian subgroups play an important role in determining the structure

21
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of G. In particular, every element in G must be contained in some maximal
abelian subgroup, since every element commutes at least with itself and Z. This
will allow us to decompose G into the conjugacy classes of these maximal abelian
subgroups. Note also that unless G = Z, Z is not a maximal abelian subgroup,
because for each x ∈ G\Z, 〈Z, x〉 is clearly a larger abelian subgroup than Z.

We will shortly prove an important theorem regarding the maximal abelian sub-
groups of G, but in order to do so we require the following two lemmas.

Lemma 2.1. If G is a finite group of order pm where p is prime and m > 0,
then p divides |Z(G)|.

Proof. Let C(x) be the set of elements of G which are conjugate in G to x,
we call this the conjugacy class of x. Bhattacharya shows that the set of all
conjugacy classes form a partition of G [2, p.112]. Now consider the following
rearranged class equation of G, where S is a subset of G containing exactly one
element from each conjugacy class not contained in Z(G).

|G| −
∑
x∈S

[G : NG(x)] = |Z(G)|. (2.1)

Since |G| = pm, each subgroup of G is of order pk for some k ≤ m. In particular
each NG(x) has order pk and is strictly contained in G since x 6∈ Z(G) by
assumption. Thus each [G : NG(x)] > 1, and are therefore divisible by p. Since
p divides the left hand side of (2.1), it must also divide the right, thus p divides
|Z(G)|.

Lemma 2.2. Every finite subgroup of a multiplicative group of a field is cyclic.

Proof. See [9, p.41].

Theorem 2.3. Let G be an arbitrary finite subgroup of L containing Z.

(i) If x ∈ G\Z then we have CG(x) ∈M.

(ii) For any two distinct subgroups A and B of M, we have

A ∩B = Z.

(iii) An element A of M is either a cyclic group whose order is relatively prime
to p, or of the form Q × Z where Q is an elementary abelian Sylow p-subgroup
of G.

(iv) If A ∈ M and |A| is relatively prime to p, then we have [NG(A) : A] ≤ 2.
Furthermore, if [NG(A) : A] = 2, then there is an element y of NG(A)\A such
that,

yxy−1 = x−1 ∀x ∈ A.
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(v) Let Q be a Sylow p-subgroup of G. If Q 6= {IG}, then there is a cyclic sub-
group K of G such that NG(Q) = QK. If |K| > |Z|, then K ∈M.

Proof. (i) Let x be chosen arbitrarily from G\Z. Then by Corollary 1.9, CL(x)
is abelian. By definition, CG(x) = CL(x) ∩ G, and using the elementary fact
that the intersection of 2 groups is itself a group, we have CG(x) < CL(x). Now
since every subgroup of an abelian group is abelian, CG(x) is also abelian.

Now let J be a maximal abelian subgroup of G containing CG(x). Since J
is abelian and x ∈ CG(x) ⊂ J , we have jx = xj, ∀j ∈ J , thus J ⊂ CG(x).
Therefore J = CG(x) and CG(x) ∈M.

(ii) Consider x ∈ A ∩ B. Since both A and B are abelian, x commutes with
each a ∈ A and b ∈ B and thus CG(x) contains both A and B. If x ∈ G\Z, then
CG(x) ∈M by (i) and because A and B are distinct we have A ( A∪B ⊂ CG(x).
This contradicts the fact that A is maximum abelian and thus x ∈ Z. Finally,
note that Z is contained in every maximal abelian subgroup, since otherwise we
would have the contradiction that 〈A,Z〉 would generate a larger abelian sub-
group than A. Hence A ∩B = Z.

(iii) First consider the trivial case of G = Z. Here G is the only element of
M. If p 6= 2 then |G| = 2 and G is a cyclic group whose order is relatively prime
to p. If p = 2 then G = IG which is trivially a Sp-subgroup.

Now assume G 6= Z. Since Z 6∈M, each A ∈M contains at least one x 6∈ Z. By
Proposition 1.5 this x is conjugate to either dω or ±tλ in L. It suffices to only
consider these cases:

• xxx conjugate to dωdωdω in LLL. There is a y ∈ L such that x = ydωy
−1. Since

x 6∈ Z, we have dω 6∈ Z, because otherwise we get the contradiction,

x = ydωy
−1 = dω ∈ Z.

Thus ω 6= ±1. Let A = CG(x), since CG(x) ∈M by part (i). Observe that

CG(dω) < CL(dω) (see proof of (i))

= D (by Lemma 1.7)
∼= F ∗. (by Lemma 1.2)

Since A is conjugate to CG(dω) by Proposition 1.8, we have that A is isomor-
phic to a finite subgroup of F ∗ and by Lemma 2.2, A is cyclic. By Lagrange’s
Theorem any finite subgroup of F ∗ has an order which divides pm − 1 for some
m ∈ Z+, and since p - (pm − 1), |A| is relatively prime to p.

• xxx conjugate to ±tλ±tλ±tλ in LLL. Again let A = CG(x) ∈ M. A is conjugate to
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CG(±tλ) in L by Proposition 1.8. Since x /∈ Z, we have λ 6= 0. Observe that

CG(±tλ) < CL(±tλ)

= T × Z (by Lemma 1.6)
∼= F × Z. (by Lemma 1.2)

So A is isomorphic to a finite subgroup of F×Z, call it Q×Z. Now A = Q×Z ∼=
QZ by Corollary 0.6, which means that an arbitrary element of A is of the form
q1z1, where q1 ∈ Q, z1 ∈ Z.

q1z1q2z2 = q2z2q1z1, (A ∈M)

q1q2z1z2 = q2q1z1z2, (z1, z2 ∈ Z)

q1q2z1z2(z1z2)
−1 = q2q1z1z2(z1z2)

−1,

q1q2 = q2q1.

Thus Q is also abelian. Recall from the proof of Proposition 1.5(ii) that all non-
trivial elements of T have order p, so each non-trivial element of Q has order
p which means that Q is elementary abelian. Thus Q has order pm, for some
m ∈ Z+.

Now let S be a Sylow p-subgroup containing Q. We apply Lemma 2.1 to deter-
mine that p divides |Z(S)|, moreover |Z(S)| ≥ p.

If p = 2, then Z = IL by Lemma 1.3. So |Z| = 1 and hence |Z(S)| ≥ 2 > |Z|.
If p > 2, then Z = 〈−IL〉 also by Lemma 1.3. So |Z| = 2 and again we get
|Z(S)| > 2 = |Z|.

So Z(S) must contain at least one element which is not in Z, let y be one
such element. Let s1z1 be an arbitrary element of S × Z.

(s1z1)y(s1z1)
−1 = (s1z1)y(z−11 s−11 )

= s1y(z1z
−1
1 )s−11 (since y ∈ L, z1 ∈ Z)

= y(s1s
−1
1 ) (since s1 ∈ S, y ∈ Z(S))

= y

Thus s1z1 ∈ CG(y) and since it was chosen arbitrarily, S × Z ⊂ CG(y). Also
since y ∈ G\Z we have CG(y) ∈M by part (i).

A = Q× Z ⊂ S × Z ⊂ CG(y).

Since A and CG(y) are both in M it must be that A = CG(y). This means
Q = S and Q is a Sylow p-subgroup of G.

(iv) If |A| ≤ 2 then A = Z = G. So A is trivially normal in G and [NG(A) :
A] = 1.
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Now assume that |A| > 2. Since |A| is relatively prime to p, we have that
A is a cyclic group conjugate to a finite subgroup of D in L by the proof of
part (iii), call this subgroup Ã. Thus both Ã and D have orders greater than 2.
Applying Proposition 1.7 we observe that

NL(Ã) = 〈D,w〉 = NL(D). (2.2)

Since A and Ã are conjugate in L, there exists an element z ∈ L such that
zAz−1 = Ã. This z determines an inner automorphism of L defined by

iz : L −→ L, where iz(t) = ztz−1 ∀ t ∈ L.

Let iz(G) = G̃ denote the image of G under iz. Since A is a maximal abelain
subgroup of G it’s a simple task to show that Ã is a maximal abelian subgroup
of G̃ and I will leave this to the reader to verify. We now show that iz(NG(A)) =
N
G̃

(Ã) . Take an arbitrary g ∈ NG(A).

(zgz−1)Ã(zgz−1)−1 = zg(z−1Ãz)g−1z−1

= z(gAg−1)z−1 (since zAz−1 = Ã)

= zAz−1 (since g ∈ NG(A))

= Ã.

So zgz−1 = iz(g) ∈ N
G̃

(Ã) and since it was chosen arbitrarily, iz(NG(A)) ⊂
N
G̃

(Ã). Now take an arbitrary zhz−1 ∈ N
G̃

(Ã).

Ã = (zhz−1)Ã(zhz−1)−1

= zh(z−1Ãz)h−1z−1

= zhAh−1z−1. (since A = z−1Ãz)

Now multiplication on the left by z−1 and right by z gives:

A = z−1Ãz = hAh−1,

so h ∈ NG(A). Furthermore, zhz−1 and indeed the whole of N
G̃

(Ã) is contained

in iz(NG(A)). Thus iz(NG(A)) = N
G̃

(Ã). In particular, we have,

[NG(A) : A] = [N
G̃

(Ã) : Ã]. (2.3)

Since G̃ < L, the normaliser of Ã in G̃ is simply the normaliser of Ã in L
restricted to G̃, thus N

G̃
(Ã) < NL(Ã) = NL(D) by (2.2). Now since D C NL(D),

the Second Isomorphism Theorem shows that,

N
G̃

(Ã)/(N
G̃

(Ã) ∩D) ∼= DN
G̃

(Ã)/D. (2.4)

Clearly Ã ⊂ G̃ ∩D. We show that this inclusion is infact an equality. Assume
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that there exists some dω ∈ G̃ ∩ D which is not in Ã. The group 〈dω, Ã〉 is
thus an abelian subgroup of G̃, strictly larger than Ã and contradicting the fact
that Ã is maximal abelian in G̃. Thus Ã = G̃ ∩ D. It is trivial to see that
Ã ⊂ N

G̃
(Ã) ∩D. Also N

G̃
(Ã) ∩D ⊂ G̃ ∩D = Ã. So,

Ã = N
G̃

(Ã) ∩D. (2.5)

Observe also that,

DN
G̃

(Ã) = {D, 〈D,w〉} ⊂ 〈D,w〉 = NL(D). (2.6)

Now we piece the preceding results together to give the desired result.

N
G̃

(Ã)/Ã ∼= N
G̃

(Ã)/(N
G̃

(Ã) ∩D) (by (2.5))

∼= DN
G̃

(Ã)/D (by (2.4))

⊂ NL(D)/D (by (2.6))

= 〈D,w〉/D ∼= Z2.

We have shown that N
G̃

(Ã)/Ã is isomorphic to a subset of Z2. Thus by (2.3)
we have established that,

[NG(A) : A] = [N
G̃

(Ã) : Ã] ≤ 2.

For the second part, if [NG(A) : A] = 2, then the above argument shows that
N
G̃

(Ã)/Ã ∼= Z2. Thus DN
G̃

(Ã) = NL(D) = 〈D,w〉. This means that N
G̃

(Ã)

contains some element wdω. In fact, since wdω 6∈ D, we have wdω ∈ NG̃
(Ã)\Ã.

Take any element x ∈ A. Since Ã = zAz−1, zxz−1 ∈ Ã, call it dσ. Let y =
z−1wdωz. Since wdω ∈ NG̃

(Ã)\Ã it follows that y ∈ NG(A)\A. We show that
this y inverts x:

yxy−1 = (z−1wdωz)(z
−1dσz)(z

−1d−1ω w−1z)

= z−1wdωdσd
−1
ω w−1z

= z−1wdσw
−1z

= z−1d−1σ z (by Lemma 1.1)

= x−1.

(v) By part (iii), Q is conjugate to a finite subgroup of T in L. In fact, without
loss of generality we can assume that Q ⊂ T , moreoever Q ⊂ T ∩ G. We show
that this is in fact an equality by showing that the reverse inclusion also holds.
Let tλ be an arbitrary element of T ∩ G. Then 〈tλ, Q〉 is a p-group of G which
must be equal to Q since it is a Sylow p-subgroup of G. Thus tλ ∈ Q and

Q = T ∩G. (2.7)
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Since |Q| > 1, Proposition 1.6 gives that NG(Q) ⊂ NL(Q) ⊂ H. So NG(Q) ⊂
H ∩G. Now take an arbitrarily chosen dωtλ ∈ H ∩G and tµ ∈ Q.

(dωtλ)tµ(dωtλ)−1 = dω(tλtµt−λ)d−1ω

= dωtµd
−1
ω (by Lemma 1.1)

= tσ. (where σ = µω−2, by Lemma 1.1)

Since it is a product of elements of G, tσ ∈ T ∩ G = Q by (2.7). Thus dωtλ ∈
NG(Q) and indeed the whole of H ∩G is contained in NG(Q) and

NG(Q) = H ∩G. (2.8)

We now define a map φ by,

φ : NG(Q) −→ D, where φ(dωtλ) = dω ∀ dωtλ ∈ NG(Q).

Next we determine the kernel of φ.

ker(φ) = {dωtλ ∈ NG(Q) : φ(dωtλ) = IG}
= NG(Q) ∩ T
= H ∩G ∩ T (by (2.8))

= T ∩G = Q. (by (2.7))

We show that φ is a group homomorphism. Take dωtλ, dρtµ from NG(Q).

φ(dωtλdρtµ) = φ(dωdρtσtµ) (where σ = λρ2, by Lemma 1.1)

= dωdρ

= φ(dωtλ)φ(dρtµ).

Thus by the First Isomorphism Theorem,

NG(Q)/Q ∼= φ(NG(Q)), (2.9)

Since NG(Q) is a finite group, it’s image under φ is thus a finite subgroup of D.
Furthermore, since D ∼= F ∗ (by Lemma 1.2), φ(NG(Q)) is a cyclic group whose
order divides pm − 1 and is therefore relatively prime to p, and by (2.9), so too
is NG(Q)/Q.

Let r be the order of NG(Q)/Q. Since it is cyclic, NG(Q)/Q is generated by
a single element, namely a coset of Q in NG(Q), call it kQ. So |kQ| = r.
Observe that,

(kQ)r = Q,

krQ = Q,

kr ∈ Q.
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Since Q is elementary abelian, each of it’s non-trivial elements has order p, so k
has order r or rp. In either case, since gcd(r, p) = 1, the order of kp is r. Let
K = 〈kp〉. Now |K| = r and

|NG(Q)| = r|Q|
= |K||Q|
= |QK|. (since Q ∩K = IG)

Thus,

NG(Q) = QK. (2.10)

Now assume |K| > |Z|. Since K is abelian, it must be contained in some max-
imal abelian group A ∈ M. By part (iii), A must also be a cyclic group whose
order is relatively prime to p.

Since A is conjugate in L to a subgroup of D, each non-central element of A has
exactly 2 fixed points on the projective line L by Proposition 1.11. Let A = 〈x〉
and let P1 and P2 be the points fixed by x. We show by induction on n that xn

also fixes P1 and P2, for all n ∈ Z+. We do this by assuming first that xn−1 fixes
Pi.

xnPi = x(xn−1Pi) = x(Pi) = Pi.

The importance of this is that since each element of A can be expressed as some
power of x, they must have the same two fixed points, namely P1 and P2. In
other words,

A ⊂ SL(Pi), (i = 1 or 2) (2.11)

By Proposition 1.11(ii), each element of T has a common fixed point P and
Stab(P ) = H. Since K ⊂ H, each element in K fixes P . Also, since K ⊂ A,
this P must be equal to either P1 or P2. Therefore by (2.11), A ⊂ Stab(P ) = H.
We arrive at the following result:

A ⊂ H ∩G
= NG(Q) (by (2.8))

= QK. (by (2.10))

Furthermore, we get,

A = QK ∩A
= QK ∩AK (K ⊂ A so A = AK)

= (Q ∩A)K

= K (Q ∩A = IG)

Thus K ∈M.

For the duration of this paper, unless otherwise stated, Q will denote a Sylow
p-subgroup of G and K will be as described above.
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2.3 Conjugacy of Maximal Abelian Subgroups

Definition. The set Ci = {xAix−1 : x ∈ G} is called the conjugacy class of
Ai ∈M.

Notation. Let A∗i be the non-central part of Ai ∈M, let M∗ be the set of all A∗i
and let C∗i be the conjugacy class of A∗i .

For some Ai ∈M and A∗i ∈M∗ let,

Ci =
⋃
x∈G

xAix
−1, and C∗i =

⋃
x∈G

xA∗ix
−1.

In other words, Ci denotes the set of elements of G which belong to some element
of Ci. It’s evident that C∗i = Ci \Z and that there is a Ci corresponding to each
Ci. Clearly we have the relation,

|C∗i | = |A∗i ||C∗i |. (2.12)

Theorem 2.4. Let G be a finite subgroup of L and S be a subset of M∗ con-
taining exactly one element from each of its conjugacy classes.

(i) The set of C∗i form a partition of G\Z. That is,

G\Z =
⋃
A∗

i∈S
C∗i , and C∗i ∩ C∗j = ∅, ∀ i 6= j.

(ii) |C∗i | = |Ci|.

(iii) |Ci| = [G : NG(Ai)].

(iv)

|G\Z| =
∑
A∗

i∈S
|A∗i |[G : NG(Ai)].

Proof. (i) Define a relation ∼ on M∗ as follows:

A∗i ∼ A∗j if A∗i = xA∗jx
−1 for some x ∈ G.

• If we choose x ∈ A∗i , then clearly A∗i = A∗ixx
−1 = xA∗ix

−1, thus A∗i ∼ A∗i and
∼ is reflexive.

• If A∗i ∼ A∗j , then ∃ x ∈ G such that,

A∗i = xA∗jx
−1 ⇐⇒ x−1A∗ix = A∗j ⇐⇒ A∗j = yA∗i y

−1 for y = x−1 ∈ G.

Thus A∗j ∼ A∗i and ∼ is symmetric.

• If A∗i ∼ A∗j and A∗j ∼ A∗k, then ∃ x, y ∈ G such that,

A∗i = xA∗jx
−1 and A∗j = yA∗ky

−1 ⇒ A∗i = xyA∗ky
−1x−1 = (xy)A∗k(xy)−1.
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Thus A∗i ∼ A∗k (since xy ∈ G), which shows that ∼ is transitive and moreover
an equivalence relation on M∗.

The equivalence class ofA∗i in M∗ therefore coincides with the set C∗i = {xA∗ix−1 :
x ∈ G}. Furthermore, this tells us that each A∗i belongs to exactly one conjugacy
class. Thus the conjugacy classes C∗i form a partition of M∗,

M∗ =
⋃
A∗

i∈S
C∗i , and C∗i ∩ C∗j = ∅, ∀ i 6= j.

Since the set of C∗i are pairwise disjoint, it follows that the set of C∗i are also
pairwise disjoint and we get the desired result,

G\Z =
⋃
A∗

i∈S
C∗i , and C∗i ∩ C∗j = ∅, ∀ i 6= j.

(ii) Let xAix
−1 ∈ Ci and xA∗ix

−1 ∈ C∗i . Since xAix
−1\Z = xA∗ix

−1, it is quite
clear that,

xAix
−1 ∈ Ci ⇐⇒ xA∗ix

−1 ∈ C∗i .

Thus |C∗i | = |Ci| as desired.

(iii) Now we define a map φ by:

φ : Ci −→ G/NG(Ai),

φ(xAix
−1) = xNG(Ai). (∀ x ∈ G, Ai ∈M)

Clearly φ is trivially surjective. We now show that it is both well-defined and
injective.

xNG(Ai) = yNG(Ai) ⇐⇒ y−1xNG(Ai) = NG(Ai)

⇐⇒ y−1x ∈ NG(Ai)

⇐⇒ (y−1x)Ai(y
−1x)−1 = Ai

⇐⇒ y−1xAix
−1y = Ai

⇐⇒ xAix
−1 = yAiy

−1.

Hence φ is well-defined and injective. This shows that φ is a bijection proving
that |Ci| = [G : NG(Ai)]. This is a crucial result which shows that the number
of maximal abelian subgroups conjugate to Ai is equal to the index of the nor-
maliser of Ai in G.
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(iv) This follows directly from parts (i), (ii) and (iii) and (2.12).

G\Z =
⋃
A∗

i∈S
C∗i , and C∗i ∩ C∗j = ∅, ∀ i 6= j,

|G\Z| =
∑
A∗

i∈S
|C∗i | =

∑
A∗

i∈S
|A∗i ||C∗i | =

∑
A∗

i∈S
|A∗i ||Ci|

=
∑
A∗

i∈S
|A∗i |[G : NG(Ai)].

This theorem proves that the non-central parts of the maximal abelian subgroups
form a partition of the non-central part of G. This will serve as a powerful tool
in decomposing G and counting its elements.

2.4 Constructing The Class Equation

It is necessary to prove the following 2 short lemmas before we proceed further.

Lemma 2.5. NG(A) = NG(A∗).

Proof. (iii) Let x ∈ NG(A∗). Take an arbitary a ∈ A = A∗ ∪ Z. If a ∈ A∗, then
since x ∈ NG(A∗), we have xax−1 ∈ A∗ ⊂ A. If a ∈ Z, then xzx−1 = zxx−1 =
z ∈ A. Therefore x is in the normaliser of A and NG(A∗) ⊂ NG(A).

Conversely, take y ∈ NG(A) and a ∈ A∗. yay−1 ∈ A = A∗ ∪ Z. If yay−1 ∈ Z,
then

yay−1 = z, (some z ∈ Z)

a = y−1zy = y−1yz = z 6∈ A∗.

This contradicts the fact that a ∈ A∗. Therefore yay−1 ∈ A∗ and y ∈ NG(A∗).
Since y was chosen arbitrarily we get NG(A) ⊂ NG(A∗) and hence NG(A) =
NG(A∗).

Lemma 2.6. NG(Q× Z) = NG(Q).

Proof. If p = 2 then Z = IG and the result is trivial. Now assume p 6= 2.
Thus |Z| = 2. Let x and q1 be arbitrarily chosen elements of NG(Q) and Q
respectively.

xq1x
−1 = q2, (for some q2 ∈ Q)

xq1x
−1z1 = q2z1,

xq1z1x
−1 = q2z1 ∈ Q× Z.

Thus any element x which is in NG(Q) is also in NG(Q × Z) so we have
NG(Q) ⊂ NG(Q× Z).
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Let q1z1 be an arbitrarily chosen element of Q×Z such that q1 ∈ Q and z1 ∈ Z.
Now let y be an arbitrarily chosen element of NG(Q× Z).

yq1z1y
−1 = q2z2 ∈ Q× Z. (where q2 ∈ Q and z2 ∈ Z)

Consider now the order of q1z1 in G. Since p 6= 2, Q∩Z = IG and |q1z1| = |q1||z1|.
Note that q1z1 and q2z2 are conjugate in G, and thus their orders are equal. This
means that |z1| = |z2|, because otherwise 2 would divide one of them and not
the other. Thus z1 = z2 and,

yq1z1y
−1 = q2z2 = q2z1

yq1y
−1z1 = q2z1,

yq1y
−1 = q2 ∈ Q

Hence y ∈ NG(Q). Furthermore, since y was chosen arbitrarily, any element
which is in NG(Q× Z) is also in NG(Q), so NG(Q× Z) = NG(Q) as desired.

We now start to count the elements of the seperate components of G and use
the preceeding 2 theorems to construct what will be an invaluable formula in
determining the structure of G, something we will call the Maximal Abelian
Subgroup Class Equation of G.

First we spilt M into the conjugacy classes of it’s elements. Theorem 2.3(iii)
tells us that every maximal abelian subgroup is either a cyclic subgroup whose
order is relatively prime to p or of the form Q×Z where Q is a Sylow p-subgroup.
Let C1, C2, ..., Cs, Cs+1, ..., Cs+t (where s, t ∈ Z+) denote the conjugacy classes of
the cyclic subgroups whose order is relatively prime to p. Recall that part (iv)
of Theorem 2.3 tells us that [NG(A) : A] = 1 or 2. Let Ai be a representative
from each Ci such that,

[NG(Ai) : Ai] = 1, (for i ≤ s)

[NG(Ai) : Ai] = 2., (for s < i ≤ s+ t)

Now let Q1 and Q2 be any two Sylow p-subgroups of G. By the Second Sylow
Theorem, Q1 and Q2 are conjugate to each other in G. That is, there exists a
g ∈ G such that gQ1g

−1 = Q2.

gQ1g
−1 = Q2 ⇐⇒ gQ1g

−1Z = Q2Z

⇐⇒ gQ1Zg
−1 = Q2Z

⇐⇒ g(Q1 × Z)g−1 = (Q2 × Z). (by Corollary 0.6)

So Q1 × Z and Q2 × Z belong to the same conjugacy class, furthermore there
is thus only 1 conjugacy class of elements of this form in M. Let CQ×Z denote
this conjugacy class and let Q × Z be a representative from it. The following
diagram provides a visual representation of G divided into it’s maximal abelian
subgroups.
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Fig 1: G arranged into it’s maximal abelian subgroups
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We can reformulate the counting formula in Theorem 2.4(iv) using the notation
we have introduced to show that it agrees with the intuitive approach that Fig
1 suggests.

|G\Z| =
∑
A∗

i∈S
|A∗i |[G : NG(Ai)] =

∑
A∗

i∈S
|C∗i | = |C∗Q×Z |+

s+t∑
i=1

|C∗i |.

We are now able to begin to evaluate G. Firstly, let |Z| = e and |G| = eg. We
know well by now that e = 1 or 2 depending on whether p equals 2 or not, and
by Lagrange’s Theorem, the order of a subgroup divides the order of the group,
so e divides |G| since Z < G.

We consider the cyclic case first. Again, by Lagrange’s Theorem, since Z is
a subgroup of each Ai, e divides |Ai|. So set |Ai| = egi. Since Z /∈M, each Ai is
therefore strictly larger than Z and so each gi is an integer greater than or equal
to 2.

To determine the order of each Ci, we return to the set M∗. The size of one
representative of each class is,

|A∗i | = |Ai\Z| = egi − e = e(gi − 1).

The number of A∗i in each conjugacy class Ci for i ≤ s is thus,

|C∗i | = |Ci| = [G : NG(Ai)] =
|G|
|Ai|

=
eg

egi
=
g

gi
.
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Therefore the total number of elements of G in the noncentral part of Ci for
i ≤ s is,

s∑
i=1

|C∗i | =
s∑
i=1

|A∗i ||C∗i | =
s∑
i=1

eg(gi − 1)

gi
. (2.13)

The number of A∗i in each conjugacy class Ci for s < i ≤ s+ t is thus,

|C∗i | = |Ci| = [G : NG(Ai)] =
|G|

2|Ai|
=

eg

2egi
=

g

2gi
.

Therefore the total number of elements of G in the noncentral part of Ci for
s < i ≤ s+ t is,

s+t∑
i=s+1

|C∗i | =
s+t∑
i=s+1

|A∗i ||C∗i | =
s+t∑
i=s+1

eg(gi − 1)

2gi
. (2.14)

We next determine the order of CQ×Z . Let |Q| = q. If p - |G| then q = 1
and if p = 0, then we consider a Sylow p-subgroup to simply be IG. So q is
always at least 1. Since Z < K, we can let |K| = ek. Observe that if K ∈ M,
then by Theorem 2.3(v), K = Ai for some 0 < i ≤ t and k = gi. Recall that
NG(Q) = QK and so,

|NG(Q× Z)∗| = |NG(Q× Z)| (by Lemma 2.5)

= |NG(Q)| (by Lemma 2.6)

= |QK| = eqk.

Again we count the size and number of these maximal abelian groups.

|(Q× Z)∗| = |QZ| − |Z| = e(q − 1).

Since there is only one conjugacy class of Q×Z, the number of (Q×Z)∗ in M∗

is thus,

|C∗Q×Z | = |CQ×Z | = [G : NG(Q× Z)] =
|G|

|NG(Q× Z)∗|
=

eg

eqk
=

g

qk
.

Therefore the total number of elements of G in the noncentral parts of each
Q× Z is,

|C∗Q×Z | = |(Q× Z)∗||C∗Q×Z | =
eg(q − 1)

qk
. (2.15)

We now sum together (2.13), (2.14) and (2.15) to create the Maximal Abelian
Subgroup Class Equation of G.
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|G\Z| = |C∗Q×Z |+
s+t∑
i=1

|C∗i |,

|G\Z| = |(Q× Z)∗||C∗Q×Z |+
s∑
i=1

|A∗i ||C∗i |+
s+t∑
i=s+1

|A∗i ||C∗i |,

eg − e =
eg(q − 1)

qk
+

s∑
i=1

eg(gi − 1)

gi
+

s+t∑
i=s+1

eg(gi − 1)

2gi
,

1 =
1

g
+
q − 1

qk
+

s∑
i=1

gi − 1

gi
+

s+t∑
i=s+1

gi − 1

2gi
. (2.16)

Since g, k, q ∈ Z+ this implies that,

1

g
> 0 and

q − 1

qk
≥ 0.

Also, since gi ≥ 2 for 1 ≤ i ≤ s+ t, we have,

gi − 1

gi
≥ 1

2
,

s∑
i=1

gi − 1

gi
≥ s

2
and

s+t∑
i=s+1

gi − 1

2gi
≥ t

4
.

Thus we can find a lower bound for (2.16) which limits the possible number of
conjugacy classes somewhat,

1 >
s

2
+
t

4
.

There are only 6 possible different pairs of values which s and t can take:

Case I II III IV V VI

s 1 1 0 0 0 0

t 0 1 0 1 2 3

Each case will be examined individually in the next chapter.
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Chapter 3

Dickson’s Classification
Theorem

3.1 Five Lemmas

Before we detemine the structure of G in each of the 6 cases, it is necessary to
prove a number of lemmas which will be used.

Lemma 3.1. Let H be a proper subgroup of a p-group G. Then H ( NG(H).

Proof. Let S denote the set of left cosets of H in G. That is,

S = {xH : x ∈ G}, and |S| = [G : H] = pk. (for some k ≥ 1)

Consider the action of H on S by left multiplication. We calculate the stabiliser
of xH ∈ S in H.

Stab(xH) = {y ∈ H : yxH = xH}
= {y ∈ H : x−1yx ∈ H}.

If x ∈ H then x−1yx ∈ H for all y ∈ H. Thus the Stab(xH) = H and by the
Orbit-Stabiliser Theorem,

|Orb(xH)| = [H : Stab(xH)] = 1.

Observe that,

S =
⋃

xH∈S
Orb(xH),

where the orbits are pairwise disjoint. Now since p divides |S|, p divides the sum
of all the orbit sizes. Furthermore, since each orbit size is 1 or a multiple of p,
there must be at least p elements of S which have an orbit of 1. In particular,
there exists an x1H ∈ S which has an orbit of 1 and x1 6∈ H. That is,

yx1H = x1H, (∀y ∈ H)

x−11 yx1 ∈ H,
x−11 Hx1 ⊂ H,

x1 ∈ NG(H)\H.

37
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Lemma 3.2. Let Q be a Sylow p-subgroup and K a maximal abelian subgroup
of G such that NG(Q) = QK and Q ∩K = {IG}. If [NG(K) : K] = 2, then Q
is not a normal subgroup of G.

Proof. The approach here is proof by contradiction, so we begin by assuming
that Q C G. Thus NG(Q) = G and NG(K) ⊂ NG(Q). Consider the natural
homomorphism of NG(Q) onto NG(Q)/Q,

φ : NG(Q) −→ NG(Q)/Q,

φ(x) = xQ,

ker(φ) = {x ∈ NG(Q) : φ(x) = IGQ} = Q.

Let φ′ be the restiction of φ to NG(K):

φ′ = φ|NG(K) : NG(K) −→ NG(Q)/Q.

Thus ker(φ′) = ker(φ)∩NG(K) = Q∩NG(K). By the 1st Isomorphism Theorem,

Im(φ′) ∼= NG(K)/ker(φ′),

NG(Q)/Q ∼= NG(K)/(Q ∩NG(K)),

K ∼= NG(K)/(Q ∩NG(K)), (NG(Q) = QK)

|Q ∩NG(K)| = [NG(K) : K] = 2. (by assumption)

So 2 divides |Q|, which implies that 2 - |K| since Q ∩ K = {IG}. Moreover,
|Q ∩NG(K)| and |K| are relatively prime.

Take a ∈ ker(φ′) = Q ∩NG(K) and b ∈ NG(K).

φ′(bab−1) = φ′(b)φ′(a)φ′(b−1)

= φ′(b)(IGQ)φ′(b−1)

= φ′(b)φ′(b−1)(IGQ) = IGQ.

Thus bab−1 ∈ ker(φ′) = Q ∩NG(K) and so Q ∩NG(K) C NG(K).

Now let x ∈ Q ∩NG(K) and y ∈ K. Notice that both x and y are elements of
NG(K),

xyx−1y−1 = (xyx−1)y−1 ∈ K, (since K C NG(K))

xyx−1y−1 = x(yx−1y−1) ∈ Q ∩NG(K), (since Q ∩NG(K) C NG(K))

xyx−1y−1 ∈ K ∩ (Q ∩NG(K))

= IG, (since gcd(|Q ∩NG(K)|, |K|) = 1)

xy = yx.

Therefore (Q ∩ NG(K)) × K is an abelian subgroup of which K is a proper
subgroup. This contradicts the fact that K is a maximal abelian subgroup, thus
Q is not a normal subgroup of G.
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Lemma 3.3. Let p be the prime characteristic of F and let q = pk for some
k > 0. Set,

R = {λ ∈ F : λq − λ = 0}. (3.1)

Then R is a subfield of F .

Proof. Since R is a subset of F it suffices to show that the following 3 criteria
are met:

(i) 0, 1 ∈ R.
(ii) If λ1, λ2 ∈ R, then λ1 − λ2 ∈ R.
(iii) If λ1, λ2 ∈ R and λ1 6= 0 6= λ2, then λ1λ

−1
2 ∈ R.

We see immediately that (i) is satified. Since p is the characteristic of F , any
coeffiecients which are a multiple of p vanish. We get,

(λ1 − λ2)q = (λp1 − λ
p
2)
pk−1

= ... = λq1 − λ
q
2 = λ1 − λ2.

Thus λ1−λ2 ∈ R and (ii) is also satisifed. Finally observe that if λ2 is a non-zero
element of R, then λ−12 = λ−q2 and,

(λ1λ
−1
2 )q = λq1λ

−q
2 = λ1λ

−1
2 .

So λ1λ
−1
2 ∈ R and R is a subfield of F .

Each finite field is uniquely determined up to isomorphism by the number of
elements it contains [8, p.227]. Since the R defined in (3.1) has q elements, from
now on when we use the notation Fq to denote a field of q elements, we shall
actually mean,

Fq = R ⊂ F. (3.2)

Lemma 3.4. Let Fq be the field of q elements, where q is the power of a prime.
The order of GL(2,Fq) is (q2−1)(q2−q) and the order of SL(2,Fq) is q(q2−1).

Proof. In order to prove this, we again take a geometric viewpoint. Recall that
GL(2,Fq) is the group of 2 x 2 invertible matrices over Fq under ordinary matrix
multiplication. The order of GL(2,Fq) is thus equal to the number of ordered
pairs {u, v} of linearly independent vectors in a 2-dimensional vector space over
Fq.

There are clearly q2 different vectors in the 2-dimensional vector space over Fq.
The only restriction on the first vector u, is that it must be non-zero, so there
are (q2 − 1) choices for u. To ensure the second vector v is linearly independent
of u, it must not be of the form αu, where α ∈ Fq. Since there are q choices for
α, there are (q2 − q) choices for v.
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Thus the order of GL(2,Fq) is the product of the number of choices of u and the
number of choices of v, that is, (q2 − 1)(q2 − q) as required. Now consider the
map φ defined as,

φ : GL(2,Fq) −→ F∗q , where φ(x) = det(x), ∀ x ∈ GL(2,Fq).

Next we determine the kernel of φ.

ker(φ) = {GL(2,Fq) : det(x) = 1} = SL(2,Fq).

We show that φ is a group homomorphism. Take x, y ∈ GL(2,Fq),

φ(xy) = det(xy) = det(x)det(y) = φ(x)φ(y).

Clearly φ is surjective, since α ∈ F∗q is the determinant of

[
α 0
0 1

]
∈ GL(2,Fq).

Therefore by the First Isomorphism Theorem,

GL(2,Fq)/SL(2,Fq) ∼= F∗q .

Thus,

|SL(2,Fq)| =
|GL(2,Fq)|
|F∗q |

=
(q2 − 1)(q2 − q)

q − 1
= q(q2 − 1).

Lemma 3.5. Let N be a normal subgroup of a group G and let H be a subgroup
of G which contains N .Then,

H/N C G/N ⇐⇒ H C G

Proof. If H C G, then it follows from the Third Isomorphism Theorem that
H/N C G/N . Conversely, assume that H/N is normal in G/N . Let x be an
arbitrary element of G and h be an arbitrary element of H. Since H/N is normal
in G/N we have,

xhx−1N = (xN)(hN)(x−1N) = (xN)(hN)(xN)−1 ∈ H/N.

Thus xhx−1 ∈ H. Since x and h were chosen arbitrarily, we have that H C G.

3.2 The Six Cases

We now address individually the 6 possible combinations of s and t in (2.16) and
determine the structure of G in each case.

Case I:

Claim: In this case, the Sylow p-subgroup Q is different from G and is an ele-
mentary abelian normal subgroup of G. The factor group G/Q is a cyclic group
whose order is relatively prime to p.



3.2. THE SIX CASES 41

Proof. Here, s = 1 and t = 0. Equation (2.16) simplifies to:

1 =
1

g
+
q − 1

qk
+
g1 − 1

g1
,

1 =
1

g
+

1

k
− 1

qk
+ 1− 1

g1
,

1

qk
+

1

g1
=

1

g
+

1

k
. (3.3)

• Case Ia: q = 1q = 1q = 1. Here we have Q = IG and is trivially an elementary abelian
normal subgroup of G. Equation (3.3) gives g = g1, thus G/Q = G = A1, which
indeed is a cyclic group whose order is relatively prime to p.

• Case Ib: q > 1q > 1q > 1. If k = 1 then (3.3) gives,

1

q
+

1

g1
=

1

g
+ 1 > 1.

But since both 1/q and 1/gi are at most 1/2 each, this is a contradiction. Thus
k > 1. This means that |K| = ek > e = |Z|, so k = g1 by Theorem 2.3(v).
Equation (3.3) now gives qk = g.

|G| = eg = eqk = |NG(Q)|.

Thus G = NG(Q) and so Q C G. Therefore Q 6= G and is an elementary abelian
normal subgroup of G. Also,

G/Q = NG(Q)/Q ∼= K = A1.

Thus G/Q is a cyclic group whose order is relatively prime to p.

Case II:

Claim: The order of G is relatively prime to p and either G ∼= SL(2, 3) or
G is the group of order 4n, where n is odd, defined by the presentation:

〈x, y |xn = y2, yxy−1 = x−1 〉.

Proof. Here, s = 1 = t. Equation (2.16) simplifies to:

1 =
1

g
+
q − 1

qk
+
g1 − 1

g1
+
g2 − 1

2g2
,

1 =
1

g
+
q − 1

qk
+ 1− 1

g1
+

1

2
− 1

2g2
,

1

g1
+

1

2g2
=

1

2
+

1

g
+
q − 1

qk
. (3.4)
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First assume that q > 1. This means (q − 1)/qk ≥ 1/2k and consequently we
bound (3.4) from below:

1

2g2
=

1

2
− 1

g1
+

1

g
+
q − 1

qk
>

1

2k
.

Thus k > g2 ≥ 2. So K ∈ M and k = gi for some i. Since it is strictly greater
than g2, we have k = g1. Equation (3.4) now becomes

1

g1
+

1

2g2
=

1

2
+

1

g
+
q − 1

qg1
,

1

g1
+

1

2g2
>

1

2
+

1

2g1
,

1

4
+

1

4
≥ 1

2g1
+

1

2g2
>

1

2
.

This contradiction disproves the assumption that q > 1, so we have that q = 1.
This means that Q, a Sylow p-subgroup of G, is simply the identity element and
so |G| is relatively prime to p. Also, Equation (3.4) now reduces to:

1

g1
+

1

2g2
=

1

2
+

1

g
. (3.5)

If g1 ≥ 4 we get

1

2g2
=

1

2
+

1

g
− 1

g1
>

1

4
.

Since g2 > 1 this gives a contradiction and thus g1 < 4. We now have two
seperate cases to consider.

• Case IIa: g1 = 2g1 = 2g1 = 2. Equation (3.5) becomes

1

2g2
=

1

g
, =⇒ g = 2g2.

If e = 1, then p = 2. Also since q = 1, 2 does not divide |G|, but |G| = eg = e2g2
which is a contradiction. So e = 2 and p 6= 2. We now have:

|NG(A2)| = 2|A2| = 2eg2 = eg = |G|, (since s+ t = 2)

|NG(A1)| = |A1| = eg1 = 4. (since s = 1)

Thus G = NG(A2), that is A2 C G.

By Corollary 0.2, A1 is contained in a Sylow 2-subgroup of G, call it S. If
S is strictly larger than A1, then by Lemma 3.1, A1 ( NS(A1) ⊂ NG(A1). Since
A1 = NG(A1) we conclude that A1 is a Sylow 2-subgroup of G. This means that
8 does not divide |G| = 4g2 and so g2 = n, where n is odd.

Since A2 is cyclic it is generated by a single element, so let A2 = 〈x〉 and thus
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x2n = IG. Recall that because [NG(A2) : A2] = 2, Theorem 2.3(iv) tells us that
there exists a y ∈ NG(A2)\A2 such that yxy−1 = x−1.

Recall from Chapter 2 that the number of Ai in each conjugacy class Ci is equal
to [G : NG(Ai)] so,

|C2| = [G : NG(A2)] = 1.

Due to the fact that y belongs to some maximal abelian subgroup of G, and
since y 6∈ A2 and |C2| = 1, it must be that y belongs to A1 or one of its conju-
gate subgroups. Thus y has an order which divides |A1| = 4 and since the only
elements of order 1 and 2 lie in Z, the order of y is 4. Furthermore, both xn and
y2 have order 2. Recalling that G has at most 1 element of order 2, this gives
the relation xn = y2.

Let H be the group generated by x and y and the above relations:

H = 〈x, y |xn = y2, yxy−1 = x−1〉.

Notice that the second relation gives that yxny−1 = x−n, so

x−n = yxny−1 = yy2y−1 = y2 = xn.

This shows that y4 = x2n = IG and that H is finite. Moreoever,

H = {xk, xky : 0 < k ≤ 2n}.

Thus |H| = 4n = |G| and H = G.

• Case IIb: g1 = 3g1 = 3g1 = 3. Equation (3.5) becomes

1

2g2
=

1

6
+

1

g
>

1

6
.

Therefore g2 = 2 and g = 12. Again, since q = 1 and 2 divides |G|, we have
p 6= 2 and so e = 2. Thus we have,

|G| = eg = 24, |A1| = eg1 = 6, |A2| = eg2 = 4.

Again we determine the number of maximal abelian subgroups in each conjugacy
class.

|C1| = [G : NG(A1)] =
|G|
|A1|

=
24

6
= 4,

|C2| = [G : NG(A2)] =
|G|

2|A2|
=

24

8
= 3.
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The figure below shows G divided into it’s maximal abelian subgroups:

Fig 2: The elements of G arranged into maximal abelian subgroups.

Z

A1

A2

C1

C2

{

{

. .

....
....

....

....

..

. .

. .

Let A2 = 〈x〉. By Theorem 2.3(iv), there is an element y ∈ NG(A2)\A2 such
that yxy−1 = x−1. Since NG(A2) has order 8, the order of y must divide 8. The
order of y cannot be 8 since NG(A2) is not cyclic and the only elements with
order 1 or 2 are found in Z, thus y has order 4. By the uniqueness of the element
of order 2, we have x2 = y2. So

NG(A2) = 〈x, y | x2 = y2, yxy−1 = x−1〉.

For simplicity let N = NG(A2) . Since |A1| = 6, the only elements in C1 with
order 2k are those in Z, so every element of G with order 2k must belong to C2.
Since C2 has order 8 it is equal to N because each element of N has order 2k.
Furthermore, N is thus a unique Sylow 2-subgroup of G and by Corollary 0.1,
we have N C G.

Now consider the quotient group G/N , that is the set of left (or right) cosets of
N in G.

G/N = {N, rN, r2N} ∼= 〈r〉 ∼= Z3,

where r is some element of G\N with order 3. Without loss of generality we
may regard r to be a generator of H, where H is the cyclic subgroup of A1 of
order 3.

Let H act on N by conjugation. Since |H| = 3 the orbit of x ∈ N has size
1 or 3.

Orb(x) = {rkxr−k : rk ∈ H}.

Since H is not contained in the centraliser of x we conclude that the orbit of x
has size 3. Let A2, A

′
2 and A′′2 be the 3 elements of C2. Without loss of generality

we may assume y ∈ A′2 and consequently xy ∈ A′′2. Using the two relations
between x and y we observe that,

(xy)−1 = y−1x−1 = y−1(yxy−1) = xy−1 = x−1x2y−1 = x−1y = yx
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Fig 3: The elements of N arranged into maximal abelian subgroups.

Z

A2

A′2
A′′2

. .

.x
.x−1

. y.y−1

.xy
.yx

The elements of Z are fixed points under this group action and the remaining 6
elements of N form 2 orbit cycles of order 3, with each cycle containing exactly
one element from the noncentral parts of A2, A

′
2 and A′′2 in some order. If y

inverts x, then y inverts all powers of x including x−1. Also, if y inverts x, then
y−1 inverts x−1 and thus inverts x also. So the 2 relations we have established
between x and y actually hold for any pair of elements of N \Z which belong
to different elements of M. Therefore without loss of generality, we may assume
that x and y are in the same orbit cycle and that rxr−1 = y. Fig 3 shows
that there are only 2 elements which could complete this cycle, xy and yx. If
ryr−1 = xy, then we have the following 3 relations on G.

rxr−1 = y, ryr−1 = xy, rxyx−1 = x. (3.6)

Otherwise ryr−1 = yx. In this case, consider the orbit of x under conjugation
by r2 instead. This gives the same orbit cycle but in the opposite direction:

r2xr−2 = yx, r2yxr−2 = y, r2yr−2 = x.

Observe that x(yx) = x(x−1y) = y. Thus without loss of generality we can
rename r2 as r, yx as y and y as xy. Notice that this now gives the same
relations as in (3.6). Since x and y generate a group of order 8 and r has order
3, the group given by the following presentation has order at most 24 and is thus
a presentation of G.

〈x, y, r |x2 = y2, yxy−1 = x−1, r3 = I, rxr−1 = y, ryr−1 = xy, rxyr−1 = x〉,

By Lemma 3.4, we observe that the order of SL(2, 3) is 3(32 − 1) = 24. Now
consider the following the elements of SL(2, 3):

a =

[
1 1
1 2

]
, b =

[
0 2
1 0

]
, c =

[
2 1
2 0

]
.

One can verify easily that each of the following relations hold:

a2 = b2, bab−1 = a−1, c3 = I,

cac−1 = b, cbc−1 = ab, cabc−1 = a.
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Since G and SL(2, 3) have the same order and since their respective generators
satisfy the corresponding relations, there is an isomorphism mapping x 7→ a,
y 7→ b and r 7→ c. Thus,

G = 〈x, y, r〉 ∼= 〈a, b, c〉 = SL(2, 3).

Case III:

Claim: We have G = Q× Z.

Proof. Here, s = 0 = t. Equation (2.16) simplifies to:

1 =
1

g
+
q − 1

qk
,

1 =
1

g
+

1

k
− 1

qk
,

1 +
1

qk
=

1

g
+

1

k
. (3.7)

Since s = 0 = t, there are no cyclic maximal abelian subgroups whose order is
relatively prime to p, so K 6∈M. Then by Theorem 2.3(v) we have,

ek = |K| ≤ |Z| = e.

Thus k = 1 and equation (3.7) reduces to 1/q = 1/g, that is g = q.

|G| = eg = eq = |Q× Z|,
G = Q× Z.

Case IV:

Claim: Either p = 2 and G is isomorphic to the dihedral group of order 2n,
where n is odd, or p = 3 and G ∼= SL(2, 3).

Proof. Here, s = 0 and t = 1. Equation (2.16) simplifies to:

1 =
1

g
+
q − 1

qk
+
g1 − 1

2g1
,

1 =
1

g
+
q − 1

qk
+

1

2
− 1

2g1
,

1

2
+

1

2g1
=

1

g
+
q − 1

qk
. (3.8)

Recall that |A1| = eg1 and [NG(A1) : A1] = 2 and so,

eg = |G| ≥ |NG(A1)| = 2eg1.
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So g ≥ 2g1 and 1/2g1 ≥ 1/g and hence we can bound Equation (3.8):

1

2
≤ 1

2
+

1

2g1
− 1

g
=
q − 1

qk
.

Clearly this forces k = 1 and also q > 1. We can now simplify and bound
Equation (3.8) as follows:

1

q
+

1

4
≥ 1

q
+

1

2g1
=

1

g
+

1

2
>

1

2
.

This gives 1/q > 1/4 and so q is equal to either 2 or 3. We examine each case
individually.

• Case IVa: q = 2q = 2q = 2. Equation (3.8) becomes

1

2g1
=

1

g
, =⇒ g = 2g1,

and we show that A1 is a normal subgroup of G:

|G| = eg = e2g1 = 2|A1| = |NG(A1)|.

In this case, a Sylow p-subgroup has order 2 so we have p = 2 and also e = 1.
By it’s definition, the order of A1 is relatively prime to p = 2, so we have that
|A1| = g1 = n, where n is odd, and consequently G has order 2n.

We now know enough about the structure of G to establish some relations on it.
Let A1 = 〈x〉, so xn = IG. By Theorem 2.3(iv) there exists a y ∈ NG(A1)\A1

such that yxy−1 = x−1.

|C1| = [G : NG(A1)] = 1.

|CQ×Z | = [G : NG(Q× Z)] =
|G|
eqk

=
2n

2
= n.

The only maximal abelian subgroups of G are thus A1 and the n conjugate
subgroups of CQ×Z .

Fig 4: The elements of G arranged into maximal abelian subgroups.

Z Q× Z
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Since y belongs to some maximal abelian subgroup and y 6∈ A1, y must belong
to some element of CQ×Z . Since |Q × Z| = 2, the order of y is 2 and y2 = IG.
We have established the following presentation of G.

G = 〈x, y | xn = IG = y2, yxy−1 = x−1〉.

Let Dn denote the dihedral group of order 2n, that is the group of symmetries
of a regular polygon wih n vertices. Let r denote a clockwise rotation by 2θ/n
radians and s denote a reflection. For n odd, it can easily be verified that Dn

has the following presentation.

Dn = 〈r, s | rn = I = s2, srs−1 = r−1〉.

Since G and Dn have the same order and since their respective generators satisfy
the corresponding relations, there is an isomorphism mapping x 7→ r and y 7→ s.
Thus,

G = 〈x, y〉 ∼= 〈r, s〉 = Dn.

• Case IVb: q = 3q = 3q = 3. Now equation (3.8) becomes

1

2g1
=

1

g
+

1

6
>

1

6
.

This means that g1 = 2 and g = 12. Since q = 3 we have p = 3 and e = 2.
Furthermore we have,

|G| = 24, |A1| = 4, |NG(A1)| = 8, |Q× Z| = 6 |NG(Q× Z)| = 6

|C1| = [G : NG(A1)] =
24

8
= 3

|CQ×Z | = [G : NG(Q× Z)] =
24

6
= 4

Fig 5: The elements of G arranged into maximal abelian subgroups.
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Notice that Fig 5 is almost identical to Fig 2 in the study of Case IIb. This is
a strong indication that these 2 cases are isomorphic to each other and hence
also to SL(2, 3), albeit not a proof. However, an argument analogous to the
one outlined in the proof of Case IIb can be directly applied here with a simple
renaming of the conjugacy classes and representatives. It would be tedious to
repeat this argument again and I will leave it to the reader to verify.

Case V:

Claim: We have one of the following three cases:

(i) G ∼= SL(2,Fq).

(ii) G ∼= 〈SL(2,Fq), dπ〉, where π ∈ Fq2 \ Fq, π2 ∈ Fq and SL(2,Fq) C G.

(iii) G ∼= SL(2, 5) and p = 3 = q.

Proof. Here, s = 0 and t = 2. Equation (2.16) simplifies to:

1 =
1

g
+
q − 1

qk
+
g1 − 1

2g1
+
g2 − 1

2g2
,

1

2g1
+

1

2g2
=

1

g
+
q − 1

qk
. (3.9)

Recall that,

eg = |G| ≥ |NG(Ai)| ≥ 2egi, thus
1

g
≤ 1

2gi
.

Equation (3.9) is therefore bounded from below:

2

g
≤ 1

2g1
+

1

2g2
=

1

g
+
q − 1

qk
.

Therefore q > 1, since if q = 1 we arrive at the contradiction 2/g ≤ 1/g. With
this in mind we have (q − 1)/q ≥ 1/2 and since gi ≥ 2 this allows us to bound
(3.9) on either side.

1

2
≥ 1

2g1
+

1

2g2
=

1

g
+
q − 1

qk
>
q − 1

qk
≥ 1

2k
.

This gives k > 1 and so by Theorem 2.3(v), k must equal g1 or g2 since the
inequality ek = |K| > |Z| = e holds. Without loss of generality we let k = g1
and (3.9) becomes,

1

2g1
+

1

2g2
=

1

g
+
q − 1

qg1
=

1

g
+

1

g1
− 1

qg1
,

1

2g2
=

1

g
+

1

2g1
− 1

qg1
. (3.10)



50 CHAPTER 3. DICKSON’S CLASSIFICATION THEOREM

Let NG(Q) act on Q\IG by conjugation and consider the stabiliser in NG(Q) of
an arbitrarily chosen x ∈ Q\IG.

Stab(x) = {g ∈ NG(Q) : gxg−1 = x}
= CG(x) ∩NG(Q)

= (Q× Z) ∩NG(Q) (by Theorem 2.3(iii))

= Q× Z. (since Q× Z ⊂ NG(Q))

Thus by the Orbit-Stabiliser Theorem,

|Orb(x)| = [NG(Q) : Q× Z] =
eqk

eq
= k

Since x was chosen arbitrarily from Q\IG, each element of Q\IG has an orbit
in NG(Q) of size k. Considering also the fact that Q\IG is equal to the union
of the pairwise disjoint orbits of its elements, we conclude that k = g1 divides
|Q\IG|. Thus there exists some d ∈ Z+ such that,

q − 1 = dg1. (3.11)

Now set,

i =
2g1g2q

g
> 0, (3.12)

and multiply (3.10) by ig to give,

g1q = i+ (q − 2)g2. (3.13)

Thus i is an integer and since it is greater than zero by definition, (3.13) gives,

g1 >
(q − 2)g2

q
. (3.14)

Also, using (3.11) and (3.13) we get,

g1q = i+ (q − 1)g2 − g2
= i+ dg1g2 − g2,

g2 = i+ (dg2 − q)g1. (3.15)

Applying Lemma 3.2 we observe that Q is not normal in G, and so

eg = |G| > |NG(Q)| = eqk = eqg1,

1

qg1
>

1

g
.

And (3.10) gives us,

1

2g2
=

1

g
− 1

qg1
+

1

2g1
<

1

2g1
,

g1 < g2. (3.16)
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Consider now,

[G : NG(Q)] =
eg

eqk
=

g

qg1
=

2g2
i
∈ Z. (by (3.12))

Thus i divides 2g2. Recall that the order of A2 is relatively prime to p by
Theorem 2.3(iii), so g2 is also relatively prime to p. Therefore if p 6= 2, i is
relatively prime to p and if p = 2 then p divides i but p2 does not. Now since Q
is a Sylow p-subgroup of G, this means that greatest common denominator of i
and q is either 1 or 2. Now consider,

[G : NG(A2)] =
eg

2eg2
=
g1q

i
∈ Z. (by (3.12))

Thus i divides g1q and since gcd(i, q) = 1 or 2, i must divide 2g1. So there exists
some m ∈ Z+ such that,

i =
2g1
m
. (3.17)

We consider now the separate cases which arise for different values of q.

• Cases Va and Vb: q ≥ 4q ≥ 4q ≥ 4. This condition gives us a lower bound for the
inequality in (3.14),

g1 >
(q − 2)g2

q
>
g2
2
.

Combining this with (3.16) we have,

g1 < g2 < 2g1. (3.18)

Substituting (3.17) into (3.15) gives,

g2 =

(
2

m
+ dg2 − q

)
g1

Thus (3.18) gives that,

1 <
2

m
+ dg2 − q < 2.

This means that 2/m is some fraction between 0 and 1 and dg2 − q = 1. So
(3.15) becomes,

g2 = g1 + i. (3.19)

Substituting this into (3.10) we find that,

g1q = i+ (q − 2)(g1 + i),

2g1 = i(q − 1) = idg1, (by (3.11))

2 = id.
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We remark that since both i and d are positive integers, i (and indeed d) must
equal 1 or 2. Thus by (3.19) and (3.12),

g1 =
i(q − 1)

2
, g2 =

i(q + 1)

2
, g =

2g1g2q

i
=
iq(q2 − 1)

2
.

Thus we have the following expressions for the orders of K and G:

|K| = ei(q − 1)

2
, |G| = eiq(q2 − 1)

2
. (3.20)

By Proposition 1.11, each noncentral element of Q has a unique common fixed
point on the projective line L , call it P1. Furthermore, we saw in the proof
of Theorem 2.3(v) that each noncentral element of K also fixes P1 as well as
one other point, call it P2. Let u be a noncentral element of Q and set P3 =
P u2 . Clearly P3 is different from P1 and P2 because otherwise a contradiction is
reached. By Theorem 1.10, PSL(L ) is triply transitive, so there exists a v ∈ L
such that,

P v1 = R1 =

[
0
1

]
, P v2 = R2 =

[
1
0

]
, P v3 = R3 =

[
1
1

]
.

Observe that,

vQv−1R1 = vQP1 = vP1 = R1,

vKv−1Ri = vKPi = vPi = Ri. (i = 1, 2)

Thus vQv−1 fixes R1 whilst vKv−1 fixes both R1 and R2. The only elements
of L that fix R1 are the lower triangular matrices, thus vQv−1 ⊂ H, whilst the
only elements that fix R2 are the upper triangular matrices, thus vKv−1 ⊂ D.
Furthermore, each noncentral element of vQv−1 has order p. The only elements
of H with order p are those in T , thus vQv−1 ⊂ T . Since u ∈ Q \ IG, we have
that vuv−1 = tγ for some γ ∈ F .

vuv−1R2 = vuP2 = vP3 = R3,[
1 0
γ 1

] [
1
0

]
=

[
1
γ

]
∼
[
1
1

]
. =⇒ γ = 1.

So vuv−1 = t1. If we now consider G̃ = vGv−1 instead of G, we can assume
without loss of generality that,

Q ⊂ T, K ⊂ D, u = t1.

Let x be a generator of K. By Theorem 2.3(iv) there exists a y ∈ N
G̃

(K)\K
such that yx = x−1y. Since R1 is fixed by both x and x−1 we have,

x−1yR1 = yxR1 = yR1.

Thus x−1 fixes yR1, that is yR1 ∈ {R1, R2}. Similarly, yR2 ∈ {R1, R2}. Assume
yR1 = R1. Since R1 and R2 are distinct points in L this implies that yR2 = R2.
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yR1 =

[
α β
γ δ

] [
0
1

]
=

[
β
δ

]
∼
[
0
1

]
=⇒ β = 0.

yR2 =

[
α β
γ δ

] [
1
0

]
=

[
α
γ

]
∼
[
1
0

]
=⇒ γ = 0.

Thus y ∈ D, which is a contradiction since elements in D do not invert x ∈ D,
hence,

yR1 = R2, and yR2 = R1. (3.21)

This allows us to determine more about y,

yR1 =

[
α β
γ δ

] [
0
1

]
=

[
β
δ

]
∼
[
1
0

]
=⇒ δ = 0.

yR2 =

[
α β
γ δ

] [
1
0

]
=

[
α
γ

]
∼
[
0
1

]
=⇒ α = 0.

Thus y is an anti-diagonal matrix. Recalling (1.2), for some ρ ∈ F ∗ we have,

y = dρw =

[
0 ρ
−ρ−1 0

]
.

Consider now the set of right cosets of N
G̃

(Q) of the form N
G̃

(Q)yq, (where
q ∈ Q) in N

G̃
(Q)yQ. For q1, q2 ∈ Q we have,

N
G̃

(Q)yq1 = N
G̃

(Q)yq2 ⇐⇒ yq2q1
−1y−1 ∈ N

G̃
(Q)

⇐⇒ q2q1
−1 ∈ y−1N

G̃
(Q)y

⇐⇒ (Q ∩ y−1N
G̃

(Q)y)q2 = (Q ∩ y−1N
G̃

(Q)y)q1.

So the number of right cosets of N
G̃

(Q) in N
G̃

(Q)yQ is equal to the number of
right cosets of Q ∩ y−1N

G̃
(Q)y in Q. That is,

[N
G̃

(Q)yQ : N
G̃

(Q)] = [Q : Q ∩ y−1N
G̃

(Q)y]. (3.22)

Let g be an arbitrary element of N
G̃

(Q). By Theorems 1.6(i) and 1.11(ii) we
have N

G̃
(Q) ⊂ H = Stab(R1), thus g fixes R1. Using (3.21) we see that,

y−1gyR2 = y−1gR1 = y−1R1 = R2.

Hence R2 is a fixed point of y−1gy. Since g was chosen arbitrarily, we assert
that each element of y−1N

G̃
(Q)y fixes R2. On the contrary, the only element of

Q which fixes R2 is I
G̃

, thus Q ∩ yN
G̃

(Q)y−1 = I
G̃

.
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[N
G̃

(Q)yQ : N
G̃

(Q)] = [Q : Q ∩ y−1N
G̃

(Q)y] = q,

|N
G̃

(Q)yQ| = q|N
G̃

(Q)|. (3.23)

We show next that N
G̃

(Q)yQ ∩ N
G̃

(Q) = ∅. Let tλdω and tµ be arbitrarily
chosen from N

G̃
(Q) and Q respectively so that tλdωytµ is an arbitrary element

of N
G̃

(Q)yQ.

tλdωytµ =

[
1 0
λ 1

] [
ω 0
0 ω−1

] [
0 ρ
−ρ−1 0

] [
1 0
µ 1

]

=

[
ω 0
ωλ ω−1

] [
ρµ ρ
−ρ−1 0

]

=

[
ωρµ ωρ

ωλρµ− ω−1ρ−1 ωρλ

]
. (3.24)

Since ω, ρ ∈ F ∗, the top right entry of (3.24) is non-zero. Recall also that
N
G̃

(Q) ⊂ H by Theorem 1.6(i) and that H is the set of all lower triangular
matrices of L. Since tλdωdρwtµ was chosen arbitraily, no element of N

G̃
(Q)yQ is

in H whilst the whole of N
G̃

(Q) is contained in H, thus they are disjoint. Using
(3.23) and (3.20) we also observe that,

|N
G̃

(Q)yQ|+ |N
G̃

(Q)| = (q + 1)|N
G̃

(Q)| = (q + 1)eqg1 =
eiq(q2 − 1)

2
= |G̃|.

Since N
G̃

(Q)yQ and N
G̃

(Q) are disjoint and the sum of their orders is equal to

the order of G̃, they partition G̃ into the set of elements that belong to H and
the set that don’t.

G̃ = N
G̃

(Q)yQ ∪N
G̃

(Q). (3.25)

Let N = {λ : tλ ∈ Q}. We will show that N = Fq. For each tλ ∈ Q \ Z,
the element ytλy

−1 /∈ H, so by (3.25), ytλy
−1 ∈ N

G̃
(Q)yQ. Thus there exists

tµ, tυ ∈ Q and dω ∈ K such that,

ytλy
−1 = tµdωytυ,[

0 ρ
−ρ−1 0

] [
1 0
λ 1

] [
0 −ρ
ρ−1 0

]
=

[
1 0
µ 1

] [
ω 0
0 ω−1

] [
0 ρ
−ρ−1 0

] [
1 0
υ 1

]
,

[
0 ρ
−ρ−1 0

] [
0 −ρ
ρ−1 −ρλ

]
=

[
ω 0
ωµ ω−1

] [
ρυ ρ
−ρ−1 0

]
,

[
1 −ρ2λ
0 1

]
=

[
ωρυ ωρ

ωρµυ − ω−1ρ−1 ωρµ

]
.

Equating the top right entries gives,

ω = −ρλ. (3.26)
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Since t1 ∈ Q, so is it’s inverse, thus −1 ∈ N. Letting λ = −1 in (3.26) gives
ω = ρ, which means that dρ ∈ K. Consequently, this shows that w = d−1ρ y ∈ G̃
and we may replace y by w in (3.25) without it affecting the partition of G̃. This
is equivalent to letting ρ = 1, and (3.26) simplifies to,

ω = −λ. (3.27)

Let M = {ω : dω ∈ K}. Recall from (3.20) that |K| = i(q − 1). We consider the
different cases which arise depending on the values of i and e.

Let Case Va be the case when e = 1 or i = 1. Observe that i and e can-
not both equal 1, since this would imply that 2 divides q − 1 (by (3.20)), but
if e = 1 it follows that q − 1 is even. Hence ei = 2 and K has order q − 1.
Furthermore, the order of each element of K divides q − 1, so for each ω ∈M,

ωq−1 = 1. (3.28)

Also, the following polynomial has at most q − 1 roots in F .

xq−1 = 1. (3.29)

By (3.2), Fq ⊂ F and each element of F∗q is a root of (3.29). Thus each ω of M
is in F∗q and since they have the same cardinality, M = F∗q . By (3.27), λ also
ranges over F∗q and considering also that λ can be 0, we have N = Fq.

Observe that each element of G̃ is either of the form tλdω or tλdωwtµ (where

λ, µ ∈ Fq, ω ∈ F∗q), so G̃ ⊂ SL(2,Fq). Also, Propostion 3.4 gives that,

|SL(2,Fq)| = q(q2 − 1) = |G̃|, so G̃ = SL(2,Fq). Since G̃ is conjugate in L
to G, we have G ∼= SL(2,Fq) as desired.

Let Case Vb be the case when i = 2 = e. This time the order of each ele-
ment of K divides 2(q − 1), so for each ω ∈M,

ω2(q−1) = 1. (3.30)

As in the case of i = 1, each element of F∗q is a root of the polynomial in (3.29),
as are each ω2. Thus ω2 ranges over F∗q and by (3.2), ω ∈ Fq2 \Fq. Simple matrix
multiplication shows that,

d−1ω tλdω = tω2λ.

Hence since t0, t1 ∈ Q, it follows that tω2 ∈ Q for each ω2 ∈ F∗q , thus N = Fq.
Since K is a cyclic group of order 2(q − 1), so too is M. Let π be a generator of
M. It follows that π2 has order q − 1 and is therefore a generator of F∗q . Since
K = 〈dπ〉, we have:

G̃ = 〈tλ, dπ, w : λ ∈ Fq〉 = 〈SL(2,Fq), dπ〉.
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Again, since G̃ is conjugate in L to G, we have G ∼= 〈SL(2,Fq), dπ〉 as desired.
Now we take an arbitrary x from SL(2,Fq) and conjugate it by dπ.

dπxd
−1
π =

[
π 0
0 π−1

] [
α β
γ δ

] [
π−1 0

0 π

]

=

[
π 0
0 π−1

] [
απ−1 βπ
γπ−1 δπ

]

=

[
α βπ−2

γπ2 δ

]
.

Since π2 ∈ Fq, we have that dπxd
−1
π ∈ SL(2,Fq) and since x was chosen arbi-

trarily, dπ belongs to the normaliser of SL(2,Fq) in 〈SL(2,Fq), dπ〉. This shows
that SL(2,Fq) C 〈SL(2,Fq), dπ〉 as desired.

• Cases Vc and Vd: q ≤ 3q ≤ 3q ≤ 3. Since q − 1 = dg1 ≥ 2 by (3.11), q cannot
equal 2. So q = 3 = p, e = 2 and thus g1 = 2. The inequalities in (3.16) and
(3.14) give,

2 < g2 < 6.

Also, since g2 is relatively prime to p = 3, we have g2 = 4 or 5. Let Case Vc
be the case when g2 = 4. (3.10) becomes,

1

8
=

1

g
+

1

4
− 1

6
,

which gives g = 24. Observe that,

|K| = 4 = i(q − 1), |G| = 48 = iq(q2 − 1),

where i = 2, thus we have the situation as described in Case Vb. That is,
G ∼= 〈SL(2,Fq), dπ〉 with q = 3.

Alternatively, Case Vd occurs when g2 = 5. (3.10) becomes,

1

10
=

1

g
+

1

4
− 1

6
.

Thus g = 60 and |G| = 120. We verify, using Proposition 3.4, that SL(2, 5) has
the same order as G, that is |SL(2, 5)| = 5(52 − 1) = 120. Observe that,

|C1| = [G : NG(A1)] =
eg

2eg1
= 15,

|C2| = [G : NG(A2)] =
eg

2eg2
= 6,

|CQ×Z | = [G : NG(Q× Z)] =
eg

ekq
= 10.
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Now consider the quotient group G/Z of order 60. It’s trivial that for all
Ai, Aj ∈ M, Ai/Z belongs to the same conjugacy class as Aj/Z if and only
Ai and Aj belong to the same conjugacy class. So the number of subgroups con-
jugate to Ai/Z is |Ci|. Similarly, the number of subgroups conjugate to (Q×Z)/Z
is |CQ×Z |.

We now calculate the order of each maximal abelian subgroup of G when we
quotient out Z.

|A1/Z| = 2, |A2/Z| = 5, |(Q× Z)/Z| = 3.

We now know enough about G/Z to determine the order of each of it’s elements:

• The identity has order 1.
• The non-central element of A1/Z has order 2, as does the non-central element
in each of the |C1| = 15 subgroups conjugate to A1/Z. So there are 15 elements
of order 2.
• The 4 non-central elements of A2/Z have order 5, as do the non-central ele-
ments in each of the |C2| = 6 subgroups conjugate to A2/Z. Thus there are 24
elements of order 5.
• The 2 non-central elements of (Q× Z)/Z have order 3, as do the non-central
elements in each of the |CQ×Z | = 10 subgroups conjugate to (Q × Z)/Z. Thus
there are 20 elements of order 3.

Since 1 + 15 + 24 + 20 = 60, all elements of G/Z are accounted for.

Let N be a normal subgroup of G/Z. Observe that each non-central element of
A2/Z is a generator of it, so if N contains one non-central element of A2/Z, then
it contains the whole of it, due to the closure of the group under multiplication
and the fact that each element of A2/Z is a power of any non-central element.
Also, it can easily be seen that normal subgroups are composed of whole con-
jugacy classes, so since N is normal in G, if it contains A2/Z, it must contain
all subgroups conjugate to A2/Z. The consequence of this is that if N has an
element of order 5, then it contains all 24 elements of G/Z of order 5. Similarly,
if it contains an element of order 2, it contains all 15 of them and if it contains an
element of order 3, it contains all 20 of them. This means that |N | is partitioned
by some or all of the elements in {1, 15, 20, 24}. Bearing in mind that the order
of N divides 60 and that N contains the identity element, this means that N
is equal to either the identity element or it is the whole of G/Z, since it’s easy
to see that no other partition of those numbers divides 60. Thus G/Z has no
non-trivial normal subgroups and is simple.

By [4, p.145], the only simple groups of order 60 are those isomorphic to the al-
ternating group A5 (not to be confused with an element of M), thus G/Z ∼= A5.
Since Z ∼= Z2, we have that G is isomorphic to a central extension of A5 which,
according to Schur [7], is unique and isomorphic to SL(2, 5) as desired. The
proofs of these 2 claims are beyond the scope of this thesis.
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Case VI:

Claim: We have one of the following three cases:

(i) G = 〈x, y |xn = y2, yxy−1 = x−1 〉, where n is even.

(ii) G = Ŝ4.

(iii) G ∼= SL(2, 5) and p does not divide |G|.

Where Ŝ4 is one of the representation groups of the symmetric group S4 in which
the transpositions correspond to the elements of order 4.

Proof. Here, s = 0 and t = 3. Equation (2.16) simplifies to:

1 =
1

g
+
q − 1

qk
+
g1 − 1

2g1
+
g2 − 1

2g2
+
g3 − 1

2g3
,

1

2g1
+

1

2g2
+

1

2g3
=

1

g
+
q − 1

qk
+

1

2
. (3.31)

First assume that q > 1 and k = 1. (3.31) is thus bounded as follows,

3

4
>

1

2g1
+

1

2g2
+

1

2g3
=

1

g
+
q − 1

qk
+

1

2
> 1,

which is a contradiction. Now assume that q > 1 and k > 1. This means that
k = gi for some i. Without loss of generality we can assume that k = g1. Now
(3.31) becomes,

1

2
≥ 1

2g2
+

1

2g3
≥ 1

g
+

1

2
>

1

2
,

which again is a contradiction, thus we conclude that q = 1. (3.31) simplifies
and we can now determine the possible values of each gi.

1

2g1
+

1

2g2
+

1

2g3
=

1

g
+

1

2
. (3.32)

Without loss of generality we may assume that 2 ≤ g1 ≤ g2 ≤ g3. If g1 6= 2 we
arrive at the following contradiction

1

6
+

1

6
+

1

6
≥ 1

2g1
+

1

2g2
+

1

2g3
=

1

g
+

1

2
.

Thus g1 = 2 and we have,

1

2g2
+

1

2g3
>

1

4
. (3.33)
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Clearly g2 must equal either 2 or 3. If g2 = 2 it is easily shown that g = 2g3.
If g2 = 3 we see that g3 ∈ {3, 4, 5}. Assume that g2 and g3 = 3. Notice that
since g1 = 2, 2 must divide the order of G. Recall also that a Sylow p-subgroup
of G has order 1, so we assert that p 6= 2 and e = 2. We see from (3.32)
that |G| = 24 and thus a Sylow 3-subgroup has order 3. The maximal abelian
subgroups conjugate to A2 or A3 have order 6 and therefore each contains a
Sylow 3-subgroup of G. Let B2 and B3 be the Sylow 3-subgroups contained in
A2 and A3 respectively. Observe that for i = 2 or 3,

Ai ∼= Z6
∼= Z3 × Z2

∼= Bi × Z ∼= BiZ. (3.34)

Let b2 ∈ B2, b3 ∈ B3 and z ∈ Z. Recall that B2 and B3 are conjugate in G by
Sylow’s Second Theorem, so there exists an x ∈ G such that,

xb2x
−1 = b3,

xb2x
−1z = b3z,

xb2zx
−1 = b3z.

Since b2, b3 and z were chosen arbitrarily, we observe that B2Z is conjuagate to
B3Z and thus by (3.34), A2

∼= A3. This contradicts the fact that A2 and A3

are representatives of different conjugacy classes of maximal abelian subgroups
of G, which means that g2 and g3 cannot both equal 3. Thus we are left with
the following three cases:

g1 = 2, g2 = 2, g = 2g3.

g1 = 2, g2 = 3, g3 = 4.

g1 = 2, g2 = 3, g3 = 5.

• Case VIa: g1 = 2, g2 = 2, g = 2g3g1 = 2, g2 = 2, g = 2g3g1 = 2, g2 = 2, g = 2g3. First observe that,

[G : NG(A1)] =
eg

2eg1
=
g3
2
.

Thus g3/2 is an integer which means that g3 must be even, call it n. Now let
A3 = 〈x〉. Since |A3| = eg3, the order of x is 2n and xn has order 2. By Theorem
(2.3)(iv) there exists a y ∈ NG(A3)\A3 such that yxy−1 = x−1. Also,

|C3| = [G : NG(A3)] = 1.

Since y 6∈ A3 and A3 has no conjugate subgroups (aside from itself), y must lie
in a maximal abelian subgroup conjugate to either A1 or A2. This means that
since |A1| = 4 = |A2| and y 6∈ Z, the order of y must be 4. By the uniqueness
of the element of order 2, we have the relation xn = y2 and G is given by the
presentation,

G = 〈x, y |xn = y2, yxy−1 = x−1 〉. (where n is even)
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• Case VIb: g1 = 2, g2 = 3, g3 = 4g1 = 2, g2 = 3, g3 = 4g1 = 2, g2 = 3, g3 = 4. In this case (3.32) becomes,

1

4
+

1

6
+

1

8
=

1

g
+

1

2
.

Thus g = 24 and |G| = 48. Consider the quotient group G/Z of order 24 and
the quotient group NG(A2)/Z which, for convenience, we will call H.

|H| = 2eg2
e

= 6.

Let x be an element of order 6 from A2. By Theorem 2.3(iv) there exists a
y ∈ NG(A2)\A2 such that yx = x−1y. Thus for xZ, yZ, x−1Z ∈ H we have,

yZxZ = yxZ = x−1yZ = x−1ZyZ.

If H is abelian, then xZ = x−1Z and thus x2 ∈ Z. Also, since x has order
6, x2 has order 3. This is contradiction since there is no element of order 3 in
Z. Thus H is non-abelian and is therefore isomorphic to the symmetric group S3.

Now we determine the normal subgroups of H. The identity and H itself are
trivially normal. Furthermore, the elementary result that any subgroup of index
2 is normal implies that A2/Z, the subgroup of H of order 3, is normal. It
remains to check the subgroups of order 2. Let r be a generator of one of the
subgroups of order 2 and let x be an arbitrary element of H. If 〈r〉 is normal in
H, then xrx−1 ∈ {I, r}. Since r 6= I it follows that xrx−1 6= I. Alternatively
if xrx−1 = r, then r ∈ Z(H). By the elementary result that Z(Sn) = {I} for
n > 2, we have that Z(H) = {I} and the contradiction r = I. Thus xrx−1 6∈ 〈r〉
and H has no normal subgroup of order 2. We conclude that the only normal
subgroups of H are those of order 1, 3 or 6.

Note that the index of H in G/Z is 4. Let G/Z act by left multiplication on the
set of left cosets of H. By Theorem 0.3, this action induces a homomorphism
φ : G/Z −→ S4 with kernel,

ker(φ) =
⋂

x∈G/Z

xHx−1 ⊂ H.

Recall the elementary result that the kernel of a homomorphism is a normal sub-
group of it’s domain. Thus the kernel of φ is normal in G/Z and consequently
in H as well, that is ker(φ) ∈ {I, A2/Z,H}.

If ker(φ) = A2/Z, then A2/Z C G/Z and by Lemma 3.5 A2 C G. This is
a contradiction since the normaliser in G of A2 is a proper subgroup of G, thus
ker(φ) 6= A2/Z.

If ker(φ) = H, then H C G/Z. Take an arbitrary x ∈ G/Z. Since A2/Z is
a subgroup of H we get,

x(A2/Z)x−1 ⊂ H.
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Furthermore, since A2/Z has order 3, any subgroup conjugate to it has order 3.
Since the only subgroup of H of order 3 is A2/Z, and since x was chosen arbi-
trarily, A2/Z C G/Z. We have already shown that this leads to a contradiction,
thus ker(φ) 6= H.

We conclude that ker(φ) = {I} and so φ is injective. Since G/Z has 24 ele-
ments, it’s image under φ is the whole of S4, that is G/Z ∼= S4. Thus G is a
representation group of S4, denoted by Ŝ4 (for a full defintion of this, see [9]).
Suzuki proves that S4 has 2 distinct representation groups up to isomorphism [9,
p.301], which are distinguished by the property that the elements corresponding
to transpositions have either order 2 or order 4. Since G has a unique element
of order 2, it must be isomorphic to the representation group of S4 in which the
transpositions correspond to the elements of order 4, as desired.

• Case VIc: g1 = 2, g2 = 3, g3 = 5g1 = 2, g2 = 3, g3 = 5g1 = 2, g2 = 3, g3 = 5. In this case (3.32) becomes,

1

4
+

1

6
+

1

10
=

1

g
+

1

2
.

Thus |g| = 60 and |G| = 120. Observe that a simple relabelling of the maximal
abelian subgroups gives the same situation as described in Case Vd:. Thus
G ∼= SL(2, 5), however in this case p does not divide |G|.

3.3 Dickson’s Classification Theorem

We now state the main result of this paper, Dickson’s classification of finite sub-
groups of SL(2, F ). Observe that it is not the focus of this paper to determine
whether the following groups actually exist, rather that this theorem can be re-
garded as an upper bound, so to speak, of the only possible subgroups of SL(2, F ).

Theorem 3.6. Let F be an arbitary algebraically closed field of characteristic p.
Any finite subgroup G of SL(2, F ) is isomorphic to one of the following groups.

Class I: When p = 0 or |G| is relatively prime to p:

(i) A cyclic group.

(ii) The group defined by the presentation:

〈x, y |xn = y2, yxy−1 = x−1 〉.

(iii) The Special Linear Group SL(2, 3).

(iv) The Special Linear Group SL(2, 5).

(v) Ŝ4, the representation group of S4 in which the transpositions correspond to
the elements of order 4.
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Class II: When |G| is divisible by p:

(vi) Q is elementary abelian, Q C G and G/Q is a cyclic group whose order is
relatively prime to p.

(vii) p = 2 and G is a dihedral group of order 2n, where n is odd.

(viii) The Special Linear Group SL(2, 5), where p = 3 = q.

(ix) The Special Linear Group SL(2,Fq).

(x) The group 〈SL(2,Fq), dπ〉, where SL(2,Fq) C 〈SL(2,Fq), dπ〉.

Here, Q is a Sylow p-subgroup of G of order q, Fq is a field of q elements, Fq2
is a field of q2 elements, π ∈ Fq2 \ Fq and π2 ∈ Fq.

Proof. If Z 6⊂ G, then G has no element of order 2 and |G| is therefore odd.
Observe that in Cases II, IV, V and VI, |G| is always even, thus we have either
Case I or III. These correspond to Class I (i) or Class II (vi).

If Z ⊂ G, then G has the same structure as one of the 6 cases previously
discussed. We match the separate cases to the above classes.

Case Ia: This leads to Class I (i).
Case Ib: This leads to Class II (vi).
Case IIa: This leads to Class I (ii) where n is odd.
Case IIb: This leads to Class I (iii).
Case III: If G = Z this leads to Class I (i), otherwise to Class II (vi).
Case IVa: This leads to Class II (vii).
Case IVb: This leads to Class II (ix) with q = 3.
Case Va: This leads to Class II (ix).
Case Vb: This leads to Class II (x).
Case Vc: This leads to Class II (x) with q = 3.
Case Vd: This leads to Class II (viii).
Case VIa: This leads to Class I (ii) where n is even.
Case VIb: This leads to Class I (v).
Case VIc: This leads to Class I (iv).
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